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Abstract 
 

Electrocardiogram (ECG) machines are usually used for medical diagnosis of heart 

activities of human body now days.  Every portion of ECG is very essential for the diagnosis 

of different cardiac problems. But the amplitude and duration of ECG signal is usually 

corrupted by different types of noise and interference based on interfaces between ECG 

machines and human body. It can change the real amplitude and duration of the signal. 

In electrocardiogram (ECG), noise removal and QRS complex play the vital role for 

detecting various heart diseases. So, noise free and accurate QRS detection becomes very 

important in ECG signal. In this thesis we proposed new algorithms which are able to make it 

noise free and detect QRS complex in ECG signal. Generally, a noise free algorithm removes 

the noisy signal and we have used Remez exchange algorithm for 1st algorithm, designed an 

arbitrary magnitude with FIR filter for 2nd algorithm, FIR filter with window method for 3rd 

proposed algorithm, We have also proposed moving average filter and moving average 

weighted window, and an algorithm based on forward difference quotient and threshold for 

corresponding algorithms respectively for noise elimination of ECG. QRS complex of noise 

free ECG signal have been detected by proposed detection algorithm. The performance 

parameters are SNR, MSE and Correlation and accuracy, sensitivity, specificity, precision are 

used to justify the proposed noise free algorithm and QRS detection. The real data examples 

and experimental results approve new algorithms and prove the robustness of the algorithms 

which are more effective in ECG applications. 

Keywords—ECG, QRS complex, Threshold, SNR, MSE, Correlation. 
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Chapter 1 

Introduction 
 

1.1   Introduction 

Electrocardiogram (ECG) is the recording of electrical activity of the heart and used to 

investigate the heart diseases. Due to its non-invasive nature it is a most popular diagnostic 

tool. This is done by measuring the potential difference between several electrodes which are 

placed on the skin at predefined points of the human body [1]. As ECG is a graphical 

representation of heart based on electrical impulses, it is needed to be done when chest pain 

occurred such as heart attack, rapidity of breath, faster heartbeats, high blood pressure, high 

cholesterol and to check the heart’s electrical activity [2]. An ECG is very sensitive, different 

types of noise and interference can corrupt the ECG signal as the real amplitude and duration  

of the signal can be changed. 

1.2   Motivation 

At present high rate of heart diseases is facing in the world. This has become the leading 

cause of death and World Health Organization (WHO) says that more than 17 million people 

die annually from cardiovascular disease. “The Global Hearts”, a new initiative fair from 

WHO, as it aims to beat back the global measures threat of cardiovascular disease, including 

heart attacks and stocks to people living in countries with limited resources or in low-income  

groups [3]. Most of the low and middle-income peoples die from heart attacks and strokes in 

the world. This death rate can be minimized to a large extent by early detection of the symptoms 

of cardiovascular diseases.  The different types of cardiovascular disease diagnosis is based on 

the ECG pattern.  The cardiovascular diseases are Congestive Heart Failure, Coronary Artery 

Disease, Heart Attack, Cardiac Dysrhythmia, Ventricular Fibrillation, Tachycardia, Angina, 

Arthrosclerosis and so many cardiovascular diseases. 

1.3 Problem Statement 
There are many reasons for the corruption of ECG signal while recording in hospital or 

some other place due to the power line interference, electromyographic (EMG) interference, 

base line drift, abrupt shift in base line, electrosurgical noise, instrumentation noise, electrode 

contact noise etc. In a noise signal, the signal component holds harmonics with different 
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amplitude and frequency. A major source of interference when one is recording or monitoring 

the ECG is the electric-power system. Besides providing power to the electrocardiograph itself, 

power lines are connected to other pieces of equipment and appliances in the typical hospital 

room or physician’s office. There are also power lines in the walls, floor, and ceiling running 

past the room to other points in the building. These power lines can affect the recording of the 

ECG and introduce interference at the line frequency in the recorded trace. EMG noise is 

caused by the contraction of other muscles besides the heart.   When other muscles in the 

vicinity of the electrodes contract, they generate depolarization and repolarization waves that 

can also be picked up by the ECG. The extent of the crosstalk depends on the amount of 

muscular contraction (subject movement), and the quality of the probes. Variations in 

electrode-skin impedance and activities like patient’s movements and breathe cause Baseline 

wander. Abrupt shift noise represents an abrupt shift in baseline due to movement of the patient 

while the ECG is being recorded. The most important part of ECG signal is QRS complex 

because heart beat detection depends on it. QRS complex of ECG signal can be definitely 

distinguished from P wave and T wave because of its high amplitude and peak with long time 

span. The peak detection difficulties occur when the input electrical signal is disrupted by 

unwanted noise and interference. Due to these noises the quality of ECG signal can’t be ideal 

so it is needed to improve the quality of required output of ECG signal. 

1.4 Review of Related Research Work on Thesis 

This section presents an overview of the existing literature in areas related to the work in this 

thesis on denoising techniques of ECG signal using various methods and QRS detection. 

Mostly ECG recording is very sensitive and its affects by different types of noise and it changes 

the amplitude and duration of the signal. In literature review, it has been seen that mostly ECG 

signals are affected by white noise, colored noise, electrode movement noise, muscle artifact 

noise, baseline wander, composite noise, electromyographic (EMG) noise, abrupt noise and 

power line interference [4],[5]. These noises create more complication for diagnosis of the ECG 

signal. Some of the authors have solved this problem by proposing different algorithms for 

removal of noise [6]-[8]. In [4], the authors have found the performance of adaptive NLMS 

filter better than adaptive LMS filter. But in practical way, the performance parameters such as 

SNR, MSE, PRD have shown lowest values than others. The proposed algorithm with Discrete 

Wavelet Transform (DWT) in [5] have shown good results based on WGN noise and Poisson 

noise using several measureable parameters, such as wavelet filters [Daubechies2 (DB2), 
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Symlets (Sym2), Coiflet (coif2), DMeyer (demey), BiorSplines (bior2.2), Reverse Bior 

(rbio2.2)]. But performance parameters have not been measured. A.D. Jeyarani et al. have 

applied  the  different filters  like  band-stop  filter,  low  pass  filter,  high  pass  filter for 

removing Power line Interference, Electromyographic noise (EMG noise), Baseline wander 

from noisy ECG signal [6]. Y. Lian et al proposed algorithm based on linear FIR filter with 

Recursive Running Sum (RRS) filters [7]. They have considered 50 or 60 HZ power line noise 

for a high-resolution ECG signal sampling at 600Hz. This algorithm have shown low resolution 

smooth signal. A. Mirza et al have proposed enhanced adaptive impulsive noise cancellation 

technique using State Space Recursive Least Square (SSRLS) algorithm [8]. This algorithm 

has used only MSE for performance of proposed algorithm and shown lowest results than 

others. M. Butt et al. proposed SSRLS based filter for removing only powerline interference 

noise from ECG signal and also didn’t measure any performance parameters [9]. 

ECG consists of three wave components and they are P wave, QRS complex and T wave. 

The most important part of ECG signal is QRS complex because heart beat detection depends 

on it. QRS complex of ECG signal can be definitely distinguished from P wave and T wave 

because of its high amplitude and peak with long time span. Many researchers have developed 

methodology or algorithm for the use of R peak / QRS complex detection. The peak detection 

difficulties occur when the input electrical signal is disrupted by unwanted noise and 

interference [2]. M. Elgendi et al have improved QRS detection algorithm using dynamic 

thresholds which has shown 97.5% sensitivity and 99.9% positive predictivity [10]. J.  Pan et 

al also developed an algorithm for QRS detection which was based on slope, amplitude, and 

width [11]. But the algorithm failed to properly detect only 0.675 percent of the beats. R. G.  

Lee et al developed a new QRS detection algorithm [12]. This algorithm has enhanced the 

accuracy of R wave detection by reverse R wave. They have not shown other detection 

parameter values such as sensitivity, specification, precision. Q. Xue et al developed a neural-

network-based adaptive matched filtering for QRS detection. The main focus is put on low 

computational complexity and low signal-to-noise ratio. It is tested on several signals of 

MIT/BIH database, which obtained sensitivity above 90% in QRS detection. V.S. Chouhan et 

al. developed a methodology to detect of QRS complexes in 12-lead ECG using adaptive 

quantized which has Differentiation at preprocessing stage and Dynamic threshold to detect R 

peaks [14]. It also needs complex computation. However, the detection parameter have not 

been improved for detection of ECG signal. Therefore the development of robust method of 



4 
 

ECG signal detection still requires the improvement in noise elimination as well as in QRS 

detection.  

1.5 Objectives 

The fundamental objective of this thesis is, 

(i)  To propose improved de-noising methods of ECG signals, more specifically: (a) 

designing linear phase FIR low pass filters using Remez exchange algorithm, (b) 

designing of FIR filter with arbitrary magnitude response, (c) designing an FIR low 

pass filter using window method, (d) designing moving average filter, (e) designing 

moving average weighted window filter, (f) designing forward difference quotient and 

amplitude thresholding based algorithm. 

(ii) Various noises such as baseline wander, composite noise, electromyography (EMG) 

noise, abrupt noise and power line interference will be investigated in this case. 

(iii) The performance of algorithms will be compared with the existing de-noising  

algorithms in terms of mean square error (MSE), signal-to-noise ratio (SNR) and 

correlation coefficients values for different noise removal methods. 

(iv)  For comparison between the ECG signal and filtered signal by proposed algorithm, 

three processes such autocorrelation, cross-correlation and power spectral density 

(PSD) will be considered. 

(v) To propose QRS detection algorithm for noise filtered ECG signal. 

(vi)  Propose detection algorithm will be compared in terms of accuracy, sensitivity, 

specificity, precision.  

 

1.6 Organization of Thesis 

This section provides a summary of the all the chapters covered in this thesis. 

Chapter-1: 

This chapter gives the introduction to the thesis, the problem description, objective and 

also detail of report layout of the thesis report. 

Chapter-2: 

This chapter gives the basic knowledge of ECG and its history. Here types of ECG, 

acquisition process of ECG, different waves of ECG such as P, U, QRS complex, T waves; 
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different types of ECG electrodes and their descriptions are described. Different types of noises 

which affects the ECG signal and previous related works are also described.  

Chapter-3:  

This chapter presents the brief description of six algorithms which are to be employed in 

this thesis to perform the noise cancellation. It also gives the overview of the process and 

operations of the algorithm. 

Chapter-4: 

In this chapter, a description of two algorithms is given which will be used for QRS 

detection. It gives the overview of the process and operation of the algorithm. 

Chapter-5: 

In this chapter, the analysis and simulation results of the algorithm are described. It also 

gives the figures and wave shapes of removing of high frequency noise from ECG signal. 

Finally, the algorithm result, discussion, verification and comparison study will be presented. 

Chapter-6: 

This chapter will provide the conclusion and future research. It also gives the detail of the 

thesis goal, its achievement and what has been concluded after completion this thesis. 

References: 

The list of information gathered from books, papers, database, journals and internet sites. 
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Chapter 2 

Background and Related Work 

 

2.1 Introduction 

For analyzing of ECG signal, it is important to understand the physiology of ECG. In this 

chapter, at first a brief introduction of ECG is given. Then a detail discussion on various noises 

in ECG signal will be given. Finally, a review on previous related work will be discussed. 

2.2 Electrocardiography 

Electrocardiography is the process of recording of electrical activity of the heart. An 

electrocardiogram — abbreviated as EKG or ECG — is a test that measures the electrical 

activity of the heartbeat. With each beat, an electrical impulse (or “wave”) travels through the 

heart. This wave causes the muscle to squeeze and pump blood from the heart. A normal 

heartbeat on ECG will show the timing of the top and lower chambers.  
The right and left atria or upper chambers make the first wave called a “P wave" — 

following a flat line when the electrical impulse goes to the bottom chambers. The right and 

left bottom chambers or ventricles make the next wave called a “QRS complex." The final 

wave or “T wave” represents electrical recovery or return to a resting state for the ventricles 

[15]. The different peaks P, Q, R, S, T, and U are noticeable at these stages, as observed in 

Figure 2.1. If ECG is properly analyzed, can provide us information regarding various diseases 

related to heart. Moreover, visual analysis cannot be relied upon. This calls for computer-based 

techniques for ECG analysis. 

An ECG gives two major kinds of information. First, by measuring time intervals on the 

ECG, a doctor can determine how long the electrical wave takes to pass through the heart. 

Finding out how long a wave takes to travel from one part of the heart to the next shows if the 

electrical activity is normal or slow, fast or irregular. Second, by measuring the amount of 

electrical activity passing through the heart muscle, a cardiologist may be able to find out if 

parts of the heart are too large or are overworked. 

 



7 
 

 

Figure 2.1: A General ECG waveform with P, Q, R, S, T and U peak. 

2.2.1 Uses of ECG 

An ECG is often used alongside other tests to help diagnose and monitor conditions 

affecting the heart. It can be used to investigate symptoms of a possible heart problem, such as 

chest pain, suddenly noticeable heartbeats (palpitations), dizziness and shortness of breath [3], 

[15]. 

An ECG can help detect: 

 Arrhythmias – where the heart beats too slowly, too quickly, or irregularly. 

 Coronary heart disease – where the heart's blood supply is blocked or interrupted by a 

build-up of fatty substances. 

 Heart attacks – where the supply of blood to the heart is suddenly blocked. 

 Cardiomyopathy – where the heart walls become thickened or enlarged. 

A series of ECGs can also be taken over time to monitor a person already diagnosed with 

a heart condition or taking medication known to potentially affect the heart. 

2.2.2 Types of ECG 

There are three main types of ECG: 

 a resting ECG –  carried out while you're lying down in a comfortable position 

 a stress or exercise ECG – carried out while you’re using an exercise bike or treadmill 
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 an ambulatory ECG –  the electrodes are connected to a small portable machine worn 

at your waist so your heart can be monitored at home for one or more days 

The type of ECG recommended for you will depend on your symptoms and the heart 

problem suspected. For example, an exercise ECG may be recommended if your symptoms are 

triggered by physical activity, whereas an ambulatory ECG may be more suitable if your 

symptoms are unpredictable and occur in random, short episodes. 

2.2.3 Recording of ECG signal 

 There are several different ways an ECG can be carried out. Generally, the test involves 

attaching a number of small, sticky sensors called electrodes to patient arms, legs and 

chest. These are connected by wires to an ECG recording machine. 

 Patient don't need to do anything special to prepare for the test. They can eat and drink 

as normal beforehand. 

 Before the electrodes are attached, they will usually need to remove their upper 

clothing, and sometimes their chest may need to be shaved or cleaned. Once the 

electrodes are in place, they may be offered a hospital gown to cover themselves. 

 The test itself will normally only last a few minutes, and they can usually go home soon 

afterwards or return to the ward if they're already staying in hospital. 

 

2.2.4 Different ECG Waves 

 P Wave 

 The P wave [Fig. 2.2] is the first positive deflection on the ECG 
 It represents atrial depolarization 

 

Figure 2.2: P-waves in ECG signal. 
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Morphology 

 Smooth contour 

 Monophasic in lead II 

 Biphasic in V1 

Axis 

 Normal P wave axis is between 0° and +75° 

 P waves should be upright in leads I and II, inverted in aVR 

      Duration 

 < 120 ms 
 Amplitude 
 < 2.5 mm in the limb leads, 
 < 1.5 mm in the precordial leads 

 QRS Complex 
 

The QRS complex represents in Figure 2.3 the rapid depolarization of the right and left 

ventricles. The ventricles have a large muscle mass compared to the atria, so the QRS complex 

usually has a much larger amplitude than the P-wave. 

If the QRS complex is wide (longer than 120 ms) it suggests disruption of the heart's 

conduction system, such as in Left bundle branch block (LBBB), Right bundle branch block 

(RBBB), or ventricular rhythms such as ventricular tachycardia. Metabolic issues such as 

severe hyperkalemia, or TCA overdose can also widen the QRS complex. An unusually tall 

QRS complex may represent left ventricular hypertrophy while a very low-amplitude QRS 

complex may represent a pericardial effusion or infiltrative myocardial disease. 
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Figure 2.3: QRS complex in ECG signal. 

 T Wave 

 The T wave [Fig. 2.4] is the positive deflection after each QRS complex 

 It represents ventricular repolarization 

 Upright in all leads except aVR and V1 

 Amplitude < 5mm in limb leads, < 15mm in precordial leads 

 Duration 160ms 

 

Figure 2.4: T-waves in ECG signal. 

 

 U Wave 

The U wave as shown in Fig. 2.4 is a small (0.5 mm) deflection immediately following 

the T wave, usually in the same direction as the T wave. It is best seen in leads V2 and V3. 

The source of the U wave is unknown. Three common theories regarding its origin are: 

 Delayed repolarization of Purkinje fibres 

 Prolonged repolarization of mid-myocardial “M-cells” 

 After-potentials resulting from mechanical forces in the ventricular wall 
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Features of Normal U waves 

 The U wave normally goes in the same direction as the T wave 

 U -wave size is inversely proportional to heart rate: the U wave grows bigger as the 

heart rate slows down 

 U waves generally become visible when the heart rate falls below 65 bpm 

 The voltage of the U wave is normally < 25% of the T-wave voltage: disproportionally 

large U waves are abnormal 

 Maximum normal amplitude of the U wave is 1-2 mm 

 

 
Figure 2.5: U-waves in ECG signal. 

2.2.5 ECG Register 

An electrocardiogram (ECG or EKG) is a register of the heart's electrical activity. Just like 

skeletal muscles, heart muscles are electrically stimulated to contract. This stimulation is also 

called activation or excitation. Cardiac muscles are electrically charged at rest. The inside of 

the cell is negatively charged relative to the outside (resting potential). If the cardiac muscle 

cells are electrically stimulated, they depolarize (the resting potential changes from negative to 

positive) and contract. The electrical activity of a single cell can be registered as the action 

potential [15]. As the electrical impulse spreads through the heart, the electrical field changes 

continually in size and direction. The ECG is a graph of these electrical cardiac signals.  
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2.2.6 The Electric Discharge of the Heart 

Sinoatrial node (SA node) contains the fastest physiological pacemaker cells of the heart; 

therefore, they determine the heart rate [16]. First the atria depolarize and contract. After that 

the ventricles depolarize and contract. The electrical signal between the atria and the ventricles 

goes from the sinus node via the atria to the AV-node (atrioventricular transition) to the His 

bundle and subsequently to the right and left bundle branches, which end in a dense network 

of Purkinje fibers. The depolarization of the heart results in an electrical force which has a 

direction and magnitude; an electrical vector. This vector changes every millisecond of the 

depolarization. In the animation vectors for atrial depolarization, ventricular depolarization and 

ventricular repolarization are shown in Fig. 2.6. 

 

Figure 2.6: The conduction system of the heart. 

2.2.7 The ECG Electrodes 

Electrical activity going through the heart can be measured by external (skin) electrodes. 

The electrocardiogram (ECG) registers these activities from electrodes which have been 

attached onto different places on the body as shown in Fig. 2.7. In total, twelve leads are 

calculated using ten electrodes. 

The ten electrodes are:  

 The four extremity electrodes: 

o LA - left arm 

o RA - right arm 
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o N - neutral, on the right leg (= electrical earth, or point zero, to which the 

electrical current is measured) 

o F - foot, on the left leg 

It makes no difference whether the electrodes are attached proximal or distal on the 

extremities. However, it is best to be uniform in this. (e.g., do not attach an electrode on the 

left shoulder and one on the right wrist).  

                (1) (2)  

Figure 2.7: (1) The limb leads and (2) The chest leads [4] 

 The six chest electrodes: 

o V1 - placed in the 4th intercostal space, right of the sternum 

o V2 - placed in the 4th intercostal space, left of the sternum 

o V3 - placed between V2 and V4 

o V4 - placed 5th intercostal space in the nipple line. Official recommendations 

are to place V4 under the breast in women. 

o V5 - placed between V4 and V6  

o V6 - placed in the midaxillary line on the same height as V4 (horizontal line 

from V4, so not necessarily in the 5th intercostal space). 

With the use of these 10 electrodes, 12 leads can be derived. There are 6 extremity leads 

and 6 precordial leads. 

2.2.8 The Extremity Leads 

The extremity leads position as shown in Figure 2.8, described are:  
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 I from the right to the left arm. 

 II from the right arm to the left leg. 

 III from the left arm to the left leg. 

An easy rule to remember: lead I + lead III = lead II This is done with the use of the 

height or depth, independent of the wave (QRS, P of T). Example: if in lead I, the QRS 

complex is 3 mm in height and in lead III 9mm, the height of the QRS-complex in lead II is 

12mm.  

Other extremity leads are:  

 aVL points to the left arm. 

 aVR points to the right arm.  

 aVF points to the feet. 

The ‘a’ stands for "augmented" and ‘V’ for "voltage".  

(aVR + aVL + aVF = 0) 

 

Figure 2.8: Connection of extremity leads. 

2.2.9 The Chest Leads 

The precordial, or chest leads, (V1, V2, V3, V4, V5 and V6) 'observe' the depolarization 

wave in the frontal plane. Example: V1 is close to the right ventricle and the right atrium. 

Signals in these areas of the heart have the largest signal in this lead. V6 is the closest to the 

lateral wall of the left ventricle.  
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2.2.10 ECG Variants 

Besides the standard 12 lead ECG a couple of variants are in use:  

 The 3 channel ECG uses 3 or 4 ECG electrodes. Red is on the right, yellow on the left 

arm, green on the left leg ('sun shines on the grass') and black on the right leg. These 

basic leads yield enough information for rhythm-monitoring. For determination of ST 

elevation, these basic leads are inadequate as there is no lead that gives (ST) information 

about the anterior wall. ST changes registered during 3-4 channel ECG monitoring 

should prompt acquisition of a 12 lead ECG. 

 The 5 channel ECG uses 4 extremity leads and 1 precordial lead. This improves ST 

segment accuracy, but is still inferior to a 12 lead ECG [17], [18]. 

 In vector electrocardiography the movement of electrical activity of the P, QRS and 

T wave is described. Additional X, Y and Z leads are recorded. Vector 

electrocardiography is rarely used nowadays, but is sometimes useful in a research 

setting.  

 In body surface mapping several arrays are used to accurately map the cardiac 

electrical wave front as it moves over the body surface. With this information the 

electrical activity of the heart can be calculated. This is sometimes used in a research 

setting. 

2.2.11 Ladder Diagram 

A ladder diagram is a diagram as shown in Fig. 2.9 to explain arrhythmias that shows the 

presumed origin of impulse formation and conduction in the heart. The figure shows a simple 

ladder diagram for normal sinus rhythm, followed by AV-nodal extra systole. The origin of 

impulse formation (sinus node for the first two beats and AV junction for the third beat) and 

the conduction in the heart are shown. 
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Figure 2.9: A ladder diagram where, A = atrial, AV = AV node, V = ventricles. 

2.2.12 Color Coding of the ECG Leads 

Two systems for ECG lead color coding are used: the AHA (American Heart Association) 

system and the IEC (International Electrotechnical Commission) system: 

 AHA (American Heart 
Association) 

IEC (International Electrotechnical 
Commission) 

Location  Inscription  Color  Inscription  Color  

Right 
Arm  

RA  White R  Red 

Left Arm  LA  Black L  Yellow 

Right Leg  RL  Green N  Black 

Left Leg  LL  Red F  Green 

Chest  V1  Brown/Red C1  White/Red 

Chest  V2  Brown/Yellow C2  White/Yellow 

Chest  V3  Brown/Green C3  White/Green 

Chest  V4  Brown/Blue C4  White/Brown 

Chest  V5  Brown/Orange C5  White/Black 

Chest  V6  Brown/Purple C6  White/Violet 
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2.3 Overview of Basic Noises in ECG Signal 

Electrocardiographic (ECG) signals may be corrupted by various kinds of noise. Typical 

examples are: 

 power line interference 

 electrode contact noise 

 motion artifacts  

 muscle contraction (Electromyogram, EMG) 

 baseline drift and ECG amplitude modulation with respiration 

 instrumentation noise generated by electronic devices used in signal processing, and  

 electrosurgical noise, 

and other, less significant noise sources [19]. 

2.3.1 Power-Line Interference Noise 

Power line interference consists of 50/60 Hz pickup and harmonics which can be modeled 

as sinusoids and combination of sinusoids. A major source of interference when one is 

recording or monitoring the ECG is the electric-power system. Besides providing power to the 

electrocardiograph itself, power lines are connected to other pieces of equipment and 

appliances in the typical hospital room or physician’s office. There are also power lines in the   

walls, floor, and ceiling running past the room to other points in the building. These power 

lines can affect the recording of the ECG and introduce interference at the line frequency in the 

recorded trace, as illustrated in figure. Such interference appears on the recordings as a result 

of two mechanisms, each operating singly or in some cases, both operating together. 

Electric-field coupling between the power lines and the electrocardiograph and the patient 

is a result of electric fields surrounding main power lines and the power cords connecting 

different pieces of apparatus to electric outlets. These fields can be present even when the 

apparatus is not turned on, because current is not necessary to establish the electric field. These 

fields couple into the patient, the lead wires and the electrocardiograph [17]. 

Typical parameters: 

 Frequency content-60 Hz(fundamental) with harmonics 

 Amplitude-up to 50 percent of peak-to-peak ECG amplitude 
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Figure 2.10: ECG signal corrupted by Power line noise 

2.3.2 Electromyogram (EMG) noise 

EMG noise is caused by the contraction of other muscles besides the heart.  When other 

muscles in the vicinity of the electrodes contract, they generate depolarization and 

repolarization waves that can also be picked up by the ECG.  The extent of the crosstalk 

depends on the amount of muscular contraction (subject movement), and the quality of the 

probes.   

It is well established that the amplitude of the EMG signal is stochastic (random) in nature 

and can be reasonably modeled by a Gaussian distribution function [18].  The mean of the noise 

can be assumed to be zero; however, the variance is dependent on the environmental variables 

and will change depending on the conditions.  Certain studies have shown that the standard 

deviation of the noise is typically 10% of the peak-to-peak ECG amplitude [19].  While the 

actual statistical model is unknown, it should be noted that the electrical activity of muscles 

during periods of contraction can generate surface potentials comparable to those from the 

heart, and could completely drown out the desired signal.  The effects of typical EMG noise 

can be observed in the ECG signal shown in Figure 2.12, and is particularly problematic in the 

areas of the P and T complexes.   

Typical parameters: 

 Standard Deviation- 10 percent of peak-to-peak ECG amplitude 

 Duration-50 ms 

 Frequency Content-dc to 10 000 Hz 
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Figure 2.11: ECG signal corrupted by Electromyogram (EMG) noise. 

 

2.3.3 Baseline Drift Noise 

Variations in electrode-skin impedance and activities like patient’s movements and 

breathe cause Baseline wander [20], [21]. Baseline wander disturbance is especially dominant 

in exercise electrocardiography, and in ambulatory and Holter monitoring. The range of 

frequency in which baseline wander is dominant is typically less than 1.0 Hz, however for 

exercise ECG this range can be wider [21]. It is caused by changes in electrode-to-skin 

polarization voltages, or by electrode movement, or by respiration movement or by body 

movement. In wandering baseline, the isoelectric line change positions. One possible cause is 

the movement of cables. Patient movement, dirty lead wires/electrodes, and a variety of other 

things can cause this as well. Fig. 2.13. Illustrates the ECG signal with significant baseline 

wander. 

Typical parameters: 

 Amplitude variation- 15 percent of peak-to-peak (p-p) ECG amplitude 

 Baseline variation-15 percent of p-p ECG amplitude variation at 0.15 to 0.3 Hz 
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Figure 2.12: ECG signal corrupted by Baseline Drift noise. 

 

2.3.4   Abrupt Baseline Shift Noise 

This type of interference represents an abrupt shift in baseline due to movement of the 

patient while the ECG is being recorded as shown in Fig. 2.14.  

Typical parameters: 

 Duration-1 s 

 Amplitude-maximum recorder output 

 Frequency-60 Hz 

 Time constant-about 1s 
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Figure 2.13:  ECG signal corrupted by abrupt baseline shift noise. 

 
2.3.5 Electrosurgical Noise 

Electrosurgical noise completely destroys the ECG and can be represented by a large 

amplitude sinusoid with frequencies approximately between 100 kHz and 1 MHz. Since the 

sampling rate of an ECG signal is 250 to 1000Hz, an aliased version of this signal would be 

added to the ECG signal. The amplitude, duration, and possibly the aliased frequency should 

be variable [19]. 

Typical parameters: 

 Amplitude-200 percent of peak-to-peak ECG amplitude 

 Frequency Content-Aliased 100 kHz to 1 MHz Duration-1-10 s 

 

2.3.6   Noise Generated by Electronic Devices Used in Signal Processing 

Artifacts generated by electronic devices in the instrumentation system can’t be corrected 

by a QRS detection algorithm. The input amplifier has saturated and no information about the 

ECG can reach the detector. In this case an alarm must sound to alert the ECG technician to 

take corrective action [19]. 
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2.4 Summary 

In this chapter, basic topics of ECG is discussed which is very important in analysis of 

ECG signal. It also discusses how ECG signal is generated and how to acquire it using 

electrodes. Various ECG waves are also discussed. Various noises in ECG signal such as power 

line interference, EMG noise, baseline shift, abrupt shift in base line, electrosurgical noise etc. 

are also mentioned in this chapter. This chapter outlines the literature related to the ECG signal 

denoising and QRS detection. From these literatures, there are some lack of novelty work. We 

have tried to find the problem statement of ECG diagnosis and QRS detection. 
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Chapter 3 

Proposed Denoising Algorithms 

 

3.1   Introduction 

The real ECG signal from recorded of human body is always corrupted by several sources 

of noises such as being EMG (electromyogram) signal (a high frequency signal related to 

muscle activity), the BLW (the baseline wandering: a low frequency signal caused mainly by 

the breathing action), the electrode motion (usually represented by a sharp variation of the 

baseline). Different works had been established on denoising algorithms. In this chapter, some 

denoising algorithms will be discussed for removal of noise from corrupted ECG signal. 

3.2   Noise Elimination methodology 

We have proposed some algorithm for noise elimination of ECG signal which is described 

as below: 

3.2.1   Algorithm-1/ FIR low pass filter using Remez exchange algorithm 

The Remez exchange algorithm is based on optimal method where the concept of 

equiripple passband and stopband. Consider the lowpass filter freqiecy response depected in 

Figure 3.1. In the passband, the practical response oscillates between 1 − ௣  and 1ߜ −  ௣ . Inߜ

the stopband the filter response lies between 0 and ߜ௦. The difference between the ideal filter 

and the practical response can be viewed as an error function: 

(߱)ܧ = (߱)஽ܪ|(߱)ܹ  (3.1)                                                                                 |(߱)ܪ−

Where ܪ஽(߱) is the ideal or desired response and ܹ(߱) is a weight function that allows 

the relative error of approximation between different bands to be defines. In the optimal 

method, the objective is to determines the filter coefficients, h(n), such, such that the value of 

the maximum weight error, |ܧ(߱)| , is minimized in the passband and stopband. 

Mathematically, this may be expressed as ݉݅݊[݉ܽݔ]|ܧ(߱)|  over the passbands and 

stopbands.  

For a given set of filter specifications, the locations of extremal frequencies, apart from 

those at band edges ቀ݂ = ௣݂	and	݂ = ௌܨ
2ൗ ቁ, are not priori. This the main problem in the 
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optimal method is to find the locations f the extremal frequencies. A powerful technique which 

employs the Remez exchange algorithm to find the extremal frequencies. 

For a given set of specifications (that is passband edge frequencies, N, and the ratio 

between the passband and stopband ripples) the optimal method involves the following key 

steps 

 Use the Remez exchange algorithm to find the optimum set of extremal frequencies; 

 Determine the frequency response using extremal frequencies; 

 Obtain the impulse response coefficients. 

p1

s1
1



)(H Practical Response
Ideal Response

)(E

 DH

s

 
Figure 3.1: Frequency response of an optimal filter (Remez exchange algorithm). 

For the above key steps, we consider to design linear phase FIR low pass filters using 

Remez exchange algorithm required to satisfy the following specifications: 

Passband frequency 0-55Hz 

Passband ripple 3dB 

Stopband ripple 20dB 

Stopband frequency 50-55Hz 

Sampling frequency (ܨ௦) 200Hz 

Normalize frequency ܨே = ௦ܨ
2ൗ  100 Hz 



25 
 

 

Figure 3.2: Frequency response of designed low pass  FIR filter. 

Estimate of filter length can be determined by using Remez exchange algorithm [2]. This 

require by need to calculate of passband and stopband deviation by [2]: 

௣ߜ = 2 × ଵ଴
ಲ೛
మబିଵ

ଵ଴
ಲ೛
మబାଵ

, ௦ߜ = 10ି
ಲೞ
మబ                                                                  (3.2) 

Where ܣ௣and ܣ௦ are the passband and stopband ripples respectively, in dB. 

The input parameters are setting for optimal design program to obtain the coefficients of 

filter length and the frequency response of filter coefficient h[n] as shown in Figure 3.2. 

          3.2.2   Algorithm-2/ Frequency Sampling filter 

Design of FIR filter with arbitrary magnitude response is described below. 

A prerequisite FIR filter that the desired frequency response (ܪ(݇))  characteristics 

depicted as specified requirements: 

Passband frequency 0-100Hz 

Transition band 5 Hz 

M
ag

ni
tu
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 (d

B
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Passband ripple 0 dB 

Stopband ripple 0 dB 

Sampling frequency (ܨ௦) 200 Hz 

Normalize frequency ܨே = ௦ܨ
2ൗ  100 Hz 

Filter length, (	ܰ). 22 

 

From the specification table can be designed as where the band edges frequency must have 

normalized to the half of the sampling frequency (The vector of normalized band edge 

frequencies point ௞݂ = ቀ ௗ݂
ேൗܨ ቁ and magnitude of frequency sample points(|ܪ(݇)|)) as shown 

in Table 3.1. A sample of the optimum values of transition band frequency samples is given in 

Table 3.1 for N=22. In the table, the band width refers to the number of frequency samples in 

the passband of the filter. 

Table 3.1: Optimum transition band frequency samples for lowpass frequency sampling 

filters for N=22. 

k f(k) H(k) k f(k) H(k) 

0 0 0.15 21 1 0 

1 0.05 0.15 20 0.95 0 

2 0.1 0.1 19 0.90 0 

3 0.15 0.1 18 0.85 0 

4 0.20 0.1 17 0.80 0 

5 0.25 0.1 16 0.75 0 

6 0.30 0.1 15 0.70 0 

7 0.35 0.1 14 0.65 0 

8 0.40 0.1 13 0.60 0.1 

9 0.45 0.1 12 0.55 0.1 

10 0.5 0.1 11 0.5 0.1 

 

In the most cases, the values of the transition band frequency samples normally lie in the 

following ranges for one transition frequency sample which is depicted as Figure 3.3 (a): 

0.1 ≤ ଵܶ ≤ 0.15 



27 
 

0 ≤ ଶܶ ≤ 0.1 

From the specifications, the number of frequency samples, N=22. The sample numbers 

corresponding to the passband and stopband edges frequencies are 2 and 14, respectively. The 

transition band samples, M=2 and M=12. Form Table 3.1, is 0.1. Thus, the frequency samples 

for the ideal magnitude-frequency response are given the filter are given by: 

|(݇)ܪ| = ቐ
݇		ݎ݋݂							0.15 = 0,1
݇		ݎ݋݂,0.1 = 2, … .12
݇		ݎ݋݂			,0 = 13 … 21

 

The impulse response or filter coefficients ℎ(݊) can be obtained as the inverse DFT of the 

frequency sample  

ℎ(݊) = ଵ
ே
∑ ௝൫ଶగ݁(݇)ܪ ேൗ ൯௡௞ேିଵ
௞ୀ଴                                                                      (3.3) 

where	ܪ(݇), ݇ = 0,1, … ,ܰ − 1	samples of the ideal or target frequency response are. 

We have chosen N=22 and the impulse response is 

ℎ(݊) =
1

21෍ܪ(݇)݁௝൫ଶగ ேൗ ൯௡௞
ଶଵ

௞ୀ଴

 

ℎ(݊) =
1

21
ቂ(0)ܪ݁௝൫ଶగ ଶଵൗ ൯௡∗଴ + ௝൫ଶగ݁(1)ܪ ଶଵൗ ൯௡∗ଵ + ⋯… + ௝൫ଶగ݁(21)ܪ ଶଵൗ ൯௡∗ଶଵቃ 

Using the above parameters as an input, the coefficients h(n) were obtained and h(n) are 

listed in Table 3.2 and the filter spectrum is shown is Figure 3.3(b)and 3.3(c) represents the 

frequency response of frequency sampling filter.  

Table 3.2: The impulse response h(n) or filter coefficients of frequency sampling filter 

(N=21, fs=200) 

h(n)   h(n) 

h[0]= 0.000286368367763920 0.000286368367763920 =h[21] 

h[1]= 5.68354048174746e-05 5.68354048174745e-05 =h[20] 

h[2]= -0.000196969733948250 -0.000196969733948249 =h[19] 

h[3]= 0.00136009302334421 0.00136009302334421 =h[18] 

h[4]= 0.00117772018904162 0.00117772018904162 =h[17] 

h[5]= -0.00142159669903109 -0.00142159669903109 =h[16] 
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h[6]= 0.00444118010460193 0.00444118010460193 =h[15] 

h[7]= 0.00627677638105475 0.00627677638105475 =h[14] 

h[8]= -0.00788416573826666 -0.00788416573826666 =h[13] 

h[9]= 0.00745261427796247 0.00745261427796248 =h[12] 

h[10]= 0.0562285227793611 0.0562285227793611 =h[11] 

 

 
Figure 3.3: (a) Desired design Low pass frequency sampling filter; (b) impulse 

response ℎ(݊) of it and also frequency response of this filter in (c). 

The impulse response ℎ(݊)  coefficients is applied to noisy ECG signal to find the 

filtered ECG signal ݕ(݊)  by the following equation: 

(݊)ݕ = ℎ(0)ݔ(݊) + ℎ(1)ݔ(݊ − 1) + ℎ(2)ݔ(݊ − 2)+. . +ℎ(20)ݔ(݊ − 20)    (3.4) 

3.2.3   Algorithm-3/ FIR low pass filter using window method 

Design an FIR low pass filter using window method to remove noise from signal and its 

algorithm is described as: 
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1. Specifying an FIR filter design of a low pass filter 

(߱)஽ܪ = ቊ1,				|߱| < గ
ଷଶ

0, ݁ݏ݅ݓݎℎ݁ݐ݋
                                                                                   (3.5) 

The subscript ܦ used the distinguish between the ideal and practical impulse response. 

2. If we know ܪ஽(߱) we can be obtained the desired response ℎ஽(݊) by evaluating the 

inverse Fourier transform of Equation (3.5). As we consider to design a low pass filter. 

We could start with the ideal lowpass response shown in Figure 3.4 (b) where ߱௖the 

cut off frequency and the frequency scale is normalized: T=1. By letting the response 

go from −߱௖  to ߱௖ , we simplify the integration operation. This the impulse response 

is given by 

ℎௗ(݊) =
1

නߨ2 ௗ(߱)݁௝ఠ௡݀߱ܪ
ഏ
యమ

଴
 

ℎௗ(݊) = ቐ
ଵ
ସ
ܿ݊݅ݏ ቆఠ೎

గ
ቀ݊ − −ܯ) 1)

2ൗ ቁቇ   , ݊ = 1 … ܯ. − 1

1,                                ݊ = 0
                          (3.6) 

Where ߱௖ = గ
ଷଶ

 is the cutoff frequency of the filter. 
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Figure 3.4: Impulse response of the ideal low pass filter ℎ஽(݊) in (a), Hanning window 

function ݓ(݊) in (c) final practical impulse response h(n) in (e); and its frequency response 

(b) ideal/desired, (d) window function, (f) practical frequency response of h(n).  

 

3. Select a window function ݓ(݊)(such as Rectangular, Hamming, Hanning, Blackman, 

and Kaiser [9]) that satisfies the passband or stopband attenuation. The window 

function of Hanning window is given by 

(݊)ு௔௡௡ݓ = ቊ 0.5− ݏ݋0.5ܿ ଶగ௡
ெିଵ

0	ݎ݋݂		 ≤ ݊ ≤ ܯ − 1
݁ݏ݅ݓݎℎ݁ݐ݋																																																				0

                                (3.7) 

4. Assume the filter length 	ܯ = 10. 

5. Obtained values of ݓ(݊)  for chosen window function and the values of the 

actual/practical FIR filter coefficients by 

ℎ(݊) = ℎ஽(݊) ∗  ு௔௡௡(݊))                                                                            (3.8)ݓ

The equation (3.8) represents a practical approach is to multiply the ideal impulse 

response	ℎ஽(݊), by a suitable window function ݓ(݊), whose duration is finite. This way 
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the resulting impulse response decays smoothly towards zero. The process is illustrated in 

Figure 3.4. Figure 3.4 (b) shows the ideal frequency response and corresponding ideal 

impulse response Figure 3.4 (a). Figure 3.4 (c) shows a finite duration window function 

and its spectrum in Figure 3.3 (d). Figure 3.4 (e) shows h(n) which is obtained by 

multiplying 	ℎ஽(݊) by ݓ(݊). The corresponding frequency response shows that the ripples 

and overshoots, characteristic of direct truncation, are much reduced. However, the 

transition width is wider than for the rectangular case. The transition width of the filter is 

determined by the width of the main lobe of the window. The side lobes produce ripples in 

both passband and stopband.  

Using Equations (3.4) and (3.5) the parameters as an input, the practical filer coefficients 

ℎ(݊) were obtained by Equation (3.6) and ℎ(݊) are listed in Table 3.3.  

Table 3.3:  List of filter coefficients ℎ(݊). 

h(n)   h(n) 

h[0] 0 0 h[9] 

h[1] 0.00358404441626496 0.00358404441626496 h[8] 

h[2] 0.0127825047097972 0.0127825047097972 h[7] 

h[3] 0.0233528803117899 0.0233528803117899 h[6] 

h[5] 0.0302955272394288 0.0302955272394288 h[5] 

6. Apply filter coefficients ℎ(݊) to the ECG noisy signal and remove unwanted signal and 

get smoothed ECG signal by the following equation: 

(݊)ݕ = ℎ(0)ݔ(݊) + ℎ(1)ݔ(݊ − 1) + ℎ(2)ݔ(݊ − 2)+. . +ℎ(9)ݔ(݊ − 9)       (3.9) 

 

3.2.4   Algorithm-4/ M point average with window length FIR filter 

The M point average filter is a simple Low Pass FIR (Finite Impulse Response) filter [22]. 

The M point average filter perform three important functions: 

i. It consists of M input points and the average of those M-points and produces a single 

output point; 

ii. The filter coefficient represents amount of delay; 

iii. This filter performs as a low pass filter.  
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Consider M-point average defined by a window of length M. The equation of it is written 

as: 

[݅]ݕ = ଵ
ெ
∑ ݅]ݔ + ݆]ெିଵ
௝ୀ଴                                       (3.10) 

whereݔ	[	] is the input signal, ݕ	[	] is the output signal, and ܯ is the number of points in 

the average. 

To noise eliminate, we can choose ܯ = 3, 5, 7 … i.e., M should be choosing odd number. 

The following examples are described as below with the help of equation (3.5), we chose M=7 

which is given by the following equation: 

(݅)ݕ = 	 (݅)ݔ] + ݅)ݔ	 + 1) + ݅)ݔ	 + 2) + ݅)ݔ	 + 3) + ݅)ݔ	 + 4) + ݅)ݔ	 + 5)

+ ݅)ݔ	 + 1	ݎ݋݂																																																									[(6 < ݅ < ݊ 

(݅)ݕ 	= 		 ௬(௜)
଻

                                             (3.11) 

whereݔ(݅), ݅)ݔ + 1), ݅)ݔ + 2), ݅)ݔ + 3) … … … … (݊)ݔ.  is the input samples value of 

original ECG signal and ݕ(݅)  is the calculated output of filtered ECG signal and ݊	is the 

number of samples for analysis, represents as one-dimensional array of sample points of the 

ECG signal. 

Window length, specified as a numeric or duration scalar. When k is a positive integer 

scalar, the centered average includes the element in the current position plus surrounding 

neighbors. For example, a three-point average defined by a window of length three results in 

the following calculation for a vector A: 
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3.2.5   Algorithm-5/ Moving average weighted window filter 

We developed an algorithm based on moving average weighted window. Let ࢞(࢔) =

	࢞(૚),࢞(૛),࢞(૜) … … . ࢞(࢑)  represents one-dimensional array of sample points of the 

synthesized digitized ECG. The algorithm is described as follows:  

Step 1: The ECG signal ݔ is calculated from ݔ by following equation: ݔ =  (ݔ)	݊ܽ݁݉–ݔ

Step 2: Use four points moving average filter to smooth ݔ(݊)which is given by the equation: 

݊)ݕ − 1) = ݊)ݔ] + 1) + (݊)ݔ2 + ݊)ݔ − 1)]/4; 		2 < ݊ < ݇ − 1                      (3.12) 

Where ݔ(݊ − 1), ݊)ݔ,(݊)ݔ + 1) is the input samples of input signal ݔ	and ݕ(݊ − 1) is the 

output sample of ݕ. 

Step 3: Window size for moving weighted filtering is considered −ݓ to	ݓ, where ݓ is the 

window size. The weighted window function equation is given by:	
൤ଵିቀ ೕೢቁ

మ
൨

௪
 

Step 4: The final filtered equation is given by:   

(݅)ݕ = (݅)ݕ + ݅)ݕ + ݆)
൤ଵିቀ ೕೢቁ

మ
൨

௪
	; 		݂݆݅ > −݅	ܽ݊݀	݆ < (ݕ)ℎݐ݈݃݊݁) − ݅ + 1)                 (3.13) 

Step 5:    Apply step 4 in ECG noisy signal and get ECG filtered signal. 

Step 6: To prove of robustness of this algorithm, the performance parameters such as MSE, 

SNR and correlation are considered of this algorithm. 

 

          3.2.6   Algorithm-6/ Forward difference quotient and amplitude thresholding 

The main concept of this algorithm is based on forward difference quotient and amplitude 

thresholding. We considered difference of the noisy signal by different order (݊)to eliminate 

the ECG signal. The algorithm is described bellows: 

Consider a small increment	∆ݔ = ܶ, where T is sampling interval and the equation of 

  represents as	௡௢௜௦௬௘௖௚ݔ ௧௛samples of noisy ECG signalܯ

[݅]ݕ = (ݔ)݂ = ∑ ݅]௡௢௜௦௬௘௖௚ݔ + ݆]ெିଵ
௝ୀ଴                                                   (3.14) 

Consider the first forwards difference quotient is 
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(ݔ)݂∆ = ݔ)݂ + ܶ)−  (3.15)                                            (ݔ)݂

The second forwards difference is defined as 

∆ଶ݂(ݔ) = ݔ)݂∆ + ܶ) − (ݔ)݂∆ = ݔ)݂ + 2ܶ) − ݔ)݂ + ܶ)− ݔ)݂} + ܶ)− {(ݔ)݂

= ݔ)݂ + 2ܶ)− ݔ)2݂ + ܶ) +  (3.16)																																													(ݔ)݂

The third forwards difference is defined as 

∆ଷ݂(ݔ) = ݔ)݂∆ + 2ܶ)− ∆ଶ݂(ݔ) = ݔ)݂ + 3ܶ) − ݔ)݂ + 2ܶ)− ݔ)݂}2 + 2ܶ)−

{(ݔ)݂																																						 + ݔ)݂} + ܶ)−                                                                                           (3.17)																																																									{(ݔ)݂

The fourth forwards difference is defined as 

∆ସ݂(ݔ) = ݔ)݂∆ + 3ܶ)− ∆ଷ݂(ݔ) = ݔ)݂ + 4ܶ) − ݔ)݂ + 3ܶ)− ݔ)݂}3 + 3ܶ)−

ݔ)݂ + 2ܶ)} + ݔ)݂}3 + 2ܶ) − −{(ݔ)݂ ݔ)݂} + ܶ) − {(ݔ)݂ = ݔ)݂ + 4ܶ) − ݔ)4݂ + 3ܶ) +

ݔ)6݂ + 2ܶ) − ݔ)4݂ + ܶ) +  (3.18)                                            (ݔ)݂

                                                                             

In general, 

∆௜݂(ݔ) = ݔ)݂∆ + (݅ − 1)ܶ)− ∆௜ିଵ݂(ݔ), 1		ݎ݋݂ < ݅ < ݊                        (3.19) 

Where, n is the order of forward difference of noisy ECG signal 

After applied of forward difference equation, if there is some noisy signal, then we can 

apply the threshold (ܶℎ) 

ܶℎ =
1
ܰ෍ ௘௖௚௜ݔ

ଶ
ே

௜ୀଵ
 

௡௢௜௦௬ா஼ீݔ = ቊܾܽݏ ቀ∆
௜݂(ݔ)ቁ < ܶℎ, 0 < ܶℎ < 1	

0, 		݁ݏ݅ݓݎℎ݁ݐ݋
                                         (3.20) 

These values are the noisy data value. We have to find out their position/index and need 

to calculate their length between two consecutive noise peak values by the following iterations:  

,ܽݐܽ݀	ݕݏ݅݋݂݊݋	݊݋݅ݐ݅ݏ݋݌ ݅ = 0 

݂݅∆௜ିଵ݂(ݔ)− ∆௜݂(ݔ) > 0	ܽ݊݀		∆௜ାଵ݂(ݔ)− ∆௜݂(ݔ) > 0; 2 < ݅ < ݇ − 1 

݅ = ݅ + 2 
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Now we have to create a new error vector which stores the amplitude of noisy value. 

Initialization error vector,  

ݎ݋ݐܿ݁ݒݓ݁݊ = 	0 

Initialization error noise amplitude, 

݁݀ݑݐ݈݅݌݉ܽ	ݏݑ݋݅ݒ݁ݎ݌ = 	0 

Amplitude of the present noise sample is given by,  

݁݀ݑݐ݈݅݌݉ܽ = ((݅)ݔ)݂∆ +  ݁݀ݑݐ݈݅݌݉ܽ_ݏݑ݋݅ݒ݁ݎ݌

Duration of noise is defined by, 

ℎݐ݈݃݊݁ = ݅)ݔ	 + 1)− ;(݅)ݔ 			1 < ݅ <  (ݔ)ℎݐ݈݃݊݁

Magnitude of noise is given by, 

ܼ = ,1)ݏ݁݊݋ (ℎݐ݈݃݊݁ ×  ݁݀ݑݐ݈݅݌݉ܽ

Currently new error vector is defined by, 

	ݎ݋ݐܿ݁ݒݓ݁݊ = 	  [ܼݎ݋ݐܿ݁ݒݓ݁݊]

New amplitude of noise is given by, 

݁݀ݑݐ݈݅݌݉ܽ	ݏݑ݋݅ݒ݁ݎ݌ =  ݁݀ݑݐ݈݅݌݉ܽ	

Finally, we can reconstruct ECG signal by 

݈ܽ݊݃݅ݏ	݀݁ݐܿݑݎݐݏ݊݋ܴܿ݁ = ((ݎ݋ݐܿ݁ݒ_ݓ݁݊)ℎݐ݈݃݊݁)ݔ	 	−  ݎ݋ݐܿ݁ݒ_ݓ݁݊

3.3   Summary 

Noise of ECG signal is a great problem in diagnosis of medical science. Therefore, 

researchers are developing different methodology for noise eliminations. However, the de-

noised methods have not been improved for noisy ECG signal. Therefore, the development of 

robust method of ECG signal detection still requires the improvement in noise elimination. In 

this thesis we studied about various algorithms which are enabling to eliminate noises from 

noisy ECG signal. 
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Chapter 4 

Proposed QRS Detection Algorithm 

 

4.1   Introduction 

The QRS complex is the most prominent wave component within the electrocardiogram. 

It reflects the electrical activity of heart during the ventricular contraction and the time of its 

occurrence. Its morphology provides information about the current state of the heart. The 

identification of QRS-complexes forms the basis for almost all automated ECG analysis 

algorithms. In this chapter detection algorithm is proposed which will detect a QRS complex. 

4.2   QRS Detection Methodology 

Before obtaining the QRS complex the ECG, it was applied to preprocessing by different 

noisy algorithm as described in chapter 3.  Initial we have considered some parameter as shown 

in Figure 4.1 to detect of QRS complex. The algorithms described below approach the 

rectification stage in different ways algorithm is summarized as: 

1. Introduce ECG signals from ECG database. 

2. Perform the different noises (i.e., power line interference, Baseline wonder, EMG, 

abrupt noise) individual into the original ECG signal. 

3.  Filtered of ECG noisy signal by using Algorithm-1, Algorithm-2, and Algorithm-3 

respectively. 

4. Detection of QRS: 

5. Apply proposed threshold (T) on ECG signal  

ܶ = ଵ
ே
∑ ௘௖௚௜ݔ

ଶே
௜ୀଵ                                             (4.1) 

whereݔ௘௖௚ is the raw ECG signal and N vectors of ݔ௘௖௚௜ , ݅ ∈ {1,2, … …ܰ} of signal 

samples numbers. 

With proposed threshold (T), QRS detection is calculated by  

ො௘௖௚ݔ = ൜
௘௖௚ݔݎ݋௘௖௚݂ݔ ≥ ܶ
௘௖௚ݔݎ݋݂					0 < ܶ                                (4.2) 

6. Repeat procedures: 

Input:  

݅: present sample value, 
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݅ − 1: past sample value, 

݅ + 1: future sample value 

Assume detect position and values are zero, i.e., 

ܴ௣ = 0,ܳ௣ = 0, ܵ௣ = 0,ܴ௩ = 0,ܳ௩ = 0,ܵ௩ = 0. 

// First find out the R-wave positions and values:  

Old difference = (ݔො௘௖௚(i− 1) −  ; ((݅)ො௘௖௚ݔ

New difference = (ݔො௘௖௚(i)− ݅)ො௘௖௚ݔ + 1)); 

For ݅ =  (௘௖௚ݔ)	ℎݐ݈݃݊݁	:1

݂݅(Old difference <0 && New difference >0) 

    ܴ௣ = [ܴ௣	i]; 

   ܴ௩ = [ܴ௩ݔො௘௖௚	(i)]; 

else continue; 

// First find out the Q-wave positions and values:  

ܳ = ݅ − 1; 

݁ܿ݊݁ݎ݂݂݈ܱ݁݅݀݀)	ℎ݈݅݁ݓ   < 0) 

      Old difference = ((ݔ෢௘௖௚(ܳ − 1)−  ;((ܳ)ො௘௖௚ݔ

    ܳ = ܳ − 1; 

end 

   ܳ௣ = ൣܳ௣		Q൧; 

   ܳ௩ = [ܳ௩ݔො௘௖௚(Q)	]; 

// First find out the S-wave positions and values:  

S=i+1; 

 while (ܰ݁݁ܿ݊݁ݎ݂݂݁݅݀ݓ > 0) 

  New difference = (ݔො௘௖௚(S) − ො௘௖௚(Sݔ + 1)); 

  ܵ = ܵ + 1; 

   end 

 ܵ௣ = ൣܵ௣ − ܵ൧; 

   ܵ௣=[ܵ௣ݔො௘௖௚(S)]; 

end 
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end 

7. Finally store and detect of QRS position and values. 

8. Output: QRS detection from ECG signal 

9. Until there is no further successive ECG signal. 

10. Performance test based on accuracy, sensitivity, specification, precision. 

11. Compare this algorithm with conventional algorithm. 

 

 
Figure 4.1: Maps of QRS detection of ECG signal (݅= R wave detection, ݅ + 1=S wave 

detection, ݅ − 1=Q wave detection parameter). 

4.3   Summary 

The proposed detection achieved higher accuracy, sensitivity, specificity and precision 

value than other conventional methods. The heart beat rate will be measured accurately and 

100% accuracy from the detected QRS complexes by proposed detection algorithm and also 

specified the heart diseases based on database. 
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Chapter 5 

Results & Discussion 

 

5.1 Introduction 

In this chapter, we analyze the performance of our proposed algorithms. Many literature 

reviews have studied about the performance assessment of reconstructed signal and original 

signal and their comparative evaluation [24].  Some performance parameters are described 

below that were used in this research work. In this thesis, we considered different noises such 

as power line interference, baseline wonder and EMG and abrupt noise. Simulation results and 

performance analysis of proposed algorithms are described in following sections. 

    5.2 Performance Evaluations Parameters 

To analysis the performance of the developed algorithm which is applied on different 

types of noisy ECG signal we have used some parameters [24]. They are following: 

5.2.1 Signal to Noise ratio (SNR) 

The signal-to-noise ratio can be defined as  

ܴܵܰ௘௖௚ =
ଵ
ே
∑ ௘௖௚௜ݔ

ଶே
௜ୀଵ

ଵ
ே
∑ ௘௖௚௜ݔ

ଶே
௜ୀଵ − ଵ

ே
∑ ஽௘௡௢௜௦௘ௗ_௘௖௚௜ݔ

ଶே
௜ୀଵ

 

Where ܴܵܰ = ݋10݈ ଵ݃଴ܴܵܰ௘௖௚݀ܤ and ݔ஽௘௡௢௜௦௘ௗ_௘௖௚ is the filtered ECG signal. 

The larger value of SNR indicates that the algorithm performance is better. If SNR 

becomes low it indicates that the algorithm performance is degraded. 

5.2.2 Mean Square Error (MSE) 

It is measured between the original ECG signal and filtered ECG signal. It can be defined 

as 

ܧܵܯ =
1
ܰ෍

ቂݔ௘௖௚௜
ଶ − ஽௘௡௢௜௦௘ௗ_௘௖௚௜ݔ

ଶቃ
ே

௜ୀଵ
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Mean Square Error (MSE) should be as low as possible which indicates the better 

performance of the algorithm. 

         5.2.3 Correlation 

The discrete autocorrelation between the two signal ݔ and ݕ is defined as 

௫௫ݎ =
1
ܰ෍ ݊]௘௖௚ݔ[݊]௘௖௚ݔ + ݇]

ே

௞ୀଵ
 

and the cross correlation is  

௫௬ݎ =
1
ܰ෍ ݊]௘௖௚ݔ[݊]஽௘௡௢௜௦௘ௗ_௘௖௚ݔ + ݇]

ே

௞ୀଵ
 

The correlation coefficient (ݎ) is measured with two numerical variables or signals for 

paired observations. If the correlation coefficient is normalized, its absolute value will range 

from 0 to		1, making it easier to judge the similarity between the signals. If the normalized 

correlation coefficient is equal to either 1	or−1, the two signals are perfectly correlated.  

If		ݎ		value is close to+1, it indicates a perfect positive fit or positive relationship between the 

two signals		ݔ and ݕ i.e., the values of ݔ	increases, the values of ݕ also increases. If	ݎ value is 

close to	−1, it indicates a perfect negative fit. If 	ݎvalue is close to	0, there is no relationship 

between ݔ and	ݕ.   

         5.2.4 Power Spectral Density (PSD) 

We have investigated three non-parametric methods for power spectral estimation (PSD) 

such as Periodogram, Welch and Lomb-Scargle algorithm [24]. 

The Lomb-Scargle periodogram is a well-known algorithm for detecting and 

characterizing periodic signals in unevenly-sampled data. Lomb-Scargle algorithm can 

compute spectra of non-uniform sampled signals or signals with missing samples.  

Taking Fourier transform of autocorrelation equation results are an estimate of power 

spectrum [24]:  

ܲ൫݁௝ఠ൯ = ෍ ௫௫݁ି௝ఠ௡ݎ
ேିଵ

௡ୀିேାଵ

 

is called Periodogram. 
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Consider, an N point data ECG sequence is partition as 0,[݊]ݔ ≤ ݊ ≤ ܰ − 1 , into ܮ 

segments of ܯ samples each the segments ݔெ௟ [݊]  are formed we have ܰ ≫  ,Thus .ܯܮ

ெ௟ݔ [݊] = ݊]ݔ + ܯ݈ − [ܯ ቄ0 ≤ ݊ ≤ ܯ − 1
1 ≤ ݈ ≤ ܮ  

For estimate of Welch PSD computation of ܮ periodograms 

ெܲ
௟ ൫݁௝ఠ൯ =

1
ܹ
อ

1
ܰ෍ ெ௟ݔ [݊]݁ି௝ఠ௞

ேିଵ

௡ୀ଴

อ

ଶ

, 1 ≤ ݈ ≤  ܯ

Where,	ܹ = ∑ ଶ(݈)ெݓ
௟ୀଵ  and ݓ(݈) is window function. This is the Welch method of 

PSD. 

5.3  Denoising Simulation Results 

The ECG dataset used in this research work are collected from the MIT/BIH Database 

[25]. In Figure 5.1-5.23 we have plotted the raw ECG signal and noisy ECG signal and also 

filtered signal with different noise density such as ߪ	 = 0, 0.25, 0.5, 0.75, 1 . We have 

considered different noises such as power line interference, baseline wonder and EMG and 

abrupt noise. For power line interference and baseline wonder, we have considered 50Hz noise 

frequency and 0.5mV amplitude for added into ECG signal. This electromyography (EMG) 

noise is simulated by adding random noise to the ECG. Array of random numbers was created 

consisting of values of ±0.50 of the ECG maximum amplitude to the uncorrupted ECG. The 

reduced noise levels are formed by scaling the random numbers by the appropriate amount. 

Electromyography (EMG) noise shows the greater noise and has broadband frequency 

characteristics, which overlaps the frequency spectrum of the QRS complex.  For abrupt shift 

noise random numbers (within ±0.5 mV) were generated, but the same random number was 

taken for 500 ms duration cycle and then another random number was generated for next cycle 

and so on. We have considered the amplitude and frequency of powerline noise and baseline 

drift noise are same values for denoising in this thesis. All of these noises are filtered by 

Algorithm-1, Algorithm-2, Algorithm-3, Algorithm-4, Algorithm-5, and Algorithm-6 

respectively.  

To remove noisy signal based on proposed algorithms 1,2,3 4, 5 and 6, we have added the 

noise into the raw ECG signal at different intensity of noise such as 0, 0.25, 0.5, 0.75, and 1 as 

illustrated in Figure 5.1. The corrupted ECG signal for EMG noise is shown in Figure 5.1.  

Figure 5.1 shows the noisy ECG signal with different noise density such as ߪ	 =
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0, 0.25, 0.5, 0.75, 1 on left column Figure and its ECG filtered signal by using Algorithm -1 on 

the right column Figure for the EMG noise. Similarly, Figurescan be  shown for EMG noise, 

Baseline drift noise and abrupt noise. We have observed that Algorithm-1 is not showing good 

smooth signal if noise density is increases. Figure 5.2 shows noisy and ECG filtered signal by 

Algorithm-2 for powerline noise. This algorithm is also not showing smooth ECG signal with 

noise density increases. Figure 5.3 shows for Algorithm-3 for EMG noise, only abrupt noise is 

removed for ߪ = 0	&	0.25 but ߪ = 	0.5 to 1 does not show properly in algorithm 3.  

Algorithm-4 applied on the corrupted ECG signal to eliminate the various noises. The 

Algorithm-4 is able to remove the noise from the corrupted ECG signal at different noise 

intensity level. The filtered baseline shift noise-free signal is shown in Figure 5.4.The ECG 

filtered signal with all different noise incorporate with powerline, EMG and baseline shift noise 

has properly remove the noise for Algorithm-4. On the other hand, the abrupt noise is properly 

remove by Algorithm-4. Figure 5.5 shows denoising Algorithm-5 with power line noise 

removal ECG filtered signal. This algorithm remove EMG noise with higher noised density as 

well as properly remove the noise of baseline drift. But it can not properly remove the abrupt 

noise from ECG. 

To eliminate the abrupt baseline shift noise from ECG signal we have used the Algorithm-

6 to remove the noise at each step of it as shown in Figure.  We have used fourth order forward 

difference equation with threshold (ܶℎ = 0.3)  for remove of noises by sampling 

frequency ௦݂ =  In Figure 5.6 (c) – (d)it shows the output of the first, 3rd and fourth .ݖܪ170

forward different equation. Figure 5.6(f) shows the filtered ECG signal, where the abrupt 

baseline shifts removed by proposed algorithm-6. Similarly, proposed algorithm-6 have also 

applied to eliminate noise, for noise intensity is 0, 0.25, 0.5, and 0.75 and 1 respectively. It is 

observed that Algorithm-6 does not properly remove the noise with higher noise density. On 

the other sides the EMG noise and abrupt noise is properly remove by Algorithm with higher 

noise density. Removal of abrupt shift noise is shown in figure 5.7 at different noise density. 

Specially the Algorithm-6 is fully support to remove of abrupt noise with higher noise density.  
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Figure 5.1: The raw ECG signal collected from MIT/BIH Database and its filter ECG signal 

with different noise density ߪ = 0, 0.25, 0.5, 0.75, 1 for EMG noise by Algorithm-1. 

 

 

 

 Figure 5.2 : The raw ECG signal collected from MIT/BIH Database and its filter ECG signal 
with different noise density ߪ = 0, 0.25, 0.5, 0.75, 1 for powerline noise by Algorithm-2. 
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Figure 5.3: The raw ECG signal collected from MIT/BIH Database and its filter ECG signal 
with different noise density ߪ = 0, 0.25, 0.5, 0.75, 1 for EMG noise by Algorithm-3. 
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Figure 5.4: The raw ECG signal collected from MIT/BIH Database and its filter ECG signal 
with different noise density ߪ = 0, 0.25, 0.5, 0.75, 1 for Baseline drift noise by Algorithm-

4. 
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Figure 5.5: The raw ECG signal collected from MIT/BIH Database and its filter ECG signal 
with different noise density ߪ = 0, 0.25, 0.5, 0.75, 1 for powerline noise by Algorithm-5. 
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Figure 5.6: Simulation results on abrupt base line shift noise analysis when noise intensity is 

100% for Algorithm-6. 
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Figure 5.7: The raw ECG signal collected from MIT/BIH Database and its filter ECG signal 
with different noise density ߪ = 0, 0.25, 0.5, 0.75, 1 for Abrupt noise by Algorithm-6. 
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To measure the performance for different noise removal methods, the distortion between 

original signal and reconstructed signal is measured by mean square error (MSE), signal-to-

noise ratio (SNR) and correlation coefficients values. In this thesis, the performance parameters 

such as SNR (in dB), MSE, correlation which will prove the robustness of these algorithms are 

shown in Table I for all proposed algorithms. First, we have added the noise into the raw ECG 

signal at different intensity of noise such as 0, 0.25, 0.5, 0.75, and 1. The proposed Algorithm 

4 have acquired highest SNR, lowest MSE and also good correlation coefficients values than 

Algorithm-1, 2 & 3. The Algorithm -1 has achieved 91.737 for SNR, 0.0015162 for MSE and 

0.9810 for correlation on an average value in MIT-BIH database as shown in Table 5.1 for power 

line interference and baseline drift noise. However, in the case of EMG and abrupt noise, the 

values of SNR, MSE and Correlation value are slightly different than power line interference 

and baseline drift noise. We have checked that the correlation coefficients value(ݎ), if ݎ > 0.8 

is generally described as strong, whereas ݎ < 0.5  is generally described as weak in MIT-BIH 

database. In Table 5.1, Algorithm-1 to 6 shows strong correlation value (ݎ ≈ 1)  whereas 

Algorithm-1 shows rang of correlation value ݎ ≈ 0.99 to ݎ ≈ ݎ , 0.6 ≈ 0.99 to ݎ ≈ 0.55  for 

Algorithm-2, ݎ ≈ 0.99 to ݎ ≈ 0.56  for Algorithm-3, ݎ ≈ 0.98 to ݎ ≈ 0.91  for Algorithm-4, 

ݎ ≈ 0.91 to ݎ ≈ 0.86  for Algorithm-5 and ݎ ≈ 0.91 to ݎ ≈ 0.57  for Algorithm-6   for all 

noises. Someway the correlation value has decreased depends on the vary of the noise density 

 .This result show in visual representation from Figure 5.8-5.13 .ߪ

Figure 5.8 (a) & (c) shows for SNR value is higher for Algorithm-1 than others Algorithms 

for powerline noise with ߪ = 0. It is gradually decreases with increase of ߪ, but Algorithm-5 

is increased the SNR value after ߪ = 0.5 for EMG noise than Algorithm 1,2,3,4, & 6. It also 

shows the numerical values in Table I. In Figure 5.8 (b), the SNR values of Algorithm-4 show 

the highest values than other algorithms with the increase of  . Figure 5.8 (d), SNR value of 

Algorithm-1 is higher than others for ߪ = 0, but Algorithm-6 show good SNR values than 

others. 

Figure 5.9 (a), (b), (c), & (d) shows for lower MSE value for Algorithm-6 than others 

Algorithms for with ߪ = 0. It is gradually increases with increase of ߪ, but for abrupt noise, its 

remain low MSE values. Algorithm-4 & 6 show the lowest MSE value for all noised with 

different noises. It also shows the numerical values in Table 5.1.  

Figure 5.10 (a), (b), & (c) shows for higher correlation coefficient values for Algorithm-4 

than others Algorithms for powerline noise, EMG and baseline shift noise with ߪ =
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0, 0.25,0.5,0.75,1. It shows numerically near about 1. Figure 5.9 (d), shows higher correlation 

coefficient values for Algorithm-6 than others. It also shows the numerical values in Table 5.1.  

Figure 5.11 (a) – (f) shows the comparison between SNR and noise density of different 

noises such as powerline noise, EMG noise, baseline shift noise and abrupt noise for denoising 

algorithms. The SNR value is increased gradually for Algorithm 1,2,4 &5 of powerline noise 

and baseline shift noise. Algorithm 3 & 6 has the higher value than other algorithms for EMG 

noise. 

Figure 5.12 (a) – (f) shows the comparison between MSE and noise density of different 

noises such as powerline noise, EMG noise, baseline shift noise and abrupt noise for denoising 

algorithms. The MSE value for abrupt noise shows higher value for all noise density (ߪ)	of 

Algorithm 1 - 5. Whereas Algorithm 6 show lower MSE value than others algorithms.  

Figure 5.13 (a) – (f) shows the comparison between MSE and noise density of different 

noises such as powerline noise, EMG noise, baseline shift noise and abrupt noise for denoising 

algorithms. The correlation coefficient value for EMG noise shows higher value for all noise 

density (ߪ)	of Algorithm 1, 3 & 6. Where as Algorithm 2, 4 & 5 show higher correlation 

coefficient value than others noises.  

However, in visual representation, Figures 5.8 – 5.13, the Algorithm 4 and 6 have shown 

good smoothed ECG signal as compared to Algorithm-1, 2, 3 & 5. In Table 5.1, Algorithm-4 

& 6 achieved higher SNR, lower MSE, and good correlation value which is approximately 1 

with the vary of noise density. Therefore, the filtered ECG signal and original signal are 

matched each other. For signal processing application, higher signal-to-noise ratio would be 

better, that would mean less distortion. So, Algorithm-4 & 6 proved the robustness for de-

noised ECG signal than Algorithm-1,2,3 & 5 for four different noises. 

Table 5.1: Results of performance parameters for proposed algorithms. 

 
 

Methods Noises Performance 
parameters 
(avg. results 
of total no. 
of patients) 

Percentage of Noise intensity (࣌) 
0 0.25 0.5 0.75 1 

Patient 
Data 
100, 
105, 
107, 
108, 
109, 
111, 
112, 

Algorithm-
1 

Power line 
interference 

SNR 60.571 32.784 8.4506 3.7776 2.1292 
MSE 0.00016

9 
0.00424 0.01646 0.03682 0.0653

2 
Correlation 0.9987 0.9443 0.8225 0.6946 0.5868 

EMG SNR 60.571 18.344 14.849 8.3965 4.7836 
MSE 0.00016

95 
0.00197

74 
0.00737

96 
0.01656

65 
0.0290

783 
Correlation 0.9987 0.9733 0.9076 0.8230 0.7344 

SNR 60.571 32.784 8.4506 3.7776 2.1292 
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113, 
114, 
115, 
119, 
200, 
213 

 

Baseline 
Drift Noise 

MSE 0.00016
9 

0.00424 0.01646 0.03682 0.0653
2 

Correlation 0.9987 0.9443 0.8225 0.6946 0.5868 
Abrupt 

Baseline 
Shift Noise 

SNR 60.571 6.3657 1.7134 0.7280 0.3413 
MSE 0.0001 0.0218 0.0811 0.1910 0.4074 

Correlation 0.9987 0.7849 0.5386 0.3704 0.2960 
Algorithm-

2 
Power line 
interference 

SNR 56.457 21.183 7.3699 3.5317 2.0424 
MSE 0.00246

38 
0.00656

66 
0.01887

41 
0.03938

64 
0.0681

034 
Correlation 0.9924 0.9340 0.8061 0.6753 0.5671 

EMG SNR 56.457 15.431 4.8328 2.2455 1.2957 
MSE 0.00246

38 
0.00901

43 
0.02878

25 
0.06194

61 
0.1073

518 
Correlation 0.9924 0.9032 0.7336 0.5900 0.4763 

Baseline 
Drift Noise 

SNR 56.457 21.183 7.3699 3.5317 2.0424 
MSE 0.00246

38 
0.00656

66 
0.01887

41 
0.03938

64 
0.0681

034 
Correlation 0.9924 0.9340 0.8061 0.6753 0.5671 

Abrupt 
Baseline 

Shift Noise 

SNR 56.457 8.2900 2.4606 1.0278 0.5123 
MSE 0.00246

38 
0.01677

93 
0.05652

99 
0.13533

72 
0.2714

708 
Correlation 0.9924 0.8250 0.5954 0.4197 0.3387 

Algorithm-
3 

Power line 
interference 

SNR 52.975 22.293 8.1414 3.9558 2.3002 
MSE 0.00262

57 
0.00623

96 
0.01708

55 
0.03516

33 
0.0604

732 
Correlation 0.9930 0.9338 0.8045 0.6729 0.5646 

EMG SNR 52.975 32.730 15.073 7.9476 4.8287 
MSE 0.00262

57 
0.00424

98 
0.00922

82 
0.01750

22 
0.0288

067 
Correlation 0.9930 0.9648 0.8922 0.8023 0.7096 

Baseline 
Drift Noise 

SNR 52.975 22.293 8.1414 3.9558 2.3002 
MSE 0.00262

57 
0.00623

96 
0.01708

55 
0.0351 0.0604

732 
Correlation 0.9930 0.9338 0.8045 0.6729 0.5646 

Abrupt 
Baseline 

Shift Noise 

SNR 52.9751
04 

8.34745
03 

2.50779
35 

1.04650
39 

0.5237
861 

MSE 0.00262
57 

0.01666
39 

0.05546
75 

0.13291
98 

0.2655
684 

Correlation 0.9930 0.8091 0.5727 0.3989 0.3223 
Algorithm-

4 
Power line 
interference 

SNR 91.737 91.644 91.361 90.893 90.244 
MSE 0.00151

62 
0.00151

78 
0.00152

25 
0.00153

03 
0.0015

413 
Correlation 0.9810 0.9809 0.9808 0.9807 0.9804 

EMG Noise SNR 91.737 79.236 57.918 38.119 27.006 
MSE 0.00151

62 
0.00175

55 
0.00240

16 
0.00364

90 
0.0051

507 
Correlation 0.9810 0.9761 0.9634 0.9396 0.9135 

Baseline 
Drift Noise 

SNR 91.737 91.644 91.361 90.893 90.244 
MSE 0.00151

62 
0.00151

78 
0.00152

25 
0.00153

03 
0.0015

413 
Correlation 0.9810 0.9809 0.9808 0.9807 0.9804 

Abrupt 
Baseline 

Shift Noise 

SNR 91.737 6.7900 1.9223 0.8112 0.3886 
MSE 0.00151

62 
0.02048

59 
0.07235

92 
0.17145

78 
0.3578

642 
Correlation 0.9810 0.7349 0.4844 0.3225 0.2645 

Algorithm-
5 

Power line 
interference 

SNR 22.2262 22.2259 22.2250 22.2234 22.221
2 
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MSE 0.00011
34 

0.00011
34 

0.00011
35 

0.00011
36 

0.0001
138 

Correlation 0.9149 0.9146 0.9134 0.9113 0.9085 
EMG Noise SNR 22.2262 22.2237 18.2168 16.2016 14.188

1 
MSE 0.00011

34 
0.00013

36 
0.01143

10 
0.11575

70 
0.1170

718 
Correlation 0.9149 0.9116 0.9023 0.8839 0.8663 

Baseline 
Drift Noise 

SNR 22.2262 22.2259 22.2250 22.2234 22.221 
MSE 0.00011

34 
0.00011

34 
0.00011

35 
0.00011

36 
0.0001

138 
Correlation 0.9149 0.9146 0.9134 0.9113 0.9085 

Abrupt 
Baseline 

Shift Noise 

SNR 22.226 10.947 7.5882 5.3408 3.1911 
MSE 0.00011

34 
0.01468

01 
0.23647

62 
0.40806

59 
0.7278

047 
Correlation 0.9149 0.6461 0.4069 0.2636 0.2218 

Algorithm-
6 

Power line 
interference 

SNR 23.493 18.190 12.389 9.5634 8.2008 
MSE 0.00014

03 
0.00014

31 
0.01203

10 
0.08103

10 
0.1035

000 
Correlation 0.8605 0.8068 0.7893 0.6700 0.5723 

EMG Noise SNR 22.2262 22.2237 18.2168 16.2016 14.188
1 

MSE 0.00011
34 

0.00013
36 

0.01143
10 

0.11575
70 

0.1170
718 

Correlation 0.9149 0.9116 0.9023 0.8839 0.8663 
Baseline 

Drift Noise 
SNR 23.493 18.190 12.389 9.5634 8.2008 
MSE 0.00014

03 
0.00014

31 
0.01203

10 
0.08103

10 
0.1035

000 
Correlation 0.8605 0.8068 0.7893 0.6700 0.5723 

Abrupt 
Baseline 

Shift Noise 

SNR 23.493 12.764 10.363 9.5443 6.3018 
MSE 0.00014

03 
0.00014

31 
0.00110

31 
0.03103

1 
0.0903

50 
Correlation 0.8605 0.8162 0.7951 0.7826 0.6970 
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(a)                                                                              (b) 

 
(c)                                                                                  (d) 

 
Figure 5.8: Comparison of SNR with noise density for (a) powerline noise (b) EMG 

noise (c) Baseline Drift noise (d) Abrupt noise of denoising algorithms. 
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(a)                                                                                  (b) 

 

(c)                                                                                   (d) 
 
Figure 5.9: Comparison of MSE with noise density for (a) powerline noise (b) EMG 

noise (c) Baseline Drift noise (d) Abrupt noise of denoising algorithms. 
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(a)                                                                                        (b) 

 

(c)                                                                                     (d) 

Figure 5.10: Comparison of Correlation coefficient with noise density for (a) powerline noise 
(b) EMG noise (c) Baseline Drift noise (d) Abrupt noise of denoising algorithms. 
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(a)                                                                            (b) 

 

(c)                                                                                 (d) 

 

(e)                                                                               (f) 

 

Figure 5.11: Comparison of SNR with noise density for (a) Algorithm-1; (b) Algorithm-2; (c) 
Algorithm-3; (d) Algorithm-4; (e) Algorithm-5; and (f) Algorithm-6 of different noises. 
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(a)                                                                                         (b) 

 
(c)                                                                                           (d) 

 
(e)                                                                                         (f) 

Figure 5.12: Comparison of MSE with noise density for (a) Algorithm-1; (b) 
Algorithm-2; (c) Algorithm-3; (d) Algorithm-4; (e) Algorithm-5; and (f) Algorithm-6 

of different noises. 
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(a)                                                                                 (b) 

 

(c)                                                                                (d) 

 

(e)                                                                                 (f) 
Figure 5.13: Comparison of correlation coefficient with noise density for (a) 

Algorithm-1; (b) Algorithm-2; (c) Algorithm-3; (d) Algorithm-4; (e) Algorithm-5; 
and (f) Algorithm-6 of different noises. 
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For comparison between the ECG signal and filtered signal by proposed algorithm, we 

have also considered three processes such autocorrelation, cross-correlation and power spectral 

density (PSD) for robustness of algorithms.  In Figure 5.32-5.35, correlation values for different 

types of noises of proposed six algorithms have been shown. Figure 5.32 & 5.33, the first 

subplot indicates that the ECG signal and filtered signal by Algorithm-1, Algorithm-2, 

Algorithm-3, Algorithm-4, Algorithm-5, and Algorithm-6 with high peaks are good correlated 

individually by autocorrelation for power line noise with ߪ = 0 . This shows that the 

autocorrelation is a periodic function. The second subplot is shown while the high peak shown 

in filtered signal is present in the ECG signal by cross correlation. This is same as first subplot 

because autocorrelation and cross-correlation maintain same properties in some cases. Figure 

5.33 shows for powerline noise with ߪ = 0.25, Figure 5.34 shows for EMG noise with ߪ =

0.25 and Figure 5.34 shows for abrupt noise with ߪ = 0.25. These shows that if we increase 

the noise density, the correlation between raw ECG and filter ECG can be fluctuated. 

 

Figure 5.14: Correlation of ECG signal and filtered signal by auto correlation (ܴ௫௫(߬)) and 

cross correlation (ܴ௫௬(߬)) for powerline interference noise with ߪ = 0. 
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Figure 5.15: Correlation of ECG signal and filtered signal by auto correlation (ܴ௫௫(߬)) and 

cross correlation (ܴ௫௬(߬)) for powerline interference noise with  ߪ = 0.25. 

 

Figure 5.16: Correlation of ECG signal and filtered signal by auto correlation (ܴ௫௫(߬)) and 

cross correlation (ܴ௫௬(߬)) for EMG Noise with ߪ = 0.25. 
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Figure 5.17: Correlation of ECG signal and filtered signal by auto correlation (ܴ௫௫(߬)) and 

cross correlation (ܴ௫௬(߬)) for Abrupt Noise with ߪ = 0.25. 
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with different noise density, Figure 5.22 for Algorithm-5 of powerline noise with different 

noise density, Figure 5.23 for Algorithm-6 of abrupt shift noise with different noise density.  

A periodogram calculates the significance of different frequencies in time-series data to 

identify any intrinsic periodic signals. It shows statistically significant and harmonic is 

periodic. We have used for test 50 Hz in the noisy signal into ECG signal whereas sampled 

frequency of each signal 500Hz and then estimate power spectral density by Periodogram, and 

Welch methods. In Figure 5.18– 5.23 it can be observed that peak of noisy signal is raised 

because it’s added by noise and the larger the amplitude for a given power. The filtered signal 

by Algorithm- 4 & 6 have smaller amplitude of power than noisy ECG signal and more and 

more resolution of side lobes of filtered signal than Algorithm 1, 2, 3 & 5. It is clear that the 

Algorithm 4 & 6 is shown better harmonic frequency than Algorithm 1, 2, 3 & 5.  

We also observed the difference between the ECG noisy signal and filtered signal by 

Spectrogram. The spectrogram shows visual representation of spectrum of frequency in signal 

as they vary with time. The ECG signal is applied to short time Fourier transform by eight 

segments with Hamming window of length 512, 256 samples that of each of segment overlaps 

with 1000Hz sampling frequency. Figure 5.24 for Algorithm-1 of EMG noise with different 

noise density, Figure 5.25 for Algorithm-2 of powerline noise with different noise density, 

Figure 5.26 for Algorithm-3 of EMG noise with different noise density, Figure 5.27 for 

Algorithm-4 of baseline drift noise with different noise density, Figure 5.28 for Algorithm-5 

of powerline noise with different noise density, Figure 5.29 for Algorithm-6 of abrupt shift 

noise with different noise density. Figure 5.24 shows a signal in which the vertical axis is 

frequency, the horizontal axis is time, and amplitude is shown on a color map.  This map shows 

the amount of energy of ECG signal is displayed as level of yellow color at time and frequency 

where weak energy appears blue color in the spectrogram. The Algorithm 4 & 6 have shown 

high amount of energy of ECG signal as yellow and also clearly show blue color which 

indicates the removal of noise from ECG. 

Researchers of biomedical signal processing fields have done some state of the art noise 

elimination algorithms. We tried to develop some algorithms for research contribution in this 

field as comparison with some exciting methods as in Table 5.2. The results of this table show 

that the proposed algorithms have higher results than other reference works. The results show 

the proposed algorithms have enough robustness in the field of de-noised ECG signal 

processing applications. 
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Table 5.2. Comparison results of existing methods on ECG dataset. 
 

Ref. Noises ECG 
databas
es(MIT
-BIH) 

Methods SNR 

 

PRD 
(Avg.
) 

MSE 

(Avg..
) 

Correlati
on 
(Avg..) 

[4] Base 
line 
wander 

Patient 
Data 
100, 
106, 
215 

LMS 

NLMS 

3.4708 
(Avg.) 
3.8593 
(Avg.) 

0.203
4 
0.203
4 

0.0653 

0.0652 
× 

Power 
line 
interfere
nce, 

Patient 
Data 
100, 
106, 
215 

LMS 
 

NLMS 

7.5909 
(Avg.) 

7.0324 
(Avg.) 

6.631
9 

 
4.341
4 

0.0311 
 

0.0310 

× 

[5] WGN, 
Poisson 

Patient 
Data 

100 

Proposed 
Algorithm 
with 
DWT 

× × × × 

[6] Power 
line 
interfere
nce 

Not 
given 
patient 
Data 

Band stop 
filter (3 
order FIR 
filter) 

× × × × 

Base 
line 
wander 

High Pass 
Filter 

× × × × 

Electro
myograp
hy noise 
(EMG 
noise) 

Low Pass 
Filter 

× × × × 

[7] Power 
line 
interfere
nce 

Not 
given 
patient 
Data 

Linear 
phase 
digital 
filter × × × × 

[8] Impulsiv
e noise 

Not 
given 
patient 
Data. 

State 
Space 
Recursive 
Least 
Square 
(SSRLS) 
algorithm × × 

Below 
20dB × 

[9] Power 
line 

Not 
given 

State 
Space     
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interfere
nce 

patient 
Data. 

Recursive 
Least 
Square 
(SSRLS) 
algorithm 

Proposed 
Algorith
ms 

Power 
line 
interfere
nce 
noise 

 

Patient 
Data 
100, 
105, 
107, 
108, 
109, 
111, 
112, 
113, 
114, 
115, 
119, 
200,  
213 
 

Algorithm
-1 

60.571 
× 

0.0001
69 

0.9987 

Algorithm
-2 

21.183 
× 

0.0024
638 

0.9924 

Algorithm
-3 

52.975 
× 

0.0026
257 

0.9930 

Algorithm
-4 

91.737 
× 

0.0015
162 

0.9810 

Algorithm
-5 

22.226
2 × 

0.0001
134 

0.9149 

Algorithm
-6 

23.493 
× 

0.0001
403 

0.8605 

Base 
line drift 
noise 

Algorithm
-1 

60.571 
× 

0.0001
69 

0.9987 

Algorithm
-2 

21.183 
× 

0.0024
638 

0.9924 

Algorithm
-3 

52.975 
× 

0.0026
257 

0.9930 

Algorithm
-4 

91.737 
× 

0.0015
162 

0.9810 

Algorithm
-5 

22.226
2 × 

0.0001
134 

0.9149 

Algorithm
-6 

23.493 
× 

0.0001
403 

0.8605 

EMG 
noise 

Algorithm
-1 

60.571 
× 

0.0001
695 

0.9987 

Algorithm
-2 

56.457 
× 

0.0024
638 

0.9924 

Algorithm
-3 

52.975 
× 

0.0026
257 

0.9930 

Algorithm
-4 

91.737 
× 

0.0015
162 

0.9810 

Algorithm
-5 

22.226
2 × 

0.0001
134 

0.9149 

Algorithm
-6 

22.226
2 × 

0.0001
134 

0.9149 
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Abrupt 
Baseline 
Shift 
noise 

Algorithm
-1 

60.571 
× 

0.0001 0.9987 

Algorithm
-2 

56.457 
× 

0.0024
638 

0.9924 

Algorithm
-3 

52.975
104 × 

0.0026
257 

0.9930 

Algorithm
-4 

91.737 
× 

0.0015
162 

0.9810 

Algorithm
-5 

22.226 
× 

0.0001
134 

0.9149 

Algorithm
-6 

23.493 
× 

0.0001
403 

0.8605 
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Figure 5.18: Power spectral density of ECG signal and filtered signal by Periodogram, Welch 
method and Lomb-Scargle algorithm by Algorithm-1 for EMG noise. 
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Figure 5.19: Power spectral density of ECG signal and filtered signal by Periodogram, Welch 

method and Lomb-Scargle algorithm by Algorithm-2 for powerline noise. 
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Figure 5.20: Power spectral density of ECG signal and filtered signal by Periodogram, Welch 

method and Lomb-Scargle algorithm by Algorithm-3 for EMG noise. 
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Figure 5.21: Power spectral density of ECG signal and filtered signal by Periodogram, Welch 

method and Lomb-Scargle algorithm by Algorithm-4 for Baseline drift noise. 
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Figure 5.22: Power spectral density of ECG signal and filtered signal by Periodogram, Welch 

method and Lomb-Scargle algorithm by Algorithm-5 for powerline noise. 
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Figure 5.23: Power spectral density of ECG signal and filtered signal by Periodogram, Welch 

method and Lomb-Scargle algorithm by Algorithm-6 for Abrupt shift noise. 
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Figure 5.24: Spectrogram of noisy ECG and filtered ECG signal by Algorithms 1 for EMG 
noise. 
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Figure 5.25: Spectrogram of noisy ECG and filtered ECG signal by Algorithm-2 for 

powerline noise. 
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Figure 5.26: Spectrogram of noisy ECG and filtered ECG signal by Algorithm-3 for EMG 
noise. 
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Figure 5.27: Spectrogram of noisy ECG and filtered ECG signal by Algorithm- 4 for 
Baseline drift noise. 
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 Figure 5.28: Spectrogram of noisy ECG and filtered ECG signal by Algorithm-5 for 
Powerline noise. 

 

  



77 
 

 Figure 5.29: Spectrogram of noisy ECG and filtered ECG signal by Algorithm-6 for 
Abrupt shift noise. 
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5.4 QRS Detection Simulation Results 

The performance parameters for detection have used accuracy, sensitivity, specificity, 

precision [26]. These parameters are defined as follows: 

 

Accuracy =
Total	no. of	correctly	detected	sample	points

Total	numbers	of	sample	points × 100 

Sensitivity =
True	Positive

True	Positive + Fasle	Negative × 100 

Specificity =
True	Negative

True	Negative + Fasle	Positive × 100 

Or 

Accuracy =
TP + TN

TP + FN + TN + FP × 100 

Sensitivity =
TP

TP + FN × 100 

Specificity =
TN

TN + FP × 100 

After filtered ECG signal we can detect QRS complex of ECG signal by using Algorithm-

4. Figure 5.31 shows QRS detection for the full sample indexes that was given in MIT-BIH 

database and Figure 5.30, its small-scale sample indexes. The ECG signal obtained after the 

thresholding is shown 3rd row in Figure 5.30 & 5.31. Finally, we have successfully detected 

the QRS complexes in ECG signal which are shown 4th row in Figure 5.30 & 5.31. We also 

present a comparison of results obtained with the algorithms implemented as Table 5.3.  

The values presented are the results we got after doing multiple tests with each algorithm, 

and testing different detection parameters. We can get better results in accuracy, sensitivity, 

specificity, precision parameters than others with the entire database. For example, in Hamilton 

& Tompkins or Pan & Tompkins algorithm [27, 28], have shown good detection rate but they 

don’t find smaller peak in fixed interval. This algorithm would good sensitivity if local smaller 

peak would be detected by low interval, however the predictively or precision would be worse. 

In order to evaluate the performance of proposed algorithm, we calculate several performance 

criteria, such as, sensitivity, specificity and accuracy. To calculate those factors, at first, we 
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have to calculate TP, TN, FP and FN. TP beats are those beats which are annotated as 1 or QRS 

wave both in algorithm and database. TN beats are those beats which are annotated as 0 or 

lower value of R wave both in algorithm and database. FP beats are those beats which are 

annotated as 1 or QRS wave algorithm but annotated as 0 or lower value of R wave in database. 

FN beats are those beats which are annotated as 0 or lower value of R wave in the algorithm 

but annotated as 1 or QRS wave in the database. The number of TP, TN, FP and FN for each 

signal is given in Table 5.3. 

The proposed detection has acquired the values of detection parameter such as 95.40% 

accuracy, 99.63% sensitivity, 89.28% specificity, and 98.62% precision. for the patients id 108. 

It proved that our algorithm is simulated properly we can also be observed the results of other 

patient id in Table 5.4.   

The comparison of proposed detection method and others state of the art shows in Table 

5.5.  The referenced methods have considered only single ECG signal. We have given only 

average value on 4 patient recorded data with three detection parameters such as accuracy, 

sensitivity and specificity. All the reference authors have worked on only detection parameter 

of sensitivity.  
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Table 5.3: Number of TP, TN, FP and FN for each ECG signal. 

 

Sl. No. 

Original 

ECG 

Signal (File 

#) 

Total No. 

of Beats 

True 

Positive 

TP 

True 

Negative 

TN 

False 

Positive 

FP 

False 

Negative 

FN 

1 100 43822 440 39728 3550 104 

2 105 40683 811 38288 1439 145 

3 107 43827 3444 32830 7398 155 

4 108 49309 29004 18035 2165 105 

 

Figure 5.30: The detected QRS 
complexes in ECG signal (small sample 
indexes[n]). 

Figure 5.31: The detected QRS 
complexes in ECG signal (Full sample 
indexes [n]). 
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Table 5.4: The calculated value of sensitivity, specificity and accuracy of the tested data. 

Sl. No. Original ECG Signal (File #) Sensitivity (%) Specificity (%) Accuracy (%) 

1 100 80.88 91.79 91.66 

2 105 84.83 96.37 96.10 

3 107 95.69 81.60 82.76 

4 108 99.63 89.28 95.40 

 

Table 5.5: Comparisons of performance parameters for detection algorithms. 

Algorithm Database Accuracy (%) Sensitivity (%) Specificity (%) 
J. Pan 1985 

[11] 
MIT-BIH − 99.30 − 

N. Arzeno 
2008 [22] 

MIT-BIH − 99.68 − 

V. Afonso 
1999 [27] 

MIT-BIH − 99.59 − 

P. Hamilton 
1986 [28] 

MIT-BIH − 99.69 − 

J. Martinez 
2004 [29] 

MIT-BIH, QT, 
ST-T, CSE 

− 99.66 − 

C. Li 1995 
[30] 

MIT-BIH − 99.80 − 

B. 
Abibullaev 
2011 [31] 

MIT-BIH − 97.20 − 

Q. Xue 1992 
[32] 

MIT-BIH − 99.50 − 

D. Coast 
1990 [33] 

AHA − 97.25 − 

R. Poli 1995 
[34] 

MIT-BIH − 99.60 − 

A. Martinez 
2010 [35] 

MIT-BIH, QT, 
ST-T,TWA 

− 99.81 − 

Proposed MIT-BIH 91.48 (on 
average from 

Table IV) 

90.27(on average 
from Table IV) 

89.76(on average 
from Table IV) 
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5.5 Summary 
Many researchers have done some state of the art noise removal algorithms. We did some 

research contribution in this field as comparison in our proposed noise removed algorithms as 

in Table 5.2 and QRS detection algorithm. in Table 5.5. This table shows that the proposed 

algorithms are the highest results than other reference works. The results are shown in average 

of SNR, PRD, MSE, correlation coefficients values because each signal of MIT-BIH database 

is simulated and figure out in average of all signals for comparisons. 
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Chapter 6 

Chapter 1:  Conclusion and Future Work 

 
6.1 Conclusion 

We have successfully filtered ECG signal and also detected the QRS complex in ECG 

signal. The results show higher signal-to-noise ratio, good PRD, low MSE and also positive 

correlation values which represent strong correlation between ECG signal and filtered signal. 

The simulation results have shown that proposed denoising algorithms are better for 

diagnostics purposes of ECG and proposed QRS detection algorithms are more efficient for 

detection of heart diseases. The proposed detection achieved higher accuracy, sensitivity, 

specificity and precision value than other conventional methods. The heart beat rate will be 

measured accurately and 100% accuracy from the detected QRS complexes by proposed 

detection algorithm and also specified the heart diseases based on database. 

6.2 Future work 

In this thesis work a noble approach is to remove the power line interference, EMG 

interference, base line drift, abrupt shift in base line from ECG signal. The future work is to 

remove composite noises which is most accurately replicates an actual ECG signal by 

incorporating all four aforementioned types of noises into one. In this case, the maximum noise 

level was constructed by reducing the maximum noise levels for each of the previous described 

noise types to 50% of maximum and then summing them.  
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