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Abstract 

 

 

 

The design of experiments (DoEs) have much recent interest and this is likely to grow as 

more and more simulation models are used to carry out research. A good experimental 

design should have at least two important properties namely projective property (non-

collapsing) and Space-filling (design points should be evenly spread over the entire design 

space) property. Any Latin Hyper-cube design (LHD) is inherently preserve projective 

property. But randomly generated LHDs have poor space-filling property. In consequence, 

in sense of space-filling, Optimal LHDs are required for good DoEs. Several optimal 

LHDs are available in the literature; Maximin LHD is one of the most frequently used 

among such optimal LHDs. It is also noted that researchers implement different type of 

methods to find out maximin LHDs. But the performances of the approaches are not same. 

In this study, we consider maximin LHDs obtained by Iterated Local search (ILS) 

heuristic approach in which inter-site distances are measured in Euclidean distance 

measure.  We have compared the performance and effectiveness of ILS approach with 

some well-known approaches available in the literature regarding maximin LHDs in 

Euclidean distance measure. The experimental study agrees that ILS approach outperforms 

regarding maximin LHDs measured in Euclidean distance measure. We perform further 

extensive experiments in perspective of Audze-Eglais values. We compare Audze-Eglais 

values of  maximin LHDs, which are optimized regarding  ɸp optimal criterion and 

obtained by ILS approach, with  Audze-Eglais value of Audze-Eglais LHDs,  which are 

optimized regarding  Audze-Eglais optimal  criterion and obtained by Enhanced Stochastic 

Evolutionary (ESE) algorithm. In the experimental results show that the Audze-Eglais 

value of Maximin LHDs are comparable. We have also compared the performance of ILS 

approach with other approaches regarding various characteristics of the optimal designs by 

considering a typical design namely (k, N) = (4, 9). The comparison study reveals that ILS 

approach is one of the best approaches for finding maximin LHDs.   
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CHAPTER I 

 

 

INTRODUCTION 

 

 

1.1 Background 

Design of experiments (DOE) or experimental design is the design of any information-

gathering exercises where variation is present, whether under the full control of the 

experimenter or not. However, in statistics, these  terms are usually used for controlled 

experiments. Formal planned experimentation is often used in evaluating physical objects, 

chemical formulations, structures, components, and materials. Other types of study, and 

their design, are discussed in the articles on computer experiments, opinion polls and 

statistical surveys (which are types of observational study), natural experiments and quasi-

experiments (for example, quasi-experimental design). 

In the design of experiments, the experimenter is often interested in the effect of some 

process or intervention (the "treatment") on some objects (the "experimental units"), which 

may be people, parts of people, groups of people, plants, animals, etc. Design of 

experiments is thus a discipline that has very broad application across all the natural and 

social sciences and engineering. 

Computer simulation experiments [e.g., Santner et al (2003); Fang et al (2006)] have now 

become a popular substitute for real experiments when the physical experiment are 

infeasible or too costly. In these experiments, a deterministic computer code, the 

simulator, replaces the real (stochastic) data generating process. This practice has 

generated a wealth of statistical questions, such as how well the simulator is able to mimic 

reality or which estimators are most suitable to adequately represent a system. However, 

the foremost issue presents itself even before the experiment is started, namely how to 

determine the inputs for which the simulator is run? It has become standard practice to 

select these inputs such as to cover the available space as uniformly as possible, thus 

generating so called space-filling experimental designs. Naturally, in dimensions greater 

than one, there are alternative ways to produce such designs.. 

http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Controlled_experiment
http://en.wikipedia.org/wiki/Controlled_experiment
http://en.wikipedia.org/wiki/Physical_test
http://en.wikipedia.org/wiki/Chemical_test
http://en.wikipedia.org/wiki/Computer_experiment
http://en.wikipedia.org/wiki/Opinion_poll
http://en.wikipedia.org/wiki/Statistical_survey
http://en.wikipedia.org/wiki/Observational_study
http://en.wikipedia.org/wiki/Natural_experiment
http://en.wikipedia.org/wiki/Quasi-experiment
http://en.wikipedia.org/wiki/Quasi-experiment
http://en.wikipedia.org/wiki/Quasi-experimental_design
http://en.wikipedia.org/wiki/Experimental_unit
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The design of computer experiments has much recent interest and this is likely to grow as 

more and more simulation models are used to carry out research. Computer simulation 

experiments are used in a wide range of application to learn about the effect of input 

variables x on a response of interest y [Butler (2001)]. In computer experiments, instead of 

physically doing an experiment on the product, mathematical models describing the 

performance of the product are developed using engineering/physics laws and solved on 

computers through numerical methods. As simulation programs are usually deterministic 

so the output of a computer experiment is not subject to random variations, which makes 

the design of computer experiments different from that of physical experiments [(Fang et 

al. (2006)]. Many simulation models involve several hundred factors or even more. It is 

desirable to avoid replicates when projecting the design on to a subset of factors. This is 

because a few, out of the numerous factors in the system, usually dominate the 

performance of the product. Thus a good model can be fitted using only these few 

important factors. Therefore, when we project the design on to these factors, replication is 

not required. 

 

As is recognized by several authors, the choice of the design points for computer 

experiments should at least fulfill two requirements (for details see [Johnson et al. (1990); 

Morris and Mitchell (1995)]). First of all, the design should be space- filling in some 

sense. When no details on the functional behavior of the response parameters are 

available, it is important to be able to obtain information from the entire design space. 

Therefore, design points should be evenly spread over the entire region. Secondly, the 

design should be non-collapsing. When one of the design parameters has (almost) no 

influence on the function value, two design points that differ only in this parameter will 

collapse, i.e., they can be considered as the same point that is evaluated twice. For 

deterministic functions this is not a desirable situation. Therefore, two design points 

should not share any coordinate value when it is not known a priori which parameters are 

important.  

 

For the design of computer experiments Latin Hypercube Designs (LHDs), first 

introduced in [McKay et al. (1979)], fulfill the non-collapsing property. LHDs are 

important in the design of computer-simulated experiments (e.g., [Fang et al. (2006)]). 
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Here LHD is defined a bit different than [McKay et al. (1979)] but similar to [Johnson et 

al. (1990); Husslage et al. (2006); Morris and Mitchell (1995); Grosso et al. (2008)]. 

Assume that we have to place N design points and that there are k distinct parameters. We 

would like to place the points so that they are uniformly spread when projected along each 

single parameter axis. We will assume that each parameter range is normalized to the 

interval [0, N-1]; Then, a LHD is made up by N points, each of which has k integer 

coordinates with values in 0,1, . . . , N-1 and such that there do not exist two points with 

one common coordinate value. This allows a non-collapsing design because points are 

evenly spread when projected along a single parameter axis.  

 

A k-dimensional Latin hypercube design (LHD) of n points, is a set of n points   where xi = 

(xij, xi2, . . . , xik)∈  {0, . . . , N − 1}
k
 such that for each factor j all xij are distinct. In this 

definition, we assume that our design space is equal to the [0, N−1]
k
 hypercube. However 

by scaling, we can use LHDs for any rectangular design space. Alternative definitions of 

LHDs also occur in the literature. One alternative definition is  to divide each axis into n 

equally sized bins and randomly select points such that each bin contains exactly one 

point. However, we refer to this technique as Latin hypercube sampling (LHS). In this 

paper the term ‘LHD’ thus only refers to the first definition. 

A configuration  

  

 


















Nx

x


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X
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




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
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with all  1,1,0  Nxij   is a LHD if each column has no duplicate entries. This one-

dimensional projective property ensures that there is little redundancy of design points 

when some of the factors have a relatively negligible effect (sparsity principle). 

 

 

Unfortunately, randomly generated LHDs almost always show poor space-filling 

properties or / and the factors are highly correlated. On the other hand, maximin distance 

objective based designs proposed by [Johnson et al. (1990)], have very good space-filling 

properties but often no good projection properties under the Euclidean (L
2
), or the 
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Rectangular (L
1
), distance. To overcome this shortcoming, Morris and Mitchell [Morris 

and Mitchell (1995)] suggested for searching maximin LHDs which have both the 

important properties when looking for “optimal” designs. An LHD is 

                                            
ij

min d(xi, xj) is maximal among all LHDs 

of given size n, where d is a certain distance measure. In this paper, we concentrate on the 

Euclidean (L
2
) distance measure, i.e., 

   



k

l

jlilji xxxxd
1

2)(),(                                                                        (1.1)       

since this measure is often the first choice in practice .The definition of optimal LHDs 

through the maximin criterion has been proposed in [Johnson et al. (1990)] : given a point-

to-point distance metric Ijixxd ji ,);,(  (I is the index set) ; then the maximin LHD 

problem is to find a LHD such that the minimum point-to-point distance occurring in such 

configuration is maximized (as large as possible). In the literature the optimal criterion for 

maximin LHD are defined in several ways [Grosso et al. (2009)] but the main objective is 

identical i.e. searching the LHD with the maximizing the minimum pair-wise distance. 

Also different definitions for the distance ),( ji xxd  are considered in literature; in this work  

d is to be the Euclidean distance, which is one of the most frequently used distance-

measure in the applications. 

  

For the presents of combinatorial nature, the number of possible LHDs is very high - (N!)
k
. 

For example, to optimize the location of 20 samples in two dimensions, the algorithm has 

to select the best design from more than 10
36

 (20!)
2 

possible designs. If the number of 

variables is increased to 3, the number of possible designs is more than 10
55

. 

Consequently, when number of factors and/ or number of design points are large then it 

requires hundreds of hours by the brute-force approach to find out the optimal design. So 

researchers choose heuristic approaches to find out optimal designs. Here, we choose 

Iterated Local search (ILS) heuristic approaches to find the optimal (maximin) LHD 

[Grosso et al. (2009)]. For the optimal criterion they considered the following maximin 

optimal criteria in Euclidean distance measure which is similar to [Johnson et al. (1990)] 

but a quite different regarding computational effort:   
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
  















N

i

pN

ij

p

ij

p
d

X
1

1

1

1
)(                                                                                          (1.2) 

                                                                

where ),( jiij xxdd   be the Euclidian distance between points ix  and jx  and p is a positive 

integer parameter and which can be computed without the need of detecting and ordering 

all Di (pair-wise inter side distance) values which is required in [Johnson et al. (1990)]. 

They denotes this optimal criterion as Opt(φ).  Under this criterion, LHD Y is better than 

X if  

 

 )X()Y( PP                                                                                  (1.3)                        

Note that in [Johnson et al. (1990)] the definition of maximin optimal criterion is as 

follows :  

p

1

1
p

r

r

(X)D

(X)J
)X( 













R

r

p ,                                                                     (1.4)                

where )X(,),X()X( 21 RDDD   (pair-wise inter side distances), R is the number of 

different distances in X. Also note that authors in [Grosso et al. (2008); Grosso et al. 

(2009)] considered another maximin optimal criterion denoted as Opt (D1), which is also 

considered in [Johnson et al. (1990)], is given below. 

 

     max D1(X) such that  

    
LHDjixxdDD ji  X;),(min)X(11

                                                        (1.5)                 

    with )X(),(:),(min 1DxxdjiJ ji   

Under this criteria, LHD Y is better than  X if  

 

            )X()Y( 11 DD    or 

)X()Y( 11 DD   and )X()Y( 11 JJ                                                                     (1.6)             

and so on. 

 

There is also a set of maximin-distance designs (when there exist several), a maximin-

optimal design ξ*Mm is such that the number of pairs of points (xi , xj) at the   distance dij = 
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p (ξ*Mm) is minimum (several such designs can exist, and measures can be taken to 

remove draws, Morris and Mitchell (1995), but this is not important for our purpose). 

Consider now designs ξ that attempt to make the maximum distance from all \the points in 

X to their closest point in ξ as small as possible. This is achieved by minimizing the 

minimax-distance criterion mM (ξ) = max Min || xi- xj ||. We call a design that minimizes  

mM(ξ) a minimax distance design, Johnson et al (1990) . These designs can be motivated 

by a table allocation problem in a restaurant, such that a waiter is as close as possible to a 

table wherever he is in the restaurant. In other terms, one wishes to cover Ӿ with n balls of 

minimum radius. Among the set of minimax-distance designs (in case several exist), a 

minimax-optimal design design ξ*mM   maximizes the minimum number of xi's such that  

mini || xi- xi || =mM (ξ*mM)  over all points x having this property. 

 

Besides maximin LHDs, and minimax LHDs  we also treat Audze-Eglais LHDs. Audze-

Eglais designs are obtained by minimizing the following objective:       

                      
 

        
 

 
     

 
                                                                                       (1.7) 

here d(xi, xj) is again the Euclidean distance between points xi and xj . By minimizing this 

objective, we can also obtain LHDs with “evenly spread” points (Bates et al. 2004).The 

problem of finding Audze Eglais LHD is formulated and a permutation genetic algorithm 

is used to generate them by [Liefvendahl and Stocki (2006)]. They compared maximin and 

Audze Eglais LHDs and recommend on Audze Eglais criterion over the maximin criterion.  

 

 

 For all the classes of LHDs, our aim is to construct a database of the best designs known 

in literature. We do this by generating new designs and comparing them with existing 

results. These designs are often approximate maximin or Audze-Eglais designs in the 

sense that optimality of the objective is not guaranteed. The reason for this is that 

optimization over the total set of LHDs can be very time-consuming for larger values of k 

and N. Therefore, in order to find good designs, optimization is often done over a certain 

class of LHDs or heuristics are used which do not guarantee optimality. The periodic 

LHDs [Hussluge et al. (2006)] are a good example of the first case. Examples of the 

second case are simulated annealing used by Morris and Mitchell (1995), the permutation 
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genetic algorithm of Bates et al. (2004) and the Enhanced Stochastic Evolutionary (ESE) 

algorithm of Jin et al. (2005). 

 

 

1.2  Literature Review 

 

1.2.1 Experimental Designs 

 

Since physical experiments are inevitably very expensive and time consuming, computer 

experiments are widely used for simulating physical characteristics and for the design and 

development of products [Fang et al. (2006)]. A computer experiment is modeled as a 

realization of a stochastic process, often in the presence of nonlinearity and high 

dimensional inputs [Sacks et al. (1989a)]. In order to perform efficient data analysis and 

prediction and in order to determine the best settings for a number of design parameters 

that have an impact on the response variable(s) of interest and which influence the critical 

quality characteristics of the product or process, it is often necessary to set a good design 

as well as to optimize the product or process design. In computer experiments, instead of 

physically doing an experiment on the product, mathematical models describing the 

performance of the product are developed using engineering/physics laws. Then the 

mathematical models are solved on computers through numerical methods such as the 

finite element method. A computer simulation of the mathematical models is usually time 

consuming and there is a great variety of possible input combinations. For these reasons, 

meta-models [Barthelemy and Haftka (1993); Sobieski and Haftka (1997)] that model the 

quality characteristics as explicit functions of the design parameters are constructed. Such 

a meta-model, also called a (global) approximation model or surrogate model, is obtained 

by simulating a number of design points. Since a meta-model evaluation is much faster 

than a simulation run, in practice such a meta-model is used, instead of the simulation 

model, to gain insight into the characteristics of the product or process and to optimize it. 

Therefore, a careful choice of the design points at which performing simulations in order 

to build the meta-model is of primary importance. 

 

In [Jurecka et al. (2005)], the concept of robust design is presented and the need for meta-

models within this framework is elaborated. They also introduced a method to sequentially 
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update the meta-models during the robust design optimization process through strategies 

typically used in global optimization. Bates et al. [Bates et al. (1996)] obtains designs for 

computer experiments by exploring so-called lattice points and using results from number 

theory. 

 

 

Fang [Fang et al. (2000a); Fang et al. (2000b)] defined a uniform design as a design that 

allocates experimental points uniformly scattered on the domain. Uniform designs do not 

require orthogonal. They consider projection uniformity over all sub dimensions. In [Fang 

et al. (2000b)] they classify uniform designs as space-filling designs. 

 

 

Lee and Jung (2000) proposed maximin Eigen value sampling, that maximizes minimum 

Eigen value, for Kriging model where maximin Eigen value sampling uses Eigen values of 

the correlation matrix. The Kriging model is obtained from sampled points generated by 

the proposed method. Note that the Kriging model [Krige (1951)] is used to compare the 

characteristics of proposed sampling design with those of maximum entropy sampling. 

 

The maximin design problem has also been studied in location theory. In this area of 

research, the problem is usually referred to as the max-min facility dispersion problem  

[Erkut (1990)]; facilities are placed such that the minimal distance to any other facility is 

maximal. Again, the resulting solution is certainly space-filling, but not necessarily non-

collapsing. 

 

In statistical environments Latin Hypercube sampling is often used. In such an approach, 

points on the grid are sampled without replacement, thereby deriving a random 

permutation for each dimension ([McKay et al. (1979)]). 

 

Giunta [Giunta et al. (2003)] gives an overview of pseudo- and quasi-Monte Carlo 

sampling, Latin hypercube sampling, orthogonal array sampling, and Hammersley 

sequence sampling. 
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Lin, in [Lin and Steinberg (2006)], proposed several methods for extending the uniform 

sampling to higher dimensions. The method has also been used to construct LHDs with 

low correlation of first-order and second-order terms. It generates orthogonal LHDs that 

can include many more factors than those proposed by [Ye (1998)]. 

 

Cioppa, in his dissertation [Cioppa (2002)], developed a set of experimental designs by 

considering orthogonal Latin hypercube and uniform designs to create designs having near 

orthogonality and excellent space-filling properties. Multiple measures were used to assess 

the quality of candidate designs and to identify the best one. 

 

Morris (1991) and Kleijnen (1997) make it clear that many simulation models involve 

several hundred factors or even more. Consequently, factor screening is useful in 

computer experiments for reducing the dimension of the factor space before carrying out 

more detailed experiments. Butler (2001) proposed optimal and orthogonal LHDs which is 

suitable for factor screening. Olsson (2003) suggested Latin Hypercube sampling as a tool 

to improve the efficiency of different importance sampling methods for structural 

reliability analysis. 

  

 

1.2.2. Optimal Criteria  

 

McKay et al. (1979), Stein (1987) and Owen  (1994b) had shown that Latin Hyper Cube 

Designs (LHDs) perform much better than completely randomized designs. More recently, 

algorithms have been used to construct systematic LHDs under various optimality criteria. 

In particular, as already remarked, randomly generated LHDs often show poor space-

filling properties. Therefore, the search for “optimal” LHDs has attracted attention (e.g., 

[Morris and Mitchell (1995); Park (1994); Tang (1994); Ye (1998); Ye et al. (2000)]). 

Different optimality criteria for LHDs have been proposed, including maximum entropy 

designs [Shewry and Wynn (1987); Currin et al. (1991)], Integrated Mean Squared Error 

(IMSE) of prediction [Sacks et al. (1989a)] and minimax and maximin distance designs 

[Johnson et al. (1990)]. 
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Here some literature reviews regarding optimal criteria regarding experimental design are 

discussed briefly. So several heuristics approaches (rather than exact optimization 

methods) have been proposed in the literature to detect optimal experimental designs. van 

Dam  [Dam et al. (2007b)] proposed some bounds, for the separation distance of certain 

classes of maximin LHDs, which are useful for assessing the quality of approximate 

maximin LHDs. By using some of the special properties of LHDs, they were able to find 

new and tighter bounds for maximin LHDs. Besides these bounds, they presented a 

method to obtain a bound for three-dimensional LHDs that is better than Baer’s bound for 

many values of N. They also constructed maximin LHDs attaining Baer’s bound for 

infinitely many values of N in all dimensions. 

 

 

Johnson (1990) and Morris and Mitchell (1995) proposed the maximin distance criterion 

which maximizes the minimum distance between design points. Morris and Mitchell 

(1995) adopted a simulated annealing  [Aarts and Lenstra (1997)] to find approximate 

maximin LHDs for up to five dimensions and up to 12 design points and a few larger 

values, with respect to the ℓ
1
- [Manhatan distance] and L

2
- [Euclidian distance] measure. 

In Morris and Mitchell’s algorithm, a search begins with a randomly chosen LHD, and 

proceeds through examination of a sequence of designs, each generated as a perturbation 

of the preceding one. A perturbation Dtry of a design D is generated by interchanging two 

randomly chosen elements within a randomly chosen column in D. The perturbation Dtry 

replaces D if it leads to an improvement. Otherwise, it will replace D with probability π = 

exp[−{ф(Dtry) − ф (D)} /t], where t is the preset parameter known as the “temperature 

”and ф is some measure of the quality of the design. Li and Wu [Li and Wu (1997)] 

considered a class of Column-wise Pair-wise (CP) algorithms in the context of the 

construction of optimal supersaturated designs. A CP algorithm makes exchanges on the 

columns in a design and can be particularly useful for designs that have structure 

requirements on the columns. Note that each column in a LHD is a permutation of {0, . . . , 

N − 1}. At each step, another permutation of {0, . . ., N − 1} is chosen to replace a column 

so that the LHD structure is retained.  
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Husslage et al.  [Husslag e et al. (2005)] constructed nested maximin designs in two 

dimensions. They showed that different types of grids should be considered when 

constructing nested designs and discussed how to determine which grid is the best for a 

specific computer experiment. Santner [Santner et al. (2003)], Bursztyn and Steinberg 

[Bursztyn and Steinberg (2006)] and Simpson [Simpson et al. (2001)] showed that 

maximin optimal LHDs generally speaking yield the best approximations. van Dam [Dam 

et al. (2007a)] derive general formulas for two-dimensional maximin LHDs, when the 

distance measure is L
∞
 or L

1
, while for the L

2
-distance measure (approximate) maximin 

LHDs up to 1000 design points are obtained by using a branch-and-bound algorithm and 

constructing (adapted) periodic designs. 

 

 

We remark that the maximin criterion is not the only one used in the literature. Other 

criteria are the maximum entropy [Shewry and Wynn (1987)], the integrated mean squared 

error [Crary (2002)], the minimum correlation between components [Owen (1994b)] and a 

mixed criterion involving both maximin distance and correlation [Joseph and Hung 

(2008)]. For more details we also refer to the book [Santner et al. (2003)] but for the 

completeness, in the following literature review, we will mention some articles in which 

several optimal criteria are considered. 

 

 

Iman and Conover in [Iman and Conover (1982a)]  proposed a design by minimizing a 

linear correlation criterion for pairwise factors. This is modified into a polynomial 

canonical correlation criterion by [Tang (1998)]. Tang [Tang (1998)] proposed a LHD by 

the extension of the concept of Iman and Conover [Iman and Conover (1982a)], namely 

minimizing a polynomial canonical correlation criterion for pair-wise factors. 

 

 

Ye  [Ye (1998)] constructed orthogonal LHDs in order to enhance the utility of LHDs for 

regression analysis. Ye defines an Orthogonal Latin Hypercube (OLHC) as a Latin 

Hypercube for which every pair of columns has zero correlation. Furthermore, in Ye’s 

OLHC construction, the element-wise square of each column has zero correlation with all 

other columns, and the element-wise product of every two columns has zero correlation 
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with all other columns. These properties ensure the independence of estimates of linear 

effects of each variable and the estimates of the quadratic effects and bilinear interaction 

effects are uncorrelated with the estimates of the linear effects. 

 

 

Joseph and Hung in [Joseph and Hung (2008)] proposed a multi-objective optimization 

approach to find good LHDs by combining correlation and distance performance 

measure.In [Sebastiani and Wynn (2000)] Sebastiani and Wynn considered maximum 

entropy sampling criterion for the optimal Bayesian experimental design. The main 

contribution of this paper is the extension of the MES principle for the estimation of the 

problems. Currin [Currin et al. (1991)] also considered an entropy-based design criterion 

for Bayesian prediction of deterministic functions. Crombecq et al. [Crombecq et al. 

(2011)] consider space-filling and non-collapsing sequential design strategies for 

simulation based modeling. 

 

 

Hongquan Xu in [Hongquan Xu (1999)] introduced the concept of universal optimality 

from optimum design theory into computer experiments, and then exhibited some 

universally optimal designs with respect to different distance measures. He showed that 

Latin Hypercube and saturated orthogonal arrays are universally optimal with respect to 

Hamming distance [Hamming (1950)], and that universally optimal designs with respect 

to Lee distance [Lee (1958)] are also derived from Latin Hypercubes and saturated 

orthogonal arrays. 

 

 

Recently Jourdan and Franco [Jourdan and Franco (2010)] proposed a space-filling LHD 

design, where they consider a new optimal criterion called Kullback–Leibler criterion. 

This Kullback–Leibler criterion is relatively very new proposed by Jourdan and   Franco 

[Jourdan and Franco (2009)]. The new designs are compared with several traditional 

optimal Latin hypercube designs. Leary et al. [Leary et al. (2003)] proposed orthogonal-

array-based LHDs for obtaining better space-filing property. As an optimal criterion, they 

consider the sum of (square of) reverse inter-site distances i.e potential energy criterion.  
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In [Steinberg and Dennis (2006)] Steinberg and Dennis constructed LHDs in which all 

main effects are orthogonal. Their method can also be used to construct LHDs with low 

correlation of first-order and second-order terms. It also generates orthogonal LHDs that 

can include many more factors than those proposed by Ye [Ye (1998)]. Butler [Butler 

(2001)] proposed optimal and orthogonal LHDs which are suitable for factor screening . 

 

 

A lot of improved values (maximin LHD values) are obtained by the  ILS approaches 

proposed by Grosso et. al. (2009) where LHDs are optimized in Euclidean distance 

measure. The improved values are available in the well known web portal http:// 

www.spacefillingdesigns.nl. Jamali et al. (2010) analyzed the   multicollinearity of the 

maximin LHD obtained by the ILS approach. In  this article it is shown that the ILS 

approach not only able to obtain good LHD in the sense maximin  property but the 

multicollinearity  among the factors of the designs are negligible i.e. the average 

coefficient of correlations are low.   

 

 

From the point of view of computational complexity the problem is, to the authors’ 

knowledge, open (but suspected to be NP-complete).  For the presence of combinatorial 

nature, the number of possible LHDs is very high - (N!)
k
 (where N is number  of design 

points and k is number of factors). Consequently, when number of  factors and/ or number 

of design points are large then it requires hundreds of hours by the brute-force approach to 

find out the optimal design. So when numbers of factors as well as number of 

experimental points are large, the algorithm requires a couple of hours or even more to 

find out a simulated optimal design.  So time complexity is an important issue for a good 

algorithm, especially when we need a real time solution. Anyway Parimal [2012] 

performed several experiments for analyzing the time complexity of the ILS approach. 

Experimentally, he showed that the time complexity of the ILS algorithm is of polynomial 

time with order four (O(N
4
)) when consider Opt(Φ, D1) criterion and  O(N

3
) when 

consider Opt (D1,J1) criterion [Jamali (2009)].  Recently Isahaque (2014) study the 

maximin LHDs obtained by ILS approach regarding Manhattan distance measure.  

 

http://www.spacefillingdesigns.nl/
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Anyway there is another important optimal criterion which is called Audze-Eglais optimal 

criterion.  Audze-Eglais designs are obtained by minimizing the following criterion which 

is indeed analog with potential energy among the charged particles:  

                      
 

        
 

 
     

 
         

where d(xi; xj) is the distance between points xi and xj and N is the number of design 

points. The criterion was first introduced by Audze and Eglais (1977)  and is based on the 

analogy of minimizing forces between charged particles. The principle of the Audze–

Eglais DoE is to distribute experiment points as uniformly as possible within the design 

variable domain. This is achieved by minimizing the potential energy of the points of a 

DoE.  The generation of the Audze–Eglais DoE is time consuming and requires 

optimization to solve the minimization problem. In Bates et al. (2003) , the problem of 

finding Audze-Eglais LHDs is formulated and a permutation genetic algorithm is used to 

generate them.  Liefvendahl and Stocki (2006) compare maximin and Audze-Eglais LHDs 

and recommend the Audze-Eglais criterion over the maximin criterion. Examples of 

practical applications of Audze-Eglais LHDs can be found in Rikards et al. (2001), Bulik 

et al. (2004).  

 

 

1.2.3 Methods 

By using the Latin Hypercube sampling method Hwan Yang [Hwan (2007)] performed the 

uncertainty and sensitivity analysis for the time-dependent effects in concrete structure. 

The results of the Latin Hypercube simulations were used to determine which of the model 

parameters are most significant in affecting the uncertainty of the design [Iman and Helton 

(1985)]. For each sample, a time-dependent structural analysis was performed to produce 

response data, which were then analyzed statistically. 

 

 

Stocki [Stocki (2005)] and Liefvendahl and Stocki [Liefvendahl and Stocki (2006)] 

proposed probabilistic search algorithm, namely Column-wise Pair-wise (CP) search 

algorithms and Genetic algorithms to construct optimal LHDs. For the optimal criterion 

they considered energy function (the sum of the norms of the repulsive forces if the 
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samples are considered as electrically charged particles) as proposed in [Audze and Eglais 

(1977)]. To improve the reliability, Stocki (2005) considered the pairwise correlation. 

Liefvendahl and Stocki (2006) also compared the performance of the CP and genetic 

algorithms for optimal LHDs. 

 

 

Wang [Wang (2003)] used the Latin Hypercube Design LHD) instead of the Central 

Composite Designs (CCD), for improvement of Adaptive Response Surface Method 

(ARSM). Note that ARSM was developed to search for the global design optimum for 

computation-intensive design problems. Also note that Response Surface Method (RSM) 

plans a group of design alternatives and performs the design analysis and simulation 

simultaneously on these design alternatives. Then an approximation model, called a 

response surface, is constructed. 

 

 

 Fang et al. (2000) considered Simulated Annealing approach to detect maximin LHD. In 

[Li and Wu (1997)] a class of algorithms based on column pair-wise exchange has been 

proposed to build supersaturated designs. In [Ye et al. (2000)] an exchange algorithm for 

finding approximate maximin LHDs has been proposed with the further restriction to 

Symmetric LHDs (SLHDs). In [Dam et al. (2007a)], general formulae for maximin LHDs 

with k = 2 are given for the 1-norm  (L
1
) and infinite norm (L


) distances, while for the 

Euclidean distance (approximate) maximin LHDs up to N = 1000 design points are 

obtained by (adapted) periodic designs, while, using a branch-and-bound algorithm, exact 

solutions have been obtained for N up to 70. Inspired by Dam et al. (2007a), Husslage 

(2006) proposed (adapted) periodic designs and simulated annealing to extend the known 

results and construct approximate maximin latin hypercube designs for k up to 10 and N 

up to 100. All these designs are available in the website http://www.spacefillingdesigns.nl.  

In [Husslage et al. (2006)], it has been shown that the periodic heuristic tends to work 

when the number N of design points gets above some threshold which depends on the 

dimension k of the design (more precisely), such threshold increases with k. Viana [Viana 

et al. (2010)] proposed the translational propagation algorithm, a new method for 

obtaining optimal or near optimal Latin hypercube designs (LHDs) without using formal 

optimization. For the optimal criterion they also considered Opt(ф) to maximin LHD. 

http://www.spacefillingdesigns.nl/
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Monte Carlo simulations were used to evaluate the performance of the algorithm for 

different design configurations where both the dimensionality and the point density were 

studied. In [Gross et al. (2008)] Gross et al. successfully implements Iterated local search 

(ILS) approach for finding maximin LHDs for k =3 , 4, . .10, and N= 3, 100. For the 

optimal criterion they considered maximin LHDs with Opt(D1, J1)  and Opt(ф) optimal 

criteria with  Euclidian distance measure ( Eq. (1.1) to . Eq. (1.4)). 

 

 

Using (adapted) periodic designs and simulated annealing, Husslage et al. in [Husslage et 

al. (2006)] extended the known results and construct approximate maximin Latin 

hypercube designs for up to ten dimensions and for up to 100 design points. All these 

designs can be downloaded from http://www.spacefillingdesigns.nl. Inspired by the paper 

[Morris and Mitchell (1995)], in which authors show that LHDs often have a nice periodic 

structure, Husslage et al. (2006) developed adapted periodic designs. By considering 

periodic and adapted periodic designs, approximate maximin LHDs for up to seven 

dimensions and for up to 100 design points are constructed. They have shown that the 

periodic heuristic tends to work well even for a small number N of design points at low 

values of the dimension k, but as k increases the periodic heuristic tends to get better than 

other approaches like simulated annealing only at large N values. 

 

 

Jin [Jin et al. (2005)] proposed an enhanced stochastic evolutionary algorithm for finding 

maximin LHDs. They also apply their method to other space-filling criteria, namely the 

optimal entropy and centered L2 discrepancy criteria. Stinstra et al. [Stinstra et al. (2003)] 

proposed sequential heuristic algorithms for constrained maximin designs by considering 

high number of design sites with small volume of feasible design space and other 

constraints. They also used their methods in many practical situations. 

 

Park (1994) and Sacks et al. (1989a) constructed optimal LHDs in which IMSE and 

entropy optimization criteria were considered. To construct optimal LHDs, Park [park 

1994] presented an approach based on the exchanges of several pairs of elements in two 

rows. His algorithm first selects some active pairs which minimize the objective criterion 

value by excluding that pair from the design. Then, for each chosen pair of two points i1 

http://www.spacefillingdesigns.nl/
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and i2, the algorithm considers all possible exchanges and find the best exchange among 

them. 

 

 

Joseph and Hung (2008) proposed a modified simulated annealing algorithm with respect 

to [Morris and Mitchell (1995)]. Instead of randomly choosing a column and two elements 

within that column, as in [Morris and Mitchell (1995)], they choose them judiciously in 

order to achieve improvement in their multi-objective function. Ye et al. (2000) and Li and 

Kenny (2009) proposed an exchange algorithm for finding approximate optimal LHDs, 

but they consider symmetric Latin hypercube designs (SLHDs). The symmetry property is 

used as a compromise between computing effort and design optimality. However, one 

important change had made to accommodate the special structure of SLHD. For a SLHD 

two simultaneous pair exchanges were made in each column to retain the symmetry. Ye et 

al. (2000) considered maximin as an optimal criterion, whereas Li and Kenny (2009) 

considered both the maximin and the entropy optimal criterion. 

 

 

Fang. (2000a) proposed threshold accepting heuristic approaches for optimal LHDs to 

produce low discrepancy designs compared to theoretic expectation and variance. They 

considered centered L2-discrepancy for optimizing the designs. Different methods have 

been presented in the literature to detect maximin LHDs. For example, the book of Santner 

et al. (2003) and the article of Li and Kenny (2009) considered both the maximin and the 

entropy optimal criterion. Bates et al. (2004) proposed a permutation genetic algorithm to 

find optimal Audze- Eglais LHDs. Recently Husslage et al. (2011) obtained optimal 

maximin LHDs as well as optimal  Audze-Eglais LHDs by implement Enhanced 

Stochastic Evolutionary (ESE) algorithm. 

 

 

1.3  Goals of the Thesis  

  

Many simulation models involve several hundred factors or even more. But few, out of the 

numerous factors in the system, usually dominate the performance of the product. Thus a 

good model can be fitted using only these few important factors. To identify the effect of 
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each factors, it is disable to avoid the replication when projection the design on to a subset 

of factors. The experimental design should fulfill three important properties – Non-

collapsing, Space-filling and non-multicollinearity. Though Latin Hypercube Designs 

(LHDs) inherently non-collapsing but randomly generated LHDs are poor regarding 

space-filling property. So researchers seek LHD with good space-filling property. Many 

researchers have shown that optimal LHD mainly maximin LHD has good space-filling 

including non-collapsing property. There are several approaches as well as optimal criteria 

exist in literature to find out the optimal LHD such as Simulated annealing, Tabu search, 

Iterated Local Search (ILS) etc. In the paper [Grosso et al. (2008)], authors have shown 

that ILS approach able to find out a remarkable improved optimal experimental design 

regarding available one in the literature. They considered p  optimal criterion and find 

maximin optimal LHD. Recently several author consider Audze- Eglais optimal criterion 

for optimized maximin LHD. For this reason we will investigate maximin LHD obtained 

by ILS regarding Audze-Eglais value. The main goal of the study is pointed out as 

follows: 

(a) The comparison of ILS approach with some well-known approaches regarding 

maximin LHDs measured in Euclidian distance measure with available ones in the 

literature. 

(b) The comparison of maximin LHDs obtained by  ILS approach with Audze-Eglais 

LHDs obtained by ESE algorithm regarding Audze-Eglais values. 

(c)  The comparison of several characteristics of maximin LHDs obtained by ILS 

approach  with that of some other optimal LHDs. 

 

 

 

 

 

 

1.4  Structure of the Thesis   

 

After the introduction and literature review which are represent  in this Chapter, the 

remaining thesis is organized as follows: 
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Chapter II discusses the overview of optimal criteria regarding experimental design.  

Mainly this chapter points out of some frequently use optimal criteria regarding LHD. 

Chapter III discusses and presents the heuristic approach mainly Iterated Local Search 

(ILS) approach. In Chapter IV several experiments  are performed for analysis the ILS 

approach regarding Euclidian distance measure..  At first the performance of the algorithm 

is compared with available one in the literature regarding inter-site Euclidian distance 

measure. From the experimental design it is shown that the algorithm is state-of-arts 

regarding maximin LHD. In Chapter V several experiments have been performed 

extensively regarding Audze-Eglais value. For this investigation we first consider those 

maximin LHDs obtained by ILS approach. Then the designs are compared with Audze- 

Eglais based Optimal LHDs obtained by ESE algorithm regarding Audze-Eglais value. 

Moreover in this chapter several optimal LHDs are compared in perspective several 

characteristics. Finally a brief discussion and concluding remarks are given in Chapter 6. 

References are included in the last of the thesis as well and publications are mentioned 

before the index of the thesis.   
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CHAPTER II 

 

 

 

OPTIMALITY CRITERION 

 

 
 

2.1 Introduction 

 

In the design of experiments, optimal designs are a class of experimental designs that are 

optimal with respect to some statistical criterion. The creation of this field of statistics has 

been credited to Danish statistician Kirstine Smith (1918). Experimental designs are 

evaluated using statistical criteria. In the design of experiments for estimating statistical 

models, optimal designs allow parameters to be estimated without bias and with 

minimum-variance. A non-optimal design requires a greater number of experimental runs 

to estimate the parameters with the same precision as an optimal design. In practical terms, 

optimal experiments can reduce the costs of experimentation. The optimality of a design 

depends on the statistical model and is assessed with respect to a statistical criterion, 

which is related to the variance-matrix of the estimator. Specifying an appropriate model 

and specifying a suitable criterion function both require understanding of statistical theory 

and practical knowledge with designing experiments. Optimal designs offer three 

advantages over suboptimal experimental designs:  

 

1. Optimal designs reduce the costs of experimentation by allowing statistical models 

to be estimated with fewer experimental runs. 

2. Optimal designs can accommodate multiple types of factors, such as process, 

mixture, and discrete factors. 

3. Designs can be optimized when the design-space is constrained, for example, when 

the mathematical process-space contains factor-settings that are practically 

infeasible (e.g. due to safety concerns). 

 

 

 

 

https://en.wikipedia.org/wiki/Design_of_experiments
https://en.wikipedia.org/wiki/Design_of_experiments
https://en.wikipedia.org/wiki/Optimization_%28mathematics%29
https://en.wikipedia.org/wiki/Statistical_theory
https://en.wikipedia.org/wiki/Objective_function
https://en.wikipedia.org/wiki/Kirstine_Smith
https://en.wikipedia.org/wiki/Design_of_experiments
https://en.wikipedia.org/wiki/Estimation_theory
https://en.wikipedia.org/wiki/Statistical_model
https://en.wikipedia.org/wiki/Statistical_model
https://en.wikipedia.org/wiki/Bias_of_an_estimator
https://en.wikipedia.org/wiki/Minimum-variance_unbiased_estimator
https://en.wikipedia.org/wiki/Replication_%28statistics%29
https://en.wikipedia.org/wiki/Estimation_theory
https://en.wikipedia.org/wiki/Parametric_model
https://en.wikipedia.org/wiki/Efficiency_%28statistics%29
https://en.wikipedia.org/wiki/Statistical_model
https://en.wikipedia.org/wiki/Statistical_theory
https://en.wikipedia.org/wiki/Design_of_experiments
https://en.wikipedia.org/wiki/Design_of_experiments
https://en.wikipedia.org/wiki/Statistical_model
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2.2 Distance measure 

 

Since in the experimental design the optimality is based on distance of the design points 

so before discuss several type of optimality criteria we will introduce two measure 

namely Euclidean Distance measure and Manhattan distance measure among several type 

of distance measure existing in the literature.  

 

(a) Euclidean Distance measure: In mathematics, the Euclidean distance or 

Euclidean metric is the "ordinary" distance between two points that one would measure 

with a ruler, and is given by the Pythagorean formula. By using this formula as distance, 

Euclidean space (or even any inner product space) becomes a metric space. The associated 

norm is called the Euclidean norm. 

The Euclidean distance between points p and q is the length of the line segment 

connecting them (p, q). In Cartesian coordinates, if p = (p1, p2,..., pn) and q = (q1, q2,..., qn) 

are two points in Euclidean n-space, then the distance from p to q, or from q to p is given 

by: 

                –   
 
                                                                             (2.1) 

 
 The position of a point in a Euclidean n-space is a Euclidean vector. So, p and q are 

Euclidean vectors, starting from the origin of the space, and their tips indicate two points. 

The Euclidean norm (L
2
), or Euclidean length, or magnitude of a vector measures the 

length of the vector: 

                            –   
 
                                                                        

The standard Euclidean distance can be squared in order to place progressively greater 

weight on objects that are farther apart. Squared Euclidean Distance is not a metric as it 

does not satisfy the triangle inequality, however it is frequently used in optimization 

problems in which distances only have to be compared. Note that Euclidean distance is 

also called L
2

 –norm. Note that in the following study we always consider square value of 

d(p, q). 

 

(b) Manhattan Distance measure: Manhattan distance also a special case of 

Minkowski distance. Taxicab geometry, considered by Hermann Minkowski in the 19th 
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century, is a form of geometry in which the usual metric of Euclidean geometry is 

replaced by the taxicab metric. The taxicab distance, d1, between two vectors x, y in an n-

dimensional real vector space with fixed Cartesian coordinate system, is the sum of the 

lengths of the projections of the line segment between the points onto the coordinate axes. 

More formally, 

                                   
 
                                                               (2.2) 

where                                 ) are vectors. 

 

2.3 Definition of some important optimality criteria 

 

In Experimental design, in optimality criterion is a criterion which summarizes how good 

a design is, and it is maximized or minimized by an optimal design. There are several 

optimal criteria available in the literature regarding experimental design. But we will 

present some frequently used optimal criteria regarding experimental design.  

 

 

2.3.1 Maximin distance designs  

 Maximin distance design, if brief maximin design, was first proposed and studied by 

Johnson et al. (1990). A maximin distance design is a design in that the minimum 

distance between any two points is maximized. The  idea of maximin design is that how 

well all design points fill the space of a design. Maximin distance is to select a design in 

which the minimum distance between any two sites (design points) in the subset is 

reached as large as possible. The design is selected based on its distance only and does 

not require the assumption of a particular model. For a Gaussian process with correlation 

depending on distance, a maximin distance design minimizes the maximum correlation if 

the correlation function is a decreasing function. Johnson et al. (1990) showed that 

maximin distance designs are asymptotically D-optimal for a Gaussian process when the 

correlation between sites decreases as the distance increases. An Latin Hypercube Design 

(LHD) is called maximin when the separation distance 
ij

min d(xi, xj) is maximal among all 

LHDs of given size n, where d is a certain distance measure. Below we present some 

optimal criteria based on maximin distance design. 
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(a) Opt (D1, J1)  Optimality Criterion 

 

In order to drive the search through LHDs we need some criterion to compare them. 

Below we will describe some of the criteria employed in the literature. Opt(D1, J1) 

Optimality Criterion : Under this criterion a LHD Y can be considered better than another 

one X if a lexicographic ordering holds: 

  D1(Y ) > D1(X) or               

D1(Y ) = D1(X) and J1(Y ) < J1(X).                                                                    (2.3) 

                                                                                                                                      

By generalizing this approach, we can consider the problem like a multiobjective problem 

with priorities: maximize the objective with highest priority D1; within the set of optimal 

solutions with respect to D1, minimize the objective with second highest priority J1. Note 

that Johnson et. al. [1990] first proposed this optimality criterion. 

 

(b) Opt(φ)  Optimality Criterion 

 

As previously remarked, if there exist different LHDs with equal D1 and J1 values, i.e. in 

case there exist at least two LHDs X,Y such that D1(X) = D1(Y )= D1 and J1(X) = J1(Y ) = 

J1, we could further consider the objective D2 and maximize D2(X), the second smallest 

distance in X, and, if equality still holds, minimize J2(X), the number of occurrence of 

D2(X), and so on. Then an optimal design X sequentially maximizes Di’s and minimizes 

Ji’s in the following order: D1, J1; D2, J2; · · · ; Dm, Jm. Morris and Mitchell  (1995) have 

used all the above measures to define a family of scalar-valued functions (to be 

minimized), which can be used to rank competing designs in such a way that a maximin 

design receives the highest ranking. This family of functions, indexed by p, is given by 
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                                                                                     (2.4)

 

where p is a positive integer parameter. Under this criterion, LHD Y is better 

than X if 

  P (Y)< R (X).                                                                                                              
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Note that for large enough p, each term in the sum in (2.4) dominates all subsequent 

terms. Through p we can control the impact of the different Dr relevant. In the form (2.4), 

the evaluation of φp would be computationally costly. However, it has a computationally 

cheaper form  [122]). Indeed, (2.1) can be simplified as  
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N

ij
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ijd
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1 1
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                                                                                         ( 

2.5)      

 

which can be computed without the need of detecting and ordering all the Di values.  

 

(c) Opt(φ, D1)  Optimality Criterion 

 

An apparent drawback of the Opt(φ) criterion, if we are interested in maximin values 

(maximum D1 value), is that LHDs with smaller (better ) φp can have a worse (smaller) 

D1, i.e. we can have X and Y such that φp(X) < φp(Y ) and D1(X) < D1(Y ). This 

phenomenon has been frequently observed in the computational experiments [Jamali 

(2009]. Nevertheless, a profitable choice is to work in order to minimize the φp function 

but, at the same time, keep track of the best (D1, J1) values observed during such 

minimization. This way the search in the solution space is guided by a kind of heuristic 

function. Such a mixed approach might appear strange but it is extremely effective 

[Jamali (2009)]. This heuristic based  criterion is denoted as  Opt(φ, D1)  optimal 

criterion.  

 

  

2.4 Audze –Eglais design and optimal criteria 

 

The Audze-Eglais Design of Experiment (DoE) is based on the following physical 

analogy: a system consisting of points of unit mass exert repulsive forces on each other 

causing the system to have potential energy. When the points are released from an initial 

state, they move. If the magnitude of the repulsive forces is inversely proportional to the 

distance square between the points, mathematically for unit mass, it can be written as 

follow: 
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                        U=  
 

d       
 

n
j=i    

n
i=                                                                               (2.6) 

where U is the potential energy and d(xi, yj) be the Euclidean distance between points xi 

and yj. They will reach equilibrium when the potential energy U of the repulsive forces 

between the masses is at a minimum i.e. the minimizing Eq. (2.6) will produce a system 

of points distributed as uniformly as possible 

 min U =      
 

d       
 

n
j=i    

n
i=                                                                          ( 2.7) 

The Audze and Eglais criterion was first introduced by Audze and Eglais (1977) and is 

based on the analogy of minimizing forces between charged particles. If d(xi, yj)|s be the 

distance between two points xi and yj i,j = , , …., N of any DoE in some distance measure 

s , then Audze-Eglais designs are obtained by minimizing the following Audze-Eglais 

optimal criterion is : 

  Opt(A-E) =    
 

d       
 

n
j=i    

n
i=                                                                           (2.8) 

The principle of the Audze-Eglais DoE is to distribute experiment points as uniformly as 

possible within the design variable domain. This is achieved by minimizing the potential 

energy of the points (A-E criteriion) of a DoE. The DoE for k variables and N 

experiments is independent of the application under consideration, so once the design is 

formulated for N points and k design variables, it is stored in a matrix and need not be 

formulated again.  

 

 

2.5 Orthogonality-based criteria 

 

Besides space-filling and no-collapse criteria another important criterion frequently need 

in DoE is orthogonality criterion. If the design points are correlated then the individual 

effect of the parameter can not be identified.  So the data of the parameters (coordinates) 

should be as much as possible uncorrelated. In this aspect several optimal criteria are 

proposed in the literature in which the correlations among the parameters are minimized. 

 

Correlation criteria seek to analyze the similarity and difference between two sets of 

results. Usual applications are the correlation of test and analysis results and the 

comparison of various analysis results. Ideally correlation criteria should quantify the 
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ability of two models to make the same predictions. Since the predictions of interest is for 

a particular model can  really be pin pointed precisely one has to use general quality and 

select from a list of possible criterion, the ones that can be computed and do a good 

enough job for the interest. Correlation is widely used statistical technique. Correlation 

coefficients are the index of the measurement of the relationship among the sets of 

variables. There are several kinds of correlation coefficients regarding the number of the 

variables considered. They are (i) Simple correlation (ii) Multiple correlation and(iii) 

Partial correlation. There are several ways are available in the literature to measure the 

correlations. There are two well-know approaches to evaluate the orthogonality of a DoE. 

The most popular one is based on correlation among the samples’ coordinates, the other 

one is a condition number. 

 

(a) Pair-wise correlation of sample coordinates based criteria 

 

There are well known approaches to measure correlation of sample coordinates namely (i) 

Kerl Pearson coefficient of correlation or coefficient of correlation by product-moment 

formula (KPCC) (ii) Spearman’s rank correlation coefficient (SRCC) and (iii) Kendall tau 

rank correlation coefficient (KRCC) 

(i) Kerl Pearson coefficient of correlation or coefficient of correlation by 

product-moment formula (KPCC): Let there are two   coordinates x and y  {(xi, yj ): ,j 

=1,  , …., N } with dimension k of any DoE. Then product-moment coefficient of 

correlation     of the coordinates  is defined as follow: 

                   
            

     
       

       
       

  
                                                                     (2.9) 

To overcome the sign of correlation we square each    . Then calculating all pair-wise 

correlation among the factors of a DoE, we have following average pair-wise 

correlations:  
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Therefore the KPCC based criterion will be the minimization of the equation (2.10). 
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(ii) Spearman’s rank correlat on coefficient (SRCC): Spearman’s rank 

correlation coefficient (SRCC) can be used to capture a nonlinear but monotonic 

relationship between two variables and therefore, it can be efficiently applied for 

estimation of correlations in sampling-based SA [J.C. Helton et al. (2006)]. The idea is to 

replace the values of xai and xa j by their corresponding ranks r(xai) and r(xa j) and then the 

SRCC can be computed as follow: 

                  ρi j =   − 
                   

 
   

       
                                                                      (2.11) 

In case of a multi-dimensional design space, the orthogonality of the DoE can be achieved 

by minimizing 

                   E
SRCC

 =       
  

     
 
                                                                               (2.12) 

                                                                                                                                              

(iii)  Kendall tau rank correlation coefficient (KRCC) is an alternative measure of a 

nonlinear dependence between two variables. In particular, it is based on the number of 

concordant (Tc,ij) and discordant (Td,ij) pairs of samples according to 

              τi j = 
           

        
,                                                                                                  (2.13)                                                                                                                                                                                                                                                                                                                               

and again, the orthogonal DoE can be obtained by minimizing the following objective 

function 

             E
KRCC

 =         
     

 
       

      

                                                                   (2.14) 

 
(b) Condition number base optimal criterion 

 

Condition number (CN) is commonly used in numerical linear algebra to examine the 

sensitivities of a linear system. Here, we use condition number of X
T
X, where X is a 

matrix of the design points’ coordinates, so called design matrix 
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                                                                (2.15)                                                        

where N is the number of the design points and k is the dimension of the design space. The 

condition number is then defined as 

         E
CN

 = cond(X
T
X) =

  

  
                                                                                           (2.16) 

where λ1 and λn are the largest and smallest eigen values of X
T
X, respectively, therefore 
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the ECN is greater or equal to 1.Values closer to 1 correspond to more orthogonal DoE, 

therefore the condition number should be minimized. 

 

Now some well known approaches with optimal criteria are summarized in the Table 2.1. 

 

 

 

 

Researchers Year       Algorithm  Objective 

functions Audze and Eglajs 1977 Coordinates Exchange 

Algorithm 

Opt (A-E) criterion 

(Potential Energy) 

Park  1994 A 2-stage(exchange-and 

Newton-type) algorithm 

Integrated mean 

squared error and 

entropy criteria Morris &  

Mitchell 

1995 Simulated annealing  (SA) ɸp criterion 

Ye et al.  2000 Column-wise-pair-wise ɸp and entropy 

criteria Fang et al.  2002 Threshold accepting 

algorithm 

Centered  L2 

discrepancy 

Bates et al.  2004 Genetic algorithm Potential energy 

Jin et al.  2005 Enhanced stochastic 

evolutionary algorithms 

ɸp criteria, entropy 

and L2 discrepancy 

Liefvendahl and 

Stocki 

2006 Columnwise-pairwise and 

genetic algorithms 

Opt (A-E) criterion 

(Potential Energy) 

Van Dam et al.  2007 Branch-and-bound algorithm 1-norm and infinite 

norm distances 
Grosso et al.  2008 Iterated local search and  Opt (ɸp, D1) criterion 

 

 

 

 

 

 

 

 

 

Table 2.1 : Some well known approaches as well as optimal criterion for optimal 

experimental designs 
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CHAPTER III 

 

 

 

REVIEW OF ITERATED LOCAL SEARCH  AND  LATIN  

HYPERCUBE   DESIGN 

 

 

 

 
3.1 Introduction 

 

Iterated local search (ILS) approaches are frequently used to solve the problems here. The 

general form of Iterated Local Search (ILS) approaches are  briefly discussed. In the case 

of combinational optimization problem where  the search space is discrete and highly 

multimodal.   

 

3.2 ILS approach 

 

Iterated Local Search (ILS) is a meta-heuristic designed to embed another, problem 

specific, local search as if it were a black box. This allows ILS to keep a more general 

structure than other meta-heuristics currently in practice. This simple type of search has 

been reinvented numerous times in the literature, with one of its earliest incarnations 

appearing in [Lin  and  Kernighan (1973)]. This simple idea [Baxter et al. (1981)] has a 

long history, and its rediscovery by many authors has lead to many different names for 

iterated local search like iterated descent [Baum.et al. (1986) ], large-step Markov chains 

[Martin et al. (1991)], iterated Lin-Kernighan [Johnson D. S. (1990)], chained local 

optimization [Martin Otto (1996)], or combinations of these [Applegate et al. (1999)]. ILS has 

many of the desirable features of a meta-heuristic: it is simple, easy to implement, robust 

and highly effective. The essence of the iterated local search meta-heuristic can be given 

in a nut-shell: one iteratively builds a sequence of solutions generated by the embedded 

heuristic, leading to far better solutions than if one were to use repeated random trials of 

that heuristic. Two main points in ILS are the following: (i) there must be a single chain 

that is being followed (this then excludes population-based algorithms); (ii) the search for 
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better solutions occurs in a reduced space defined by the output of a black box heuristic. In 

practice, local search has been the most frequently used embedded heuristic, but in fact 

any optimizer can be used, be it deterministic or not. The essential idea of ILS lies in 

focusing the search not on the full space of solutions but on a smaller subspace defined by 

the solutions that are locally optimal for a given optimization engine. The purpose of this 

review is to give a detailed description of iterated local search and to show where it stands 

in terms of performance. So far, in spite of its conceptual simplicity, it has lead to a 

number of state-of-the art results without the use of too much problem-specific 

knowledge; perhaps this is because iterated local search is very malleable, many 

implementation choices being left to the developer. In what follows we will give a formal 

description of ILS and comment on its main components. 

 

         Procedure Iterated Local Search 

       s0  = Generate Initial Solution 

       s
*
  = Local Search(s0) 

   repeat 

       s′   = Perturbation(s
* 

) 

       s
*
′   = Local Search(s′) 

       s
*
   = Acceptance Criterion (s

*
, s

*
′) 

    until     termination condition met 

end 

 

 

ILS involves four main components: 

1. Creating an initial solution; 

2. A black-box heuristic that acts as a local search on the set S; 

3. The perturbation operator, which modifies a local solution; 

4. The acceptance criterion, which determines whether or not a perturbed 

solution will become he starting point of the next iteration. 

 

Local search applied to the initial solution s0 gives the starting point s
*
 of the walk in the 

set S
*
. Starting with a good s

*
 can be important if high-quality solutions are to be reached 

as fast as possible. The initial solution s0 used in the ILS is typically found one of two 
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ways: a random starting solution is generated or a greedy construction heuristic is 

applied. A “random restart” approach with independent samplings is sometimes a useful 

strategy (in particular when all other options fail), it breaks down as the instance size 

grows because in that time the tail of the distribution of costs collapses. A greedy initial 

solution s0 has two main advantages over random starting solutions: (i) when combined 

with local search, greedy initial solutions often result in better quality solutions s
*
; (ii) a 

local search from greedy solutions takes, on average, less improvement steps and 

therefore the local search requires less CPU time. 

 

The current s
*
, we first apply a change or perturbation that leads to an intermediate state s′ 

(which belongs to S where S is set of all local optimum). Then Local Search is applied to 

s′ and we reach a solution s
*
′ in S

*
. If s

*
′ passes an acceptance test, it becomes the next 

element of the walk in S
*
; otherwise, one returns to s

*
. The resulting walk is a case of a 

stochastic search in S
*
, but where neighborhoods are never explicitly introduced. This 

iterated local search procedure should lead to good biased sampling as long as the 

perturbations are neither too small nor too large. If they are too small, one will often fall 

back to s
*
 and few new solutions of S

*
 will be explored. If on the contrary the 

perturbations are too large, s′ will be random, there will be no bias in the sampling, and we 

will recover a random restart type algorithm will be recovered.In practice, much of the 

potential complexity of ILS is hidden in the history dependence. If there happens to be no 

such dependence, the walk has no memory: the perturbation and acceptance criterion do 

not depend on any of the solutions visited previously during the walk, and one accepts or 

not s
*
′ with a fixed rule. This leads to random walk dynamics on S

*
 that are “Markovian”, 

the probability of making a particular step from s1
*
 to s2

*
 depending only on s1

*
 and s2

*
. 

Most of the work using ILS has been of this type, though the studies show unambiguously 

that incorporating memory enhances performance [Stutzle (1998)]. 

 

The main drawback of any local search algorithm is that, by definition, it gets trapped in 

local optima that might be significantly worse than the global optimum. The strategy 

employed by ILS to escape from local optima is represented by perturbations to the 

current local optima. The perturbation scheme takes a locally optimal solution, s
*
, and 

produces another solution from which a local search is started at the next iteration. 

Hopefully, the perturbation will return a solution outside the basins of attraction of 



 32 

previously visited local minima. That is, it will be “near” a previously unvisited local 

optimum. Choice of the correct perturbation scheme is of primary importance, because it 

has a great influence on the intensification/diversification characteristics of the overall 

algorithm. Generally, the local search should not be able to undo the perturbation; 

otherwise one will fall back into the local optimum just visited. Perturbation schemes are 

commonly referred to as “strong” and “weak”, depending on how much they affect the 

solution that they change. A perturbation scheme that is too strong has too much diversity 

and will reduce the ILS to an iterated random restart heuristic. A perturbation scheme that 

is too weak has too little diversity and will result in the ILS not searching enough of the 

search space. The perturbation scheme should be chosen in such a way that it is as weak as 

possible while still maintaining the following condition: the likelihood of revisiting the 

perturbed solution on the next execution of Local Search should be low [Lourenco et al. 

(2002)]. The strength should remain as low as possible to speed up execution time. The 

desired perturbation scheme will return a solution near a locally optimal value. If this is 

the case, the local search algorithm should take less time to reach the next locally optimal 

value. Components from other meta-heuristics can sometimes be incorporated into the 

perturbation phase. Battiti and Protasi (1997) proposed memory structures to control the 

perturbation. In doing so, one can force intensification when globally good values are 

reached and force diversification when the search stagnates in an area of the search space. 

Borrowing from Simulated Annealing [Kirkpatrick et al. (1983)], temperature controlled 

techniques have been used to force the perturbation to change in a deterministic manner. 

Basic variable neighborhood search employs a deterministic perturbation scheme. Just as 

perturbation can range from too much intensification (no perturbations) to too much 

diversification (perturb all elements of the solution), acceptance criterion choices affect 

the search in a similar way. The most dramatic acceptance criterion on the side of 

diversification is to accept all perturbed solutions. This type of practice can undermine the 

foundations of ILS, since it encourages a “random-walk” type search. Contrasting with 

this, the algorithm accepts only solutions that are improvements to the globally optimal 

value (a sort of greedy strategy). Many implementations of ILS employ this type of 

acceptance strategy [Rossi-Doria et al. (2002)]. This type of criterion, especially with a 

weak perturbation scheme, can restrict the search from escaping the current basin of 

attraction. Moreover, with this type of scheme the probability of reaching the same locally 

optimal value increases a trait that reduces the algorithm’s overall effectiveness. When the 
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search stagnated, the random restart is a good way to ensure some diversification and to 

counterbalance the (possible) negative effects of too greedy a search. Large perturbations 

are only useful if they can be accepted. This only occurs if the acceptance criterion is not 

too biased toward better solutions [Lourenco et al. (2001)]. Stutzle (1998) showed that 

acceptance criteria that accept some worse solutions outperform their best-only 

counterparts. 

For what concerns the stopping rule, generally the algorithm executes until one of the 

following conditions is met: 

 A fix number of cycle have finished ;   

    The best solution has not changed for a predefined number of cycles; 

 a solution has been found that is beyond some predefined threshold. 

ILS has many of the desirable features of a meta heuristic: it is simple, easy to implement, 

robust, and highly effective. The essential idea of ILS lies in focusing the search not on the 

full space of solutions but on a smaller subspace defined by the solutions that are locally 

optimal for a given optimization engine. The success of ILS lies in the biased sampling of 

this set of local optima. How effective this approach turns out to be depends mainly on the 

choice of the local search, the perturbations, and the acceptance criterion. Interestingly, 

even when using the most naive implementations of these parts, ILS can do much better 

than random restart. But with further work so that the different modules are well adapted 

to the problem at hand, ILS can often become a competitive or even state of the art 

algorithm. This dichotomy is important because the optimization of the algorithm can be 

done progressively, and so ILS can be kept at any desired level of simplicity. This, plus 

the modular nature of iterated local search, leads to short development times and gives ILS 

an edge over more complex metaheuristics in the world of industrial applications. As an 

example of this, recall that ILS essentially treats the embedded heuristic as a black box; 

then upgrading an ILS to take advantage of a new and better local search algorithm is 

nearly immediate. Because of all these features, we believe that ILS is a promising and 

powerful algorithm to solve real world complex problems in industry and services, in 

areas ranging from finance to production management and logistics. Finally, notice that 

although all of the present review is given in the context of tackling combinatorial 

optimization problems, in reality much of what is covered can be extended in a straight-

forward manner to continuous optimization problems. 
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3.3  Maximin Latin Hypercube Designs: 

 

We will denote as follows the p-norm distance between two points xi and xj,  i, j = 1, 2, · 

· · , N: 

d i j =║xi− x j ║ p,                                                                                             (3.1) 

Unless otherwise mentioned, we will only consider the Euclidean distance measure (p = 2) 

and Manhattan distance (p = 1). In fact, we will usually consider the squared value of dij 

(in brief d), i.e. d
2
 (saving the computation of the square root) in case of Euclidean 

distance. This has a noticeable effect on the execution speed since the distances d
2
 will be 

evaluated many times. 

 

 

3.4 Definition of LHD: 

 

A Latin Hypercube Design (LHD) is a statistical design of experiments, which was first 

defined in 1979 [McKay et al. (1979)]. An LHD of k-factors (dimensions) with N design 

points, xi = (xi1, xi2,· · · , xik) : i = 0, 1, . . . , N−  , is given by a N×k- matrix (i.e. a matrix 

with N rows and k columns) X, where each column of X consists of a permutation of 

integers 0, 1, · · · , N−  (note that each factor range is normalized to the interval [0, N − ]) 

so that for each dimension j all xij , i = 0, 1, · · · , N −  are distinct. We will refer to each 

row of X as a (discrete) design point and each column of X as a factor (parameter) of the 

design points. We can represent X as follows:                       
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such that for each j{1, 2, · · · , k} and for all p, q{0, 1, · · · ,N −  } with p ≠ q; xpj ≠ xqj 

holds.  

Given a LHD X and a distance d,  

let D = {d(xi, xj) :   ≤ i < j ≤ N}.                               
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Note that |D| ≤ 








2

n
. We define Dr(X) as the r-th minimum distance in D, and Jr(X) as the 

number of pairs {xi, xj} having d (xi, xj) = Dr(X) in X. 

The maximin LHD problem aims at finding a LHD X
*
 such that D1(X) is as large as 

possible. However, a search which only takes into account the D1 values is certainly not 

efficient. Indeed, the landscape defined by the D1 values is “too flat”. For this reason the 

search should be driven by other optimality criteria, which take into account also other 

values besides D1.  

 

 

 

 

 

 

 

 

 

 

 

 3.5 Optimality Criteria for LHD 

            

 In order to optimized LHD an optimal criterion need to set for searching through LHDs. 

We consider the  Opt(φ,D1)  criterion [Jamali (2009)]  which is already shown in Chapter 

II.               

                      

               

3.6  ILS Approach for Maximin LHD   

 

In Section 3.2 we have discussed a general scheme for ILS-based algorithms. Now we 

present the ILS based procedure for maximin Latin hypercube design. As we have stated 

earlier, the main components of ILS heuristic approaches  are Initialization (IS), 

LocalSearch (LM), Perturbation Move (PM), and the Stopping Rule (SR). 

 

Fig: (b) D1
(2)(Xsm)=8, J1

(2)(Xsm)=4               Fig (c)  D1
(2)(Xsm)=11, J1

(2)(Xsm)=10   

                       
Figure 3.1: Some LHDs and their corresponding (D1, J1) values 

 

 

 

          Fig: (a) D1
(2)(Xr)=2, J1

(2)(Xr)=4 
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The pseudo-code of the proposed ILS heuristic for maximin LHD problems is 

given bellow: 

    Step 1. Initialization : X = IS({0, 1, . . . ,N − 1}))  

    Step 2. Local Search : X
*
 = LM(X) 

    while SR not satisfied do 

    Step 3. Perturbation Move :X′ = PM(X) 

    Step 4. Local Search : X
*
 = LM(X′) 

    Step 5. Improvement test : if X
*
 is better than X, 

    set X = X
* 

    end while 

    Return X  

Below we detail the components in order to fully specify the algorithm. 

3.6.1 Initialization (IS) 

The initialization (IS) procedure embedded in our algorithm is extremely simple: the first 

initial solution is randomly generated. In particular, the first initial solution generation is 

built as follows. For each component h{1, . . . , k} a random permutation v0, . . . , vN-1 of 

the integers 0, 1, . . . ,N −   is generated and we set 

          xrh = vr       for all r {0, . . . , N −  }.  

Although more aggressive procedures could be designed, we chose random generation 

because it is fast and unbiased. 

 

3.6.2  Local Search Procedure (LS) 

In order to define a local search procedure (LS), we need to define a concept of 

neighborhood of a solution. Given a LHD  X = (x1, . . . , xN), its neighborhood is made of 

all other LHDs obtained by applying local moves to X. Before introducing some local 

moves, we first introduce the notion of critical point. 

Critical point: We say that xi is a critical point for X, if 

ij
min d(xi, xj) = D1(X), 

i.e., the minimum distance from xi to all other points is also the minimum one among all 

the distances in X. We denote by I(X) {1, . . . ,N} the set of indices of the critical points in 

X. 

 

3.6.3 Local Moves (LM):  

A local move is an operator that applies some form of slight perturbation to a solution X, 

in order to obtain a different solution. Different local moves define different 



 37 

neighborhoods for local search. In the literature two different local moves are available: 

Rowwise-Pairwise (RP) exchange [Park (1994)] and Columnwise-Pairwise (CP) exchange 

[Morris and Mitchell (1995)]. In Park’s algorithm [Park (1994)] some active pairs (pairs of 

critical points, in our terminology) are selected. Then, for each chosen pair of two active 

rows, say i1 and i2, the RP exchange algorithm considers all the possible exchanges of 

corresponding elements as follows: 

         xi1,p ↔ xi2,q     p, q = 1, 2, . . . , k : p≠ q, 

and finds the best exchange among them. The CP algorithm proposed by Morris and 

Mithchell (1995) exchanges two randomly selected elements within a randomly chosen 

column. But in [Li and Wu (1997)], Li and Wu defined the CP algorithm in a bit different 

way: they randomly choose a column and replace it by its random permutations if a better 

LHD is obtained. 

 

It is observed that the effect of CP based local search and RP based local search is not 

significance [Jamali (2009)]. So, here, RP based local move is considered as defined in 

[Jamali (2009)] which is a bit different than that of [Park (1994)]. For optimal criteria we 

consider Opt( ) optimal criteria. 

The definition of Rowwise-Pairwise Critical Local Moves (we call it LMRpD1) as follows. 

The algorithm sequentially chooses two points (rows) such that at least one of them is a 

critical point, then exchanges two corresponding elements (factors) of the selected pair. If i

I(X), r, j  {1, . . . , N}, h, ℓ  {1, . . . , k}, swapping the ℓ-th component gives the 

neighbor Y defined by 

         yrh=




















h  and ir if    

h and jr  if    

hor    ir if    

jh

ih

rh

x

x

x

                                                                                    (3.3) 

It is remarked that, if Opt(D1, J1) be the optimality criterion, it perfectly makes sense to 

avoid considering pairs  xi and xj such that I(X) ∩ {xi, xj} = ∅ since any swap involving 

two non-critical points cannot improve the D1 value of the current LHD.When Opt( ) is 

adopted as optimality criterion, any exchange can, in general, lead to an improved value of 

 . The RP local move for Opt ( ) optimality criterion is denoted by LMRp  and is also 

defined as Eq. (3.8), the only difference being that we drop the requirement that at least 

one point must be critical. 
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We now illustrate the RP based local moves by considering a randomly generated initial 

design A : (N ,k) = (7,2) (Figure 3.2(a)). Then a neighborhood solution of A, by 

considering points (0,2), (4,4) (here both are critical points), is LHD B, obtained after 

swapping the second coordinate of the points (0, 2)  and (4,4) ( Figure 3.2 (b)). 

 

 

 

 

 

 

 

 

   

               

 

  

Also note that LHD B is an improving neighbor of LHD A, since (D1, J1)(B) =  

 

Also note that LHD B is an improving neighbor of LHD A, since (D1,J1)(B) = (2,1) 

whereas (D1, J1)(A) = (2,3). Finally Figure 3.2 (c) shows the maximin LHD produced by 

the Local search procedure. Though by considering Euclidean Distance the algorithm has 

optimized the LHD, but the LHD is improved regarding Manhatan distance too (see in the 

figures).  

 

3.6.4 Acceptance Rule:  

Among the two type of local moves [Jamali (2009)], we considered Best Improve (BI) 

acceptance rule as there are no significant difference regarding output [Jamali (2009)].  

For the BI acceptance rule, the whole neighborhood of the current solution is searched for 

the best improving neighbor. We warn again the reader that the meaning of “Y is better 

than X” can be defined accordingly with the Opt (D1, J1) or Opt( ) optimality criterion. 

So for the Opt(D1, J1) optimality criterion: “Y is better than X” if 

                D1(Y ) > D1(X) or (D1(X) = D1(Y)  and  J1(X) > J1(Y)). 

On the other hand for Opt( ) optimality criterion : “Y is better than X” if  

Figure 3.2: Illustration of Neighborhood solutions for Local search procedure of ILS 

approach  

 
   

Initial solution – LHD- A 
After single Local Move, nbh & LHD-B After complete LS-LHD - C 

Fig: (a) D1
(2)(Xr)=2, J1

(2)(Xr)=3 Fig: (b) D1
(2)(Xb)=2, J1

(2)(Xb)=1                           Fig: (c) D1
(2)(Xc)=8, J1

(2)(Xc)=4 



 39 

                p(Y ) < p(X), 

where  p is defined by (2.5). 

 

 

3.6.5 Perturbation Move (PM) 

Perturbation is the key operator in ILS, allowing the algorithm to explore the search space 

by jumping from one local optimum to another. Basically, a perturbation is similar to a 

local move, but it must be somehow less local, or, more precisely, it is a move within a 

neighborhood larger than the one employed in the local search. Actually the perturbation 

operator produces the initial solutions for all the local searches after the first one. Among 

the two types of perturbation operators, say, (i) Cyclic Order Exchange (COE) and (ii) 

Pairwise Crossover (PC) proposed in [Jamali (2009)], we consider here COE.  

(i) Cyclic Order Exchange (COE): Our first perturbation move procedure is Cyclic 

Order Exchange (COE). The operator COE produce a cyclic order exchange upon a 

randomly selected single component (column) of a randomly selected portion of the 

design points (rows). Among the three variant of COE perturbation move techniques: 

Single Cyclic Order Exchange (SCOE) perturbation operation, Multiple Components 

Cyclic Order Exchange (MCCOE), and Multiple Single Cyclic Order Exchange (MSCOE) 

[Jamali (2009)], we consider here only SCOE technique. 

 

 

 

(ia)Single Cyclic Order Exchange (SCOE): For SCOE, we randomly choose two 

different rows (points), say xi and xj , such that i < j and j − i ≥  , in the current LHD X
*
. 

xj,l 

 

 

x(j-1),l 

Fig.  3.3:  Illustration of Cyclic Order Exchange perturbation technique 
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Then, we randomly choose a column (component), say ℓ. Finally, we swap in cyclic order 

the value of component ℓ from point xi to point xj. See Fig -3.3. The pseudo-code structure 

for SCOE is the following. 

                Step 1:  randomly select two different points xi and xj 

                     such that i < j and j − i ≥   

                Step 2:  Randomly choose a component ℓ 

                Step 3a: set temporarily x
t
j   = xj   

                      for t = j, j − 1, . . . , i + 1 do 

               Step 3b: Replace the component x(t)ℓ by x(t−1)ℓ 

                    end for 

               Step 3c: and replace xi   by x
t
j   

 

Note that we require j − i ≥   because otherwise the perturbation would be a special case 

of the local move employed in the local search procedure. We illustrate the SCOE 

perturbation by an example. Assume we have the current LHD X
*
 with N = 7 and k = 8 

 

          *
X =





























7

6

5

4

3

2

1

x

x

x

x

x

x

x

=





























65432106

54321065

03210654

42106543

31065432

10654321

26543210

                                                    (3.4) 

 

Now we randomly choose two rows (points), say x2 and x6 and we randomly choose the 

column (component) ℓ = 4. Then, after the SCOE perturbation we get the following LHD 

X′ (bold faces denote the values modified with respect to X
*
), 
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Note that SCOE only slightly modifies the current LHD X
*
 but this exactly follows the 

spirit of ILS, where the perturbation should keep unchanged large portions of the current 

solution and should not completely disrupt its structure. 

(ii) Pairwise Crossover: The second type of perturbation move that we consider is the 

Pairwise Crossover (PC). It is similar to biological crossover. we randomly select two 

points (rows) and then randomly selected portions of them which are interchanged. Here 

we propose three variant of PC namely Single Pair Crossover (SPC) and Multiple Pair 

Crossover (MPC) and Critical-point Far-most Pair crossover (CFPC). 

(ii.a) Single Pair Crossover (SPC): For SPC, we first randomly select two rows, say, xi 

and xj, i≠ j, in the current LHD X*; then we randomly select a component, say l ≥  . 

Finally all the components 1, . . . , l of xi are swapped with the corresponding components 

of xj─ refer to Figure 3.4. Note that we require l ≥  , since otherwise it would be a single 

local move. It is also worthwhile to remark that the PC perturbation is meaningful only 

when number of factors of the LHD is greater than three. The pseudo code structure of 

SPC is as follows: 

Step 1: randomly select two different points xi and xj such that i≠ j 

Step 2: Randomly choose a component l such that l ≥   

for k = 1, . . . , l do 

Step 3: swap (xik, xjk) 

end for 
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Before Crossover 

 xi   = 0 1  2 3  4  5  6  2 

 

xj = 4  5  6 0  1  2  3  0 

 

After Crossover 

 

 x′i = 4  5  6 3  4  5  6  2 

 

 

 

 

 

3.6.6 Stopping Rule (SR) 

We use a very simple stopping Rule (SR). We introduce an integer parameter called Max 

Non-Imp (MNI) and the algorithm will stop if the currently best local optimizer X
*
 cannot 

be improved for Max Non-Imp consecutive perturbations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 x′j = 0  1 2 0  1  2  3   0 

Fig. 3.4: Illustration of Single Pair Crossover perturbation technique 
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CHAPTER IV 

 

 

 

EXPERIMENTS ON OPTIMAL LHDS REGARDING EUCLIDEAN MEASURE  

 

 

4.1  Introduction  

 

In this chapter we will discuss about the optimal maximin LHDs obtained by ILS 

approach in Euclidean distance measure and comparison with existence literatures. At first 

we will display the optimal LHDs to show the performance of ILS approach regarding 

Euclidean distance measure.  

 

4.2   Experimental Results and Discussion for Euclidean Measure 

 

At first we will compare the performance of several approaches available in the literature 

regarding maximin LHDs namely maximin LHDs obtained by ILS approach [Grosso et al. 

(2009)] and  denoted by MLH-ILS;  maximin LHDs obtained by Periodic design (PD) 

approach  Husslage et al. (2006)] and denoted by MLH-PD;  maximin LHDs obtained by 

Simulated Annealing (SA)  approach [Husslage et al. (2006)] and denoted by MLH-SA, 

maximin LHDs obtained by Simulated Annealing (SA_M)  approach [Morris and Mitchel 

(1995)] and denoted by MLH-SA_M and maximin LHDs obtained by Enhanced 

Stochastic Evolutionary (ESE) algorithm [Husslage et al. (2011)] which is first proposed 

by Jin et al. (2005) and the designs are denoted by MLH_ESE.  

 

It is noted that the best maximin LHDs are frequently update in the website  

https://spacefillingdesigns.nl/ (2008) and we denote it as Best-Web. It will be worthwhile 

to mention here that we compare maximin LHDs of website during 2009 rather than recent 

update value (like 2016). We do so because at 2009 the website is updated by taking the 

values obtained by ILS approach [Grosso et al. (2009)] and accept few values MLH_ILS 

values reveal best till to date.   For the comparison study we consider all designs with {(k, 

N) : k = 3,…, 0 ; N =  ,…,  00}. In the tables the head line of each design is shorted as 

MLH_ESE to ESE and so on. The experimental results are reputed in the Table 4.1 and 

Table 4.2. 

https://spacefillingdesigns.nl/
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 k=3 k=4 k=5 k=6 

N PD SA ESE ILS PD SA ESE ILS PD SA ESE ILS PD SA ESE ILS 

2 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6 6 

3 3 6 6 6 4 7 7 7 5 8 8 8 6 12 12 12 

4 6 6 6 6 12 12 12 12 11 14 14 14 15 20 20 20 

5 6 11 11 11 12 15 15 15 11 24 24 24 15 27 27 27 

6 14 14 14 14 16 22 22 22 23 32 32 32 28 40 40 40 

7 14 17 17 17 16 28 28 28 23 40 40 40 28 52 52 52 

8 21 21 21 21 25 42 42 42 32 50 50 50 42 66 63 66 

9 21 22 22 22 25 42 42 42 39 61 61 61 45 76 75 76 

10 21 27 27 27 36 50 47 50 55 82 82 82 62 91 91 92 

11 24 30 30 30 39 55 55 55 55 80 80 81 62 108 108 110 

12 30 36 36 36 46 63 63 63 62 91 91 93 91 136 136 139 

13 35 41 41 41 51 68 70 70 64 101 103 104 91 136 138 140 

14 35 42 42 42 70 75 77 79 86 112 114 116 104 152 154 160 

15 42 48 48 48 71 83 87 89 88 124 129 131 111 167 171 175 

16 42 50 50 50 85 90 93 94 101 136 151 154 130 186 190 194 

17 42 53 53 54 85 97 99 103 113 150 158 159 131 203 208 214 

18 50 56 56 57 94 103 108 111 123 162 170 172 155 223 231 241 

19 57 59 59 62 94 113 119 122 136 174 184 189 169 241 256 263 

20 57 62 65 66 106 123 130 137 139 184 206 206 210 260 279 285 

21 65 66 68 69 116 127 145 149 165 201 223 229 210 283 302 306 

22 69 69 72 76 117 137 150 151 174 215 235 242 223 304 325 338 

23 72 74 75 77 130 146 159 161 178 224 250 251 236 324 348 358 

24 76 78 81 83 138 154 170 170 201 242 266 269 258 343 374 378 

25 91 81 86 86 156 162 178 181 205 255 285 286 286 368 400 408 

26 91 86 86 86 156 171 188 189 226 269 302 306 296 387 426 439 

27 91 90 90 90 157 178 198 198 238 287 310 326 310 410 447 474 

28 94 94 94 94 174 188 210 212 258 302 331 349 339 427 479 494 

29 94 98 101 101 174 196 221 219 269 322 349 373 346 452 507 517 

30 105 102 105 105 194 209 233 230 310 335 367 403 390 473 531 545 

31 107 106 110 110 212 215 244 240 310 347 405 406 390 504 563 569 

32 114 110 110 116 212 228 253 252 341 371 413 418 419 529 587 599 

33 114 113 117 120 215 234 264 267 341 379 426 446 430 548 622 634 

34 133 117 125 126 230 244 273 274 358 403 445 460 470 586 648 668 

35 133 122 126 129 234 255 286 289 366 418 467 482 495 601 683 697 

36 133 129 131 136 250 261 297 298 400 427 486 502 518 631 719 739 

37 152 131 138 140 266 275 309 308 408 454 520 530 528 648 744 775 

38 152 134 142 142 283 279 321 322 415 464 541 557 561 681 788 813 

39 152 139 146 149 283 290 330 330 439 486 566 575 561 706 816 846 

40 155 146 152 152 291 301 342 345 492 505 575 590 632 739 876 886 

41 162 147 158 155 293 309 355 354 492 525 596 618 632 776 882 938 

42 168 152 161 162 319 325 367 371 496 543 626 641 670 791 907 988 

43 168 157 171 169 323 329 383 378 520 558 666 664 670 830 947 996 

44 186 161 179 178 331 349 396 393 548 582 680 688 696 862 992 1041 

45 186 166 182 179 347 362 407 405 565 615 698 706 737 891 996 1065 

46 186 169 189 185 366 370 421 421 592 615 723 728 797 918 1064 1107 

47 186 173 189 189 378 378 438 426 611 634 754 762 797 940 1088 1113 

48 189 178 201 194 413 385 450 451 632 673 763 782 857 976 1119 1159 

49 196 180 203 201 415 399 464 463 634 680 803 799 893 1015 1167 1181 

50 213 185 206 206 415 414 478 473 663 699 830 830 893 1042 1203 1218 

51 213 189 206 209 421 426 490 487 692 727 850 857 917 1067 1230 1258 

52 213 198 217 214 455 429 504 501 709 742 883 874 1003 1100 1274 1292 

53 216 200 219 221 455 447 515 516 716 765 894 901 1003 1136 1340 1340 

54 233 213 209 227 477 454 534 526 760 783 932 935 1019 1171 1359 1392 

55 243 214 230 233 483 477 546 541 760 805 956 966 1082 1198 1421 1432 

56 243 216 230 235 515 479 558 565 784 830 982 992 1104 1236 1431 1484 

57 261 221 249 241 515 490 574 570 846 854 1007 1018 1136 1265 1488 1523 

58 261 227 245 246 539 500 594 591 846 878 1035 1046 1166 1303 1554 1559 

59 266 229 254 254 544 519 609 607 849 905 1063 1064 1223 1328 1564 1615 

60 273 237 261 258 568 530 618 622 904 928 1094 1101 1242 1381 1631 1647 

61 274 244 266 262 620 538 630 641 904 939 1128 1134 1258 1413 1667 1703 

62 283 245 269 269 620 554 657 645 934 991 1150 1156 1306 1450 1715 1756 

63 297 249 281 276 620 575 670 666 967 989 1178 1187 1380 1497 1781 1781 

64 297 258 278 281 625 579 684 678 985 1009 1206 1223 1430 1526 1804 1834 

65 314 260 290 286 630 582 694 701 997 1035 1216 1239 1430 1565 1868 1884 

66 314 269 299 294 666 602 718 706 1050 1051 1261 1272 1476 1590 1874 1926 

67 314 270 294 297 666 614 735 726 1072 1085 1299 1283 1482 1646 1954 1977 

68 314 278 306 306 685 623 746 738 1087 1119 1330 1360 1538 1664 1983 2014 

69 324 280 306 310 698 650 765 754 1112 1114 1351 1399 1588 1704 2028 2070 

70 325 285 314 313 716 658 779 773 1150 1135 1378 1439 1633 1759 2094 2116 

71 325 289 314 325 716 665 793 795 1150 1187 1413 1416 1644 1783 2141 2168 

72 341 296 314 326 750 678 810 810 1203 1197 1430 1454 1768 1862 2136 2215 

73 350 299 329 329 759 688 834 818 1229 1242 1462 1549 1768 1872 2197 2252 

74 350 306 341 341 767 703 842 845 1229 1269 1512 1562 1774 1910 2291 2299 

75 350 310 341 345 771 714 867 854 1274 1282 1530 1571 1862 1963 2303 2365 

76 363 324 341 349 813 750 882 877 1300 1318 1569 1597 1935 2024 2387 2415 

77 363 325 341 355 823 762 894 890 1308 1331 1591 1631 1947 2051 2433 2456 

78 387 337 371 362 844 761 910 906 1382 1360 1621 1654 2014 2079 2479 2502 

79 387 333 374 376 848 788 927 921 1382 1399 1639 1668 2037 2120 2498 2550 

80 403 344 374 371 873 786 949 943 1395 1430 1691 1690 2037 2152 2554 2597 

81 406 338 381 381 916 782 963 972 1406 1431 1730 1731 2064 2217 2648 2665 

82 406 353 374 389 938 825 989 979 1475 1482 1742 1773 2141 2239 2680 2715 

83 417 369 374 401 940 829 1002 1006 1501 1509 1762 1804 2141 2290 2696 2752 

84 426 363 406 401 967 838 1021 1015 1534 1510 1818 1825 2229 2325 2790 2803 

85 426 369 413 406 967 877 1043 1032 1552 1566 1866 1871 2232 2399 2819 2877 

86 428 376 413 422 967 867 1053 1047 1573 1578 1882 1890 2375 2437 2875 2929 

87 428 374 413 419 976 877 1073 1062 1598 1589 1934 1922 2375 2476 2913 2988 

88 437 374 434 426 1050 890 1086 1079 1685 1629 1954 1963 2398 2513 2975 3075 

89 443 378 426 432 1050 907 1102 1102 1690 1654 1990 2009 2400 2562 3067 3104 

90 481 384 446 437 1060 940 1134 1116 1710 1696 2027 2032 2516 2633 3104 3134 

91 481 393 434 450 1089 951 1134 1146 1748 1724 2031 2054 2516 2674 3143 3192 

92 481 394 446 457 1089 966 1149 1154 1805 1750 2100 2117 2599 2729 3216 3243 

93 481 402 446 456 1098 962 1171 1169 1813 1795 2130 2122 2604 2726 3283 3305 

94 481 405 470 461 1124 986 1199 1198 1881 1811 2169 2165 2747 2788 3348 3360 

95 481 413 482 474 1135 1010 1219 1223 1901 1846 2206 2202 2747 2817 3335 3455 

96 509 414 486 475 1261 1023 1250 1228 1965 1863 2227 2261 2769 2911 3451 3497 

97 515 419 474 489 1261 1027 1258 1245 1965 1899 2299 2269 2817 2960 3514 3546 

98 531 429 485 486 1261 1055 1283 1266 1965 1929 2299 2309 2850 3001 3560 3606 

99 531 449 449 497 1261 1040 1298 1290 2009 1950 2338 2356 2878 3043 3628 3652 

100 554 451 494 502 1261 1074 1305 1313 2053 1975 2401 2388 3000 3117 3648 3710 

 

 

Table 4.1: Comparison among PD, SA, ESE and ILS approaches regarding maximin  

LHDs in Euclidean distance measure  for  k=3 – 6 
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  k=7 k=8 k=9 k=10 

N PD SA ESE ILS SA ESE ILS SA ESE ILS SA ESE ILS 
2 7 7 7 7 8 8 8 9 9 9 10 10 10 
3 7 13 13 13 14 14 14 18 18 18 19 19 19 
4 16 21 21 21 26 26 26 28 28 28 33 33 33 
5 16 32 32 32 40 40 40 43 43 43 50 50 50 
6 29 47 47 47 54 53 54 61 61 61 68 68 68 
7 31 61 61 61 70 70 71 80 80 81 89 89 90 
8 46 79 79 79 91 90 91 101 101 102 114 114 114 
9 47 92 92 93 112 112 113 126 126 128 141 142 143 
10 68 110 109 111 130 131 133 154 154 157 172 171 174 
11 69 128 129 132 152 152 154 178 178 181 206 206 209 
12 95 150 152 155 176 177 181 204 204 209 235 235 240 
13 95 174 178 181 202 205 210 232 235 242 267 268 275 
14 119 204 215 217 228 236 243 265 268 278 298 305 313 
15 129 211 220 223 257 273 280 296 309 318 337 347 358 
16 155 238 241 249 286 317 326 330 352 358 378 393 406 
17 161 256 266 272 312 332 332 367 396 405 415 442 458 
18 186 281 291 298 344 361 368 398 451 466 458 496 509 
19 195 305 323 326 370 390 398 438 469 472 498 554 569 
20 226 332 349 360 403 425 434 472 506 517 542 625 641 
21 236 361 380 393 438 463 471 517 548 559 592 650 650 
22 270 384 418 425 467 501 508 555 595 614 643 691 704 
23 273 410 448 454 501 542 549 596 640 651 685 747 750 
24 308 444 481 492 538 585 595 639 690 699 739 800 818 
25 350 467 520 531 583 626 637 688 739 752 792 857 875 
26 365 499 548 570 612 664 688 726 791 810 854 910 931 
27 382 526 585 599 648 712 738 780 840 859 896 976 1002 
28 406 561 620 634 693 766 785 826 898 919 953 1041 1061 
29 417 593 654 675 733 817 837 876 956 986 1015 1100 1132 
30 458 620 691 714 787 849 897 925 1019 1041 1086 1173 1207 
31 482 657 728 764 812 900 931 976 1104 1104 1138 1241 1275 
32 518 695 778 803 866 966 976 1026 1139 1176 1194 1318 1351 
33 537 723 814 844 900 1010 1037 1084 1201 1244 1253 1396 1436 
34 561 751 851 891 945 1072 1089 1135 1270 1316 1329 1478 1514 
35 586 811 914 934 1002 1113 1151 1190 1326 1398 1398 1555 1595 
36 636 831 939 968 1042 1181 1205 1257 1405 1444 1459 1647 1679 
37 668 863 976 1012 1079 1236 1272 1300 1477 1505 1516 1721 1761 
38 709 923 1028 1055 1127 1286 1328 1367 1534 1577 1597 1790 1852 
39 726 938 1084 1094 1192 1344 1397 1434 1609 1640 1665 1870 1987 
40 786 970 1122 1148 1224 1416 1459 1489 1675 1728 1742 1946 2101 
41 802 1016 1156 1197 1271 1496 1535 1562 1765 1793 1820 2058 2135 
42 903 1064 1209 1249 1333 1526 1584 1639 1843 1871 1920 2149 2191 
43 903 1112 1256 1301 1377 1597 1635 1683 1905 1957 1973 2224 2279 
44 903 1140 1336 1340 1463 1653 1698 1752 1994 2042 2072 2319 2373 
45 926 1192 1366 1408 1480 1723 1755 1820 2079 2126 2130 2415 2466 
46 985 1243 1408 1448 1548 1794 1819 1906 2155 2220 2208 2507 2568 
47 985 1268 1459 1521 1616 1847 1883 1958 2244 2312 2331 2600 2663 
48 1054 1325 1531 1578 1658 1924 1957 2017 2336 2383 2387 2732 2760 
49 1074 1356 1592 1649 1729 1989 2018 2103 2397 2470 2470 2828 2880 
50 1113 1397 1639 1699 1772 2041 2089 2179 2492 2569 2556 2893 2991 
51 1161 1450 1662 1744 1855 2132 2152 2243 2566 2637 2639 3006 3090 
52 1231 1486 1734 1804 1888 2203 2218 2325 2686 2716 2745 3134 3202 
53 1241 1537 1808 1886 1949 2234 2288 2429 2713 2798 2825 3261 3306 
54 1288 1577 1856 1932 2006 2356 2383 2473 2805 2884 2892 3339 3412 
55 1325 1639 1896 2000 2084 2429 2462 2570 2935 2996 3054 3452 3530 
56 1358 1701 2003 2073 2162 2444 2533 2623 3021 3060 3100 3551 3643 
57 1479 1721 2024 2098 2194 2554 2620 2704 3119 3162 3215 3651 3767 
58 1479 1795 2043 2156 2258 2650 2679 2796 3187 3268 3305 3795 3843 
59 1509 1821 2136 2187 2356 2733 2793 2881 3297 3350 3399 3889 3977 
60 1577 1899 2232 2277 2393 2796 2873 2939 3420 3446 3500 4090 4109 
61 1615 1928 2266 2316 2488 2868 2966 3021 3525 3565 3588 4158 4202 
62 1680 2023 2345 2367 2541 2977 3048 3132 3636 3651 3700 4313 4322 
63 1680 2035 2376 2417 2607 3056 3160 3215 3690 3760 3767 4355 4445 
64 1769 2093 2452 2484 2734 3097 3207 3292 3820 3868 3955 4514 4560 
65 1786 2132 2492 2547 2723 3219 3286 3357 3932 3991 4034 4581 4695 
66 1857 2180 2543 2606 2841 3279 3418 3474 4004 4088 4143 4769 4818 
67 1868 2238 2638 2672 2868 3399 3488 3543 4081 4200 4224 4942 4981 
68 1940 2295 2693 2714 2956 3453 3600 3647 4212 4317 4360 4995 5077 
69 1965 2351 2746 2794 3075 3520 3704 3716 4317 4400 4455 5127 5221 
70 2130 2417 2838 2856 3130 3588 3779 3841 4464 4516 4539 5276 5366 
71 2130 2451 2871 2939 3161 3749 3877 3936 4548 4666 4689 5437 5479 
72 2177 2503 2960 2992 3220 3810 3962 4027 4666 4758 4812 5556 5625 
73 2206 2598 3042 3077 3305 3932 4009 4134 4776 4858 4873 5661 5746 
74 2244 2614 3120 3117 3432 3941 4127 4224 4915 4997 5038 5817 5879 
75 2295 2703 3157 3230 3513 4073 4213 4298 5006 5141 5171 5937 6015 
76 2375 2756 3218 3289 3559 4178 4326 4395 5179 5261 5254 6111 6163 
77 2403 2819 3323 3359 3617 4266 4384 4492 5222 5364 5399 6272 6305 
78 2505 2870 3387 3432 3684 4390 4491 4577 5385 5543 5489 6384 6449 
79 2525 2950 3474 3488 3775 4465 4585 4705 5535 5631 5633 6466 6580 
80 2590 2979 3550 3564 3877 4565 4695 4807 5577 5792 5773 6653 6733 
81 2642 3086 3619 3638 4001 4679 4721 4888 5748 5922 5901 6780 6842 
82 2753 3118 3669 3727 3998 4719 4809 5030 5859 6041 6013 6935 7041 
83 2767 3195 3723 3800 4076 4848 4906 5102 5976 6196 6097 7094 7258 
84 2838 3227 3870 3883 4183 4920 5006 5222 6119 6357 6273 7256 7362 
85 2874 3299 3919 3954 4324 5032 5110 5340 6212 6479 6397 7357 7508 
86 3103 3335 3958 4032 4397 5164 5205 5423 6346 6606 6491 7532 7687 
87 3103 3450 4095 4119 4474 5225 5302 5538 6469 6761 6622 7639 7837 
88 3183 3500 4166 4199 4524 5340 5426 5667 6660 6873 6803 7877 8022 
89 3183 3541 4176 4290 4578 5450 5515 5774 6750 7004 6872 7950 8151 
90 3190 3661 4308 4362 4699 5576 5608 5832 6901 7152 7040 8128 8325 
91 3234 3677 4379 4423 4850 5626 5696 5969 6950 7296 7163 8330 8464 
92 3277 3760 4428 4526 4873 5758 5822 6081 7067 7396 7286 8442 8681 
93 3361 3811 4512 4574 4984 5832 5925 6231 7342 7446 7488 8601 8828 
94 3474 3888 4581 4675 5067 6007 6032 6329 7436 7642 7536 8774 9066 
95 3531 3940 4703 4758 5154 6064 6148 6396 7469 7748 7741 8877 9252 
96 3639 4070 4808 4862 5220 6222 6227 6516 7645 7926 7777 9146 9445 
97 3639 4069 4848 4919 5316 6304 6364 6649 7781 8011 8038 9379 9550 
98 3690 4147 4936 5007 5445 6376 6467 6776 7896 8152 8242 9381 9820 
99 3731 4214 4999 5117 5477 6448 6571 6912 8023 8258 8344 9617 9998 
100 
100 3903 4335 5040 5184 5597 6617 6692 6983 8228 8464 8450 9835 10233 

Table 4.2: Comparison among PD, SA, ESE and ILS approaches regarding maximin 

LHDs in Euclidean distance measure  for  k=7 – 10 
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To see the performance of each approaches at a glance, we summarized the above results 

in Table 4.3. In the  Table 4.3, identical means the maximin LHDs obtained by ILS 

approach is identical compare to the best known results  available in the literature whereas  

worse means the maximin LHDs obtained by ILS approach are worse compare to best 

known results. Notice that the maximin LHDs obtained by SA_M approach are not 

reported in the Table 4.1 and Table 4.2 as there are few values available in the literature 

[Morris and Mitchel (1995)] and all of which are worse with respect to MLH_ILS [Jamali 

(2009)] as shown in the Table 4.3. Moreover in the Table 4.2 the maximin LHDs obtained 

by ESE approach are not reported in Table 4.2. As ESE approach performs relatively 

better compare to PD or SA, so we will compare ILS with ESE separately. It is observed 

that except dimension k = 3, in which PD performs better, ILS outperforms compared to 

other approaches considered. We observe that ILS is able to detect a very large   amount 

of improved solutions with respect to the best known ones. This is, especially, true at 

large k values. For k ≥ 6, with the exception of few numbers of N values, all the 

solutions returned by ILS are better compare to the best known results. It is worthwhile 

to remark that for large (k, N) values the improvement of each LHD obtained by ILS 

approach is very significance.  

 

 

 

 

 Number of best 

solutions     

(maximin LHD) 

 Identical 

solutions 

Worse 

Solution k PD SA SA_ M Web ILS ILS ILS 

3 61 0 0 65 14 20 65 

4 02 0 0 47 34 18 47 

5 00 0 0 11 78 10 11 

6 00 0  00 90 09 00 

7 00 0  00 92 07 00 

8  0  00 93 06 00 

9  0  00 93 06 00 

10  0  00 92 07 00 

 

 

 Though the performance of ILS approach is significantly better compare to other 

approaches consider here, but the approach will be effective if it is efficient i.e.  the 

algorithm performs the job within  acceptable time. So it is needed to comment about the 

computation times. It is worthwhile to mention here that there is no information regarding 

Table 4.3: the comparison among several approaches for finding maximin LHDs for N=2 

to 100 in each dimension k 

 



 47 

times to obtain the Web’s results. Anyway for this demand, the computational cost of the 

approaches is reported in the Table 4.4. It is noted that the elapsed time of ESE approach 

is not available. It is, however, quite clear that ILS is more computationally demanding 

with respect to PD and SA. Such higher costs are clearly rewarded in terms of quality of 

the results but the quality of the results might be wondered if the time restrictions are 

imposed on ILS. According to some further experiments that were performed, it would be 

realized that, especially at large k values, equivalent or better results with respect to the PD 

and SA ones, could quickly be reached by ILS [Jamali (2009)]. Therefore, it seems that at 

large k values even few and short runs of ILS are able to deliver results better than those 

reached by PD and SA. That is ILS approach outperforms compare to other approaches 

considered regarding L
2
 distance measure.  

  

 

 

 

Total Elapsed Time (hrs) 

k PD SA ILS 

3 145 500 164 

4 61 181 507 

5 267 152 767 

6 108 520 1235 

7 232 246 698 

8 -- 460 846 

9 -- 470 1087 

10 -- 470 1166 

 

 

Now we will compare the performance of ILS with respect to ESE regarding maximin 

LHDs by summering the above maximin LHDs values for ILS and ESE approach. Table 

4.5 displays the intimate comparison between ILS and ESE approach regarding maximin 

LHD’s values. It is observed that except dimension 4, in which performance of both 

approaches are comparable, ILS always outperforms significantly. Moreover we notice 

that for k > 5, the almost all maximin LHDs obtained by ILS approach are the better.   

 

 

 

 

 

 

Table 4.4: Comparison of computational cost 
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N= ,…, 00 
No. of Best LHDS 

 in 

k ESE ILS 

3 24 43 

4 45 35 

5 11 77 

6 0 92 

7 1 91 

8 0 92 

9 0 93 

10 0 92 

 

 

 

 

 

 
 

 

 

 

 

 

Now what are the effects of increasing of N on the performance of ILS approach upon 

ESE approach is depicted in the Figure 4.1. For this contest we consider k =10 and N= 

 ,….,  00. In the Figure 4.1 the horizontal line indicates N (number of design point) and 

vertical line indicates the difference between the D1 value of MLH_ILS and MLH_ESE 

(MLH_ILS - MLH_ESE).  It is observed in the figure that there is a significant effect on 

Table 4.5: Comparison between ESE and ILS  

regarding Maximin LHDS 

 

 

Figure 4.1 Effect of N on the performance of ILS approach upon ESE 

approach for k = 10 
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N. For the increasing of N, ILS approach find out much batter LHDs compare to ESE 

approach. From the above discussion it is clear that ILS approach is state-of arts regarding 

maximin optimality in Euclidian distance measure as well as computational cost.   
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CHAPTER V 

 

 

 

EXPERIMENTS ON OPTIMAL LHDS REGARDING AUDZE-EGLAIS 

DISTANCE MEASURE  

 

 

 

5.1 Introduction 

 

In chapter IV, we have performed experiments to analyse the effectiveness and robustness 

of  ILS  approach on the basis of  maximin LHDs on (ɸp,D1) optimal criterion in which 

pair-wise distances of points are measured by  square of L
2
 distance measure.  On the basis 

of those experimental study we may conclude that ILS outperforms to find maximin LHDs 

measured L
2
 distance measure by taking (ɸp,D1) optimal criterion. Anyway in the 

literature there exist several types of optimal LHDs according to different kind of optimal 

criteria as well as distance measure considered. Here we will perform several experiments 

in this contest.  

 

5.2  Experiments on individual optimal LHD for details characteristics 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To view the   details characteristics of optimal LHD regarding both the maximin (ɸp,D
1
) 

criterion and Audze-Egligs  criterion, we have first considered LHD (k,N) = (6,12). Table 

Table 5.2 Optimal Audze-eglais  

LHD  B 

0 7 1 4 9 3 

1 0 8 5 7 9 

2 10 11 8 5 5 

3 5 2 10 0 7 

4 3 7 2 1 0 

5 9 5 0 3 10 

6 2 6 11 8 1 

7 8 4 9 10 11 

8 6 9 1 11 4 

9 1 0 3 6 6 

10 11 3 6 4 2 

11 4 10 7 2 8 

 

Table 5.1 Optimal  maximin 

LHD  A 

0 4 8 5 2 10 

1 3 4 9 5 0 

2 6 1 4 11 8 

3 10 6 0 4 2 

4 11 9 10 8 6 

5 2 11 3 10 4 

6 9 0 8 1 7 

7 0 2 1 3 5 

8 1 5 11 7 9 

9 5 10 7 0 3 

10 8 7 2 6 11 

11 7 3 6 9 1 
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5.1 displays the optimal  LHD  regarding the maximin øp criterion  obtained by ILS 

approach [Grosso et al. (2009)] and denoted as maximin LHD A. On the other hand  Table 

5.2 presents the optimal LHD  regarding the Audze-eglais criterion  obtained by Enhanced 

Stochastic Evolutionary (ESE) algorithm [Jin et al. (2005) and Husslage et al. (2011)] and 

denoted as Audze-eglais LHD B. In both the cases, Euclidian distance measure is used. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Now we have performed further experiments on both LHDs to find out the pair-wise 

distances of the design points in each distance measure namely L
1
 and L

2
. The 

experimental results regarding LHD A are displayed in the Table 5.3 and 5.4. In Table 5.3 

we have distance matrix P measured in Euclidean distance measure whereas in Table 5.4 

we have distance matrix Q measured in Manhattan distance measure respectively. 

Table 5.3 Distance matrix P for maximin LHD A in  L
2
 measure 

0 143 143 144 144 142 286 143 143 143 143 142 

143 0 142 143 143 143 143 142 144 144 286 143 

143 142 0 143 143 143 143 142 286 144 144 143 

144 143 143 0 142 286 142 143 143 143 143 144 

144 143 143 142 0 144 142 143 143 143 143 286 

142 143 143 286 144 0 144 143 143 143 143 142 

286 143 143 142 142 144 0 143 143 143 143 144 

143 142 142 143 143 143 143 0 144 286 144 143 

143 144 286 143 143 143 143 144 0 142 142 143 

143 144 144 143 143 143 143 286 142 0 142 143 

143 286 144 143 143 143 143 144 142 142 0 143 

142 143 143 144 286 142 144 143 143 143 143 0 

 

Table 5.4 Distance matrix Q for maximin LHD A in  L
1
 measure 

0 25 23 24 24 26 36 27 23 27 25 26 

25 0 26 27 23 27 25 26 24 24 36 23 

23 26 0 25 27 25 23 26 36 24 24 27 

24 27 25 0 26 36 26 23 25 23 27 24 

24 23 27 26 0 24 26 25 27 25 23 36 

26 27 25 36 24 0 24 23 25 23 27 26 

36 25 23 26 26 24 0 27 23 27 25 24 

27 26 26 23 25 23 27 0 24 36 24 25 

23 24 36 25 27 25 23 24 0 26 26 27 

27 24 24 23 25 23 27 36 26 0 26 25 

25 36 24 27 23 27 25 24 26 26 0 23 

26 23 27 24 36 26 24 25 27 25 23 0 
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Similarly performing experiments on LHD B , we have obtained the distance matrices R 

and S given in Table 5.5 and Table 5.6 regarding Euclidean and Manhattan distance 

measure respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Now we have performed experiments on those distance matrices P, Q, R and S to find out 

some interesting characteristics of the LHD A and B respectively. The experimental 

results are shown in the Table 5.7. In the table “DMax” means maximum pear-wise distance 

of design points in any LHD,  “ JMax” means number of DMax values in that LHD and “AE 

value” means Audze- Eglais distance value.  As mentioned earlier that Euclidean distance 

measure is considered for the both optimal LHDs A and B. At first we will compare D1J1 

value measured in L
2
 distance measure of the two optimal LHDs. It is observed (in column 

Table 5.5 Distance matrix R for Audze- Eglais LHD B in  L
2
 measure 

0 140 149 147 145 146 140 149 143 137 150 294 

140 0 139 143 145 148 134 145 143 143 286 150 

149 139 0 140 146 139 139 140 142 278 143 137 

147 143 140 0 144 147 135 146 286 142 143 143 

145 145 146 144 0 149 137 294 146 140 145 149 

146 148 139 147 149 0 278 137 135 139 134 140 

140 134 139 135 137 278 0 149 147 139 148 146 

149 145 140 146 294 137 149 0 144 146 145 145 

143 143 142 286 146 135 147 144 0 140 143 147 

137 143 278 142 140 139 139 146 140 0 139 149 

150 286 143 143 145 134 148 145 143 139 0 140 

294 150 137 143 149 140 146 145 147 149 140 0 

 

Table 5.6 Distance matrix S for Audze- Eglais LHD B in  L
1
 measure 

0 24 25 25 27 28 26 25 23 23 24 38 

24 0 23 27 25 26 24 27 27 23 36 24 

25 23 0 24 28 25 27 26 26 34 23 23 

25 27 24 0 24 25 25 24 36 26 27 23 

27 25 28 24 0 23 21 38 24 26 27 25 

28 26 25 25 23 0 34 21 25 27 24 26 

26 24 27 25 21 34 0 23 25 25 26 28 

25 27 26 24 38 21 23 0 24 28 25 27 

23 27 26 36 24 25 25 24 0 24 27 25 

23 23 34 26 26 27 25 28 24 0 23 25 

24 36 23 27 27 24 26 25 27 23 0 24 

38 24 23 23 25 26 28 27 25 25 24 0 

 



 53 

4) that Maximin LHD A  is much better than Audze-Eglais LHD B regarding maximin 

value D1J1 in Euclidean measure (L
2
) where  LHD A  is optimized regarding (ɸp,D1) 

[Grosso et al. (2009] optimal criterion by ILS approach and Audze-Eglais LHD B is 

optimized regarding Audze-Eglais criterion by ESE approach. Though Maximin LHD A  

is optimized regarding L
2
 measure but in this experiment we notice that Maximin LHD A  

is better than Audze-Eglais LHD B regarding D1J1 value measured in Manhattan measure 

(L
1
) too. 

 

 

 

 

 

LHD k N 

In Euclidean measure (L
2
) In Manhattan measure (L

1
) 

D1J1 DMax, JMax AE value  D1J1 DMax, JMax AE value  

A 6 12 142 , 12 286 , 6 0.440568 23 , 12 36 , 6 2.57439 

B 6 12 134 , 2 294 , 2 0.440954 21 , 2 38 , 2 2.57795 

 

It is remarkable that though Audze-Eglais LHD B is optimized by the Audze-eglais 

criterion but in the table we observe , in column 6 (L
2
) and in column 9 (L

1
),  that 

Maximin LHD A  is also better than Audze-Eglais LHD B regarding Audze-Eglais  (AE) 

value. Moreover It is notice that Maximin LHD A  is better than Audze-Eglais LHD B  

regarding DMax, JMax values measured both L
1
 and L

2
 respectively. In this experimental 

study it may be said that Maximin LHD A obtained by ILS approach with (ɸp,D1) optimal 

criterion is better than Audze-Eglais LHD B with Audze-Eglais optimal criterion in all 

aspects.  

Again, to view the   details characteristics of optimal LHD regarding both the maximin øp 

criterion and Audze-Egligs  criterion, we have considered LHD (k,N) = (6,9). Table 5.8 

displays the optimal  LHD  regarding the maximin øp criterion  obtained by ILS approach 

on the other hand  Table 5.9 presents the optimal LHD  regarding the Audze-Eglais 

criterion  obtained by Enhanced Stochastic Evolutionary algorithm (ESE) [Husslage et al. 

(2011)]. In both the cases we used Euclidian distance measure and the optimal LHDs are 

denoted as maximin LHD C and Audze-Eglais LHD D respectively.  

 

 

 

 

Table 5.7: Comparison of  Maximin LHD A and Audze-Eglais LHD B in various aspects  

regarding ILS and ESE approaches respectively 



 54 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Now we have performed further experiments on both LHDs C and D to find out the pair-

wise distances of the design points in each distance measure namely L
1
 and L

2
. The 

experimental results regarding LHD C are displayed in the Table 5.10 and 5.11. In Table 

5.10 we have distance matrix L measured in Euclidean distance measure whereas in Table 

5.11 we have distance matrix M measured in Manhattan distance measure respectively. 

Similarly performing experiments on LHD D, we have obtained the distance matrices U 

and V given in Table 5.12 and Table 5.13 regarding Euclidean and Manhattan distance 

measure respectively.  

 

 

 

 

 

.  

 

Table 5.9 Optimal Audze-Eglais  

LHD  D 

0 4 2 8 5 2 

1 3 8 4 2 7 

2 1 1 1 1 3 

3 8 5 2 3 0 

4 6 0 3 6 8 

5 2 6 0 8 4 

6 7 7 7 7 5 

7 0 4 6 4 1 

8 5 3 5 0 6 

 

Table 5.8 Optimal  maximin 

LHD  C 

0 8 5 5 4 4 

1 1 2 3 2 0 

2 0 6 7 7 5 

3 2 8 1 1 6 

4 3 0 4 3 8 

5 4 4 0 8 3 

6 5 1 8 6 1 

7 7 3 2 0 2 

8 6 7 6 5 7 

 

Table 5.10 Distance matrix L in  L
2
 measure 

for maximin LHD C 

0 82 84 166 83 83 84 82 83 

82 0 82 84 83 83 166 84 83 

84 82 0 82 83 83 84 166 83 

166 84 82 0 83 83 82 84 83 

83 83 83 83 0 84 83 83 84 

83 83 83 83 84 0 83 83 84 

84 166 84 82 83 83 0 82 83 

82 84 166 84 83 83 82 0 83 

83 83 83 83 84 84 83 83 0 

 

Table 5.11 Distance matrix M in L
1
 

measure for maximin LHD C 

0 18 20 30 17 21 20 18 19 

18 0 18 20 17 19 30 20 21 

20 18 0 18 21 19 20 30 17 

30 20 18 0 19 21 18 20 17 

17 17 21 19 0 20 19 21 20 

21 19 19 21 20 0 17 17 20 

20 30 20 18 19 17 0 18 21 

18 20 30 20 21 17 18 0 19 

19 21 17 17 20 20 21 19 0 

 

Table 5.12 Distance matrix U in L
2
 measure for 

Audze- Eglais LHD D 

 

0 88 80 78 86 122 84 75 116 

88 0 80 92 100 82 80 105 84 

80 80 0 80 84 86 164 73 82 

78 92 80 0 104 86 80 99 92 

86 100 84 104 0 82 80 123 70 

122 82 86 86 82 0 78 73 120 

84 80 164 80 80 78 0 85 78 

75 105 73 99 123 73 85 0 69 

Table 5.13 Distance matrix V in L
1
 

measure for Audze- Eglais LHD D 

 

0 20 18 20 20 24 20 17 22 

20 0 18 20 20 20 20 23 18 

18 18 0 18 20 18 30 19 20 

20 20 18 0 20 20 20 19 22 

20 20 20 20 0 20 18 25 18 

24 20 18 20 20 0 16 19 24 

20 20 30 20 18 16 0 19 18 

17 23 19 19 25 19 19 0 17 
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LHD k N 

In Euclidean measure (L2) In Manhattan measure (L1) 

D1J1 DMax, JMax AE value  D1J1 DMax, JMax AE value  

C 6 9 82 , 6 166 , 3 0.415 17 , 6 30 , 3 1.834 

D 6 9 69 , 1 164 , 1 0.414 16 , 1 30 , 1 1.826 
 

 

Again we have performed experiments on those distance matrices L, M, U and V to find 

out the characteristics of the LHD C and D respectively. The experimental results are 

displayed in the Table 5.14. Again it is notice (in column 4) that Maximin LHD C  is 

much better than Audze-eglais LHD D regarding maximin value D1J1 in Euclidean 

measure (L
2
) where  LHD C  is optimized regarding (ɸp,D1) [Grosso et al. (2009] optimal 

criterion by ILS approach and Audze-eglais LHD B is optimized regarding Audze-eglais 

criterion by ESE approach. Though Maximin LHD C  is optimized regarding L
2
 measure 

but in this experiment we again notice that Maximin LHD C  is better than Audze-eglais 

LHD D regarding D1J1 value according to Manhattan measure (L
1
) too. On the other hand, 

it is notice that Maximin LHD C  and Audze-Eglais LHD D are comparable  regarding 

DMax, JMax values measured both L
1
 and L

2
 respectively. Note that LHD C  is a bit worse 

compare to Audze-Eglais LHD D regarding Audze-Eglais  (A-E) value. 

 

 

Now we will perform another experiment to analysis the Maximin LHD and Audze-Eglais 

LHD according to the ILS [Grosso et al (2009)] and Genetic Algorithm (GA) [Bates et al. 

(2003)] approaches respectively. In this context we consider (k, N) = (3, 10) and the 

optimal LHDs are experimental results are Maximin LHD F and  Audze-Eglais LHD G. 

 

 

 

 

 

 

 

Table 5.14: Comparison of  Maximin LHD C and Audze-eglais LHD D in various aspects  

regarding ILS and ESE approaches respectively 
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Maximin LHD F Audze-eglais LHD G 

1 7 5 
2 2 6 
3 4 1 
4 5 10 
5 9 2 
6 10 7 
7 1 8 
8 3 3 
9 6 9 

10 8 4 
 

1 3 5 
2 7 3 
3 9 8 
4 2 2 
5 5 10 
6 1 7 
7 10 4 
8 6 1 
9 8 9 

10 4 6 
 

 

 

The experimental results are shown in Table 5.15.  It is observe that Maximin LHD F is 

significantly better compare to Audze-Eglais LHD G as well regarding D1J1 and DMax, 

JMax value in Euclidean distance measure. But there is a remarkable observation is that 

Maximin LHD F is better that Audze-Eglais LHD G regarding Audze-Eglais (A-E) value, 

though Audze-eglais LHD G is optimized regarding Audze-Eglais optimal criterion. 

 

 

 

 

 

LHD k N 

In Euclidean measure (L
2
) In Manhattan measure (L

1
) 

D1J1 DMax, JMax A-E value D1J1 
DMax, 

JMax 
A-E value 

Maximin LHD F 3 10 27, 3 104, 3 1.0258 7 , 3 16 , 3 4.3706 

Audze-eglais LHD G 3 10 19, 1 110, 1 1.0401 7 , 2 18 , 1 4.3504 

 

 

From the above experiments, we observe that maximin LHDs obtained by ILS approach 

are always significantly better regarding D1  and  DMax values measured L
2
 distance 

measure. On the other hand according to A-E value maximin LHDs obtained by ILS 

approach are at least comparable with that of Audze-Eglais LHDs obtained by ESE 

algorithm.  Similarly according to D1  and  DMax values measured L
1
 distance measure 

maximin LHD is better or at least comparable with  Audze-Eglais LHDs.  

 

 

 

 

 

Table 5.15: Comparison of  Maximin LHD  and Audze-Eglais LHD  in various aspects 

regarding ILS and GA approaches respectively 
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5.3 Comparison on ILS VS Other Approach Regarding Audze-Eglais distance 

measure  

 

 

 
  

 

 

 

Now we consider several optimal LHDs optimized by different approaches as well as 

different optimal criteria to analyze the Audze-Eglais values. In this experiment we will 

compare maximin LHDs (optimized by (ɸp, D
1
) criterion) obtained by ILS approach 

regarding Audze-Eglais values with Audze-Eglais LHDs (optimized by Audze-Eglais 

criterion) obtained by Permutation Genetic Algorithm (PerGA) and Enhanced Stochastic 

Evolutionary (ESE) algorithm regarding Audze-Eglais values. It is noted that maximin 

LHDs is optimized on the basis of (ɸp,D
1
) criterion not Audze-Eglais criterion. For this 

comparison we will calculate the Audze-Eglais value of each maximin LHDs. 

 

 

At first we consider k = 4 and N =3,…, 50. The experimental results are displayed in the 

Figure 5.1. In the figure R_PerGA indicates the  ratio PerGA/ILS regarding Audze-

Eglais values of the LHDs, R_ESE  indicates the ratio ESE/ILS regarding Audze-

Eglais values of the LHDs. In the Figure 5.1 it is observed that the  ratio ESE/ILS is 

almost equal to unity. On the other hand the ratio PerGA /ILS is always greater than one. 

It is also remark that the ratio PerGA /ILS decrease with the increasing of N. From the 

Figure 5.1 it may conclude that the Audze-Eglais values of maximin LHDs obtained by 

ILS approach are comparable with other Audze-Eglais LHDs obtained by ESE algorithm 

Figure 5.1 Comparison of ILS vs PerGA and ESE approaches regarding Audze-Eglais 

values of LHDs for k=4 and N=3,…, 50 
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in dimension k =4. Moreover the Audze-Eglais values of maximin LHDs obtained by ILS 

approach are better than that of Audze-Eglais LHDs obtained by PerGA approach.  

 

 

Again we have performed further similar experiments for k =4,  k = 6 and k = 8 for all N= 

4, …, 50.  In this experiments we have compared Audze-eglais values of maximin LHDs 

(optimized by (ɸp,D
1
) criterion) obtained by ILS approach regarding with Audze-Eglais 

values of Audze-Eglais LHDs (optimized by Audze-Eglais criterion) obtained by 

Enhanced Stochastic Evolutionary (ESE) algorithm and Audze-Eglais LHDs (optimized 

by Audze-Eglais criterion) obtained in Web [www.spacefillingdesigns.nl (2015)].  The 

experimental results are reported in the Table 5.16.  It is notice that though maximin 

LHDs are optimized regarding (ɸp,D
1
) criterion but till Audze-Eglais values of maximin 

LHDs are comparable with Audze-Eglais LHDs obtained by ESE algorithm mentioned in 

[Husslage et al. (2011] as well as and ESE algorithm mentioned in Web 

[www.spacefillingdesigns.nl (2016)]. It is also  

 

 

 

 

 

N  

    

Audze-eglais values of  optimal LHDs 

(k=4) (k=6) (k=8) 

 ILS ESE AE_Web ILS ESE AE_Web ILS ESE AE_Web 

4 0.454 .454 0.454 0.300 0.300 0.300 0.225 0.225 0.225 
5 0.533 0.509 0.509 0.484 0.336 0.518 0.250 0.250 0.250 
6 0.564 0.561 0.561 0.359 0.358 0.358 0.268 0.268 0.268 
7 0.601 0.599 0.600 0.377 0.376 0.376 0.359 0.282 0.359 
8 0.619 0.619 0.620 0.399 0.398 0.398 0.292 0.292 0.292 
9 0.667 0.660 0.660 0.415 0.414 0.414 0.301 0.301 0.300 
10 0.692 0.686 0.687 0.427 0.425 0.425 0.311 0.311 0.311 
11 0.716 0.709 0.709 0.435 0.434 0.434 0.320 0.319 0.319 
12 0.734 0.724 0.724 0.440 0.441 0.441 0.326 0.326 0.326 
13 0.754 0.746 0.746 0.454 0.453 0.453 0.331 0.331 0.331 
14 0.767 0.762 0.762 0.464 0.462 0.461 0.335 0.335 0.335 
15 0.777 0.755 0.774 0.473 0.470 0.470 0.339 0.339 0.338 
16 0.796 0.791 0.790 0.480 0.477 0.476 0.341 0.341 0.341 
17 0.812 0.805 0.805 0.484 0.483 0.483 0.348 0.347 0.346 
18 0.820 0.816 0.816 0.489 0.488 0.488 0.289 0.350 0.350 
19 0.830 0.827 0.827 0.493 0.492 0.492 0.356 0.354 0.354 
20 0.835 0.835 0.835 0.497 0.496 0.496 0.359 0.358 0.357 
21 0.853 0.847 0.848 0.456 0.501 0.501 0.361 0.361 0.360 
22 0.865 0.856 0.856 0.507 0.505 0.505 0.364 0.363 0.363 
23 0.877 0.868 0.867 0.511 0.510 0.509 0.367 0.366 0.365 
24 0.884 0.875 0.875 0.514 0.513 0.513 0.368 0.368 0.368 
25 0.890 0.884 0.884 0.517 0.516 0.516 0.370 0.370 0.370 

Table 5.16 Comparison of maximin LHDs vs Audze-Eglais LHDs  in Euclidean measure 

regarding Audze-Eglais values  
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26 0.898 0.891 0.890 0.519 0.518 0.518 0.372 0.372 0.371 
27 0.903 0.898 0.896 0.521 0.521 0.520 0.374 0.373 0.373 
28 0.909 0.906 0.906 0.525 0.524 0.524 0.375 0.375 0.375 
29 0.918 0.912 0.912 0.529 0.527 0.527 0.377 0.376 0.376 
30 0.927 0.919 0.919 0.532 0.530 0.530 0.378 0.378 0.378 
31 0.934 0.925 0.925 0.534 0.533 0.532 0.380 0.380 0.379 
32 0.935 o.931 0.930 0.537 0.535 0.535 0.382 0.381 0.381 
33 0.943 0.935 0.935 0.539 0.537 0.537 0.383 0.383 0.382 
34 0.948 0.941 0.941 0.541 0.540 0.539 0.384 0.384 0.384 
35 0.952 0.946 0.946 0.544 0.542 0.541 0.385 0.385 0.385 
36 0.960 .950 0.950 0.544 0.543 0.543 0.386 0.386 0.386 
37 0.980 0.956 0.956 0.547 0.545 0.545 0.387 0.387 0.387 
38 0.970 0.959 0.959 0.548 0.547 0.547 0.388 0.388 0.388 
39 0.987 0.965 0.965 0.549 0.548 0.549 0.389 0.389 0.389 
40 0.978 0.968 0.968 0.550 0.550 0.549 0.390 0.390 0.390 
41 0.993 0.971 0.971 0.551 0.551 0.551 0.391 0.391 0.390 
42 0.990 0.975 0.974 0.552 0.552 0.552 0.392 0.392 0.391 
43 1.002 0.979 0.978 0.555 0.554 0.554 0.393 0.393 0.392 
44 1.007 0.983 0.982 0.556 0.555 0.555 0.394 0.394 0.393 
45 1.010 0.986 0.986 0.559 0.557 0.557 0.395 0.394 0.394 
46 1.015 0.990 0.990 0.560 0.559 0.558 0.396 0.395 0.395 
47 1.015 0.993 0.993 0.561 0.560 0.560 0.397 0.396 0.396 
48 1.010 0.997 0.997 0.563 0.561 0.561 0.397 0.397 0.397 
49 1.022 1.001 1.001 0.565 0.563 0.563 0.398 0.398 0.397 
50 1.025 1.004 1.003 0.566 0.564 0.564 0.399 0.398 0.398 

 

worthwhile to mention here that the Audze-Eglais values of maximin LHDs are become 

better (more closed to Audze-Eglais LHDs’s values) with the increasing of the dimension 

k. To view it clearly the difference between maximin LHDs and Audze-Eglais LHDs 

regarding Audze-Eglais values are reported in the Table 5.17. Note that negative value 

implies maximin LHDs is better  than Audze-Eglais LHDs regarding Audze-Eglais 

values.  

 

 

 

 

N k = 4 k = 6 k = 8 N k = 4 k = 6 k = 8 

 4 0.000   28 0.003 0.001 0.000 

5 0.024 -

0.034 

 29 0.006 0.002 0.000 

6 0.003 0.001  30 0.008 0.002 0.000 

7 0.002 0.001 -0.001 31 0.009 0.002 0.000 

8 0.000 0.001 0.000 32 0.004 0.002 0.001 

9 0.007 0.002 0.000 33 0.008 0.002 0.001 

10 0.006 0.001 0.001 34 0.007 0.001 0.000 

11 0.008 0.000 0.001 35 0.007 0.002 0.001 

12 0.009 0.000 0.001 36 0.010 0.001 0.000 

13 0.008 0.001 0.001 37 0.024 0.002 0.000 

14 0.006 0.002 0.000 38 0.011 0.001 0.000 

15 0.002 0.004 0.000 39 0.022 0.001 0.000 

16 0.005 0.004 0.000 40 0.010 0.001 0.000 

Table 5.17 difference between maximin LHDs and  Audze-Eglais LHDs regarding Audze-

Eglais values 
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17 0.007 0.002 0.001 41 0.022 0.000 0.000 

18 0.004 0.002 -0.062 42 0.016 0.000 0.000 

19 0.003 0.001 0.002 43 0.024 0.001 0.001 

20 0.001 0.002 0.001 44 0.024 0.001 0.001 

21 0.006 -

0.045 

0.001 45 0.024 0.002 0.001 

22 0.009 0.001 0.001 46 0.025 0.002 0.001 

23 0.009 0.001 0.001 47 0.022 0.002 0.001 

24 0.009 0.002 0.001 48 0.013 0.002 0.001 

25 0.007 0.001 0.001 49 0.021 0.002 0.001 

26 0.007 0.001 0.001 50 0.021 0.001 0.001 

27 0.005 0.000 0.001     

 

 

 

 

5.4 Comparison among several Optimal LHDs in different aspect   

 

In order to perform experiments on several Optimal LHDs obtained by different 

approaches, we consider  optimal LHDs with (k, N) = (4, 9). In this experiment we 

consider five optimal LHDs namely  MLH-SA, OMLH-MSA, OLH-Y, MLH-ESE, MLH-

ILS.  Here MLH-SA denotes Maximin LHD obtained by simulated annealing (SA) 

[Husslage et al. (2006)], OMLH-MSA means orthogonal maximin LHD obtained by 

Modified Simulated Annealing (MSA) [Husslage et al. (2006)], in which multi-objective 

(Φp , ρ
2
) criteria is considered, OLH-Y indicates Orthogonal LHD mentioned in [Ye 

(1998)], MLH-ESE denotes Maximin LHD obtained by ESE algorithm mentioned in 

[Husslage et al. (2011], MLH-ILS indicated Maximin LHD obtained by ILS approach  

mentioned in [Grosso et al. (2009)]. It will worthwhile to mention here that we will 

compare MLH-ILS optimal design with other designs considered here in various aspects. 

The experimental results are reputed in the Table 5. 18. 

 

 

In the Table 5.19 1
st
 row the name of the optimal LHDs, row 2

nd
 indicated the objective 

function of the algorithms considered, 3
rd

  row displays the optimal designs and 4
th

 row 

indicated the type of distance measure considered to calculate the pair-wise distance of 

each pair of design points. The characteristic of each LHD considered is indicated in first 

column below the head line – “PROPERTIES”.  The meaning of the notation of each 

property concise is displayed in the Table 5.18.  
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Symbols  Meaning  Symbols  Meaning  

ρ           Average correlation D1(J1)
(L1)

 D1(J1) value in L
1
 

 ρmax Maximum correlation D1(J1)
(L2)

 D1(J1) value in L
2
 

D1 Minimum pair-wise distance in a 

LHD 

Φp
(L1)         

 Φp value in L
1
 

(J1) Number of time D1 occur in a LHD Φp
(L2)        

 Φp value in L
2
 

 (L1)
 Manhattan distance measure (L

1
) A-E

( (L1)
 A-E  value in in L

1
 

(L2) 
Euclidean distance measure (L

2
) A-E

(L2)
 A-E  value in in L

2
 

Φp Φp optimal criterion ɷ1 and  ɷ2 (Weight average) constant  

A-E Audze-Eglais optimal criterion   

 

 

It is observed in the Table 5.19 that each optimal LHD is best according to the 

corresponding optimal criteria. Anyway it is observe that the ρ  of MLH-SA and MLH- 

ILS are comparable in which both LHDs are optimized by same Φp criterion. Though ρ 

value MLH- ILS is worse compare to other LHDs but the multi-co-linearity of the LHD is 

negligible as ρ = 0. 5 .  

It is also observed in the Table 5.19 that though   MLH-SA is best  in D1(J1)
(1)

 value (as it 

is optimized regarding L
1
 measure) but the D1(J1)

(1)
 value of  MLH- ILS is comparable  

with  that of MLH-SA and almost identical with other LHDs.  Moreover the Φp
(L1) 

 value 

of   MLH- ILS  is almost identical with    that of MLH-SA and  relatively better than other 

optimal LHDs. Again it is notice that A-E
( (L1) 

 and A-E
( (L2) 

 values of  MLH- ILS are also 

comparable  with the best one that is with the A-E
( (L1) 

 and A-E
( (L2) 

 values of  MLH-ESE 

which is optimized by A-E
( (L2)

 optimal criterion. We observe that the Φp
(L2) 

  value of  

MLH- ILS is better than that of other   optimal LHDs as  MLH- ILS is optimized by 

Φp
(L2)  

optimal criteria along with tracking D1 value.  Now it is remarkable that the D1(J1)
 

(L2)
  value of MLH- ILS is significantly  better and ultimately the best among the other 

optimal LHDs according to D1(J1)
 (L2)

  value. It may conclude that tracking D1 along with 

Φp
(L2)  

optimal criteria ILS approach outperform compare to other approaches. Moreover 

MLH- ILS is good enough according to other experimental properties.  

 

 

 

 

 

Table 5.18 Meaning of the symbols 
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Method  MLH-SA OMLH – 

SA_M 

OLH- Y MLH-ESE MLH- ILS 

Optimal Criteria   Φp ɷ1 Φp + ɷ2 

ρ
2
 

ρ = 0 A-E Φp, D1 

Distance measure 

 

L
1
 L

1
 L

1
 L

2
 L

2
 

Optimal LHD  

Design Matrix   
1 3 3 4 

2 5 8 8 

3 8 6 2 

4 7 1 6 

5 2 9 3 

6 9 5 9 

7 1 4 7 

8 4 2 1 

9 6 7 5 
 

1 5 3 3 

2 2 5 8 

3 9 7 5 

4 3 8 1 

5 7 1 7 

6 6 9 9 

7 1 2 4 

8 8 4 2 

9 4 6 6 
 

1 2 6 3 

2 9 7 6 

3 4 2 9 

4 7 1 2 

5 5 5 5 

6 3 9 8 

7 6 8 1 

8 1 3 4 

9 8 4 7 
 

1 5 8 5 

2 1 4 6 

3 6 1 3 

4 8 5 9 

5 9 7 2 

6 2 6 1 

7 3 2 8 

8 4 9 7 

9 7 3 4 
 

1 5 8 4 

2 7 4 9 

3 2 1 6 

4 8 3 3 

5 1 5 1 

6 3 7 8 

7 6 9 2 

8 9 6 7 

9 4 2 5 
 

PROPERTIES      

↓ 

     

ρ      0.108 0.063 0.000 0.083333 0.151 

                ρmax 0.217 0.117 0.000 0.052264 0.233 

D1(J1)
(L1)
 11(3) 11(4) 10(8) 10 ( 4) 10(4) 

Φp
(L1)         

 0.105 0.105 0.115 0.116 0.108 

D1(J1)
 (L2)
 33(2) 31(1) 30(8) 34 (1) 42(6) 

         Φp
(L2)        

 0.031 0.033 0.037 0.036 0.026 

A-E
( (L2)

 0.668 0.669 0.7 0.660 0.667 

A-E
(L1)
 2.772 2.764 2.8102 2.785 2.791 

 

 

5.5 Comparison between Maxmin LHD and  Audze-Eglais LHD regarding 

Manhattan distance measure. 

 

Now we will perform experiments extensively on Maxmin LHD and  Audze-Eglais LHD 

regarding Manhattan distance measure. For this experiments we again consider all optimal 

LHDs with N = 5, …, 50 for k = 4; N = 5, …, 50 for k = 6 and N = 7, …, 50 for k = 8 for 

maximin LHDs  optimized by ILS approach in Euclidean distance measure and Audze-

Eglais LHDs available in web [www.spacefillings.nl] optimized by ESE approach. Note 

that both kind of LHDs are optimized in which Euclidean distance measure were 

considered. In this experimental study, we calculate D1 values as well as A-E values  in 

Table 5.19: Comparison of MLH-SA,  OMLH – MSA,  OLH- Y, MLH-ESE and  MLH-ILS 

for (N,k)=(9, 4) 



 63 

Manhattan distance measure of those optimal  (maximin LHDs  as well as Audze-Eglais 

LHDs) LHDs. The experimental results regarding D1 values as well as A-E values  are 

reported in Table 5.20 and Table 5.21 respectively.  

 

 

 
N  

   N 

k=4 k=6 k=8 

L
1
 (Manhattan ) Maxmin LHD A-E LHD Maxmin LHD A-E LHD Maxmin 

LHD 
A-E LHD 

5 7 , 4 7 , 2 9 , 1 6 , 1   
6 8 , 2 8 , 4 14 , 15 14 , 15   
7 8 , 2 9 , 6 14 , 2 15 , 8 14 , 1 14 , 1 
8 10 , 8 10 , 8 16 , 3 14 , 1 22 , 4 21 , 1 
9 10 , 4 10 , 4 17 , 6 16 , 1 23 , 1 23 , 1 
10 12 , 16 11 , 5 17 , 1 19 , 4 24 , 1 25 , 3 
11 11 , 3 10 , 1 19 , 2 20 , 3 27 , 1 26 , 1 
12 13 , 9 12 , 2 23 , 12 21 , 2 28 , 2 27 , 1 
13 12 , 3 12 , 1 21 , 1 22 , 1 30 , 1 31 , 3 
14 14 , 4 13 , 1 24 , 4 21 , 1 30 , 1 31 , 2 
15 14 , 3 14 , 4 22 , 1 23 , 1 35 , 1 36 , 3 
16 14 , 1 14 , 4 24 , 1 20 , 1 39 , 4 38 , 2 
17 14 , 2 15 , 3 26 , 2 24 , 1 38 , 1 35 , 1 
18 16 , 2 16 , 2 27 , 5 26 , 1 41 , 3 38 , 1 
19 16 , 2 17 , 4 26 , 1 24 , 1 40 , 1 42 , 5 
20 18 , 4 18 , 2 29 , 1 24 , 1 39 , 1 43 , 1 
21 20 , 10 17 , 1 29 , 3 29 , 2 42 , 2 43 , 1 
22 17 , 1 17 , 4 31 , 2 30 , 1 44 , 1 45 , 1 
23 18 , 5 16 , 1 32 , 1 29 , 1 49 , 3 46 , 1 
24 19 , 2 20 , 8 33 , 1 31 , 1 49 , 2 48 , 1 
25 19 , 4 17 , 1 34 , 1 33 , 1 50 , 1 48 , 1 
26 19 , 2 19 , 2 35 , 1 35 , 2 52 , 1 49 , 1 
27 20 , 3 18 , 1 34 , 1 35 , 1 51 , 2 49 , 1 
28 20 , 1 19 , 1 36 , 1 33 , 1 54 , 1 53 , 2 
29 19 , 1 19 , 1 37 , 1 34 , 1 58 , 1 55 , 1 
30 20 , 1 20 , 1 40 , 3 34 , 1 57 , 1 58 , 1 
31 21 , 2 22 , 2 37 , 1 36 , 1 58 , 1 54 , 1 
32 21 , 1 21 , 2 35 , 1 38 , 2 58 , 1 58 , 1 
33 22 , 1 22 , 2 42 , 2 38 , 1 61 , 1 58 , 1 
34 22 , 1 25 , 5 44 , 2 39 , 1 56 , 1 59 , 1 
35 23 , 1 22 , 1 46 , 3 45 , 1 57 , 1 64 , 1 
36 22 , 2 23 , 1 45 , 2 44 , 1 64 , 1 66 , 1 
37 20 , 2 24 , 2 45 , 1 44 , 2 63 , 1 61 , 1 
38 25 , 2 25 , 1 49 , 1 45 , 1 65 , 1 66 , 1 
39 22 , 1 23 , 1 47 , 2 50 , 1 68 , 1 70 , 1 
40 25 , 1 22 , 1 48 , 1 49 , 1 75 , 3 68 , 1 
41 25 , 2 27 , 1 54 , 2 51 , 1 75 , 1 76 , 1 
42 25 , 1 25 , 1 56 , 5 55 , 2 76 , 1 75 , 1 
43 24 , 2 28 , 4 46 , 1 46 , 1 73 , 1 77 , 1 
44 25 , 1 26 , 1 49 , 2 43 , 1 73 , 1 70 , 1 
45 26 , 2 27 , 4 48 , 1 45 , 1 69 , 1 77 , 1 
46 26 , 1 28 , 3 50 , 1 46 , 1 72 , 1 73 , 1 
47 25 , 1 25 , 1 50 , 2 52 , 2 84 , 1 83 , 1 
48 27 , 1 28 , 1 49 , 1 52 , 1 77 , 1 81 , 1 
49 29 , 1 28 , 1 55 , 1 49 , 1 84 , 1 82 , 2 
50 29 , 1 28 , 1 53,1 52 , 1 80 , 1 81 , 1 
No of  better 

LHDs 

19 17 31 12 22 17 

 

Table 5.20: Comparison between Maxmin LHD and  Audze-Eglais LHD regarding D1J1 

value in Manhattan (L
1
) distance measure 
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N  

 

k=4 k=6 k=8 

L
1
 (Manhattan 

) 
Maxmin LHD A-E 

LHD 
Maxmin LHD A-E LHD Maxmin 

LHD 
A-E LHD 

5 1.26865 1.25794 1.26772 1.30526     
6 1.62222 1.63182 1.07143 1.07143     
7 2.02217 2.01423 1.31967 1.31724 1.29588 1.30108 
8 2.38333 2.38333 1.5625 1.57467 1.1706 1.17106 
9 2.79127 2.78487 1.83778 1.82617 1.35495 1.3536 
10 3.17341 3.17835 2.08095 2.06892 1.54774 1.54526 
11 3.59234 3.59575 2.33314 2.32879 1.73758 1.74051 
12 3.97428 3.9822 2.57439 2.57795 1.92952 1.92504 
13 4.4114 4.3767 2.84969 2.83796 2.1164 2.11534 
14 4.7803 4.76221 3.10912 3.10882 2.31095 2.30598 
15 5.18558 5.18086 3.37413 3.36393 2.493 2.49409 
16 5.58613 5.5992 3.63879 3.62587 2.67851 2.67971 
17 6.03849 6.01619 3.8945 3.88882 2.8789 2.88279 
18 6.40529 6.39889 4.16132 4.15049 2.79732 3.07163 
19 6.82229 6.81297 4.42651 4.42582 3.27474 3.26809 
20 7.20005 7.20137 4.6727 4.69583 3.4743 3.45912 
21 7.62586 7.63534 4.49122 4.94098 3.66628 3.65129 
22 8.0877 8.07256 5.22094 5.20809 3.85696 3.84847 
23 8.52793 8.48166 5.47487 5.48996 4.05547 4.0516 
24 8.92831 8.90783 5.73882 5.74939 4.24429 4.23957 
25 9.36588 9.33333 5.99717 6.00637 4.44097 4.43573 
26 9.78678 9.73911 6.26768 6.26077 4.63988 4.6293 
27 10.2176 10.1705 6.51708 6.50478 4.83505 4.83303 
28 10.5954 10.5685 6.79843 6.79677 5.02729 5.0277 
29 11.0493 11.0062 7.06333 7.05678 5.21657 5.22773 
30 11.4711 11.4149 7.33794 7.31486 5.4122 5.41098 
31 11.9101 11.8487 7.60426 7.59101 5.61431 5.61504 
32 12.3103 12.275 7.85979 7.86038 5.81396 5.80731 
33 12.7262 12.6664 8.1274 8.13117 6.0043 6.00694 
34 13.1139 13.0766 8.3954 8.38632 6.20803 6.19874 
35 13.5561 13.5234 8.66729 8.66107 6.39657 6.39749 
36 14 13.9461 8.93063 8.91809 6.59186 6.58731 
37 14.5121 14.3777 9.213 9.19794 6.79099 6.79224 
38 14.8598 14.8088 9.47071 9.45458 6.9779 6.98622 
39 15.3224 15.2284 9.73111 9.71368 7.16866 7.17499 
40 15.7008 15.6768 9.99521 9.99117 7.36554 7.37179 
41 16.1839 16.0198 10.2447 10.2592 7.56359 7.56043 
42 16.569 16.4718 10.5069 10.5073 7.7626 7.76136 
43 17.0255 16.9111 10.7884 10.7923 7.96064 7.95536 
44 17.448 17.3551 11.0672 11.0619 8.162 8.15639 
45 17.8731 17.7323 11.3405 11.3206 8.3582 8.3477 
46 18.3038 18.1696 11.6017 11.6082 8.55317 8.54496 
47 18.7424 18.6594 11.8855 11.8693 8.74668 8.7433 
48 19.1525 19.0551 12.163 12.1365 8.95038 8.93634 
49 19.6131 19.4654 12.4359 12.4168 9.15127 9.13384 

50 19.9985 19.8942 12.6981 12.685 9.34633 9.33574 

 

 

It is observed in Table 5.20 and Table 5.21 that both maximin LHDs  as well as Audze-

Eglais LHDs are comparable regarding Manhattan distance measure. Especially maximin 

LHDs  are a bit better compare to Audze-Eglais LHDs regarding D1 values in Manhattan 

distance measure.  

Table 5.21: Comparison between Maxmin LHD and  Audze-Eglais LHD regarding A-E 

value in Manhattan (L
1
) distance measure 
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CHAPTER VI 

 

 

DISCUSSION AND CONCLUSION 

 

 

 

The optimal DoE are extremely useful in the area of computer simulation. One important 

area where computer simulation is used a lot is engineering. Engineers are confronted 

with the task of designing products and processes. Since physical experimentation is 

often expensive and difficult, computer models are frequently used for simulating 

physical characteristics. The engineer often needs to optimize the product or process 

design, i.e. to find the best settings for a number of design parameters that influence the 

critical quality characteristics of the product or process. A computer simulation run is 

usually time-consuming and there is a great variety of possible input combinations. For 

these reasons, meta-models that model the quality characteristics as explicit functions of 

the design parameters are constructed. Such a meta-model, also called a (global) 

approximation model or surrogate model, is obtained by simulating a number of design 

points. Well-known meta-model types are polynomials and Kriging models. Since a 

meta-model evaluation is much faster than a simulation run, in practice such a meta-

model is used, instead of the simulation model, to gain insight into the characteristics of 

the product or process and to optimize it. A review of meta-modeling applications in 

structural optimization can be found in Barthelemy and Haftka (1993), and in 

multidisciplinary design optimization in Sobieszczanski-Sobieski and Haftka (1997). As 

observed by many researchers, there is an important distinction between designs for 

computer experiments and designs for the more traditional response surface methods. 

Physical experiments exhibit random errors and computer experiments are often 

deterministic (cf. Simpson et al. (2004)). This distinction is crucial and much research is 

therefore aimed at obtaining efficient designs for computer experiments. As is recognized 

by several authors, such a design for computer experiments should at least satisfy the 

following two criteria  [Johnson et al. (1990) and Morris and Mitchell (1995)]. First of 

all, the design should be space-filling in some sense. When no details on the functional 

behavior of the response parameters are available, it is important to be able to obtain 

information from the entire design space. Therefore, design points should be evenly 

spread" over the entire region. One of the measures often used to obtain space-filling 
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designs is the maximin measure. The Audze-Eglais measure is another measure used for 

this purpose. Secondly, the design should be non-collapsing. When one of the design 

parameters has (almost) no influence on the function value, two design points that differ 

only in this parameter will collapse", i.e. they can be considered as the same point that is 

evaluated twice. For deterministic simulation models this is not a desirable situation. 

Therefore, two design points should not share any coordinate values when it is not known 

a priori which dimensions are important. Note that in other fields of research such designs 

are referred to as low discrepancy designs. To obtain non-collapsing designs the Latin 

hypercube structure is often enforced. It can be shown that if the function of interest is 

independent of one or more of the k parameters then, after removal of the irrelevant 

parameters, the projection of the LHD onto the reduced design space retains good spatial 

properties; [Koehler and Owen (1996)]. Audze-Eglais LHDs are also constructed by only 

a few authors. In Bates et al. (2004), the problem of finding Audze-Eglais LHDs is 

formulated and a permutation genetic algorithm is used to generate them. Liefvendahl 

and Stocki (2006) compare maximin and Audze-Eglais LHDs and recommend the 

Audze-Eglais criterion over the maximin criterion. Examples of practical applications of 

Audze-Eglais LHDs can be found in Rikards et al. (2001), Bulik et al. (2004), Stocki 

(2005), and Hino et al. (2006). There are several other measures proposed in the literature 

besides maximin and Audze Eglais, e.g. maximum entropy, minimax, IMSE, and 

discrepancy. For a good overview, we refer to Koehler and Owen (1996). Several type of 

optimal DoE are available in the frequently updated web portal 

www.spacefillingdesigns.nl. 

 

ILS outperforms regarding maximin LHDs compare to several well known approaches 

existing in the literature. In chapter IV Maximin LHDs obtained by ILS approach are 

compared with maximin LHDs obtained by other well-known approaches. Most of those 

approaches considered ɸp optimal criterion with L
2
 distance measure.  The optimal 

criterion of ILS approach is also  ɸp but the algorithm tackle the better D1 value during 

the search. In consequence ILS outperforms regarding maximin LHDs compare to several 

well known approaches existing in the literature. From the comparison study, given in 

Chapter IV, it may be concluded that ILS approach is a state-of-the-arts approach for 

finding maximin LHDs measured in L2 with Opt (ɸp, D1) criterion. 

 

http://www.spacefillingdesigns.nl/
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Though ILS approach may be a state of the arts regarding D1 (maximized minimum pair-

wise inter site distance), we could not conclude the MLH_ILS be best regarding space-

filling property. There exist some other objective functions which are also used for 

optimized LHD for satisfying space-filling property. Some well-known such objective 

functions are briefly presented in Chapter II. Among them correlation criterion is used to 

make the DoE’s parameters uncorrelated and Audze-Eglais optimal criterion is used for 

providing good space-filling DoE. Moreover in the literature it is shown that distance 

measures are also crucial for measurement good   space-filling property of the DoEs. In 

this perspective extensive experiments have been performed in Chapter V.  Firstly several 

experiments have been carried out to compare the maximin LHDs obtained by ILS 

approach and Audze-Eglais LHD obtained by ESE approach regarding both D1 values as 

well as Audze-Eglais values. From the experimental study it is observed that maximin 

LHDs are significantly better compared to Audze-Eglais LHD regarding D1 values 

(minimum inter-site distance value) where inter-site distance are measured in Euclidean 

distance measure. But it should be imposed attention that the Audze-Eglais values of 

maximin LHDs are comparable with that of Audze-Eglais LHD (1977).  

 

Regarding correlation criterion and some other criteria we have performed another 

experiment in the Chapter V.  For this experiment we have considered several optimal 

LHDS with (N,k)=(9, 4).  We again observe in this experiment that maximin LHD 

obtained by ILS approach is significantly better than all other optimal LHDs regarding D1 

value. Though according to the ρ (correlation coefficient) value maximin LHD obtained 

by ILS approach is worse compare to OMLH – SA_M and OLH- Y in which DoE are 

optimized by ρ
2
 optimal criterion, the value of ρ in maximin LHD are enough small.  

 

From these experimental studies It may be conclude that  maximin LHDs obtained  by 

ILS approach is state-of the-arts regarding D1 values are comparable with other Audze-

Eglais values. 
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