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ABSTRACT 
 

 

 

The present study deals with the similarity solutions of laminar boundary layer equations 

for the unsteady free convection flow over a heated horizontal semi-infinite porous plate. 

The Boussinesq approximation is employed firstly in order to simplify the governing 

boundary layer equations. Secondly, similarity requirements for an incompressible fluid 

are sought on the basis of detailed analysis in order to reduce the governing coupled partial 

differential equations into a set of ordinary differential equations. The influence of suction 

and blowing on the flow and temperature fields and other flow factors like skin friction and 

heat transfer coefficients are extensively investigated under different similarity cases. Sixth 

order R-K method is used to solved the simplified equations and the obtained numerical 

results are displayed graphically for some selected values of the controlling parameters 

provided by the similarity transformation. It is found that a small value of suction or 

blowing play a vital role on the patterns of flow and temperature fields as well as on the 

coefficients of skin friction and heat transfer and pressure distribution. 
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CHAPTER I 

 

 

Introduction and Literature Review  

 

 

Fluid dynamics is a subject of widespread interest to researchers and it becomes an obvious 

challenge for the scientists, engineers as well as users to understand more about fluid 

motion. An important contribution to the fluid dynamics is the concept of boundary layer 

introduced first by L. Prandtl [32]. The concept of the boundary layer is the consequence 

of the fact that flows at high Reynolds numbers can be divided into unequally spaced 

regions. A very thin layer (called boundary layer) in the vicinity (of the object) in which 

the viscous effects dominate, must be taken into account, and for the bulk of the flow 

region, the viscosity can be neglected and the flow corresponds to the inviscid outer flow. 

Although the boundary layer is very thin, it plays a vital role in the fluid dynamics. 

Boundary layer theory has become an essential study now-a-days in analysing the complex 

behaviors of real fluids. The concept of boundary layer can be used to simplify the Navier-

Stokes’ equations to such an extent that the viscous effects of flow parameters are 

evaluated, and these are useable in many practical problems (viz. the drag on ships and 

missiles, the efficiency of compressors and turbines in jet engines, the effectiveness of air 

intakes for ram and turbojets and so on). 

Further, the boundary layer effects caused by free convection are frequently observed in 

our environmental happenings and engineering devices. We know that if externally 

induced flow is provided and flows arising naturally solely due to the effect of the 

differences in density, caused by temperature or concentration differences in the body force 

field (such as gravitational field). These types of flows are called ‘free convection’ or 

‘natural convection’ flows. The density difference causes buoyancy effects and these 

effects act as ‘driving forces’ due to which the flow is generated. Hence free convection is 

the process of heat transfer which occurs due to movement of the fluid particles by density 

differences associated with temperature differences in a fluid. In such cases, the free stream 

velocity falls away, in deed, no reference velocity does a priori exist. If the density in the 

vicinity of the object is kept constant, natural convection flow can not be formed. Thus, 

this is an effect of variable properties, where there is a mutual coupling between 

momentum and heat transport. The direct origin of the formation of natural convection 

flows is a heat transfer via conduction through the fixed surfaces surrounding the fluid. If 
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the surface temperature is greater than that of ambient fluid, heat is transferred from the 

plate to the fluid leads to an increase in temperature of the fluid close to the surfaces and to 

a change in the density, because it is temperature dependent. If the density decreases with 

increasing temperature, buoyancy forces arise close to the surface and warmer fluid moves 

upwards. Such buoyant forces are proportional to the coefficient of thermal expansion T , 

defined as 
constant

1
T

pT




 

 
   

 
, where , and T p  are density, temperature and pressure 

respectively. It is observed that 
1

T
T

   for a perfect gas and we see that stream is well 

approximated by the perfect-gas result 1TT   at low pressure and high temperature. Also 

1
T

T
   for a liquid and may even be negative, and 

1
T

T
   for imperfect gas, particularly 

at high pressure. T  is also useful in estimating the dependence of enthalpy ‘h’ on pressure, 

from the thermodynamic relation  1p T

dp
dh c dT T

ρ
   , where T is the absolute 

temperature. For the perfect gas, the second term vanishes, so that  h h T  only. 

The natural convection studies begun in the year 1881 with Lorentz and continued at a 

relatively constant rate until recently. This mode of heat transfer occurs very commonly, 

the cooling of transmission lines, electric transformers and rectifiers, the heating of rooms 

by use of radiators, the heat transfer from hot pipes and ovens surrounded by cooled air, 

cooling the reactor core (in nuclear power plant) and carry out the heat generated by 

nuclear fission, etc. Bulks of information are now available in literature about the boundary 

layer form of natural convection flows over bodies of different shapes. The theoretical, 

experimental and numerical analysis for the natural convection boundary layer flow about 

isothermal, vertical flat plates have been carried out widely by many authors (viz. [11, 26, 

28, 36, 39, 41]).  

Schmidt [35] was apparently the first researcher who investigated experimentally the 

behavior of the flow near the leading edge above a flat horizontal surface. The theoretical 

analysis of the laminar, two-dimensional, steady natural convection boundary layer flow 

on a semi-infinite horizontal flat plate was first considered by Stewartson [40] (later 

corrected by Gill, Zeh and Del-Casal [14] ). In that analysis he used the Boussinesq 
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approximation to show how the boundary layer analysis could be incorporated with the 

natural convection on rectangular plates, which are of high planform aspect ratio. 

Rotem and Claassen [33] investigated the boundary layer equation over a semi-infinite 

horizontal surface of uniform temperature and results were presented for some specific 

values of Prandtl number with its limits form zero to infinity. The effect of buoyancy 

forces that exist in boundary layer flow, over a horizontal surface, where the surface 

temperature differs from that of ambient fluid, was studied by Sparrow and Minkowycz 

[38]. The free convection above a heated and almost horizontal plate has been treated by 

Jones [21]. 

The boundary layer type of the natural convection flow, which occurs on the upper surface 

of heated horizontal, surfaces has been investigated theoretically and experimentally by 

amongst other, Rotem and Claassen [34], Pera and Gebhart [29, 30] and Goldstein, 

Sparrow and Jones [15]. It is seen from their experiments and also from the flow 

visualization of Husar and Sparrow [19] that a boundary layer starts from each edge of a 

plate edge, each boundary layer having its leading at a straight-side plate edge. The 

boundary layer development occurs normal to the corresponding edge so that collisions 

between opposing boundary layer flows occur on the plate surface. After collision, the 

fluid checked in the boundary layer forms a rising buoyant plume.  

Furthermore, the solution of a system of coupled partial differential equations with 

boundary conditions is often difficult and even impossible with the usual classical method. 

Thus, it is imperative to reduce the number of variables from the system which reached in 

a stage of great extent. Similarity solution is one of the important means for the reduction 

of a number of independent variables with simplifying assumptions and finally the system 

of partial differential equations reduces to a set of ordinary differential equations 

successfully. A vast literature of similarity solution has appeared in the area of fluid 

mechanics, heat transfer, and mass transfer, etc.  

In 1978, Johnson and Cheng [20] examined the necessary and sufficient conditions under 

which similarity solutions exist for free convection boundary layers adjacent to flat plates 

in porous media. The solutions obtained in their work were more general than those 

appearing in the previous studies. With a parameter associated with the body shapes a 

similarity solution on the natural convection flow has also been studied by Pop and Takhar 

[31]. Ferdows et al. [12] have been made a similarity analysis for the forced as well as free 

convection boundary layer flow of an electrically conducting viscous incompressible fluid 
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past a semi-infinite con-conducting vertical porous plate by introducing a time dependent 

suction.    

Most of the above analyses were based on the Buossinesq approximation and have been 

concerned with the seeking of similarity solutions in which the plate temperature varies 

with the distance from plate leading edge. In this approximation thus density, viscosity, 

thermal conductivity and specific heat variations are ignored except for the necessary 

inclusion of the density-variation in the body force term.  

An analysis is performed by Chen et al. [8] to study the flow and heat transfer 

characteristic of laminar natural convection in boundary layer flows from horizontal, 

inclined and vertical plates with power law variation of the wall temperature.  

In most of the above analyses the boundary layer of the natural convection flows were 

considered over heated or uniformly heated horizontal vertical, horizontal or near 

horizontal, semi-infinite, rectangular porous plates. The surface is impermeable to the 

fluid, so that there is no transpiration i.e., suction or blowing velocity normal to the 

surface. This led to the kinematic boundary condition 0wv  . 

The problem of boundary layer control has become very important factor; in actual 

application it is often necessary to prevent separation. The separation of the boundary layer 

is generally undesirable, since separated flow causes a great increase in the drag 

experienced by the body. So it is often necessary to prevent separation in order to reduce 

pressure drag and attain high lift.  

Suction (or blowing) is one of the useful means in preventing boundary layer separation. 

The effect of suction consists in the removal of decelerated particles from the boundary 

layer before they are given a chance to cause separation. The surface is considered to be 

permeable to the fluid, so that the surface will allow a non-zero normal velocity and fluid 

is either sucked or blown through it. In doing this however, no-slip condition 0wu   at the 

surface (non-moving) shall continue to remain valid. 

In driving the boundary layer equation, it is anticipated that the v-component of the 

velocity is a small quantity of the order of magnitude 
1

2ReO
 

 
 

 and it is assumed that the 

suction (or blowing) velocity wv  normal to the surface has its magnitude of order 

(characteristic Reynolds number)-1/2. The consequence of this is that outer flow is 
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independent of wv  and the boundary condition at the surface is given by 

0 ; 0, ( )wy u v v x   . 

Suction or blowing causes double effects with respect to the heat transfer. On the one hand, 

the temperature profile is influenced by the changed velocity field in the boundary-layer, 

leading to a change in the heat conduction at the surface. On the other hand, convective 

heat transfer occurs at the surface along with the heat conduction for 0wv  . A summary 

of flow separation and its control are found in Chang [5, 6].  

The study of natural convection on a horizontal plate with suction and blowing is of huge 

interest in many engineering applications, for instance, transpiration cooling, boundary 

layer control and other diffusion operations. The effects of blowing and suction on forced 

or free convection flow over vertical as well as horizontal plates were analyzed in a 

symmetric way by Gortler [16], Sparrow and Cess [37], Koh and Hartnett [22], Gersten 

and Gross [13], Merkin [24, 25], Vedhanaygam, Altenkirch and Eichhorn [42], Hasio-

Tsung and Wen-Shing [18], Merkin [27] and Acharya, Shingh and Dash [1] etc.  

Using the usual asymptotic approach, the similar solutions of the steady natural convection 

boundary layer for a non-similar flow situation on a horizontal plate with large suction 

approximation has been developed by Afzal and Hussain [3]. A detailed study on similarity 

solutions for free convection boundary layer flow over a permeable wall in a fluid 

saturated porous medium was carried out by Chaudhary et al. [7]. They have shown that 

the system depends on the power law exponent and the dimensionless surface mass 

transfer rate. They also examined the range of exponent under which the solution exists. 

With constant plate temperature and a particular distribution of blowing rate Clarke and 

Riley [10] obtained a special case of similarity solution, allowing variable fluid density. 

But there is still a shortage of accurate data for a wide range of both suction and blowing 

rate. Lin and Yu [23] presented a non-similar solution for the laminar free convection flow 

over a semi-infinite heated upward-facing horizontal porous plate with suitable 

transpiration rate as a power-law variation. Emphasis was given for an isothermal plate 

under the condition of uniform blowing or suction. Lately, using a parameter concerned 

pseudo-similarity technique of time and position coordinates, Cheng and Huang [9] studied 

the unsteady laminar boundary layer flow and heat transfer in the presence and absence of 

heat source or sink on a continuous moving and stretching isothermal surface with suction 

and blowing. In their analysis they paid attention on the temporal developments of the 
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hydrodynamic and thermal characteristics after the sudden simultaneous changes in 

momentum and heat transfer. Recently, an analysis is performed by Aydin and Kayato [4] 

for the laminar boundary layer flow over a porous horizontal flat plate, particularly, to 

study the effect of uniform suction/injection on the heat transfer. Using the constant 

surface temperature as thermal boundary condition they also investigated the effect of 

Prandtl number on heat transfer.  

Recently, Hossain and Mojumder [17] presented the similarity solution for the steady, 

laminar, free convection boundary layer flow generated above a heated horizontal 

rectangular surface. They investigated the effect of suction and blowing on fluid flow and 

heat transfer as well as skin friction coefficients. They also found that suction increased 

skin-friction and heat transfer coefficients whereas injection caused a decrease in both. 

In our present study, we confined our discussion about the unsteady, laminar, free 

convection boundary layer flow above a semi-infinite heated, horizontal porous plate and 

investigated the effects of suction and blowing on the flow and temperature fields and 

other important flow parameters like pressure distribution, skin friction and heat transfer 

coefficients.  

In order to solve the laminar natural convection boundary layer equations, the general 

Navier-Stokes’ and energy equations are transformed into convenient simplified forms 

using the usual method of dimensional analysis. At the outset attempts are made to 

incorporate the idea of similarity analysis. Because, the objectives of seeking similarity 

solutions are manifold, the governing differential equations relevant to the problem have 

been solved by using the similarity technique. The Boussinesq approximation is employed 

to deal with the possible requirements of unsteady solution. Similarity requirements for an 

incompressible fluid are sought on the basis of detailed analysis in order to reduce the 

governing coupled partial differential equations into a set of ordinary differential 

equations.   

Here we adopt the method of classical ‘separation of variables’ which is of the simplest 

and most straightforward method of determining similarity solutions. This method was first 

initiated by Abbott and Kline (1960). In this method, once a form of similarity variable is 

chosen, the given PDE is changed under the selected co-ordinate system. The dependent 

variables are to be expressed in terms of the product of separable functions of the new 

independent variables where each function is dependent on the single variable. Substitution 

of the product form of the dependent variables into the original PDE generally leads to an 
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equation in which no functions of single variable can be isolated on the two sides of the 

equation unless certain parameters are to be specified. Usually, these parameters can be 

specified quite readily and “separation of the variables” is achieved. On this way the 

separation proceeds until the one side becomes an ODE. Four different similarity cases 

arise here, viz. Case A, Case B, Case C and Case D, on the basis of our assumptions. 

Thus, this thesis is composed of 5 chapters. An introduction of basic principles of 

boundary layer theory, natural convection flows, suction and blowing phenomena with 

historical review of earlier researches and background of our problem are presented in 

Chapter I.  

Basic equations governing the problem, dimensional analysis with simplifying assumptions 

and similarity transformations with possible similarity cases are given in Chapter II. 

In Chapter III, a detailed discussion of one of the four similarity cases, namely, Case A has 

given. Under the considered condition, the numerical solutions with graphs and tables have 

also been given here for some selected values of the established parameters. The effects of 

these parameters on several variables will also be exhibited in the analysis.  

Chapter IV is concerned with the study of another similarity case (Case B). The numerical 

solutions with graphs and tables for this case are also displayed here. We also have 

predicted the role of small suction or blowing velocity on these parameters concerned. 

In Chapter V, the conclusions gained from this work and brief descriptions for further 

works related to our present research are discussed. 
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CHAPTER II 

 

 

 

Basic Equations 

The unsteady laminar two-dimensional boundary layer flows above a heated horizontal 

porous surface, maintained at a temperature different to that of the ambient fluid conditions 

are governed by the continuity, momentum and energy equations as follows: 

Continuity equation- 

    0













v

y
u

xt



                                                                       (2.1) 

x-component of momentum equation- 

 0

1 1 1 1
x

u u u p u u
u v g

t x y x x x y y
   

   

         
         

          
                  (2.2) 

y-component of momentum equation- 

 0

1 1 1 1
y

v v v p v v
u v g

t x y y x x y y
   

   

         
         

          
                   (2.3) 

Energy equation- 

p

T T T T T p p
c u v k k u v

t x y x x y y x y


              
           

              
 

                       

2 2 22
2

2
3

u v u v u v

x y y x x y

              
             

               

                   (2.4) 

In order to derive the boundary layer equations, it is anticipated that the v-component of 

the velocity is small enough and assumed that the suction or blowing velocity normal to 

the surface has its order of magnitude 
1

2(Re )O


. Consequently, the flow outer the 

boundary layer is independent of wv , so that, the boundary conditions at the surface is 

given by  

0; 0, ( )wy u v v x                                                                            (2.5) 

The schematic view and coordinate geometry of the problem are shown in Fig. 1 below:  
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Fig. 2.1: Schematic representation and coordinate system of the problem. 

 

Dimensional Analysis 

The following non-dimensional variables are introduced in order to reduce the less 

significant terms in the above boundary layer equations (2.1) – (2.4): 
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~

,Re,,Re,,
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1
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1












       (2.6)    

where dashed variables are non-dimensional and U, L represent convenient characteristic 

velocity and length scales, Re
r

UL


  is a characteristic Reynolds number based on U and 

L. Suffix r refers to a convenient constant reference condition at a fixed point outside the 

boundary layer. The Cartesian co- ordinates x, y are chosen to lie along and normal to the 

plate, xg  and yg are the components of the gravity vector in the x and y-directions. The 

perturbation pressure p~  is related to the absolute pressure p by the equation 0
~ ppp  , 

where 0 0
0 0,x y

p p
g g

x y
 

 
 

 
. Here suffix 0 is considered to denote conditions in a fluid 

Suction 

Blowing 

Tw 

U Tr 

g 

x 

y 

0 
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at rest and p~  is termed as the motion pressure. The gradients of the hydrostatic pressure 

0p  are balanced by the body force terms.  

Now from equations (2.6) we get 

t Ut U

t t t t L t L t

      
   

        
 

1x x

x x x x L x L x

      
   

        
 

1
1 2
2

Re
Re

y y

y y y y L y L y

      
   

        
 

Then the above equations (2.1) – (2.4) become:  

Continuity equation- 

   

1

2

1

2

1 Re
0

Re

r
r r

UvU
Uu

L t L x L y

 
   

          
      

 

 

i.e.,     0u v
t x y


 

  
     

    
                                                                               (2.7) 

x-component of momentum equation- 

         

   

1

2
2

01

2

11

22

Re 1 1

Re

Re1 Re

r r x r

r r

r r

r r

U Uu Uv
Uu Uu Uu gg U p

L t L x L y L x

Uu Uu
L x L x L y L y

    
   

   

   

    
          

        

 
      

     
           

 

Or,  

 02

Re1 r r
x

r r

u u u gL p u u
u v g

t x y U x LU x x LU y y

 
   

     

              
                                    

Or,  

0

2

1 1 Re
1 r r

x

u u u gL p u u
u v g

t x y U x LU x x LU y y

  
 

   

               
                                    

 

Or, 01 1 1 1 1
1

Fr Re
x

u u u p u u
u v g

t x y x x x y y


 

   

               
                                    

               

i.e.,  101 1 1
1 Re

Fr
x

u u u p u
u v g O

t x y x y y




  

           
                           

              (2.8) 
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y-component of momentum equation- 

 

1

2

01 1 1 1

2 2 2 2

Re 1

Re Re Re Re

r r y

r

U Uv Uu Uv Uv Uv
gg

L t L x L y
   

 

                      
          
     

 

      

 

11 1

22 2
2

1 1

2 2

Re1 Re 1 Re

Re Re

r r
r

r r r

Uv Uv
U p

L y L x L x L y L y

   


     

                      
                       

 

Or,  

1

2
0

1 1 1 2

2 2 2

1

2

1

2

1 1 1 Re
1

Re Re Re

Re1

Re

y

r r

r r

v v v gL p
u v g

t x y U y

v v

LU x x LU y y



 

 
 

   

       
                

      
                

 

Dividing both sides by 
1

2Re , we obtain 

1

2
1 0

1

Re 1
Re 1

Fr

Re 1

y

r r

v v v p
u v g

t x y y

v v

LU x x LU y y



 

 
 

 







         
                   

      
     

           

 

i.e.,  

1

2
101 Re

1 + Re
Fr

y

p
g O

y



 



  
      

                                                                        (2.9) 

Energy equation- 

       

     

1

2

1

2

11 1

22 2
2 2

1

2

Re 1

Re

ReRe Re

Re

r

r
r p p r r r r

r
r r r

k kU Uu Uv
c c T T T T T T T T

L t L x L y L x L x

k k Uu Uv
T T U p U p

L y L y L x L y

 

 

 
        

          
          

 

   
        

       
         

  

 

            

2 2
1 1

2
2 2

1 1

2 2

1 Re Re 1
2 2

Re Re

r

Uv Uv
Uu Uu

L x L y L y L x
 

                                                    
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                                                                                

2
1

2

1

2

2 1 Re

3
Re

Uv
Uu

L x L y

                 

 

Or,  

222 2

1

2
1

2

Re

2

1
Re

Re

r r

r r

r r r r
p

r p r p

r

p r p r

k kT T T T T
c u v k k

t x y UL c x x UL c y y

U p p U u v
u v

c T x y UL c T x y

u

y

 


 




              
                            

             
           

            





2
2

2

3

v u v

x x y

            
        

 

Or,  

1 1 1

c

2
22 1

1 2
c 1

2

Re Pr Pr E

1 2
E Re 2 Re

3
Re

p

T T T T T p p
c u v k k u v

t x y x x y y x y

u v u v u

x y y x





  



                    
                                        

                                      

2

v

x y

 
  

    

 

i.e.,    1 1

cPr E Rep

T T T T
c u v k O O

t x y y y
            
           

           
                     (2.10) 

where r
r

r





  and 

2

Fr
U

gL

 
 
 

, Pr rr p

r

c

k

 
 
 

 and 
2

cE

rp r

U

c T

 
 
 
 

 are the characteristic 

Froude number, Prandtl  number and Eckert number of the flow respectively . 

Thus the flow above the horizontal flat plate is governed by the following non –

dimensional boundary – layer equations: 

    0u v
t x y


 

  
     

    
                                                                                        (2.7) 

 101 1 1
1 Re

Fr
x

u u u p u
u v g O

t x y x y y




  

           
                           

                     (2.8) 

 

1

2
101 Re

1 + Re
Fr

y

p
g O

y



 



  
      

                                                                                 (2.9) 

   1 1

c=Pr E Rep

T T T T
c u v k O O

t x y y y
            
          

           
                               (2.10) 
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The order of magnitude of 
2

cE
p

U

c T



 for these flows will be determined presently by 

Pr rr p

r

c

k


 . Taking the traditional approach, if we consider the limit

1

2Re 0


  with Fr 

finite, according to first order boundary layer theory, the v-momentum equation asserts that 

( , )p p x t    .  However, if we consider 
1

2Re


  and imposes the condition that 
0

Lt
Fr

yg








 

remains finite, then the gravity dependent term must be retained in the v-momentum 

equation, resulting in ),,( tyxpp  . In the present investigation we are concerned with 

those boundary layer flows for which  11
Re 0

2

1

Og
F

y

r




















. Since the variation in the 

buoyancy force normal to the surface is the only means of producing boundary layer 

motion, on a horizontal surface, the component of the buoyancy force parallel to the 

surface is zero, i.e., 0xg   . In natural convection flow the order of magnitude of velocity 

created by the density differences across the boundary layer is determined 

as
5

2

2

1

0 )(












 LgOU ry

w

w 



. In all such situations ),,( tyx    inside the first 

order boundary layer provides the mechanism for flow generation. If Re is large then 1Re  

is treated as very small in magnitude. The pressure gradient normal to the surface caused 

by the density difference  0w    generates the perturbation pressure field ),,(
~

tyxP    

inside the boundary layer, x - variations of this field being sufficient to cause the motion 

in the boundary layer. This motion occurs irrespective of any exterior forcing flow (caused, 

say, by a body- force component along the surface) and natural convection flow. Since the 

differential of p  occurs in the momentum and energy equations, it is convenient to write 

the general equation of state for a fluid     0, , ,p p T p x y t p    as  

0 0

1 T

T

p p
dp d dt dp dT dp

T k k




 

    
       

   
,  
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which in the above non-dimensional form becomes 2

0r T r

d
k U dp T dT kdp


 




   


, 

where 
1 1

, T

pT

k
p T

 


 

   
    

   
. 

For those cases in which 0p  is determined by the condition that a given function of state is 

constant, it can be shown that (Ackroyd [2]). 

., 0

0

0

0 





























p

T

p

T

c

gl
Odp

c

gl
Okdp


Typically,  

p

T

c

g
 is a length scale of order 410  meters 

for air and
610  meters for water under normal pressure and temperature, whereas 0l  

represents the vertical scale of the flow field, which can considerably be taken to be the 

maximum boundary layer thickness. Consequently, with the additional provision 

2 1r rk U  , it follows that ),(T   r 0 , so that variations in 0  etc. with altitude, 

due to hydrostatic relations can be ignored . 

In view of the above discussions and omitting the dashes, the governing boundary layer 

equations (i.e., the continuity, momentum and energy equations) (2.7) – (2.10) in 

dimensional form for a variable properties fluid over a semi-infinite horizontal flat surface 

are as follows: 

    0u v
t x y


 

  
  

  
                                                                                            (2.11) 

1 1u u u p u
u v

t x y x y y


 

      
      

      
                                                                      (2.12) 

 0 y

p
g

y
 


 


                                                                                                             (2.13) 

1=Prp

T T T T
c u v k

t x y y y
        

    
       

                                                                      (2.14)  

In the energy equation (2.14) the pressure and viscous work contributions have been 

ignored because of the relatively small Eckert number usually encountered in the free 

convection flow. The Eckert number Ec, which governs the significance of these terms, is 

 

 

1
2 2 2

cE
( )

r

w r

T y w

p p w r p T w r r

g LU U UL
O

c T c T T c T T

 

 

 

 
   

     
     

  

. 
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Now 

 

 

w r

w

T w rT T

 








 is of order unity whereas 

r

T y

p

g L

c


, as we have seen above, is extremely 

small compared with unity. However the occurrence of 

1
12
2Re

r

UL



 
 

 
 in the above 

expression for the Eckert number indicates that terms involving the Eckert number should 

not appear in the first order boundary layer theory. 

Since the present study is concerned solely with the possible self-similar flow situations for 

a Boussinesq fluid, without loss of generality we have been introduced the effect of 

buoyancy by means of the Boussinesq approximation. Thus, fluid property variations other 

than the essential density variation are ignored completely in this approximation. The 

density difference  r    is indispensable to the free convection motion and must be 

retained where they appear in the body force term (i.e., term multiplied by g, the 

acceleration due to gravity), but elsewhere the density variation is considered to be small 

enough and is to be neglected. In view of the above discussions, the governing boundary 

layer equations of laminar two-dimensional unsteady flow over a semi-infinite heated 

horizontal porous surface in dimensional form are simplified to the following form: 

0
u v

x y

 
 

 
                                                                                                                    (2.15)    

2

2~1

y

u

x

p

y

u
v

x

u
u

t

u
r

r 

























                                                      (2.16)  

 g
y

p
r 



~
                                                                                                            (2.17) 

2

2Pr

rT T T T
u v

t x y y

   
  

   
                                                                                            (2.18) 

where yg g   is constants and 
1

T
  . There are, however, boundary conditions, which 

are imposed in order to determine the solution of the boundary layer equations (2.15) – 

(2.18). 

     
( ) 0, at 0, ( ) at 0 1 at 0,

( ) 0 when  and  ( ) 0 when  

w w

r

i u v v y ii T T y y

iii u y iv T T y





       

     
                              (2.19) 

(suffix ‘w’ represents the condition at the surface of the plate and suffix ‘r’ is the constant 

reference condition in the fluid at rest exterior the boundary layer). 
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Similarity Transformations 

In order to reduce the above system of equations into convenient forms, we adopt the 

method of seeking similarity solutions. Hence the following substitutions are introduced– 

 

 

       

           

     

, , , , ,
,

, , , , , ,

, , , , , , , , , ,

, , ,

r w r

r r T

y
t x u v

x t y x

T T T U T T T

U F p p G

T

 
  



         

                

         

 
     

 

     

 

   

                                     (2.20) 

Guided by the idea of the similarity procedure, we also use the traditional substitution     

        
 

 1

0

, ,
,

u
d F

U x t



                                                                                           (2.21) 

Now 

        . , , . , , . , ,u
y y y y

   
           

  

      
   
      

 

i.e., 
 

 
1

, ,
,

u    
   





, since 

 
1

,

y

y




   


  


. 

Therefore,  

     
 

1
, ,

, , ,

u

U U
   

       





. 

Hence 

     
 

   
   1 0

0

1 1
, , , , , ,0

, , , , ,

u
d

U U U




           
           

        

, 

and by (2.21) implies 

 
   

   
1

, , , , , ,0
, ,

F
U

         
    

                                                        (2.22) 

Then we obtain  

         , , , , , , , ,0U F                                                                        (2.23) 

 

Also by (2.21) 

 
 , ,

,

u
F

U
  

  





 

i.e.,    , , ,u U F                                                                                                  (2.24) 
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Again  

. . .
t t t t

  


     

        
    

        
                                                             (2.25) 

  2,

tyy y

t x t

   
 

    

 
        

 
 

. . .
x x x x

  


     

        
    

        
                                                            (2.26) 

  2,

xyy y

t x x

  
 

    

 
        

 
 

and  

1
. . .

y y y y

  

    

       
   

       
                                                                         (2.27) 

 
1

,

y

t x y




 

 
   

 
 

 

       

   

( , , ) , ,0

, , , ,0 , , , ,0

, ,0

v UF
x

UF UF

UF U F



 

 


       

  

 
               

     

     


   
           

   
                    


     

 

Hence      , ,0 wv U F UF U F UF v    
        




       

                      (2.28) 

where
 , ,0

wv
  




 


 represents the non-zero wall velocity called the suction or 

blowing velocity normal to the porous surface, so that fluid can either be sucked or blown 

through it. Physically, 0wv   and 0wv   represent the suction and blowing velocity 

through the porous surface, respectively. For uniform suction (or blowing) constantwv  . 

However, 0wv   implies that the surface is impermeable to the fluid.  

 

Again  

u
UF

t







  

   
  

   
   UF UF

 




  

 
 
 
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i.e., 
Uu

U F UF F
t


   







  


                                                                                   (2.29) 

 
1

wu v UF U F UF v
x y



   


   

    

     
              

 

                   
 

w
UFU U v

UF F F
  

  

 
 

        

    
    

    
 

                   
 

w
UF v

UF






    

  
  

  
 

u u
u v u v u

x y x y

    
    

    

 
w

UF v
UF UF



 



    

   
   

    

 

                        
 

   w
UF v

UF UF UF UF


   



    

  
  

  
 

                         
 

w
UF v

UF U F UF UF UF


     



 
     

i.e., 
 

2 2 w
UF vu u

u v UU F U F F UF UF
x y



     



 

 
    

 
                                     (2.30) 

   
1 1

, , ,
r r

p
p G

x


     

    

   
         

     

                  
1

, , , , , ,
r r

p G p G


          
    

 
        

 

              
1

,
r r

p G pG p G


  


  

  
    

i.e., 
1

r r r r

p G pG pp
G

x

  






    


  


                                                                               (2.31) 

 
2

2

1r
r r

u u
UF

y y y



 

   

       
    

      
  

i.e., 
2

2 2

r
r

u
UF

y











                                                                                                     (2.32) 

With the help of (2.29) – (2.32) equation (2.16) becomes 

 
2 2 w

UFU v
U F UF F UU F U F F UF UF


         




  
       
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2

r

r r r

p G pG p
G UF

  

 

 


    
     

Or, 

2

2

2

wr
UU v

UF F U F F UU FF FF UF


       




   
      

                                      
2 2

r r r

p G pG p
UF U F F UU F U F G

  

       




   
        

as 
 

 
2

21UF U
UF UF UF UF U F F UU FF FF

 

       

 
 

  
     
 

                                                        

Multiplying both sides by 
U

2
 we get- 

2 2 2 2

r wF F UFF U FF UF F v F UF F F                            

                                    
2 2 2

2 2

r r r

U
U F F p G pG pG

U U U U


     

  
 

  
      

Or,  2 2 2 21
2 2

2
r wF F U U FF UF F v F UF F F                           

                                       
2 2 2

2 2

r r r

U
U F F p G pG pG

U U U U


     

  
 

  
      

Or, 

  2 2 2 2 21
2

2
r wF F U U U FF UF F v F UF F F                              

                                                       
2 2 2

2 2

r r r

U
U F F p G pG pG

U U U U


     

  
 

  
      

Or,  

  2 2 2 2 21

2
r wF F U U FF UF F v F UF F F          

                

                                         
2 2 2

2 2

r r r

U
U F F p G pG pG

U U U U


     

  
 

  
         (2.33) 

Further  

   
1 1

, , ,
p

p G pG
y

    
  

 
    

                                                                        (2.34) 

and      , , ,r r T T                                                                                    (2.35) 

In view of (2.34) – (2.35) equation (2.17) becomes 
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   , , ,r TpG T g             

Or, 
 

 , ,
,

r T g T
G

p


  
   

 


                                                                                     (2.36) 

Also we have       , , , ,r w rT T T T U           

      , , , ,w r

T
T T U

t

         
  

   
          

 

                      , , , , , , , ,w r w rT T U T T U                
  

 
          

 

               w w r w rU T T T U T T U
 


   


      

i.e.,  w

U TT
U T U T U T

t


  


   




     


                                                    (2.37) 

T T
u v u v T

x y x y

    
    

    
 

                       
 

      , , , ,w
w r

UF v
UF T T U






       

    

   
           

 

                       

      

 
      

      

, , , ,

, , , ,

, , , ,

w r

w r

w
w r

UF T T U

UF
T T U

v
T T U





       



       

 

       
 


   


   


   

 

                        
 

2 2 w
w

UF U T v U T
U T F U TF UU TF



      


    

 

 
        

i.e.,  2 2

w

T T
u v U T F U TF UU TF

x y
    
  

 
     

 
 

                                         

2

2 w
U T v U T

U TF UU TF F


     


   

 

 
                (2.38) 

and       
2

2 2

1 1
, , , ,w r

T T U T
T T U

y y y
        

    

        
      

      
          (2.39) 

Substituting (2.37) – (2.39) in equation (2.18) we get 
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   2 2

w w

U T
U T U T U T U T F U TF UU TF

        


      




           

                            

2

2

2Pr

w r
U T v U T U T

U TF UU TF F


      

 
    

  

  
        

 Or, 

2

2

2Pr

wr
U T v U T U TU T

U TF UU TF F
 

       

 
     

   

  
        

                     2 2 0w wU TF U T U T U T U T F UU TF       
                 

Multiplying both sides by 
TU

2
 we get- 

2 2 2 2

Pr

r
wUF U F UF v UF            


                      

                                                     
2 2 2

2 0w w

U U
U F T T F

U T T


   

  
        

 
 

Or,   2 2 2 2 21

Pr 2

r
wU U F UF v UF          


                     

                                        
2 2 2

2 0w r w r

U U
U F T T T T F

U T T


   

  
          

 
  

Or,   2 2 2 2 21

Pr 2

r
wU U F UF v UF          


                     

                                                
   222

2 0
U TTU

U F F
U T T

 
  


    


    

 
 

Or,   2 2 2 2 21

Pr 2

r
wU U F UF v UF          


                     

                                        
2

2 2 2log log 0
U

T U U T F
U


  


   

  
        

  
  (2.40) 

In view of similarity solutions, the functions  , ,F    ,  , ,     and  , ,G     are 

assumed at this stage to be functions of   alone, so that, equations (2.33), (2.36) and (2.40) 

are in simplified forms as follows: 

  
2

2 2 2 21

2
r w

U
F F U U FF v F U F F

U


        


             

                                                                              

2

r r

p
G pG

U U

 



 


 
   
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 ,

r T g T
G

p


  


 


                                  

  2 21

Pr 2

r
wU U F v     


              

                                     
2

2 2 2log log 0
U

T U U T F
U


  


   

  
        

  
   

Or,  

  2

0 1 2 2 3 4 5 6

1

2
r F a F a a FF a F a F a F a G a G                                          (2.41) 

7G a                                                                                                                           (2.42) 

     0 1 2 3 8 4 9 2

1
0

Pr 2

r a a a F a a a a a F    


                                            (2.43) 

where       

 

 

 

0

2

1

2

2

3

2

4

2

5

6

7

)

)

)

)

)

)

)

)
,

w

r

r

r T

i a

ii a U

iii a U

iv a v

U
v a

U

p
vi a

U

p
vii a

U

g T
viii a

p































  

 







 








 

                                                                                                  (2.44)    

 

 

2

8

2

9

) log

) log

ix a T

x a U T









  

  
 

The transformed boundary conditions are now 

     

   

0 0 0, 0

and 0 1, 0

F F F 

 

   

  
                                                                                   (2.45) 

The equations (2.45) furnish us with the conditions under which similarity solutions are 

obtained provided that all a’s must be constants and thus equations (2.41) to (2.43) will 

finally become non-linear ordinary differential equations in the limiting situations for the 
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remaining variable other than the similarity variable. Consequently, the relations given by 

equations (2.45) are the treated conditions which provide us the equations for  ,U    and 

 ,   , the scale factors for the velocity component and the ordinate y. Uniquely, these 

scale factors together with the suction or blowing parameter will determine the flow 

characteristics of the boundary layer. We shall now proceed to find  ,U   ,  ,    and 

consequently the suction velocity wv  for the possible requirements of similarity solution in 

the case of Boussinesq fluid. 

From condition ii) of equation (2.44), we have 

 )( 2

1 Ua    

Integrating with respect to ξ, we obtain 

 2

1U a A                                                                                                               (2.46) 

where  A   is either a function of   or constant. 

Again we get from condition i) of equation (2.44) that 

   2 2

0 0 0

1
2

2
a a a  

          

Integrating with respect to τ, we obtain 

 2

02a B                                                                                                                (2.47) 

where  B   is either a function of   or constant. 

Further, differentiating (2.46) with respect to   and using i) and iv) of equation (2.44), we 

obtain 

 
2

2

0 4

1
2 2 2

UdA dA dA
U U U a a

d U d U d


  


  

  

 
        

 
 

Hence 

 0 42
dA

U a a
d

                                                                                                             (2.48) 

Also differentiating (2.47) with respect to  , we obtain 

 2 dB

d



  

But from conditions i) and  ii) of equation (2.44), we have  

     2 2 2 2

1 2a U U U a  
         
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i.e.,    2

1 2

1
a a

U
    

Hence 

 1 2

1dB
a a

d U
                                                                                                              (2.49) 

The above two relations (2.48) and (2.49) yield   

  0 4 1 2. 2
dA dB

a a a a
d d 

                                                                                             (2.50) 

Therefore, the forms of the similarity equations, the scale factors  ,U    and  ,    

entirely depend on relation (2.50). 

Possible Similarity Cases 

Equation (2.50) yields possibilities of four similarity cases, namely,  

Case A: both and   
dA dB

d d 
are finite constants  

Case B: both and   
dA dB

d d 
are zero  

Case C: 0, but  0 
dA dB

d d 
  and  

Case D: 0, but  0
dA dB

d d 
  . 

But for the sake of brevity the two most significant cases, namely, Case A and Case B are 

studied in the next following chapters, Chapter 3 and Chapter 4, respectively. 
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CHAPTER III 

 

 

Study of Case A  

 

 

In this chapter we will discuss the similarity case, viz., case A which is obtained in the 

similarity analysis as given in Chapter 2. 

Case A : 

When both 
( )dA

d




and   

( )dB

d




 are finite consents, then from equation (2.48) we have 

0U U  (constant)                                                                                                             (3.1) 

From equation (2.48) we have  

   0 0 4 12A U a a C    . 

Then equation (2. 46) gives 

 2

0 1 0 0 4 12U a U a a C       

i.e.,  2 1 1
0 4

0 0

2
a C

a a
U U

                                                                                          (3.2) 

where C1 is a constant of integration. 

Similarly, from equation (2.49) we have 

   1 2 2

0

1
B a a C

U
    . 

Then equation (2. 47) gives 

 2

0 1 2 2

0

1
2a a a C

U
                                                                                               (3.3) 

Comparing (3.2) and (3.3), we get  

2 0a  , 4 0a   and 1
2

0

C
C

U
 . 

Therefore, we have 

2 1 1
0

0 0

2
a C

a
U U

                                                                                                           (3.4) 

Again from vii) of equation (2.44), we get 

1
6 2

0 0r

p a p
a

U U



 
  .                                  as 0 0, rU U     and from (3.4) 1

02

a

U
          
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Hence  

2

0 0 6

1

0
U a p

p
a






  


. 

Then vi) of equation (2.44) gives 5 0a   

Further, from ix) of equation (2.44), we have 

 2

8 loga T


     8
82 2

log log
a d

T T a




 
          

Or, 28 81 1
8 0

1 1 0 0 0 0
0

0 0

log log 2 log
2 2

2

a aa Cd
T a a

a C a U U a
a

U U


  

 

 
         

  
   

i.e., 8

0

log log
a

T
a

                                                                                                       (3.5) 

Also, from x) of equation (2.44), we have 

   2 9 9
9 2 2

0 0

log log log
a a d

a U T T T
U U 




 
              

Or, 29 9 0 91 1
0

1 10 0 1 0 0 1
0

0 0

log . log 2 log

2

a a U aa Cd
T a

a CU U a U U a
a

U U


  

 

 
         

  
   

i.e., 9

1

2
log log

a
T

a
                                                                                                     (3.6) 

Comparing (3.5) and (3.6), we obtain    

8 0a a , 1
9

2

a
a   

Thus, conditions i) – x) of equation (2.44) yield relations between the constants as follows: 

0a  and 1a  are arbitrary and 2 4 5 0a a a   , 8 0a a , 1
9

2

a
a  , 3a , 6a  and 7a   are 

disposable constants.  

Substituting the constants through equations (2.41) – (2.43), we obtain 

1
0 3 6 0

2
r

a
F a F FF a F a G                                                                              (3.7) 

7G a                                                                                                                             (3.8) 

1 1
0 3 0 0

Pr 2 2

r a a
a F a a F    


    

 
      

 
                                                              (3.9) 
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Now writing 1 2 3,   and F f G g       , we get 

2 2

1 1
. .

d d d d d

d d d d d



      
    

  1
1

2 2 2

1 1dF dF d df
F f

d d d d





      
     

i.e., 1

2

F f 




  

 
2

1 1 1

2 2

2 2 2 2

1d F d dF d d
F f f f

d d d d d
   

  

        

  
      

   
 

i.e., 1

2

2

F f 




  

Similarly, 1

3

2

F f 




  

and   3
3

2 2

1dG d dg
G g

d d d





    
    

i.e., 3

2

G g 




  

Substituting above in equations (3.7) to (3.9) we have 

31 1 1 1 1
0 2 1 3 6 23 2 2 2

2 2 2 2 2

. . . 0
2

r a
f a f f f a f a g    

    
    

    
      

Or, 
2

0 1 3 11 1 1
6 33 2 2

2 2 2 2

0
2

r a aa
f f ff f a g    

   
  

   
      

Multiplying both sides by 
3

2

1r



 
, we obtain 

2 3

0 2 3 2 6 2 31 1 2

1

0
2r r r r

a a aa
f f ff f g    

    
 

    
                                               (3.10) 

3
7

2

g a





  

Or, 7 2

3

a
g





                                                                                                               (3.11) 

and 

1 1 1
0 2 1 3 02

2 2 2 2 2

1 1 1 1
. . . 0

Pr 2 2

r a a
a f a a f    

 
       

    

 
      

 
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Or, 31 1 1 1
0 02

2 2 2 2

0
Pr 2 2

r
aa a

a f a f    

  
    

   

 
      

 
 

Multiplying both sides by  
2

2

r




, we get  

2 2

0 2 3 2 0 21 1 2 1 1 21
0

Pr 2 2r r r r r

a a aa a
f f    

     
    

    

 
      

 
 

Or, 
2 2

1 0 2 3 2 0 21 1 2 1 1

0 2

Pr 1 0
2 2r r r r

a a aa a
f f

a
    

    
    

    

  
      

 
                  (3.12) 

For a complete similarity solution choosing 
2 2

0 1 6 1 3 1
1 2

0

, 1, 1  and  
2r r

a a a

a

  
  

 
     

and writing 3 1

0

w
w

r r

a v
f

a

 

 
   , the above equations (3.10) – (3.12) yield  

0wf f ff f f g                                                                                       (3.13) 

5

2

0

FU
g

U
 

 
  
 

                                                                                                                 (3.14) 

 1Pr 1 0wf f f                                                                                 (3.15) 

where 

2

1 1 2 1 1 1 1

0 0

.
2 2 2 2

r

r r r

a a a a

a a

   


  
     

3 2 3 1

0 0

.w wr
w

r r r r

a a v v
f

a a

   

   

 
                 

2

0 1
1

0

1 r

r

a

a

 



    

2 2

7 2 7 1 6 6 1 3 0 1 6 3 6 3 6
7

3 3 0 0 0 0 3 0

1
. 1 1 1r

r r

a a a a a a a a
a

a a a a a

      

    
          

         0

0 0 0 0

1
.T r

p g T

U p a a

   



 
  

 
    

          
0 0 0

1
. . r

T g T
a U a




                    2 1 1 1

0

0 0 0

2  
2

a C a
a

U U U
         

          1 1 1
0

0 0 0 0 0 0

1
2 . .

2

r
T

a C a
a g T

U U U a U a


        
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          1
0 0 1 1 2

0 0 00

1 1
2 . . .

2

r
T

a
a U a C g T

a U aU


        

          0 1 1 1
0 2

0 0 0 0 00

2 1
. . .

2 2 2

r
T

a a C a
U g T

a a a U aU


        

              0 0 0 2

0 0

1
2 . r

TU g T
U U


              

                    where we choose 1
0 0 0

02

C
U

a
    

              0 0 0 2

0 0

1
2 . r

TU g T
U U


             

         
     0 0 0

5

2
0

2 T rg T U

U

             
  

            

5

2

0

FU

U

 
  
 

 

where 

      
2

5

0 0 02F T rU g T U                

         
2

52 Characteristic LengthT rg T                                                        (3.16) 

is called free convection velocity associated with the local  characteristic length 

L    0 0 0U                                                                                                       (3.17) 

Since we are concerned with a purely free convection flow, without loss of generality we 

may put 0FU U  and hence the similarity equations are given by 

  0wf f f f g                                                                                          (3.18) 

g                                                                                                                               (3.19) 

   1Pr 1 0wf f f                                                                                 (3.20) 

subject to the transformed boundary conditions: 

 (0) (0) ( ) 0; (0) 1, ( ) 0;  (0) 1, ( ) 0n nf f f g g                                         (3.21) 
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where the boundary conditions for g  is attained from that prescribed for   according to 

equation (3.19).  

Again 

2 1 1
02

F F

a C
a

U U
      

     0 1 1

0 0

2

2 2
F

F

a a C
U

U a a
 

 
   

 
 

      0 01
0 0

0

2 2

2
F F F

F F

a aC
U U U

U a U
     

 
       

 
, where 1

0 0

02
F

C
U

a
    

        0
0 0

2
F

F

a
U

U
           

        0

0 0

2
F

F

a
U

U
         

i.e., 
02

F

a L

U
                                                                                                                (3.22) 

where L is the local  characteristic length defined by (3.17). 

Hence the similarity function  f  , the similarity variable   and the pressure function 

 g   are related to the stream function  , the physical co-ordinate y and perturbation 

pressure p  by the following equations respectively 

   , , , ,0FU F          

     0

1

2
, , , ,0F

F

a L
U f

U
           

                    0

0

2
, ,0r

F

F

a L
U f

aU


      

                    2 , ,0r FU L f       

                     2 , ,0F
r

r

U L
f    


   

i.e.,      F, , 2 Re , ,0r f                                                                         (3.23) 
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Here FRe  is the dimensionless Reynolds number based on free convection velocity 
F

U  

given by equation (3.16) and the local characteristic length L given by equation (3.17) as 

FRe F

r

U L


                                                                                                                      (3.24) 

Further, we have 

      

2

2 2

1
.
y

  




  



  
 

            

0

0

1
.

2r

F

y

a L

a U


  

            .
2

F

r

U y

L
  

            .
2

F

r

U L y

L
  

            
2

F

r

U L y

L
  

i.e., FRe

2
y

L
                                                                                                               (3.25) 

and 

 p pG   

3 ( )p p g        | since from condition vii) of equation (2.44) p
U

a
r

 
6  

6 r Fa U
p






   

         6 3r Fa U
g



 



  

         
2 1
1 .

2

r r F

F

U
g

a

U

 




              
2

6 1 3
6 2

1 3

1 r

r

a
a

  

  
    and 1

2 F

a

U
   

         
2

1

02

FrU
g

a

a


                  

2
20 1
1

0

1 r

r

a

a

 



    
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i.e.,  
2

FrU
p g





                                                                                                        (3.26) 

The velocity components, the skin friction and the local heat transfer coefficients 

associated with the equations (3.18) – (3.20) are now   

1

2

.Fu UF U f 




   

i.e.,  Fu U f                                                                                                              (3.27) 

wv U F UF v        

Or, 01
2 1

2

. .
r

F F w

a
v U f U f f  


    

 
    

Or, 0

1 1

r

F F w

a
v U f U f f  


   


    

Or,   0

1

r

F w

a
v U f f f 


  


    

Or,   0

0

rr
F w

a
v U f f f

a
 


 


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 
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           1

01 1 1 1
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. .
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r F r F
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F F

U a U
f f f

aa C a C
U U

a a a a



 


   
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   

 

          
   

 
   0 0 0 0

1 1

2 2

r F r F
w

F F

U U
f f f

U U


 
 

         
  

     
 

          
   

  
0 0

1

2

r F
w

F

U
f f f

U



 

    
  

  
 

            
2

r F
w

U
f f f

L



     

            
2

r F
w

r

U L
f f f

L



 


    
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 i.e.,     FRe

2

r

wv f f f
L




        

                                                               (3.28) 

The skin friction coefficient is defined by 

0

w

y

u

y
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The heat transfer coefficient is defined by  
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Hence 
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
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Numerical scheme and procedure 

 
The set of ordinary differential equations (3.18) to (3.20) with the boundary conditions 

(3.21) are non-linear and coupled. Thus, to solve them analytically is very intricate. 

Therefore, a numerical procedure based on the standard initial-value solver shooting 

method, namely, Runge-Kutta shooting method in collaboration with the Runge-Kutta 

Merson method is adopted to obtain the solution of the problem. An extension of the 

Nachtsheim-Swigert iteration scheme (guessing the missing value) (Nachtsheim & Swigert 

(1965)) is implemented. It is clear that the numbers of initial conditions are not sufficient 

to obtain the particular solution of the differential equations, so we require assuming 

additional missing/unspecified initial conditions. Thus, in this method, the missing initial 

conditions at the initial point of the interval are assumed and with all the initial conditions 

(given and assumed) the equations are integrated numerically in steps as an initial value 

problem to the terminal point. These are to be so assumed that the solution of the outer 

prescribed points also matches. The accuracy of the assumed missing initial condition is 

checked by comparing the calculated value of the dependent variable at the terminal point 

with its given value there. If match is not found (a difference exists) at the outer end then 

another set of missing initial conditions are considered and the process is repeated. This 

trial and error process is taken care through Nachtsheim-Swigert iteration technique and 

the process is continued until the agreement between the calculated and the given condition 

at the terminal point is within the specified degree of accuracy. For this type of iterative 

approach, one naturally inquires whether or not there is a systematic way of finding each 

succeeding (assumed) value of the missing initial condition. 

 
The boundary conditions (3.21) associated with the system are of the two-point asymptotic 

class. Two-point boundary conditions have values of the dependent variable specified at 

two different values of the independent variable, where the outer boundary conditions are 

specified at infinity. There are three asymptotic boundary conditions as well as three 
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unknown surface conditions  0f ,  0  and  0g  here. Specification of an asymptotic 

boundary condition implies that the value of velocity approaches to zero and the value of 

temperature approaches from unity to zero as the outer specified value of the independent 

variable is approached. The governing differential equations are then integrated with these 

assumed surface boundary conditions. If the required outer boundary condition is satisfied, 

a solution has been achieved. However, this is not generally the case. Hence a method must 

be devised to logically estimate the new surface boundary conditions for the next trial 

integration. Asymptotic boundary value problems such as those governing the boundary 

layer equations are further complicated by the fact that the outer boundary condition is 

specified at infinity. In the trial integrations, infinity is numerically approximated by some 

large specified value of the independent variable. There is no a priori general method of 

estimating this value. Selection of too small a maximum value for the independent variable 

may not allow the solution to asymptotically converge to the required accuracy. Selecting a 

large value may result in divergence of the trial integration or in slow convergence of 

surface boundary conditions required satisfying the asymptotic outer boundary condition. 

Selecting too large a value of the independent variable is expensive in terms of computer 

time. Nachtsheim-Swigert developed an iteration method, which overcomes these 

difficulties. Extension of the Nachtsheim-Swigert iteration shell to above system of 

differential equations (3.18) – (3.20) is very straightforward. 

Based on the integration done with the aforementioned numerical technique, the velocity 

f , temperature and pressure  function g  are determined as function of the co-ordinate 

η. In the process of integration the skin friction coefficient fηη(0) and the heat transfer rate 

η(0) are also evaluated. The numerical results thus obtained in terms of the similarity 

variables are displayed in graphs and tables for several selected values of the established 

parameters fw, β and Pr below:  

 

Numerical Results and Discussion 

 

On the basis of the numerical results, the dimensionless velocity and temperature profiles 

and the pressure distributions are plotted. The effects of suction parameter fw, driving 

parameter β and Prandtl number Pr on velocity f , temperature  and pressure g  against 

  are  illustrated in Fig. 3.1  through Fig.3.9. Also their effects on the coefficient of skin-

friction and heat transfer coefficient are tabulated in Table- 3.1 and Table- 3.2, 
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respectively.  To observe the effect of fw, β and Pr are kept as constants. Similarly, to 

observe the effect of β and Pr, fw and Pr and fw and β respectively are kept as constants. In 

all cases where fw is kept as constant, its value is chosen as 0.30. Similarly, when Pr is kept 

constant, its value is chosen as 0.71 and when β is kept fixed, its value is chosen as 0.33.  

Fig. 3.1 to Fig. 3.3 represent the effects of fw, β and Pr on the velocity profiles respectively. 

From figures it is observed that the velocity decreases with the increase in all the 

controlling parameters, i.e., the velocity decreases with the increase in fw (for fixed β and 

Pr) or increase in β (for fixed fw and Pr) or increase in Pr (for fixed fw and β).  
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Figure 3.1: Velocity profiles for different values of the suction parameter fw with fixed  

        values of β and Pr. 
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Figure 3.2: Velocity profiles for different values of the parameter β with fixed values  

                    of fw and Pr. 
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Figure 3.3: Velocity profiles for different values of the Prandtl number Pr with fixed  

                    values of fw and β. 
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Fig. 3.4 to Fig. 3.6 represent the effects of fw, β and Pr on the temperature profiles 

respectively. The effect of the controlling parameters on temperature is the same as that on 

the velocity, i.e., with their increase (increasing one of them keeping the other two as 

fixed), temperature (decreases. 
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Figure 3.4: Temperature profiles for different values of the suction parameter fw with  

        fixed values of β and Pr. 
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Figure 3.5: Temperature profiles for different values of the parameter β with fixed  

                    values of fw and Pr. 
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Figure 3.6: Temperature profiles for different values of the Prandtl number Pr with  

                    fixed values of fw and β. 
 
Fig. 3.7 to Fig. 3.9 representing the effect of fw, β and Pr respectively, but on the pressure 

variable g . In these cases their effects are reversed i.e., with the increase in the controlling 

parameters (increasing one of them keeping the other two as fixed), pressure increases. This 

increase-increase behavior is observed for all three parameters. 
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Figure 3.7: Pressure distributions for different values of the suction parameter fw 

with fixed values of β and Pr. 
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Figure 3.8: Pressure distributions for different values of the parameter β with fixed  

                    values of fw and Pr. 
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Figure 3.9: Pressure distributions for different values of the Prandtl number Pr with  

                    fixed values of fw and β. 

 
The values proportional to the coefficient of skin-friction are tabulated in Table- 3.1. From this 

table the effect of fw, β and Pr on the skin-friction can be observed. It is seen that for fixed β and Pr 

with the increase in the fw, the coefficient of skin-friction decreases. The same behaviour is being 

observed for the other controlling parameters (increasing one of them keeping the other two as 

fixed). 
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Table- 3.2 contains the values proportional to the heat transfer coefficient. The effect of the 

controlling parameters on it is as that to the skin-friction except for β variation i.e., with the 

increase in the controlling parameters fw and Pr the coefficient of heat transfer decreases. 

But in case of β variation it remains unchanged. It indicates the heat transfer coefficient is 

independent of the controlling parameter β. 

 

Table- 3.1:  Variation of the coefficient of skin-friction with fw, and Pr 

 

Values Proportional to the coefficient of skin-friction with the variation of 

fw (for 0.33 and Pr = 0.71)  (for fw0.30 and Pr = 0.71) Pr (for 0.33 and fw = 0.30) 

   fw    f0     f0   Pr    f0 

-1.50 0.937023 -0.70 0.648051 0.20 1.265479 

-1.00 0.865262 -0.50 0.605335 0.50 0.675216 

-0.50 0.739413 -0.30 0.574441 0.71 0.511229 

 0.00 0.594089  0.00 0.539857 1.00 0.381323 

 0.50 0.460483  0.30 0.513543 7.00 0.047620 

 1.00 0.352563  0.50 0.498975   

 1.50 0.270811  0.70 0.486150   

 2.00 0.210395     

Table- 3.2: Variation of the heat transfer coefficient with fw, and Pr 

 

Values Proportional to the heat transfer coefficient with the variation of 

fw (for 0.33 and Pr = 0.71)  (for fw0.30 and Pr = 0.71) Pr (for 0.33 and fw =  0.30) 

   fw 0  0    Pr 0 
-1.50  1.065006 -0.70 -0.21300 0.20 -0.06016 

-1.00  0.710004 -0.50 -0.21300 0.50 -0.15000 

-0.50  0.355002 -0.30 -0.21300 0.71 -0.21300 

 0.00  0.000001  0.00 -0.21300 1.00 -0.30000 

 0.50 -0.355000  0.30 -0.21300 7.00 -2.10011 

 1.00 -0.710000  0.50    

 1.50 -1.065000  0.70    

 2.00 -1.420010     
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CHAPTER IV 

 

 

Study of Case B  

 

 

In this chapter we will discuss the similarity case, viz., case B which is obtained in the 

similarity analysis as given in Chapter 2. 

Case B : 

When both 
( )dA

d




and   

( )dB

d




 are zero, i.e., 

( )
0

dA

d




  and   

( )
0

dB

d




 . 

Then A and B are both constants. 

Therefore, from equations (2.46) and (2.47), we have  

2

1U a A                                                                                                                      (4.1) 

and  

2

02a B                                                                                                                       (4.2) 

With the help of (4.2) equation (4.1) becomes 

1 1

2

02

a A a A
U

a B

 

 

 
 


                                                                                                    (4.3) 

Equations (2.48) and (2.49) now give 

0 4 4 02 0 2a a a a                                                                                                                     

and 

1 2 2 10a a a a                                                                                                                     

Again differentiating equation (4.2) with respect to   , we have 

0   

Then from condition vii) of equation (2.44), we have 

6 6 0
r

a p a
p U


    

Again from condition ix) of equation (2.44), we have 
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a d
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a B




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                                                                                               (4.4) 
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Now  
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Then equation (4.4) gives 

8
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log
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a dU
T

a U
    

i.e., 8

0

log log
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T U
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Also, from x) of equation (2.44), we have 
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9 2
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Now from (4.1), we have 

2
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Or, 
2

1dU a d   
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Then equation (4.6) gives 

9
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log
a dU

T
a U
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i.e., 9
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log log
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T U
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Comparing (4.5) and (4.7), we obtain 

8 04a a  and 9 12a a  . 
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Thus, conditions i) – x) of equation (2.44) yield relations between the constants as follows: 

0a  and 1a  are arbitrary and 2 1a a , 4 02a a  , 6 0a  , 8 02a a , 9 1a a  , 3a , 5a  and 7a   

are disposable constants.  

Substituting the constants through equations (2.41) – (2.43), we obtain 

2

0 1 3 1 0 52rF a F a FF a F a F a F a G                                                                 (4.8) 

7G a                                                                                                                             (4.9) 

 0 1 3 0 14 2 0
Pr

r a a F a a a F    


                                                                      (4.10) 

Now writing 1 2 3,   and F f G g       , we get 
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Substituting above in equations (4.8) to (4.10) we have 

2
21 1 1 1 1 1

0 2 1 1 3 1 0 5 33 2 2 2 2

2 2 2 2 2 2

. . 2 0r f a f a f f a f a f a f a g     

      
   

     
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2 2

20 1 3 1 0 11 1 1 1 1
5 33 2 2 2

2 2 2 2 2 2

2
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     
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Multiplying both sides by 
3

2

1r



 
, we obtain 
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2 2 3
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52 Characteristic LengthT rg T                                                        (4.17) 

is called free convection velocity associated with the local  characteristic length  

0L                                                                                                                            (4.18) 

Since we are concerned with a purely free convection flow, without loss of generality we 

may put UU F   and hence the similarity equations are given by 
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2 2 0wf f ff f f f f g                                                                          (4.19) 

g                                                                                                                               (4.20) 

 1Pr 3 2 0wf f f                                                                              (4.21) 

subject to the transformed boundary conditions: 

 (0) (0) ( ) 0; (0) 1, ( ) 0;  (0) 1, ( ) 0n nf f f g g                                         (4.22) 

where the boundary conditions for g  is obtained form that described for   according to 

equation (4.20).  

Further, we can write 
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where L is the local  characteristic length defined by (4.18). 

Hence the similarity function  f  , the similarity variable   and the pressure function 

 g   are related to the stream function  , the physical co-ordinate y and perturbation 

pressure p  by the following equations respectively 
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i.e.,      F, , Re , ,0r f                                                                         (4.24) 

Here FRe  is the dimensionless Reynolds number based on free convection velocity 
F

U  

given by equation (4.17) and the local characteristic length L given by equation (4.18) as 

FRe F
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U L


                                                                                                                      (4.25) 
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Further, we have 
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The velocity components, the skin friction and the local heat transfer coefficients 

associated with the equations (4.19) – (4.21) are now   
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i.e.,  Fu U f                                                                                                              (4.28) 
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The skin friction coefficient is defined by 
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The heat transfer coefficient is defined by  
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Numerical scheme and procedure 

 

The set of ordinary differential equations (4.19) to (4.21) with the boundary conditions 

(4.22) are solved based on the same numerical procedure as stated in Case A, that is, using 

the Runge-Kutta shooting method in collaboration with the Runge-Kutta Merson method. 

Like Case A, here the velocity f , temperature and pressure  function g  are determined 

as function of the co-ordinate η. The skin friction coefficient fηη(0) and the heat transfer 

rate η(0) are also evaluated for this case and the numerical results thus obtained in terms 

of the similarity variables are displayed in graphs and tables for several selected values of 

the established parameters fw, β and Pr below:  

 

Numerical Results and Discussion 

 

On the basis of the numerical results, the dimensionless velocity and temperature profiles, 

and the pressure distributions are plotted. The effects of suction parameter fw, driving 

parameter β and Prandtl number Pr on velocity f , temperature  and pressure g  against 

  are  illustrated in Fig. 4.1  through Fig.4.9. Also their effects on the coefficient of skin-

friction and heat transfer coefficient are tabulated in Table- 4.1 and Table- 4.2, 

respectively.  To observe the effect of fw, the other two parameters i.e., β and Pr are kept as 

constants. Similarly, to observe fw and Pr and fw and β are kept as constants the effect of β 

and Pr, respectively. In all cases where fw is kept as constant, its value is chosen as 0.50. 

Similarly, when Pr is kept constant, its value is chosen as 0.71 and when β is kept fixed, its 

value is chosen as 0.30.  

Figs. 4.1 to 4.3 represent the effect of fw, β and Pr on the velocity profiles, respectively. 

From Fig.4.1 it is observed that the velocity remains negative for fw   reduces   from 0.50 to 

– 0.10. The magnitude of the velocity increases with the increase in fw. The positive values 

of the velocities are found when fw is -0.3 or less but they become again negative before 

being vanished. The positive value of the velocity increase with the decrease in fw. 
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Figure 4.1: Velocity profiles for different values of the suction parameter fw with fixed  

                         values of β and Pr. 
 

In Fig. 4.2 we observe that the behaviour of the velocity differs when β is positive with 

those when β is zero or negative. If β equals zero or negative, the velocities go to positive 

from negative before finally approaching to zero. Also when β increasing in magnitude, the 

velocity is decreasing in magnitude for those values of β. But when β is positive, with its 

increase the velocity decreases in magnitude. For this domain of β the velocity remains 

negative all through.    
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Figure 4.2: Velocity profiles for different values of the parameter β with fixed values  

                    of fw and Pr. 
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From Fig. 4.3 we see that the velocity decreases in magnitude with the increase in Pr. The 

velocity is observed negative for all values of Pr. It may be note here that for lighter gases 

than air a fluctuation in velocity is observed far away from the wall before finally 

approaching to zero.  
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Figure 4.3: Velocity profiles for different values of the Prandtl number Pr with fixed  

                    values of fw and β. 
 

Figs. 4.4 to 4.6 represent the effect of fw, β and Pr on the temperature profiles respectively. 

From Fig. 4.4 we see that in the region where 1.33  , the temperature decreases with the 

increasing fw. After that, it reverses the direction till 2.9  , that is, the temperature 

increases with the decrease in fw. Then again it reverses the order before reaching to zero.  
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Figure 4.4: Temperature profiles for different values of the suction parameter fw with  

        fixed values of β and Pr. 
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Figure 4.5: Temperature profiles for different values of the parameter β with fixed  

                    values of fw and Pr. 
 

The effect of β on the temperature profiles are shown in Fig. 4.5. Here again the behaviour 

is different when β is 0 or less and when 0  . When β is zero or negative, close to the 

wall, the temperature goes up or remains same and then falls slowly. When   is about 3.0 

the temperature again become positive and finally reaches to zero. Where as when  β is 

positive, temperature falls sharply and reverse its direction of change when   is about 1.0 

and reaches to the positive region after   being 1.7. Before being zero the temperature 

again becomes negative. In the first region, that is while temperature was decreasing it 

decreases much for smaller value of  β. Consequently, when it is becoming positive, the 

magnitude is higher for that smaller value. 
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Figure 4.6: Temperature profiles for different values of the Prandtl number Pr with  

                    fixed values of fw and β. 
 
From Fig. 4.6 it is observed that the temperature decreases more with the increase in Pr 

near the wall. For relative higher values of  the temperature goes to positive except Pr is 

equal to 7.0. Before reaching zero finally, the temperature goes to negative again in the 

region where, 3.1 the temperature decreases with the increase in Pr except when Pr is 

7.0. After that temperature increases with the increases in rP ,it again decrease when rP  

increase.   This peculiar behavior for Pr = 7.0 is observed may due to the constituents of 

the fluid. 

 
Figs. 4.7 to 4.9 representing the effects of fw, β and Pr respectively on the pressure variable g . 

The initial value of the dependent variable g  is not known rather it was subject to 

guessing to satisfy the boundary conditions at the other end. As a result the graphs for 

0   (on the wall) starts from different points and for small value of   (close to the wall) 

the patterns are different from the other values of   as shown in Figs. 4.7 to 4.9. 

Fig. 4.7 represents the variation of pressure in terms fw. For smaller values of fw, the 

pressure near the wall is small and increase with the increase in fw and starts to decrease 

after a short distance from the wall. This distance decreases with the increase in fw. For 

higher value of fw the pressure goes higher near the wall and then falls sharply and attains 

the minimum negative value before it goes to positive and finally approaches to zero. The 

behaviour for the smaller value of fw is same that is initially it goes up and then returns to 
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negative value and before being zero it again becomes positive. From the figure is also 

seen that the curves are intersecting at 0.66   and 2.27  . 
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Figure 4.7: Pressure distributions for different values of the suction parameter fw  

                    with fixed values of β and Pr. 
 

The effect of β on the pressure variable g  is shown in Fig. 4.8. Like velocity and 

temperature we also observe different behaviour when β is 0 or less and when 0  . 

When β is zero or negative, close to the wall, the pressure is found negative with leading to 

the positive value far away. Here with the increase in magnitude of β the pressure 

decreases in absolute value. But this effect is observed till 0.94  . After that the reveres 

effect is observed and again goes to negative value before being asymptotically approaches 

to zero. An alternate situation is found when 0  , that is, pressure is positive near the 

wall, then goes to negative value and finally again goes to positive one before being zero. 

Also the pressure decreases primarily with increase in β but finally it increases with the 

decrease in β.  

From Fig. 4.9 it is observed that the rate of  decrease of pressure is more with the decrease 

in Pr near the wall except for Pr is equal to 7.0. For relatively higher values of  the 

pressure goes to negative with decreasing-increasing behaviour and further become 

positive before reaching to zero with the exception for Pr is equal to 7.0. 
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Figure 4.8: Pressure distributions for different values of the parameter β with fixed  

                    values of fw and Pr. 
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Figure 4.9: Pressure distributions for different values of the Prandtl number Pr with  

                    fixed values of fw and β. 
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The values proportional to the coefficients of skin friction and heat transfer are tabulated in 

Table 4.1 and 4.2 respectively. From the Table 4.1, it is seen that for fixed β and Pr, the 

values proportional to the coefficient of skin friction decreases for increase of suction 

parameter fw . Further, it is observed that for fixed fw and Pr the values proportional to the 

coefficient of skin friction decreases with the increase of β where β is zero or negative but it 

increases with the increases in β when β is greater than 0.3. 

Again, for fixed β and fw, the values proportional to the skin friction decreases with 

decreasing Pr.  

Table- 4.1.  Variation of the coefficient of skin-friction with fw, and Pr: 
 

Values Proportional to the coefficient of skin-friction with the variation of 

fw (for 0.30 and Pr = 0.71)  (for fw0.50 and Pr = 0.71)  Pr (for fw = 0.50 and 0.30) 

   fw    f     f   Pr    f 

-0.50 -0.612297 -0.70 -0.512443 0.50 -3.332221 

-0.30 -0.803193 -0.50 -0.564585 0.71 -2.799246 

-0.10 -1.126024 -0.30 -0.601379 1.00 -2.492708 

 0.00 -1.299355  0.00 -0.782206 7.00 -1.502655 

 0.10 -1.528126  0.30 -2.799246   

 0.30 -2.082459  0.50 -1.937616   

 0.50 -2.799246  0.70 -1.518315   

 

 

Table 4.2 shows the values proportional to the heat transfer coefficient, varying one 

parameter keeping the other two fixed. It is observed that for fixed β and Pr, the heat transfer 

coefficient decreases with the increase in fw. For fixed fw and Pr the values proportional to the 

heat transfer coefficient decreases with the decrease of β where β is zero or negative but it 

behaves like skin friction coefficient for β variation, when β is greater than 0.3..  

For fixed β and fw, the values proportional to the heat transfer coefficient increases with 

decreasing Pr except for Pr = 7.0.  
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Table- 4.2. Variation of the heat transfer coefficient with fw, and Pr: 
 

Values Proportional to the heat transfer coefficient with the variation of 

fw (for 0.30 and Pr = 0.71)  (for fw0.50 and Pr = 0.71)  Pr (for fw =  0.50) and0.30  

   fw       Pr  
-0.50   -0.567070 -0.70  0.182250 0.50 -3.145284 

-0.30   -1.270933 -0.50  0.254844 0.71 -4.754354 

-0.10   -1.513344 -0.30  0.493686 1.00 -8.064734 

 0.00   -2.431226  0.00  1.086548 7.00 -0.057409 

 0.10   -2.841108  0.30 -4.754354   

 0.30   -3.680210  0.50 -4.160390   

 0.50   -4.754354  0.70 -3.181425   
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CHAPTER V 

 

Conclusions 

 

With the technique of the similarity solutions, we have solved the governing boundary layer equations 

of the laminar two-dimensional unsteady natural convection flow over a semi-infinite 

heated horizontal porous surface, taking into account the effect of suction and blowing. 

Four different similarity cases arise with the choice of and   
dA dB

d d 
either zero or constant. Similarity 

solutions for two of the cases have been studied in this thesis. It is being observed that for Case A, the 

similarity variables related to the velocity and temperature have inverse relations with the controlling 

parameters. Whereas the variables related to the pressure has direct relation with the controlling 

parameters. It is also observed that the coefficient of skin-friction and heat transfer have also inverse 

relationship with the controlling parameters. But for Case B, no systematic relationship of controlling 

parameters on the flow variables is observed. Therefore, study of Case A is more suitable than Case B. 

In future, we shall study further two cases. 
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