KHULNA UNIVERSITY OF ENGINEERING & TECHNOLOGY Department of Mechanical Engineering

B. Sc. Engineering 1st Year 1st Term Examination, 2021

Math 1105

(Mathematics I)

Total Marks: 210

15

10

Time: 3 Hours

N.B.: i) Answer any THREE questions from each section in separate scripts.

ii) Figures in the right margin indicate full marks.

iii) Assume reasonable data if any missing.

SECTION-A

1(a) Define continuity of a function at a point. A function f(x) is defined byf(x) = |x+2| + |x-1|

Show that f(x) is continuous at x = -2 but f'(1) does not exist.

1(b) Evaluate
$$\lim_{x \to 1} (1-x^2)^{1/\ln(1-x)}$$
.

1(c) Differentiate
$$\tan^{-1}\left(\frac{x}{\sqrt{1-x^2}}\right)$$
 with respect to $\sec^{-1}\left(\frac{1}{2x^2-1}\right)$. 10

2(a) If
$$y = \sin^{-1} x$$
, then find the relations between y_{n+2} , y_{n+1} and y_n . Also, find the value of 13 $(y_n)_o$.

2(b) Find the extreme values of
$$U = \frac{2}{x} + \frac{18}{y}$$
 where $x + y = 1$. 11

2(c) Find all possible asymptotes of the curve
$$(y+3)(x^2-3x-4)+3x+7=0$$
. 11

3(a) State Rolle's theorem. Is Rolle's theorem applicable for the function $f(x) = \frac{2}{2+|x|}$ in 13 -1 $\le x \le 1$? Justify your answer.

3(b) If
$$u = F(y-z, z-x, x-y)$$
, then find the value of $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z}$. 12

3(c) Calculate the value of cos 61° using the value of cos 60°.

4(a)	Show that the two curves $x y = 4$ and $x^2 - y^2 = 15$ cut orthogonally to each other.	11
4(b)	Find where the tangent is parallel to the x-axis for the curve $y = x^3 - 3x^2 - 9x + 15$.	12

4(c) Find the radius of curvature of the curve $y = x e^{-x}$ at its extreme value.

SECTION-B

5. Integrate the followings:

(a) $\int \frac{dx}{x^4 \sqrt{x^2 - 1}}$ (b) $\int \sqrt{\frac{x}{x - a}} dx$ (c) $\int \frac{dx}{\sin x + 7\cos x + 5}$

12 11 12

10

12

6. Evaluate the followings:
(a)
$$\int_{0}^{\frac{\pi}{2}} \frac{x}{\sin x + \cos x} dx$$
(b) $\int_{0}^{1} \frac{\log(1+x)}{1+x^{2}} dx$
(c) $\lim_{n \to \infty} \left[\frac{\sqrt{n+1} + \sqrt{n+2} + \dots + \sqrt{2n}}{n\sqrt{n}} \right]$
(1)
7(a) Define Gamma function and Beta function. Using Gamma and Beta function evaluate $\int_{0}^{1} x^{2} (1-x^{3})^{\frac{3}{2}} dx$
(b) Find the reduction formula for $\int cosec^{n}x dx$ and hence find the value of $\int cosec^{3}x dx$. 12

7(c) Find the area of the region bounded by the curve
$$y^2 = 2ax - x^2$$
 and $y^2 = ax$. 11

8(a) State and prove Walli's formula.

- 8(b) Find the volume of the solid produced by the revolution of the loop of the curve 14 $a^2y^2 = x^3(2a-x)$.
- 8(c) Find the length of the arc of the parabola $y^2 = 4ax$ measured from the vertex to one extremity 14 of the latus rectum.

07