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Abstract 
 
 

There are some smart methods, available in the literature, which are able to find out all Eigen 

values. But those methods could not find corresponding Eigen vectors simultaneously.  Power 

method and Inverse Power method are able to find out both Eigen-pairs simultaneously.  

Power method frequently used for finding only largest Eigen value and corresponding Eigen 

vector. On the other hand Inverse Power method is applied to find out only smallest Eigen 

value (or desire Eigen value) and corresponding Eigen vector. But Inverse Power method is 

computationally costly and some time it is unstable for the presence of inverse of the matrix. 

It is theoretically observed that if all Eigen values are either positive or negative, then without 

implement of Inverse Power method the modified (using shifting property) Power method is 

also able to find out smallest Eigen-pair. Here we have proposed Modified Hybrid Iterative 

Algorithm based on both Power method and Inverse Power method respectively to find out 

both largest and smallest Eigen-pairs simultaneously. Moreover several lemma regarding the 

proposed algorithm have been proposed. The proof of each lemma has also been given along 

with some suitable illustration. Several experiments have been performed to investigate the 

robustness and effectiveness of the algorithm as well as the lemma. The proposed algorithm is 

able to find out both (largest and smallest) Eigen-pairs successfully as well as efficiently.  
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CHAPTER 1 

 
 

Introduction 
 
 

1.1 Field of Applications 

 

Eigen values and vectors of a system are extremely important in physics and engineering 

where it is equivalent to matrix diagonalization. The theory and computation of Eigen value 

problems are among the most successful and widely used tools of applied mathematics and 

scientific computing and the ability to approximate these quantities numerically is important 

in a wide variety of applications. Matrix Eigen value problems arise naturally from a wide 

variety of scientific and engineering applications such common applications including 

structural dynamics, quantum chemistry, quantum mechanics, electrical networks, control 

theory and design, material science, the vibrations of membranes, in the separation of 

variables for the problems of heat conduction or acoustics or in the hydrodynamic stability 

analysis. Acoustics, earthquake engineering, Markov chains, pattern recognition, graph 

theory, stability analysis, the dynamics of elastic bodies, the physics of rotating bodies, small 

oscillations of vibrating systems, system identification, seismic tomography, principal 

component analysis, exploration and remote sensing, antenna array processing, geophysics, 

molecular spectroscopy, particle physics, structure analysis, circuit theory, Hopfield neural 

networks, mechanical system simulation and many other areas. For a partial list of these 

applications, see [Saad (1992), Trefethen and Embree (2005), Xue (2009), Chu and  Golub 

(2002), Joseph (1992), Hald (1972), Parker and Whaler (1991), Li (1997), Elhay and Ram 

(2002), Andrew (194), Ying and Li (2012),  Koledin and Stani (2013) , bioinformatics (Kato 

and Nagano (2010)),  Vert et al. (2007),  image recognition Chopra et al. (2005), Guillaumin 

et al. (2009) and Hoi et al. (2006)]. 

 

An inverse Eigen value problem is to determine a structured matrix from a given spectral 

data. Inverse Eigen value problems arise in many applications, including control design, 

system identification, seismic tomography, principal component  analysis, exploration and 

mhtml:file://C:%5CUsers%5CSah%20Alam%5CDesktop%5Csah___28_12_14%5CEigenvalue.mht!http://mathworld.wolfram.com/MatrixDiagonalization.html
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remote sensing, antenna array processing, geophysics, molecular spectroscopy, particle 

physics, structure analysis, circuit theory, Hop-field neural networks, mechanical system 

simulation and so on [Jian (2004), Chu and Golub (2002)]. 

 

Nonlinear Eigen value problems arise in a multitude of diverse applications from science and 

technology, such as acoustic field simulations [Mehrmann and Schroder (2011)], 

computational quantum chemistry [Voss (2006)], structural dynamics [Singh and Ram 

(2002)], electromagnetic modeling of particle accelerators [Liao (2010)], vibrations of fluid-

solid structures [Voss (2003) and Unge (2013)] or stability analysis of time-delay systems 

[Michiels and S.-I.Niculescu (2007) , Jarlebring (2008)]. For a more comprehensive overview 

of sources for nonlinear Eigen value problems, see [Mehrmann and Voss (2004)]. 

 

The spectral properties of a physical system govern its dynamical performance. Hence the 

computation of Eigen values enables the basic understanding of the underlying physical 

system. Stochastic matrices, which are a type of special nonnegative matrices are with each 

row sum to 1. Nonnegative stochastic matrices are widely used in game theory, Markov 

chains and theory of probability, probabilistic algorithms, discrete distributions, categorical 

data, group theory, matrix scaling and economics. 

 

It is important to note that various areas of science and engineering seek multiple pairs for 

reasons other than algorithmic gains. In quantum mechanics Eigen values are possible 

measurement results of an observable represented by an operator. In nuclear engineering, a 

dominance ratio distinct from unity is an acceptance qualifier for various nuclear criticality 

safety assessments and nuclear reactor designs [Spanier and Carlo (1969)]. In statistical 

physics, a dominance  ratio nearing unity, on the other hand,  is often a condition sought. Near 

a continuous phase transition, λ2→λ1 and λ2/λ1 controls the microscopic spatial correlations 

among physical degrees of freedom 2 [Thompson (1972)]. Today, an important topic in 

quantum statistical mechanics is quantum critical phenomena, phase transitions driven by 

zero-point motion at zero temperature [Sachdev (1999)].  Here, it is the two smallest Eigen 

values of the Hamiltonian matrix describing the physical system that are of interest. The 
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quantum critical phenomenon construct, while supplemented by a few exact solutions to some 

very simple problems, is largely phenomenological in part because of the inability to compute 

λ2 for models of direct physical relevance. 

Eigen values were used by Claude Shannon to determine the theoretical limit to how much 

information can be transmitted through a communication  medium like your telephone line or 

through the air. This is done by calculating the Eigen vectors and Eigen values of the 

communication channel (expressed a matrix). The Eigen values are then, in essence, the gains 

of the fundamental modes of the channel, which themselves are captured by the vectors.  

Eigen vectors are fundamental to principal components analysis which is commonly used for 

dimensionality reduction in face recognition and other machine learning applications. Eigen 

vectors can also be used for latent semantic analysis, a NLP technique for extracting topics 

and concepts from text documents. 

 

In control theory, the Eigen values of the system matrix of a linear system tell you 

information about the stability and response of your system. For a continuous system, the 

system is stable if all Eigen values have negative real part (located in the left half complex 

plane). For a discrete system, the system is stable if all Eigen values have magnitude less than 

1 (inside the unit circle in the complex plane). 

 

The Eigen values and vectors of a matrix are often used in the analysis of financial data and 

are integral in extracting useful information from the raw data. They can be used for 

predicting stock prices and analyzing correlations between various stocks, corresponding to 

different companies. They can be used for analyzing risks. There is a branch of Mathematics, 

known as Random Matrix Theory, which deals with properties of Eigen values and Eigen 

vectors, that has extensive applications in Finance, Risk Management, Meteorological studies, 

Nuclear Physics, etc. 

 

In statistics, the Eigen vectors of your data set matrix correspond to directions of maximum 

variance, ordered in decreasing marginal increase in variance by decreasing corresponding 
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Eigen values. This is the main idea behind principal component analysis (PCA), a 

dimensionality reduction trick often used in machine learning and AI (artificial intelligence). 

 

The Eigen values are used to determine the natural frequencies (or frequencies) of vibration, 

and the Eigen vectors determine the shapes of these vibration modes. Most structures from 

buildings to bridges have a natural frequency of vibration. It means all these structures have 

their own system of vibrations and frequencies. Now external forces like wind and earthquake 

may cause these structures to undergo vibrations. In case the frequency of these vibrations 

becomes equal to the natural frequencies of these structures, vibrations with large amplitudes 

are set up. It is a phenomenon called Resonance. This can lead to the collapse of the structure 

by a process called aero elastic flutter. One very famous example of the collapse of a structure 

due to these phenomena is the Tacoma Narrows Bridge (1940) in which the wind provided an 

external periodic frequency that matched the bridge's natural structural frequency. So 

vibration analysis of these structures is done at the time of their design using Eigen values and 

Eigen vectors. 

 

The Eigen values can also be used to determine if a structure has deformed under the 

application of a particular force. Eigen values for the structure are measured before and after 

the application of force. If a change in the Eigen values is observed, it means the structure has 

undergone deformation. This is just one of the fields that make practical use of the Eigen 

values of a matrix.  

 

A recent application is the search engine Google (2005), which uses the vector corresponding 

to the Eigen value one for an extremely large sparse stochastic matrix. Google uses the vector 

corresponding to the maximal Eigen value of the Google matrix to determine the rank of a 

page for search. 

The increasing number of applications and the ever-growing scale of the problems have 

motivated fundamental progress in the numerical solution of Eigen value problems in the past 

few decades. New insights and extensions of existing computational methods usually go hand 

in hand with the development of new algorithms and software packages. 

http://en.wikipedia.org/wiki/Resonance
http://en.wikipedia.org/wiki/Aeroelasticity#Flutter
http://en.wikipedia.org/wiki/Tacoma_Narrows_Bridge_(1940)
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1.2  Eigen Value Problems 

 

Eigen values are a special set of scalars associated with a linear system of equations (i.e., a 

matrix equation) that are sometimes also known as characteristic roots, characteristic Eigen 

values,  proper Eigen values, or latent roots [Hoffman and Kunze (1971),  Marcus  and Minc 

(1997)]. The determination of the each Eigen value is paired with a corresponding 

Eigenvector. The Eigen value and corresponding Eigen vector are denoted as Eigen pair. The 

decomposition of a square matrix A into  Eigen values and vectors is known in this work as  

decomposition, and the fact that this decomposition is always possible as long as the matrix 

consisting of the vectors of A is square is known as the  decomposition theorem. 

Before define Eigen value and Eigen vector we would like to define linear transformation. 

According to the Linear algebra, let T is a linear operator on a vector space V over a field F 

and if there exist  Eigen vector v,w ϵ V  such that 

          T(v) = w   

Then this equation form a linear transformation where w maps to v by the    linear operator T. 

In many contexts, a vector can be assumed to be a list of real numbers (called coordinates), 

written vertically with brackets around the entire list, such as the vectors  𝐯𝐯 = [𝑣𝑣1, 𝑣𝑣2,⋯ , 𝑣𝑣𝑛𝑛]/ 

and 𝐰𝐰 = [𝑤𝑤1,𝑤𝑤2,⋯ ,𝑤𝑤𝑛𝑛]/ . Now if operator T be a square matrix of order n say A, then we 

have Av = w, i.e. 

             �

𝑤𝑤1 
𝑤𝑤2 
⋮
𝑤𝑤3 

� =

⎣
⎢
⎢
⎡
𝐴𝐴1,1      𝐴𝐴1,2   …         𝐴𝐴1,𝑛𝑛
𝐴𝐴2,1      𝐴𝐴2,2   …         𝐴𝐴2,𝑛𝑛
 ⋮           ⋮       ⋱                   ⋮
𝐴𝐴𝑛𝑛,1      𝐴𝐴𝑛𝑛,2   …         𝐴𝐴𝑛𝑛,𝑛𝑛 ⎦

⎥
⎥
⎤
  �

𝜐𝜐1 
𝜐𝜐2 
⋮
𝜐𝜐𝑛𝑛 

�       

  

where for each index i, 

            𝑤𝑤𝑖𝑖 = 𝐴𝐴𝑖𝑖,1 𝜐𝜐1 + 𝐴𝐴𝑖𝑖,2 𝜐𝜐2 + ⋯+ 𝐴𝐴𝑖𝑖,𝑛𝑛 𝜐𝜐𝑛𝑛 = ∑ 𝐴𝐴𝑖𝑖,𝑗𝑗 𝜐𝜐𝑗𝑗  𝑛𝑛
𝑗𝑗=1   

 

 In general, if vj are not all zeros, the vectors v and Av  i.e. w will not be parallel. Almost all 

vectors change direction, when they are multiplied by A. Certain exceptional vectors v are in 

the same direction as Av. Those are the “vectors” Multiply an vector by A and the vector Av 

is a number of  times the original v. i.e. when they are parallel (that is, when there is some real 

mhtml:file://C:%5CUsers%5CSah%20Alam%5CDesktop%5Csah___28_12_14%5CEigenvalue.mht!http://mathworld.wolfram.com/LinearSystemofEquations.html
mhtml:file://C:%5CUsers%5CSah%20Alam%5CDesktop%5Csah___28_12_14%5CEigenvalue.mht!http://mathworld.wolfram.com/MatrixEquation.html
mhtml:file://C:%5CUsers%5CSah%20Alam%5CDesktop%5Csah___28_12_14%5CEigenvalue.mht!http://mathworld.wolfram.com/Eigenvector.html
mhtml:file://C:%5CUsers%5CSah%20Alam%5CDesktop%5Csah___28_12_14%5CEigenvalue.mht!http://mathworld.wolfram.com/SquareMatrix.html
mhtml:file://C:%5CUsers%5CSah%20Alam%5CDesktop%5Csah___28_12_14%5CEigenvalue.mht!http://mathworld.wolfram.com/EigenDecomposition.html
mhtml:file://C:%5CUsers%5CSah%20Alam%5CDesktop%5Csah___28_12_14%5CEigenvalue.mht!http://mathworld.wolfram.com/EigenDecomposition.html
mhtml:file://C:%5CUsers%5CSah%20Alam%5CDesktop%5Csah___28_12_14%5CEigenvalue.mht!http://mathworld.wolfram.com/SquareMatrix.html
mhtml:file://C:%5CUsers%5CSah%20Alam%5CDesktop%5Csah___28_12_14%5CEigenvalue.mht!http://mathworld.wolfram.com/EigenDecompositionTheorem.html


6 
 

number 𝜆𝜆 such that) 𝐀𝐀𝐀𝐀 = 𝜆𝜆𝛎𝛎 we say that υ is an vector of  𝐀𝐀 . In that case, the scale factor 𝜆𝜆  

is said to be the Eigen value corresponding to that vector.  

The matrix A may change both the direction and the magnitude of an arrow v in three-

dimensional space. However, if v is a vector of A with Eigen value 𝜆𝜆, the operation may only 

change its length and either keep its direction or flip it (make the arrow point in the exact 

opposite direction). The  Eigen value  tells whether the special vector v is stretched or shrunk 

or reversed or left unchanged when it is multiplied by A. Specifically, the length of the arrow 

will increase if  |𝜆𝜆| > 1 remain the same if |𝜆𝜆| = 1  and decrease it if |𝜆𝜆| < 1. Moreover, the 

direction will be precisely the same if 𝜆𝜆 > 1 and flipped if 𝜆𝜆 < 1 . If  𝜆𝜆 = 1, then the length 

of the arrow becomes zero. 

Now if v be the vector in two dimensional spaces then geometry of the linear transformation 

is illustrated by the following example.  For the transformation matrix 

         𝐀𝐀 = �3     1
1     3�, 

The vector    𝐀𝐀 = �   1
−1�, is an vector with Eigen value 2. Indeed, 

        𝐀𝐀𝐀𝐀 = �3     1
1     3�  �   1

−1� = �
3.1 + 1. (−1)
1.1 + 3. (−1)� = �     2−2� = 2 � 1

−1� .  

On the other hand the vector 𝐮𝐮 = �01� is not a vector, since 

       �3     1
1     3�  �01� = �3.0 + 1.1

1.0 + 3.1� =  �13� , 

and this vector is not a multiple of the original vector u. 

 

 

 

 

 

 

 

 

 

 

http://en.wikipedia.org/wiki/Point_reflection


7 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Now formally we will define Eigen value and Eigen vector.  According to the Linear algebra, 

the definition of Eigen value problem is defined as follow:  Let T is a linear operator on a 

vector space V over a field F. If there exist a scalar λ ϵ F a non zero vector v ϵ V such that  

          T(v) = λv                                                                                                                      (1.1)   

Then the equation (1.1) forms an Eigen value problem.  Here λ is called an Eigen value and 

such a vector v is called an Eigen vector of T corresponding to the Eigen value λ. The 

following have the same meaning: Characteristic root, proper root, latent root and spectral 

Eigen value. Similarly the following have the same meaning: Characteristic vector, proper 

vector, latent vector, Eigen vector.  

Now if the operator T is a matrix A and let A is a square matrix of order n then we also write  

Av = λv                                                                                                                      (1.2) 

Figure 1.1: Geometry of the linear transformation and  Eigen value problem 
 

Y 

X 

[2,-2]/ 

[0,1] 

[1,-1] 

[1,3]/ 

i.e   A[1,-1]/=2[1,-1]/ 

i.e. A[0,1]/=[1,3]/ 
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Here A is matrix representation of linear transformation T in any basis. Now the matrix 

polynomial A-λI of the first degree is called characteristic matrix of A, I being unit matrix of 

order n. Then determinant |A-λI| is called characteristic polynomial of A. Clearly this 

determinant is ordinary polynomial of degree n. The equation |A-λI|=0 is called characteristic 

equation of A. The roots of this equation are called characteristic roots or latent roots or Eigen 

values. The set of Eigen values of A is called the spectrum of A. The absolute Eigen value of 

largest Eigen value is called spectral radius. Again let A be a linear transformation 

represented by a matrix A. If there is a vector 𝐱𝐱 ∈ 𝑹𝑹𝒏𝒏  such that 

            𝐀𝐀𝐱𝐱 = 𝜆𝜆𝐱𝐱                                                                                                                     (1.3) 

For some scalar λ, then λ is called the Eigen value of A   with corresponding vector x. This is 

called Eigen value problem. Equation (1.3) can be written compactly as 

           (𝐀𝐀 − 𝜆𝜆𝐈𝐈)𝐱𝐱 = 𝟎𝟎                                                                                                            (1.4) 

  where I is the identity matrix and 0 is null vector. According to the  Cramer's rule, a linear 

system of equations has nontrivial solutions  if and only if  the determinant of (A – λI) 

vanishes, so the solutions of equation (1.4) are given by 

             det (𝐀𝐀 − 𝜆𝜆𝐈𝐈) = 𝟎𝟎                                                                                                      (1.5) 

This equation (1.5) is known as the characteristic equation of A and the left-hand side is 

known as the characteristic polynomial.  

Also the Eigen value problems frequently arise in the engineering field where physical 

problems are model by Ordinary Differential Equation (ODE). Suppose we have an ODE 

system as follows 

            𝒅𝒅𝐱𝐱
𝑑𝑑𝑑𝑑

= 𝐏𝐏𝐱𝐱                                                                                                                       (1.6) 

where P is a constant square matrix and x be vector. By taking X = 𝐯𝐯𝑒𝑒𝜆𝜆𝑑𝑑 as a trial solution in 

equation (1.6), we have  

            𝜆𝜆𝛎𝛎 = 𝐏𝐏𝛎𝛎                                                                                                                     (1.7) 

where λ be the Eigen value and   v is the corresponding Eigen vector.  

Several methods are available in literature to find out the Eigen values and Eigen vectors.  

Some of them are direct methods and some of them are iterative methods. Direct methods 

usually provided Eigen values only. For finding corresponding Eigen vectors, much more 

efforts are necessary. It is worthwhile to mention here that most of the methods find either 

mhtml:file://C:%5CUsers%5CSah%20Alam%5CDesktop%5Csah___28_12_14%5CEigenvalue.mht!http://mathworld.wolfram.com/LinearTransformation.html
mhtml:file://C:%5CUsers%5CSah%20Alam%5CDesktop%5Csah___28_12_14%5CEigenvalue.mht!http://mathworld.wolfram.com/Matrix.html
mhtml:file://C:%5CUsers%5CSah%20Alam%5CDesktop%5Csah___28_12_14%5CEigenvalue.mht!http://mathworld.wolfram.com/Vector.html
mhtml:file://C:%5CUsers%5CSah%20Alam%5CDesktop%5Csah___28_12_14%5CEigenvalue.mht!http://mathworld.wolfram.com/Scalar.html
mhtml:file://C:%5CUsers%5CSah%20Alam%5CDesktop%5Csah___28_12_14%5CEigenvalue.mht!http://mathworld.wolfram.com/Eigenvector.html
mhtml:file://C:%5CUsers%5CSah%20Alam%5CDesktop%5Csah___28_12_14%5CEigenvalue.mht!http://mathworld.wolfram.com/IdentityMatrix.html
mhtml:file://C:%5CUsers%5CSah%20Alam%5CDesktop%5Csah___28_12_14%5CEigenvalue.mht!http://mathworld.wolfram.com/CramersRule.html
mhtml:file://C:%5CUsers%5CSah%20Alam%5CDesktop%5Csah___28_12_14%5CEigenvalue.mht!http://mathworld.wolfram.com/LinearSystemofEquations.html
mhtml:file://C:%5CUsers%5CSah%20Alam%5CDesktop%5Csah___28_12_14%5CEigenvalue.mht!http://mathworld.wolfram.com/LinearSystemofEquations.html
mhtml:file://C:%5CUsers%5CSah%20Alam%5CDesktop%5Csah___28_12_14%5CEigenvalue.mht!http://mathworld.wolfram.com/Iff.html
mhtml:file://C:%5CUsers%5CSah%20Alam%5CDesktop%5Csah___28_12_14%5CEigenvalue.mht!http://mathworld.wolfram.com/Determinant.html
mhtml:file://C:%5CUsers%5CSah%20Alam%5CDesktop%5Csah___28_12_14%5CEigenvalue.mht!http://mathworld.wolfram.com/
mhtml:file://C:%5CUsers%5CSah%20Alam%5CDesktop%5Csah___28_12_14%5CEigenvalue.mht!http://mathworld.wolfram.com/CharacteristicEquation.html
mhtml:file://C:%5CUsers%5CSah%20Alam%5CDesktop%5Csah___28_12_14%5CEigenvalue.mht!http://mathworld.wolfram.com/CharacteristicPolynomial.html
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only Eigen values or only Eigen vectors. When the dimension of characteristics matrix is very 

high or the characteristic the matrix is sparse, iterative methods are, in general, 

computationally efficient. 

 

1.3   Iterative Methods 

 

In computational mathematics, an iterative method is a mathematical procedure that generates 

a sequence of improving approximate solutions for a class of problems. A specific 

implementation of an iterative method, including the termination criteria, is an algorithm of 

the iterative method. An iterative method is called convergent if the corresponding sequence 

converges for given initial approximations. A mathematically rigorous convergence analysis 

of an iterative method is usually performed; however, heuristic-based iterative methods are 

also common. In the problems of finding the root of an equation (or a solution of a system of 

equations), an iterative method uses an initial guess to generate successive approximations to 

a solution. In contrast, direct methods attempt to solve the problem by a finite sequence of 

operations. In the absence of rounding errors, direct methods would deliver an exact solution 

(like solving a linear system of equations 𝐀𝐀𝐱𝐱 = 𝐛𝐛 by Gaussian elimination). Iterative methods 

are often the only choice for nonlinear equations. However, iterative methods are often useful 

even for linear problems involving a large number of variables (sometimes of the order of 

millions), where direct methods would be prohibitively expensive (and in some cases 

impossible) even with the best available computing power. 

  

In mathematics, the power iteration is an  Eigen value algorithms: given a matrix A, the 

algorithm will produce a number λ (the Eigen value) and a nonzero vector v (the vector), such 

that Av = λv. The algorithm is also known as the Von Mises iteration [Marcus and Minc 

(1988)].The Power Iteration is a very simple algorithm. It does not compute matrix 

decomposition and hence it can be used when A is a very large sparse matrix. However, it will 

find only one Eigen value (the one with the greatest absolute Eigen value) and corresponding 

Eigen vectors. The convergence rate of the Power method depends on [λ2/ λ1], where λ1 is the 

largest Eigen value whereas λ2 is the second largest Eigen value of A in magnitude. This ratio 

mhtml:file://C:%5CUsers%5CSah%20Alam%5CDesktop%5Csah___28_12_14%5CIterative%20method%20-%20Wikipedia,%20the%20free%20encyclopedia.html.mht!http://en.wikipedia.org/wiki/Computational_mathematics
mhtml:file://C:%5CUsers%5CSah%20Alam%5CDesktop%5Csah___28_12_14%5CIterative%20method%20-%20Wikipedia,%20the%20free%20encyclopedia.html.mht!http://en.wikipedia.org/wiki/Algorithm
mhtml:file://C:%5CUsers%5CSah%20Alam%5CDesktop%5Csah___28_12_14%5CIterative%20method%20-%20Wikipedia,%20the%20free%20encyclopedia.html.mht!http://en.wikipedia.org/wiki/Algorithm
mhtml:file://C:%5CUsers%5CSah%20Alam%5CDesktop%5Csah___28_12_14%5CIterative%20method%20-%20Wikipedia,%20the%20free%20encyclopedia.html.mht!http://en.wikipedia.org/wiki/Heuristic
mhtml:file://C:%5CUsers%5CSah%20Alam%5CDesktop%5Csah___28_12_14%5CIterative%20method%20-%20Wikipedia,%20the%20free%20encyclopedia.html.mht!http://en.wikipedia.org/wiki/Root-finding_algorithm
mhtml:file://C:%5CUsers%5CSah%20Alam%5CDesktop%5Csah___28_12_14%5CIterative%20method%20-%20Wikipedia,%20the%20free%20encyclopedia.html.mht!http://en.wikipedia.org/wiki/Approximation
mhtml:file://C:%5CUsers%5CSah%20Alam%5CDesktop%5Csah___28_12_14%5CIterative%20method%20-%20Wikipedia,%20the%20free%20encyclopedia.html.mht!http://en.wikipedia.org/wiki/Rounding_error
mhtml:file://C:%5CUsers%5CSah%20Alam%5CDesktop%5Csah___28_12_14%5CIterative%20method%20-%20Wikipedia,%20the%20free%20encyclopedia.html.mht!http://en.wikipedia.org/wiki/Gaussian_elimination
mhtml:file://C:%5CUsers%5CSah%20Alam%5CDesktop%5Csah___28_12_14%5CIterative%20method%20-%20Wikipedia,%20the%20free%20encyclopedia.html.mht!http://en.wikipedia.org/wiki/Nonlinear_equation
http://en.wikipedia.org/wiki/Eigenvalue_algorithm
mhtml:file://C:%5CUsers%5CSah%20Alam%5CDesktop%5Csah___28_12_14%5CPower%20iteration%20-%20Wikipedia,%20the%20free%20encyclopedia.html.mht!http://en.wikipedia.org/wiki/Absolute_value


10 
 

is generally smaller than , allowing adequate convergence. But there are cases where this 

ratio can be very close to , causing very slow convergence. For detailed discussions on the 

power method, see [Demmel (1997), Golub and Loan (1996), Parlett and Cliffs (1980)]. 

 

Although the Power iteration method approximates only one Eigen value of a matrix, it 

remains useful for certain. For instance, uses it to calculate the documents in their search 

engine, and uses it to show users recommendations of who to follow. For matrices that are 

well-conditioned and as sparse as the Web matrix, the Power iteration method can be more 

efficient than other methods of finding the dominant (largest) vector. The method can also be 

used to calculate the spectral radius of a matrix by computing the Rayleigh quotient. Though 

Power method is applicable in various field of application where only largest Eigen value 

pairs are important, but there are many fields in which both   largest as well smallest Eigen 

value and corresponding Eigen vectors are very important. Moreover in some cases the nature 

of the signs of spectrum is valuable.  

 

1.4  Goal of Thesis 

 

At first we have studied rigorously regarding Eigen value problems and some important 

methods mainly iterative methods to earn adequate knowledge about the study. Our main 

goals have pointed out bellow: 

(a) We have developed a Modified Hybrid Iterative Algorithm based on Power method 

and Inverse Power method to find out largest Eigen pair and smallest Eigen pair 

according to the absolute magnitude. Moreover the algorithm is able to find out 

second largest Eigen pair in some cases.  

(b) Some experiments have been performed to verify the effectiveness of the proposed 

algorithm. 

(c) Four Lemma also have been proposed relevant to the proposed algorithm. Moreover, 

these proofs of the Lemma are given along with some illustrations. 

 

 

mhtml:file://C:%5CUsers%5CSah%20Alam%5CDesktop%5Csah___28_12_14%5CPower%20iteration%20-%20Wikipedia,%20the%20free%20encyclopedia.html.mht!http://en.wikipedia.org/wiki/Spectral_radius
mhtml:file://C:%5CUsers%5CSah%20Alam%5CDesktop%5Csah___28_12_14%5CPower%20iteration%20-%20Wikipedia,%20the%20free%20encyclopedia.html.mht!http://en.wikipedia.org/wiki/Rayleigh_quotient
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1.5 Structure of the Thesis  

 

After Chapter I in which the introduction of the research works is presented, the literature 

review is discussed in Chapter II. Chapter III presents the review of the properties of Eigen 

value and Eigen vector and some important  iterative methods. Also detail discussion of 

power method and inverse Power method are discussed in this chapter. Moreover the rate of 

convergence and Limitations of Power method are also briefly discussed in Chapter III. In 

Chapter IV, the proposed algorithm is presented and discussed a bit elaborately. Some 

experiments are performed to check the validity as well as effectiveness of the proposed 

algorithms. Some Lemma related to the algorithm is proposed in Chapter V. The proof of the 

Lemma are also presented in this chapter. The Lemmas is also implemented in the proposed 

algorithm with some illustrations. Finally concluding remarks and brief discussion about the 

research works are given in Chapter VI. The list of the references is presented at the end of 

the thesis as well. 
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CHAPTER 1I 

 

 

Literature Review 

 

 

2.1  Introduction 

 

In view of the central importance of the Eigen value problem in so many field of pure and 

applied mathematics, much thought has been devoted to designing of efficient methods and 

effective properties by which the Eigen values as well as Eigen vectors of a linear operator 

may be found. That Linear operator may be of algebraic or continuous type; that is a matrix A 

differential operator or a kernel function. 

 

2.2  Background  

 

Numerical linear algebra is a very active field of research. Many problems are challenging of 

themselves and in addition, much of scientific computing depends critically in one way or 

another on numerical linear algebra algorithms. Not only do the more classical scientific 

computational models for physical or engineering problems depend on linear algebra kernels, 

but many modern applications, such as information retrieval and image restoration, profit 

from numerical linear algebra results. These factors have motivated numerical linear algebra 

research throughout the entire 20th century.  

 

The field has blossomed, especially since the introduction of the modern computer, roughly 

from the early 1950. This is evident from the large number of scientific journals in which 

articles in this area appear: SIAM on Matrix Analysis and Applications (SIMAX), Linear 

Algebra and its Applications (LAA), Numerical Linear Algebra with Applications (NLAA), 

are completely devoted to this specialty. Articles on numerical linear algebra, theoretical as 

well as applied, regularly appear in journals such as BIT, SIAM Numerical Analysis, SIAM J. 
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on Scientific Computing, J. on Computational and Applied Mathematics, J. Applied 

Numerical Mathematics, Numerical Mathematics, Numerical Algorithms, Mathematics of 

Computation, Parallel Computing, ACM Transactions on Mathematical Software, Computing, 

J. Inst. Math. Application., SIAM Review, IMA J. Num. Anal., and several others in more 

application oriented directions, such as J. Computational Physics and engineering journals. 

And from, for instance, the bibliography in Golub and Van Loan's Book (1989), one can see 

how many papers are referenced from these and other sources. A quick glance through the 

contents of the average 60 papers per year in SIMAX shows that roughly 40% of the papers 

are associated with Eigen value problem research and it is likely that this holds more or less 

for the many papers per year that focus on numerical linear algebra. 

 

The paper of Gene et al. (2000) has sketched the main research developments in the area of 

computational methods for Eigen value problems during the 20th century. In this paper [Gene 

et al. (2000)] authors have considered the algorithmic developments from a historical point of 

view and to indicate how the recent powerful techniques are the result of many smaller steps. 

This will also help to show how many of the algorithms are interrelated. The reader who is 

interested in methods that have played a role but that are at present no longer considered to be 

on the main track, is referred to Wilkinson's books (1965). In addition, Parlett (1980) gives 

interesting historical information on older methods that still have some significance from a 

theoretical point of view.  

 

In fact, this was already recognized by Jacobi who, in 1846, computed the Eigen values of 

symmetric matrices by rotating the matrix to a strongly diagonally dominant one. Note that 

Jacobi's techniques are still relevant and have led to popular and powerful algorithms. 

Another longstanding method that is of great significance and serves as the basis for many 

algorithms is the Power iteration. The method is based on the idea that if a given vector is 

repeatedly applied to a matrix, and is properly normalized, then ultimately, it will lie in the 

direction of the Eigen vector associated with the Eigen values which are largest in absolute 

value. The rate of convergence for the Power iteration depends on the ratio of the second 

largest Eigen value (in absolute value) to the largest Eigen value (in absolute value) and for 
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many applications this leads to unacceptably slow convergence. The method can be 

problematic if one wants to compute a number of External Eigen values. Anyway including 

Power method there exist some most frequently used iterative methods as well as direct 

methods such as Krylov methods, inverse Power iteration, QR-method etc. 

 

2.3    Review of Methods  

 

The problem (1.3) corresponds to finding the zeroes of the characteristic polynomial det (A − 

λI) = 0 of A of order n. It is well-known that for n ≥ 5 there is no expression for the roots of 

this polynomial for a general A; therefore, determining the exact Eigen values is generally not 

possible. However, there are many numerical methods that give very good approximations to 

Eigenvectors and hence Eigen values of a given matrix. Eigen value problems of moderate 

size, which means that a full n × n matrix can be stored conveniently, are often solved by 

direct methods, by which we mean methods where similarity transformations are applied until 

the Eigen value estimates can be easily found. 

 

The best known direct method which is able to find all Eigen values is the QR-Algorithm, 

based on the QR decomposition of a matrix [Bai et al. (1999) and Demmel (1997)] which is 

also implemented in the Matlab function eig (  ). The QR Iteration algorithm for computing 

the Eigen values of a general matrix came from an elegantly simple idea that was proposed by 

Heinz Rutishauser in 1958 and refined by Francis in 1961-1962. The QR algorithm 

approximates the whole spectrum and the number of iterations needed is of order O (n3), 

where n is the size of the matrix, which becomes very large for large problems. There is 

another disadvantage of the QR method. If matrices are sparse, that is, the number of non-zero 

elements is small compared to the number of zero entries, and the matrix is structured, then 

the QR method generates matrices in which the sparse structure of the original matrix 

disappears. This leads to filled in and an increasing storage requirement as the algorithm 

proceeds.  
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In many applications it is not necessary to calculate the complete Eigen value decomposition 

of a matrix. Often only a few Eigen values are of interest. Moreover in some physical 

situation in where Eigen vectors along with Eigen values play important role. Consequence 

iterative methods come to lime light.  By iterative methods we mean methods based on matrix 

vector multiplications using the original sparse matrix so that the sparse matrix storage and 

structure can be used to advantage. Hence, subspace algorithms are suitable for large sparse 

matrices. All subspace algorithms have the following structure in common: 

1. Generate a sequence of subspaces S1, S2 , . . . 

2. For each subspace Si of dimension i construct a matrix Hi ∈ Ci×i which is the restriction 

and projection of A onto the subspace Si.   

The matrices Hi are usually constructed with the Rayleigh-Ritz procedure, which can be 

described as projecting and restricting the full matrix A onto the subspace. Then the Eigen 

values of the projected matrix are called Ritz values which are approximations to the wanted 

part of the spectrum. The corresponding Eigen vectors of A are called Ritz vectors and they 

represent approximations to the exact Eigen vectors of A. Different subspace methods are 

distinguished from the way the subspaces are generated. The dimension of the subspace may 

fixed are variable. If the dimension of the subspace is fixed to one then the most common 

methods obtained are the Power method and Rayleigh quotient iteration (see for example 

[Parlett (1980) and Wilkinson (1965)] for details). The Power method can be extended to 

subspaces with higher, but fixed dimension, where it is called subspace or simultaneous 

iteration which can be seen as a block Power method. For details see [Van Loan (1996) and 

Saad (1992)]. A further class of subspace methods is the one that uses nested subspaces of 

increasing dimension. Usually one starts with a subspace of dimension one and increases this 

dimension by one at each iteration step. Among the most popular of these methods are the 

Lanczos method (1950) for symmetric matrices and the Arnoldi method [Lehoucq and 

Meerbergen (1999), Sorenson and Yang (1998)] for nonsymmetric matrices. These methods 

are Krylov subspace methods. More details on Arnoldi and Lanczos methods can be found in 

Golub and Van Loan (1996),  Saad  (1992),  Bai et al. (1999) and Trefethen and Bau (1997). 

The methods of Lanczos and Arnoldi have lead to the development of many other algorithms. 

For example, both methods can be generalized to block Lanczos and block Arnoldi 
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algorithms, by working with p-dimensional subspaces instead of vectors. The iteration starts 

with a p-dimensional subspace and the dimension is increased by p at each step. 

 

There exist further subspace algorithms with increasing subspace dimension, where the 

subspace is expanded without using Krylov subspaces. A Newton iteration step or an 

approximate Newton iteration step can be applied to obtain a new direction. Examples for this 

approach are the Davidson method and the Jacobi-Davidson method, see [Sleijpen and Vorst 

(1996) and Hochstenbach and Notay (2004)] for details. 

 

Anyway a well known iterative method for finding both Eigen value and corresponding Eigen 

vectors is called Power iteration or simply Power method [Marcus and Minc (1988)]. For our 

discussion of the Power method, we have borrowed material from Householder's book 

[Householder (1964)]. The Power method, for general square matrices, is the simplest of all 

the methods for solving for Eigen values and Eigen vectors. The basic idea is to multiply the 

matrix A  repeatedly by a well-chosen starting vector, so that the component of that vector in 

the direction of the Eigen vector with largest Eigen value in absolute value is magnified 

relative to the other components. Householder called this Simple Iteration and attributed the 

first treatment of it to Muntz in 1913. Bai (1995) attributes the Power method to Von Mises 

(1929) and acknowledges Muntz for computing approximate Eigen values from quotients of 

minors of the explicitly computed  matrix Ak, for increasing values of  k. For a careful 

analytic treatment of the Power method, Householder acknowledged work by Ostrowski and 

Werner Gautschi; the reader can find a fairly complete  treatment in Wilkinson's book (1965) 

together with the proper references. 

 

A compact description and analysis of these ideation techniques was given by Parlett (1980). 

The Power method and the Inverse Power method, in their pure form are no longer 

competitive methods even for the computation of a few Eigen pairs, but they are still of 

interest since they are explicitly or implicitly part of most modern methods such as the QR 

method and the methods of Lanczos and Arnoldi. These methods evolved in some way or 

another from the Power method and some of the techniques that were suggested as 
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improvements to the Power method are still in use as acceleration techniques for modern 

iterative methods. One of these idea is to work with polynomials of A, with the purpose of 

damping unwanted parts of the spectrum. Detailed discussions on the power method can be 

found in Demmel (1997), Golub and Van Loan (1996), Parlett (1980), SIAM Philadelphia 

(1997). 

 

Although the power iteration method approximates only one Eigen value of a matrix, it 

remains useful for certain. For instance, uses it to calculate the documents in their search 

engine and uses it to show users recommendations of who to follow. For matrices that are 

well-conditioned and as sparse as the Web matrix, the power iteration method can be more 

efficient than other methods of finding the dominant (largest) Eigenvector. Some of the more 

advanced Eigen value algorithms can be understood as variations of the power iteration. For 

instance, the inverse iteration method [Demmel and James  (1997)] applies power iteration to 

the matrix. The method can also be used to calculate the spectral radius of a matrix by 

computing the Rayleigh quotient. For detailed discussions on the Power method, see 

[Demmel (1997), Golub and Loan (1996), Parlett and Cliffs (1980)]. 

 

Another possibility is working with properly updated shifts µ in the inverse process and in 

particular, if one takes the Rayleigh quotient with the most recent vector as a shift, then one 

obtains the Rayleigh quotient iteration. According to Parlett (1980), Lord Rayleigh used in the 

1870 a less powerful technique. He did a single shift-and-invert step with a Rayleigh quotient 

for an Eigen vector approximation but with a unit vector as the right-hand side. (This saves 

the refactoring of the matrix (A −µI) at each iteration). The modern RQI in which one takes 

the most current Eigen vector approximation as the right-hand side, leads to very fast 

convergence.  Ostrowski (1958) studied the convergence properties for variance of RQI for 

the symmetric and unsymmetrical case. He was able to establish cubic convergence in both 

cases under various circumstances (in the unsymmetrical case for a properly generalized 

Rayleigh quotient). These results are essential for the understanding of modern iterative 

techniques that are based on (approximate) shift-and-invert strategies (for example, the 

Jacobi-Davidson method).  

http://en.wikipedia.org/wiki/James_Demmel
mhtml:file://C:%5CUsers%5CSah%20Alam%5CDesktop%5Csah___28_12_14%5CPower%20iteration%20-%20Wikipedia,%20the%20free%20encyclopedia.html.mht!http://en.wikipedia.org/wiki/Spectral_radius
mhtml:file://C:%5CUsers%5CSah%20Alam%5CDesktop%5Csah___28_12_14%5CPower%20iteration%20-%20Wikipedia,%20the%20free%20encyclopedia.html.mht!http://en.wikipedia.org/wiki/Rayleigh_quotient
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Since orthogonal reduction  techniques often evidence superior stability properties, it became 

apparent that the LR factorization should be replaced by a QR factorization. This leads to one 

of the most popular and powerful methods of our time for Eigen value problems: The QR 

method for computing all of the Eigen values and associated Eigen vectors of a dense 

symmetric matrix. (In fact, the QR method has essential enhancements that make the method 

really powerful).  With the number of vectors less than  n, this Power method in combination 

with QR orthogonalization is known as the Simultaneous Iteration method; Rutishauser 

(1969), studied this method in 1969. Its convergence behavior for general unsymmetrical 

matrices was studied by Stewart (1976) in 1976. Stewart also developed a subroutine, based 

on simultaneous iteration, for the computation of a dominant invariant subspace.  

 

The collection of vectors generated by the Power method defines Krylov subspaces of 

increasing dimension. This motivated Krylov to try to determine the characteristic polynomial 

of a matrix by inspecting the dependence of a full set of these vectors. This procedure may 

fail because the system of equations is highly ill-conditioned but this can be repaired by 

orthogonal zing each new vector to the previous vectors and applying A onto the last 

constructed vector. This iteration process is known as the Lanczos method for symmetric 

matrices and Arnoldi's method for unsymmetrical matrices.  

 

Parlett (1980) however, described situations where Simultaneous Iteration is still competitive. 

For instance, if we can store only a limited number of n-vectors in fast memory or if the 

relative gap between the desired Eigen values and the others is great than Simultaneous 

Iteration is very useful.  

 

Booth (2003, 2006) were developed  Monte Carlo simulations of steady state neutron 

transport in nuclear reactors. Initially, he proposed a novel modification of the power method 

that has produced up to 10 Eigen pairs for simple test problems.  
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Karoui (2006) has made very important progress in recent years in the understanding of the 

behavior of the Eigen values of a large number of large-dimensional random matrices. He 

found many new results concern the fluctuation of these Eigen values. These new findings 

show great promise for applications, in particular, in Statistics. In this paper, his focus is on 

fine convergence properties of the largest Eigen value of a class of random covariance 

matrices. 

 

In this paper, McCormick and  Noe (1977)  developed an  accelerated version of simultaneous 

iteration for partial solution of the Eigen problem. Their proposed algorithm convergence 

together with sharp error bounds is obtained. They were able to obtain some important 

theoretical results regarding symmetric Eigen problem where the algorithms are shown to be 

improvements over existing techniques.  In application to a given matrix, the accelerated 

convergence can often be dramatic, particularly when a clustering of the dominant Eigen 

values occurs.  Simultaneous iteration and its variants are natural extensions of the power 

method, which on the other hand is plagued by slow convergence in the presence of 

clustering. These techniques [McCormick and  Noe (1977)] attempt  to capitalize on the assets 

of the power method while at the same time overcoming its major handicap. 

 

Panju (2011) examined some numerical iterative methods for computing the Eigen values and 

Eigen vectors of real matrices. The five methods examined here range from the simple power 

iteration method to the more complicated QR iteration method. The derivations, procedure, 

and advantages of each method are briefly discussed in Panju (2011). 

 

Computing Eigen pairs of large matrices is a ubiquitous problem in computational physics. 

Author, in the paper [Gubernatis and Booth (2008)], presented several refinements of the 

basic Power method that enable the efficient and accurate computation of multiple extremely 

Eigen values of very large matrices. Ultimately, their objective is producing Monte Carlo 

versions of such methods for matrices whose orders are so large that even the Eigen vectors 

be stored in computer memory is very hard. For such problems, the computation of a basic 

vector quantity as the inner product is generally either very inefficient or impractical. Also 
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Gubernatis, Booth (2008) proposed several refinements of the Power method that enable the 

computation of multiple external Eigen pairs of very large matrices by using Monte Carlo 

simulation method. 

 

Gotze et al. (1993) proposed an approximation to the Exact Jacobi method and claimed that it 

is more efficient. Besides the Jacobi-based method, the Algebraic Method [Waerden and Van 

der (1991)] offers an alternative approach that may be more efficient for some restricted 

classes of Eigen value problems. 

 

Two-norm normalized inverse, shifted inverse, and Rayleigh quotient iteration are well-

known algorithms for approximating an Eigenvector of a symmetric matrix. Tapia et al. 

(2015) have established rigorously that each one of these three algorithms can be viewed as a 

standard form of Newton’s method from the nonlinear programming literature, followed by 

the normalization. This equivalence adds considerable understanding to the formal structure 

of inverse, shifted inverse, and Rayleigh quotient iteration and provides an explanation for 

their good behavior despite the possible need to solve systems with nearly singular coefficient 

matrices; the algorithms have what can be viewed as removable singularities.  Moreover 

Tapia et al. (2015), presented a thorough historical development of these Eigen value 

algorithms. Utilizing their equivalences, authors constructed traditional Newton’s method 

theory analysis in order to gain understanding as to why, as normalized Newton’s method, 

inverse iteration and shifted inverse iteration are only linearly convergent and not 

quadratically convergent, and why a new linear system need not be solved ateach iteration. 

They also investigate why Rayleigh quotient iteration is cubically convergent and not just 

quadratically convergent. 
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2.4  Some important fields of applications 

 

An Inverse Eigen value Problem (IEP) is to construct a matrix which possesses both 

proscribed Eigen values and desired structure. Inverse Eigen value problems arise in broad 

application areas such as control design, system identification, principle component analysis, 

structure analysis etc. There are many different types of Inverse Eigen value problems and 

despite of a great deal of research effort being put into this topic many of them are still open 

and are hard to be solved. In this dissertation ,Yang (2006), proposed optimization algorithms 

for solving two types of inverse Eigen value problems, namely, the static output feedback 

problems and the nonnegative inverse Eigen value problems. 

 

In Kressner (2009), a block Newton method has been proposed as a block analog of the 

nonlinear inverse iteration. Block methods avoid the difficulties with reconvergence by 

computing all Eigen values in a cluster simultaneously. Unfortunately, the local convergence 

of these methods seems to be more restricted than that of their single-vector counterparts. 

 

It is known that Eigen value and Eigen vectors play an important role in Graph theory. 

Regular graphs with small second largest Eigen value have more ’round’ shape, i.e. smaller 

diameter and higher connectivity. Moreover, not necessarily regular, but sparse graph having 

strong connectivity properties is known as an expander. Such graphs are relevant to 

theoretical computer science, the designs of robust computer networks and the theory of error-

correcting codes and to complexity theory. Though expanding properties of regular graphs 

can be measured in several different ways, their common property is a large spectral gap (the 

difference between the degree and the second largest Eigen value). Koledin and Stani (2013), 

have obtained a number of regular graphs with small second largest Eigen value 

(consequently, large spectral gap) and therefore they may be interesting for the application in 

the above mentioned areas of research. 
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Eigen value problems also arise in optimization problem. Yuan and Zhang (2013), considered 

the sparse Eigen value problem, which is to extract dominant (largest) sparse Eigenvectors 

with at most k non-zero components. They proposed a simple yet effective solution called 

truncated power method that can approximately solve the underlying non-convex 

optimization problem. A strong sparse recovery result is proved for the truncated power 

method. The proposed method is tested on applications such as sparse principal component 

analysis and the densest k-sub graph problem. 

 

Random Eigen value problems (REPs) are concerned with determining the probabilistic 

characteristics of Eigen values and Eigen vectors of random matrices [Forrester (2003)]. First 

introduced by Wishart in 1928, random matrices are the matrices that are completely defined 

by statistical distributions. The study of random matrices gained prominence in the 1950, 

spurred by Wigner's pioneering (1950) work in nuclear physics. The mathematical foundation 

of the random  matrix theory was later established in a series of landmark papers by Wigner 

(1957), Mehta (1960) and Dyson (1962). A comprehensive account of random matrices can 

be found in Mehta's seminal work (2004). Bai and Silverstein (2006) established a 

universality property for the local Eigen value statistics for random matrices. Their main 

theorem is stated in a much more general setting, and can be applied to various other models 

of random matrices (such as random real symmetric matrices, for example). 

 

Florian, Schmitt and Rothlauf (2001) have performed a more detailed analysis of the 

convergence rate using Markov chains. But they considered Genetic Algorithm (GA) in the 

Markov chain model.  

 

It is known that the Eigen value or spectral gap of a Markov chain is the difference between 

the two largest Eigen values of the transition matrix of its underlying (state space) graph. 

McNew (2011) explored the intimate relationship between the spectral gap of a Markov chain 

and its mixing time, as well as another closely related structural property of a Markov chain 

known as conductance. The relationships among these properties can be used to put bounds 

on a chain's mixing time, and can be used to prove both rapid and slow mixing. Vaibhav 
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(2013) developed new computational methods for solving a general random Eigen value 

problem (REP) commonly encountered in modeling and simulation of high-dimensional, 

complex dynamic systems. 

 

Gade (2009) developed a method that uses only time correlation from samples produced from 

the Markov chain itself. Gade (2009), in his thesis,  proposed a novel Krylov subspace type 

method to estimate the second largest Eigen value from the simulation data of the Markov 

chain using test functions which are known to have good overlap with the slowest mode. This 

method starts with the naive Rayleigh quotient estimate of the test function and refines it to 

obtain an improved estimate of the second largest Eigen value. He applied the method to a 

few model problems and the estimate compares very favorably with the known answer. He 

also applied the estimator to some Markov chains occurring in practice, most notably in the 

study of glasses. He showed experimentally that his estimator is more accurate and stable for 

these problems compared to the existing methods.  
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CHAPTER III 
 
 

Review of Eigen value and Eigenvector and Its Properties 
 
 
3.1  Introduction  

 

Before discussion of our proposed method and lemma, it is relevant to introduce some 

definitions, properties and theorems of Eigen value problems. In this aspect we will review 

the preliminaries of Eigen values and Eigen vectors. 

 
3.2  Some important definitions and associate properties of Eigen value 

 
As in Chapter I we have already discussed about the definition of Eigen value and Eigen 

vector along with the characteristics polynomial. For the completeness of the discussion we 

again recall them here. Moreover here we also introduce some important related definitions as 

well as the properties of Eigen values and Eigen vectors.  

 

Let A be a linear transformation matrix  of order n×n and if there is a vector 𝐱𝐱 ∈ 𝑹𝑹𝒏𝒏 ,  𝐱𝐱 ≠ 0 

and some scalar λ such that 

            𝐀𝐀𝐱𝐱 = 𝜆𝜆𝐱𝐱                                                                                                                     (3.1) 

          or (𝐀𝐀 − 𝜆𝜆𝐈𝐈)𝐱𝐱 = 𝟎𝟎                                                                                                         (3.2) 

The equation  (3.2) has nontrivial solution i.e. 𝐱𝐱 ≠ 0 iff 

             PA( 𝜆𝜆) = |𝐀𝐀 –  λ𝐈𝐈| = 𝟎𝟎                                                                                                  (3.3) 

 

Here I is the identity matrix and 0 is null matrix. Then 

(i) Eigen value problem: The equation (3.1) or (3.2) forms an algebraic Eigen value 

problem. 

(ii) Eigen value:  λ is called the Eigen value of A.   

(iii) Eigen vector : Vector x is called Eigen vector of A. The terms characteristic value and 

characteristic vector (or proper value and proper vector) are sometimes used instead of 

Eigen value and Eigen vector. 

mhtml:file://C:%5CUsers%5CSah%20Alam%5CDesktop%5Csah___28_12_14%5CEigenvalue.mht!http://mathworld.wolfram.com/LinearTransformation.html
mhtml:file://C:%5CUsers%5CSah%20Alam%5CDesktop%5Csah___28_12_14%5CEigenvalue.mht!http://mathworld.wolfram.com/Matrix.html
mhtml:file://C:%5CUsers%5CSah%20Alam%5CDesktop%5Csah___28_12_14%5CEigenvalue.mht!http://mathworld.wolfram.com/Vector.html
mhtml:file://C:%5CUsers%5CSah%20Alam%5CDesktop%5Csah___28_12_14%5CEigenvalue.mht!http://mathworld.wolfram.com/Scalar.html
mhtml:file://C:%5CUsers%5CSah%20Alam%5CDesktop%5Csah___28_12_14%5CEigenvalue.mht!http://mathworld.wolfram.com/IdentityMatrix.html
mhtml:file://C:%5CUsers%5CSah%20Alam%5CDesktop%5Csah___28_12_14%5CEigenvalue.mht!http://mathworld.wolfram.com/Eigenvector.html
mhtml:file://C:%5CUsers%5CSah%20Alam%5CDesktop%5Csah___28_12_14%5CEigenvalue.mht!http://mathworld.wolfram.com/Eigenvector.html
mhtml:file://C:%5CUsers%5CSah%20Alam%5CDesktop%5Csah___28_12_14%5CEigenvalue.mht!http://mathworld.wolfram.com/Eigenvector.html
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(iv) Characteristics equation: The equation (3.3) i.e. |𝐀𝐀 –  𝜆𝜆𝐈𝐈| = 0 forms a polynomial of 

degree n (i.e P( 𝜆𝜆)) which is called characteristics equation. The determinant criterion 

(3.3) is very important because it tells us where to look for the characteristic values of 

A. Note that (a) If deg (PA) ≥ 5  no explicit formula ⟶ numerical algorithm required. 

Also note that in this case find λ by using PA(𝜆𝜆) numerical unstable. 

(v) Eigen system: The set of all Eigen vectors of a matrix (or linear operator), each paired 

with its corresponding Eigen value, is called the Eigen system of that matrix. Note that 

any multiple of an Eigen vector is also an Eigen vector, with the same Eigen value. An 

Eigen space or characteristic space of a matrix A is the set of all Eigen vectors with the 

same Eigen value, together with the zero vectors. An Eigen basis for 𝐀𝐀  is any basis for 

the set of all vectors that consists of linearly independent Eigen vectors of 𝐀𝐀. Not every 

matrix has an Eigen basis, but every symmetric matrix does 

(vi) Spectrum: The set of Eigen values of A is called the spectrum of A. 

(vii) Spectral gap: The spectral gap is the difference between the modulo of the two largest 

Eigen values of a matrix A (of order n).  i.e if  λ𝑖𝑖: 𝑖𝑖 = 1,2,⋯ ,𝑛𝑛 are Eigen values of A 

and  |λ1| ≥ |λ2|⋯ ≥ |λ𝑛𝑛|  then the spectral gap of A is |𝜆𝜆1 − 𝜆𝜆2|. 

(viii) Eigen gap:  The Eigen gap of a linear operator A is the difference between two 

successive Eigen values, where Eigen values are sorted in ascending order. 

(ix) Spectral radius or Dominant Eigen value: The largest (in magnitude) Eigen value of 

equation (3.1) is called dominant Eigen value of A or spectral radius. i.e if  |𝜆𝜆𝑖𝑖| ≥

�𝜆𝜆𝑗𝑗�  ∀ j = 1,2,⋯ , n  then λi be the dominant Eigen value. Eigen vector v1 

corresponding to λ1 is called a dominant Eigen vector. 

(x) Singular values of a matrix: The singular values are simply the absolute values of the 

Eigen values of a matrix. 

(xi) Eigen space: Let A be the matrix representation of a linear operator T on a vector space 

V(k). Let λ be an Eigen value of T so that  ∃ v ≠ 0 𝝐𝝐 V  s.t. T(v)=Av = λv. Then the 

Eigen space of λ denoted by Vλ is defined as  Vλ  = { v 𝝐𝝐 V: T(v) = λv.}. Note that  Vλ  

is a subspace of V(k). i.e. the set of all such Eigen vectors Vλ corresponding to each λ is 

a subspace of V called the Eigen space (characteristic space) associated with  λ. Note 

http://en.wikipedia.org/wiki/Zero_vector
http://en.wikipedia.org/wiki/Basis_%28linear_algebra%29
http://en.wikipedia.org/wiki/Symmetric_matrix
https://en.wikipedia.org/wiki/Absolute_value
https://en.wikipedia.org/wiki/Eigenvalue
https://en.wikipedia.org/wiki/Linear_operator
https://en.wikipedia.org/wiki/Eigenvalues
https://en.wikipedia.org/wiki/Eigenvalues
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that if dimension of  Vλ = 1, then Vλ is called an Eigen line and λ is called a scaling 

factor).  

(xii) Basis of the Eigen space:  The independent Eigen vectors of Vλ   associated with  λ 

form the basis of the Eigen space Vλ.  

(xiii) Nullity of the Eigen space:  The number of independent Eigen vectors of Vλ   

associated with  λ form the Nullity of the Eigen space Vλ. 

(xiv) Geometry of Eigen value and Eigen vector: The Eigen value  |𝜆𝜆| > 1  or |𝜆𝜆| = 1 or  

|𝜆𝜆| < 1 or λ = 0. Geometrically (a) |𝜆𝜆| > 1  implies operator A stretch the vector x i.e. 

after operation A on x, the resulting solution be same in direction (if 𝜆𝜆 > 1  ) (see figure 

3.1 (a)) or opposite direction (flipped) (if 𝜆𝜆 < −1  ) but magnitude is increased with   

|𝜆𝜆| . (b)  |𝜆𝜆| < 1  implies operator A shrink the vector x i.e. after operation A on x, the 

resulting solution be same in direction (if 0 < 𝜆𝜆 < 1 ) or opposite direction (flipped) (if 

−1 < 𝜆𝜆 < 0 ) (see figure 3.1 (b))  but  magnitude is decreased with   |λ|. (c) |λ| = 1  

implies operator A does not stretch or shrink the vector x i.e. after operation A on x, the 

resulting solution be same in magnitude as well as same  in direction (if 𝜆𝜆 = 1 ) or 

opposite direction (flipped) (if 𝜆𝜆 = −1  ). (d) On the other hand if λ = 0, then after 

operation A on x, the resulting solution be null vector i.e.  0.  

 

 

  

 

 

 

 

 

 

 

 

(xv) Real matrix: If 𝑎𝑎𝑖𝑖𝑗𝑗: 𝑖𝑖 = 1,2,⋯ ,𝑛𝑛 and 𝑗𝑗 = 1,2,⋯ , 𝑛𝑛 are components of A and all 

components 𝑎𝑎𝑖𝑖𝑗𝑗 are real the A is called real matrix.  

Figure 3.1 Geometry of linear transformation and Eigen vector x 

x 

x 

 Ax=λx;   

0>λ > -1 
(b)  Shrink but flipped  

x 

Ax=λx ; λ>1 

(a)  Stretch positively  (c)  not Eigen vector  

Ax = y≠ λx ; for any y 
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(xvi)  Trace of the matrix: If 𝑎𝑎𝑖𝑖𝑗𝑗: 𝑖𝑖 = 1,2,⋯ , 𝑛𝑛 and 𝑗𝑗 = 1,2,⋯ , 𝑛𝑛 are components of A then  

∑ 𝑎𝑎𝑖𝑖𝑖𝑖𝑛𝑛
𝑖𝑖=1  is called trace of the matrix A. 

(xvii)    Smallest Eigen value: The Eigen value which is smallest in magnitude is called 

smallest Eigen value.  

(xviii) Orthogonal matrix: If 𝐀𝐀/ = 𝐀𝐀−𝟏𝟏 provided inverse exist, the A is called orthogonal  

matrix. i.e. if  𝐀𝐀𝐀𝐀/ = 𝐀𝐀/𝐀𝐀 = 𝐈𝐈 

(xix)   Orthogonal vectors: Two vector u and v are orthogonal iff 𝐮𝐮 ∙ 𝐯𝐯/ = 𝟎𝟎. 

(xx)    Normalized vector: An Eigenvector x is said to be normalized if the coordinate of 

largest magnitude is equal to unity. 

(xxi)    Stochastic matrix: If 𝑎𝑎𝑖𝑖𝑗𝑗: 𝑖𝑖 = 1, 2,⋯ ,𝑛𝑛 and 𝑗𝑗 = 1,2,⋯ ,𝑛𝑛 are components of A such 

that 0 ≤ 𝑎𝑎𝑖𝑖𝑗𝑗 ≤ 1 and represents probability (i.e. real value) then matrix A is called 

stochastic matrix or probability matrix or Markov matrix or transition matrix or 

substitution matrix. Now if each row sum is equal to 1. i.e. ∑ aij = 1 ∀ in
j=1   then A is 

called left stochastic matrix. If each column sum is equal to 1. i.e. ∑ aij = 1 ∀ jn
i=1   

then A is called right stochastic matrix.  Again if each row sum is equal to 1. i.e. 

∑ aij = 1 ∀ in
j=1   as well as each row sum is equal to 1. i.e. ∑ aij = 1 ∀ in

j=1   then A is 

called double stochastic matrix.   

(a) Note that the magnitude of each Eigen value of stochastic matrix is less or equal  

to one.  

(b) There exists at least one Eigen value equal to 1 which implies the state of Makov  

chain is equilibrium.   

(xxii)   Quadratic form: A vector 𝐗𝐗 ≠ 𝟎𝟎 ∈ ℜ𝑛𝑛×1  and a matrix  𝐀𝐀 ∈ ℜ𝑛𝑛×𝑛𝑛 , the scalar 

function defined by 𝑓𝑓(𝑥𝑥) = 𝐱𝐱/𝐀𝐀𝐱𝐱 = ∑ ∑ 𝑎𝑎𝑖𝑖𝑗𝑗𝑛𝑛
𝒋𝒋=𝟏𝟏

𝑛𝑛
𝒊𝒊=𝟏𝟏 𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗  is called a quadratic form. A 

quadratic form is said to be positive definite whenever A is a positive definite form if 

and only if f(x) > 0 for all 0 ≠ X ∈ ℜ𝑛𝑛×1 . For all 𝐱𝐱 ≠ 𝟎𝟎,  𝐱𝐱/𝐀𝐀𝐱𝐱 is called quadratic 

form of A. Note that  𝐱𝐱/𝐀𝐀𝐱𝐱 be positive non negative or negative.  

(xxiii) Symmetric matrix: If  𝐀𝐀/ = 𝐀𝐀 then matrix A is called symmetric matrix; thus akj =

ajk.  Note that all Eigen values of a symmetric matrix are real.  Hilbert and Pascal 

matrices are symmetric 
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(xxiv)  Skew symmetric: If 𝐀𝐀/ = −𝐀𝐀 then matrix A is called skew symmetric; thus  𝑎𝑎𝑖𝑖𝑗𝑗 =

−𝑎𝑎𝑗𝑗𝑖𝑖 and 𝑎𝑎𝑖𝑖𝑖𝑖 = 0. 

(xxv)    Positive definite: If all  𝐱𝐱 ≠ 𝟎𝟎,  𝐱𝐱/𝐀𝐀𝐱𝐱 > 0 then A is called positive definite. Then all 

Eigen values of A are positive. If A is symmetric positive definite, then its Eigen 

values are positive numbers.  

(xxvi) Semi-positive definite:  If all 𝐱𝐱 ≠ 𝟎𝟎,  𝐱𝐱/𝐀𝐀𝐱𝐱 ≥ 0 then A is called semi positive 

definite. Then all Eigen values of A are non negative.  

(xxvii)  Negative definite and semi definite:  Negative definite and Semi negative definite 

forms are defined by interchanging the words “negative” and “positive” in the above 

definitions. i.e if  all  𝐱𝐱 ≠ 𝟎𝟎,  𝐱𝐱/𝐀𝐀𝐱𝐱 is positive definite (semi definite), then 𝐱𝐱/(−𝐀𝐀)𝐱𝐱 

is negative definite (negative semi definite). Then for negative definite (semi definite) 

all Eigen values of (-A) are negative (non positive). 

(xxviii) Indefinite forms: A quadratic form 𝐱𝐱/𝐀𝐀𝐱𝐱 is said to be indefinite if the form is 

positive for some points x and negative for others. 

(xxix)  Algebraic multiplicity and geometric multiplicity: If an Eigen value 𝜆𝜆  of the matrix 

A is a root of order Mλ of the characteristic polynomial equation (3.3) of A, then Mλ is 

called algebraic multiplicity of 𝜆𝜆. On the other hand if 𝐦𝐦λ  be the number of linearly 

independent Eigenvectors corresponding to λ  then 𝐦𝐦λbe the  geometric multiplicity 

of A corresponding λ. That is geometric multiplicity be the dimension of the Eigen 

space (or null space). 

(xxx)    Gerschgorin Circles: The Eigen values of 𝐀𝐀 ∈ ∁n×n are contained the union 𝒢𝒢r of the 

n Gerschgorin circles defined by |𝑧𝑧 − 𝑎𝑎𝑖𝑖𝑖𝑖| ≤ 𝑟𝑟𝑖𝑖  where   𝑟𝑟𝑖𝑖 = ∑ �𝑎𝑎𝑖𝑖𝑗𝑗�, 𝑖𝑖 = 1,2,⋯ ,𝑛𝑛𝑛𝑛
𝑗𝑗=1
𝑗𝑗≠𝑖𝑖

. 

In other words, the Eigen values are trapped in the collection of circles centered at 𝑎𝑎𝑖𝑖𝑖𝑖  

with radii given by the sum of absolute values in 𝐀𝐀𝑖𝑖 with 𝑎𝑎𝑖𝑖𝑖𝑖 deleted. (a) Furthermore, 

if a union 𝜇𝜇 𝑜𝑜f 𝑘𝑘 Gerschgorin circles does not touch any of the other n⟶ 𝑘𝑘 circles, 

then there are exactly k Eigen values (counting multiplicities) in the circles in 𝜇𝜇  (b) 

Since 𝜎𝜎(𝐀𝐀/) = 𝜎𝜎(𝐀𝐀)  , the deleted absolute row sums in can be replaced by deleted 

absolute column sums So the Eigen values of A are also contained in the union 𝒢𝒢𝑐𝑐   of 

the circles defined by  �𝑧𝑧 − 𝑎𝑎𝑗𝑗𝑗𝑗� ≤ 𝑐𝑐𝑗𝑗 where 𝑐𝑐𝑗𝑗 = ∑ �𝑎𝑎𝑖𝑖𝑗𝑗�𝑛𝑛
𝑖𝑖=1
𝑖𝑖≠𝑗𝑗

  for j = 1, 2, … , n. (c) By 
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By Combining above we can say that the Eigen values of A are contained in the 

intersection 𝒢𝒢𝑟𝑟  ∩  𝒢𝒢𝑐𝑐.  

(xxxi) Defective: An Eigen value whose geometric multiplicity is less than its algebraic 

multiplicity is defective. 

(xxxii)  Complete system: The matrix A ∈ Cn×n has a complete system of Eigenvectors if it 

has n linearly independent Eigenvectors. 

(xxxiii) Vector Norms: A vector norm  on a vector space X is a real valued function on X, 

written x→║x║, and having following three properties: 

(a) ║x║>0 for all nonzero vectors x. 

(b) ║ax║= |a| ║x║ for all vectors x and all scalar a. 

(c) ║x+y║≤ ║x║+║y║ for all vectors x and y. 

On 𝑹𝑹𝒏𝒏  the simplest vector norms are: 

(xxxiv)  Manhattan/rectangular/ l1 vector norm : ║x║1=|x1|+|x2| +|x3|+ 

………………..+|xn| 

(xxxv) Euclidian / l2 vector norm: ║ x║2 = �𝑥𝑥12 + 𝑥𝑥22 + ⋯+ 𝑥𝑥𝑛𝑛2  

(xxxvi)  l∞ vector norm : ║x║∞= max { |x1|, |x2|, |x3|…………………,|xn|}    

Here xi denotes the i th component of the vector x. For obvious reasons, the l1 norm is 

sometimes called the column sum norm and the l∞ norm is called the dominant 

element of the vector. Any norm can be thought of as assigning a length to each 

vector. It is the Euclidean norm that corresponds directly to our usual concept of 

length, but other norms are sometimes much more convenient for our purposes.  

(xxxvii) Let k will denote the field of real or complex numbers. Let 𝑘𝑘𝑚𝑚×𝑛𝑛 denote the vector 

space containing all matrices with m rows and n columns with entries in k. throughout 

A*, denotes the conjugate transpose of matrix A. A matrix norm is a vector norm on 

𝑘𝑘𝑚𝑚×𝑛𝑛 . That is, if  ║𝐴𝐴║ denotes the norm of the matrix A  then 

• ║𝐀𝐀║ > 0 

• ║𝐀𝐀║ = 0  iff  𝐀𝐀 = 0   

 

 

https://en.wikipedia.org/wiki/Field_%28mathematics%29
https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/Complex_number
https://en.wikipedia.org/wiki/Vector_space
https://en.wikipedia.org/wiki/Vector_space
https://en.wikipedia.org/wiki/Conjugate_transpose
https://en.wikipedia.org/wiki/Vector_norm


30 
 

• ║𝛼𝛼𝐀𝐀║ = |𝛼𝛼|║𝐀𝐀║ for all 𝛼𝛼 in K and all matrices A  in 𝑘𝑘𝑚𝑚×𝑛𝑛 
• ║𝐀𝐀 + 𝐁𝐁║ ≤ ║𝐀𝐀║ + ║𝐁𝐁║ for all matrices A and B in 𝑘𝑘𝑚𝑚×𝑛𝑛  

Additionally, in the case of square matrices (thus, m = n), some (but not all) matrix 

 norms satisfy the following condition, which is related to the fact that matrices are  

more than just vectors:    

• ║𝐀𝐀𝐁𝐁║ ≤ ║𝐀𝐀║ ║𝐁𝐁║ for all matrices A and B in 𝑘𝑘𝑚𝑚×𝑛𝑛 

  A matrix norm that satisfies this additional property is called a sub multiplicative 

 norm.  

(xxxviii)  Induced Matrix Norms: When we solve a system of linear equations Ax = b, 

numerically, we shall want to know (among other things) how big the residual vector 

is? That is conveniently measured by ║AX-b║, where some norm has been specified. 

When a vector norm has been specified on 𝑅𝑅𝑛𝑛  ,there is a standard way of introducing 

a related matrix norm for n×n matrices; namely,  

            ║A║= sup{║Ax║  : x ϵ 𝑅𝑅𝑛𝑛 ,  ║x║≤1}            

We say that this matrix norm is the subordinate norm to the given vector norm of the 

norm induced by the given vector norm. The close relationship between the two is 

useful, because it leads to the following inequality, true for all vectors x: 

                                  ║Ax║≤ ║A║║x║ 

The matrix norms subordinate to the vector norms discussed above are respectively;  

(xxxix)  l1 matrix norm:  ║𝐀𝐀║1 = max
1≤𝑖𝑖≤𝑚𝑚

∑ �𝑎𝑎𝑖𝑖𝑗𝑗�,𝑚𝑚
𝑖𝑖=1  which is simply the maximum absolute 

column sum of the matrix.   

(xl)     l∞ matrix norm : ║𝐀𝐀║∞ =  max
1≤i≤m

∑ �𝑎𝑎𝑖𝑖𝑗𝑗�,𝑚𝑚
𝑖𝑖=1  which is simply the maximum absolute 

row sum of the matrix.   

Here σk  are the singular values of A. Note from above that the matrix norm 

subordinate to the Euclidean vector norm is not what most students think that is should 

be; namely: 

(xli)    Frobenius norm:  ║A║F    =�∑ ∑ 𝑎𝑎𝑖𝑖𝑗𝑗2𝑛𝑛
𝑗𝑗=1

𝑛𝑛
𝑖𝑖=1   .           
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(xlii) Spectral norm: The natural norm induced by the l2-norm. Let AH be the conjugate 

transpose of the square matrix A, so that  (𝑎𝑎𝑖𝑖 𝑗𝑗)H = (𝑎𝑎𝑗𝑗 𝑖𝑖), then the spectral norm is 

defined as the square root of the maximum Eigen value of 𝐀𝐀H𝐀𝐀 , i.e.,  

(xliii) ║𝐀𝐀║2 =  (maximum Eigenvalue of 𝐀𝐀H𝐀𝐀  )1/2                                                            

                       =  max
|𝑥𝑥𝑥2≠0

|𝐀𝐀𝐱𝐱|2
|𝒙𝒙𝑥2

 , 

        This is indeed a matrix norm; however, it is not the one induced by that Euclidean 

 vector norm.  

(xliv) Rayleigh Quotient: Let  𝐴𝐴 ∈ ℛ𝑛𝑛×𝑛𝑛  is real and symmetric matrix. The Rayleigh 

quotient is defined a      𝑟𝑟(𝐱𝐱) = 𝐱𝐱𝐓𝐓𝐀𝐀𝐱𝐱
𝐱𝐱𝐓𝐓𝐱𝐱

  .  

If   (𝜆𝜆, 𝛎𝛎) ∈  ℝ𝑛𝑛×𝑛𝑛  is an Eigen pair, then    𝑟𝑟(𝐯𝐯) = 𝐕𝐕𝐓𝐓𝐀𝐀𝐕𝐕
𝐕𝐕𝐓𝐓𝐕𝐕

=  𝐕𝐕
𝐓𝐓𝛌𝛌𝐕𝐕
𝐕𝐕𝐓𝐓𝐕𝐕

= 𝛌𝛌 𝐕𝐕𝐓𝐓𝐕𝐕
𝐕𝐕𝐓𝐓𝐕𝐕

= 𝜆𝜆   

 

 

3.3  Some important definitions associate with Differential Equations 

 

If  𝐀𝐀𝑛𝑛×𝑛𝑛 is diagonalizable with 𝜎𝜎(𝐀𝐀) = {𝜆𝜆1, 𝜆𝜆2, 𝜆𝜆3, … … … , 𝜆𝜆𝑘𝑘}, then the unique solution of  

𝐮𝐮′ = 𝐀𝐀𝐮𝐮, 𝐮𝐮(𝟎𝟎) = 𝐜𝐜, is given by 

        𝐮𝐮 = 𝐞𝐞𝐀𝐀𝐀𝐀𝐜𝐜 = 𝐞𝐞𝛌𝛌𝟏𝟏𝐀𝐀𝐯𝐯𝟏𝟏 + 𝐞𝐞𝛌𝛌𝟐𝟐𝐀𝐀𝐯𝐯𝟐𝟐 + ⋯+ 𝐞𝐞𝛌𝛌𝐤𝐤𝐀𝐀𝐯𝐯𝐤𝐤 

in which 𝐯𝐯𝐢𝐢 is the Eigen vector 𝐯𝐯𝐢𝐢 = 𝐆𝐆𝐢𝐢𝐜𝐜, where 𝐆𝐆𝐢𝐢 is the 𝒊𝒊𝒕𝒕𝒕𝒕 spectral projector (Eigen value). 

Non homogeneous systems as well as the non diagonalizable case treated are in Example: 

Stability 

Let 𝐮𝐮′ = 𝐀𝐀𝐮𝐮, 𝐮𝐮(𝟎𝟎) = 𝐜𝐜, where A is diagonalizable with Eigen values 𝝀𝝀𝒊𝒊   

• If Re (𝝀𝝀𝒊𝒊) < 0 for each 𝒊𝒊, 𝐥𝐥𝐢𝐢𝐦𝐦
𝒕𝒕→∞

𝑒𝑒𝐴𝐴𝑑𝑑, then =   𝟎𝟎  and    𝐥𝐥𝐢𝐢𝐦𝐦
𝒕𝒕→∞

𝑢𝑢(𝑡𝑡)  = 𝟎𝟎, for every initial 

vector c. In this case  𝐮𝐮′ = 𝐀𝐀𝐮𝐮 is said to be a stable system, and A is called a stable 

matrix.  

• If Re (𝛌𝛌𝐢𝐢) > 0 for some  i , then component of 𝐮𝐮(t) can become unbounded as 𝐀𝐀 → ∞ , 

in  which case the system 𝐮𝐮′ = 𝐀𝐀𝐮𝐮 as well as the underlying matrix A are said to be 

unstable. 

http://mathworld.wolfram.com/NaturalNorm.html
http://mathworld.wolfram.com/L2-Norm.html
http://mathworld.wolfram.com/ConjugateTranspose.html
http://mathworld.wolfram.com/ConjugateTranspose.html
http://mathworld.wolfram.com/SquareMatrix.html
http://mathworld.wolfram.com/SquareRoot.html
http://mathworld.wolfram.com/Eigenvalue.html
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• If Re (λi) ≤ 0 for each  i , then component of 𝐮𝐮(t) remain finite for all t, but some can 

oscillate indefinitely. This is called a semi stable situation. 

 

 

 

 

3.4  Some important theorems and associate properties of Eigen values 

 

In previous section we recalled some important definitions and associate definitions 

regarding Eigen value problems. In this section we will introduces some important theorems 

and associate properties regarding Eigen value problems. For proofs of the theorems, reader 

is requested to see any standard linear algebra book.  

Theorem (i): The equation Au = λu has a non-trivial solution u iff λ is a latent root (Eigen  

value) of A. i.e. λ is a latent root of a matrix A iff it is a root of the characteristic 

equation of A. i.e. The Eigen values of a linear transformation  A are the scalars 

λ which satisfy the equation |A-λI| = 0.  

Theorem (ii): Fundamental theorem of Algebra: Every polynomial over the complex field 

C has a root. Where M=A- λI, that is, M is obtained by subtracting λ down the 

diagonal of A. Note that some matrices have no Eigen values and hence no 

Eigenvectors.  

Theorem (iii):The scalar λ is a characteristic root of the matrix A iff the matrix (A-λI) is 

singular. 

Theorem (iv) : If  λ1, λ2, λ3, ……………….., λk  are distinct Eigen values (roots) of a matrix A and 

if  x1, x2, x3, …, xk  are non zero Eigen (invariant) vectors associated 

respectively with these roots, then x1, x2, x3, …, xk  are linearly independently. 

Theorem (v) : The kth derivative of   p( 𝜆𝜆) = |𝐀𝐀 –  λ𝐈𝐈| , where A is n square, with respect to λ 

(a) is k ! times the sum of the principal minors of order n-k of the 

characteristic matrix  when k<n, (b) is n! when k = n, and (c)  is 0 when k>n.  
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Theorem (vi) : If   λi is an r –fold characteristic roots (Eigen value ) of an n-square matrix A, 

the rank of (A – λI) is not less than n-r and the dimension of the associated 

invariant vector space is not greater than r. 

Theorem (vii) : The characteristic roots of A and  𝐀𝐀/are the same.  

 

 

Theorem (viii) :Since any principal minor of  𝐀𝐀� / is the conjugate of the corresponding                             

principal minor of A, the characteristic roots of 𝐀𝐀� are the conjugates of the                            

characteristic roots of A. 

Theorem (ix) : If  λ1, λ2, λ3, ……………….., λn  are the characteristic roots of an n-square matrix A  

and if k is a scalar, then kλ1,  kλ2, k λ3, ……………….., kλn  are the characteristic 

roots of (kA). 

Theorem (x):  If (λi,x)  be the Eigen pair  of an n-square matrix A and if k is a scalar, then λi- 

k,  x be the Eigen pair  of (A-k I). 

Theorem (xi): If ( α,x) be the  Eigen pair of a non-singular matrix A, then |A|/α , x be the  

Eigen pair of adj A. 

Theorem (xii): (α,x)   be the  Eigen pair of a non-singular matrix A, then 1/α, x be the  Eigen 

                           pair of A-1. 

Theorem (xiii): If x be Eigen vector associated with Eigen value λ of a matrix A, then x be 

                            remained Eigen vector of the matrix (kA), (A-kI), A-1 and (kA-1) associated  

                            with Eigen value k λ, λ-k, 1/ λ and  k/ λ respectively.  

Theorem (xiv):  Assume that the n×n matrix  A  has distinct Eigen values λ1, λ2, λ3, ……………….., 

                             λn  and consider the Eigen value λj . Then a constant α can be chosen so 

                             that   μ1= 1/( λj -  α) is the dominant Eigen value of  (A- αI)-1. 

Theorem (xv): A symmetric matrix 𝐀𝐀 ∈  ℛ𝑛𝑛×𝑛𝑛 is positive definite if and only if all of its  

                          Eigen values are positive. 

Theorem (xvi):  Geometrically, A does not rotate any vector by more than π/2. 

Theorem (xvii): If A be square matrix with Eigen values λ1, λ2, λ3, ……………….., λn then 

                           𝑡𝑡𝑟𝑟(𝐀𝐀) = ∑ aii𝑛𝑛
𝑖𝑖=1 = ∑ 𝜆𝜆𝑖𝑖𝑛𝑛

𝑖𝑖=1 = 𝜆𝜆1 + 𝜆𝜆2 + 𝜆𝜆3 + ⋯+ 𝜆𝜆𝑛𝑛 
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Theorem (xviii): The determinant of A is the product of all Eigen values: 

                             det(𝐀𝐀) = ∏ 𝜆𝜆𝑖𝑖n
i=1 = 𝜆𝜆1𝜆𝜆2 … 𝜆𝜆𝑛𝑛      

Theorem (xix): The Eigen values of the kth power of A, i.e. the Eigen values of 𝐀𝐀𝑘𝑘, for any  

                            positive integer k, are 𝜆𝜆1𝑘𝑘,𝜆𝜆2𝑘𝑘, 𝜆𝜆3𝑘𝑘, … , 𝜆𝜆𝑛𝑛𝑘𝑘        

Theorem (xx): The matrix A is invertible if and only if all the Eigen values are nonzero. If                              

A is invertible, then the Eigen values of 𝐀𝐀−1 are   1
𝜆𝜆1

, 1
𝜆𝜆2

, … , 1
𝜆𝜆𝑛𝑛

, . Clearly, the                            

geometric multiplicities coincide. Moreover, since the characteristic                            

polynomial of the inverse is the reciprocal polynomial for that of the                            

original, hey share the same algebraic multiplicity. 

Theorem (xxi): If A is equal to its conjugate transpose A*(in other words, if A is Hermitian),  

                            then every Eigen value is real. The same is true of any a symmetric real                          

matrix. If A is also positive-definite, positive-semi definite, negative-                          

definite, or negative-semi definite every Eigen value is positive, non-                             

negative, negative, or non-positive respectively. 

Theorem (xxii): Every Eigen value of a unitary matrix has absolute  value |𝜆𝜆| = 1. 

Theorem (xxiii): Let A be an arbitrary n × n  matrix of complex numbers with Eigen values 

                             λ1, λ2, λ3, ……………….. , λn (Here it is understood that an Eigen value with                           

algebraic multiplicity 𝜇𝜇 occurs 𝜇𝜇 times in this list.) Then xTAx > 0  for 

every nonzero 𝐱𝐱 ∈ ℛ𝑛𝑛×1 (most commonly used as the definition).  

(a) All Eigen values of A are positive.  

(b)  𝐀𝐀 = 𝐁𝐁/𝐁𝐁 for some nonsingular B. While B is not unique. 

(c) But there is one and only one upper-triangular matrix R with positive diagonals such 

that  𝐀𝐀 = 𝐑𝐑/𝐑𝐑 This is the Cholesky factorization of A. 

(d) The leading principal minors of A are positive. 

(e) All principal minors of A are positive. 

 

Theorem (xxiv): If   x0 is chosen appropriately, then the sequences 

http://en.wikipedia.org/wiki/Determinant
http://en.wikipedia.org/wiki/Reciprocal_polynomial
http://en.wikipedia.org/wiki/Conjugate_transpose
http://en.wikipedia.org/wiki/Hermitian_matrix
http://en.wikipedia.org/wiki/Symmetric_matrix
http://en.wikipedia.org/wiki/Positive-definite_matrix
http://en.wikipedia.org/wiki/Unitary_matrix
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 �𝐗𝐗𝑘𝑘 =  �𝐱𝐱1
(𝑘𝑘), 𝐱𝐱2

(𝑘𝑘), … , 𝐱𝐱𝑛𝑛
(𝑘𝑘)�

T
� and {Ck}  generated recursively by 𝐘𝐘k =

(𝐀𝐀 − α𝐈𝐈)−1𝐱𝐱k  and  𝐗𝐗𝑘𝑘+1 = 1
𝑐𝑐𝑘𝑘+1

 𝐘𝐘𝑘𝑘  where c𝑘𝑘+1 = xj
(k)  and xj

(k) =

 max
1≤𝑖𝑖≤𝑛𝑛

��𝑥𝑥𝑖𝑖
(k)��, will converge to the dominant Eigen pair (μ1, x1) of the 

matrix (A-kI)-1.   Finally, the corresponding Eigen value for the matrix A is 

given by the calculation   λj = � 1
µ1
� + α 

Theorem (xxv): To compute the dominant Eigen value λ1 and its associated Eigen 

vector x1 for the n×n matrix A.  It is assumed that the n Eigen values have 

the dominance property.   

                                       | λ1 | > | λ2 |  ≥  | λ3 | ≥   ……   | λn | .  

Theorem (xxvi): If A is diagonalizable, then A has n linearly independent Eigen vectors with 

corresponding Eigen values. Note that since n Eigen vectors are linearly 

independent, they must form a basis of Eigen space. 

                                                    
3.5  Iterative methods 

 
In solving an Eigen value problem by iterative methods, there are a number of properties and 

conditions that need to be considered. These greatly affect the choice of algorithm. We list 

below a number of questions that an investigator needs to consider in solving a particular 

problem. 

(i)  Is the matrix real or complex? 

(ii) What special properties does the matrix have? Is it    

(a) symmetric? 

(b) Hermitian?  

(c) Skew symmetric? 

(d)  Unitary? 

(e) Structure? 

(f)  Band? 

(g) Sparse? 

(h) Structured sparseness? 
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(i) Toeplitz? and so on  

(iii) Which Eigen value required? 

(a) Largest in magnitude? 

(b)  Smallest in magnitude? 

(c) Real part of Eigen values? 

(d)  Nature of sign of Eigen values? 

(e) Sums of intermediate Eigen values? 

(f) Real part of Eigen values? 

There are many iterative numerical methods which deal with specific Eigen value and Eigen 

vectors along with specific form of matrix. Below we have listed few well-known methods 

with specific purposes 

 

i. Power method:  Power method for single largest (in magnitude) Eigen value and 

corresponding Eigen vector. 

ii. Inverse Power method: Inverse Power method for single smallest (in magnitude) 

Eigen value closest to zero and corresponding Eigen vector. 

iii. Inverse Power method with shift:  Inverse Power method with shift for desired 

single Eigen pairs. 

iv. Rayleigh quotient iteration: Rayleigh quotient iteration is fast to converse for 

single Eigen pairs. 

v. Simultaneous iteration:  Simultaneous iteration for many Eigen values  

vi. QR algorithm:  QR algorithm (with shift) for all Eigen values (fast) but not find 

out corresponding Eigen vectors.  

 

 

3.6   Power method 

 

In mathematics, the power iteration is an Eigen value algorithms: given a matrix A, the 

algorithm will produce a number λ (the Eigen value) and a nonzero vector v (the 

Eigenvector), such that Av = λv. The Power iteration is a very simple algorithm. It does not 

http://en.wikipedia.org/wiki/Eigenvalue_algorithm


37 
 

compute  matrix decomposition and hence it can be used when A is a very large sparse 

matrix. Like the Jacobi and Gauss-Seidel methods, the power method for approximating 

Eigen values is iterative. First assume that the matrix A has a dominant Eigen value with 

corresponding dominant Eigen vectors (Under the assumptions: A has an Eigen value that is 

strictly greater in magnitude than its other Eigen values). The starting vector has a nonzero 

component in the direction of an Eigen vector associated with the dominant Eigen value. Then 

choose an initial approximation Eigen vector of A say x0, which may be an approximation to 

the dominant Eigen vector or a random vector. This initial approximation must be a non zero 

vector. The method is described by the iteration. So, at every iteration, the vector xk   is 

multiplied by the matrix A and normalized. Then: A subsequence of converges to an 

Eigenvector associated with the dominant Eigen value. Note that the sequence does not 

necessarily converge.  Finally, the sequence is given by 

                                              𝐱𝐱1 = 𝐀𝐀𝐱𝐱0  

               𝐱𝐱2 = 𝐀𝐀𝐱𝐱1 = 𝐀𝐀(𝐀𝐀𝐱𝐱0) = 𝐀𝐀2𝐱𝐱0       

              𝐱𝐱3 = 𝐀𝐀𝐱𝐱2 = 𝐀𝐀(𝐀𝐀2𝐱𝐱0) = 𝐀𝐀3𝐱𝐱0  

                                                         ⋮ 

               𝐱𝐱𝑘𝑘 = 𝐀𝐀𝐱𝐱𝑘𝑘−1 = 𝐀𝐀(𝐀𝐀𝑘𝑘−1𝐱𝐱0) = 𝐀𝐀𝑘𝑘𝐱𝐱0  

For large powers of k, and by properly scaling this sequence, we will see that we obtain 

a good approximation of the dominant Eigen vector of A. 

 

Algorithm of Power Method 

1:  Choose a starting vector x(0) ∈ Ϝ𝑛𝑛 with ║x(0)║ = 1. 

2:  k=0. 

3:  repeat 

4:  k :=k+1; 

5:  y(𝑘𝑘): = 𝐀𝐀𝐱𝐱(𝑘𝑘−1);  

6:  𝜇𝜇𝑘𝑘  ∶=  ║y(𝑘𝑘)║;  

7:  x(𝑘𝑘): = 𝐲𝐲(𝑘𝑘)/𝜇𝜇𝑘𝑘;  

8:  until a convergence criterion is satisfied 
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The vector x(𝑘𝑘) generated by algorithm have all norm (length) one. That is �𝐱𝐱(𝑘𝑘)�
𝑘𝑘=0
∞

 is a 

sequence on the until sphere in Ϝ𝑛𝑛.  

 

Theorem : If A is an n×n diagonalizable matrix with a dominant Eigen value, then there exist 

nonzero 𝐱𝐱𝟎𝟎 such that the sequence of vectors given by  

               𝐀𝐀𝐱𝐱𝟎𝟎,   𝐀𝐀𝟐𝟐𝐱𝐱𝟎𝟎,   𝐀𝐀𝟑𝟑𝐱𝐱𝟎𝟎, 𝐀𝐀𝟒𝟒𝐱𝐱𝟎𝟎, ⋯  𝐀𝐀k𝐱𝐱𝟎𝟎,⋯        

  approaches a multiple of the dominant Eigen vectors of A. 

 

Proof: Because A is diagonalizable, then A has n linearly independent Eigen vectors with 

corresponding Eigen values.  Assume that these Eigen values are ordered so that λ1 is the 

dominant Eigen value (with a corresponding Eigen vectors of x1). Let A be an n × n matrix 

with Eigen values λ1, λ2, λ3, …  , λn , not necessarily distinct, that satisfy the relations |λ1| >

|λ2| ≥ |λ3| ≥ ⋯  ≥ |λn|.  The Eigen valueλ1, which is largest in magnitude, is known as the 

dominant Eigen value of the matrix A. Furthermore, assume that the associated Eigen vectors 

𝛎𝛎𝟏𝟏, 𝛎𝛎𝟐𝟐, 𝛎𝛎𝟑𝟑, … , 𝛎𝛎𝐧𝐧  are linearly independently, and therefore form a basis for 𝐑𝐑n.  It should be 

noted at this point that not all matrices have Eigen values and Eigen vectors which satisfy the 

conditions we have assumed here. 

 

Let 𝐱𝐱(0) be a nonzero element of 𝐑𝐑𝑛𝑛 . Since the Eigenvectors of A form a basis for 𝐑𝐑𝑛𝑛, it 

follows that  𝐱𝐱(0) can be written as a linear combination of 𝝂𝝂𝟏𝟏, 𝝂𝝂𝟐𝟐,𝝂𝝂𝟑𝟑, … ,𝝂𝝂𝒏𝒏  ; that is,  there 

exist contains 𝓸𝓸𝟏𝟏,𝓸𝓸,𝓸𝓸𝟑𝟑, … ,𝓸𝓸𝒏𝒏   such that 

           𝐱𝐱(0) = α𝟏𝟏𝛎𝛎𝟏𝟏 + 𝛂𝛂𝟐𝟐𝛎𝛎𝟐𝟐 + 𝛂𝛂𝟑𝟑𝛎𝛎𝟑𝟑 +  … + α𝐧𝐧𝛎𝛎𝐧𝐧 . 

Next, construct the sequence of vectors �𝐱𝐱(𝑚𝑚)� according to the rule 𝐱𝐱(𝑚𝑚) = 𝐀𝐀𝐱𝐱(𝑚𝑚−1) for m ≥

1. By direct calculation we find 

 𝐱𝐱(1) = 𝐴𝐴𝐱𝐱(0) = 𝛼𝛼1(𝐴𝐴𝜈𝜈1) + 𝛼𝛼2(𝐴𝐴𝜈𝜈2) + 𝛼𝛼3(𝐴𝐴𝜈𝜈3) +  … + 𝛼𝛼𝑛𝑛(𝐴𝐴𝜈𝜈𝑛𝑛) 

                   = 𝛼𝛼1(𝜆𝜆1𝝂𝝂1) + 𝛼𝛼2(𝜆𝜆2𝝂𝝂2) + 𝛼𝛼3(𝜆𝜆3𝝂𝝂3) +  … + 𝛼𝛼𝑛𝑛(𝜆𝜆𝑛𝑛𝝂𝝂𝑛𝑛) 

            𝐱𝐱(2) = 𝐴𝐴𝐱𝐱(1) = 𝐴𝐴(2)𝐱𝐱(0) 

                   = 𝛼𝛼1(𝐴𝐴2𝝂𝝂1) + 𝛼𝛼2(𝐴𝐴2𝝂𝝂2) + 𝛼𝛼3(𝐴𝐴2𝝂𝝂3) +  … + 𝛼𝛼𝑛𝑛(𝐴𝐴2𝝂𝝂𝑛𝑛)  

                   = 𝛼𝛼1�𝜆𝜆1
2𝝂𝝂1� + 𝛼𝛼2�𝜆𝜆2

2𝝂𝝂2� + 𝛼𝛼3�𝜆𝜆3
2𝝂𝝂3� + … + 𝛼𝛼𝑛𝑛(𝜆𝜆𝑛𝑛

2𝝂𝝂𝑛𝑛) 
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and, in general, 

           𝐱𝐱(𝑚𝑚) = 𝐴𝐴𝐱𝐱(𝑚𝑚−1) = ⋯𝑨𝑨(𝑚𝑚) 𝐱𝐱(0)  

                   = 𝛼𝛼1(𝐴𝐴𝑚𝑚𝝂𝝂1) + 𝛼𝛼2(𝐴𝐴𝑚𝑚𝝂𝝂2) + 𝛼𝛼3(𝐴𝐴𝑚𝑚𝝂𝝂3) +  … + 𝛼𝛼𝑛𝑛(𝐴𝐴𝑚𝑚𝝂𝝂𝑛𝑛)    

                    = 𝛼𝛼1(𝜆𝜆1
𝑚𝑚𝝂𝝂1) + 𝛼𝛼2(𝜆𝜆2

𝑚𝑚𝝂𝝂2) + 𝛼𝛼3(𝜆𝜆3
𝑚𝑚𝝂𝝂3) + … + 𝛼𝛼𝑛𝑛(𝜆𝜆𝑛𝑛

𝑚𝑚𝝂𝝂𝑛𝑛)        

In deriving these expressions we have made repeated use of the relation 𝐴𝐴𝝊𝝊𝑗𝑗 = 𝝀𝝀𝑗𝑗𝝊𝝊𝑗𝑗, which 

follows from the fact that 𝝊𝝊𝑗𝑗 is an Eigenvector associated with the Eigen value 𝝀𝝀𝑗𝑗 . 

Factoring  𝜆𝜆𝑚𝑚1 from the right –hand side of the equation for 𝒙𝒙(𝑚𝑚) gives 

 𝐱𝐱(𝑚𝑚) = 𝜆𝜆1
𝑚𝑚  �𝛼𝛼1𝝂𝝂1 + 𝛼𝛼2 �

𝜆𝜆2
𝜆𝜆1
�
𝑚𝑚

 𝝂𝝂2 + 𝛼𝛼3 �
𝜆𝜆3
𝜆𝜆1
�
𝑚𝑚

 𝝂𝝂3 +   …  𝛼𝛼𝑛𝑛 �
𝜆𝜆𝑛𝑛
𝜆𝜆1
�
𝑚𝑚

 𝝂𝝂𝑛𝑛 � .             

By assumption, �𝜆𝜆𝑗𝑗
𝜆𝜆1
� < 1 for each j, So �𝜆𝜆𝑗𝑗

𝜆𝜆1
�
𝑚𝑚

 → 0 𝑎𝑎𝑎𝑎 𝑚𝑚 → ∞. So 

                     𝑙𝑙𝑙𝑙𝑚𝑚
𝑚𝑚 → ∞

̇
 𝐱𝐱

(𝑚𝑚)

𝜆𝜆1
𝑚𝑚 = 𝛼𝛼1𝝂𝝂𝟏𝟏. 

Since any nonzero constant times an Eigenvector is still an Eigen vector associated with the 

same Eigen value, We see that the scaled sequence �𝐱𝐱(𝑚𝑚)/𝜆𝜆1
𝑚𝑚� converges to an Eigen vector 

associated with the dominant Eigen value provided𝛼𝛼1 ≠ 0. Furthermore, convergence toward 

the Eigen vector is linear with asymptotic error constant �𝜆𝜆2
𝜆𝜆1
� . 

To simplify the notation, let’s introduce the vector  𝒚𝒚(𝑚𝑚) to denote the result of multiplying by 
the matrix A; that is 𝒚𝒚(𝑚𝑚) = 𝐴𝐴𝒙𝒙(𝑚𝑚−1), 𝒙𝒙(𝑚𝑚) is then calculated by the formula   
 
                      𝒙𝒙(𝑚𝑚) = 𝑦𝑦(𝑚𝑚)

𝑦𝑦𝑝𝑝𝑚𝑚(𝑚𝑚) , 

where 𝑝𝑝𝑚𝑚 is an integer chosen so that  �𝑦𝑦𝑝𝑝𝑚𝑚
(𝑚𝑚)� =  ||𝑦𝑦(𝑚𝑚)||∞ . Note that 𝑝𝑝𝑚𝑚 is an index into 

the vector 𝒚𝒚(𝑚𝑚). 

To avoid overflow and underflow problems when calculating the sequence �𝐱𝐱(𝑚𝑚)� ( note that 

𝑙𝑙𝑙𝑙𝑚𝑚
𝑚𝑚 → ∞

̇
  𝜆𝜆1

𝑚𝑚 → ±∞ when |𝜆𝜆1| > 1. where as 𝑙𝑙𝑙𝑙𝑚𝑚
𝑚𝑚 → ∞

̇
  𝜆𝜆1

𝑚𝑚 → 0 when  |𝜆𝜆1| < 1, It is 

common practice to scale the vectors 𝒙𝒙(𝑚𝑚) so that  they are all of unit length. Here, we will 

use the 𝑙𝑙∞ − 𝑛𝑛𝑜𝑜𝑟𝑟𝑚𝑚 to measure vector length. Thus in a practical implementation of the 

Power method, the vector 𝒙𝒙(𝑚𝑚) would be computed on two steps: First multiply the previous 

vector by the matrix A and then scale the resulting vector to unit length. 
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The proof of the Theorem provides some insight into the rate of convergence of the Power 

method. That is, if the Eigen values of A are ordered so that 

             |𝜆𝜆1| > |𝜆𝜆2| ≥ |𝜆𝜆3| ≥ ⋯  ≥ |𝜆𝜆𝑛𝑛|.   

then the power method will converge quickly if  �𝜆𝜆2
𝜆𝜆1
� is small, and slowly if  is close to 1. The 

rate of convergence is displayed in the figure 3.2 (for an example). 

Then the power  method will converge quickly  if |𝜆𝜆2|/|𝜆𝜆1| is small, and slowly if |𝜆𝜆2|/|𝜆𝜆1| 

is close to 1. The convergence  is illustrated in figure 3.2. 

 

 
 
 
Summary of the Power method :  

1. The Power method can be used to find the dominant Eigen value of a symmetric 

matrix. 

2. The method has linear convergence. 

3. The method requires an initial guess and it is not obvious how this can be chosen 

in practice. 

4. The method does work if the dominant Eigen value has multiplicity r. The 

estimated Eigen vector will then be a linear combination of the r Eigenvectors. 

Figure 3.2:  Iteration number versus errors in power method 
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5.  The speed of convergence of the Power iteration depends on the ratio of the 

second largest Eigen value (in absolute value) to the largest Eigen value (in 

absolute value). The convergence rate of the power method depends on Іλ2/λ1І , 

where λ1 is the largest Eigen value and  λ2 is the second largest Eigen value of A 

in magnitude. This ratio is generally smaller than1, allowing adequate 

convergence. But there are cases where this ratio can be very close to 1, causing 

very slow convergence. i.e. if the ratio of the largest Eigen value and second 

Eigen value is near to one i.e. if  Іλ2/ λ1І1  then the speed of convergence be 

extremely slow. 

6. If z be the initial guess of Power method and  Let x1 be the Eigen vector 

corresponding to dominant Eigen value λ1 i.e λ1 = λmax(A). The angle ‹(z,x1) 

between x1 and z is defined by the relation  

                    cos  < (𝑧𝑧, 𝑥𝑥1) =  𝑧𝑧∗𝑥𝑥1
||𝑧𝑧||2 ||𝑥𝑥1||2

. 

(a) If the starting vector z and the Eigen vector x1 are perpendicular to each other, 

thencos  < (𝑧𝑧, 𝑥𝑥1) = 0  . In this case the Power method does not converge in exact 

arithmetic.  

(b) On the other hand, if ,  cos < (𝑧𝑧, 𝑥𝑥1) ≠ 0  the Power method generates a sequence 

of vectors that become increasingly parallel to x1 . This condition on the angle <

(𝑧𝑧, 𝑥𝑥1) is true with very high probability if  z  is chosen at random. 

7. The Power method can be used to find dominant Eigen value of a symmetric 

matrix. 

8. The Power method requires an initial guess and it is not obvious how this can be 

chosen in practice. But random choose has very high probability for convergence 

of the algorithm.  

9. The method does work if the dominant Eigen value has multiplicity r. Then the 

estimated Eigen vector will be a linear combination of the r Eigen vectors. 

Although the Power method has worked well in these examples, we must say something about 

cases in which the Power method may fail. There are basically three such cases: 
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1. Using the Power method when A is not diagonalizable. Recall that A has n 

linearly independent Eigen vectors if and only if A is diagonalizable. Of 

course, it is not easy to tell by just looking at A whether it is diagonalizable.   

2. Using the Power method when A does not have a dominant Eigen value, or 

when the dominant Eigen value is such that  

             |𝜆𝜆1| > |𝜆𝜆2| but  |𝜆𝜆1| = |𝜆𝜆2| 

Then  |𝜆𝜆1/𝜆𝜆2| is barely less than 1, and high powers of |𝜆𝜆1/𝜆𝜆2|  do not tend to 

zero quickly. Again, it is not easy to determine whether A has this defect by 

just looking at A. 

3. If the entries of A contain significant error. Powers Am of A will have 

significant round off error in their entries.  

The Power iteration is a very simple algorithm and elegant. It does not compute a matrix 

decomposition, and hence it can be used when A is a very large sparse matrix. But Power 

method suffers some major drawbacks. The method only returns a single Eigen vector 

estimate, and it is always the one corresponding to the Eigen value of largest magnitude. In 

addition, convergence is only guaranteed if the Eigen values are distinct in particular, the two 

Eigen values of largest absolute value must have distinct magnitudes. The rate of convergence 

primarily depends upon the ratio of these magnitudes, so if the two largest Eigen values have 

similar sizes, then the convergence will be slow. In spite of its drawbacks, the power method 

is still used in some applications, since it works well on large, sparse matrices when only a 

single Eigen vector is needed.  

 

 

3.7  Inverse Power method  

 

The Power method is able to find out only largest Eigen pair.  The method could not find 

other Eigen pairs like smallest Eigen pair.  On the other hand Inverse Power method is able to 

find out smallest Eigen value or desire Eigen value by using shifting Eigen property. Observe 

that subtracting a constant from the diagonal elements of A gives a system whose Eigen 

values are those of A with the same constant subtracted:  

mhtml:file://C:%5CUsers%5CSah%20Alam%5CDesktop%5Csah___28_12_14%5CPower%20iteration%20-%20Wikipedia,%20the%20free%20encyclopedia.html.mht!http://en.wikipedia.org/wiki/Matrix_decomposition
mhtml:file://C:%5CUsers%5CSah%20Alam%5CDesktop%5Csah___28_12_14%5CPower%20iteration%20-%20Wikipedia,%20the%20free%20encyclopedia.html.mht!http://en.wikipedia.org/wiki/Matrix_decomposition
mhtml:file://C:%5CUsers%5CSah%20Alam%5CDesktop%5Csah___28_12_14%5CPower%20iteration%20-%20Wikipedia,%20the%20free%20encyclopedia.html.mht!http://en.wikipedia.org/wiki/Sparse_matrix
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Given Ax = λx. 

Subtract slx = sx from both sides: 

  Ax-slx = λx –sx, 

  (A-sl)x = (λ –s)x, 

This relationship can be applied in two ways. Suppose we wish to determine the value of an 

Eigen value near to some numbers. We shift the Eigen values by subtracting s from the 

diagonal elements: there is then an Eigen value very near to zero in the shifted matrix. We use 

the power method on the inverse of the shifted matrix. This is often rapidly convergent 

because the reciprocal of the very small value is very large and is usually much larger then the 

next largest one (for the shifted inverse system). After we obtain it, we reverse the 

transformations to obtain the desired value for the original matrix. This process is called the 

Inverse Power Method.  

The Eigen value problem is stated as Ax = λx.  If ІAІ≠ 0, then this equation is reformulated as        

              A-1x = 1
λ
 x, 

We see that the Eigen value of the matrix A-1 obtained the Power method will be the largest 

(1/ λ) or the smallest λ. Hence the Power method applied to the matrix A-1 is called the Inverse 

Power method and yields the lowest Eigen value by writing. 

          (A- qI) x = ( λ-q) x 

which can be put in the form 

         (A- qI) -1x = = 1
λ−q

 x,     

By choosing q very close to an Eigen value and applying the Power method on the matrix 

(A- qI) -1 we will converge on the largest value of 1
λ−q

 which means that we have converged 

on the Eigen value closest to q. The iterative procedure can be described in the following way: 

 (A-ql)-1 x(i-1) = y(i)  

     or (A-ql) y(i)  = x(i-1)  

where x(i-1)  is an initial guess for the Eigen vector of the Eigen value in the vicinity of the 

value q; and y(i)   is the improved approximation to the Eigen vector. y(i)   is evaluated by 

performing Gaussian elimination on the square matrix (A-ql) using the initial guess vector x(i-

1) as the right hand side of the system. Once y(i)   is evaluated, it is normalized by all its 
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elements by the element having the largest magnitude. This normalized vector is now used as 

the new x(i-1)  and the procedure is repeated to find a better approximation y(i)  . The element 

having the largest magnitude in  y(i)   which is used to normalize it, is also an approximation to 

the Eigen value of (A-ql)-1. This is equated to 1
λi−q

 to evaluate the Eigen value. This procedure 

is continued for consecutive Eigen value approximations, until the relative error between the 

consecutive values satisfies a relative error criterion 

The Inverse Power method is more powerful than the Power method, because it allows all the 

Eigen values to the found by appropriately choosing q. However the method is extremely 

tedious and computationally expensive since Gaussian elimination must be performed for 

each iteration. 

 

 

3.8   Algorithm of Inverse Power method (Inverse vector iteration) 

 

Algorithm of Inverse vector iteration 

1:   Choose a starting vector 𝐱𝐱0 ∈ Ϝn and a shift 𝜎𝜎. 

2:   Compute the LU factorization of 𝐀𝐀 − 𝜎𝜎𝐈𝐈: LU=P (𝐀𝐀− 𝛔𝛔𝐈𝐈) 

3:   𝐲𝐲(𝟎𝟎)  ≔ 𝐔𝐔−𝟏𝟏𝐋𝐋−𝟏𝟏𝐏𝐏𝐱𝐱(𝟎𝟎).  𝜇𝜇(0) = 𝒚𝒚(0)∗x(0),  𝜆𝜆(0) ≔ 𝜎𝜎 + 1
𝜇𝜇(0)  . 𝑘𝑘 ≔ 0. 

4:   while ||𝐱𝐱(𝑘𝑘) − 𝐲𝐲(𝑘𝑘)

𝜇𝜇(𝑘𝑘)  || > tol ||𝐲𝐲(𝑘𝑘) || do 

5:     k : =k+1. 

6:     𝐱𝐱(𝑘𝑘) ∶=  𝐲𝐲𝑘𝑘−1/|| 𝒚𝒚𝑘𝑘−1||. 

7:     𝐲𝐲(𝑘𝑘) ∶=  𝐔𝐔−1𝐿𝐿−1𝐏𝐏𝐱𝐱(𝑘𝑘). 

8:    𝜇𝜇(𝑘𝑘) : = 𝐲𝐲(𝐤𝐤)∗𝐱𝐱(𝑘𝑘), 𝜆𝜆(𝑘𝑘) ≔  𝜎𝜎 + 1/𝜇𝜇(𝑘𝑘). 

9:    end while 

where we have used 

     𝐀𝐀𝒚𝒚(𝒌𝒌) − 𝜆𝜆(𝒌𝒌)𝐲𝐲(𝒌𝒌) = 𝐀𝐀𝐲𝐲(𝒌𝒌) − �𝜎𝜎 − 𝟏𝟏
𝝁𝝁(𝒌𝒌)�𝒚𝒚(𝒌𝒌) = 𝐱𝐱(𝒌𝒌) − 𝒚𝒚(𝒌𝒌)/𝜇𝜇(𝒌𝒌)  

The convergence of the Theorem can easily be adapted to the new situation if it is taken into 

account that 𝐀𝐀 − 𝜎𝜎𝐈𝐈 has Eigen pairs (𝜇𝜇𝑖𝑖,𝐮𝐮𝑖𝑖) with  𝜇𝜇𝑖𝑖 = 1
(𝜎𝜎−𝜆𝜆𝑖𝑖)

. 
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3.9  Summary  

 

The Power method and Inverse Power method are two methods for numerical calculation of 

Eigen values as well as Eigen vectors of real matrices. The Stability of a numerical Eigen 

value problem depends on the matrix under consideration. If the matrix is symmetric with 

symmetrically distributed error, then the calculated Eigen values will approximate the actual 

Eigen values, provided the Eigen values are all simple. Otherwise, the numerical methods 

may fail to find all Eigen values. 
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CHAPTER IV 

 

 

Proposed Modified Hybrid Iterative Algorithm 
 

 

4.1  Introduction  

 

Many physical situations, related to Eigen value problem, occur in real live in which largest 

and or smallest Eigen value is required and in some cases nature of the Eigen values may 

required. Therefore proposed algorithm will be developed to purpose these issues. Actually, 

the proposed algorithm will be a hybridization of existing Power method and Inverse Power 

method along with some modifications so that the proposed algorithm is able to find out not 

only largest and smallest Eigen pairs along with the nature of Eigen value sequences. 

Therefore, before proposed the modified algorithm, at first, we would like to present existing 

algorithm of Power method and Inverse Power method in brief. 

 

 

4.2  Existing Algorithm of Power Method and Inverse Power Method 
 

At first consider an algebraic Eigen value problem  

 `𝐀𝐀𝐱𝐱 =  𝜆𝜆𝐱𝐱                                                                                                                 (4.1) 
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Here A is n×n coefficient matrix of a system of linear equations and (λi, xi) : i=1,2, …, n are 

Eigen pairs of the system. It is also assumed that A is positively defined matrix or at least 

largest and smallest Eigen values are real and unique.   

As mentioned earlier that the proposed algorithm will be developed by hybridization of Power 

method and Inverse Power method with some modification, so we recalled the pseudo-code of 

Power method as well as Inverse power method here. In the following pseudo-codes, the 

Power method is defined as a function and denoted as Power Method ( ) and Inverse Power 

Method is also defined as a function and denoted as Inverse Power Method ( ). The pseudo-

codes of both functions are presented below respectively. 

Power Method ( ): 

  { 
     Step (1): read A                                           //read the elements of matrix A 

        set  y = x0                                                          //∋  ‖𝐱𝐱0‖ = 1 the initial guess  
        set   ξ= ξ0                                       // the relative tolerant error      
        set   Imax                                         //maximum  number of iteration    

                   for k = 1,2, ……, Imax do               //Starting loop   
           { 

     Step (2):           ν = y / ||y||2                          //Normalization of guess solution 
     Step (3):           y = Aν                                //Matrix multiplication 
     Step (4):           θ = ν * y                             //Guess Eigen value  
     Step (5):           if ||y – θ ν||2  ≤ ξ |θ|,             // Stopping criterion  

                  set (λ , x )= (θ , ν)               //accept Eigen pair                     
                              else continue   
                               } 
                         end for                                     //Closing loop                                     
     Step (6):      accept (λ , x )= (θ , ν)               // finding Eigen pairs if step (5) true       
  }    

                                                           

Inverse Power Method ( ): 
{ 
            Step (1):  read A                                   // read the elements of matrix A 
                        set  x = z0                                                      // ∋  ‖𝒛𝒛0‖ = 1 the initial guess  

            set   ζ= ζ0                                   //  relative tolerant error           
            set   Imax                                     //  maximum  number of iteration                           

                        for k = 1,2, ……, Imax   do        // Starting loop  
                               { 

Step (2):           𝐀𝐀𝐲𝐲 = 𝐱𝐱                              // Solve for y i.e. y=A-1x  
                                                                // by LU decomposition, as Wielandt           
Step (3):           x = y / ||y||2                   // Normalization ,avaid over  
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                                                            //and under flow     
Step (4):          v = Ax                          //Matrix multiplication 
Step (5):          θ = x * v                       //Guess Eigen value  
Step (6):          if ||y –  ν||2  ≤ ζ              //Stopping criterion  
                        set (λ , x )= (θ , x)        //accept Eigen pair   for A-1                  

                                    else continue 
                                }  

    end for                             //Closing loop                                     
Step (7):        accept (λ , x ) = �1

𝜃𝜃
, 𝐱𝐱�        //Finding Eigen pairs   for A     

 } 
 
 
4.3  Proposed Modified Hybrid Iterative Algorithm 
 
In previous section we have briefly presented the existing Power method and Inverse Power 

method in which  the pseudo-code of  the Power method is  denoted as  Power Method ( ) 

and  Inverse Power method is denoted as  Inverse Power Method ( ). To find second 

(smallest) Eigen pair along with largest Eigen pair, at first, we have modified the Power 

method by the concept of shifting Eigen property (discussed in Chapter 2). But it is 

worthwhile to mention here that (Chapter V discuss in details) by using shifting property, the 

Power method, sometimes, fail to find out absolutely smallest Eigen value (ignore the 

negative sign) because of the nature of the Eigen spectrum. In such condition, Inverse Power 

method is necessary to find out the smallest Eigen pair.  In order to find out largest as well as 

smallest Eigen pairs and the nature of the Eigen spectrum, we have made a hybrid algorithm 

by joining Power method and Inverse Power method with some modifications. The proposed 

Modified Hybrid Iterative Algorithm is given bellow:  

 

Modified Hybrid Iterative Algorithm ( )  
{ 
     Step (1):    read A                                                     //read the elements of matrix A  
                      Set B=A                                                   //for finding Eigen pairs of B  
                                                                                      //rather than A 
                      Set {λ, x}={λ0, x0}                                   //guess initial Eigen pairs 
                      for r =1,2   do                                          //starting loop  for modified  
                                                                                        Power method                                                               
                      { 
                            if    r=1  
                           { 
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      Step (2):          apply  Power Method ( )                         // with arguments  B(=A), λ0, x0 
                              output  {λ1,x1}                                           //largest Eigen pair of B 
      Step (3) :         find s1, such that  λ1 =s1|𝜆𝜆1|                      // 𝑎𝑎 ∈ {+,−}, sign of the Eigen 
                                                                                                  value 
      Step (4):        output {λ1, x1,s1}                                   //obtain largest Eigen pairs of A 
                            r = r+1                                                //with sign of Eigen value  
                            } 
                           else if r =2  
                           { 
     Step (5):             set B=A- λ1I                                     //using shifting property 
     Step (6):             apply  Power Method ( )                 //with arguments  B(≠A), λ0, x0 

                                   output  {σ2, y2}                                     //largest Eigen pair of B 
      Step  (7) :            λ2 = σ2+ λ1 
                                 find s2, such that  λ2 = s2|𝜆𝜆2|                //𝑎𝑎1 ∈ {+,−}, sign of Eigen value 
      Step (8):              output {λ2, x2, s2}                                 //obtain 2nd Eigen pairs of A 
                            }                                                        //with sign of Eigen value  
                      } 
                         end for                                                  //ending loop  for  
                                                                                       //modified Power method 
    Step (9) :      if (s1= s2 and >0) 
                             { 
                                    Output : {(λ1, x1), (λ2, x2),(all λi ≥ 0)}  // largest and absolutely 
smallest 
                                                                                                  // Eigen values,  
                                                                                                   //corresponding vectors and 
                                                                                                  // nature of all Eigen spectrum  
                                                                                                  //which +ve 
 
    Step (10) :   Stop                                                                   //as find out all information 
                             } 
                             else if (s1= s2 and <0) 
                            { 
                                  Output : {(λ1, x1), (λ2, x2),(all λi ≤ 0)}     // largest and absolutely 
smallest  
                                                                                                   //Eigen values  
                                                                                                   // corresponding vectors and 
                                                                                                   //nature of all Eigen spectrum  
                                                                                                   //which - ve 
    Step (11) :  Stop                                                                    // as find out all information 
                         } 
                            else if (s1≠ s2 and s1 >0) 
                            { 
                                  Output : {(λ1, x1), (λ2, x2),(sign of all λi )} //positive largest and 
                                                                                                     //negative largest Eigen values,  
                                                                                                      // corresponding vectors and 
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                                                                                                      // nature of Eigen spectrum  
                                                                                                      //which are +ve to  - ve 
    Step (12) :   continue                                                               // as smallest Eigen values  
                                                                                                      //is not find out 
                                                                                                      // need inverse power method 
                        } 
                           else if (s1≠ s2 and s1 <0) 
                          { 
                                Output : {(λ1, x1), (λ2, x2),( sign of all λi)}   // negative largest and 
                                                                                                     // positive largest Eigen values,  
                                                                                                     // corresponding vectors and 
                                                                                                     // nature of Eigen spectrum  
                                                                                                     //which are -ve  to  + ve 
     Step (13) :     continue                                                            // as smallest Eigen values 
                                                                                                     // is not find out 
                                                                                                     // need inverse power method 
                       }  
    Step (14) :    Set B =A                                                              //for finding smallest Eigen  
                                                                                                //pairs of B  
                        Set {λ,x}={λ0, x0}                                            //guess initial Eigen pairs 
    Step (15) :    Apply Inverse Power Method ( )                          //with arguments  B(=A) ), 
                                                                                                       λ0, x0 
                             output {𝜆𝜆3∗ ,𝐱𝐱𝟑𝟑}                                                    //smallest Eigen pair of A 
    Step (16) :        find s3, such that  𝜆𝜆3∗  = s3|𝜆𝜆3∗ |                              //𝑎𝑎3 ∈ {+,−}, sigen of 
Eigen  
                                                                                                           value  
    Step (17):                            
                             Output : {(λ1, x1), (𝜆𝜆3∗ , x3),( sign of all λi)}         //largest and absolutely  
                                                                                                         //smallest Eigen values,  
                                                                                                         //corresponding vectors and 
                                                                                                         //nature of all Eigen 
                                                                                                           spectrum 
     Stop (18):          Stop and end 
}                                                                                                        //end the algorithm 
 

 

4.4  Discussion of the Proposed Algorithm 

Here we have proposed Modified Hybrid Iterative Algorithm based on Power method and 

Inverse Power method respectively to find out largest and smallest Eigen values, 

corresponding Eigen vectors and the nature of Eigen spectrums respectively. In the pseudo-

code of proposed algorithm, we have observed that there is a for loop, with index r = 1 and 2, 

which is dedicated with power method.    The first larger loop will start with r =1. When r =1, 
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for the call of function Power Method ( ), the algorithm will be able to produce largest Eigen 

pair. In consequence in Step (4), the algorithm will be able to find out the sign of largest 

Eigen value, which is helpful for the identification of second Eigen value. After execution of 

Step (4), the value of r will be increased to 2. So, in the second iteration within this loop, the 

algorithm skips step (2) to (4) and as a result, the algorithm will start execution from Step (5). 

In Step (5) the original matrix A is transformed to B by the shifting element λ1  such that 

Eigen values of B are Eigen values of A but shifted by λ1 (the largest Eigen value of A). 

Again the algorithm calls the function Power Method ( ). Therefore, again the function 

Power Method ( ) produces the largest Eigen pair of B rather than A. Consequently, in step 

(8), the algorithm is able to find out second Eigen pairs of the given matrix A successfully. As 

the value of r = 2, the algorithm escape from the first major loop and eventually enter into 

next consequence step namely Step (9). The Step (9) is consisting of some conditional 

arguments. If the sign of both Eigen values are same then without execute the function 

Inverse Power Method ( ) the algorithm is able to find out both absolute largest and smallest 

(ignore the sign) Eigen values, corresponding Eigen vectors and natures of spectrum of Eigen 

values. But if the sign of both Eigen values are not same, then second Eigen value produced 

by Power Method ( ) is not absolutely (ignoring sign) smallest Eigen value though smallest 

in magnitude. Therefore the algorithm proceeds to next steps i.e. Step (14), (15), (16), (17) 

and finally (18). When the algorithm executes Step (15), then the Inverse Power Method ( ) 

function is run. As a result the absolute smallest Eigen value and corresponding Eigen vector 

along with nature of the Eigen values are found.    
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CHAPTER V 

 

 

Some Lemma Related to the Proposed Algorithm and Experiments  

 

 

5.1  Introduction 

   

It is known that the proposed Modified Power method is developed on the basis of the 

fundamental properties of Eigen values and Eigen vectors of a matrix.  As it is mentioned 

earlier that if we have problem 

        𝐀𝐀𝐱𝐱 = 𝜆𝜆𝐱𝐱                                                                                                                         (5.1) 

where A be n×n matrix and let    (𝜆𝜆1,𝐱𝐱𝟏𝟏),  (𝜆𝜆2,𝐱𝐱𝟐𝟐), (𝜆𝜆3,𝐱𝐱𝟑𝟑), …………., (𝜆𝜆𝑛𝑛𝐱𝐱𝑛𝑛)   are the  

Eigen pairs of the  problem of equation (5.1). So for any constant 𝛼𝛼, we have  problem  

     (𝐀𝐀 − 𝛼𝛼𝐈𝐈)𝐱𝐱 = (𝜆𝜆 − 𝛼𝛼)𝐱𝐱                                                                                                     (5.2) 

     (𝐀𝐀 − 𝛼𝛼𝐈𝐈)𝐱𝐱 = 𝜇𝜇𝐱𝐱                                                                                                                (5.3) 

where 𝜇𝜇 = 𝜆𝜆 − 𝛼𝛼. Then the Eigen values of the problem of equation (5.3) are  
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𝜇𝜇1,  𝜇𝜇2,  𝜇𝜇3, … ,  𝜇𝜇𝑛𝑛 respectively. Hence Eigen pairs of equation (5.2) are (𝜆𝜆1−𝑎𝑎, 𝐱𝐱1), (𝜆𝜆2 −

𝛼𝛼, 𝐱𝐱𝟐𝟐), (𝜆𝜆3 − 𝛼𝛼, 𝐱𝐱𝟑𝟑), ………….,   (𝜆𝜆𝑛𝑛 − 𝛼𝛼, 𝐱𝐱𝐧𝐧)  respectively.   

 

 

5.2  Proposed Lemma 

 

According to the proposed algorithm, the first part of the proposed algorithm is able to find 

out the largest (in magnitude) Eigen value (say first value) as well as one other Eigen value 

(say second Eigen value) and corresponding Eigen vectors. What is the nature of all values? 

What will be the nature of the second value obtained by the proposed algorithm?  In this 

regard, we have proposed four Lemma as follows.  

Lemma--1: If first (largest) Eigen value is positive and second Eigen value is also positive 

(produced by shifting largest one) then the second value is the smallest. In consequence, all 

Eigen values are positive. 

Lemma--2: If first (largest) Eigen value is positive and second Eigen value is negative 

(produced by shifting largest one) then the second Eigen value obtained by the algorithm is 

smallest Eigen value as well as the largest (in magnitude) negative among all negative values 

(if any). In consequence, some Eigen values along with largest Eigen value are positive and 

some Eigen values are negative. 

Lemma--3: If first (largest) Eigen value is negative and second Eigen value is also negative 

(produced by shifting largest one) then the second Eigen value is the smallest. In 

consequence, all Eigen values are negative. 

Lemma--4: If first (largest in magnitude) Eigen value is negative and second Eigen value is 

positive (produced by shifting largest one) then the second Eigen value is the largest positive  

Eigen value among all positive  Eigen values (if any), but not necessarily be the smallest  

Eigen value regarding magnitude among all Eigen values. In consequence, some Eigen values 

along with largest Eigen values are negative in sign and some Eigen values are positive. In the 

following subsection, the proofs of the lemma are discussed with illustrations.  
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5.3  Proofs of  these Lemma and illustrations 

 

Proof of Lemma--1: Let us consider the equation (5.1) and (5.2) and there corresponding 

pairs. To proof the Lemma 1, we consider all the Eigen values of equation (5.1) are positive 

and say 𝜆𝜆1 > 𝜆𝜆2 > 𝜆𝜆3 > ⋯𝜆𝜆𝑛𝑛 ≥ 0. As the largest Eigen value as well as all Eigen values are 

positive. Therefore we must have |𝜆𝜆1| > |𝜆𝜆𝑖𝑖| ∶ 𝑖𝑖 = 2,3,⋯ , 𝑛𝑛. So first Eigen value obtained by 

the algorithm is largest Eigen value and it is obviously 𝜆𝜆1.  

 

To find out the second Eigen value, the proposed algorithm will consider the equation (5.2) 

with 𝛼𝛼 = 𝜆𝜆1. So the corresponding Eigen pairs of equation (5.2 ) are (𝜆𝜆1−𝜆𝜆1,𝐱𝐱1), (𝜆𝜆2 −

𝜆𝜆1, 𝐱𝐱2), (𝜆𝜆3 − 𝜆𝜆1,𝐱𝐱3), ⋯ ,  (𝜆𝜆𝑛𝑛 − 𝜆𝜆1, 𝐱𝐱𝑛𝑛) respectively. Since 𝜆𝜆1 is the largest Eigen value 

(with positive magnitude), so all Eigen values of equation (5.2) must be now non-positive i.e.  

(𝜆𝜆1 − 𝜆𝜆1)(= 0) > (𝜆𝜆2 − 𝜆𝜆1) > (𝜆𝜆3 − 𝜆𝜆1) > ⋯.> (𝜆𝜆𝑛𝑛 − 𝜆𝜆1). So by taking absolute Eigen 

value of each term, we have |𝜆𝜆𝑛𝑛 − 𝜆𝜆1| > |𝜆𝜆𝑖𝑖 − 𝜆𝜆1| ∶ 𝑖𝑖 = 2,3,⋯ , 𝑛𝑛. So, in second iteration, the 

proposed algorithm will find the Eigen value of the equation (5.2) which is must be   𝜇𝜇1 =

𝜆𝜆𝑛𝑛 − 𝜆𝜆1.  Therefore 𝜆𝜆𝑛𝑛 = 𝜇𝜇1 + 𝜆𝜆1, which is the smallest  value of equation (5.1). Hence 

proved the Lemma – 1.  Now for the illustration of the Lemma – 1, we will consider the 

following example 1.  

          Example 1:     𝐀𝐀 = �

4   3   1   0
3   4   2   1
1   2   7   1
1   1   1   8

�    

Solution: By using Mat Lab solver, we have the values of the given problem: 10.1375, 

6.9741, 4.9759, 0.9125. So by comparing with equation (5.1) we have 𝜆𝜆1(= 10.1375) >

𝜆𝜆2(= 6.9741) > 𝜆𝜆3(= 4.9759) > 𝜆𝜆4(= 0.9125) > 0. So our proposed algorithms, in first 

iteration, is able to find the largest value 𝜆𝜆1(= 10.1375). In second iteration, the algorithm 

will find the largest value of equation (5.2) where the value of α = 10.1375. Therefore values 

of equation (5.2) must be μ = 0, -3.1634, -5.1616, -9.2250. Therefore, in second iteration, the 

proposed algorithm is able to find the largest (in magnitude) value of equation (5.2) which is 

obviously μ1 = -9.2250. Finally the algorithm finds the second value of equation (5.1) as 
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𝜆𝜆 = 𝜆𝜆1 + µ1 = 10.1375 + (−9.2250) =0.9125, which is the smallest value of the given 

problem.  

 

Proof of Lemma--2: Let us consider the equation (5.1) and (5.2) and their corresponding 

pairs. To proof the Lemma 2, let us consider the largest value 𝜆𝜆1 of equation (5.1) is positive 

and among the  remain values, some of them are positive and some of them are negative in 

sign; say 𝜆𝜆1 > 𝜆𝜆2 > 𝜆𝜆3 > 𝜆𝜆𝑚𝑚 > 0 > 𝜆𝜆𝑚𝑚+1 > 𝜆𝜆𝑚𝑚+2 > ⋯ > 𝜆𝜆𝑛𝑛 . Here 𝜆𝜆𝑛𝑛 be the smallest value 

(but not necessarily smallest in magnitude). As the largest value is positive so we must have 

|𝜆𝜆1| > |𝜆𝜆𝑖𝑖| ∶ 𝑖𝑖 = 2,3,⋯ ,𝑛𝑛. So first value obtained by the algorithm is largest value and it is 

obviously 𝜆𝜆1.  

To find the second value, the proposed algorithm will consider the equation (5.2) with 𝛼𝛼 =

𝜆𝜆1. So the corresponding pairs of equation (5.2 ) become (𝜆𝜆1−𝜆𝜆1, 𝐱𝐱1), (𝜆𝜆2 − 𝜆𝜆1, 𝐱𝐱𝟐𝟐), (𝜆𝜆3 −

𝜆𝜆1, 𝐱𝐱𝟑𝟑),⋯ , (𝜆𝜆𝑛𝑛 − 𝜆𝜆1, 𝐱𝐱𝑛𝑛) respectively. Since 𝜆𝜆1 is the largest value, so all values of equation 

(5.2) must be  non-positive i.e.   

(𝜆𝜆1 − 𝜆𝜆1)(= 0) ≥ (𝜆𝜆2 − 𝜆𝜆1) > (𝜆𝜆3 − 𝜆𝜆1) > ⋯ > (𝜆𝜆𝑚𝑚 − 𝜆𝜆1) >  (𝜆𝜆𝑚𝑚+1 − 𝜆𝜆1) >

 (𝜆𝜆𝑚𝑚+2 − 𝜆𝜆1) > ⋯ > (𝜆𝜆𝑛𝑛 − 𝜆𝜆1). So by taking absolute value of each term, we have |𝜆𝜆𝑛𝑛 −

𝜆𝜆1| > |𝜆𝜆𝑖𝑖 − 𝜆𝜆1| ∶ 𝑖𝑖 = 2,3,⋯ ,𝑛𝑛. Therefore, in second iteration, the proposed algorithm will 

able to find the value of the equation (5.2) which is must be 𝜇𝜇1 = 𝜆𝜆𝑛𝑛 − 𝜆𝜆1. Therefore 𝜆𝜆𝑛𝑛 =

𝜇𝜇1 + 𝜆𝜆1, which is the smallest Eigen value of equation (5.1) by considering sign of each  

value. Moreover this the largest (in magnitude) value among the all negative values.  Hence 

proved the Lemma – 2. Now for the illustration of the Lemma – 2, we have considered the 

following example 2.  

            Example 2:               𝐁𝐁 = �

2     2   1    2
8    2    1    4
9    2    2    5
1    2    5    6

�    

Solution: By using Mat Lab solver, we have the values of the given problem are: 12.7568, 

1.4718, 0.4045, −2.6332.. So by comparing with equation (5.1) we have 𝜆𝜆1(= 12.7568) >

𝜆𝜆2(= 1.4718) > 𝜆𝜆3(= 0.4045) > 0 and 𝜆𝜆4(= −2.6332) < 0. Here we have observed the 

largest value 𝜆𝜆1(= 12.7568) is positive. So, in first iteration, our proposed algorithms is able 

to find the largest value 𝜆𝜆1(= 12.7568).  In second iteration the algorithm is find the largest 
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value of equation (5.2) where value of α = 12.7568. Therefore values of equation (5.2) must 

be μ = 0, -11.2850, -12.3523, -15.3900, all values are non-positive.  Therefore, in second 

iteration, the proposed algorithm is able to find the largest (in magnitude) value of equation 

(5.2) which is obviously μ1 = −15.3900. Finally the algorithm finds the second  value of 

equation (5.1) as 𝜆𝜆 = 𝜆𝜆1 + µ1 = 12.7568 + (−15.3900) =  -2.6332 which is smallest  value 

among the all  value but it is the largest (in magnitude)  value among the all negative  values 

{−2.6332} of the given problem.  

 

Proof of Lemma--3: Let us consider the equation (5.1) and (5.2) and their corresponding 

pairs. To proof the Lemma 3, we consider all the values of equation (5.1) are negative and say 

𝜆𝜆1 < 𝜆𝜆2 < 𝜆𝜆3 < ⋯ < 𝜆𝜆𝑛𝑛 < 0. Therefore we must have |𝜆𝜆1| > |𝜆𝜆𝑖𝑖| ∶ 𝑖𝑖 = 2,3,⋯ ,𝑛𝑛. So first 

value obtained by the algorithm is largest (in magnitude) value and it is obviously𝜆𝜆1.  

To find the second   value, the proposed algorithm will consider the equation (5.2) with 

𝛼𝛼 = 𝜆𝜆1. So the corresponding pairs of equation (5.2 ) are (𝜆𝜆1−𝜆𝜆1, 𝑋𝑋1), (𝜆𝜆2 − 𝜆𝜆1, 𝑋𝑋2), (𝜆𝜆3 −

𝜆𝜆1, 𝑋𝑋3), ⋯ , (𝜆𝜆𝑛𝑛 − 𝜆𝜆1,  𝑋𝑋𝑛𝑛)  respectively. Since 𝜆𝜆1 is the largest (in magnitude) but negative in 

sign value i.e. 𝜆𝜆1 = −|𝜆𝜆1|, so all  values of equation (5.2) must non-negative i.e. (𝜆𝜆1 −

𝜆𝜆1)(= 0) < (𝜆𝜆2 − 𝜆𝜆1) < (𝜆𝜆3 − 𝜆𝜆1) <  ⋯ < (𝜆𝜆𝑛𝑛 − 𝜆𝜆1). So by taking absolute value of each 

term, we have |𝜆𝜆𝑛𝑛 − 𝜆𝜆1| > |𝜆𝜆𝑖𝑖 − 𝜆𝜆1| ∶ 𝑖𝑖 = 2,3,⋯ , 𝑛𝑛. Therefore, in second iteration, the 

proposed algorithm will able to find the value of the equation (5.2) which is must be 𝜇𝜇1 =

𝜆𝜆𝑛𝑛 − 𝜆𝜆1. Therefore 𝜆𝜆𝑛𝑛 = 𝜇𝜇1 + 𝜆𝜆1, which is the smallest (in magnitude) value of equation 

(5.1). Hence proved the Lemma – 3. Now for the illustration of the Lemma – 3, we will 

consider the following example 3.   

                    Example 3 :        𝐂𝐂 = �

−26  − 26  − 17   − 4
−27  − 30  − 26  − 14
−18  − 26  − 55  − 17
−16  − 17  − 18  − 66

�    

Solution: By using Mat Lab solver, we have the values of the given problem are: -102.7695, 

−48.6385, −24.7594, −0.8326. So by comparing with equation (5.1) we have 𝜆𝜆1(=

−102.7695) < 𝜆𝜆2(= −48.6385) < 𝜆𝜆3(= −24.7594) < 𝜆𝜆4(= −0.8326) <0. So in first 

iteration, our proposed algorithms is able to find the largest (in magnitude) value 𝜆𝜆1(=

−102.7695). In second iteration, the algorithm will be find the largest value of equation (5.2) 
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where value of a = −102.7695. Therefore values of equation (5.2) must be μ = 0, 54.1310, 

78.0101, 101.9369.  Therefore, in second iteration, the proposed algorithm is able to find the 

largest value of equation (5.2) which is obviously μ1 = 101.9369. Finally the algorithm find 

the second value of equation (5.1) as 𝜆𝜆 = 𝜆𝜆1 + µ1 = −102.7695 + 101.9369 = −0.8326, 

which is the smallest Eigen value of the given problem. 

 

Proof of Lemma--4: Let us consider the equation (5.1) and (5.2) and there corresponding 

pairs. To proof the Lemma 4, let us consider the largest ( in magnitude)  value 𝜆𝜆1 of equation 

(5.1), is negative and among the remain  values, some of them are positive and some of them 

are negative in sign; say 𝜆𝜆1 < 𝜆𝜆2 < 𝜆𝜆3 <  ⋯ <  𝜆𝜆𝑚𝑚  < 0 and  𝜆𝜆𝑚𝑚+1 > 𝜆𝜆𝑚𝑚+2 .> ⋯ > 𝜆𝜆𝑛𝑛 > 0. 

As 𝜆𝜆1 be the largest value regarding magnitude, so we must have |𝜆𝜆1| > |𝜆𝜆𝑖𝑖| ∶ 𝑖𝑖 = 2,3,⋯ ,𝑛𝑛. 

So the first value obtained by the algorithm is largest (in magnitude) value and it is 

obviously 𝜆𝜆1.  

To find the second value the proposed algorithm will consider the equation (5.2) with 𝛼𝛼 = 𝜆𝜆1. 

So The corresponding pairs of equation (5.2) are (𝜆𝜆1−𝜆𝜆1,𝑋𝑋1), (𝜆𝜆2 − 𝜆𝜆1,𝑋𝑋2), (𝜆𝜆3 −

𝜆𝜆1,𝑋𝑋3),⋯ , (𝜆𝜆𝑛𝑛 − 𝜆𝜆1,𝑋𝑋𝑛𝑛) respectively. Since 𝜆𝜆1 is the largest but negative in sign i.e.  𝜆𝜆1 =

−|𝜆𝜆1| among the all  values of equation (5.1) , so all  values of equation (5.) must be  non-

negative and consequence  (𝜆𝜆1 − 𝜆𝜆1)(= 0) < (𝜆𝜆2 − 𝜆𝜆1) < (𝜆𝜆3 − 𝜆𝜆1) < ⋯ < (𝜆𝜆𝑚𝑚 − 𝜆𝜆1) <

 (𝜆𝜆𝑚𝑚+1 − 𝜆𝜆1) <  (𝜆𝜆𝑚𝑚+2 − 𝜆𝜆1) < ⋯ < (𝜆𝜆𝑛𝑛 − 𝜆𝜆1). So by taking absolute value of each term, 

we must have |𝜆𝜆𝑛𝑛 − 𝜆𝜆1| > |𝜆𝜆𝑖𝑖 − 𝜆𝜆1| ∶ 𝑖𝑖 = 2,3,⋯ ,𝑛𝑛. Therefore, in second iteration, the 

proposed algorithm will able to find the value of the equation (5.2) which is must be 𝜇𝜇1 =

𝜆𝜆𝑛𝑛 − 𝜆𝜆1. Therefore  𝜆𝜆𝑛𝑛 = 𝜇𝜇1 + 𝜆𝜆1which is the largest positive value among all positive values 

of equation (5.1) if any. Hence proved the Lemma – 4. Now for the illustration of the Lemma 

– 4, we will consider the following example 4.  

 

                       Example 4 :     𝐃𝐃 = �

−6        2          1         − 2
8        2          1             4
9       2          2             5
1        7         5        − 6

�     

 Solution:  By using Mat Lab solver, we have the values of the given problem are: −12.4503, 

− 4.1452, 0.6327, 7.9628. So by comparing with equation (5.1) we have 𝜆𝜆1(= −12.4503) <
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𝜆𝜆2(= −4.1452) < 0 < 𝜆𝜆3(= 0.6327) < 𝜆𝜆4(= 7.9628) . Therefore |𝜆𝜆1(= −12.4503)| >

|𝜆𝜆𝑖𝑖| ∶ 𝑖𝑖 = 2,3,4. So, in first iteration, our proposed algorithms is able to find the largest ( in 

magnitude ) value 𝜆𝜆1(= −12.4503). In second iteration, the algorithm is able to find the 

largest ( in magnitude )  value of equation (5.2) where value of a = −12.4503. Therefore 

values of equation (5.2) must be μ = 0, 8.3051, 13.0830, 20.4131.  Therefore, in second 

iteration, the proposed algorithm is able to find the largest value of equation (5.2) which is 

obviously μ1 = 20.4131. Finally the algorithm find the second value of equation (5.1) as 

𝜆𝜆 = 𝜆𝜆1 + µ1 = −12.4503 + (20.4131) = 7.9628, which is the largest positive value among 

the all positive values {0.6327, 7.9628} of the given problem.  

 

5.4  Experimental Results  
  

In previous section some Lemma as well as illustration are proved. Now we have performed 

some experiments on the proposed algorithm to justify the proposed lemma regarding the 

proposed modified hybrid algorithm. In this regards, we have considered the Eigen value 

problem of the form equation (5.1). For the first experiment, we have considered the 

transformation operator A is given as bellow: 
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                                            Test Prob. 1 

                     𝐄𝐄 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1    2     4     5      6      7      8      3     5    8    1    2
2     2     9     8     5     6     5     2     1     0     2     0
4     9     1     2     9     5     6     5     0     2     1     2
5     8     2     9     5     2     1     0     2     1     3     4
6     5     9     5     5     2     1     2     0     5     8     9
7     6     5     2     2     1     9     5     6     2     1     4
8     5     6     1     1     9     1     2     3     4     2     5
3     2     5     0     2     5     2     2     0     1     0     2
5     1     0     2     0     6     3     0     1     2     5     9
8     0     2     1     5     2     4     1     2     6     2     2
1     2     1     3     8     1     2     0     5     2     1     0
2     0     2     4     9     4     5     2     9     2     0     5

 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

    

 
 
 
 

Eigen pairs and sign of  Eigen value obtained by  
Modified Hybrid Iterative Algorithm  

 Eigen 
values  
(Mat 
Lab). 

  Eigen value  
Sign 

 Eigen 
values  

(𝜆𝜆) 

Eigen  vector  
(X) 

 

First Eigen Value  
(Largest  Eigen 

value ) 
( in magnitude) 

 
+ ve 

 
43.6996 

 

[0.92073, 0.782303, 0.851719, 
0.767980, 1.000000, 0.876090 , 
0.849523, 0.453403, 0.599790, 
0.641932, 0.480074, 0.799947] 

 
43.6996 

12.1565 

Table 5.1 Finding Eigen pairs and comparison of values for the Test Prob. 1 
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Second  Eigen value 
 (second Largest 
negative Eigen 
value (among the 
negative  values) 

 
- ve -15.8665 

[-0.708442,-0.233479,-0.394794, 
0.193943, 1.00000, -0.124613, 
0.721741, 0.195695, 0.801014, 

0.0019818, -0.731598, -0.876232] 

10.8018 

7.8891 

5.9091 

1.8160 

-0.7210 

-4.9082 

-6.5833 

-8.4682 
- 0.7250 
- 15.8666 

 

Smallest  Eigen 
value 

(in magnitude) - ve 
 

-0.72098 
 

[ 0.10929, -0.261378, -0.274267, 
0.241883, -0.106012 ,0.0853739, 
-0.394766, 1.000000, 0.174666, 
-0.0421989, 0.421505, -0.26894] 

Second smallest 
positive Eigen value 

+ ve 1.815937 

[ -0.115199 ,0.224341 , -
0.00357368, -0.416398 , -0.0414743 

,0.189909, 0.21043 , -0.408524 
,0.382283, -0.228485 ,1 ,-0.535562 ] 

 
It is observed that for the Test Prob. 1 the transformation matrix E is of order 12. The 

experimental results are displayed in the Table 5.1. For the validity of the proposed algorithm, 

the problem is also solved by Mat Lab solver. The Eigen values obtained by the solver is also 

displayed in the Table 5.1 namely last column of the table.  At first the proposed algorithm 

find out the first value which is 43.6996 and sign of the value is positive. Now we observe 

that the largest value obtained by the Mat Lab. solver is also 43.6996. That is   the algorithm 

is successfully able to find out the largest value. Now we observe that the second value 

obtained by the algorithm is -15.8665 and sign of the second   value is negative. So according 

to the lemma 2, the second value is not smallest (in magnitude) value but largest value among 

all the negative values. Moreover the spectrums of value consist of both positive and negative 

values in which the largest value is of positive sign.  We observe that the experimental results 

agree with the lemma. That is the second value is not smallest value regarding magnitude but 

largest in magnitude among all negative value though smallest value if we consider sign of 

each value. As the second  value is not absolutely smallest   value, so to find out the smallest 

(in magnitude)  values and corresponding  vector, the algorithm has  proceed  further steps 

and consequence algorithm has executed Inverse Power method ( ) function. As a result the 

algorithm is able to find out the value which value is -0.72098 and sign is negative.    It is 

notice that the smallest value obtained by the Mat Lab is -0.7210 which is almost identical 

with the  value obtained by the proposed algorithm. Therefore from this experiment we may 
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conclude that the proposed algorithm successfully able to find out both absolutely largest as 

well as absolutely smallest values and the nature of the spectrums.  We also observe that the 

algorithm able to find not only values but also able to find corresponding vectors which is 

displayed in the column 4 of the Table 5.1. 

Now for verification of the validity of the values and corresponding vectors, we have 

considered the equation 5.1. In that equation, we put A=E and also put the value of each 𝐱𝐱 

given in the Table 5.1. We have solved left hand side of the equation 5.1 for each value of 𝐱𝐱. 

Now for each pair (λ, 𝐱𝐱) we compute A𝐱𝐱/ λ. The computational results are shown in the Table 

5.2. It is notice that, each pair (λ, 𝐱𝐱) satisfy the equation 5.1. This implies that the Eigen pairs 

obtained by the proposed algorithm are valid solutions.     
 

 

 

 
A X AX = 𝜆𝜆𝐗𝐗  𝜆𝜆 X(=𝜆𝜆𝐗𝐗/ 𝜆𝜆) 

E 

0.9207 

0.7823 

0.8517 

0.7680 

1.0000 

0.8761 

0.8495 

0.4534 

0.5998 

0.6419 

0.4801 

0.7999 

40.2355   

34.1863   

37.2198   

33.5606   

43.6996   

38.2848   

37.1238   

19.8135   

26.2106   

28.0522   

20.9790 

34.9573 

 40.2355   

34.1863   

37.2198   

33.5606   

43.6996   

38.2848   

37.1238   

19.8135   

26.2106   

28.0522   

20.9790 

34.9573 

 

43.6996 

0.9207 

0.7823 

0.8517 

0.7680 

1.0000 

0.8761 

0.8495 

0.4534 

0.5998 

0.6419 

0.4801 

0.7999 

E 

-0.7084 

-0.2335 

-0.3948 

11.2407 

    3.7048 

    6.2638 

 -0.7085 

   -0.2335 

   -0.3948 

 
-15.8666 

 

-0.7084 

-0.2335 

-0.3948 

Table 5.2: Verification of the Eigen pairs obtained by the proposed algorithm for the Test Prob. 1  
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0.1939 

1.0000 

-0.1246 

0.7217 

0.1957 

0.8010 

0.0020 

-0.7316 

-0.8762 

   -3.0773 

  -15.8665 

    1.9770 

  -11.4515 

   -3.1049 

  -12.7094 

   -0.0315 

   11.6079 

   13.9029 

    0.1940 

    1.0000 

   -0.1246 

    0.7217 

    0.1957 

    0.8010 

    0.0020 

   -0.7316 

   -0.8762 

0.1939 

1.0000 

-0.1246 

0.7217 

0.1957 

0.8010 

0.0020 

-0.7316 

-0.8762 

E 

0.1093 

-0.2614 

-0.2743 

0.2419 

-0.1060 

0.0854 

-0.3948 

1.0000 

0.1747 

-0.0422 

0.4215 

-0.2689 

   -0.0783 

    0.1885 

    0.1977 

   -0.1743 

    0.0764 

   -0.0610 

    0.2849 

   -0.7210 

   -0.1258 

    0.0306 

   -0.3039 

    0.1940 

    -0.0783 

    0.1885 

    0.1977 

   -0.1743 

    0.0764 

   -0.0610 

    0.2849 

   -0.7210 

   -0.1258 

    0.0306 

   -0.3039 

    0.1940 

 

-0.7210 
 

0.1086 

-0.2615 

-0.2742 

0.2418 

-0.1060 

0.0845 

-0.3951 

1.0000 

0.1745 

-0.0425 

0.4215 

-0.2691 

 
 
Now for further experimental study, we have considered the Test Prob. 2 given bellow. We 

observe that in the Test Prob. 2, the transformation matrix F is of order 8. To study the 

performance of the proposed algorithm, we have, at first, implement the proposed algorithm 

to find out absolutely largest and smallest values and corresponding vectors. The experimental 

outputs are displayed in the Table 5.3. For the comparison study, we have   find out all the  

values of the  problem by Mat lab solver. These values are also shown in the column 5 of the 

Table 5.3. 

                                                    
Test Prob. 2 
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                                  𝐅𝐅 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 57      37      50      21      25      22     − 3     20
37      44      40      28      12      29      27       07
50      40      85      31      40      36      23      22
21      28      31      80       7      18      16       15
25      12      40       7       59      20      15       08
22      29      36      18      20      34      24      10
−3       27     23      16      15      24       11   − 3
20    07     0 2      15       8         10     − 3       61⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

     

 
 
 
We notice that the first value obtained by the algorithm is 229.048 which is positive in sign. It 

is observed in the table that the first value obtained by the algorithm is almost identical with 

largest value obtained by the Mat Lab solver.  Again we observe that the second value 

obtained by the proposed algorithm is 2.4725 with positive sign. Now according to the 

Lemma 1 the second value must be smallest value and consequence all values must be 

positive in sign. We observe that the second value is almost identical both in magnitude as 

well as sign with the smallest value obtained by the Mat Lab solver. It is shown in the table 

that all the values of the problem obtained by the Mat Lab. solver are positive. That is the 

experimental results agree with the proposed Lemma. 

 
 
 
 

Eigen pairs and sign of  Eigen value obtained by  
Modified Hybrid Iterative Algorithm  

Mat Lab 

Eigen value  Eigen 
values  

(𝜆𝜆) 

Sign  Eigen vector  
(X) 

All  
Eigen 
values 

1st  Eigen 

value 

(Largest 

Eigen value)   

 
229.048 

 

+ve [0.905122,0.789705,0.877491,0.733968,1, 
646421,0.474731,0.91332,0.668277] 

 

229.0477 

108.0800   

68.7215 

  50.3789 

  38.0092    

18.0295 
2nd  Eigen  

value  

 
2.4725 

 

+ve [-0.714502, 1, 0.109971, -0.100363, 
,0.257215 ,-0.540873 ,-0.191723, 

0.156506] 

Table 5.3 Finding Eigen pairs and comparison of Eigen values for the Test Prob. 2 
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(Smallest 

Eigen value)  

  15.2773      

2.4559 

 

Again for the verification of the validity of the values and corresponding vectors, we have 

consider the equation 5.1. In that equation, now we put A=F and also put the value of each 𝐱𝐱 

given in the Table 5.4. We have solved left hand side of the equation 5.1 for each Eigen value 

of 𝐱𝐱. Now for each pair (λ, 𝐱𝐱) we compute A𝐱𝐱/ λ. The computational results are shown in the 

Table 5.4. It is notice that, each pair (λ, 𝐱𝐱) satisfy the equation 5.1. This implies that the Eigen 

pairs obtained by the proposed algorithm are valid solutions.   

 

 

 

 

 

 

 

 
 

A X AX = 𝜆𝜆𝐗𝐗  𝜆𝜆 X(=𝜆𝜆𝐗𝐗/ 𝜆𝜆) 

F 

    0.6926 

    0.6715 

    1.0000 

    0.6233 

    0.5446 

    0.5657 

    0.5858 

    0.3461 

  158.6375 

  153.8034 

  229.0477 

  142.7703 

  124.7358 

  129.5751 

  134.1667 

   79.2698 

   158.6375 

  153.8034 

  229.0477 

  142.7703 

  124.7358 

  129.5751 

  134.1667 

   79.2698 

 

229.048 

   0.6926 

    0.6715 

    1.0000 

    0.6233 

    0.5446 

    0.5657 

    0.5858 

    0.3461 

F 

   -0.7145 

    1.0000 

    0.1100 

  -2.0992 

    2.4724 

    0.3619 

   -2.0992 

    2.4724 

    0.3619 

 
2.4725 

 

   -0.7145 

    1.0000 

    0.1100 

Table 5.4: Verification of the Eigen pairs obtained by the proposed algorithm for the Test Prob. 
2  
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   -0.1004 

    0.2572 

   -0.5409 

   -0.1917 

    0.1565 

   -0.2797 

    0.5682 

   -0.8483 

   -0.6147 

    0.3949 

   -0.2797 

    0.5682 

   -0.8483 

   -0.6147 

    0.3949 

   -0.1007 

    0.2572 

   -0.5409 

   -0.1918 

    0.1566 

 
For the above experimental study we may conclude that the proposed Modified Hybrid 

Iterative Algorithm able to find absolutely largest as well as absolutely smallest values and 

corresponding vectors successfully. Moreover the experimental results agree with the 

proposed Lemma in perspective to the algorithm. 

 
  
Now to analysis the performance of the proposed algorithm, we have considered few 

algebraic examples with several dimensions. At first, let us consider an algebraic problem of 

the form: 

 𝐀𝐀𝐱𝐱 =  λ𝐱𝐱  

Now we will consider some examples to find out Eigen pairs by the proposed algorithm. At 

first we consider a 4×4 matrix A, where  

           Test Prob.  3:     𝑮𝑮 = �

− 3   − 2  −  2     4
−2   − 3  −  2      1
−1   − 1  −  2      1
−2   − 2   − 2      1 

� 

Whose Eigen values are λ= {−3, −2, −1, −1} obtained by some package software. 

 

               

 for r =1  

(find first Eigen  pair) 

for r =2 

 (find second Eigen pair) 

No. of Iteration 37 28 

 Eigen Vector [1.94267e-007 ,1 ,0.333333 ,0.666667] [-0.9655, 1.0000, -0.0345,   

-0.0000] 

 Eigen Value -3.00 -1.00 

Table 5.5 The experimental results for Test Prob. 3, in which all Eigen values are negative. 
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Ax 

= 

λx 

[0.0000,    -3.0000,    -1.0000,   -2.0000] 

= 

-3×[1.94267e-007 ,1 ,0.333333 ,0.666667] 

[0.9655, -1.0000, 0.0345,   

 -0.0000] 

= 

-1×[-0.9655, 1.0000,  

- 0.0345, -0.000] 

 

Now we have performed experiment on this matrix G by our proposed algorithm to find the 

Eigen pairs. The experimental results are given in Table 5.5. It is observed in the table that, 

for the first loop of the algorithm i.e. r =1 the proposed algorithms is successfully able to find 

out largest in magnitude Eigen value λ= −3 and corresponding Eigen vector. Similarly for r = 

2, the algorithm is able to find out the second Eigen value λ= −1. As we know in this problem 

all Eigen values are negative i.e.  λ= {−3, −2, −1, −1} so this second Eigen value is 

obviously smallest Eigen value. Consequence, the algorithm need not execute the function 

Inverse Power method ( ). Therefore safe much computation cost as well as numerical 

complexity. It is also notice in the table that the verification of the Eigen values and 

corresponding Eigen vectors is shown in the Table 5.5. It is also observed in the table since 

the ratio of 3/2 is not very large than one so algorithm required a bit more iterations to 

converse its spectrum radius. Similarly the ratio of (-1+4) / (-2+4) is one so though the order 

of matrix is small but the algorithm need more iteration to converge the smallest Eigen pairs. 

It is notice that there exists algebraic multiplicity two at the characteristic root -1.  

Now we have performed another experiments by considering the matrix 8×8 matrix A, which 

is given in Test Prob.  4. 

      Test Prob.  4:    𝑯𝑯 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

12.62  − 13.60  − 2.68    1.22   − 3.47    6.14    3.14   − 2.30
−13.60   22.06   0.90   − 2.29    5.24   − 11.02  − 3.87    3.10
−2.68    0.90    3.93   − 0.48   − 0.81   − 2.10   − 0.48   − 0.10

1.22   − 2.29   − 0.48    1.79   − 0.21    0.80    0.27   − 0.50
−3.47    5.24   − 0.81   − 0.21    3.85   − 3.04   − 1.02    0.82 
6.14   − 11.02  − 2.10    0.80   − 3.04    11.74   1.00   − 1.67
3.14   − 3.87   − 0.48    0.27   − 1.02    1.00    1.91   − 0.41
−2.30    3.10   − 0.10   − 0.50    0.82   − 1.67   − 0.41    2.34 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 

Whose Eigen values are λ = {40.7214, 6.5459, 5.5471, 2.6292, 1.9870, 1.4547, 0.9258,   

0.4371} obtained by some package software.  
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 for r =1 for r =2 
Iteration 13 216 
 Eigen 
vector 

[-0.690437, 1, 0.105328, -0.0983584, 
0.261668,  -0.579705, -0.181056, 
0.155929] 

[0.687959 
,0.672025,1,0.629365,0.543817 
,0.567436 ,0.595655 ,0.346538] 

Eigen value  40.7214 0.4371 
Ax 

 
= 
 

λx 

[-28.1155, 40.7214, 4.2891, -4.0052, 
106554, -23.6063,  -7.3728, 6.3496] 

= 
40.7214×[-0.690437, 1, 0.105328,       
-0.0983584 ,0.261668 ,-0.579705 ,      
-0.181056 ,0.155929] 
 

[0.3007, 0.2937, 0.4371, 0.2751, 
0.2377, 0.2480, 0.2603, 0.1514] 

= 
0.4371×[0.687959 ,0.672025 ,1 
,0.629365 ,0.543817 ,0.567436 
,0.595655 ,0.346538]  

 

Now we have performed experiment on this matrix H by our proposed algorithm to find the 

Eigen pairs. The experimental results are given in Table 5.6. It is observed in the table that the 

proposed algorithms successfully is able to find out largest Eigen value and corresponding 

Eigen vector if the loop of the algorithm for r =1. Similarly for r = 2, the algorithm is able to 

find out the second Eigen pairs. As we know, some Eigen values are positive and some Eigen 

values are negative, so this second Eigen value is obviously smallest Eigen value. 

Consequence, the algorithm need not execute the function Inverse Power method ( ). 

Therefore safe much computation cost as well as numerical complexity. It is also notice in the 

table that showed the verification of the Eigen values and corresponding Eigen vectors. It is 

note that since the ratio of 40.7214/6.5459 are large, so algorithm requires few iteration (here 

13) to convergence to demonian Eigen value. On the other hand as the ration of (0.9258-

40.7214) /(1.4547-40.7214) is  near to one,  so algorithm need much effort (need 216 

iterations) to converge the smallest Eigen value and corresponding Eigen vectors. 

 

 

 

 

 

Table 5.6: The experimental result for Test Prob.  4 in which all Eigen values are positive  
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CHAPTER   VI 
 
 

Discussion and conclusion 
 
 
In this thesis we have considered both power method and inverse power method as a base to 

develop an algorithm.  It is notice that if all the Eigen values are either positive are negative, 

then simple shifting property on power method is enough to find out the both ( largest as well 

as smallest) Eigen pairs, instead of calculation of inverse of the matrix with is 

computationally expensive as well as unstable.  We have proposed a modified hybrid iterative 

method by hybridized both Power method as well as inverse power method along with 

shifting property on part of  Power method  rather than inverse Power method. The purpose of 

the proposed algorithm is to find out both largest and smallest Eigen values and 

corresponding Eigen vectors along with the nature of sign of the spectrum. In some physical 

system, there may need both largest and smallest Eigen pairs, this algorithm efficiently able to 

serve the purpose.  Furthermore we have proposed four lemma regarding the nature of sign of 

Eigen values regarding the proposed algorithm.  

Intensive experiments have been performed for the test of validity of the proposed algorithms 

as well as the lemma. The experimental results agree with proposed algorithm as well as 

proposed lemma.  The proposed algorithm able to find out the largest Eigen- pairs as well as 
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smallest Eigen pairs efficiently. Moreover algorithm is able to find out the sign of spectrum. 

Besides the experimental study regarding lemma, we have also theoretically proof the lemma.  

 

As the proposed algorithm has developed based on Power method, the proposed algorithm 

preserves some limitations as Power method. Though proposed algorithm able to find out 

more than one Eigen pair namely largest and  smallest Eigen pair whereas Power method find 

only largest Eigen pair only, the proposed algorithm does not able to find out largest (in 

magnitude) complex Eigen value and corresponding Eigen pairs directly. The rate of 

convergence is linear as like power method and the speed of rate of convergence is slow if the 

ratio of largest Eigen value and second largest Eigen value is near or equal to one. Similar to 

Power method, the proposed algorithm is efficient in the cases of sparse large matrix, positive 

(Semi-positive) matrix. 

In future, the proposed algorithm will be extended to find out other necessary Eigen pairs. 

Moreover the proposed algorithm will be modified by taking some theoretical concepts to 

overcome the limitations of the existing algorithm. 
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