KHULNA UNIVERSITY OF ENGINEERING & TECHNOLOGY Department of Mechanical Engineering

B. Sc. Engineering 3rd year 1st Term Examination, 2017

ME 3121 (Backlog)

(Numerical Method)

Time: 3 Hours.

N.B. i) Answer any THREE questions from each section in separate scripts.

- ii) Figures in the right margin indicate full marks.
- iii) Assume reasonable data if any missing.

SECTION - A

- 1(a) Starting from Newton's general interpolation formula, derive the Lagrange's formula for 18 interpolation.
- 1(b) Determine the value of y when x = 7.12 and the value of x, when y = 56.38 from the table 17 by Lagrange's interpolation formula.

x	6.67	6.98	7.23	7.96
у	50.01	55.50	59.10	62.30

- 2(a) Deriving general integration formula formulate Simpson's ¹/₃ formula.
- 2(b) From the following table of values of x and $y = e^x$, interpolate the value of y when 17 x = 1.91 using Stirling's formula.

x	1.7	1.8	1.9	2.0	2.1	2.2
$y = e^x$	5.4739	6.0496	6.6859	7.3891	8.1662	9.0250

- 3(a) Describe the method of False position for the solution of non-linear equation.
- 3(b) Use Newton-Raphson method to obtain a root, correct to four decimal places of the 15 equation $x \cos x = 0$.
- 3(c) Describe the method of iteration for system of non-linear equations.
- 4(a) What are the methods for the solution of linear algebraic equation? Describe Jacobi 17 method for the solution of these equations.
- 4(b) Solve the following system of equations by Gaussian elimination method.

2x + y + z = 103x + 2y + 3z = 18x + 4y + 9z = 16

SECTION - B

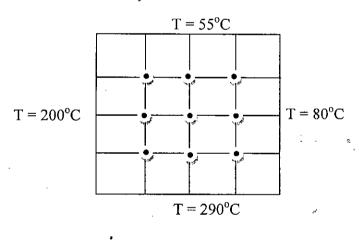
- 5(a) Deduce Euler's formula for the solution of ordinary differential equation also write down 17 its modified form.
- 5(b) Solve the following equation $\frac{dy}{dx} = 2y + 3e^x$ with y(0) = 0, using Taylors's series 18 method at x = 0.1 correct up to three decimal places.

18

Total Marks: 210

10

10


- 6(a) Use the Runge-Kutta Forth-order method to find the value of y when x = 0.6 taking 20 h = 0.2. $\frac{dy}{dx} = \frac{y-x}{y+x}$
- 6(b) Fit an exponential function of the type $y = ae^{bx}$ to the following data by Least square 15 method.

<u>x</u>	0	0.5	1.0	1.5	2.0	2.5
У	0.10	0.45	2.15	9.15	40.35	180.75

7(a)What is partial differential equation? Classify partial differential equation.067(b)Discretize the following partial differential quotients08 $\frac{\partial T}{\partial x}, \quad \frac{\partial^2 T}{\partial x^2}, \quad \text{and} \quad \frac{\partial^2 T}{\partial x \partial y}$ 047(c)What are the steps in finite difference methods?04

17

- 7(d) Solve the Laplace equation by finite difference method. $\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = 0.$
- 8(a) Describe the Crank-Nicolson method for the solution of unsteady parabolic equation. 16
- 8(b) Calculate the value of T at all interior nodal points within a square slab following the 19 governing equation $\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = 0$ and the given boundary conditions.

---- End ----