Approximate Analytic Solutions of the Nonlinear Cubic Oscillator by Iterative Method

by

Md. Mominur Rahman

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

in Mathematics

Khulna University of Engineering & Technology
Khulna-9203, Bangladesh
November 2016
Dedicated to My

Beloved Parents

And

My Wife & Affectionate Son
Declaration

This is to certify that the thesis work entitled "Approximate Analytic Solutions of the Nonlinear Cubic Oscillator by Iterative Method" has been carried out by Md. Mominur Rahman in the Department of Mathematics, Khulna University of Engineering & Technology, Khulna, Bangladesh. The above thesis work or any part of this work has not been submitted anywhere for the award of any degree or diploma.

Signature of Supervisor

Signature of Student
Approval

This is to certify that the thesis work submitted by Md. Mominur Rahman, entitled “Approximate Analytic Solutions of the Nonlinear Cubic Oscillator by Iterative Method” has been approved by the board of examiners for the partial fulfillment of the requirements for the degree of Master of Science in the Department of Mathematics, Khulna University of Engineering & Technology, Khulna, Bangladesh in 23 November, 2016.

BOARD OF EXAMINERS

1. Dr. B. M. Ikramul Haque
 Associate Professor
 Department of Mathematics
 Khulna University of Engineering & Technology
 Khulna-9203, Bangladesh.
 (Signature) 23/11/16

 Chairman
 (Supervisor)

2. Head
 Department of Mathematics
 Khulna University of Engineering & Technology
 Khulna-9203, Bangladesh.
 (Signature) 23/11/16

 Member

3. Dr. A. R. M. Jalaluddin Jamali
 Professor
 Department of Mathematics
 Khulna University of Engineering & Technology
 Khulna-9203, Bangladesh.
 (Signature) 23/11/16

 Member

4. Dr. Md. Alhaz Uddin
 Professor
 Department of Mathematics
 Khulna University of Engineering & Technology
 Khulna-9203, Bangladesh.
 (Signature) 23/11/16

 Member

5. Dr. M. Ali Akbar
 Associate Professor
 Department of Applied Mathematics
 Rajshahi University, Rajshahi, Bangladesh.
 (Signature) 23/11/16

 Member
 (External)
Acknowledgement

First of all, I express my gratitude to almighty Allah for giving me strength, endurance and ability to complete the thesis work. I would like to express my sincerest appreciation to reverend supervisor Dr. B. M. Ikramul Haque, Associate Professor, Department of Mathematics, Khulna University of Engineering & Technology, Khulna-9203, Bangladesh who taught the topic of the present thesis and provided an excellent guidance with his continuous devotion, endless inspiration, valuable suggestions, scholastic criticism, constant encouragement and helpful discussion.

I wish to express my sincere and whole-hearted appreciation and gratitude to all the teachers of the Department of Mathematics, Khulna University of Engineering & Technology, Khulna-9203, Bangladesh for their necessary advice and cordial cooperation during the period of study. I thank all the research students of this Department for their help in many respects.

I am very grateful to the Khulna University of Engineering & Technology, Khulna-9203, particularly to the Department of Mathematics for extending all facilities and co-operation during the course of my M.Sc. program. Finally I am thankful to my family for their encouragement and co-operation.

Md. Mominur Rahman
A modified approximate analytic solution of the cubic nonlinear oscillator \(\ddot{x} + x^3 = 0 \) has been obtained based on an iteration method. Here we have used the truncated Fourier series in each iterative step. The approximate frequencies obtained by this technique show a good agreement with the exact frequency. The percentage of error between exact frequency and our fifth approximate frequency is as low as 0.009%. The calculation with this technique is very easy. The modified technique accelerates the rapid convergence of the solution, reduces the error solution and increases the validity range.
<table>
<thead>
<tr>
<th>Contents</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title page</td>
<td>i</td>
</tr>
<tr>
<td>Dedication</td>
<td>ii</td>
</tr>
<tr>
<td>Declaration</td>
<td>iii</td>
</tr>
<tr>
<td>Approval</td>
<td>iv</td>
</tr>
<tr>
<td>Acknowledgement</td>
<td>v</td>
</tr>
<tr>
<td>Abstract</td>
<td>vi</td>
</tr>
<tr>
<td>Contents</td>
<td>vii</td>
</tr>
<tr>
<td>CHAPTER I: Introduction</td>
<td>1-2</td>
</tr>
<tr>
<td>CHAPTER II: Basic Conceptions</td>
<td>3-10</td>
</tr>
<tr>
<td>CHAPTER III: Literature Review</td>
<td>11-29</td>
</tr>
<tr>
<td>CHAPTER IV: Approximate Analytic Solutions of the Nonlinear Cubic</td>
<td>30-39</td>
</tr>
<tr>
<td>Oscillator by Iterative Method</td>
<td></td>
</tr>
<tr>
<td>4.1. Introduction</td>
<td>30</td>
</tr>
<tr>
<td>4.2 The method</td>
<td>30-31</td>
</tr>
<tr>
<td>4.3 Solution Procedure</td>
<td>31-37</td>
</tr>
<tr>
<td>4.4 Result and Discussion</td>
<td>38</td>
</tr>
<tr>
<td>4.5 Table</td>
<td>39</td>
</tr>
<tr>
<td>CHAPTER V: Convergence and consistency Analysis</td>
<td>40</td>
</tr>
<tr>
<td>CHAPTER VI: Conclusions</td>
<td>41</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>42-46</td>
</tr>
</tbody>
</table>
CHAPTER I

Introduction

Differential equation is a mathematical tool, which has its application in many branches of knowledge of mankind. Numerous physical, mathematical, economical, chemical, biological, biochemical, and many other relations appear mathematically in the form of differential equations that are linear or nonlinear, autonomous or non-autonomous. Generally, in many physical phenomena, such as spring-mass systems, resistor-capacitor-inductor circuits, bending of beams, chemical reactions, the motion of pendulums, the motion of the rotating mass around another body, etc., the differential equations are occurred. Also, in ecology and economics the differential equations are vastly used. Basically, many differential equations involving physical phenomena are nonlinear. Differential equations, which are linear, are comparatively easy to solve and nonlinear are laborious and in some cases it is impossible to solve them analytically. In such situations mathematicians, physicists and engineers convert the nonlinear equations into linear equations by imposing some conditions. In case of small oscillation, linearization is a well-known technique to solve the problems. But, such a linearization is not always possible and when it is not possible, then the original nonlinear equation itself must be used. To solve nonlinear differential equations, there exist some methods such as Perturbation technique, Harmonic Balance, Method of Multiple Scales, Homotopy Perturbation, Iterative method etc. Among the methods, the method of Perturbations, i.e., asymptotic expansions in terms of a small parameter are foremost.

Perturbation methods have received much attention as these methods for accuracy and quickly computing numerical solutions of dynamic, stochastic, economic equilibrium models for both single-agent or rational expectations models and multi-agent or game theory models. A perturbation method is based on the following aspects: the equations to be solved are sufficiently “smooth” or sufficiently differentiable a number of times in the required regions of variables and parameters.

Harmonic Balance (HB) method is a procedure of determining analytical approximations to the periodic solutions of differential equations by using a truncated Fourier series
representation. An important advantage of the method is that it can be applied to nonlinear oscillatory problems for which the nonlinear terms are not “small” i.e., no perturbation parameter need to exist. A disadvantage of the method is that it is a priori difficult to predict for a given nonlinear differential equation whether a first order harmonic balance calculation will provide a sufficiently accurate approximation to periodic solution.

The Iterative method was introduced R E Mickens in 1987. The method introduces a reliable and efficient process for a wide variety of scientific and engineering application for the case of nonlinear systems. There are two important advantages of Iterative method, one is “Only linear, in homogeneous differential equations are required to be solved at each level of the calculation” and another is “The coefficients of the higher harmonic, for a given value of the iterative index decrease rapidly with increasing harmonic number. This implies that higher order solutions may not be required”.

The outline of this thesis is as follows: In Chapter II, some basic conceptions are given. In Chapter III, the review of literature is presented. In Chapter IV, the Iterative method has been described for obtaining approximate analytic solutions of the Cubic Truly Nonlinear Oscillator. In Chapter V, the convergence and consistency analysis of the adopted method has been shown. Finally, some concluding remarks are included in Chapter VI.
CHAPTER II

Basic Conceptions

This chapter introduces preliminary concepts relating to the thesis:

2.1 Nonlinear Equation

A differential equation consists of product of dependent variable, or product of derivative or product of dependent variable and derivative or transcendental function of dependent variable is called nonlinear differential equation.

The following ordinary differential equations are all nonlinear:

\[\frac{d^2y}{dx^2} + 5 \frac{dy}{dx} + 6y^2 = 0 \]
\[\frac{d^2y}{dx^2} + 5 \left(\frac{dy}{dx} \right)^3 + 6y = 0 \]
\[\frac{d^2y}{dx^2} + 5y \frac{dy}{dx} + 6y = 0 \]
\[\frac{dy}{dx} + e^y = 0 \]

2.2 Truly Nonlinear Functions

If \(f(x) \) has no linear approximation in any neighborhood of \(x = 0 \), then \(f(x) \) is a Truly Nonlinear function.

The following are several explicit examples of Truly Nonlinear functions

\(f_1(x) = x^3, f_2(x) = x^3, f_3(x) = x + x^3 \)

2.3 Truly Nonlinear Oscillators

If \(f(x) \) is a Truly Nonlinear function, then the differential equations containing “\(f(x) \)” are said to be Truly Nonlinear Oscillator.

The following are particular examples of Truly Nonlinear Oscillators
\[\ddot{x} + x^3 = 0 \]
\[\ddot{x} + x^3 = 0 \]
\[\ddot{x} + x + x^3 = 0 \]
\[\ddot{x} + x^{-1} = 0 \]

2.4 Phase Plane

If a plane is such that, each point of this plane describe the position and velocity of a dynamic particle, then this plane is called phase plane.

The differential equation describing many nonlinear oscillators can be written in the form:

\[\frac{d^2 x}{dt^2} + f(x, \frac{dx}{dt}) = 0 \] \hspace{1cm} (2.1)

A convenient way to treat equation (2.1) is to rewrite it as a system of two first order ordinary differential equations

\[\frac{dx}{dt} = y, \quad \frac{dy}{dt} = -f(x, y) \] \hspace{1cm} (2.2)

Equations (2.2) may be generalized in the form

\[\frac{dx}{dt} = F(x, y), \quad \frac{dy}{dt} = G(x, y) \] \hspace{1cm} (2.3)

A point which satisfies \(F(x, y) = 0 \) and \(G(x, y) = 0 \) is called an equilibrium point. The solution to (2.3) may be pictured as a curve in the \(x-y \) phase plane passing through the point of initial conditions \((x_0, y_0) \). Each time a motion passes through a given point \((x, y) \), its direction is always the same. This means a given motion may not intersect itself. A periodic motion corresponds to a closed curve in the \(x-y \) plane. In the special case that the first equation of (2.3) is \(\frac{dx}{dt} = y \), as in the case of equations (2.2), the motion in the upper half-plane \(y > 0 \) must proceed to the right, that is, \(x \) must increase in time for \(y > 0 \), and vice versa for \(y < 0 \).

2.5 Trajectory

If a curve is such that each point of the curve represents the position and velocity of a dynamic particle, the curve is called the path or Trajectory of the particle.
Consider a second order nonlinear differential equation of the form
\[
\frac{d^2 x}{dt^2} = f\left(x, \frac{dx}{dt}\right) \tag{2.4}
\]
If we put \(y = \frac{dx}{dt}\), then the equation (2.4) is replaced by the equivalent system
\[
\frac{dx}{dt} = y, \quad \frac{dy}{dt} = f(x, y) \tag{2.5}
\]
More generally, we shall consider systems of the form
\[
\frac{dx}{dt} = P(x, y), \quad \frac{dy}{dt} = Q(x, y) \tag{2.6}
\]
where \(P\) and \(Q\) have continuous first order partial derivative for all \((x, y)\).

For any number \(t = t_0\) and any pair \((x_0, y_0)\) of real number, there exists a unique solution of the equation (2.6), we obtain
\[
x = f(t) \quad \text{and} \quad y = g(t) \tag{2.7}
\]
where \(x_0 = f(t_0), \quad y_0 = g(t_0)\)

If both \(f\) and \(g\) are not constant functions, then equation (2.7) defines a curve in the phase plane, which is called a path or orbit or trajectory of the system.

2.6 Limit Cycle

A closed trajectory in the phase plane such that other non-closed trajectories spirally moved toward it, either from the inside or the outside, as \(t \to \infty\), is called a limit cycle. If all trajectories that start near a closed trajectory (both inside and outside) spiral toward the closed trajectory as \(t \to \infty\), then the limit cycle is asymptotically stable. If the trajectories on both sides of the closed trajectory spiral away as \(t \to \infty\), then the closed trajectory is unstable.

2.7 The Autonomous System

Consider the system (2.6). Such a system, in which the independent variable \(t\) is not explicitly appears in the function \(P\) and \(Q\) on the right, is called an autonomous system.

The following example is an autonomous system
\[
\frac{dx}{dt} = y \\
\frac{dy}{dt} = -x
\]

2.8 The Non-autonomous system
Consider the systems of the form

\[
\frac{dx}{dt} = P(x, y, t) \\
\frac{dy}{dt} = Q(x, y, t)
\]

where \(P \) and \(Q \) have continuous first partial derivatives for all \((x, y)\). Such a system, in which the independent variable \(t \) is explicitly appears in the function \(P \) and \(Q \) on the right, is called a non-autonomous system.

The following example is a non-autonomous system

\[
\frac{dx}{dt} = \sin t \\
\frac{dy}{dt} = \cos t
\]

2.9 Critical Point
Consider the autonomous system (2.6).
A point \((x_0, y_0)\) at which both \(P(x_0, y_0) = 0 \) and \(Q(x_0, y_0) = 0 \) is called a critical point.

2.10 Isolated Critical Point
A critical point \((x_0, y_0)\) of the system (2.6) is called isolated if there exists a circle \((x-x_0)^2 + (y-y_0)^2 = r^2\) about the point \((x_0, y_0)\) such that \((x_0, y_0)\) is the only critical point of the system (2.6) within this circle.

2.11 Classifications of Critical Point:
(a) Centre
The isolated critical point \((0, 0)\) of the system (2.6) is called a Centre if there exists a neighborhood of \((0, 0)\) which contains countably infinite numbers of closed path
\(P_n, \ (n=1,2,\ldots) \) each of which contains (0, 0) as interior point and which are such that the diameters of the paths approaches to 0 as \(n \to \infty \).

(b) Saddle Point

The isolated critical point (0, 0) of the system (2.6) is called a saddle point if there exists a neighborhood of (0, 0) in which the following two conditions hold:

(i) There exists two paths which approaches and enter into (0, 0) from a pair of opposite directions as \(t \to +\infty \) and there exists two paths which approach and enter into (0, 0) from a different pair of opposite directions as \(t \to -\infty \).

(ii) In each of the four domains, between any two of the four directions in (i), there are infinitely many paths which are arbitrarily closed to (0, 0) but which do not approach to (0, 0) either as \(t \to +\infty \) or as \(t \to -\infty \).

(c) Spiral Point

The isolated critical point (0, 0) of the system (2.6) is called a spiral point if there exists a neighborhood of (0, 0) such that every path \(P \) in this neighborhood has the following properties:

(i) \(P \) is defined for all \(t > t_0 \) or \(t < t_0 \), for some number \(t_0 \).

(ii) \(P \) approaches to (0, 0) as \(t \to +\infty \) or as \(t \to -\infty \).

(iii) \(P \) approaches to (0, 0) in a spiral like manner, winding around (0, 0) an infinite number of times \(t \to +\infty \) or as \(t \to -\infty \).

(d) Node

The isolated critical point (0, 0) of the system (2.6) is called a node point if there exists a neighborhood of (0, 0) such that every path \(P \) in this neighborhood has the following properties:

(i) \(P \) is defined for all \(t > t_0 \) or \(t < t_0 \), for some number \(t_0 \).

(ii) \(P \) approaches to (0, 0) as \(t \to +\infty \) or as \(t \to -\infty \).

(iii) \(P \) enters into (0, 0) as \(t \to +\infty \) or as \(t \to -\infty \).
(e) Stable critical point:
Consider the system (2.6). Suppose \((0, 0)\) is an isolated critical point of the above system. Let \(C\) be a path of the system (1.4) and \(x = f(t), \ y = g(t)\) be a solution of (2.6), which define \(C\) parametrically. Let \((x, y) = (f(t), g(t))\) be a point on \(C\). Define
\[
D(t) = \sqrt{[f(t)]^2 + [g(t)]^2}
\]
where \(D(t)\) is the distance between the critical point \((0, 0)\) and \(R(f(t), g(t))\), then the critical point \((0, 0)\) is called stable if for every \(\varepsilon > 0\), there exists a \(\delta > 0\) such that
\[
D(t_0) < \varepsilon, \text{ for some } t_0
\]
and \(D(t_0) < \varepsilon\), for all \(t_0 \leq t < \infty\).

(f) Asymptotically Stable
Consider the system (2.6)
Suppose \((0, 0)\) is an isolated critical point of the above system. Let \(C\) be a path of the system (2.7) and \(x = f(t), \ y = g(t)\) be a solution of the system (2.6), which define \(C\) parametrically. Let \((x, y) = (f(t), g(t))\) be a point on \(C\). Define
\[
D(t) = \sqrt{[f(t)]^2 + [g(t)]^2}
\]
where \(D(t)\) is the distance between the critical point \((0, 0)\) and \(R(f(t), g(t))\), then the critical point \((0, 0)\) is called asymptotically stable if it is stable and
\[
\lim_{t \to +\infty} f(t) = 0, \quad \lim_{t \to +\infty} g(t) = 0
\]

2.12 Characteristic Equation
Consider the linear system
\[
\begin{align*}
\frac{dx}{dt} &= ax + by \\
\frac{dy}{dt} &= cx + dy
\end{align*}
\]
where \(a, b, c, d\) are real constants.
Clearly the origin \((0, 0)\) is critical point of the above system. We assume that
and hence (0, 0) is the only critical point of (2.8). By Euler method, the solution of (2.8) is found of the form

\[
\begin{align*}
 x &= A e^{\lambda t} \\
 y &= B e^{\lambda t}
\end{align*}
\]

(2.9)

where A and B are arbitrary constants. If (2.9) is a solution of (2.8), then we have

\[
\lambda^2 - (a + d) \lambda + (ad - bc) = 0
\]

(2.10)

Equation (2.10) is called the characteristic equation of (2.8) and its roots are called characteristic roots or Eigen values of equation (2.8).

2.13 Nature

<table>
<thead>
<tr>
<th>Nature of the roots</th>
<th>Nature of the critical point</th>
<th>Nature of the stability of critical point (0, 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real, unequal and of same sign</td>
<td>Node</td>
<td>Asymptotically stable if the roots are negative; unstable if the roots are positive</td>
</tr>
<tr>
<td>Real, unequal and of opposite sign</td>
<td>Saddle point</td>
<td>Unstable</td>
</tr>
<tr>
<td>Real and equal</td>
<td>Node</td>
<td>Asymptotically stable if the roots are negative; unstable if the roots are positive</td>
</tr>
<tr>
<td>Complex conjugate but not purely imaginary</td>
<td>Spiral point</td>
<td>Asymptotically stable if the real part of the roots are is negative; unstable if the real part is positive</td>
</tr>
<tr>
<td>Purely imaginary</td>
<td>Centre</td>
<td>Stable but not asymptotically stable</td>
</tr>
</tbody>
</table>

2.14 Free Oscillating System

If there are no external forces applied during the oscillation on a system, then the system is called free oscillating system. For a free oscillating system, the initially applied force is proportional to the restoring force. If $f_1(x)$ is the restoring force and F is the applied force on the system, then

\[
F = -k f_1(x)
\]
where k is the constant of proportionality.

$$m \frac{d^2 x}{dt^2} + k f_1(x) = 0 \quad \therefore F = ma$$

$$\frac{d^2 x}{dt^2} + \frac{k}{m} f_1(x) = 0,$$

$$\frac{d^2 x}{dt^2} + f(x) = 0$$

Equation (2.11) is the governing equation for a free oscillating system.

2.15 Natural Frequency

Without external force every system oscillates together with a frequency, which is called natural frequency.
CHAPTER III

Literature Review

The characteristics of nonlinear differential equations are peculiar. But mathematical formulations of physical and engineering problems often results in differential equations that are nonlinear. A nonlinear system of equations is a set of simultaneous equations in which the unknowns appear as variables of a polynomial of higher degree than one or in the argument of a function which is not a polynomial of degree one. On the other hand, in a nonlinear system of equations, the equations to be solved cannot be written as a linear combination of the unknown variables or functions that appear in it or others. If nonlinear known functions appear in the equations, it does not matter. Specially, a differential equation is regarded as linear if it gets linear in terms of the unknown function as well as its derivatives, even if nonlinear in terms of the other variables appearing in it.

As nonlinear equations are difficult to solve, nonlinear systems are commonly approximated by linear equations. This works well up to some accuracy and some range for the input values, but some interesting phenomena such as chaos and singularities are hidden by linearization. It follows that some aspects of the behavior of a nonlinear system appear commonly to be chaotic, unpredictable or counterintuitive. Although such chaotic behavior may resemble random behavior, it is absolutely not random. In this position there are several analytical approaches to find approximate solutions to nonlinear problems, such as: Harmonic Balance (HB) method [1-6], Perturbation method [7-13], Homotopy Perturbation method [14], Homotopy method [15-20], Energy Balance method [21], Cubication method [22-23], Iterative methods [24-40], etc.

At first Van der Pol [41] paid attention to the new (self-excitations) oscillations and indicated that their existence is inherent in the nonlinearity of the differential systems characterizing the procedure. This nonlinearity appears, thus, as the very essence of these phenomena and by linearizing the differential equation in the sense of the method of small oscillation, one simply eliminates the possibility of investigating such problems. Thus, it is
necessary to deal with the nonlinear problems directly instead of evading them by dropping
the nonlinear terms.

The perturbation method is the most widely utilized method in which the nonlinear term is
small. The solution of a differential equation is expanded in a power series of a small
parameter in the perturbation method. The method of Krylov-Bogoliubov-Mtropolskii
(KBM) [42-43], Multiple Scale method [44], Homotopy Perturbation method [14] and
Homotopy method [15-20] are most important among all perturbation methods.

The method of Lindstedt-Poincare method [7,27] is an introductory method to solved the
following second order nonlinear differential equations

\[\ddot{x} + \omega_0^2 x + \varepsilon f(\dot{x}, x) = 0, \]

(3.1)

where \(\omega_0 \) is the unperturbed frequency and \(\varepsilon \) is a small parameter.

The fundamental idea in Lindstedt’s technique is based on the observation that the
nonlinearities alter the frequency of the system from the linear one \(\omega_0 \) to \(\omega(\varepsilon) \). To
account for this change in frequency, he introduces a new variable \(\tau = \omega t \) and expand \(\omega \)
and \(x \) in power of \(\varepsilon \) as

\[x = x_0(\tau) + \varepsilon x_1(\tau) + \varepsilon^2 x_2(\tau) + \ldots, \]

(3.2)

\[\omega = \omega_0 + \varepsilon \omega_1 + \varepsilon^2 \omega_2 + \ldots, \]

where \(\omega_i, i = 0,1,2,\ldots \), are unknown constants to be determined.

Substituting equation (3.2) into equation (3.1) and equating the coefficients of the various
powers of \(\varepsilon \), the following equations are obtained

\[\ddot{x}_0 + x_0 = 0 \]

\[\ddot{x}_1 + x_1 = -2\omega_1 \dot{x} - f(x_0, \dot{x}_0) \]
\[
\dot{x}_2 + x_2 = -2\omega_1 \dot{x}_1 - f(x_0, \dot{x}_0) - (2\omega_1^2 + 2\omega_2)\dot{x}_0 - f_x(x_0, \dot{x}_0)x_1
+ f_x(x_0, \dot{x}_0)(\omega_1 \dot{x}_0 + \dot{x}_1) \tag{3.3}
\]

\[
\dot{x}_n + x_n = g_n(x_0, x_1, ..., x_{n-1}; \dot{x}_0, \dot{x}_1, ..., \dot{x}_{n-1}),
\]

where over dot represents the differentiation with respect to \(\tau \).

Clearly equation (3.3) is a linear system and it is solved by the elementary techniques.

This method is used only for finding the periodic solution, but the method cannot discuss transient case.

Further, Krylov and Bogoliubov [42] introduced a technique to discuss transients of the same equation. This method starts with the solution of the linear equation, assuming that, in the nonlinear case, the amplitude and phase in the solution of the linear equation are time dependent function rather than constants [7].

The solution of corresponding unperturbed equation (i.e., for \(\epsilon = 0 \)) of equation (3.1) can be written as

\[
x = a \cos(\omega_0 t + \theta) \tag{3.4}
\]

where \(a \) and \(\theta \) are two arbitrary constants to be determined from the initial conditions \(x(0) = x_0 \) and \(\dot{x}(0) = y_0 \). Here \(a \) and \(\theta \) are called amplitude and phase.

Now to determine an approximate solution of equation (3.1) for \(\epsilon \) small but different from zero, Krylov and Bogoliubov assumed that the solution is still given by equation (3.4) with varying \(a \) and \(\theta \) subject to the conditions

\[
\frac{dx}{dt} = -a\omega_0 \sin \varphi, \quad \varphi = \omega_0 t + \theta \tag{3.5}
\]

Differentiating equation (3.4) with respect to time \(t \) and using equation (3.5), we obtain
Again differentiating equation (3.5) with respect to time t, we obtain

$$\frac{d^2 x}{dt^2} = -a\omega_0^2 \cos \phi - \omega_0 \frac{da}{dt} \sin \phi - a\omega_0 \frac{d\theta}{dt} \cos \phi$$

(3.7)

Substituting equation (3.7) into equation (3.1) and using equation (3.4) and equation (3.5), we obtain

$$\frac{da}{dt} \omega_0 \sin \phi + \frac{d\theta}{dt} a\omega_0 \cos \phi = -\varepsilon f(a \cos \phi, -a\omega_0 \sin \phi)$$

(3.8)

Solving equation (3.6) and equation (3.8) $\frac{da}{dt}$ and $\frac{d\theta}{dt}$ yields

$$\begin{cases}
\frac{da}{dt} = -\frac{\varepsilon}{\omega_0} \sin \phi f(a \cos \phi, -a\omega_0 \sin \phi) \\
\frac{d\theta}{dt} = -\frac{\varepsilon}{a\omega_0} \cos \phi f(a \cos \phi, -a\omega_0 \sin \phi)
\end{cases}$$

(3.9)

Equation (3.4) together with equation (3.9) represents the first approximate solution of equation (3.1). Further, the technique was modified and justified by Bogoliubov and Mitropolskii [43] in 1961. They assumed a solution of the nonlinear differential equation (3.1) of the form

$$x(t, \varepsilon) = a \cos \psi + \varepsilon x_1(a, \psi) + \cdots + \varepsilon^n x_n(a, \psi) + O(\varepsilon^{n+1})$$

(3.10)

where x_k, $k = 1, 2, \ldots, n$ is a periodic function of ψ with period 2π, a and ψ vary with time t according to

$$\begin{cases}
\frac{da}{dt} = \varepsilon A_1(a) + \cdots + \varepsilon^n A_n(a) + O(\varepsilon^{n+1}) \\
\frac{d\psi}{dt} = \omega_0 + \varepsilon B_1(a) + \cdots + \varepsilon^n B_n(a) + O(\varepsilon^{n+1})
\end{cases}$$

(3.11)
where the function x_k, A_k and B_k are chosen such that equation (3.10) and equation (3.11) satisfy the differential equation (3.1). Later this solution was used by Mitropolskii [45] to investigate similar system (i.e., equation (3.1)) in which the coefficient very slowly with time. Popov [46] extended this method to nonlinear strongly damped oscillatory systems. By Popov's [46] technique, Murty, et. al. [47] extended the method to over damped nonlinear system. Murty [48] further presented a unified KBM method to obtain under and over-damped solution of a second-order nonlinear differential equation. Shamsul and Sattar [49] extended Murty's [48] unified KBM method to solve a third-order nonlinear differential equation.

Harmonic Balance method is the most useful technique for finding the periodic solutions of nonlinear system which is patented by Mickens [1] and farther work has been done by Lim et al [2], Wu et al [3], Gottlieb [4], Hu [5], Beléndez et al. [6] and so on for solving the strong nonlinear problems. If a periodic solution does not exist of an oscillator, it may be sought in the form of Fourier series, whose coefficients are determined by requiring the series to satisfy the equation of motion. However, in order to avoid solving an infinite system of algebraic equations, it is better to approximate the solution by a suitable finite sum of trigonometric function. This is the main task of harmonic balance method. Thus approximate solutions of an oscillator are obtained by harmonic balance method using a suitable truncated Fourier series.

The method is capable to determining analytic approximate solution to the nonlinear oscillator valid even for the case where the nonlinear terms are not small i.e., no particular parameter need exist.

The formulation of the method of harmonic balance focuses primarily by Mickens [1]. However, it should be indicated that various generalizations of the method of harmonic balance has been made by an intrinsic method of harmonic analysis by Huseyin & Lin [50]. Lately, combining the method of averaging and harmonic balance, Lim & Lai [29] presented analytic technique to obtain first approximate perturbation solution; their solutions gives desired results for some non-conservative systems when the damping force is very small. Another technique is developed by Yamgoue and Kofane [51] to determine approximate solutions of nonlinear problems with strong damping effect, more than two harmonic terms are involved in their solution.
Mickens [27] has given the general procedure for calculating solutions by means of the method of direct Harmonic Balance as follows:

He considered the equation for all Truly Nonlinear (TNL) oscillators as:

\[F(x, \dot{x}, \ddot{x}) = 0, \]

(3.12)

where \(F(x, \dot{x}, \ddot{x}) \) is of odd-parity, i.e.

\[F(-x, -\dot{x}, -\ddot{x}) = -F(x, \dot{x}, \ddot{x}). \]

(3.13)

A major consequence of this property is that the corresponding Fourier expansions of the periodic solutions only contain odd harmonics, i.e.,

\[x(t) = \sum_{k=1}^{\infty} \{ A_k \cos[(2k-1)\Omega t] + B_k \sin[(2k-1)\Omega t]\}. \]

(3.14)

The \(N \)-th order harmonic balance approximation to \(x(t) \) is the expression

\[x_N(t) = \sum_{k=1}^{N} \{ \overline{A}_k \cos[(2k-1)\overline{\Omega}_N t] + \overline{B}_k \sin[(2k-1)\overline{\Omega}_N t]\}, \]

(3.15)

where \(\overline{A}_k, \overline{B}_k, \overline{\Omega}_N \) are approximations to \(A_k, B_k, \Omega \) for \(k = 1, 2, 3, \ldots, N \).

For the case of a conservative oscillator, equation (3.12) generally takes the form

\[\ddot{x} + f(x, \lambda) = 0, \]

(3.16)

where \(\lambda \) denotes the various parameters appearing in \(f(x, \lambda) \) and \(f(-x, \lambda) = -f(x, \lambda) \). The following initial conditions are selected

\[x(0) = A, \quad \dot{x}(0) = 0 \]

(3.17)

And this has the consequence that only the cosine terms are needed in the Fourier expansions, and therefore we have

\[x_N(t) = \sum_{k=1}^{N} \overline{A}_k \cos[(2k-1)\overline{\Omega}_N t] \]

(3.18)

Observe that \(x_N(t) \) has \((N+1)\) unknowns, the \(N \) coefficients, \(\overline{A}_1, \overline{A}_2, \ldots, \overline{A}_N \), and \(\overline{\Omega}_N \), the angular frequency. These quantities may be calculated by carrying out the following steps:

Step 1: Substitute equation (3.18) into equation (3.16), and expand the resulting form into an expression that has the following structure
\[
\sum_{k=1}^{N} H_k \cos[(2k-1)\Omega_N t] + \text{HOH} \equiv 0, \quad \text{HOH= Higher Order Harmonic}
\] (3.19)

where they \(H_k \) are functions of the coefficients, the angular frequency, and the parameters, i.e., \(H_k = H_k(\bar{A}_1^N, \bar{A}_2^N, \ldots, \bar{A}_N^N, \Omega_N, \lambda) \).

Herein equation (3.19), we only retain as many harmonics in our expansion as initially occur in the assumed approximation to the periodic solution.

Step-2: Set the functions \(H_k \) to zero, i.e.,

\[
H_k = 0, \quad k = 1, 2, \ldots, N.
\] (3.20)

The action is justified since the cosine functions are linearly independent, as a result any linear sum of them that is equal to zero must have the property that the coefficient are all zero.

Step-3: Solve the \(N \) equations, in equation (3.20), for \((\bar{A}_1^N, \bar{A}_2^N, \ldots, \bar{A}_N^N) \) and \(\Omega_N \), in terms of \(\bar{A}_1^N \).

Using the initial conditions, equation (3.17), we have for \(\bar{A}_1^N \) the relation

\[
x_N(0) = A = \bar{A}_1^N + \sum_{k=2}^{N} \bar{A}_k^N (\bar{A}_1^N, \lambda).
\] (3.21)

An important point is that Eq. (3.20) may have many distinct solutions and the “one” selected for a particular oscillator equation is that one for which we have known a priori restrictions on the behavior of the approximations to the coefficients. However, as the worked examples in the next section demonstrate, in general, no essential difficulties arise.

For the case of non-conservative oscillators, where \(\dot{x} \) appears to an “odd power” the calculation of approximations to periodic solutions follows a procedure modified for the case of conservative oscillators presented above. Many of these equations take the form

\[
\ddot{x} + f(x, \lambda_1) = g(x, \dot{x}, \lambda_2)\dot{x},
\] (3.22)

where

\[
f(-x, \lambda_1) = -f(x, \lambda_1), \quad g(-x, -\dot{x}, \lambda_2) = -g(x, \dot{x}, \lambda_2),
\] (3.23)
and \((\lambda_1, \lambda_2)\) denote the parameters appearing in \(f\) and \(g\). For this type of differential equation, a limit-cycle may exist and the initial conditions cannot, in general, be a priori specified.

Harmonic balancing, for systems where limit-cycles \([4]\) may exist, uses the following procedures:

Step-1: The \(N\)-th order approximation to the periodic solution to be

\[
x_N(t) = \bar{A}_N^N \cos(\bar{\Omega}_N t) + \sum_{k=2}^{N} \{ \bar{A}_k^N \cos[(2k-1)\bar{\Omega}_N t] + \bar{B}_k^N \sin[(2k-1)\bar{\Omega}_N t] \},
\]

where the 2\(N\) unknowns \(\bar{A}_1^N, \bar{A}_2^N, \ldots, \bar{A}_N^N; \bar{\Omega}_N, \bar{B}_2^N, \ldots, \bar{B}_N^N\) and \(\bar{\Omega}_N\) are to be determined.

Step-2: Substitute equation (3.24) into equation (3.22) and write the result as

\[
\sum_{k=1}^{N} \{ H_k \cos((2k-1)\bar{\Omega}_N t) + L_k \sin((2k-1)\bar{\Omega}_N t) \} + \text{HOH} \equiv 0,
\]

where the \(\{H_k\}\) and \(\{L_k\}\), \(k=1\) to \(N\), are functions of the 2\(N\) unknowns which are mentioned above.

Step-3: Next equate the 2\(N\) functions \(\{H_k\}\) and \(\{L_k\}\) to zero and solve them for the \((2N-1)\) amplitudes and the angular frequency. If a "valid" solution exists, then it corresponds to a limit-cycle. In general, the amplitudes and angular frequency will be expressed in terms of the parameters \(\lambda_1\) and \(\lambda_2\).

Mickens \([27]\) has presented the following example:

\[
\ddot{x} + \frac{1}{x} \dot{x} = 0,
\]

is solved by the following way-

For the first-order harmonic balance, the solution is \(x_1(t) = A \cos \theta, \ \theta = \Omega_1 t\). This calculation is best achieved if Equation (3.26) is rewrites to the form

\[
\ddot{x} + 1 = 0
\]

Substituting \(x_1(t)\) into this equation gives
\[(A \cos \theta)(-\Omega_1^2 A \cos \theta) + 1 + HOH = 0\] \hspace{1cm} (3.28)

or, \[\left(-\omega_1^2 \frac{A^2}{2} + 1 \right) + HOH = 0\] \hspace{1cm} (3.29)

Therefore, in lowest order, the angular frequency is

\[\Omega_2(A) = \frac{\sqrt{2}}{A} = \frac{1.4142}{A}\] \hspace{1cm} (3.30)

The second harmonic balance approximation is

\[x_2(t) = A_1 \cos \theta + A_2 \cos 3\theta, \theta = \Omega_2 t\] \hspace{1cm} (3.31)

Putting this expression into Equation (3.27) gives

\[(A_1 \cos \theta + A_2 \cos 3\theta)\left(-\Omega_2^2 \left(A_1 \cos \theta + 9 A_2 \cos \theta \right) \right) + 1 = 0, \hspace{1cm} (3.32)\]

And on performing the required expansions, we obtain

\[\left(-\Omega_2^2 \left(\frac{A_1^2 + 9 A_2^2}{2} \right) + 1 \right) - \Omega_2^2 \left(\frac{A_1^2 + 10 A_1 A_2}{2} \right) \cos 2\theta + HOH = 0\] \hspace{1cm} (3.33)

Setting the constant term and the coefficient of \(\cos 2\theta\) to zero gives

\[\left(-\Omega_2^2 \left(\frac{A_1^2 + 9 A_2^2}{2} \right) + 1 \right) = 0, \hspace{1cm} A_1^2 + 10 A_1 A_2 = 0\] \hspace{1cm} (3.34)

with the solutions

\[A_2 = -\left(\frac{A_1}{10} \right), \hspace{1cm} \Omega_2^2 = \frac{200}{109 A_1^2}\] \hspace{1cm} (3.35)

Therefore,

\[x_2(t) = A_1 \left[\cos(\Omega_2 t) - \left(\frac{1}{10} \right) \cos(3\Omega_2 t) \right]\]

and requiring

\[x_2(0) = A = \left(\frac{9}{10} \right) A_1 \hspace{1cm} \text{or} \hspace{1cm} A_1 = \left(\frac{10}{9} \right) A\]

Gives
\[x_2(t) = \left(\frac{10}{9} \right) A \left[\cos(\Omega_2 t) - \left(\frac{1}{10} \right) \cos(3\Omega_2 t) \right] \]

(3.36)

with \(\Omega_2^2 = \frac{200}{109A_1^2} = \left(\frac{162}{109} \right) \frac{1}{A^2} \)

or, \(\Omega_2(A) = \frac{1.2191138}{A} \)

Recently some researchers used iterative technique [24-40] for calculating approximations to the periodic solutions and corresponding frequencies of TNL oscillator for small and as well as large amplitude of oscillation. The method was originated by Mickens in 1987. In the paper, he provided a general basis for iterative methods as they are currently used in the calculation of approximations to the periodic solutions of various nonlinear oscillatory differential equation successfully.

The general methodology of iterative procedure by Mickens [27] is presented in Chapter IV.

Mickens [27] has presented the following example by iterative procedure:

Let us consider the oscillator

\[\ddot{x} + x^3 = 0, \quad x(0) = A, \dot{x}(0) = 0 \]

(3.37)

and initial condition

\[x_0(t) = A \cos(\Omega_0 t) \]

(3.38)

A possible iterative scheme for this equation is

\[\ddot{x}_{k+1} + \Omega_0^2 x_{k+1} = \Omega_2^2 x_k - x_k^3. \]

(3.39)

For \(k=0 \), we have

\[\ddot{x}_1 + \Omega_0^2 \dot{x}_1 = \Omega_0^2 x_0 - x_0^3 = \Omega_2^2 \left(A \cos \theta - (A \cos \theta)^3 \right) \]

\[= [\Omega_0^2 - A^2 (3/4)] A \cos \theta - (A^3/4) \cos 3\theta, \]

(3.40)

where \(\theta = \Omega_0 t \). To derive this result use was made of the following trigonometric relation. Secular terms will not appear in the solution for \(x_1(t) \) if the coefficient of the \(\cos \theta \) term is zero, i.e.,
\[
\Omega_0^2 - \left(\frac{3}{4}\right) A^3 = 0,
\]

(3.41)

and

\[
\Omega_0(A) = \left(\frac{3}{4}\right)^{\frac{1}{2}} A
\]

(3.42)

Under the no secular term requirement, equation (3.40) reduces to

\[
\ddot{x}_i + \Omega_0^2 x_i = \left(-\frac{A^3}{4}\right) \cos 3\theta
\]

(3.43)

The particular solution for this equation takes the form

\[
x_i^{(p)}(t) = D \cos(3\theta)
\]

Substitution of this into equation (3.43) gives

\[
(-9\Omega_0^2 + \Omega_0^2) D = \left(-\frac{A^3}{4}\right)
\]

and

\[
D = \frac{A^3}{32\Omega_0^2} = \left(\frac{A^3}{32}\right) \left(\frac{4}{3A^2}\right) = \frac{A}{24}
\]

Therefore, the full solution to equation (3.43) is

\[
x_i(t) = x_i^{(h)} + x_i^{(p)} = C \cos \theta + \left(\frac{A}{24}\right) \cos 3\theta,
\]

where \(C \cos \theta\) is the solution to the homogeneous equation

\[
\ddot{x}_i + \Omega_0^2 x_i = 0.
\]

(3.44)

Since \(x_i(0) = A\), then
\[A = C + \left(\frac{A}{24} \right) \]

or

\[C = \left(\frac{23}{24} \right) A, \]

and the full solution to equation (3.43) is

\[x_1(t) = A \left[\frac{23}{24} \cos \theta + \frac{1}{24} \cos 3\theta \right]. \] \hspace{1cm} (3.45)

If we stop the calculation at this point, then the first-approximation to the periodic solution is

\[x_1(t) = A \left[\frac{23}{24} \cos \left(\sqrt{\frac{3}{4}} At \right) + \frac{1}{24} \cos \left(3\sqrt{\frac{3}{4}} At \right) \right]. \] \hspace{1cm} (3.46)

However, to extend our calculation to the next level, \(x_1(t) \) takes the form given by equation (3.37), but \(\theta \) is now equal to \(\Omega_1 t \), i.e.,

\[x_1(t) = A \left[\frac{23}{24} \cos (\Omega_1 t) + \frac{1}{24} \cos (3\Omega_1 t) \right] \]

\[= A \left[\frac{23}{24} \cos \theta + \frac{1}{24} \cos 3\theta \right]. \] \hspace{1cm} (3.47)

Note, we denote the phase of the trigonometric expressions by \(\theta \), i.e., \(\theta = \Omega_1 t \). This shorthand notation will be used for the remainder of the chapter.

The next approximation, \(x_2(t) \), requires the solution to

\[\ddot{x}_2 + \Omega_1^2 x_2 = \Omega_1^2 x_1 - x_1^3. \] \hspace{1cm} (3.48)

We now present the full details on how to evaluate the right-hand side of equation (3.48). These steps demonstrate what must be done for this type of calculation. In the calculations
for other TNL oscillators, we will generally omit many of the explicit details contained in this section.

To begin, consider the following result

\[(a_1 \cos \theta + a_2 \cos 3\theta)^3 = (a_1 \cos \theta)^3 + 3(a_1 \cos \theta)^2 (a_2 \cos 3\theta) + 3(a_1 \cos \theta)(a_2 \cos 3\theta)^2 + (a_2 \cos 3\theta)^3\]

Using

\[\cos \theta_1 \cos \theta_2 = \frac{1}{2} [\cos(\theta_1 + \theta_2) + \cos(\theta_1 - \theta_2)]\]

and the previous expression for \((\cos \theta_j)^3\), we find

\[(a_1 \cos \theta + a_2 \cos 3\theta)^3 = f_1 \cos \theta + f_2 \cos 3\theta + f_3 \cos 5\theta + f_4 \cos 7\theta + f_5 \cos 9\theta \quad (3.49)\]

where

\[
\begin{align*}
 f_1 &= \frac{3}{4} [a_1^3 + a_1^2 a_2 + 2a_1 a_2^2], \\
 f_2 &= \frac{1}{4} [a_1^3 + 6a_1^2 a_2 + 3a_2^3], \\
 f_3 &= \frac{3}{4} [a_1^2 a_2 + a_1 a_2^2], \\
 f_4 &= \frac{3}{4} a_1 a_2^2, \\
 f_5 &= \frac{a_2^3}{4}
\end{align*}
\]

For our problem, we have

\[
\begin{align*}
 a_1 &= \frac{23}{24} A = \alpha A, \\
 a_2 &= \frac{1}{24} A = \beta A.
\end{align*}
\]

Using these results, equation (3.48) becomes

\[\ddot{x} + \Omega_1^2 x = (\Omega_1^2 a_1 - f_1) \cos \theta + (\Omega_1^2 a_2 - f_2) \cos 3\theta - f_3 \cos 5\theta - f_4 \cos 7\theta - f_5 \cos 9\theta.\]
Secular terms may be eliminated in the solution for \(x_2(t) \) if the coefficient of the \(\cos \theta \) term is zero, i.e.,

\[
\Omega_1^2 a_i - f_i = 0,
\]

(3.51)

and

\[
\Omega_0^2 (A) = \frac{f_i}{a_i} = \frac{3}{4} [\alpha^3 + \alpha^2 \beta + 2 \alpha \beta^2] \frac{A^3}{\alpha A} \\
= \frac{3}{4} A^3 [\alpha^2 + \alpha \beta + 2 \beta^2] = \Omega_0^2 (A) h(\alpha, \beta),
\]

(3.52)

where

\[
h(\alpha, \beta) = \alpha^2 + \alpha \beta + 2 \beta^2
\]

(3.53)

Examination of equation (3.52) and (3.53) shows that \(h(\alpha, \beta) \) provides a correction to the square of the first-order angular frequency \(\Omega_0^2 (A) \). Since \(\alpha = \frac{23}{24} \) and \(\beta = \frac{1}{24} \), then

\[
\Omega_0 (A) = \sqrt{\frac{3}{4}} A = (0.866025) A,
\]

(3.54)

\[
\Omega_1 (A) = (0.849326) A,
\]

(3.55)

Let us now calculate \(x_2(t) \). This function is a solution to

\[
\ddot{x}_2 + \Omega_1^2 x_2 = (\Omega_1^2 a_2 - f_2) \cos \theta - f_3 \cos 5\theta - f_4 \cos 7\theta - f_5 \cos 9\theta
\]

(3.56)

The particular solution is

\[
x_2^{(p)}(t) = L_1 \cos \theta + L_2 \cos 5\theta + L_3 \cos 7\theta + L_4 \cos 9\theta
\]

(3.57)

where \((L_1, L_2, L_3, L_4)\) are constants that can be found by substituting \(x_2^{(p)} \) into Eq. (3.56) and equating similar terms on both the left and right sides. Performing this procedure gives
\[L_1 = \frac{\Omega_1^2 a - f_1}{(-8)\Omega_1^2} \]
\[= -\frac{A}{24} \left[\frac{3\beta (\alpha^2 + \alpha \beta + 2\beta^2) - (\alpha^3 + 6\alpha^2 \beta + 3\beta^3)}{\alpha^2 + \alpha \beta + 2\beta^2} \right], \]
\[L_2 = \frac{f_2}{24\Omega_1^2} = \frac{A}{24} \left[\frac{(\alpha^2 \beta + \alpha \beta^2)}{\alpha^2 + \alpha \beta + 2\beta^2} \right], \]
\[L_3 = \frac{f_3}{48\Omega_1^2} = \frac{A}{48} \left[\frac{\alpha \beta^2}{\alpha^2 + \alpha \beta + 2\beta^2} \right], \]
\[L_4 = \frac{f_4}{80\Omega_1^2} = \frac{A}{240} \left[\frac{\beta^3}{\alpha^2 + \alpha \beta + 2\beta^2} \right], \]

In these expressions, we have replaced \(\Omega_1^2 \) by the results in Equation (3.52) and (3.53)

The complete solution for \(x_2(t) \) is

\[x_2(t) = x_2'''(t) + x_2''' = C \cos \theta + x_2^{(p)}. \]

For \(t=0 \), we have

\[A = C + (L_1 + L_2 + L_3 + L_4). \]

If we define

\[L_i = A \bar{L}_i; \quad i=1, 2, 3, 4; \]

Then

\[C = 1 - (\bar{L}_1 + \bar{L}_2 + \bar{L}_3 + \bar{L}_4) A, \]

and

\[x_2(t) = [1 - (\bar{L}_1 + \bar{L}_2 + \bar{L}_3 + \bar{L}_4)] A \cos \theta + A \left[\bar{L}_1 \cos 3\theta + \bar{L}_2 \cos 5\theta + \bar{L}_3 \cos 7\theta + \bar{L}_4 \cos 9\theta \right], \]
where \(\theta = \Omega_1(A)t \).

Using the numerical values for \(\alpha \) and \(\beta \), the \(\overline{L}'s \) can be calculated; we find their values to be

\[
\begin{align*}
\overline{L}_1 &= 0.042876301 \approx (4.29) \cdot 10^{-2}, \\
\overline{L}_2 &= 0.001729754 \approx (1.73) \cdot 10^{-3}, \\
\overline{L}_3 &= 0.000036038 \approx (3.60) \cdot 10^{-5}, \\
\overline{L}_4 &= 0.000000313 \approx (3.13) \cdot 10^{-7}.
\end{align*}
\]

Therefore, we have for \(x_2(t) \) the expression

\[
x_2(t) = A[(0.955) \cos \theta + (4.29) \cdot 10^{-2} \cos 3\theta + (1.73) \cdot 10^{-3} \cos 5\theta + (3.60) \cdot 10^{-5} \cos 7\theta + (3.13) \cdot 10^{-7} \cos 9\theta]
\]

Further a generalization of this work was then given by Lim and Wu [28]. Their procedure is as follows:

They assumed the equation in the form

\[
\ddot{x} + f(x) = 0, \quad x(0) = A, \quad \dot{x}(0) = 0. \quad (3.58)
\]

where \(A \) is given positive constant and \(f(x) \) satisfies the condition

\[
f(-x) = -f(x). \quad (3.59)
\]

Adding \(\omega^2 x \) on both sides of equation (3.58), we obtain

\[
\ddot{x} + \omega^2 x = \omega^2 x - f(x) = g(x), \quad (3.60)
\]

where \(\omega \) is prior unknown frequency of the periodic solution \(x(t) \) being sought.

They proposed the iterative scheme of equation (3.60)

\[
\ddot{x}_{k+1} + \omega^2 x_{k+1} = g(x_{k-1}) + g(x_{k-1})(x_{k} - x_{k-1}); \quad k = 0, 1, 2, \ldots, \quad (3.61)
\]

where \(g_x = \frac{\partial g}{\partial x} \) and the inputs of starting functions are
\begin{equation}
 x_{-1}(t) = x_0(t) = A \cos(\omega t).
\end{equation}

With the initial conditions
\begin{equation}
 x_k(0) = A, \quad \dot{x}_k(0) = 0, \quad k = 1, 2, 3, \ldots \ldots
\end{equation}

Then substituting equation (3.62) into equation (3.61) and expanding the right hand side of equation (3.61) into the Fourier series yields
\begin{equation}
 g[x_{k-1}(t)] + g_1[x_{k-1}(t)][x_1(t) - x_{k-1}(t)] = a_1(A, \omega) \cos \omega t + \sum_{n=2}^{N} a_{2n-1}(A, \omega) \cos[(2n-1)\omega t],
\end{equation}

where the coefficients $a_{2n-1}(A, \omega)$ are known functions of A and ω, and the integer N depends upon the function $g(x)$ of the right hand side of equation (3.60). On view of equation (3.64), the solution of equation is taken to be
\begin{equation}
 x_{k+1}(t) = B \cos \omega t - \sum_{n=2}^{N} \frac{a_{2n-1}(A, \omega)}{[(2n-1)^2 - 1] \omega^2} \cos[(2n-1)\omega t],
\end{equation}

where B is, tentatively, an arbitrary constant. In equation (3.65), the particular solution is chosen such that it contains no secular terms [27], which requires that the coefficient $a_1(A, \omega)$ of right-side term $\cos \omega t$ in equation (3.64) satisfy
\begin{equation}
 a_1(A, \omega) = 0.
\end{equation}

Equation (3.66) allows the determination of the frequency as a function A.

Next, the unknown constant B will be computed by imposing the initial conditions in equation (3.63). Finally, putting these steps together gives the solution $x_{k+1}(t)$.

In 2005, this process was extended by Mickens. He consider the equation as
\begin{equation}
 \ddot{x} + f(\dot{x}, \dot{x}, x) = 0, \quad x(0) = A, \quad \dot{x}(0) = 0,
\end{equation}

where over dots denote differentiation with respect to time, t.

We choose the natural frequency Ω of this system. Then adding $\Omega^2 x$ on both sides of equation (3.67), we obtain
\begin{equation}
 \ddot{x} + \Omega^2 x = \Omega^2 x - f(\dot{x}, \dot{x}, x) = G(x, \dot{x}, \ddot{x}).
\end{equation}

Now, formulate the iterative scheme as
\[\dot{x}_{k+1} + \Omega_k^2 x_{k+1} = G(x_{k-1}, \dot{x}_{k-1}, \ddot{x}_{k-1}) + G_x(x_{k-1}, \dot{x}_{k-1}, \ddot{x}_{k-1}) (x_k - x_{k-1}) \]
\[+ G_x(x_{k-1}, \dot{x}_{k-1}, \ddot{x}_{k-1}) (\dot{x}_k - \dot{x}_{k-1}) + G_x(x_{k-1}, \dot{x}_{k-1}, \ddot{x}_{k-1}) (\ddot{x}_k - \ddot{x}_{k-1}) \]

where \(G_x = \frac{\partial G}{\partial x} \), \(G_y = \frac{\partial G}{\partial y} \), \(G_z = \frac{\partial G}{\partial z} \).

And \(x_{k+1} \) satisfies the conditions
\[x_{k+1}(0) = A, \quad \dot{x}_{k+1}(0) = 0. \]

The starting function are taken to be [50]
\[x_{-1}(t) = x_0(t) = A \cos(\Omega_0 t) \]

The right hand side of equation (3.69) is essentially the first term in a Taylor series expansion of the function \(G(x_k, \dot{x}_k, \ddot{x}_k) \) at the point \((x_{k-1}, \dot{x}_{k-1}, \ddot{x}_{k-1}) \) [52]. To illustrate this point, note that
\[x_k = x_{k-1} + (x_k - x_{k-1}), \]
and for some function \(G(x) \), we have
\[G(x_k) = G[x_{k-1} + (x_k - x_{k-1})] = G(x_{k-1}) + G_x(x_k - x_{k-1}) + \ldots. \]

An alternative, but very insightful, modification of above scheme was proposed by Hu [31]. He used the following equation in place of equation (3.73)
\[x_k = x_0 + (x_k - x_0) \]

Then, equation (3.74) is changed to
\[G(x_k) = G[x_0 + (x_k - x_0)] = G(x_0) + G_x(x_k - x_0) + \ldots, \]

and the corresponding modification to equation (3.69) is
\[\dot{x}_{k+1} + \Omega_k^2 x_{k+1} = G(x_0, \dot{x}_0, \ddot{x}_0); + G_x(x_0, \dot{x}_0, \ddot{x}_0) (x_k - x_0) \]
\[+ G_x(x_0, \dot{x}_0, \ddot{x}_0) (\dot{x}_k - \dot{x}_0) + G_x(x_0, \dot{x}_0, \ddot{x}_0) (\ddot{x}_k - \ddot{x}_0) \]

This scheme is computationally easier to work with, for \(k \geq 2 \), than the one given in equation (3.69). The essential idea is that if \(x_0(t) \) is a good approximation, then the expansion should take place at \(x = x_0 \). Also, as pointed out by Hu [30], the \(x_0(t) \) in
$(x_k - x_o)$ is not the same for all k. In particular, $x_0(t)$ in $(x_1 - x_o)$ is the function $A \cos(\Omega_1 t)$, while the $x_0(t)$ in $(x_2 - x_o)$ is the function $A \cos(\Omega_2 t)$.

Further, Mickens [27] used the iterative technique to calculate a higher-order approximation to the periodic solutions of a conservative oscillator for which the elastic force term is proportional to $x^{1/3}$. Hu [53] applied the modified iterative technique of Mickens [27] to find approximate of nonlinear oscillators with fractional powers and cubic nonlinear oscillator respectively. Recently, Haque [35-40] has applied Mickens iterative and modified iterative method to determine approximate periodic solutions of a class of nonlinear jerk equations.
CHAPTER IV

Approximate Analytic Solutions of the Cubic Truly Nonlinear Oscillator by Iterative Method

4.1 Introduction
In this chapter, we have developed a modified iterative technique for the determination of approximate solution as well as frequency of the Cubic Truly Nonlinear Oscillator. A particular example governing such a problem is considered and the solution of the problem is obtained using the presented method.

4.2 The method
Assume that the nonlinear oscillator
\[F(\ddot{x}, x) = 0, \quad x(0) = A, \quad \dot{x}(0) = 0, \] (4.1)
and further assume that it can be rewritten to the form
\[\ddot{x} + f(\ddot{x}, x) = 0, \] (4.2)
where over dots denote differentiation with respect to time, \(t \).

We choose the natural frequency \(\Omega \) of this system. Then adding \(\Omega^2 x \) to both sides of equation (4.2), we obtain
\[\ddot{x} + \Omega^2 x = \Omega^2 x - f(\ddot{x}, x) = G(x, \ddot{x}). \] (4.3)

Now, we formulate the iteration scheme as
\[\ddot{x}_{k+1} + \Omega^2 x_{k+1} = G(x_k, \ddot{x}_k); \quad k = 0, 1, 2, 3, \ldots \] (4.4)
together with initial condition
\[x_0(t) = A \cos(\Omega_0 t). \] (4.5)

Hence \(x_{k+1} \) satisfies the initial conditions
\[x_{k+1}(0) = A, \quad \dot{x}_{k+1}(0) = 0. \] (4.6)

At each stage of the iterative, \(\Omega_k \) is determined by the requirement that secular terms \([28]\) should not occur in the full solution of \(x_{k+1}(t) \).
The above procedure gives the sequence of solutions: \(x_0(t), x_1(t), x_2(t), \ldots \).

The method can be proceed to any order of approximation; but due to growing algebraic complexity the solution is confined to a lower order usually the second [52].

At this point, the following observations should be noted:

(a) The solution for \(x_{k+1}(t) \) depends on having the solutions for \(k \) less than \((k+1) \).

(b) The linear differential equation for \(x_{k+1}(t) \) allows the determination of \(\Omega_k \) by the requirement that secular terms be absent. Therefore, the angular frequency, "\(\Omega \)" appearing on the right-hand side of equation (4.4) in the function \(x_k(t) \), is \(\Omega_k \).

4.3 Solution Procedure

Let us consider the cubic nonlinear oscillator

\[
\ddot{x} + x^3 = 0 \tag{4.7}
\]

Now adding \(\Omega^2 x \) to both sides of equation (4.7), we obtain

\[
\ddot{x} + \Omega^2 x = \Omega^2 x - x^3 \tag{4.8}
\]

Now the iterative scheme is according to equation (4.4)

\[
\ddot{x}_{k+1} + \Omega^2_k x_{k+1} = \Omega^2_k x_k - x_k^3 \tag{4.9}
\]

The initial condition is rewritten as

\[
x_0(t) = A \cos \theta \tag{4.10}
\]

where \(\theta = \Omega_o t \). For \(k = 0 \) the equation (4.9) becomes

\[
\ddot{x}_1 + \Omega^2_0 x_1 = \Omega^2_0 x_0 - x_0^3
\]

\[
\ddot{x}_1 + \Omega^2_0 x_1 = \Omega^2_0 A \cos \theta - A^3 \cos^3 \theta
\]

\[
\ddot{x}_1 + \Omega^2_0 x_1 = \Omega^2_0 A \cos \theta - (0.75 A^3 \cos \theta + 0.25 A^3 \cos 3 \theta)
\]

\[
\ddot{x}_1 + \Omega^2_0 x_1 = (\Omega^2_0 - 0.75 A^3) A \cos \theta - 0.25 A^3 \cos 3 \theta \tag{4.11}
\]

To check secular terms in the solution, we have to remove \(\cos \theta \) from the right hand side of equation (4.11), we get

\[
\Omega^2_0 - 0.75 A^2 = 0 \tag{4.12}
\]

By solving equation (4.12), we have

\[
\Omega_0 = 0.8660254037844386 A \tag{4.13}
\]

So equation (4.11) becomes
\[\ddot{x}_1 + \Omega_0^2 x_1 = -0.25 A^3 \cos \theta \quad (4.14) \]

Now the particular solution of equation (4.14) is
\[x_1^{(p)} = \frac{-0.25 A^3}{-9 \Omega_0^2 + \Omega_0^2} \cos \theta \]
\[x_1^{(p)} = \frac{0.25 A^3}{-8 \Omega_0^2} \cos \theta \]
\[x_1^{(p)} = 0.0416666666666667 A \cos \theta \quad (4.15) \]

Therefore the full solution to equation (4.34) is
\[x_1(t) = x_1^{(h)} + x_1^{(p)} \]
\[= C \cos \theta + 0.0416666666666667 A \cos \theta \quad (4.16) \]

where \(C \cos \theta \) is the solution to the homogeneous equation
\[\ddot{x}_1 + \Omega_0^2 x_1 = 0 \quad (4.17) \]

Since \(x_1(0) = A \), then
\[x_1(0) = C + 0.0416666666666667 A \]
\[A = C + 0.0416666666666667 A \]
\[C = 0.9583333333333334 A \]

Putting this value of \(C \) into equation (4.16), we obtain
\[x_1(t) = 0.9583333333333334 A \cos \theta + 0.0416666666666667 A \cos \theta \quad (4.18) \]

This is the first approximate solution of equation (4.7)

The next approximation, \(x_2(t) \), requires the solution to
\[\ddot{x}_2 + \Omega_1^2 x_2 = \Omega_1^2 x_1 - x_1^3 \quad (4.19) \]

Substituting \(x_1(t) \) from equation (4.18) into equation (4.19) we obtain
\[\ddot{x}_2 + \Omega_1^2 x_2 = \Omega_1^2 (0.9583333333333334 A \cos \theta + 0.0416666666666667 A \cos \theta) \]
\[- (0.6912976924435 A^3 \cos \theta + 0.2774884478877286 A^3 \cos 3 \theta + 0.029947943020832226 A^3 \cos 5 \theta) \]
\[\ddot{x}_2 + \Omega_1^2 x_2 = (0.9583333333333334 \Omega_1^2 - 0.6912976924435 A^3) A \cos \theta + \]
\[(0.0416666666666667 \Omega_1^2 - 0.2774884478877286 A^3) A \cos 3 \theta + \]
\[-0.029947943020832226 A^3 \cos 5 \theta \quad (4.20) \]

To check secular terms in the solution, we have to remove \(\cos \theta \) from the right hand side of equation (4.20) we get
By solving equation (4.21), we have

$$\Omega_1 = 0.8493257129433129 A$$

So equation (4.20) becomes

$$\ddot{x}_2 + \Omega_1^2 x_2 = (0.04166666666666667 \Omega_1^2 - 0.27748884478877286 A^3) A \cos \theta - 0.029947943020832226 A^3 \cos 5 \theta$$

$$\ddot{x}_2 + \Omega_1^2 x_2 = -0.247431976 A^3 \cos 3 \theta - 0.029947943020832226 A^3 \cos 5 \theta$$

Now, the particular solution of equation (4.23) is

$$x_2^{(p)} = \frac{-0.247431976 A^3}{-8 \Omega_1^2} \cos \theta - \frac{0.029947943020832226 A^3}{-24 \Omega_1^2} \cos 5 \theta$$

$$x_2^{(p)} = 0.04287627 A \cos \theta + 0.0017298439 A \cos 5 \theta$$

Therefore the full solution to equation (4.23) is

$$x_2(t) = x_2^{(h)} + x_2^{(p)} = C_1 \cos \theta + 0.04287627 A \cos \theta + 0.0017298439 A \cos 5 \theta$$

where $$C_1 \cos \theta$$ is the solution to the homogeneous equation

$$\ddot{x}_2 + \Omega_1^2 x_2 = 0$$

Since $$x_2(0) = A$$, then

$$A = C_1 A + 0.04287627 A + 0.0017298439 A$$

$$C_1 = 0.955393886 A$$

Putting this value of $$C_1$$ into equation (4.24), we obtain

$$x_2(t) = 0.955393886 A \cos \theta + 0.04287627 A \cos 3 \theta + 0.0017298439 A \cos 5 \theta$$

This is the second approximate solution of equation (4.7)

The next approximation, $$x_3(t)$$ requires the solution to

$$\ddot{x}_3 + \Omega_2^2 x_3 = \Omega_2^2 x_2 - x_2^3$$

Substituting $$x_2(t)$$ from equation (4.26) into equation (4.27), we obtain

$$\ddot{x}_3 + \Omega_2^2 x_3 = \Omega_2^2 (0.955393886 A \cos \theta + 0.04287627 A \cos 3 \theta + 0.0017298439 A \cos 5 \theta)$$

$$-(0.6861464084277498 A^3 \cos \theta + 0.2780700682800906 A^3 \cos 3 \theta$$

$$+0.0330428668780662 A^3 \cos 5 \theta)$$

$$= 0.958333333333334 \Omega_2^2 - 0.6912976924435 A^2 = 0$$
\[\ddot{x}_3 + \Omega_2^2 x_3 = \Omega_1^2 \left(0.955393886 - 0.6861464084277498 A^2 \right) A \cos \theta + \Omega_2^2 \left(0.04287627 A \cos \theta + 0.0017298439 A \cos 5\theta \right) - \\
(0.27807006828009906 A^2 \cos 3\theta + 0.0330428668780662 A^2 \cos 5\theta) \] (4.28)

To check secular terms in the solution, we have to remove \(\cos \theta \) from the right hand side of equation (4.28), we get

\[0.955393886 \Omega_2^2 - 0.6861464084277498 A^2 = 0 \] (4.29)

By solving equation (4.29), we have

\[\Omega_2 = 0.8474560185405289 A \] (4.30)

So equation (4.28) becomes

\[\ddot{x}_3 + \Omega_2^2 x_3 \ddot{\theta} - 0.247277116 A^2 \cos 3\theta - 0.031800524 A^2 \cos 5\theta \] (4.31)

Now, the particular solution of equation (4.31) is

\[x_3^{(p)} = \frac{-0.247277116 A^2}{-8 \Omega_2^2} \cos 3\theta + \frac{-0.031800524 A^2}{-24 \Omega_2^2} \cos 5\theta \]

\[x_3^{(p)} = 0.043038747 A \cos 3\theta + 0.00184497 A \cos 5\theta \]

Therefore the full solution to equation (4.28) is

\[x_3(t) = x_3^{(h)} + x_3^{(p)} = C_2 \cos \theta + 0.043038747 A \cos 3\theta + 0.00184497 A \cos 5\theta \] (4.32)

where \(C_2 \cos \theta \) is the solution to the homogeneous equation

\[\ddot{x}_3 + \Omega_2^2 x_3 = 0 \] (4.33)

Since \(x_3(0) = A \), then

\[A = C_2 + 0.043038747 A + 0.00184497 A \]

\[C_2 = 0.955116283 A \]

Putting this value of \(C_2 \) into equation (4.32), we obtain

\[x_3(t) = 0.955116283 A \cos \theta + 0.043038747 A \cos 3\theta + 0.00184497 A \cos 5\theta \] (4.34)

This is the third approximate solution of equation (4.7).

The next approximation, \(x_4(t) \), requires the solution to

\[\ddot{x}_4 + \Omega_3^2 x_4 = \Omega_3^2 x_3 - x_3^3 \] (4.35)

Substituting \(x_3(t) \) from equation (4.34), into equation (4.35), we obtain
\[\dot{x}_4 + \Omega_3^2 x_4 = \Omega_3^2 \left(0.955116283 A \cos \theta + 0.043038747 A \cos 3\theta + 0.00184497 A \cos 5\theta \right) \]
\[- (0.6856980269210919 A^3 \cos \theta + 0.278154518586844 A^3 \cos 3\theta \]
\[+ 0.03330310894460576 A^3 \cos 5\theta \]
\[= (0.955116283 \Omega_3^2 - 0.6856980269210919 A^2) A \cos \theta + \]
\[\Omega_3^2 \left(0.043038747 A \cos 3\theta + 0.00184497 A \cos 5\theta \right) \]

(4.36)

To check secular terms in the solution, we have to remove \(\cos \theta \) from the right hand side of equation (4.36), we get
\[0.955116283 \Omega_3^2 - 0.6856980269210919 A^2 = 0 \]

(4.37)

By solving equation (4.37), we have
\[\Omega_3 = 0.8473021830725166 A \]

(4.38)

So, the equation (4.36) becomes
\[\dot{x}_4 + \Omega_3^2 x_4 = -0.247256145 A^3 \cos 3\theta - 0.031978566 A^3 \cos 5\theta \]

(4.39)

Now, the particular solution of equation (4.39) is
\[x_4^{(p)} = \frac{-0.247256145}{-8 \Omega_3^2} A^3 \cos 3\theta + \frac{-0.031978566}{-24 \Omega_3^2} A^3 \cos 5\theta \]
\[x_4^{(p)} = 0.043050742 A \cos 3\theta + 0.001855971403 A \cos 5\theta \]

Therefore the full solution to equation (4.39) is
\[x_4(t) = x_4^{(h)} + x_4^{(p)} \]
\[= C_3 \cos \theta + 0.043050742 A \cos 3\theta + 0.001855971403 A \cos 5\theta \]

(4.40)

Since \(x_4(0) = A \), then
\[A = C_3 + 0.043050742 A + 0.001855971403 A \]
\[C_3 = 0.9550932806 A \]

Putting this value of \(C_3 \) into equation (4.40), we obtain
\[x_4(t) = 0.9550932806 A \cos \theta + 0.043050742 A \cos 3\theta + 0.001855971403 A \cos 5\theta \]

(4.41)

This is the fourth approximate solution of equation (4.7).

The next approximation, \(x_5(t) \), requires the solution to
\[\dot{x}_5 + \Omega_3^2 x_5 = \Omega_4^2 x_4 - x_4^3 \]

(4.42)

Substituting \(x_4(t) \) from equation (4.41) into equation (4.42), we obtain
\[\ddot{x}_5 + \Omega_4^2 x_5 = \Omega_4^2 \left(0.9550932806 A \cos \theta + 0.043050742 A \cos^3 \theta + 0.001855971403 A \cos^5 \theta \right)
- \left(0.6856598003473948 A^3 \cos \theta + 0.27816061652570045 A^3 \cos^3 \theta + 0.03332556997552419 A^3 \cos^5 \theta \right) \]

\[\ddot{x}_5 + \Omega_4^2 x_5 = (0.9550932806 \Omega_4^2 - 0.6856598003473948 A^2) A \cos \theta + \Omega_4^2 \left(0.043050742 A \cos^3 \theta + 0.001855971403 A \cos^5 \theta \right) - (0.27816061652570045 A^3 \cos \theta + 0.03332556997552419 A^3 \cos^5 \theta) \]

and \(\theta = \Omega_4 t \). To check secular terms in the solution, we have to remove \(\cos \theta \) from the right hand side of equation (4.43) we get

\[0.9550932806 \Omega_4^2 - 0.6856598003473948 A^2 = 0 \]
(4.44)

By solving equation (4.44), we have

\[\Omega_4 = 0.8472887677067594 A \]
(4.45)

So equation (4.43) becomes

\[\ddot{x}_5 + \Omega_4^2 x_5 = -0.247254547 A^3 \cos 3 \theta - 0.03199317 A^3 \cos 5 \theta \]
(4.46)

Now, the particular solution of equation (4.46) is

\[x_5^{(p)} = \frac{-0.247254547 A^3}{-8 \Omega_4^2} \cos 3 \theta + \frac{-0.03199317 A^3}{-24 \Omega_4^2} \cos 5 \theta \]

\[x_5^{(p)} = 0.043051785 A \cos 3 \theta + 0.001856875968 A \cos 5 \theta \]

Therefore the full solution to equation (4.46) is

\[x_5(t) = x_5^{(b)} + x_5^{(p)} = C_4 \cos \theta + 0.043051785 A \cos 3 \theta + 0.001856875968 A \cos 5 \theta \]
(4.47)

Since \(x_5(0) = A \), then

\[A = C_4 + 0.043051785 A + 0.001856875968 A \]

\[\therefore C_4 = 0.955091339 A \]

Putting this value of \(C_4 \) into equation (4.47), we obtain

\[x_5(t) = 0.955091339 A \cos \theta + 0.043051785 A \cos 3 \theta + 0.001856875968 A \cos 5 \theta \]
(4.48)

This is the fifth approximate solution of equation (4.7)

The next approximation, \(x_6(t) \), requires the solution to

\[\ddot{x}_6 + \Omega_5^2 x_6 = \Omega_5^2 x_5 - x_5^3 \]
(4.49)
Substituting \(x_5(t) \) from equation (4.48) into equation (4.49), we obtain

\[
\ddot{x}_6 + \Omega_5^2 x_6 = \Omega_5^2 (0.955091339 A \cos \theta + 0.043051785 A \cos 3\theta + 0.001856875968 A \cos 5\theta) \\
-(0.6856565968983345 A^3 \cos \theta + 0.27816115241228423 A^3 \cos 3\theta \\
+0.03332745558547966 A^3 \cos 5\theta)
\]

\[
\ddot{x}_6 + \Omega_5^2 x_6 = (0.955091339 \Omega_5^2 - 0.6856565968983345 A^3) A \cos \theta \\
+\Omega_5^2 (0.043051785 A \cos 3\theta + 0.001856875968 A \cos 5\theta) \\
-(0.27816115241228423 A^3 \cos 3\theta + 0.03332745558547966 A^3 \cos 5\theta) \tag{4.50}
\]

To check secular terms in the solution, we have to remove \(\cos \theta \) from the right hand side of equation (4.50), we get

\[
0.955091339 \Omega_5^2 - 0.6856565968983345 A^2 = 0
\]

\[
\therefore \Omega_5 = 0.8472876496310915 A \tag{4.51}
\]

So, equation (4.50) becomes

\[
\ddot{x}_6 + \Omega_5^2 x_6 = -0.24725443261687127 A^3 \cos 3\theta - 0.03199441108482046 A^3 \cos 5\theta \tag{4.52}
\]

Here, the particular solution of equation (4.52) is

\[
x_6^{(p)} = -0.2472544 A^3 \cos 3\theta + 0.03199441108482046 A^3 \cos 5\theta \\
\]

\[
x_6^{(p)} = 0.04305190240092375 A \cos 3\theta + 0.0018569539196533911 A \cos 5\theta
\]

Therefore the full solution to equation (4.52) is

\[
x_6(t) = x_6^{(h)} + x_6^{(p)}
\]

\[
x_6(t) = C_5 \cos \theta + 0.04305190240092375 A \cos 3\theta + 0.0018569539196533911 A \cos 5\theta \tag{4.53}
\]

By using \(x_6(0) = A \), then we have

\[
C_5 = 0.95509111436794228 A
\]

equation (4.53) becomes

\[
x_6(t) = 0.95509111436794228 A \cos \theta + 0.04305190240092375 A \cos 3\theta \\
+0.0018569539196533911 A \cos 5\theta
\]

This is the sixth approximate solution of equation (4.7).

Thus \(\Omega_6, \Omega_1, \Omega_3, \Omega_4, \Omega_5 \) respectively obtained by equations (4.13), (4.22), (4.30), (4.38), (4.45), (4.51) represent the approximation of frequencies of oscillator (4.7).
4.4 Results and discussions

An iterative method is presented to obtain approximate solution of cubic nonlinear oscillator. In order to test the accuracy of the modified approach of iterative method, we compare our results with the other existing results from different methods. To show the accuracy, we have calculated the percentage errors by the definitions

\[\left| \frac{\Omega_i(A) - \Omega_i^r(A)}{\Omega_i(A)} \right| \times 100, \quad \text{where } i=0,1,2, \ldots \]

We have used a modified iteration method to obtain approximate solutions of the above oscillator. It has been shown that, in most of the cases our solutions give significant results than other existing results.

Herein we have calculated the first, second and third approximate frequencies which are denoted by \(\Omega_0, \Omega_1, \) and \(\Omega_2 \) respectively. All the results are given in the following table, to compare the approximate frequencies. We have also given the existing results determined by Mickens iterative method [27] and Mickens HB method [27].
4.5 Table

Comparison of the approximate frequencies obtained by the presented technique and other existing results with exact frequency Ω_e [27] of cubic nonlinear oscillator.

<table>
<thead>
<tr>
<th>Amplitude A</th>
<th>First Approximate Frequency Ω_0</th>
<th>Er(%)</th>
<th>Second Approximate Frequency Ω_1</th>
<th>Er(%)</th>
<th>Third Approximate Frequency Ω_2</th>
<th>Er(%)</th>
<th>Fourth Approximate Frequency Ω_3</th>
<th>Er(%)</th>
<th>Fifth Approximate Frequency Ω_4</th>
<th>Er(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mickens</td>
<td>0.866025 A</td>
<td>2.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parameter</td>
<td></td>
</tr>
<tr>
<td>Expansion</td>
<td></td>
</tr>
<tr>
<td>Method [27]</td>
<td></td>
</tr>
<tr>
<td>Mickens</td>
<td>0.866025 A</td>
<td>2.2</td>
<td>0.8489 A</td>
<td>0.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HB Method [27]</td>
<td></td>
</tr>
<tr>
<td>Mickens</td>
<td>0.866025 A</td>
<td>2.2</td>
<td>0.849326 A</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iteration</td>
<td></td>
</tr>
<tr>
<td>Method [27]</td>
<td></td>
</tr>
<tr>
<td>Adopted</td>
<td>0.866025 A</td>
<td>2.2</td>
<td>0.849326 A</td>
<td>0.25</td>
<td>0.847456 A</td>
<td>0.03</td>
<td>0.847302 A</td>
<td>0.01</td>
<td>0.847289 A</td>
<td>0.009</td>
</tr>
<tr>
<td>Method</td>
<td></td>
</tr>
</tbody>
</table>

From the table, it is seen that the third-order approximate frequency obtained by adopted method is almost same with exact frequency. It is found that, in each of the cases our solution gives significantly better result than other existing results. The compensation of this method consists of its simplicity, computational efficiency and convergence. It is also observed that the Mickens’ iterative technique is convergent for this oscillator.
Convergence and Consistency Analysis

We know the basic idea of iterative methods is to construct a sequence of solutions x_k (as well as frequencies Ω_k) that have the property of convergence

$$x_e = \lim_{k \to \infty} x_k \quad \text{Or,} \quad \Omega_e = \lim_{k \to \infty} \Omega_k$$

Here x_e is the exact solution of the given nonlinear oscillator.

In the present method, it has been shown that the solution yield the less error in each iterative step compared to the previous iterative step and finally

$$|\Omega_4 - \Omega_e| = |0.847289 - 0.847213| < \varepsilon,$$

where ε is a small positive number and A is chosen to be unity. From this, it is clear that the adopted method is convergent.

An iterative method of the form represented by equation (4.2) with initial guesses given in equation (4.3) and equation (4.4) is said to be consistent if

$$\lim_{k \to \infty} |x_k - x_e| = 0 \quad \text{Or,} \quad \lim_{k \to \infty} |\Omega_k - \Omega_e| = 0.$$

In the present analysis we see that

$$\lim_{k \to \infty} |\Omega_k - \Omega_e| = 0, \quad \text{as} \quad |\Omega_4 - \Omega_e| = 0.$$

Thus the consistency of the method is achieved.
REFERENCES

