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Abstract 

 

 

 In this thesis the nature of distributive lattice and Boolean function is studied. 

Distributive lattices have played many roles in the development of lattice theory. Distributive 

lattices have been studied by several authors including Abbott [6], Cornish [17], Nieminen 

[10].A poset ( ),L ≤ is said to form a lattice if for every ,a b L∈  if sup{ , }a b and inf{ },a b exist in 

L . A lattice L is said to be distributive if , ,a b c L∀ ∈ , 

     ( ) ( ) ( )a b c a b a c∧ ∨ = ∧ ∨ ∧ holds. 

In this thesis we give several results on distributive lattice and Boolean function which will 

certainly extend and generalize many results in lattice theory. We have proved that N N×  is 

modular where N is the chain of naturals under usual ≤ . We also generalize the following 

theorem of  L.Nachbin[16], let L be a distributive lattice with 0 and 1 then L  is Boolean iff all 

its prime ideals are unordered by set inclusion⊆ . 
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CHAPTER 1 

 

Preliminaries 

  

1.1 Introduction:  

In this chapter we have discussed the basic definition of relation. We recall some 

definitions and results on lattice, convex sublattice, complete lattice and complemented 

lattice. We consider this chapter as the base and background for the study of subsequent 

chapters. 

 

1.2  Relations: 

 

Definition (Relation): Let A  and B  be two non-empties set, any subset of A B×  (Cartesian 

product) is called relation from A toB . The elements , ( , )a b a A b B∈ ∈ are in relation 

with respect to R  if ( , ) .a b R∈  For ( , ) ,a b R∈  we will also write “aRb” or “ ( )a b R≡ ” 

and read as “a is related to b byR”.  

 

Example 1.2.1: Let  {1,2,3};A =  {4,5}B =  

 Then {(1,4), (1,5), (2,4), (2,5), (3,4), (3,5)}A B× =  

  1 {(1,4), (1,5)}R = , 2 {(2,5)}R = , 3 {(3,4), (1,5)}R =  are all relations from  A to B. 

 

Definition (Inverse relation): Every relation R from A to B has an inverse relation 1−R  from 

B to Awhich is defined by 1 {( , ) : ( , ) }− = ∈R b a a b R  

 In other words, the inverse relation 1−R  consists of those ordered pairs which when 

reversed, i.e., permutated, belongs toR . 

 

Example 1.2.2: Let {1,2,3}A = and { , }B a b= .Then 

         {(1, ), (1, ), (3, )}R a b a= is a relation from A toB . Then the inverse relation of R is 

                                                             1 {( ,1),( ,1),( ,3)}− =R a b a . 
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Definition (Reflexive relation): A relation R in a setA  is called a reflexive relation if, for 

every , ( , )a A a a R∈ ∈ . 

  In other words, R  is reflexive if every element in A  is related to itself. 

 

Example 1.2.3: Let {1,2,3}A = . Then 

                                       {(1,1), (2,2), (2,3), (3,2), (3,3)}R=   

  Here R  is reflexive since (1,1), (2,2)and (3,3) belongs to the relation. 

 

Definition (Symmetric relation): Let R  be a subset of   A A×  , i.e., let R  be a relation in .A   

Then R  is called a symmetric relation if  ( , )a b R∈ implies  ( , )b a R∈  

  that is, if a  is related to b  then b  is also related to a . 

 

Example 1.2.4: Let {1,2,3}A = . Then  

 {(1,1), (3,2), (2,3)}R =  Is symmetric relation. 

 

Definition (Anti-symmetric relation): Let R  be a subset of A A× , i.e. let R  be a relation in 

A . Then R  is called a anti- symmetric relation if ( , )a b R∈ and ( , )b a R∈ implies a b=  

 In other words, if a b≠  then possibly a  is related to b or possibly b is related toa , but 

never both. 

Remark: Let D  denoted the diagonal line of A A× , i.e., the set of all ordered pairs 

( , )a a A A∈ × . 

  Then a relation R  in A is anti-symmetric if and only if 

                                      1−∩ ⊂R R D.  

 

Example 1.2.5: Let {1,2,3}A =  .Then  

  1 2{(1,1)}, {(1,2)}R R= =  both are anti-symmetric relation. 

 

Definition (Transitive relation): A relation R   in a set A  is called a transitive relation if  

                             ( , )a b R∈ and ( , )b c R∈ implies ( , ) .a c R∈  
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  In other words, if a  is related to b  and b  is related to c  then a  is related toc . 

 

Example 1.2.6: Let {1,2,3}A = . Then 

         1 2{(1,2), (2,2)}, {(1,2)}R R= =  both are transitive relation. 

 

Definition (Equivalence relation): A relation R  in a set A  is an equivalence relation if  

(1) R  is  reflexive , that is for every , ( , )a A a a R∈ ∈  

(2)  R  is  symmetric, that is ( , ) ,a b R∈ ,implies ( , )b a R∈  

(3)  R  is transitive,  that is ( , )a b R∈ and ( , )b c R∈ implies ( , )a c R∈ . 

 

Example 1.2.7: Let {1,2,3}A =  be a set and {(1,1), (2,2),(3,3), (1,2), (2,1), (1,3),(3,1),R=  

(2,3)} be a relation of ×A A then the relation is an equivalence relation, since  

 (1)  R  is reflexive, (1,1), (2,2), (3,3) R∈ ,                            

 (2)  R  is symmetric, (1,2), (2,1), (1,3), (3,1) R∈ and   

(3)  R  is transitive, (2,1),(1,3),(2,3)∈ R.                         

          

1.3 Posets and Lattices:  

 

Definition (Poset): A non-empty setP , together with a binary relation R  is said to be a 

Partially Orderd set or a Poset if 

 (P1) aRa for every ∈a P, i.e., R is reflexive. 

 (P2) aRb and bRa implies =a b , i.e., R is anti-symmetric, for ,a b P∈  

 (P3) aRb and bRc impliesaRc, i.e., R  is transitive, for , ,a b c P∈ . 

Remark: For our convenience, we use the symbol “≤ ” in place of R . We read ≤  as “less 

than or equal to”. Thus if P  is a poset then we automatically assume that “≤ ” is the 

partial ordered relation in P , unless other symbol is mentioned. 
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Examples 1.3.1: i) The set N  of natural numbers under the usual ≤  is a poset. 

  ii) The set {2,4,8,16}=X  under the divisibility relation is a poset. 

     

 

 

 

 

 

Definition (Chain): If P  is a poset in which every two members are comparable it is called a 

totally ordered set or a toset or a chain. 

  Thus if P is a chain and , ∈x y Pthen either ≤x yor ≤y x. 

  Clearly also if  ,x y  are distinct elements of a chain then either <x yor <y x. 

 

Definition (Greatest element): Let P  be a poset. If ∃  an element ∈a P s.t. ≤x a for all 

∈x Pthen a  is called greatest or unit element of P . Greatest element if exists, will be 

unique. 

 

Definition (Least element): Let P  be a poset. If ∃  an element ∈b P  s.t. ≤b x for all 

∈x Pthen b  is called least or zero element of P . Least element if exists, will be unique. 

 

Example 1.3.2: Let {1,2,3}=X . Then ( ( ), )⊆P X  is a poset. 

 Let { ,{1,2},{2},{3}}A= φ  then ( , )A ⊆  is a poset with ϕ  as least element. A  has no greatest 

element. Let {{1,2},{2},{3},{1,2,3}}B =  then B  greatest element {1,2,3}  but no least 

elements. If { ,{1},{2},{1,2}}C = φ  then C  has both least and greatest elements namely, φ  

and {1,2}  

 

Definition (Maximal element): An element a  in a poset P  is called maximal element of P if 

a x<  for no x P∈ . 

 

•  

•  

•  

•  

16  

8  

4  

2  

Fig- 1.1 
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Example 1.3.3: In the poset {2,3,4,6,7,21} under divisibility 4,6 and 21 are three maximal 

elements (none being the greatest). 

 

 

 

 

 

Definition (Minimal element): An element  b  in a poset P  is called a minimal element of P  

if x b<  for nox P∈ . 

 

Definition (Upper bound of a set): Let S  be a non empty subset of a poset P . An element 

a P∈  is called an upper bound of S  if x a x S≤ ∀ ∈ . 

 

Definition (Supremum): If a  is an upper bound of S   s.t. a b≤  for all upper bounds b  of S  

then a  is called least upper bound ( . . )l u b  or supremum of S . We write supS or 

supremum S . 

 It is clear that there can be more upper bound of a set. But sup, if it exists, will be         

unique. 

 

Definition (Lower bound): An element a P∈  will be called lower bound of S  if 

,a x x S≤ ∀ ∈ . 

   

Definition (Infimum): If a  is a lower bound of a set S . Then a  will be called greatest lower 

bound ( . . )g l b  or Infimum S (inf )S  if of a set b a≤ for all lower bounds b  of S . 

 

Example 1.3.4: Let ( , )Z ≤ be the poset of integers 

  Let { , 2, 1,0,1,2)S = − −⋯ then 2 supS=  

 Again the poset ( , )R ≤ of real numbers if {S x R= ∈ | 0, 0}x x< ≠  the sup 0S =  (and it does 

not belong toS). 

•  

•  

•  

•  •  

•  
2 

4 6 

3 

21 

7 

Fig- 1.2 
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Definition (Lattice): A poset ( , )L ≤ is said to form a lattice if for every , , sup{ , }a b L a b∈  and 

inf{ , }a b exist in L . 

  In that case, we write 

  sup{ , }a b a b= ∨  (read a join b) 

    inf{ , }a b a b= ∧  (read a meet b) 

 Other notations like a b+  and a b⋅  or a b∪  and a b∩  are also used for sup{ , }a b and 

inf{ , }a b . 

 

Definition  (Algebraic definition of a lattice): A set L  together with two binary operation 

' '∧  (meet) and ' '∨ (join) is called a lattice if it satisfies the following identities 

 (i)  idempotent law ,a L∀ ∈  ,a a a∧ =  a a a∨ =  

 (ii)  commutative law , ,a b L∀ ∈  a b b a∧ = ∧  and a b b a∨ = ∨  

 (iii)  associative law , , ,a b c L∀ ∈  ( ) ( )a b c a b c∧ ∧ = ∧ ∧ and ( ) ( )a b c a b c∨ ∨ = ∨ ∨  

 (iv)  absorption law  , ,a b L∀ ∈  ( )a a b a∧ ∨ =  and ( )a a b a∨ ∧ = . 

 

Example 1.3.5: Let X  be a non empty set, then the poset ( ( ), )P X ⊆ of all subset is a lattice. 

Here for , ( )A B P X∈  

  A B A B∧ = ∩  and A B A B∨ = ∪  

  As particular case, when {1,2,3}X =  

  ( ) { ,{1},{2},{3},{1,2}{1,3},{2,3},{1,2,3} }P X = φ  

  It represented by the following figure 

 

 

 

 

 

 

 

{ }2  

{ }1,3  

{ }1,2,3  

{ }2,3  

{ }3  

φ  

{ }1  

{ }1,2  

Fig- 1.3 

•  •  

•  

•  

•  
•  

•  

•  
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Example 1.3.6: Every chain is a lattice. Since any two elements ,a b  of a chain are 

comparable, say ,a b≤ we find 

  inf{ , } ,a b a b a∧ = =  sup{ , }a b a b b∨ = = . 

 

Definition (Dual): Let R be a relation defined on a set P  . Then converse of R (denoted by 

R) is defined by a R b ⇔ b R a, ,a b ∈ P . Let ( , )P R  be a poset then (P , R) is called 

dual of P , where P= P  and R is the converse of R. 

 

Remark: If a statement φ  is true in all posets, then its dual is also true in all posets. As an 

example take for φ  the statement: “If supH  exist it is unique”, we get as its dual; “If    

inf H exists it is unique”. 

 

Theorem 1.3.7: Show that a poset is a lattice iff it is algebraically a lattice. 

 

Proof: Clearly L is a non empty set. 

 So set inf{ , }a b a b∧ =  and sup{ , }a b a b∨ =  

 Then inf{ , }a a a a a∧ = =  ; sup{ , }a a a a a∨ = =  

 So ∧  and ∨  are idempotent 

 inf{ , } inf{ , }a b a b b a b a∧ = = = ∧  

 sup{ , } sup{ , }a b a b b a b a∨ = = = ∨  

 ∧∵  and ∨  are commutative. 

 Next, ( ) inf{ , } inf{ ,inf{ , }}a b c a b c a b c∧ ∧ = ∧ =  

    inf{inf{ , }, } inf{ , }a b c a b c= = ∧  

    ( )a b c= ∧ ∧  

 ( ) sup{ , } sup{ ,sup{ , }}a b c a b c a b c∨ ∨ = ∨ =  

    sup{ , } sup{ ,sup{ , }}a b c a b c= ∨ =  

    sup{sup{ , }, } sup{ , }a b c a b c= = ∨  

    ( a b ) c= ∨ ∨  

 so ∧  and ∨  are associative. 
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 Finally, ( ) sup{ , } inf{ ,sup{ , }}a a b a a b a a b a∧ ∨ = ∧ = =  

   ( ) inf{ , } sup{ ,inf{ , }}a a b a a b a a b a∨ ∧ = ∨ = =  

 Hence ∧  and ∨ satisfy two Absorption identity 

 So L ( L;, , )= ∧ ∨  is a lattice. 

 Conversely Since ∧  is idempotent i.e.  a a a∧ =     a L∀ ∈  

    So       a a≤  

            ∴≤  is reflexive. 

    Since ∧  is commutative 

    a b b a∴ ∧ = ∧  

        a b⇒ =   [ ]a b a and a b b∴ ∧ = ∨ =  

    So, ≤  is anti symmetric. 

    Let a b≤  and b c≤  

    Than  ,a a b= ∧  b b c= ∧  

    a ( b c )= ∧ ∧  

    ( a b ) c= ∧ ∧  

    a c= ∧  

    a a c⇒ = ∧  

    a c⇒ ≤  

    So, ≤  is transitive 

    ( , )L∴ ≤  is a poset.     ■ 

 

Theorem-1.3.8: Prove that a poset( L, )≤ is a lattice if supH  and inf H  exist for every non-

void or non-empty subset H  of L . 

 

Proof : Let ( L, )≤ is a poset and H  be a non void finite subset of L . If { }H a= , then 

sup inf { }H H a= =  follows  from reflexivity of ‘≤ ’ and the definition of sup and inf . 

 Let { , , }H a b c=  to show that supH  exist. 

 Let sup{ , }d a b= ,  sup{ , }e d c=  
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We claim that supe H= . First of all ,a d b d≤ ≤  and ,d e c e≤ ≤ , therefore by transitivity 

x e≤ .  For all x H∈ . 

Secondly, if f  is an upper bound of H , then ,a f b f≤ ≤  and thus ,d f≤ also c f≤ , so 

that , .c d f≤  Therefore .e f≤  Since sup{ , }e d c=  

 ∴ e is the supremum of  H . 

 If H 0 1 2 1{ , , , , }na a a a −= ⋯  then 

 sup{⋯sup{sup 0 1 2 n 1{a ,a }a } a }−⋯  is the sup of  H . 

 By duality, we conclude that inf H  exist. 

 Hence a poset ( , )L ≤  is a lattice.   ■ 

 

Theorem 1.3.9: A poset ( , )L ≤  is a lattice iff every non-empty finite subset of L  has sup and 

inf . 

 

Proof: Let ( , )L ≤  be a lattice and H  be any non empty finite subset of L . Then there are 

several cases: 

Case-1:  If H  has only one element, say a then inf supH H a= = . 

Case-2: If H  has two elements, say a  and b , then by definition lattice, supH  and inf H  

exist. 

Case-3: Let H  has three elements, say { , , }H a b c= , since by definition of a lattice, any two 

elements of L  have sup and inf , let we take inf{ , }d a b=  and inf{ , inf{ , }}e c a b=  

inf{ , }c d=  

 We must show, inf{ , , }e a b c= . 

 By definition of d  and e,  ,d a≤  ,d b≤  ,e c≤  e d≤  

 thus, ( ,e d≤  ),d a≤  ( ,e d≤  ),d b≤  e c≤  

  ,e a⇒ ≤  ,e b≤  e c≤ (transitivity) 

  e⇒ is any lower bound of { , , }a b c . 

 If f  is any other lower bound of { , , }a b c , then ,f a≤  ,f b≤  f c≤  

 i.e. f  is a lower bound of { , }a b  and inf{ , }d a b=  given f d≤  
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 Again, f c≤ and f d f≤ ⇒  is a lower bound of { , }c d  and inf{ , }e c d= . 

 Given f e≤ . Thus e is the greatest lower bound of { , , }.a b c  

 Hence inf{ , , } infe a b c H= = . 

 Similarly, supH  exists. 

This result can similarly be extended to any finite number of elements in H . Indeed, if 

1 2 3{ , , , , }nH a a a a= ⋯  

 Then 1 2 3inf inf{inf{inf{ , }, }, , } nH a a a a= ⋯  

 By duality, we can say, supH  exists. 

Again let L  be a non-empty set and H  be any non-empty finite subset of L  for which 

supH  and inf H  exists. 

 We have to show that L  is lattice. 

 Now, ,a b L∀ ∈ , let we consider { , }.H a b=  

 By hypothesis, supH a b= ∨ and inf inf H a b= ∧ exist. 

 i.e. a b∨ and a b L∧ ∈  

 Hence L  is a lattice.   ■ 

 

1.4 Convex sublattice and Complete lattice: 

 

Definition (Bounded lattice): A Lattice with smallest and largest elements is called a 

bounded Lattice. Smallest element is denoted by ‘0’ and largest element is denoted by ‘l’ 

or ‘u’. 

 

Example 1.4.1: The bounded subset of all real number under usual relation ≤ is a bounded 

lattice. 

 

Definition (Complete lattice):  A lattice L  is called a complete Lattice if every non-empty 

subset of L  has its sup and inf in L . 
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Example 1.4.2: Set of all sub space of a vector space V  is a complete Lattice under set 

inclusion. 

 

Definition (Sublattice): Let ( , , )L ∧ ∨  be a Lattice, A non empty subset S  of L  is called a 

sublattice of L  if S  itself is a lattice under same operation ∧ and ∨  in L . 

 

Example 1.4.3: Let {0, , ,1}L a b=  be a lattice. 

 

 

 

 

 

 Sublattice of L  are: {0, , ,1},{0},{ },{ },{1},{0, },{0, },{0,1},{ , 1},{ ,1}.a b a b a b a b  

 

Definition (Convex sublattice): A sublattice S  of a lattice L  is called a convex sublattice of 

L . If for all , ,a b S∈  [ , ] .a b a b S∧ ∨ ⊆  

 

Example 1.4.4 : Let {0, , , ,1}L a b c=  be a lattice. 

 

 

 

 

 

 

 

 Here {0, , , }a b c  is convex sublattice. 

Remark : In the lattice {1,2,3,4,6,12} under divisibility {1,6}  is a sublattice which is not 

convex as 2,3 [1,6],∈  but 2,3 {1,6}∉ .Thus [1,6] {1,6}⊆/ . 

 

 

•  

•  

•  •  a  b  

1 

0  

Fig- 1.4 

 

•  

•  •  a  b  

c  

0  

•  1 

Fig- 1.5 

•  
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Defination (Semilattice) : A poset  is called a meet semilattice if for all ,a b P∈ , 

 inf{ , }a b exist. 

 And a poset ( , )P ≤  is called a join semilattice if for all ,a b P∈ , sup{ , }a b  exists. 

 Both the meet and join semilattice are called semilattice. 

Definition (Algebraic definition of Semilattice ) :  A non-empty set P  together with a 

binary composition ' '∧  is called a meet semilattice and ' '∨  called a join semilattice, if for 

all , ,a b c P∈ . 

 (i) ,a a a∧ =  a a a∨ =  

 (ii) ,a b b a∧ = ∧  a b b a∨ = ∨  

 (iii) ( ) ( ) ,a b c a b c∧ ∧ = ∧ ∧  ( ) ( )a b c a b c∨ ∨ = ∨ ∨  

 Both meet and join semilattice are called semilattice. 

 

Theorem-1.4.5 :  Dual of a complete lattice is complete. 

 

Proof : Let ( , )L ρ be a complete lattice and let ( , )L ρ  be its dual. Then ( , )L ρ  is a lattice. 

 We have to show that ( , )L ρ  is complete lattice. 

 Let S Lϕ ≠ ⊆  be any subset of L . 

 Since L  is complete, supS and inf S exist in L . 

 Let, infa S=  in L . 

 Then ,a x x Lρ ∀ ∈  

  ,x a x L⇒ ρ ∀ ∈  

  a⇒  is an upper bound of S  in L . 

 Let b  be any other upper bound of S  in L  

 Then ,x a x Lρ ∀ ∈  

  ,b x x L⇒ ρ ∀ ∈  

  b a⇒ ρ  as infa S=   in L .  

  a b⇒ ρ  or that ‘a ’ is . .l u b  of S  in L   

 Similarly, we can show that supS in L  will be S  in L . Hence ( , )L ρ  is complete.   ■ 
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Theorem-1.4.6:  A lattice is complete unless it has a subset which forms an infinite chain. 

 

Proof: Suppose L  is a lattice without infinite chain. Now we have to show that L  is 

complete. For this purpose we need to show that, every subset of L  has suprimum and 

infimum in L . 

 Let M  be any subset of L  and let 

 0 1 2{ , , , }M x x x= ⋯  

If 0x  is an upper bound of M , then the theorem is proved. Now if 0x  is not an upper 

bound of M , then  there is some 1x M∈ such that 1 0x x> . 

 Then 0 1 0x x x∨ ≠  

 Since 0 1 0x x x∨ ≥  so we deduce that 0 1 0x x x∨ >  

 0 0 1x x x⇒ < ∨  

If 0 1x x∨  is an upper bound of M , then the theorem is proved. Now if 0 1x x∨  is  not an 

upper bound of M , then there is some 2x M∈  

 Such that 2 0 1.x x x≠ ∨  

 Then 0 1 2 0 1x x x x x∨ ∨ ≥ ∨ . 

 Since 0 1 2 0 1x x x x x∨ ∨ ≠ ∨ , so we deduce that 

 0 1 2 0 1x x x x x∨ ∨ > ∨  

0 1 0 1 2x x x x x⇒ ∨ < ∨ ∨  

If 0 1 2x x x∨ ∨  is an upper bound of M , then the theorem is proved. 

If 0 1 2x x x∨ ∨  is not an upper bound of M , then there is an 3x M∈  

 Such that3 0 1 2.x x x x≠ ∨ ∨  and such that 

  0 1 2 0 1 2 3x x x x x x x∨ ∨ < ∨ ∨ ∨  

 Proceeding in this way we get two cases:    

Case-1 : The process continue on and on or, the lattice has an infinite ascending chain 

  0 0 1 0 1 2 0 1 2 3x x x x x x x x x x< ∨ < ∨ ∨ < ∨ ∨ ∨ <⋯  

Case-2 : The process stops at certain stage Given that L  has no infinite chain, so first cas can 

not occur. Therfore case-2 must occur. 
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 Suppose the chain stops at 0 1 2 rx x x x∨ ∨ ∨ ∨⋯  

 Then 
0

r

i
i

x
=
∨  is an upper bound of M . Consider any other upper bound of M , say y . 

 0 1 2, , , , rx y x y x y x y∴ ≤ ≤ ≤ ≤⋯  

 
0

r

i
i

x y
=

∴ ∨ ≤  

 So, 
0

r

i
i

x
=
∨  is the least upper bound of M , Hence M  has supermum. 

Similarly we can show that M  has infimum. Hence a lattice without infinite chain is 

complete.   ■ 

 

Theorem-1.4.7 :  The set of all convex sublattice of a lattice under set inclusion is a 

sublattice.  

 

Proof : Suppose L  is a lattice. 

 Let us consider { :[ , ] , , }C A x y A x y A= ⊆ ∀ ∈  

 We have to show that ( , )C ⊆  is a lattice. ,P Q C∀ ∈  

 P Q P Q∧ = ∩  

 ,x y P Q∀ ∈ ∩  

 ,x y P∈  and ,x y Q∈  

 [ ],x y P∴ ⊆  and [ ],x y Q⊆  

 [ ],x y P Q∴ ⊆ ∩  

 So P Q C∧ ∈  

 Again suppose { : ; , }P Q x x p q p P q Q∨ = ≤ ∨ ∈ ∈  

 Let , P Qα β∈ ∨ , then ∃  1 2,p p P∈  and 1 2,q q Q∈  s.t. 

  1 1,p qα ≤ ∨  2 2p qβ ≤ ∨  

 Now [ , ]∀γ ∈ α β  

 So α ≤ γ ≤ β  

 1 1 2 2p q p q⇒ ∨ ≤ γ ≤ ∨  

 2 2p q⇒ γ ≤ ∨  
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 P Q∴γ ∈ ∨  

 [ , ] P Q∴ α β ⊆ ∨  

 P Q C∴ ∨ ∈  

 Hence C  is a lattice. 

 i.e. Set of all convex sublattice of a lattice under set inclusion is a lattice.   ■ 

 

Theorem-1.4.8 : Show that the poset ( , )P ≤  is a lattice if it is  a join and meet semilattice. 

 

Proof: We know that a poset ( , )P ≤ is called a lattice if it satisfied in the following axims: 

 (i) ,a b P a b P∀ ∈ ⇒ ∧ ∈  i.e. { }inf ,a b exists in P. 

 (ii) ,a b P a b P∀ ∈ ⇒ ∨ ∈  i.e. sup{ , }a b  exists in P. 

 Given that the poset ( , )P ≤ be meet semilattice and join semilattice which implies 

 , inf{ , }a b P a b∀ ∈ ⇒  exists in P  {By the definition of meet semilattice} 

 and , sup{ , }a b P a b∀ ∈ ⇒  exists in P  {By the definition of join semilattice} 

 Since sup{ , }a b  and inf{ , }a b  exists in P . 

 So ( , )P ≤ be a lattice.   ■ 

 

Theorem 1.4.9 : A sub lattice S  of a lattice L  is a convex sublatice iff ,a b S∀ ∈  with ;a b≤  

[ , ]a b S⊆ . 

 

Proof : First suppose, S  is a convex sublattice in L . 

 Then we have to show that , ,a b S∀ ∈  ( ),a b≤  [ , ] .a b S⊆  

 Let ,a b S∀ ∈  be any elements, then by definition of a convex sublattice, we have, 

   [ , ]a b a b S∧ ∨ ⊆ ……..(1) 

 But given that a b≤  

 ,a b a∴ ∧ =  a b b∨ =  

 Therefore (i) becomes [a,b] S⊆  

 Conversely suppose ,a b S∀ ∈ with a b≤  
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   [ , ]a b S⊆ …..(2) 

 we have to show that S  is convex sublattice in L . 

 Since S  is a sublattice of L  

 So, by definition of a sublattice, 

   a b S∧ ∈  and ,a b S∨ ∈  ,a b S∀ ∈  

 Again, ,a b∀  we know. 

 a b a b∧ ≤ ∨  

 So by given condition. [i.e. (2) become] 

   [ , ]a b a b S∧ ∨ ⊆  

 Therefore S  is convex sublattice.   ■ 

 

1.5  Complimented and Relatively complimented lattices : 

 

Definition (Complimented lattice) : Let [ , ]a b  be an interval in a lattice L . 

Let [ , ]x a b∈  be any element. If ∃ y L∈  s.t. ,x y a x y b∧ = ∨ = , we say y  is a 

complement of x  relative to [ , ]a b , or y  is a relative complement of x  in [ , ]a b . 

 

Definition (Relatively complimented lattices) : If every element x  of an interval [ , ]a b  

has a least one complement relative to [ , ]a b , the  interval [ , ]a b  is said to be 

complemented.  

Further, if every interval in a lattice is complemented, the lattice is said to be relatively 

complemented. 

 

Theorem 1.5.1 : Let A  be a non-empty finite set. Show that ( ( ), )Aρ ⊆  is uniquely 

complemented lattice. 

 

Proof : Let A= Φ  finite set and ( )Aρ  be the power set of A . We know ( ( ), )Aρ ⊆  form a 

lattice with least element Φ  and greatest element A .  

 Any , ( ),X Y A∈ρ  X Y X Y∧ = ∩  and X Y X Y∨ = ∪  
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 Since ( ) ( )A A X A A X∧ − = ∩ − = Φ  

 ( ) ( )A A X A A X A∨ − = ∪ − =  

 We see A X−  is complemented of X  relative to [ ,A]Φ  

 Then ( )Aρ  is any complemented lattice. Suppose Y  is any complemented of X  then 

 X Y X Y∧ = ∩ = Φ  

 X Y X Y A∨ = ∪ =  

 ie, ( )X Y A A X∩ = ∩ −  

 ( )X Y A A X∪ = ∪ −  

 Y A X= − ………(i) 

 or that A X−  is uniquely complemented of X . 

 So( ( ), )Aρ ⊆  is an uniquely complemented lattice. 

 Now we prove ( )Aρ  is also relative complemented. 

 Consider any interval [ , ]X Y  in ( )Aρ  

 Let [ , ]Z X Y∈  be any number, Then 

 ( ( )) ( ) ( ( ))Z X Y Z Z X Z Y Z X X∩ ∪ − = ∩ ∪ ∩ − = ∪ Φ =  

 ( ( )) ( ) ( ) ( )Z X Y Z Z X Y Z Z Y Z Y∪ ∪ − = ∪ ∪ − = ∪ − =  

 Showing that  ( )X Y Z∪ −  is the complemented of Z  relative to [ , ].X Y  

 Z  is any element of any interval of ( ).Aρ  

 Hence ( )Aρ  is relative complemented.   ■ 

 

Theorem 1.5.2 : Two bounded lattice A  and B  are complemented if and only if A B×  is 

complemented. 

 

Proof: Let A  and B  be complemented and suppose 0, 1 and 0 ,1′ ′  are universal boundes of A  

and B  respectively. 

 Then (0,0 )′  and (1,1 )′  will be least and greatest elements of A B×  

 Let ( , )a b A B∈ ×  be any element. 

 Then , ,a A b B∈ ∈ and as ,A B are complemented, ∃  ,a A b B′ ′∈ ∈  s.t., 

 0,a a′∧ = 1,a a′∨ =  0 ,b b′ ′∧ =  1b b′ ′∨ =  
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 Now ( , ) ( , ) ( , ) (0,0 )a b a b a a b b′ ′ ′ ′ ′∧ = ∧ ∧ =  

   ( , ) ( , ) ( , ) (1,1 )a b a b a a b b′ ′ ′ ′ ′∨ = ∨ ∨ =  

 Shows that ( , )a b′ ′ is complement of ( , )a b in A B× . 

 Hence A B×  is complemented. 

 Conversely, let A B×  be complemented. 

 Let ,a A b B∈ ∈  be any elements. 

 Then ( , )a b A B∈ ×  and thus has a complement, say ( , )a b′ ′  

 Then( , ) ( , ) (0,0 ),a b a b′ ′ ′∧ =  ( , ) ( , ) (1,1 )a b a b′ ′ ′∨ =  

 ( , ) (0,0 ),a a b b′ ′ ′⇒ ∧ ∧ =  ( , ) (1,1 )a a b b′ ′ ′∨ ∨ =  

 0, 1a a a a′ ′⇒ ∧ = ∨ =  

  0 , 1b b b b′ ′ ′ ′∧ = ∨ =  

i.e., a′ andb′ are complements aandb respectively. HenceAandB are complemented.   ■ 

            

 

Theorem 1.5.3 : Two lattice A  and B  are relatively complemented if and only if A B×  is 

relatively complemented. 

 

Proof: Let ,A B be relatively complemented. 

Let 1 1[( , ),a b  2 2( , )]a b  be any interval of A B×  and suppose ( , )x y  is any element of this 

interval. 

 Then 1 1 2 2( , ) ( , ) ( , )a b x y a b≤ ≤      1 2 1 2, , , ,a a x A b b y B∈ ∈  

 1 2 1 2a x a b y b⇒ ≤ ≤ ≤ ≤  

 1 2[ , ]x a a⇒ ∈  an interval in A , 1 2[ , ]y b b∈  an interval in B . 

Since ,A B are relatively complemented ,x y  have complements relative to 1 2[ , ]a a  and 

1 2[ , ]b b  respectively. 

 Let x′  and y′  be these complements. Then 

   1x x a′∧ =  1y y b′∧ =  

   2x x a′∨ =  2y y b′∨ =  
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 Now 1 1( , ) ( , ) ( , ) ( , )x y x y x x y y a b′ ′ ′ ′∧ = ∧ ∧ =  

   2 2( , ) ( , ) ( , ) ( , )x y x y x x y y a b′ ′ ′ ′∨ = ∨ ∨ =  

 ( , )x y′ ′⇒  is complement of ( , )x y  related to 1 1 2 2[( , ), ( , )]a b a b  

 Thus any interval in A B×  is complemented. 

 Hence A B×  is relative complemented. 

 Conversely, let A B×  be relatively complemented. 

 Let 1 2[ , ]a a  and 1 2[ , ]b b  be any intervals in Aand B . 

 Let 1 2 1 2[ , ], [ , ]x a a y b b∈ ∈  be any elements. 

 Then 1 2,a x a≤ ≤  1 2b y b≤ ≤  

 1 1 2 2( , ) ( , ) ( , )a b x y a b⇒ ≤ ≤  

 1 1 2 2( , ) [( , ),( , )]x y a b a b⇒ ∈  an interval in A B×  

 ( , )x y⇒  has a complement, say ( , )x y′ ′  relative to this interval 

 Thus  1 1( , ) ( , ) ( , )x y x y a b′ ′∧ =  

    2 2( , ) ( , ) ( , )x y x y a b′ ′∨ =  

   ⇒  1 1( , ) ( , )x x y y a b′ ′∧ ∧ =  

    2 2( , ) ( , )x x y y a b′ ′∨ ∨ =  

   ⇒  1,x x a′∧ =  2x x a′∨ =  

    1,y y b′∧ =  2y y b′∨ =  

          ⇒ x′  is complement of x  relative to 1 2[ , ]a a  

   y′  is complement of y  relative 1 2[ , ]b b  

 Hence ,A B are relatively complemented.   ■ 

 

Theorem 1.5.4 : Dual of a complemented lattice is complemented. 

 

Proof: Let ( , )L ρ  be a complemented lattice with 0,1 as least and greatest elements. Let ( , )L ρ  

be the dual of ( , )L ρ . Then 1,0 are least and greatest elements of L . 

 Let a L L∈ =  be any element 

 Since ,a L∈  L  is complemented, a L′∃ ∈  s.t., 
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   ,a a o′∧ =  1a a′∧ =  in L  

 i.e., 0 inf{ , }a a′= in L 

 0 , 0a a′⇒ ρ ρ  

 0,a⇒ ρ 0a′ ρ  in L  

 ⇒   0  is an upper bound of { , }a a′  in L  

 If k  is any upper bound of { , }a a′  in L  then ,a kρ a k′ρ  

 , 0k a k a k′⇒ ρ ρ ⇒ ρ  as 0 is inf . 

 0 k⇒ ρ  

 i.e., 0 is . .l u b  { , }a a′  in L  

 i.e., 0a a′∨ =  in L  

 Similarly, 1a a′∧ =  in L  

 or that a′  is complement of a  in L  

 Hence L  is complemented.   ■ 
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CHAPTER 2 

                                                              

Prime Ideal and Homomorphisms 

 

2.1 Introduction :  

 In this chapter we discuss ideals, homomorphism, embedding mapping and kernel. We 

 have proved the following theorem, lf 1 2 1 2, , ,L L M M  are lattices such that1 1L M≅ and 

       2 2L M≅  then   

   1 2 1 2 2 1L L M M M M× ≅ × ≅ × . 

 We also proved, if : L Mψ → is an onto homomorphism, where ,L M  are lattices and 0′  

is least element of M , then kerψ  is an ideal of L . 

 

2.2  Basic Concept of Ideals : 

 

Definition (Ideal) : A non-empty subset I  of a lattice L  is called an ideal of L  if 

  (i) ,a b I a b I∀ ∈ ⇒ ∨ ∈  

 and (ii) ,∀ ∈ ∀ ∈ ⇒ ∧ ∈a I l L a l I  hold. 

Note: If L  is bounded then {0} is always an ideal of L  and it is called the zero ideal of L .s 

 

Example 2.2.1: Let {1,2,5,10}L = be the lattice of factors of 10 under divisibility. Then 

{1},{1,2},{1,5},{1,2,5,10}  are all the ideal of L . But {5,10} is not an ideal of L . 

  

 

 

 

 

 

Definition (Proper Ideal): An ideal I  of the lattice is said to be proper ideal if .I L≠  

 

10 

1 

5 
2 

Fig- 2.1 

•  

•  

•  

•  
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Example 2.2.2: Let {0, , ,1}L a b=  be a lattice whose Hasse diagram is given adjacent 

 Hence 1 2 3{0}, {0, }, {0, }I I a I b= = =  each of them are proper ideal of L . 

 

 

 

 

 

 

Definition (Dual Ideal): A non empty subset I  of a lattice L  is called dual ideal (or filter) of 

L  if 

 (i) ,a b I a b I∀ ∈ ⇒ ∧ ∈  

 (ii) ,a I∀ ∈ ∀ l L a∈ ⇒ ∨ l I∈ . 

 

Example 2.2.3 : Dual ideals are {1} , {1, }c , {1, , }c a , {1, , }c b , {1, , , ,0}c a b  in {0, , , ,1}L a b c= . 

 

 

 

 

 

 

 

 

Note: Dual ideal generated by a subset H  of L  is denoted by [ ]H . 

 

Definition (Principal Ideal):Let L  be a lattice and a L∈  be any element. The set 

  ( ]a =  { : }x L x a∈ ≤  forms an ideal of L , is called principal ideal generated by a . 

 

 

 

 

•  

Fig- 2.3 
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1 
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Example 2.2.4: 

 

 

 

 

 

 In the figure, the principal ideal are  

    (0]={0} 

    (a]={0,a} 

    (b]={0,b} 

    (c]={0,a,b,c} 

    (1]=L 

 In a finite lattice, every ideal is a principal ideal. 

 

Definition (Principal Dual Ideal) : Let L  be a lattice and a L∈  be any element the set [ )a =  

{ : }x L a x∈ ≤  forms a dual ideal of L  is called the principal dual ideal generated by a . 

 

Example 2.2.5 : In {1,2,5,10}L =  then {5,10}  is a principal dual ideal of L  generated by 5. 

 

Theorem 2.2.6 : A non-empty subset I  of a lattice L  is an ideal iff 

(i) ,a b I∈  a b I⇒ ∨ ∈  

(ii)  a I∈ , x a x I≤ ⇒ ∈ . 

 

Proof: Let I  be an ideal of a lattice L . Then by definition of an ideal, condition (i) is 

satisfied. 

Now let, ,a I∈ .x a x a x≤ ⇒ = ∧ Then by definition of an ideal we get, a x I∧ ∈ i.e., 

.x I∈  [x L∈ since ]I L⊂  

 i.e., condition (ii) is satisfied. 

 Here we show that. 

   ,a I∈ l L a l I∈ ⇒ ∧ ∈  

  c 

0 

b 
a 

Fig- 2.4 

1 •  

•  

•  

•  

•  
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 Since a l a∧ ≤  and a I∈ , so from condition (ii) we get a l I∧ ∈ . Hence I is an ideal.   ■ 

  

2.3     Prime Ideal & Ideal Lattice: 

 

Definition (Prime Ideal): An ideal I  of a lattice L  is called a prime ideal of L  if I   is 

properly contained in L  and wherever a b I∧ ∈  then a I∈  or b I∈ . 

 

Example2.3.1: In the lattice {1,2,5,10} under divisibility {1}  is not a prime ideal as 

2 5 1 {1}∧ = ∈ , but 2,5 {1}∉ . Here {1,2}  is a prime ideal. 

 

Definition (Dual Prime Ideal): A proper dual ideal I  of a lattice L  is called a dual prime 

ideal if a b I a I∨ ∈ ⇒ ∈ orb I∈ . 

 

Example 2.3.2 : In the lattice {1,2,5,10},{5,10}L =  is a dual prime ideal of L . 

 

Definition (Ideal lattice): The set of all ideals of a lattice L  is called ideal lattice of L . It is 

denoted by ( )I L . 

 

Theorem 2.3.3: An ideal is a sublattice. Converse is not true. 

 

Proof: Let I  be an ideal of a lattice L . Also let ,a b I∈  

 Then, by definition, a b I∨ ∈ . Again by definition 

    ,a I b I L a b I∈ ∈ ⊆ ⇒ ∧ ∈  

 Hence, I  is a sublattice of the lattice L . 

 

 

 

 

 

 

10 •  

•  

•  

•  

1 

5 2 

Fig: 2.5 
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We given here a counter example, let 10 {1,2,5,10}L =  be the lattice of factors of 10 

under divisibility. Again let {5,10},I = I L⊂ . Moreover, I  is a sublattice 

since,5 10 5 I∧ = ∈  and 5 10 10 I∨ = ∈ . But I  is not ideal of 10L , since 5 I∈  and 102 L∈  

and 2 5 1 I∧ = ∉ .   ■ 

 

Theorem 2.3.4: Let I  be a prime ideal of lattice L . iff L I−  is a dual prime ideal. 

 

Proof: Since I  is a prime ideal of L , so I  is non-empty. Then L I−  is also non-empty 

proper subset of L . 

 Let ,a b L I∈ − , then ,a b L∈  

  , ,a b I a b L∉ ⇒ ∧ ∈ a b I∧ ∉  

    a b L I⇒ ∧ ∈ −  

 Again, Let a L I∈ − and l L∈  

we need to show that a l L I∨ ∈ −  

 Now, a L I∈ − and l L∈  

  ,a L⇒ ∈  a I∉ and l L∈  

  a l⇒ ∨ ,L∈  a I∉  

  a l L⇒ ∨ ∈ ,a l I∨ ∉  

 a l L I∴ ∨ ∈ −  

 L I⇒ −  is a dual ideal. 

         We have to show that L I−  is a dual prime ideal. 

 Let, ,a b L I∨ ∈ − then 

  ,a b L∨ ∈ a b I∨ ∉  

 , ,a b L⇒ ∈  a I∉ or b I∉  

 a L I⇒ ∈ − or b L I∈ −  

 L I⇒ −  is a dual prime ideal. 

Conversely, suppose L I− is a dual prime ideal, So, L I− is proper ideal and non-empty 

then I  is also proper subset of L . 

 Let , ,a b I a b L I∈ ⇒ ∉ −  
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   a b L I⇒ ∨ ∉ −    [ L I−∵  is prime duel ideal] 

   a b I⇒ ∨ ∈  

 Again, let a I∈  and l L∈  

 We need to show that a l L∧ =  

 Now a I∈ and l L∈  

  a L I⇒ ∉ −  and l L∈  

  a l L I⇒ ∧ ∉ −   

  a l I⇒ ∧ ∈  

 Thus I  is a ideal. 

 Again let a b I∧ ∈  

  a b L I⇒ ∧ ∉ −  

  a L I⇒ ∉ − or b L I∉ −  

  a I⇒ ∈ or b I∈  

  ∴ I  is a prime ideal.   ■ 
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2.4 Homomorphism and Isomorphism:  

 

Definition (Meet homomorphism): Let 1( , , )L ∧ ∨  and 2( , , )L ∧ ∨ be any two lattices then the 

map  1 2: L Lψ →  is called a meet homomorphism if ,a b L∀ ∈ 1 2: L Lψ →  

    ( ) ( ) ( )a b a bψ ∧ = ψ ∧ ψ holds. 

 

Example 2.4.1: Let 1 {0, , ,1}L a b=  and 2 {0, , ,1}L c d=  be two lattices. Let us define the map 

1 2: L Lψ →  by the following way 

 Here 1( ) (0) 0, ,a b a b Lψ ∧ = ψ = ∈  

    0 c= ∧  

    ( ) ( )a b= ψ ∧ ψ  

 

 

 

 

 

 

 

 

 

 Therefore, the mapping ψ  is a meet-homomorphism. 

 

Definition (Join homomorphism): Let 1( , , )L ∧ ∨  and 2( , , )L ∧ ∨ be any two lattices. Then the 

map 1 2: L Lψ →  is called a join-homomorphism if , ,a b L∀ ∈  

    ( ) ( ) ( )a b a bψ ∨ = ψ ∨ ψ  holds. 
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Example 2.4.2: Let us consider the map 1 2: L Lψ →  where 1 {0, , ,1}L a b=  and 2 {0, ,1}L c=  be 

two lattices and ψ  be defined as follows. 

 

 

 

 

 

 

 

 

 

 

 Here. 1( ) (1), ,a b a b Lψ ∨ = ψ ∈  

    1=  

    1 c= ∨  

    (a) (b)= ψ ∨ ψ  

 Therefore, the map ψ  is a join-homomorphism. 

 

Definition (Homomorphism): The map ψ : 1 2( , , ) ( , , )L L∧ ∨ → ∧ ∨  is said to be homomorphism 

if 1, , ( ) ( ) ( )a b L a b a b∀ ∈ ψ ∧ = ψ ∧ ψ  and ( ) ( ) ( )a b a bψ ∨ = ψ ∨ ψ  

 hold simultaneously. 

 

 

 

 

 

 

 

 

c 
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Example 2.4.3: Let us consider the map 1 2: L Lψ →  where, 1 {0, , ,1}L a b=  and 

2 {0, , , ,1}L c d e=  be two lattices and ψ be defined as follows. 

 

 

 

 

 

 

 

 

 

 Here, 1, , ( ) ( ) ( )x y L x y x y∀ ∈ ψ ∧ = ψ ∧ ψ  

 and ( ) ( ) ( )x y x yψ ∨ = ψ ∨ ψ  

 hold simultaneously. 

 Hence the map ψ  is a homomorphism. 

 

Definition (Isomorphism): Let 1( ; , )L ∧ ∨  and 2( ; , )L ∧ ∨  be two lattices. 

 Then the map 1 2: L Lψ →  is called an isomorphism if 

  (i) ψ  is a homomorphism. 

 and (ii) ψ  is one-one and onto. 

Note: (i)  If ψ  is an isomorphism from L  to L  we call it an automorphism. 

(ii) A homomorphism from L  to L  is called endomorphism If : L Lψ →  is onto 

homomorphism. 

  (iii) If the map 1 2: L Lψ →  is an homomorphism, then 2L  is said to be the homomorphic 

image of 1L . 
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Theorem 2.4.4: If 1 2 1 2, , ,L L M M  are lattices such that 1 1L M≅  and 2 2L M≅  then show that 

1 2 1 2 2 1L L M M M M× ≅ × ≅ × . 
 

Proof: Let 1 1:f L M→  and 2 2:g L M→  be the given isomorphism. 

 Define 1 2 1 2: ,L L M Mψ × → × s.t., 

   (( , ) ( ( ), ( ))a b f a g bψ =  

 Then (( , )) (( , ))a b c dψ = ψ  

 ⇔   ( ( ), ( )) ( ( ), ( ))f a g b f c g d=  

 ⇔   ( ) ( ), ( ) ( )f a f c g b g d= =  

 ⇔   ,a c b d= =  

 ⇔   ( , ) ( , )a b c d=  

 Shows that ψ  is well defined 1-1 map. 

 Again, (( , ) ( , )) (( , ))a b c d a c b dψ ∧ = ψ ∧ ∧  

     ( ( ), ( ))f a c g b d= ∧ ∧  

     ( ( ) ( ), ( ) ( ))f a f c g b g d= ∧ ∧  

     ( ( ), ( )) (( ( ), ( ))f a g b f c g d= ∧  

     (( , )) (( , ))a b c d= ψ ∧ ψ  

 Similarly, (( , ) ( , )) (( , )) (( , ))a b c d a b c dψ ∨ = ψ ∨ ψ  

 showing thereby that ψ  is a homomorphism. 

 Finally, for any 1 2 1 2( , ) ,m m M M∈ × since 1 1 2 2&m M m M∈ ∈  and ,f g  are onto, 

   ∃ 1l 1L∈  , 2l 2L∈ s.t., 1 1( ) ,f l m=  2 2( )g l m=  

 and  1 2 1 2 1 2(( , )) ( ( ), ( )) ( , )l l f l g l m mψ = =  

 shows that ψ  is onto and hence an isomorphism. 

 To show 1 2 2 1M M M M× ≅ × , we can define 

   1 2 2 1: M M M Mϕ × → × s.t.,   

 1 2 2 1: ((m ,m )) (m ,m )ϕ =  
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 It is now easy to verify that ϕ  is an isomorphism.   ■ 

 

Theorem 2.4.5: I  is a prime ideal of L  iff there is a homomorphism ψ  of onto 2C with 

1(0)I −= ψ . 

 

Proof: Let I  be a prime ideal and define ψ  by 

  ( ) 0xψ = if x I∈  

 and ( ) 1xψ = if x I∉  

 If ,a b I∈  then a b I∨ ∈  and I  is an ideal. 

 No, , ( ) 0a b I a∈ ⇒ψ = and ( ) 0bψ =  

 Also ( ) ( )a b I a b∨ ∈ ⇒ψ = ψ ∨ ψ  

 Therefore, ( ) ( ) ( )a b a bψ ∨ = ψ ∨ ψ  

 Again let ,a b I∉ then since I  is prime ideal. 

 So, ( ) ( ) 1a b I a b∧ ∉ ⇒ ψ = ψ = and ( ) 1a bψ ∧ =  

 Consequently, ( ) 1 ( ) ( )a b a bψ ∧ = = ψ ∧ ψ  

 So ψ  is homomorphism. 

 Conversely, let ψ  be a homomorphism of L  onto 2C  and 1(0)I −= ψ . 

 If ,a b I∉ , then 

  ( ) ( ) 1a bψ = ψ =  

 Thus ( ) ( ) ( ) 1a b a bψ ∧ = ψ ∧ ψ =  

 Therefore, a b I∧ ∉  

 Hence I  is a prime ideal.   ■ 
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2.5 Embedding mapping and Kernel : 

 

Definition (Embedding mapping): Let 1 2,L L  be Lattices where 1 2L L⊆ . A one-one 

homomorphism 1 2: L Lψ →  is called an imbedding or embedding mapping. 

 In that case, it is said that 1L  is embedded in L2. 

 

Example 2.5.1: Let us consider the map 1 2: L Lψ → where 1 2L L⊆ , 1 {0, , ,1}L a b= and 

2 {0, , , ,1}L c d e=   be two lattice and ψ  be defied as ψ is one one and 1L embedded in 2L . 

 

 

 

 

 

 

 

Definition (Kernel of ψ ): Let the map ψ : 1 2L L→  be  onto homomorphism and 0′  be the 

least element of 2L . Then the set 1{ : ( ) 0 }x L x ′∈ ψ =  is said to be the kernel of ψ  and is 

denoted bykerψ . 

Note: If 2L  does not have the zero or least element, then ker kerψ  does not exist. 

 

Example 2.5.2: Let 1 2{0, , ,1}, {0 , , ,1}L a b L c d′= =  and a map 1 2: L Lψ →  defined as then 

ker {0,a}ψ =  
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Theorem 2.5.3: If : L Mψ →  is an onto homomorphism, where ,L M  are lattices and 0′  is 

least element of ,M  then kerψ  is an ideal of L . 

 

Proof: Since  ψ  is onto, 0 ,M′∈  thus kerψ ≠ ϕ  as pre mage 0′  exists in L . 

 Now  ,x y∈ ker ( ) 0 ( )x y′ψ ⇒ψ = = ψ  

   ( ) ( ) ( ) 0 0 0 kerx y x y x y′ ′ ′ψ ∨ = ψ ∨ ψ = ∨ = ⇒ ∨ ∈ ψ  

 Again kerx∈ ψ , l L∈ , gives ( ) 0x ′ψ =  

 Also ( ) ( ) ( ) 0 0x l x y l′ ′ψ ∧ = ψ ∧ ψ = ∧ =   

 ⇒   x l∧ ker∈ ψ  

 Hence kerψ  is an ideal of L .   ■ 

 

Theorem 2.5.4: Let L  be a lattice, M  be a finite chain and L M→  is an onto 

homomorphism. Show that kerψ  is prime ideal of .L  

 

Proof:  Given that L  is a lattice and M  is a finite chain. 

 ∴ M  is a lattice. 

 : L Mψ →  is a onto homomorphism. 

 Let 0′  be the least element of M . 

 To show kerψ  is a prime ideal. First we show that kerψ  is an ideal. 

 Let 0′ be the least element of .M  

 Since ψ  is onto, so 

   ∃ x L∈ such that ( ) 0x ′ψ =  

  kerx⇒ ∈ ψ  

 Therefore kerψ ≠ ϕ  

 Let , ker ( ) 0 , ( ) 0′ ′α β∈ ψ ⇒ ψ α = ψ β =  

 Now, ( ) ( ) ( )ψ α ∨ β = ψ α ∨ ψ β  [∵ψ is homomorphism] 

   0 0′ ′= ∨  

   0′=  
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 ker⇒ α ∨ β = ψ  

 Next ker∀α∈ ψ  and l L∈  

 ( ) ( ) ( )l lψ α ∧ = ψ α ∧ ψ    [∵ψ  is homomorphism] 

   0 ( )l′= ∧ ψ  

   0′=  

 ∴ kera l∧ ∈ ψ  

 Hence kerψ  is an ideal of L . 

 Let kerα ∧ β∈ ψ . We have to show that kerα∈ ψ  or ker .β∈ ψ  

 Now, α ∧ β∈ ker ( ) 0′ψ ⇒ ψ α ∧ β =  

    ( ) ( ) 0′⇒ ψ α ∧ ψ β = …..(1) 

 Since M  is a chain so either ( ) ( )ψ α ≤ ψ β  or ( ) ( )ψ β ≤ ψ α  

 If ( ) ( )ψ α ≤ ψ β  then form (1) 

  ( ) 0′ψ α =  

  ker⇒ α∈ ψ  

 Again, if ( ) ( )ψ β ≤ ψ α  then form (1). 

  ( ) 0′ψ β =  

  ker⇒ β∈ ψ  

 So, kerα ∧ β∈ ψ⇒  either kerα ∈ ψ  or  kerβ∈ ψ . 

 Hence kerψ  is a prime ideal of  L .   ■ 
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CHAPTER 3 

 

Distributive Lattices 

 

3.1 Introduction:  

 Distributive lattices have provided the motivation for many results in general lattice 

theory. In many applications the condition of distributivity is imposed on lattices arising 

in various areas of mathematics especially algebra. Therefore a thorough knowledge of 

distributive lattices is indispensable for work in lattice theory. In this chapter we discuss 

modular and distributive lattices. We also proved the ideal lattice ( )I L  of a distributive 

lattice L  is distributive iff L  is distributive.  

 

3.2 Modularity: 

 

Definition (Modular lattice): A lattice ( , )L ≤  is called a modular lattice if , , ,x y z L∀ ∈  with 

x y≥ ; 

   ( ) ( ) ( ) [ ( )]x y z x y x z y x z∧ ∨ = ∧ ∨ ∧ = ∨ ∧  

Remark: i) If in the above definitionx y= , we find  

                ( ) ( )x y z x x z x∧ ∨ = ∧ ∨ =  

   ( ) ( )y x z x x z x∨ ∧ = ∨ ∧ =  

 i.e., the postulate is automatically satisfied. 

 

Example 3.2.1: The lattices given by the following diagrams are modular 
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In the first we cannot find any triplet , ,a b c s.t., a b>  and c  is not comparable with a  or 

b . Hence by the remarks above it is modular. By similar argument the second lattice is 

also seen to be modular. 

 

Example 3.2.2: A chain is a modular lattice, by similar argument. 

 

Definition (Semimodular Lattice): A finite lattice ( , )L ≤  is called a semimodular lattice if 

, , ,x y L∀ ∈  the following  condition hold: 

                                 ( ) ( ) ( ) ( )r x r y r x y r x y+ ≥ ∧ + ∨  

 where r  is a rank function. 

 

Example 3.2.3: A lattice without finite chain is semimodular lattice. 

 

Theorem 3.2.4: A lattice L  is modular of finite length, ( ) ( ) ( ) ( )l x l y l x y l x y+ = ∨ + ∧  where 

( )l x  is the length of the element x . 

 

Proof: Since L  is modular lattice so for any 

                                   , [ , ] [ , ]x y L x x y x y y∈ ∨ ≅ ∧  

                      Thus, ([ , ]) ([ , ])l x x y l x y y∨ = ∧  

                           ( ) ( ) ( ) ( )l x y l x l y l x y⇒ ∨ − = − ∧  

                           ( ) ( ) ( ) ( )l x y l x y l x l y⇒ ∨ + ∧ = +  

                            ( ) ( ) ( ) ( )l x l y l x y l x y∴ + = ∨ + ∧ .   ■   

 

Theorem 3.2.5: Prove that N N×  is modular, where N  is the chain of naturals under usual 

‘ ≤ ’. 

 

Proof: Let N be a chain of natural numbers under usual ‘≤ ’.  Now, we show that N is 

modular. 

 Let , ,x y z be any three elements of N with y x≤  
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 ( ) ( ) ( )x y z x y x z∴ ∧ ∨ = ∧ ∨ ∧  

    ( )y x z= ∨ ∧         [ , ]y x x y y≤ ∧ =∵  

    N=  is modular.  

 Last of all, we have to show that N N× is modular, let 

 1, 1( ),x y 2 2( , ),x y 3 3( , )x y N N∈ ×  with 2 2 1 1( , ) ( , )x y x y≤  

 1 1 2 2 3 3 1 1 2 3 2 3( , ) [( , ) ( , )] ( , ) [( ) ( )]x y x y x y x y x x y y∴ ∧ ∨ = ∧ ∨ ∨ ∨  

                                1 2 3 1 2 3( ( ), ( ))x x x y y y= ∧ ∨ ∧ ∨  

        2 1 3 2 1 3[ ( ), ( )]x x x y y y= ∨ ∧ ∨ ∧  

     2 2 1 3 1 3( , ) [( ), ( )]x y x x y y= ∨ ∧ ∧  

     2 2 1 1 3 3( , ) [( , ), ( , )]x y x y x y= ∨  

     N N= ×  is modular.  ■   

 

Theorem 3.2.6:  Homomorphic image of a modular lattice is modular. 

 

Proof: Let : L Mψ →  be an onto homomorphism and suppose L  is modular. 

 Let , ,x y z M∈  be three elements withx y> . 

Since ψ  is onto homomorphism, ∃ , ,p q r L∈  s.t., ( ) , ( ) , ( )p x q y r zψ = ψ = ψ =  where 

.p q>  

 Now L  is modular, , , ,p q r L p q∈ > , thus we get 

    ( ) ( )p q r q p r∧ ∨ = ∨ ∧  

 Now x (y z) (p) ( (q) (r))∧ ∨ = ψ ∧ ψ ∨ ψ  

    ( ) ( ( )) ( ( ))p q r p q r= ψ ∧ ψ ∨ = ψ ∧ ∨  

    ( ( )) ( ) ( )q p r q p r= ψ ∨ ∧ = ψ ∨ ψ ∧  

    ( ) [ ( ) ( )] ( )q p r y x z= ψ ∨ ψ ∧ ψ = ∨ ∧  

 Hence M  is modular.   ■ 
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Theorem 3.2.7:  Two lattice 1L  and 2L  are modular iff 1 2L L×  is modular. 

 

Proof: Let 1 1 2 2 3 3 1 2( , ), ( , ),( , )p q p q p q L L∈ ×  be three elements with 1 1 2 2( , ) ( , )p q p q≥  

 Then 1 2 3 1 1 2, , ,p p p L p p∈ ≥  

   1 2 3 2 1 2, , ,q q q L q q∈ ≥  

 

 and since 1L  and 2L  are modular, we get 

    1 2 3 2 1 3( ) ( )p p p p p p∧ ∨ = ∨ ∧  

    1 2 3 2 1 3( ) ( )q q q q q q∧ ∨ = ∨ ∧  

 Thus 

 1 1 2 2 3 3 1 1 2 3 2 3( , ) [( , ) ( , )] ( , ) ( , )p q p q p q p q p p q q∧ ∨ = ∧ ∨ ∨  

     1 2 3 1 2 3( ( ), ( ))p p p q q q= ∧ ∨ ∧ ∨  

     2 1 3 2 1 3( ( ), ( ))p p p q q q= ∨ ∧ ∨ ∧  

     2 2 1 3 1 3( , ) ( , )p q p p q q= ∨ ∧ ∧  

     2 2 1 1 3 3( , ) [( , ) ( , )]p q p q p q= ∨ ∧  

 Hence 1 2L L×  is modular. 

 Conversely, let 1 2L L×  be modular. 

 Let  1 2 3 1 1 2, , ,p p p L p p∈ ≥  

   1 2 3 2 1 2, , ,q q q L q q∈ ≥  

 then 1 1 2 2 3 3 1 2( , ), ( , ),( , )p q p q p q L L∈ ×  and 1 1 2 2( , ) ( , ).p q p q≥  

  Since 1 2L L×  is modular, we find 

   1 1 2 2 3 3 2 2 1 1 3 3( , ) [( , ) ( , )] ( , ) [( , ) ( , )]p q p q p q p q p q p q∧ ∨ = ∨ ∧  

  ⇒  1 1 2 3 2 3 2 2 1 3 1 3( , ) ( , ) ( , ) ( , )p q p p q q p q p p q q∧ ∨ ∨ = ∨ ∧ ∧  

  ⇒  1 2 3 1 2 3 2 1 3 2 1 3( ( ), ( )) ( ( ), ( ))p p p q q q p p p q q q∧ ∨ ∧ ∨ = ∨ ∧ ∨ ∧  

  ⇒   1 2 3 2 1 3( ) ( )p p p p p p∧ ∨ = ∨ ∧  

    1 2 3 2 1 3( ) ( )q q q q q q∧ ∨ = ∨ ∧  

  ⇒  1L  and 2L  are modular.   ■ 
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Theorem 3.2.8:  A lattice L  is modular iff ( ),I L  the ideal lattice of L  is modular. 

 

Proof : Let L  be modular. 

 Let , , ( )P Q R I L∈  be three members s.t.,Q P⊆ . 

 We show ( ) ( )P Q R Q P R∩ ∨ = ∨ ∩  

 Let ( )x P Q R∈ ∩ ∨  be any element. 

 Then x P∈  andx Q R∈ ∨ . 

 x P⇒ ∈  and x q r≤ ∨  for some ,q Q r R∈ ∈  

 Since   ,q Q P∈ ⊆  x q P∨ ∈ . Let x q p∨ =  

 Now ,x q r≤ ∨  ( )x p x p q r≤ ⇒ ≤ ∧ ∨  

            ( )x q p r⇒ ≤ ∨ ∧  as p q≥  and L  is modular. 

 Again, ,p r p∧ ≤ p P p r P∈ ⇒ ∧ ∈  

   ,p r r∧ ≤ r R p r R∈ ⇒ ∧ ∈  

 Thus p r P R∧ ∈ ∩  and as q Q∈  we find ( )x Q P R∈ ∨ ∩  

 i.e.   ( ) ( )P Q R Q P R∩ ∨ ⊆ ∨ ∩  

( ) ( )Q P R P Q R∨ ∩ ⊆ ∩ ∨  follows by modular inequality, or to prove it independently, let 

( )y Q P R∈ ∨ ∩ . 

 Then y q k≤ ∨  where ,q Q∈  k P R∈ ∩  

 Thus ,y q k≤ ∨ ( ,q Q P∈ ⊆ )k P q k P∈ ⇒ ∨ ∈  

 ⇒   y P∈  

 Also ,y q k≤ ∨ ,q Q∈ k R y Q R∈ ⇒ ∈ ∨  

 i.e.,  ( )y P Q R∈ ∩ ∨  

 Showing that ( ) ( )Q P R P Q R∨ ∩ ⊆ ∩ ∨   

 Hence ( ) ( )P Q R Q P R∧ ∪ = ∨ ∩  or that ( )I L  is modular. 

Conversely, let ( )I L be modular, Since L  can be imbedded into ( )I L , it is isomorphic to 

a sublattice of ( )I L . This sublattice must be modular as ( )I L  is modular. Hence L  is 

modular.   ■ 
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Theorem 3.2.9: Any non modular latticeL  contains a sublattice isomorphic with the 
pentagonal lattice. 

 
Proof: Since L  is non modular ∃  at least three elements a,b,c a b≥  

 s.t., ( ) ( )a b c b a c∧ ∨ ≠ ∨ ∧ . 

 In view of the remarks of definition, we must have a b,>  and as in any lattice the 

modular lattice inequality ( ) ( )( )a b,a b c b a c≥ ∧ ∨ ≥ ∨ ∧ holds. 

 we get ( ) ( )a b c b a c .∧ ∨ > ∨ ∧  

 Consider the chain 
   ( ) ( )a c b a c a b c b c∧ ≤ ∨ ∧ < ∧ ∨ ≤ ∨ ................(1) 

 We show at all place, strict inequality holds. 
 Suppose ( )a c b a c∧ = ∨ ∧  

 Then b a c≤ ∧    ( )x y x y x= ∨ ⇒ ≤  

 ⇒   ( )b c a c c∨ ≤ ∧ ∨  
 ⇒   b c c b c∨ ≤ ≤ ∨         
 ⇒   b c c∨ =  
 ⇒           ( ) ,a b c a c∧ ∨ = ∧                a contradiction to  (1) 

 Thus ( )a c b a c .∧ < ∨ ∧ Similarly  ( )a b c b c∧ ∨ < ∨ . 
 Hence chain   (1) becomes 
 ( ) ( )a c b a c a b c b c∧ < ∨ ∨ < ∧ ∨ < ∨ ...........................(2) 
 Consider now the chain 
     a c c b c∧ ≤ ≤ ∨  

As seen above b c c∨ =  leads to a contradiction and similarly a c c∧ =  would give a 
contradiction. 
 Hence a c c b c∧ < < ∨ ......................(3) 
 We thus have two chains (2) and (3) with same end points. 
We show c  does not lie in chain (2). For this it is sufficient to prove that c  is not 
comparable with ( )a b c∧ ∨ . 

Suppose ( )a b c c∧ ∨ ≤  

Then ( )( )a a b c a c∧ ∧ ∨ ≤ ∧  

⇒   ( )a b c a c∧ ∨ ≤ ∧  a contradiction to (2) 

Again, if  ( )a b c c∧ ∨ >  

then as ( )a a b c≥ ∧ ∨  

We find a c>  which gives a c c,∧ =  a contradiction to (3) 
Hence the chain (2) and (3) form a pentagonal subset 
 ( ) ( ){ }S a c,b a c ,a b c ,b c,c= ∧ ∨ ∧ ∧ ∨ ∨  of L . 
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 We show now this pentagonal subset is a sublatice. For that meet and join of any two 
elements of S should lie inside S. Meet and join of any two comparable elements being 
one of them is clearly in S. 

 Now  ( ) ( )a b c c a b c c a c S ∧ ∨  ∧ = ∧  ∨ ∧  = ∧ ∈     

 Also  ( ) ( )a b c c b a c c ∧ ∨  ∨ ≥  ∨ ∧  ∨     by   (2) 

                                                  =[( ) ]b a c c b c∨ ∧ ∨ = ∨  

 and ( )a b c b c∧ ∨ ≤ ∨  gives 

  ( )( ) ( )a b c c b c c b c∧ ∨ ∨ ≤ ∨ ∨ = ∨  

 Thus  ( )a b c c b c S. ∧ ∨  ∨ = ∨ ∈   

 Similarly, we can show ( )b a c c b c S ∨ ∧  ∨ = ∨ ∈   

      ( )b a c c a c S ∨ ∧  ∧ = ∧ ∈   

    Hence S forms a sublattice of L .    ■ 
 

3.3 Distributive Lattice and its related theorems: 

 

Definition (Distributive lattice): A lattice ( , )L ≤  is called a distributive lattice if and only if 

the distributive laws hold; that is, for all , ,x y z L∈ , we have 

                                ( ) ( ) ( )x y z x y x z∧ ∨ = ∧ ∨ ∧  and  

                                     ( ) ( ) ( ).x y z x y x z∨ ∧ = ∨ ∧ ∨  

 

Example 3.3.1: If X is any set, then the lattice ( ( ), )p X ≤  is  a distributive lattice.  

   

Remarks: For a distributive Lattice ,L ( )J L  denotes the set of all nonzero join irreducible 

elements, regarded as a poset under the partial ordering of L . ( ( ))H J L  denotes the set 

of all hereditary subsets partially ordered by set inclusion. ( ( ))H J L is a Lattice in which 

•  

•  

•  
•  

•  

c  

a c∧  

b c∨  

( )a b c∧ ∨  

( )b a c∨ ∧  

Fig. 3.3  
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meet & join are intersection & union respectively. Hence ( ( ))H J L is a distributive 

Lattice for ,a L∈  set ( ) { ( ) }r a x J L x a= ∈ ≤ . 

 

Example 3.3.2: We now give an example of a lattice where the distributive laws do not hold. 

Let {1,2,3,5,30}.L = Then L is a poset under the relation divides. The operation table for 

∧  and ∨  on L  are: 

 

∨  1 2 3 5 30 
1 1 2 3 5 30 
2 2 2 30 30 30 
3 3 30 3 30 30 
5 5 30 30 5 30 
30 30 30 30 30 30 

 

 Since every pair of elements in L  has both a join and a meet, so L is a lattice (under 

divides). But 

                   2 (5 3) 2 1 2∨ ∧ = ∨ =  and 

                  (2 5) (2 3) 30 30 30∨ ∧ ∨ = ∧ =   

 so that  ( ) ( ) ( )x y z x y x z∨ ∧ ≠ ∨ ∧ ∨  for some values of , ,x y z L∈ . Hence L  is not 

distributive lattice. 

 

Theorem 3.3.3: Let L be a finite distributive lattice. Then the map ( ): a r aψ →  is a 

isomorphism between L and ( ( )).H J L  
 
Proof: Define ( )( ): L H J Lψ →  by ( ) ( ),a r a a Lψ = ∈ . 

 Since L is finite, so every element is the join of join irreducible elements. Thus       
( )a L a r a∈ ⇒ = ∨ . 

 Obviously ( ) ( ) ( )a b a bψ ∧ = ψ ∩ ψ . So ψ  is a meet homomorphism. To show that ψ  is a 

join homomorphism. We are to show that ( ) ( ) ( )r a b r a r b∨ = ∪ . 

 Now ( ) ( ) ( )r a r b r a b∪ ⊆ ∨  is obvious. 

 Let ( )x r a b∈ ∨  
  x a b⇒ ≤ ∨  
  ( )x x a b⇒ = ∧ ∨  

∧  1 2 3 5 30 
1 1 1 1 1 1 
2 2 1 1 1 2 
3 1 1 3 1 3 
5 1 1 1 5 5 
30 1 2 3 5 30 
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        ( ) ( )x a x b= ∧ ∨ ∧  

 Since ( )x J L∈ , so we have either x x a= ∧ or x x b= ∧  

 ⇒either x a≤  or x b≤  
 ⇒either ( )x r a∈  or ( )x r b∈  

 ( ) ( )x r a r b⇒ ∈ ∪  

 Hence, ( ) ( ) ( )r a b r a r b∨ ⊆ ∪ . 

 Therefore, ( ) ( ) ( )r a b r a r b∨ = ∪ . So ψ  is a join homomorphism.  

 Therefore, ψ  is a homomorphism. 

 Suppose ( ) ( ),a bψ = ψ  ,a b L∈  

   ( ) ( )r a r b⇒ =  

   ( ) ( )r a r b⇒ ∨ = ∨  
   a b⇒ =  
 Hence ψ  is one-one. 
 To show ψ  is onto. Let A H( J( L ))∈  and a L∈ . Set a A= ∨ . We  are to show that 

r( a ) A= . 
 Clearly, A r( a )⊆ . 
  Let ( )x r a x a∈ ⇒ ≤  
               x x a⇒ = ∧  
        x ( A )= ∧ ∨  
      ( x t | t A )= ∨ ∧ ∈ (since L is distributive) 
 Since x J( L )∈  so x x t= ∧  for some t A.∈  
    x t⇒ ≤  
    x A⇒ ∈ as A H( J( L ))∈  
    r( a ) A⇒ ⊆  
    r( a ) A∴ =  
    ( a ) A⇒ ψ =  
  Hence ψ  is onto. 
 Therefore, L H( J( L ))≅ .   ■ 

 
 
Theorem 3.3.4: Prove that a distributive lattice is always modular but converse is not true. 

 

Proof: Let, L  is a distributive lattice, , ,a b c L∈  with c a≤  

 Then, ( ) ( ) ( )a b c a b a c∧ ∨ = ∧ ∨ ∧  

                             ( )a b c= ∧ ∨  

 Thus L is modular. 

 For the converse, consider the lattice 
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 It is easy to check that 5M  is modular. 

 But in 5M , ( ) 1a b c a a∧ ∨ = ∧ =  

                    ( ) ( ) 0 0 0a b a c∧ ∨ ∧ = ∨ =  

  i.e., ( ) ( ) ( )a b c a b a c∧ ∨ ≠ ∧ ∨ ∧  

 Therefore, L is not distributive lattice.  ■ 

 

Theorem 3.3.5: A lattice L  is distributive if and only if for any two idealI  and J  of L , 
                                       { }: ,I J i j i I j J∨ = ∨ ∈ ∈  

 
Proof: First suppose a modular lattice L  is distributive. Let , ( )I J I L∈ .Then for x I J∈ ∨  

implies that x i j≤ ∨  for some , .i I j J∈ ∈  
 Then ( )x x i j= ∧ ∨  
      ( ) ( )x i x j= ∧ ∨ ∧  
  Since L  is distributive, when x i I∧ ∈  and x j J∧ ∈  

 Therefore, { }: ,I J i j i I j J∨ = ∨ ∈ ∈  

 Conversely, suppose that { }: ,I J i j i I j J∨ = ∨ ∈ ∈  for any two ideals I  andJ  of L . We 
are to show that L  is distributive. 

 Suppose L  is not distributive, then it has a sublattice isomorphism to 5M  or 5N . 
 
 
 
 
 
 
 
 
 
 
 Here observe that in both cases( ] ( ]b a c∈ ∨ , butb i j≠ ∨  for any ( ]i a∈  and ( ].j c∈  
 Hence L  is distributive.    ■     
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Theorem 3.3.6:  A lattice L  is distributive iff 

     ( ) ( ) ( ), , ,x y z x y x z x y z L∨ ∧ = ∨ ∧ ∨ ∀ ∈ . 

  

Proof : Let L  be distributive. 

 Now ( ) ( ) [( ) ] [( ) ]x y x z x y x x y z∨ ∧ ∨ = ∨ ∧ ∨ ∨ ∧  

    [( ) ]x x y z= ∨ ∨ ∧  

    [( ) ( )]x x z y z= ∨ ∧ ∨ ∧  

    [ ( )] ( )x x z y z= ∨ ∧ ∨ ∧  

    ( )x y z= ∨ ∧  

 Conversely, let  , ,x y z L∈  be any three elements, then 

  ( ) ( ) [( ) ] [( ) ]x y x z x y x x y z∧ ∨ ∧ = ∧ ∨ ∧ ∧ ∨  

    [( ) ]x x y z= ∧ ∧ ∨  

    [( )] ( )]x z x z y= ∧ ∨ ∧ ∨  

    [ ( )] ( )x z x z x= ∧ ∨ ∧ ∨  

    ( )x y z= ∧ ∨ ( )x y z= ∧ ∨  

 i.e., L  is distributive.   ■ 

Note: Dual of a distributive lattice is distributive. 

 

Theorem 3.3.7: A lattice L  is distributive if and only if ( )I L  is distributive; ( )I L  is the set of 
all ideals. 

 
Proof: Suppose L  is distributive. Let , , ( )P Q R I L∈ . We need to show that   
                                     ( ) ( ) ( )P Q R P Q P R∧ ∨ = ∧ ∨ ∧ . 

 The relation ( ) ( ) ( )P Q P R P Q R∧ ∨ ∧ ⊆ ∧ ∨  is obviously true. Let ( ),x P Q R∈ ∧ ∨  then 
x P∈  andx Q R∈ ∨ . Since L  is distributive. 

  So ( ) ( ) ( ) ( ) ( )x x q r x q x r P Q P R= ∧ ∨ = ∧ ∨ ∧ ∈ ∧ ∨ ∧  for some q Q,r R.∈ ∈  
 Then,   ( ) ( ) ( )P Q R P Q P R∧ ∨ ⊆ ∧ ∨ ∧  
       ( ) ( ) ( )P Q R P Q P R∴ ∧ ∨ = ∧ ∨ ∧  

     ( )I L∴  is distributive. 
 Conversely, suppose, ( )I L  is distributive. Letx, y,z l∈ , then  

( ( )] ( ] ( ]x y z x y z∧ ∨ = ∧ ∨  
              ( ] [( ] ( ])x y z= ∧ ∨  as ( )I L  is distributive. 
              ( ] ( ]x y x z= ∧ ∨ ∧  
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    (( ) ( )]x y x z= ∧ ∨ ∧  
 ( ) ( ) ( )x y z x y x z⇒ ∧ ∨ = ∧ ∨ ∧  
 so L  is distributive.   ■ 
 

Theorem 3.3.8: A lattice L is distributive iff 

   ( ) ( ) ( ) ( ) ( ) ( ) , ,a b b c c a a b b c c a a b c L∨ ∧ ∨ ∧ ∨ = ∧ ∨ ∧ ∨ ∧ ∀ ∈ . 

 

Proof: Let L  be a distributive lattice. 

  ( ) ( ) ( ) { [( ) ( )]} { [( ) ( )]}a b b c c a a b c c a b b c c a∨ ∧ ∨ ∧ ∨ = ∧ ∨ ∧ ∨ ∨ ∧ ∨ ∧ ∨  

     [{ ( )} ( )] [{ ( )} ( )]a c a b c b b c c a= ∧ ∨ ∧ ∨ ∨ ∧ ∨ ∧ ∨  

     [ ( )] [ ( )]a b c b c a= ∧ ∨ ∨ ∧ ∨  

     ( ) ( ) ( ) ( )a b a c b c b a= ∧ ∨ ∧ ∨ ∧ ∨ ∧  

     ( ) ( ) ( )a b b c c a= ∧ ∨ ∧ ∨ ∧  

 Conversely, we first show that L  is modular. 

 Let , ,x y z be any three elements of L , with x y≥  

 Then  ( ) [ ( )] ( )x y z x x z y z∧ ∨ = ∧ ∨ ∧ ∨    (absorption) 

      ( ) ( ) ( )x y x z y z= ∨ ∧ ∨ ∧ ∨   ( )x y≥  

      ( ) ( ) ( )x y y z z x= ∨ ∧ ∨ ∧ ∨  

      ( ) ( ) ( )x y y z z x= ∧ ∨ ∧ ∨ ∧  

      ( ( )) ( )y y z z x= ∨ ∧ ∨ ∧    ( )x y≥  

      ( )y x z= ∨ ∧  

 i.e., L  is modular. 

 Now for any , ,a b c L∈  

    ( ) [ ( )] ( )a b c a a c b c∧ ∨ = ∧ ∨ ∧ ∨  

      [ ( ) ( ) ( )]a a b a c b c= ∧ ∨ ∧ ∨ ∧ ∨  

      [( ) ( ) ( )]a a b b c c a= ∧ ∨ ∧ ∨ ∧ ∨  

      [( ) ( ) ( )]a a b b c c a= ∧ ∧ ∨ ∧ ∨ ∧  

      [( ) (( ) ( ))]a b c a b c a= ∧ ∧ ∨ ∧ ∨ ∧  

 Now using modularity, as ,a a b a c a≥ ∧ ≥ ∧  gives ( ) ( )a a b c a≥ ∧ ∨ ∧   we get 

    ( ) [( ) ( )] [( ) ]a b c a b c a b c a∧ ∨ = ∧ ∨ ∧ ∨ ∧ ∧  
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      ( ) [( ) [( ) )]a b c a c a b= ∧ ∨ ∧ ∨ ∧ ∧  

      ( ) ( )a b c a= ∧ ∨ ∧  

 Hence L  is distributive.   ■ 

 

Theorem 3.3.9: Let L  be a distributive and a L∈ , the map : ,x x m x mψ → ∧ ∨  is an 

embedding of L  into ( ] [ )m m× . It is an isomorphism if m  has a complement. 

 
Proof: For ,x y L∈  

 we have,  ( ) ,x x m x mψ = ∧ ∨ and ( ) ,y y m y mψ = ∧ ∨  

 Then    ( ) ( ) ( ),x y x y m x y mψ ∧ = ∧ ∧ ∧ ∨  

    ( ) ( ),x y m x m y m= ∧ ∧ ∨ ∧ ∨  

    ( ) ( ) ( ) ( ),x m y m x m y m= ∧ ∧ ∧ ∨ ∧ ∨  

    , ,x m x m y m y m= ∧ ∨ ∧ ∧ ∨  

    ( ) ( )x y= ψ ∧ ψ  

 and     ( ) ( ) ( ),x y x y m x y mψ ∨ = ∨ ∧ ∨ ∨  

    ( ) ( ) ( ) ( ),x m y m x m y m= ∧ ∨ ∧ ∨ ∨ ∨  

    , ,x m x m y m y m= ∧ ∨ ∨ ∧ ∨  

    ( ) ( )x y= ψ ∨ ψ  

 Hence ψ  is a homomorphism. 

 Now let ( ) ( ), , .x y x y Lψ = ψ ∈  

 Then , ,x m x m y m y m∧ ∨ = ∧ ∨  and 

 So, x m y m∧ = ∧  and x m y m∨ = ∨  

 Now, ( )x x x m= ∧ ∨  

     ( )x y m= ∧ ∨  

     ( ) ( )x y x m= ∧ ∨ ∧  

     ( )y x m= ∧ ∨  

     ( )y y m= ∧ ∨  
     y=  
 x y⇒ =  and so ψ  is one-one. 
 Hence ψ  is an embedding. 
 2nd part: Let m L∈  has a complement. Choose an element 
 ( ] [ ),x y m m∈ × , thenx m y≤ ≤ . Since m  has a complement in L so it has a relative 

complement n  in the interval [ ],x y  

 Then we have, m n x∧ =  and m n y∨ =  

    , ,x y m n m n∴ = ∧ ∨  
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      ( )n= ψ  

 Hence ψ  is onto. Therefore ψ  is an isomorphism.   ■ 
 

Theorem 3.3.10: Homomorphic image of a distributive lattice is distributive. 

 

Proof : Let : L Mψ →  be an onto homomorphism where L is distributive lattice. 

 Let , ,x y z M∈  be any elements. Since ψ  is onto,  

 ∃ , ,a b c L∈ s.t., ( ) ,a xψ = ( ) ,b yψ = ( )c zψ =  

 Now ( ) ( ) [ ( ) ( )]x y z a b c∧ ∨ = ψ ∧ ψ ∨ ψ  

    ( ) ( ( ))a b c= ψ ∧ ψ ∨  

    ( ( ))a b c= ψ ∧ ∨  

    (( ) ( ))a b a c= ψ ∧ ∨ ∧  

    ( ) ( )a b a c= ψ ∧ ∨ ψ ∧  

    ( ( ) ( )) ( ( ) ( ))a b a c= ψ ∧ ψ ∨ ψ ∧ ψ  

    ( ) ( )x y x z= ∧ ∨ ∧  

 Therefore M  is distributive.   ■ 

 

Theorem 3.3.11: For any two ideals I and J of a distributive lattice L if I ∧ J and I J∨ are 
principal then both I and J are principal. 

 
Proof: Let ( ]I J x∧ = and ( ]I J y∨ =  

 Then y i j= ∨ for some i I∈ and j J∈ . Set c x i= ∨  and b x j= ∨  
 Then clearly c I∈  and b J∈  
 We have to show that ( ]I c=  and ( ]J b=  

 If ( ]I c≠ , then there exists and element a c>  such that a I∈  

 Moreover, the set { }, , , ,x a b c y  form a lattice isomorphic to 5N  
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 i.e., L is not distributive. This is a contradiction 
 Hence ( ]I c= . Therefore I is a principal ideal. 

 Similarly, we can show that, ( ]J b= , i.e., J is also a principal ideal.Hence proved.    ■ 

 
Theorem 3.3.12: A modular lattice is disributive if and only if it has no sublattice isomorphic 

5M . 
 
Proof: First suppose a modular lattice L  is distributive. Then its every sublattice is also 

distributive. 
 
 
 
 
 
 
 
 
 
 Since 5M is not distributive (For ( ) 1a b c a a∧ ∨ = ∧ =  but ( ) ( ) 0 0 0a b a c∧ ∨ ∧ = ∨ = ) So, 

L  can not contain any sublattice isomorphic to 5M . 
 Conversely, suppose that L  is not distributive. Then there exist elements x,y,z L∈  such 

that ( ) ( ) ( )x y z x y x z∧ ∨ ≠ ∧ ∨ ∧  but 

   ( ) ( ) ( )x y x z x y z∧ ∨ ∧ ≤ ∧ ∨  

   ( ) ( ) ( )x y x z x y z⇒ ∧ ∨ ∧ < ∧ ∨  

 Thus every modular lattice which is not distributive contains a sublattice isomorphic to 

5M . 
 Hence L  is a distributive.   ■ 
 

Theorem 3.3.13: The ideal lattice ( )I L  of a distributive lattice L  is distributive iff L  is 

distributive. 

 

Proof: Let L  be distributive. 

 Let , , ( )P Q R I L∈  be any three members, then , ,P Q R are ideals of L , We show 

    ( ) ( ) ( )P Q R P Q P R∧ ∨ = ∧ ∨ ∧  

 i.e.,   ( ) ( ) ( )P Q R P Q P R∩ ∨ = ∩ ∨ ∩  

 Let  ( )x P Q R∈ ∩ ∨  be any element. 

 Then x P∈  and x Q R∈ ∨  

a b 

c 

0 

1 

5M  

Fig-3.8 
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 ⇒  ∃ ,q Q r R∈ ∈  s.t., x q r≤ ∨  

 ⇒  ( )x q r x∧ ∨ =  

 ⇒  ( ) ( )x q x r x∧ ∨ ∧ =    (as L  is distributive) 

 Now ,x P q Q L x q Q∈ ∈ ⊆ ⇒ ∧ ∈  

 Again, x P L∈ ⊆ and q Q x q Q∈ ⇒ ∧ ∈  

 ⇒   ( )x q P Q∧ ∈ ∩ . 

 Similarly, ( )x r P R∧ ∈ ∩  

 Since ( ) ( ),x x q x r= ∧ ∨ ∧  by definition of ∨  in ( )I L  

 We find ( ) ( )x P Q P R∈ ∩ ∨ ∩  

 i.e.,   ( ) ( ) ( )P Q R P Q P R∩ ∨ ⊆ ∩ ∨ ∩  

 Again, let ( ) ( )x P Q P R∈ ∩ ∨ ∩  be any element. 

 Then 1 2x k k≤ ∨  for some 1 ,k P Q∈ ∩ 2k P R∈ ∩ . 

 Now 1 2 ,k k P∨ ∈ 1 2x k k≤ ∨  thus x P∈  

 Also 1 ,k Q∈ 2k R∈  and 1 2 .x k k x Q R≤ ∨ ⇒ ∈ ∨  

 Thus  ( )x P Q R∈ ∩ ∨  

 Or that    ( ) ( ) ( )P Q P R P Q R∩ ∨ ∩ ⊆ ∩ ∨  

 i.e.,  ( ) ( ) ( )P Q R P Q P R∩ ∨ = ∩ ∨ ∩  

 and hence ( )I L  is distributive. 

Conversely, since ∃ 1-1 homomorphism from ( ),L I L L→  will be isomorphic to a 

sublattice of ( ).I L  If ( )I L  is distributive, this sublattice and hence L  will be 

distributive. Thus converse also holds.   ■ 
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3.4 Atomic Lattice:  

 

Definition (Atom): An element in a poset which covers 0 is called an atom. 

 

Definition (Dual Atom): An element in a poset which is covered by 1 the greatest element of 

the poset is called an dual-atom. 

 

Definition (Atomic Lattice): An atomic lattice is one in which each element other than 0        

includes at least one atom. 

 

Example 3.4.1: Any power set ( )P A  of the set A  is an atomic lattice since the one element 

subsets of A  are clearly atoms of ( )P A  and every subset of A  excepting the void 

subset, includes at least one atom. 

 

Theorem 3.4.2: In an atomic lattice in which each element has a unique complement two 

elements are equal if and only if they contain the same atoms. 

 

Proof: Suppose that x  and z  contains exactly the same atoms. That is to say 

    P x P z≤ ⇔ ≤  

 Now if P x≤ then P z P x z≤ ⇒ ≤ ∧  

 Now, P x≤  and P x z≤ ∧ shows that  

 x  and x z∧  contains exactly the same atoms. 

 But if x z≠ , then either 

  x z x∧ < or x z z∧ <  

 Take, x z y∩ =  

 Now, 1x x z y y x y y′ ′> ∩ = ⇒ ∪ ≥ ∪ =  

 Then 0y x′ ∩ ≠ , for otherwise if 0y x′ ∩ = then 

  1y x′ ∪ =  and 0y x′ ∩ =  

 Also 1y y′ ∪ =  and 0y y′ ∩ = , gives 

  x y=  
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 So there exists and atom P  such that 

  P y x′≤ ∩  

 P x⇒ ≤ and P y′≤  

 P x⇒ ≤ and 0P y y y′∩ ≤ ∩ =  

 and P y x z≤ = ∩/  

If x z x∩ <  then x  contains an atom P  not contained in x z∩ . The contradication 

shows that the supposition x z≠  is false. Since the argument in the other case is similar. 

We see that if x  and z  contain the same atoms then x z=  

Conversely, let x  and z  be two equal elements. We have to show that they contain same 

atoms. 

If possible let p  and q  are two distinct atoms of x  and y  respectively. Then p  is atom 

of x p x z⇒ ≤ =  

   p z⇒ ≤  

 Again, q  is atom of z q z⇒ ≤  

    p q z x⇒ ≤ ≤ =  

    p q x⇒ ≤ ≤  

 which shows that p  is not atom of x . 

 a contradiction, thus p q= .   ■ 
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CHAPTER 4 

 

Boolean function and its different forms 

 

4.1 Introduction:  

 A complemented distributive lattice is called a Boolean Lattice. Let ( ), , , ',0,1B ∧ ∨  be a 

Boolean. Expressions involving member of B  and the operations ,∧ ∨  and 

complementation are called Boolean expression. Any function specifying these Boolean 

expressions is called a Boolean function. A Boolean function is said to be in Disjunctive 

normal form (DN form) in n  variables 1 2 3, , ,...................,nx x x x if it can be written as join 

of terms of the type ( ) ( ) ( ) ( )1 1 2 2 3 3∧ ∧ ∧ ∧ n nf x f x f x .......... f x , where ( ) =i i if x x for all 

1,2,3,............,i n=  and no two terms are same. A Boolean function f  is said to be in 

Conjunctive Normal Form (CN from) in n  variables 1 2 3, , ..........., nx x x x if f is meet of 

terns of the type ( ) ( ) ( )1 1 2 2 .................... n nf x f x f x∨ ∨ ∨  where ( ) =i i if x x or ix ′ for all 

1,2,3,..........,i n=  and no two terms are same. 

 

4.2 Boolean function: 

 

 Definition (Boolean lattice and Boolean Algebra) : A complemented distributive lattice is 

called a Boolean Lattice. Since complements are unique in a Boolean Lattice we can 

regard a Boolean Lattice as an algebra with two binary operations ∧ and∨ and one unary 

operation '  . Boolean Lattice so considered is called Boolean Algebra. In other words, by 

a Boolean Algebra, we mean a system consisting of a non empty set L  together with two 

binary operations ∧ and ∨ and unary operation ' , 0 and 1 satisfying( ), , ,a b c L∀ ∈ . 

 ( ) ,i a a a a a a∧ = ∨ =  

 ( ) ,ii a b b a a b b a∧ = ∧ ∨ = ∨  

 ( ) ( ) ( ) ( ) ( ),iii a b c a b c a b c a b c∧ ∧ = ∧ ∧ ∨ ∨ = ∨ ∨  

 ( ) ( ) ( ),iv a a b a a a b a∧ ∨ = ∨ ∧ =  
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 ( ) ( ) ( ) ( )v a b c a b a c∧ ∨ = ∧ ∨ ∧  

 ( ) ,vi a L∀ ∈ ∃ ' ,a L∈ s.t., ' 0a a∧ = ' 1a a∨ =  

 where 0,1 are elements of L  satisfying 0 1x≤ ≤  .x L∀ ∈  

 

Example 4.2.1: Let { }0, , ,1B x y= . If we define ,∧ ∨  and complementation ´ by 

  

∧  0 x  y  1  ∨  0 x  y  1  ´  

0 0 0 0 0  0 0 x  y  1  0 1 

x  0 x  0 x   x  x  x  1 1  x  y  

y  0 0 y  y   y  y  1 y  1  y  x  

1 0 x  y  1  1 1 1 1 1  1 0 

 

 Then B  forms a Boolean algebra under these operations. Since a Boolean Algebra is 

distributive (and thus, modular) and complemented, all properties of modular, 

distributive and complemented lattices hold in a Boolean algebra. 

 

Definition (Boolean expression): Let ( , , ,,0,1)B ∧ ∨  be a Boolean algebra. Then any expression 

involving members of B  and the operation ,∧ ∨  and complementation is called a 

Boolean expression or Boolean Polynomial. 

 

Example 4.2.2: If ,x y B∈ then ,x y∨ ,x y′∨ ,x y∧ x y′ ′∧  etc are Boolean expressions. 

Remark: If 1e  and 2e  are Bollean expressions, then 1 ,e′
1 2,e e∨ 1 2e e∧  are Bollean expressions. 

A Boolean expression that contains n  distinct variables is usually referred to as a 

Bollean expression of n  variables. 

 

Definition (Boolean function): Let ( , , , ,0,1)B ′∧ ∨  be a Boolean algebra. A function : nf B B→  

is called a Boolean function if it can be specified by a Bollean expression of n  variables. 

 

Example 4.2.3 : ( , )f x y x y= ∧  is a Boolean function. 
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Remark:  ( , )f x y x y= ∧  then f  is a Boolean function and x y∧  is the Boolean expression 

(or value of the function). In fact, the Boolean expressions are the Boolean functions. 

 

Examples 4.2.4: A function 2:{0,1} {0,1}f →  is defined by 

  (0,0) 0,f = (0,1) 1,f = (1,0) 0,f = (1,1) 0f =  

Is a Boolean function as the Boolean expression ( ' ) ( ')x y x y∧ ∨ ∧  over the Boolean 

algebra ({0,1}, , , )′∧ ∨ defines the functionf . 

 

Example 4.2.5 : Every function : nf B B→  can not be specified by a Boolean expression over 

( , , , )B ′∨ ∧ . For example, in the following function 

   2:{0,1,2,3} {0,1,2,3}f →  is defined by 

 

(0,0) 1f =  (1,0) 1f =  (2,0) 2f =  (3,0) 3f =  

(0,1) 0f =  (1,1) 1f =  (2,1) 0f =  (3,1) 0f =  

(0,2) 0f =  (1,2) 0f =  (2,2) 1f =  (3,2) 0f =  

(0,3) 3f =  (1,3) 3f =  (2,3) 1f =  (3,3) 2f =  

     Fig. 4.1 

 

There is no Boolean expression over the Boolean algebra ({0,1,2,3,}, , , )′∧ ∨  that defines 

the function in Fig. 4.1 . 

 Hence 2:{0,1,2,3} {0,1,2,3}f →  is not a Boolean function. 

 

Theorem (Birkhaf stone theorem) 4.2.6: Let I be an ideal and D  be a dual ideal of a 

distributive  lattice L with .I D∩ = ϕ  Then there exist a prime ideal P I⊇  such that 

.P D∩ = ϕ   
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Theorem 4.2.7: Let L  be a distributive lattice with 0  and 1. Then L  is a Boolean lattice if 
and only if ( )P L , the set of all prime ideals of L is unordered. 

 
Proof: First suppose L is a Boolean lattice. 
 Suppose ( )P L  is not unordered. Then there exist ( ), .P Q P L∈  Then there exists 

ana Q P∈ − . Now 0a a P′∧ = ∈ . Since P is prime and a P∉  implies .a P Q′∈ ⊂  
 a Q′⇒ ∈ . 
 Thus 1a a Q′∨ = ∈ . Which is a contradiction as Q  is prime. 

 Hence ( )P L  is unordered. 

 Conversely, suppose that( )P L  is unordered. We have to show that L is a Boolean lattice. 

 If L is not Boolean, then there exist an element a L∈  which has no complement. 
 Set { }| 1D x a x= ∨ = . Then D is a dual ideal.Consider [ ) { }1 |D D a x x d a= ∨ = ≥ ∧  for 

some d D∈ . { } [ ) { } { }[ | 1 , | , |D x a x a x a x D a x x a a d= ∨ = = ≤ ∨ = ≥ ≥ ∧  for some ]d D∈  

 
 Now we have to show that 1D  does not contain 0.If 1D  contain 0, then 0 d a= ∧  for some 

d D∈ . Then we have 1d a∨ = . Which gives a contradiction as L is not Boolean.Hence 

10 D∉ . Then there exists a prime P such that 1 .P D∩ = ϕ  

 Now [ )1 a P∉ ∨  for otherwise 1 a p= ∨  for some p P∈ . Then by stone representration 

theorem we have there exist a prime ideal Q containing ( ]P a∨ . Thus P Q⊂  which is 
impossible as the set of prime ideals are unordered. 

 Hence L must be Boolean.     ■ 
  
  
4.3 Disjunctive normal form or DN form:  

 

Definition ( DN form) : A Boolean function (Expression) is said to be in disjunctive normal 

form (DN form) in n  variables 1 2, ,......., nx x x  if it can be written as join of terms of the 

type 1 1 2 2( ) ( ) ...... ( )n nf x f x f x∧ ∧ ∧  Where ( )i i if x x=  or ix ′ , for all 1,2,...,i n= . 

 

Definition (Complete DN form): If number of variables is n , then the total number of 

minterms will be 2n . If a disjunctive normal form in n  variables contains all the 

2n minterms then it is called the complete disjunctive normal form in n  variables. 
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Definition (Minterm): A Boolean expression of n  variables 1 2, ,......., nx x x  is said to be a 

minterm or minterm polynomial if it is of the form 1 1 2 2( ) ( ) ...... ( )n nf x f x f x∧ ∧ ∧ , where 

( )i i if x x=  or ix ′ , for all 1,2,...,i n= . 

 

Example 4.3.1 : ( ) ( ) ( )x y z x y z x y z′ ′ ′ ′∧ ∧ ∨ ∧ ∧ ∨ ∧ ∧  

is in disjunctive normal form in there variables ,x y and z . Here the terms 

( ) ( )x y z x y z′ ′ ′∧ ∧ ∨ ∧ ∧  and ( )x y z′ ∧ ∧  are minterms or minterm polynomials. 

Remark : i) Thus each minterm is a meet of all the n -variables with or without a prime 

(complementation operation). 

 ii) If we have three variables , ,x y z then any function in the DN form will be join of 

some or all the minterms. 

, , ' , , , ' ', ,x y z x y z x y z x y z x y z x y z x y z x y z′ ′ ′ ′ ′ ′ ′ ′ ′∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧  which will 

be 2 ( 3)n n =  in number. 

 

Theorem 4.3.2 : Every Boolean function can be put in disjunctive normal form. 

 

Proof: We prove the result by talking the following steps: 

 i) If primes (complementation operation) occur outside brackets, then open the brackets 

by using De Morgan’s laws, 

  ( ) ; ( )x y x y x y x y′ ′ ′ ′ ′ ′∧ = ∨ ∨ = ∧  

 ii) Open all brackets by using distributivity and simplify using any of the definition 

conditions like idempotency, absorption etc. 

 iii) If any of the terms does not contain a certain variable ix  (or ix ′ ) then take meet of 

that term with i ix x′∨ . Do this with each such term (it will not affect the function as 

1i ix x′∨ =  and 1 x x∧ = ) 

Now open brackets and droop all terms of the types ( 0)x x′∧ = . Again, if any of the 

terms occur more than once, these can be omitted because of idempotency. The resulting 
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expression will be in DN form. Hence every function in a Boolean algebra is equal to a 

function in DN form.   ■ 

 

Theorem 4.3.3 : Every Boolean function can be expressed in DN form in one and only one 

way. 

 

Proof: Suppose f  is a Boolean function and  

 Let 1 2 ....... nf A A A= ∨ ∨ ∨  and 1 2 ....... mf B B B= ∨ ∨ ∨  

(Where iA  and iB  are minterms) be two representations of f  in DN form. Then all 

1 2, ,......., nA A A  and all 1 2, ,......, mB B B  will be distinct by definition. 

In general, if X  and Y  be two distinct minterms then 0X Y∧ =  as X  would always 

contain at least one ix  such that Y  contains 'ix . 

 Now, 1 2 1 2...... ......n mf A A A B B B= ∨ ∨ ∨ = ∨ ∨ ∨  

  1 2 ........ , 1,2,....,i mA B B B i n⇒ ≤ ∨ ∨ ∨ ∀ = . 

  1 2( ...... )i i mA A B B B⇒ = ∧ ∨ ∨ ∨  

 1 2( ) ( ) ....... ( ), 1,2,....,i i i mA B A B A B i n= ∧ ∨ ∧ ∨ ∨ ∧ ∀ =  

Now if iA does not equal any of 1 2, ,....., mB B B  then the R.H.S. is zero which means 

0iA = , But it is not true. Thus iA equals some jB  (it can not be equal to two or morejB ’s 

as jB ’s are all distinct). 

Similarly each jB  is equal to same iA . Hence the two representations of f  are same 

(because of commutativity, the order in which the terms occur is immaterial). We thus 

conclude, there is once and only one way to write a given Boolean function in the DN 

form (in a given number of variables).   ■ 

 

Problem 4.3.4 : Put the function [( ) ] ( )f x y z x z′ ′ ′ ′ ′= ∧ ∨ ∧ ∨  in the DN form. 

 

Solution: We have  

     [( ) ] ( )f x y z x z′ ′ ′ ′ ′= ∧ ∨ ∧ ∨  

    [( ) ] ( )x y z x z′ ′′ ′ ′′ ′= ∨ ∨ ∧ ∧  
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    [( ) ] ( )x y z x z′ ′ ′= ∨ ∨ ∧ ∧  

    ( ) ( )x y z x z′ ′ ′= ∨ ∨ ∧ ∧  

    ( ) ( ) ( )x x z y x z z x z′ ′ ′ ′ ′= ∧ ∧ ∨ ∧ ∧ ∨ ∧ ∧  

    (0 ) ( ) ( )z x y z x z′ ′ ′= ∧ ∨ ∧ ∧ ∨ ∧  

    0 ( ) ( )x y z x z′ ′= ∨ ∧ ∧ ∨ ∧  

    ( ) [( ) ( )]x y z x z y y′ ′ ′= ∧ ∧ ∨ ∧ ∧ ∨  

    ( ) [( ) ( ' )]x y z x z y x z y′ ′ ′= ∧ ∧ ∨ ∧ ∧ ∨ ∧ ∧  

    ( ) ( ) ( )x y z x y z x y z′ ′ ′ ′= ∧ ∧ ∨ ∧ ∧ ∨ ∧ ∧  

    ( ) ( )x y z x y z′ ′ ′= ∧ ∧ ∨ ∧ ∧ , Which is the DN form of  f .   ■ 

 

Problem 4.3.5 : Write the function x y′∨  in the disjunctive normal form in three variables 

, ,x y z. 

 

Solution: We have  

 [ ( ) ( )] [ ( ) ( )]x y x y y z z y x x z z′ ′ ′ ′ ′ ′∨ = ∧ ∨ ∧ ∨ ∨ ∧ ∨ ∧ ∨  

   [{( ) ( )} ( )] [{( ) ( )} ( )]x y x y z z y x y x z z′ ′ ′ ′ ′= ∧ ∨ ∧ ∧ ∨ ∨ ∧ ∨ ∧ ∧ ∨  

   ( ) ( ) ( ) ( ) ( )x y z x y z x y z x y z y x z′ ′ ′ ′ ′= ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∨ ∧ ∧ ∨  

   ( ) ( ) ( )y x z y x z y x z′ ′ ′ ′ ′ ′ ′∧ ∧ ∧ ∧ ∧ ∨ ∧ ∧  

   ( ) ( ) ( ) ( ) ( ) ( )x y z x y z x y z x y z x y z x y z′ ′ ′ ′ ′ ′ ′ ′ ′= ∧ ∧ ∨ ∧ ∧ ∨ ∧ ∧ ∨ ∧ ∧ ∨ ∧ ∧ ∨ ∧ ∧  

 which is disjunctive normal form of x y′∨  in  three variables , , .x y z    ■ 

 

Problem 4.3.6 : Find the Boolean expression that defines the function f  given by 

 (0,0,0) 0f =  (1,0,0,) 1f =  

 (0,1,0) 1f =  (1,0,1) 1f =  

 (0,0,1) 0f =  (1,1,0) 0f =  

 (0,1,1) 0f =  (1,1,1) 1f =  
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Solution: We consider those values of ( , , )f x y z  which are equal to 1. 

 The minterms corresponding to (0,1,0),f (1,0,0),f (1,0,1)f  and (1,1,1)f  will be 

( ),x y z′ ′∧ ∧ ( ),x y z′ ′∧ ∧ ( )x y z′∧ ∧  and ( )x y z∧ ∧   

 Hence the function in DN form is, 

 ( , , ) ( ) ( ) ( ) ( )f x y z x y z x y z x y z x y z′ ′ ′ ′ ′= ∧ ∧ ∨ ∧ ∧ ∧ ∧ ∧ ∨ ∧ ∧  

 Which can be simplified, 

 ( , , ) ( ) [( ) ( ) ( )]f x y z x y z x y z y z y z′ ′ ′ ′ ′= ∧ ∧ ∨ ∧ ∧ ∨ ∧ ∨ ∧  

   ( ) [{ ( )} ( )]x y z x y z z y z′ ′ ′ ′= ∧ ∧ ∨ ∧ ∧ ∨ ∨ ∧  

   ( ) [( 1) ( )]x y z x y y z′ ′ ′= ∧ ∧ ∨ ∧ ∧ ∨ ∧  

   ( ) [ ( )]x y z x y y z′ ′ ′= ∧ ∧ ∨ ∧ ∨ ∧  

   ( ) [( ) ( )]x y z x y y y z′ ′ ′ ′= ∧ ∧ ∨ ∧ ∨ ∧ ∨  

   ( ) ( )x y z x y z′ ′ ′= ∧ ∧ ∨ ∧ ∨  

   ( ) [( ) ( )]x y z x y x z′ ′ ′= ∧ ∧ ∨ ∧ ∨ ∧ , which is the required Boolean function.   ■ 

 

Problem 4.3.7 : Find the Boolean (function) expression for the function f given by 

 
1 1, 0; 1, 0

( , , )
0

when x z y x y z
f x y z

otherwise

= = = = = == 


 

Solution: We consider those values of ( , , )f x y z which are equal to 1. The minterms 

corresponding to (1,0,1), (1,0,0)f f  will be ( )&( )x y z x y z′ ′ ′∧ ∧ ∧ ∧  

 Hence the DN form of f  is ( ) ( )x y z x y z′ ′ ′= ∧ ∧ ∨ ∧ ∧ .     ■   

 

Problem 4.3.8 : Let ( , , ) ( ) ( ) ( )f x y z x y x y x z′ ′= ∨ ∧ ∨ ∧ ∨   

be a Boolean expression over the two-valued Boolean algebra. Write ( , , )f x y z  in 

disjunctive normal form. 
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Solution: We first find all values of ( , , )f x y z  when , ,x y ztake values either 0 or 1. 

 (0,0,0) (0 0) (0 1) (1 0) 0 1 1 0f = ∨ ∧ ∨ ∧ ∨ = ∧ ∧ =  

 (0,0,1) (0 0) (0 0 ) (0 1) 0 1 1 0f ′ ′= ∨ ∧ ∨ ∧ ∨ = ∧ ∧ =  

 (0,1,0) (0 1) (0 1 ) (0 0) 1 0 1 0f ′ ′= ∨ ∧ ∨ ∧ ∨ = ∧ ∧ =  

 (1,0,0) (1 0) (1 0 ) (1 0) 1 1 0 0f ′ ′= ∨ ∧ ∨ ∧ ∨ = ∧ ∧ =  

 (0,1,1) (0 1) (0 1 ) (0 1) 1 0 1 0f ′ ′= ∨ ∧ ∨ ∧ ∨ = ∧ ∧ =  

 (1,0,1) (1 0) (1 0 ) (1 1) 1 1 1 1f ′ ′= ∨ ∧ ∨ ∧ ∨ = ∧ ∧ =  

 (1,1,0) (1 1) (1 1 ) (1 0) 1 1 0 0f ′ ′== ∨ ∧ ∨ ∧ ∨ = ∧ ∧ =  

 (1,1,1) (1 1) (1 1 ) (1 1) 1 1 1 1f ′ ′= ∨ ∧ ∨ ∧ ∨ = ∧ ∧ =  

Now we consider those values of ( , , )f x y z  which are equal to 1. The minterms 

corresponding to (1,0,1)f  and (1,1,1)f  will be ( )&( )x y z x y z′∧ ∧ ∧ ∧ . Hence the 

Disjunctive normal form of f is 

   ( ) ( )x y z x y z′= ∧ ∧ ∨ ∧ ∧ .    ■ 

4.4 Conjunctive Normal form : 

In this section we discuss conjunctive normal form (CN form) which is dual of the DN 

form. 

Definition (CN form) : A Boolean function f is said to be  in conjuctive normal form (CN 

form) in n  variables 1 2, ,...,...., nx x x  if f is meet of terms of the type 

1 1 2 2( ) ( ) ..... ( )n nf x f x f x∨ ∨ ∨  where ( )i i if x x=  or 'ix , for all 1,2,........,i n=  and no two 

terms are same. 

Remark : A normal form is also called a canonical form. 
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Definition (Maxterm): A Boolean expression of n  variables 1 2, ,......, nx x x is said to be a 

maxterm or maxterm polynomial if it is of the form, 

  1 1 2 2 3 3( ) ( ) ( ) ...... ( )n nf x f x f x f x∨ ∨ ∨ ∨  

 Where ( )i i if x x=  or ix ′ , for all 1,2,........,i n= . 

 

Problem 4.4.1 : Put the function, [( ) ] ( )f x y z x z′ ′ ′ ′ ′= ∧ ∨ ∧ ∨  in the CN form. 

Solution : Given, 

 [( ) '] ( )f x y z x z′ ′ ′ ′= ∧ ∨ ∧ ∨  

  [( ) ] ( )x y z x z′ ′′ ′ ′′ ′= ∨ ∨ ∧ ∧  

  ( ) ( )x y z x z′ ′ ′= ∨ ∨ ∧ ∧  

  ( ) [( ) ( )]x y z x z y y′ ′ ′ ′= ∨ ∨ ∧ ∧ ∨ ∧  

  ( ) {[( ) ] [( ) ]}x y z x z y x z y′ ′ ′ ′ ′= ∨ ∨ ∧ ∧ ∨ ∧ ∧ ∨  

  ( ') [( ) ( ) ( ) ( )]x y z x y z y x y z y′ ′ ′ ′ ′= ∨ ∨ ∧ ∨ ∧ ∨ ∧ ∨ ∧ ∨  

  ( ') [{( ) ( )} {( ) ( )}x y z x y z z z y x x′ ′ ′ ′= ∨ ∨ ∧ ∨ ∨ ∧ ∧ ∨ ∨ ∧  

                      {( ) ( )} {( ) ( )}]x y z z z y x x′ ′ ′ ′ ′∧ ∨ ∨ ∧ ∧ ∨ ∨ ∧  

  ( ) ( ) ( ) ( ) ( )x y z x y z x y z z y x z y x′ ′ ′ ′ ′ ′= ∨ ∨ ∧ ∨ ∨ ∧ ∨ ∨ ∧ ∨ ∨ ∧ ∨ ∨  

  ( ) ( ) ( ) ( )x y z x y z z y x x y z′ ′ ′ ′ ′ ′ ′ ′∧ ∨ ∨ ∧ ∨ ∨ ∧ ∨ ∨ ∧ ∨ ∨  

  ( ) ( ) ( ) ( ) ( ) ( ')x y z x y z x y z x y z x y z x y z′ ′ ′ ′ ′ ′ ′ ′= ∨ ∨ ∧ ∨ ∨ ∧ ∨ ∨ ∧ ∨ ∨ ∧ ∨ ∨ ∧ ∨ ∨  

 which is the required conjunctive normal form of f .   ■ 
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Problem 4.4.2 : Find the Boolean expression in CN form that defines the function f  given by 

x  y  z  ( , , )f x y z  

0 0 0 1 

0 0 1 0 

0 1 0 1 

1 0 0 0 

0 1 1 0 

1 0 1 0 

1 1 0 0 

1 1 1 1 

 

Solution : We consider that values of ( , , )f x y z  which are equal to 0. The maxterms 

corresponding to (0,0,1), (0,1,1), (1,0,0), (1,0,1), (1,1,0)f f f f f  will be 

( )( ), ( ), ' ' , ( ),( )x y z x y z x y z x y z x y z′ ′ ′ ′ ′∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨  

 Hence the conjunctive normal form of f  is 

 ( ) ( ) ( ') ( ' ) ( )x y z x y z x y z x y z x y z′ ′ ′ ′ ′= ∨ ∨ ∧ ∨ ∨ ∧ ∨ ∨ ∧ ∨ ∨ ∧ ∨ ∨ .   ■ 
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Problem 4.4.3 : Find the complement of the DN form 

 ( ) ( ) ( ) ( ) ( )f x y z x y z x y z x y z x y z′ ′ ′ ′ ′ ′ ′ ′ ′ ′= ∧ ∧ ∨ ∧ ∧ ∨ ∧ ∧ ∨ ∧ ∧ ∨ ∧ ∧  

Solution : Given, 

 ( ) ( ) ( ) ( ) ( )f x y z x y z x y z x y z x y z′ ′ ′ ′ ′ ′ ′ ′ ′ ′= ∧ ∧ ∨ ∧ ∧ ∨ ∧ ∧ ∨ ∧ ∧ ∨ ∧ ∧  

 We know the complete DN form in 3-variables is, 

 ( ) ( ) ( ) ( ) ( ) ( )x y z x y z x y z x y z x y z x y z′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′∧ ∧ ∨ ∧ ∧ ∨ ∧ ∧ ∨ ∧ ∧ ∨ ∧ ∧ ∨ ∧ ∧  

 ( ) ( )x y z x y z′∨ ∧ ∧ ∨ ∧ ∧  

Now, if we pickup the DN form f form the complete DN form then complement of f will 

contain the “left out” terms in the complete DN form 

 ( ) ( ) ( )f x y z x y z x y z′ ′ ′∴ = ∧ ∧ ∨ ∧ ∧ ∨ ∧ ∧ .   ■ 

 

Problem 4.4.4 :  Find the CN form of the function ( ( ))f x y z z′ ′= ∧ ∨ ∨  and then find its DN 

form from it. 

Solution :Given 

 ( ( ))f x y z z′ ′= ∧ ∨ ∨  

  ( ) (( ) )x z y z z′ ′ ′= ∨ ∧ ∨ ∨  

  ( ) ( ( ))x z y z z′ ′ ′= ∨ ∧ ∨ ∨  

  ( ) ( 1)x z y′ ′= ∨ ∧ ∨  

  ( ) ( )x z x z y y′ ′ ′= ∨ = ∨ ∨ ∧  

  ( ) ( )x z y x z y′ ′ ′= ∨ ∨ ∧ ∨ ∨  
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  ( ) ( ),x y z x y z′ ′ ′= ∨ ∨ ∧ ∨ ∨ which is the required CN form of .f  

 Now, we find the DN form ( ) ( )f x y z x y z′ ′ ′= ∨ ∨ ∧ ∨ ∨  

  We know, ( )f f ′ ′=  

  [{( ) ( )} ]x y z x y z′ ′ ′ ′ ′= ∨ ∨ ∧ ∨ ∨  

  [( ) ( ) ]x y z x y z′ ′ ′ ′ ′= ∨ ∨ ∨ ∨ ∨  

  [( ) ( )]x y z x y z′ ′ ′ ′= ∧ ∧ ∨ ∧ ∧  

 We know the complete DN form in 3- variables is, 

 ( ) ( ) ( ) ( ) ( ' ) ( )x y z x y z x y z x y z x y z x y z′ ′ ′ ′ ′ ′∧ ∧ ∨ ∧ ∧ ∨ ∧ ∧ ∨ ∧ ∧ ∨ ∧ ∧ ∨ ∧ ∧ ∨  

 ( ) ( )x y z x y z′ ′ ′ ′ ′∧ ∧ ∨ ∧ ∧  

 Hence the DN form of f  is 

 ( ) ( ) ( ') ( ) ( ) ( )x y z x y z x y z x y z x y z x y z′ ′ ′ ′ ′ ′ ′ ′∧ ∧ ∨ ∧ ∧ ∨ ∧ ∧ ∨ ∧ ∧ ∨ ∧ ∧ ∨ ∧ ∧ .   ■ 

 

Problem 4.4.5 : If 1 2 ...... kf B B B= ∨ ∨ ∨  be a Boolean function in n variables 1 2, ,....., nx x x  in 

DN form where iB  are minterms then show that 1 2 ...... kB B B′ ′′∧ ∧ ∧  is the CN form of f ′ . 

Solution: Given 

 1 2 ...... kf B B B= ∨ ∨ ∨  

 ( )1 2 ...... kf B B B ′′∴ = ∨ ∨ ∨  

       1 2 ...... kB B B′ ′ ′= ∧ ∧ ∧  

 Here given each iB  being a minterm is of the form  
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 1 2 .......... ,nm m m∧ ∧ ∧  where each i im x=  or ix′ , 1,2,...., .i n=  

Thus 1 2 ....... ,i nB m m m′ ′ ′ ′= ∨ ∨ ∨  where each  i im x′ =  or ix′ , and therefore, iB′  is a maxterm. 

 Hence 1 2 ...... kB B B′ ′ ′∧ ∧ ∧  is the CN form of f ′ .   ■ 
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