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Abstract 

 

In this study the thermal-diffusion (Soret) and diffusion-thermo (Dufour) effects on 

combined heat and mass transfer mixed convection flow of viscous incompressible MHD 

electrically conducting fluid along a vertical porous surface have been considered under 

the effects of induced magnetic fields.  An implicit Finite Difference numerical technique 

is adopted to obtain the solutions regarding the velocity, temperature, mass concentration 

and induced magnetic field and are presented for different selected values of the 

established dimensionless parameters. The similarity equations of the above mentioned 

problem are obtained by employing the usual similarity technique and Bousinesq 

approximation. Then the transformed set of partial differential equations has been solved 

numerically using the implicit finite difference numerical method. Numerical solutions are 

obtained for the velocity and temperature fields as well as the concentration distribution 

and induced magnetic field for different values of the physical parameters entering into the 

problem. The effects of these various involved parameters on the velocity and temperature 

fields, the concentration distribution and induced magnetic field have been investigated. 

Finally, the obtained results involving the effects of these physical parameters on the flow 

phenomena have been discussed with the help of graphs and tables. The numerical results 

have shown that the above mentioned effects have to be taken into consideration in the 

flow fields and in the heat and mass transfer processes.  
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CHAPTER I 

 

 

Introduction 

 

 

Many transfer process can be found in natural, scientific and technological system, in 

which heat and mass transfer by mixed convection flow occurs due to the buoyancy force 

caused by thermal diffusion (temperature difference) and mass diffusion (concentration 

difference). The heat and mass transfer by mixed convection flow has great importance in 

stellar, planetary and magnetospheric studies and also in the field of aeronautics, chemical 

engineering and electronics. Besides, there are natural phenomena and engineering 

problems susceptible to MHD analysis. The generation of electric power with flow of 

electrically conducting fluid through a transverse magnetic field is one of the important 

applications of MHD. Recently, the experiments with ionized gases have been performed 

with the hope of producing power on large scale in stationary plants with large magnetic 

fields. Considerable attention has been paid to the study of MHD heat and mass transfer 

flows because of the applications in geophysics, aeronautics, and chemical engineering. 

The thermal and mass transfer caused by the convection process takes place due to the 

buoyancy effects owing to the differences of temperature and concentration are of 

considerable interest in practice. Further, heat and mass transfer in the presence of 

magnetic field, which is the subject matter of magnetohydrodynamics (MHD), has 

different applications in natural phenomena and in many engineering problems. Again the 

stabilizing effect of the boundary layer development has been well known for several 

years and till to date it is still the most of efficient, simple and common method of 

boundary layer control. The boundary layer control is often necessary to prevent 

separation of the boundary layer to reduce the drag and to attain high lift values. Thus, the 

effect of suction on MHD boundary layer is of great interest in astrophysics. Considering 

these numerous applications, MHD free convective heat and mass transfer flow in a 

porous medium have been studied by among others Raptis and Kafoussias (1982), Alam 

(1995) etc. Mohammed et al. (2005) investigated the effect of similarity solution for MHD 

flow through vertical porous plate with suction. Gundagani et al. (2013) presented a 
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numerical solution to the problem of unsteady MHD free convective flow past a vertical 

porous plate with variable suction. Choudhary and Sharma (2006) studied the laminar 

mixed Convection flow of an incompressible electrically conducting vicious fluid over a 

continuously moving porous vertical plate with inclined magnetic field. Sattar et al. 

(2006) numerically studied a steady two-dimensional MHD free convective heat and mass 

transfer flow past an inclined semi-infinite surface with heat generation. However, 

Pantokratoras (2007) showed that a moving electrically conducting fluid induced a new 

magnetic field, which interacts with the applied external magnetic fields and the relative 

importance of this induced magnetic field depends on the relative value of the magnetic 

Reynolds number. Sattar (1993) analyzed the effect of free and forced convection 

boundary layer flow through a porous medium with large suction. Mohammed et al. 

(2005) investigated the effect of similarity solution for MHD flow through vertical porous 

plate with suction. The effect of viscous dissipation is usually characterized by the Eckert 

number and has played a very important role in geophysical flow and in nuclear 

engineering that was studied by Alim et al. (2007). Similarly, Mansour et al. (2008) 

described the influence of chemical reaction and viscous dissipation on MHD natural 

convection flow. Palani and Srikanth (2009) studied the MHD flow of an electrically 

conducting fluid over a semi-infinite vertical plate under the influence of the transversely 

applied magnetic field. Makinde (2010) investigated the MHD boundary layer flow with 

heat and mass transfer over a moving vertical plate in the presence of magnetic field and 

convective heat exchange at the surface. The effects of suction or injection on boundary 

layer flow also play an important role in various processes of engineering applications and 

have been widely investigated by numerous researchers. Various researchers have studied 

the effects of viscous dissipation and constant suction in different surface geometries. 

Khaleque and Samad (2010) described the effects of radiation, heat generation, and 

viscous dissipation on MHD free convection flow along a stretching sheet. 

In the presence of induced magnetic field, Hossain et al. (2013) studied the steady MHD 

free convection heat and mass transfer flow about a vertical porous surface with thermal 

diffusion. Khan et al. (2014) investigate the effects of heat generation, radiation and 

chemical reaction on unsteady mixed convection flow from a moving vertical porous plate 
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with induced magnetic field, time dependent suction velocity at the plate, thermal 

diffusion, constant heat and mass fluxes. Wahiduzzaman et al. (2015) presented a 

numerical solution to investigate the influence of the hall current and constant heat flux on 

the MHD natural convection boundary layer viscous incompressible fluid flowing in the 

manifestation of transverse magnetic field near an inclined vertical permeable flat plate. In 

their analysis they assumed that the induced magnetic field is negligible compared with 

the imposed magnetic field. 

Asaduzzaman et al. (2016) considered the transient heat transfer flow along a vertical 

plate with induced magnetic field. The effect of thermal diffusion on the combined MHD 

heat transfer in an unsteady flow past a continuously moving semi-infinite vertical porous 

plate under the action of strong applied magnetic field has been investigated numerically 

by Islam et al. (2016) taking into account the induced magnetic field. Recently, Opiyo et 

al. (2017) considered the effects of MHD on two-dimensional steady free convection 

boundary layer heat and mass transfer flow of viscous, incompressible, electrically 

conducting fluid on an inclined plate with a varying angle of inclination. 

Uwanta (2012) studied the effects of chemical reaction and radiation on heat and mass 

transfer flow past a semi-infinite vertical porous plate with constant mass flux and 

dissipation. Govardhan et al. (2012) presented a theoretical study on the influence of 

radiation on a steady free convection heat and mass transfer over an isothermal stretching 

sheet in the presence of a uniform magnetic field with viscous dissipation effect. Jai 

(2012) presented the study of a viscous dissipation and chemical reaction effects on flow 

past a stretching porous surface in a porous medium.  

When heat and mass transfer occur simultaneously in a moving fluid, affecting each other, 

causes a cross diffusion effect, the mass transfer caused by temperature gradient is called 

the Soret effect, while the heat transfer caused by concentration effect is called the Dufour 

effect. Soret and Dufour effects are important phenomena in areas such as hydrology, 

petrology and geosciences. The Soret effect, for instance, has been utilized for separation 

of isotope in a mixture between gases with very light molecular weight (He, H2) and of 

medium molecular weight (N2, air). The Dufour effect was recently found to be of order of 

considerable magnitude so that it cannot be neglected (Eckert, and Drake (1974)). Many 

researchers studied Soret and Dufour effects; for example, Kafousiasis and Williaims 
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(1995) examined Soret and Dufour effects on mixed free-forced convective and mass 

transfer boundary layer flow with temperature dependent viscosity, Uwanta et al. (2008) 

have analyzed MHD fluid flow over a vertical plate with Dufour and Soret effects. 

Postelnicu (2010) analyzed the effect of Soret and Dufour effects on heat and mass 

transfer. Later, Usman and Uwanta (2013) have considered the effect of thermal 

conductivity on MHD heat and mass transfer flow past an infinite vertical plate with Soret 

and Dufour effects. Recently, the effects of Soret and Dufour on an unsteady MHD free 

convection flow past a vertical porous plate in the presence of suction or injection have 

been investigated by Sarada and Shankar (2013), Most recently, using implicit finite 

difference scheme of Crank-Nicolson, Uwatana and Usman (2014) investigated the  

combined effects of Soret and Dufour on free convective heat and mass transfer on the 

unsteady boundary layer flow over a vertical channel in the presence of viscous 

dissipation and constant suction.  

In view of the above studies, the present study will deal with the numerical investigation 

of convective heat and mass transfer flow along a vertical porous plate with Soret and 

Dufour effects in existence with an induced magnetic field. Computations will be 

performed for a wide range of the non-dimensional parameters such as thermal Grashof 

number, modified Grashof number, Prandtl number, Soert number, Dufour number, 

Schmidt number, Eckert number, magnetic parameter, Magnetic Diffusion parameter and 

other driving parameters. 

The present thesis is composed of Six Chapters. An introduction of the problem is given in 

CHAPTER I. The basic literature review including, some available information on MHD 

and useful dimensionless parameters regarding our problem are presented in CHAPTER 

II. Basic equations governing the problems with some simplifying assumptions are given 

in CHAPTER III. CHAPTER IV deals with the mathematical model of the problem with 

dimensional analysis. A brief description of the implicit Finite Difference numerical 

method and the calculation technique has been given here.The numerical solution 

including the graphs and tables and results and discussions have been given in CHAPTER 

V. The conclusions gained from this research have been discussed in CHAPTER VI. 
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CHAPTER II 

 

Literature Review 

 

2  Some Available Information on MHD 

 

2.1 Magnetohydrodynamics (MHD) 

 

Magneto hydrodynamics (MHD) is the branch of magneto fluid dynamics, which deals 

with the flow of electrically conducting fluid in electric and magnetic field. Probably, the 

largest advancement towards an understanding of such phenomena comes from the field 

of astrophysics. It has long been suspected that most of the matter in the universe is in the 

form of plasma of highly ionized gaseous state and much of the basic knowledge in the 

area of electromagnetic fluid dynamics evolved from these studies. The field of MHD 

consists of the study of a continuous, electrically conducting fluid under the influence 

electromagnetic fields. Originally MHD included only the study of partially ionized gases 

as well as the other names have been suggested, such as magneto fluid mechanics or 

magneto aerodynamics, but the original nomenclature has persisted. The essential 

requirement for problem to be analyzed under MHD is that the continuum approach be 

applicable. 

There are many natural phenomena and engineering problems susceptible to MHD 

analysis. It is useful in astrophysics because much of the universe is filled with widely 

spaced charged particles and permeated by magnetic field and so the continuum 

assumption becomes applicable. Engineers employ MHD principles in the design of heat 

exchangers, pumps and flow meters, in solving space vehicle propulsion, control and 

reentry problem, in designing communications and radar system, in creating noble power 

generating systems, and in developing confinement schemes for controlled fusion. The 

MHD in the generation of electrical power with the flow of electrically conducting fluid 

through a transverse magnetic field is one of the most important applications. Recently, 

these experiments with ionized gases have been performed with the hope of producing 

power on large scale in stationary plants with large magnetic fields. Generation of MHD 

power on a smaller scale is of interest of space applications. Generally we known that, to 
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convert the heat energy in to the electricity, several intermediate transformations are 

necessary. Each of these steps means a loss of energy. This naturally limits the overall 

efficiency, reliability and compactness of the conversion process. Method for the direct 

conversion to energy is now increasingly receiving attention. Of these, the fuel converts 

the chemical energy of fuel directly into electrical energy, fusion energy utilizes the 

energy released when two hydrogen molecules fuse into a heavier one, and 

thermoelectrically power generation uses a thermocouple. MHD power generation is 

another new process that has received worldwide attention. The principal MHD effects 

were first demonstrated in the experiments of Faraday& Ritchie. Faraday (1832) find out 

experiments with flow of mercury in glass Tubes placed between poles of a magnet and 

discovered that a voltage was induced across the tube by the motion of the mercury across 

the magnetic field, perpendicular to the direction of flow and to the magnetic field. 

Faraday observed that the current generated by this induced voltage interacted with the 

magnetic field to slow down the motion of the fluid and he was aware of the fact that the 

current produced its own magnetic fluid that obeyed Ampere’s right-hand rule and thus, in 

turn distorted the field of magnet. Ritchie contemporary of Faraday, discovered in 1832 

that when an electric field was applied to a conducting fluid perpendicularly to a magnetic 

field it pumped the fluid in a direction perpendicular to both fields. Faraday also suggested 

that electrical power could be generated in a load circuit by the interaction of a flowing 

conducting fluid and a magnetic field. The first astronomical application of the MHD 

theory occurred in1899, when Bigalow suggested that the sun as a gigantic magnetic 

system. It remained, however, for Alfven (1942) to make a most significant contribution 

by discovering MHD waves in the sun. These waves are produced by disturbances which 

propagate simultaneously in the conducting fluid and the magnetic field. The analogy that 

explains the generation of an Alfven wave is that of a harp string plucked while 

submerged in a fluid. The string provides the elastic force and the fluid provides the 

inertia force, and they combine to propagate a perturbing wave through the fluid and the 

string. In summary, MHD phenomena result from the mutual effect of a magnetic field   

and conducting fluid flowing across it. Thus, an electromagnetic force is produced in a 

fluid flowing across a transverse magnetic field, and the resulting current and magnetic 
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field combine to produce a force that resists the fluid’s motion. The current also generates 

its own magnetic field which distorts the original magnetic field. An opposing or pumping 

force on the fluid can be produced by applying an electric field perpendicularly to the 

magnetic field. Disturbance in either the magnetic field or the fluid can propagate in both 

to produce MHD waves, as well as upstream and downstream-wake phenomena. The 

science of MHD is the detailed study of these phenomena, which occur in nature and are 

produced in engineering devices. 

 

2.2 Some Useful Dimensionless Parameters 

 

Reynolds number (Re) 

The Reynolds number Re is the most important parameter of the fluid dynamics of a  

viscous fluid, which is defined by the following ratio 

Re = 
inertia force

viscous  force
  = 

𝜌𝐿3×
𝑈

𝑇

𝜇×
𝑈

𝐿
×𝐿2

=
𝜌𝐿𝑈

𝜇
=

𝐿𝑈

𝜐
 

where L and U denotes the characteristic length and velocity respectively and 𝜐 =
𝜇

𝜌
 is the 

kinematic viscosity (𝜇 is the viscosity and 𝜌 is the density). If Re is small, the viscous force 

will be pre-dominant and the effect of viscosity will be felt in the whole flow field. On the 

other hand if Re  is large the inertia force will be predominant and in such case the effect of 

viscosity to be confined in a thin layer, near to the solid wall or other restricted region, 

which is known as boundary layer. However if Re  is very large, the flow ceases to be 

laminar and becomes turbulent. The Reynolds number at which translation from laminar 

to turbulent occurs is known as critical Reynolds number. Reynolds in 1883 found that for 

flow in a circular pipe becomes turbulent when Re exceeds the critical value 2300, i.e., 

𝑅𝑒 = [
𝑈̅𝑑

𝜐
]

crit
= 2300, where 𝑈̅  is the mean velocity and ‘d’ is the diameter of the pipe. 

When the viscous force is pre-dominating force, Reynolds number must be similar for 

dynamic similarity of two flows. 
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Prandtl number (Pr) 

The Prandtl number Pr is the ratio of the kinematic viscosity to the thermal diffusivity and 

is defined by  

Pr =
Kinematic viscosity

Thermal diffusivity
 =

𝜇

𝜌

𝑘

𝜌𝑐𝑝

=
𝜇𝑐𝑝

𝑘
 

where cp is the specific heat at constant pressure and k is the thermal conductivity. The 

value of 
𝑘

𝜌𝑐𝑝
  is the thermal diffusivity due to the heat conduction. The smaller value of  

𝑘

𝜌𝑐𝑝
 is, the narrower is the region which affected by the heat conduction and it is known as 

the thermal boundary layer. The value of 𝜐 =
𝜇

𝜌
    show the effect of viscosity of the fluid 

and thus the Prandtl number shows the relative importance of heat conduction and 

viscosity of a fluid. Evidently Pr varies from fluid to fluid. For air Pr = 0.72 (approx.), for 

water at 15.5 0 C, Pr = 7.00 (approx.), for mercury Pr = 0.044, but for high viscous fluid it 

may be very large, e.g. for glycerin Pr = 7250. 

Magnetic Parameter (M) 

The magnetic force number is the ratio of the magnetic force to the inertia force and is 

defined by    𝑀 =
Magnetic force

Inertia force
=

𝜇3𝐻0
2𝜎′𝐿

𝜌𝑈
 

Schmidt number (𝑺𝒄) 

The Schmidt number is the ratio of the viscous diffusivity to the chemical molecular 

diffusivity and is defined by Sc = 
Viscous diffusivity

Chamical molecular diffusivity
  = 

𝜐

 𝐷𝑚
. 

Grashof number (Gr) 

The Grashof number is defined by Gr =
𝑔𝛽𝐿3∆𝑇

𝜐2 𝑇
 and is a measure of the relative importance 

of the buoyancy and viscous forces. The larger it is, stronger is the convective current. 

Here g  is the local acceleration due to gravity,   is the thermal expansion coefficient 

and T  be the temperature difference. 

Modified Grashof number (Gm.) 

The Modified Grashop number is defined by Gm. = 
𝑔𝛽∗𝐿3∆𝐶

𝜐2 , where 
*  is the concentration 

expansion coefficient and C  be the concentration difference. 
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Magnetic diffusivity (Pm) 

The magnetic diffusivity is defined by 𝑃𝑚=𝜇𝑒𝜎′𝜐 

Eckert number (Ec) 

The Eckert number is defined by Ec =
𝑘𝑈0

𝜎𝑞𝐶𝑝
, which is the ratio of the kinetic energy at the 

wall to the specific enthalpy difference between wall and fluid. Eckert number phenomena 

are being the result of dissipation created by shear stress in the fluid at the wall. In other 

words, it is the kinetic energy of the flow relative to the enthalpy difference. 

Soret number (𝑆𝑟) 

The Soret number is generally defined by 𝑆𝑟 =
𝐷𝑚𝐾𝑇(𝑇𝑤−𝑇∞)

𝑇𝑚𝜐(𝐶𝑤−𝐶∞)
 . 

where TK  is the thermal diffusion ratio, mT  is the mean fluid temperature, wT
 
and T  are 

temperature of the fluid at the wall and far away from the plate respectively as well as 

wC and C  are concentration of the species at the wall and far away from the plate 

respectively. 

Dufour number (𝐷𝑓) 

A dimensionless number used in studying thermo-diffusion, equal to the increase in 

enthalpy of a unit mass during isothermal mass transfer divided by the enthalpy of a unit 

mass of mixture. The Dufour number is generally defined by 𝐷𝑓 =
𝐷𝑚𝐾𝑇(𝐶𝑤−𝐶∞)

𝐶𝑠𝐶𝑝𝜐(𝑇𝑤−𝑇∞)
 . 

2.3 MHD Boundary Layer and Related Transfer Phenomena 

 

Boundary layer phenomena occur when the viscous effect may be considered to be 

confined in a very thin layer near to the boundaries and the non-dimensional diffusion 

parameter such as the Reynolds number, Grashof number, the Magnetic Reynolds number 

etc, are very large. The boundary layers are then the velocity and thermal (or magnetic) 

boundary layers and each of its thickness is inversely proportional to the square root of the 

associated diffusion number. Prandtl observed, in classical fluid dynamics boundary layer 

theory, from experimental flows that for large Reynolds number, the viscosity and the 

thermal conductivity appreciably influences the flow only near the wall. When distance 
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measurements in the flow direction are compared with a characteristic dimension in that 

direction, transverse measurement compared with the boundary layer thickness and 

velocities compared with the free stream velocity, the Navier-Stokes and energy equations 

can be considerably simplified through neglecting small quantities. The flow directive 

components are only remain in the boundary layer equations and pressure is then only a 

function of the flow direction and can be determined from the non-viscous flow solution.  

There are two types of MHD boundary layer flows, by considering the limiting cases of a 

very large and a negligible small magnetic Reynolds number. When the magnetic 

Reynolds number is large, the magnetic boundary layer thickness is small and is of nearly 

the same size of the viscous and thermal boundary layers and then the equations of the 

MHD boundary layer must be solved simultaneously. On the other hand, when the 

magnetic Reynolds number is very small and the magnetic field is oriented in an arbitrary 

direction relative to a confining surface, the flow directive component of the magnetic 

interaction and the corresponding joule heating is only a function of the transverse 

magnetic field component and the local velocity in the flow direction. Changes in the 

transverse magnetic boundary layer are negligible. The thickness of the magnetic 

boundary layer is very large and the induced magnetic field is negligible. In this case the 

magnetic field moves with the flow and is called frozen mass. 

 

2.4 Mass Transfer 

 

 

Mass transfer problems are of importance in many processes and have therefore received a 

considerable amount of attention. In many mass transfer processes, heat transfer 

considerations arise owing to chemical reaction and are often due to the nature of the process. 

In processes such as drying, evaporation at the surface water body, energy transfer in a wet 

cooling tower and the flow in a desert cooler, heat and mass transfer occur simultaneously. 

In many of these processes, the interest lies in the determination of the total energy transfer, 

although in processes such as drying, the interest lies mainly in the overall mass transfer 
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for moisture removal. Natural convection processes involving the combined mechanisms are 

also encountered in many natural processes, such as evaporation, condensation and 

agricultural drying, in many industrial applications involving solutions and mixtures in the 

absence of an externally induced flow and in many chemical processing systems. In many 

processes such as the curing of plastics, cleaning and chemical processing of materials 

relevant to the manufacture of printed circuitry, manufacture of pulp-insulated cables etc., the 

combined buoyancy mechanisms arise and the total energy and material transfer resulting 

from the combined mechanisms, has to be determined. The basic heat and mass transfer 

problem is governed by the combined buoyancy effects rising from the simultaneous 

diffusion of thermal energy and of chemical species. Therefore the continuity, momentum, 

energy and concentration equations are coupled through the buoyancy terms alone, if the 

other effects, such as the Dufour effects are neglected. This would again be valid for low 

species concentration levels. 

2.5 MHD and Heat Transfer 

 

With the advent of hypersonic flight, the field of MHD, as define above, which has 

attracted the interest of aero dynamists and associated largely with liquid metal pumping. 

It is possible to alter the flow and the heat transfer around high velocity vehicles provided 

that the air is sufficiently ionized. Furthermore, the invention of high temperature facilities 

such as the shock tube plasma jet has provided laboratory sources of following ionized 

gas, which provide an incentive for the study of plasma accelerators and generators. As a 

result of this, many of the classical problems of fluid mechanics have been reinvestigated. 

Some of these analyses awake out of the natural tendency of scientists to search a new 

subject. In this case it was the academic problem of solving the equations of fluid 

mechanics with a new body force and another source of dissipation in the energy equation. 

Some time there were no practical applications for these results. As for example, natural 
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convection MHD flows have been of interest to the engineering community only since the 

investigations, directly applicable to the problem in geophysics and astrophysics. But it 

was in the field of aerodynamic heating that the largest interest was awaked. Rossow 

(1957) presented the first paper on this subject. His result for incompressible constant 

property flat plate boundary layer flow indicated that the skin friction and heat transfer 

were reduced substantially when a transverse magnetic field was applied to the fluid. This 

encouraged a multitude analysis for every imaginable type of aerodynamic flow, and most 

of the research centered on the stagnation point, where in hypersonic flight, the highest 

degree of ionization could be expected. The result of these studies were sometimes 

contradictory concerning the amount by which the heat transfer would be reduced (some 

of this was due to misinterpretations and invalid comparison). Eventually, however, it was 

concluded that the field strength, necessary to provide sufficient against heat fluxes during 

atmospheric flight, where not competitive (in terms of weight) with other method of 

cooling (Sutton and Gloersen, 1961). However the invention of new light weight super 

conducting magnets has revived interests in the problem of providing heat projection 

during the very high velocity re-entry from orbital and super orbital flight (Levy and 

Petschek, (1962) 

 

2.6 Free Convection 

 

In the studies related to heat transfer, considerable effort has been directed towards the 

convective mode, in which the relative motion of the fluid provides an additional 

mechanism for the transfer of energy and material, the later being a more important 

consideration in case where mass transfer, due to a concentration difference, occurs. 

Convection is inevitable coupled with the conductive mechanisms, since, although the 

fluid motion modifies the transport process, the eventual transfer of energy from one fluid 

element to another in its neighborhood is thorough conduction. Also, at the surface the 

process is predominantly that of conduction because the relative fluid motion is brought to 

zero at the surface. A study of the convective heat transfer therefore involves the 

mechanisms of conduction and sometimes those of radiative processes as well, coupled 
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with that fluid flow. These make the study of this mode of heat or mass transfer very 

complex, although its importance in technology and in nature can hardly be exaggerated. 

The heat transfer in convective mode is divided into two basic processes. If no externally 

induced flow is provided and flow arises naturally simply owing to the effect of a density 

difference, resulting from a temperature or concentration difference in a body force field, 

such as the gravitational field, the process is referred to the natural convection. On the 

other hand if the motion of the field is caused by an external agent such as the externally 

imposed floe of a fluid stream over a heated object, the process is termed as force 

convection. In the force convection, the fluid flow may be the result of, for instance, a fan, 

a blower, the wind or the motion of the heated object itself. Such problems are very 

frequently encountered in technology where the heat transfers to or from a body is often 

due to an imposed flow of a fluid at a different temperature from that of a body. On the 

other side, in the natural convection, the density difference gives rise to buoyancy effects, 

owing to which the flow is generated. A heated body cooling in ambient air generates such 

a flow in the region surrounding it. Similarly the buoyant flow arising from heat rejection 

to the atmosphere and to other ambient media, circulations arising in heated rooms, in the 

atmosphere, and in bodies of water, rise of buoyant flow to cause thermal stratification of 

the medium, as in temperature inversion and many other such heat transfer process in our 

natural environment, as well as in many technological applications, are included in the 

area of natural convection. The flow may also arise owing to concentration differences 

such as those caused by salinity differences in the sea and by composition differences in 

chemical processing unit, and these cause a natural convection mass transfer. 

Practically some time both processes, natural and forced convection are important and 

heat transfer is by mixed convection, in which neither mode is truly predominant. The 

main difference between the two really lies in the word external. A heated body lying 

instill air loses energy by natural convection. But it also generates a buoyant flow above it 

and body placed in that flow is subjected to an external flow and it becomes necessary to 

determine the natural, as well as the forced convection effects and the regime in which the 

heat transfer mechanisms lie. 
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When MHD become a popular subject, it was normal that these flows would be 

investigated with the additional ponder motive body force as well as the buoyancy force. 

At a first glance there seems to be no practical applications for these MHD solutions, for 

most heat exchangers utilize liquids, whose conductively is so small that prohibitively 

large magnetic fields are necessary to influence the flow. But some nuclear power plants 

employ heat exchangers with liquid metal coolants, so the application of moderate 

magnetic fields to change the convection pattern appears feasible. Another classical 

natural convection problem is the thermal instability that occurs in a liquid heated from 

below. This subject is of natural interest to geophysicists and astrophysicists, although 

some applications might arise in boiling heat transfer. 

The basic concepts involved in employing the boundary layer approximation to natural 

convection flows are very similar to those in forced flows. The main difference lies in the 

fact the pressure in the region beyond the boundary layer is hydrostatic instead of being 

imposed by an external flow, and that the velocity outside the layer is zero. However the 

basic treatment and analysis remain the same, the book by Schlichting (1968) is an 

excellent collection of the boundary layer analysis. There are several method for the 

solution of the boundary layer equations namely the similarity variable method, the 

perturbation method, analytical method, numerical method etc. and their details are 

available in the books by Rosenberg (1969), Patanker and Spalding (1970) and Spalding 

(1977). 

 

2.7 Mixed Convection 

 

Practically sometimes both the processes, natural and forced convection, are important and 

heat transfer is by mixed convection, in which neither mode is truly predominant. The 

main difference between the two really lies in the word external. A heated body lying on 

stagnant air loses energy by natural convection. But it also generates a buoyant flow above 

it and body placed on a moving air flow is subjected to an external flow and it becomes 

necessary to determine the natural, as well as the forced convection effects in the regime 

in which the heat transfer mechanisms lie.   
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When the study of MHD become a popular subject, it was normal that these flows would 

be investigated with the additional ponder motive body force as well as the buoyancy 

force. At a first glance there seems to be no practical applications for these MHD 

solutions, for most heat exchangers utilize liquids, whose conductivity is so small that 

prohibitively large magnetic fields are necessary to influence the flow. But some nuclear 

power plants employ heat exchangers with liquid metal coolants, so the application of 

moderate magnetic fields to change the convection pattern appears feasible. Another 

classical natural convection problem is the thermal instability that occurs in a liquid heated 

from below. This subject is of natural interest to geophysicists and astrophysicists, 

although some applications might arise in boiling heat transfer.   

The basic concepts involved in employing the boundary layer approximation to natural 

convection flows are very similar to those in forced flows. The main difference lies in the 

fact that pressure in the region beyond the boundary layer is hydrostatic instead of being 

imposed by an external flow and that the velocity outside the layer is zero. However the 

basic treatment and analysis remain the same, the book by Schlichting (1968) is an 

excellent collection of the boundary layer analysis. There are several methods for the 

solution of the boundary layer equations namely the similarity variable method, the 

perturbation method, analytical method, numerical method etc. and their details are 

available in the books written by Rosenberg (1969) and Patanker and Spalding (1970).   

2.8 Heat and Mass Transfer 

 

The basic heat and mass transfer problem is governed by the combined buoyancy effects 

arising from the simultaneous diffusion of thermal energy and chemical species. 

Therefore, the equations of continuity, momentum, energy, mass diffusion are coupled 

through the buoyancy terms alone, if the other effects, such as the Soret and Duffor effects 

are neglected. This would again be valid for low species concentration levels. These 

additional effects have also been considered in several investigations, for example, the 

work of the Caldwell (1974), Groots and Mozart (1962), Hurel and Jakeman (1971) and 

Legros, et al. (1968). 
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Somers (1956) considered combined buoyancy mechanisms for flow adjacent to a wet 

isothermal vertical surface in an unsaturated environment. Uniform temperature and 

uniform species concentration at the surface were assumed and an integral analysis was 

carried out to obtain the result which is expected to be valid for Pr and Sc values around 1.0 

with one buoyancy effect being small compared with the other. Adams and McFadden 

(1966) presented experimental measurements of heat and mass transfer parameters, with 

opposed buoyancy effects. Gebhart and Pera (1971) studied laminar vertical natural 

convection flows resulting from the combined buoyancy mechanisms in terms of 

similarity solutions. 

Nanousis and Goudas (1979) have studied the effects of mass transfer on free convection 

problem in the Stokes problem for an infinite vertical limiting surface. Georgantopolous 

and Nanousis (1980) have considered the effects of the mass transfer on free convection 

flow of an electrically conducting viscous fluid (e. g. of a stellar atmosphere of star) in the 

presence of transverse magnetic field. Solution for the velocity and skin friction in closed 

form are obtained with the help of the Laplace transformation technique, and the results 

obtained for the various values of the parameters Pr , Sc and M are given in graphical form. 

Raptis and Kafoussias (1982) presented the analysis of free convection and mass transfer 

steady hydro magnetic flow of an electrically conducting viscous incompressible fluid, 

through a porous medium, occupying a semi-infinite region of the space bounded by an 

infinite vertical porous plate under the action of transverse magnetic field. Agrawal et al. 

(1983) have investigated the effect of Hall current on the combined effect of thermal and 

mass diffusion of an electrically conducting liquid past an infinite vertical porous plate, 

when the free steam oscillates about constant nonzero mean. The velocity and temperature 

distributions are shown on graphs for different values of parameters. 

 

2.9 Thermal Diffusion Effect 

 

When heat and mass transfer occur simultaneously in a moving fluid, the relations 

between the fluxes and driving potentials are of more complicated in nature. If mass fluxes 

being created due to the temperature gradients then this is known as thermal diffusion 
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effect or Soret effect. Thus, Soret effect is a mass flux due to a temperature gradient and 

appears in the species continuity equation when we have a multi-component mixture 

where each species has its own diffusional velocity. The Soret coefficient is the ratio of 

the thermal diffusion coefficient divided by the ordinary diffusion coefficient. If D is the 

diffusion coefficient and DT is the thermo-diffusion coefficient, then quotient of both 

coefficients is called Soret coefficient, that is, 𝑆𝑇 =
𝐷𝑇

𝐷
. In general the thermal diffusion 

effects is of a small order of magnitude, described by Fourier or Flick`s law, is often 

neglected in heat and mass transfer processes. 

There are however, exceptions. The thermal diffusion effect for instance has been utilized 

for isotope separation and in mixtures between gases with very light molecular weight 

(H2, He) and of medium molecular, weight (N2, air). Kafoussias (1992) studied the MHD 

free convection and mass transfer flow, past an infinite vertical plate moving on its own 

plane, taken into account the thermal diffusion when the plate surface is (i) impulsively 

stared moving in its own plane (I. S. P) and (ii) uniformly accelerated (U. A. P). The 

problem is solved with the help of Laplace transformation method and analytical 

expressions are given for the velocity field as well as for the skin friction for the above-

mentioned two different cases.  

 

2.10 Diffusion-Thermo Effect 

 

It is also known that an energy flux can be generated not only by temperature gradients 

but by composition gradients as well. This type of energy flux is called the diffusion-

thermo effect or Dufour effect. The Dufour effect describes the energy (heat) flux created 

when a chemical system is under a concentration gradient. This effect is found in the 

energy equation. In isothermal mixtures of two or more species (gases, liquids and even 

solids), mass diffusion occurs if the species are initially distributed unevenly, i.e., when a 

concentration gradient exists. 
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CHAPTER III 

 

3.1 The Basic Governing Equations 

 

The generalized Continuity equation, Momentum equation, Energy equation, Magnetic 

induction equation, Concentration equation together with the Ohm’s law and Maxwell 

equations form the basis of studying of Magneto fluid dynamics (MFD).These equations 

are as follows: 

Continuity equation for viscous compressible electrically conductive fluid is 

 𝜕𝜌

𝜕𝑡
+ ∇. (𝜌𝐪) = 0                                                                                                          (3.1)  

where 𝜌 the fluid density and q is the fluid velocity. 

For incompressible fluid (𝜌 = constant) the equation yields 

∇. 𝐪 = 0                                                                                                                            (3.2) 

where 𝐪 = (𝑢, 𝑣, 𝑤). 

Momentum equation for viscous compressible fluid is 

 𝑑𝐪

  𝑑𝑡
 = 𝐅 −

1

𝜌
∇𝑝 + 𝜐∇2𝐪 +

𝜐

3
∇(∇. 𝐪)                                                                                (3.3) 

For incompressible (∇. 𝐪 = 0) the equation (3.3) yields 

𝜕𝐪

𝜕𝑡
+ (𝐪. ∇)𝐪 = 𝐅 −

1

𝜌
∇𝑝 + 𝜐∇2𝐪                                                                                    (3.4) 

When the fluid moves through a magnetic field, then the equation (3.4) becomes to be 

Magneto hydrodynamic (MHD) equation as 

 𝜕𝐪

𝜕𝑡
+ (𝐪. ∇)𝐪 = 𝐅 −

1

𝜌
∇𝑝 + 𝜐∇2𝐪 +

𝜇𝑒

𝜌
(𝐉 ∧ 𝐇)                                                              (3.5)                        

 Magnetic induction equation for a viscous incompressible electrically conducting fluid is  

𝜕𝐇

𝜕𝑡
+ (𝐪. ∇)𝐇 = (𝐇. ∇)𝐪 +

1

𝜇𝑒𝜎′ ∇2𝐇                                                                               (3.6) 

Energy equation for a viscous incompressible electrically conducting fluid is  

 𝜕𝑇

𝜕𝑡
+ (𝐪. ∇)𝑇 =

𝑘

𝜌𝐶𝑝
∇2𝑇 +

1

𝜌𝐶𝑝
𝜙 +

𝐉2

𝜌𝐶𝑝𝜎′
+

𝐷𝑚𝐾𝑇

𝐶𝑆𝐶𝑝
∇2𝐶                                                    (3.7)    

The Concentration equation for a viscous incompressible electrically conductive fluid (in 

the absence of heat source viscous dissipation and Joule heating term) is 
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𝜕𝐶

𝜕𝑡
+ (𝐪. ∇)𝑐 =  𝐷𝑚∇2𝑐 +

𝐷𝑚𝐾𝑇

𝑇𝑚
∇2𝑇                                                                              (3.8) 

Generalized Ohm’s law is of the form 𝐉 = 𝜎 ′(𝐄 + 𝐪𝐁) −
𝜎′

𝑒𝑛𝑒
(𝐉𝐁 − ∇𝑝𝑒) 

 or, 𝐉 = 𝜎 ′(𝐄 + 𝐪𝐁) −
𝜎′

𝑒𝑛𝑒
𝐉𝐁 +

𝜎′

𝑒𝑛𝑒
∇𝑝𝑒 

∴     𝐉 +   
𝜎′

𝑒𝑛𝑒
𝐉𝐁 = 𝜎′(𝐄 + 𝐪𝐁) +

𝜎′

𝑒𝑛𝑒
∇𝑝𝑒                                                                 (3.9)                   

The Maxwell’s equations are 

∇𝐇 = 𝐉                                                                                                                        (3.10)                                  

∇𝐇 = 𝟎                                                                                                                       (3.11)                                  

∇. 𝐁 = 0                                                                                                                         (3.12)                 

where F is the body force per unit mass, p is the fluid pressure, 𝑝𝑒 is the  pressure of 

electron, 𝜇𝑒 is the magnetic permeability, 𝐉 is the current density vector, B is the magnetic 

field vector, E is the electric field vector, H is the magnetic field intensity, T is the fluid 

Temperature, 𝑇𝑚 is  the mean fluid Temperature, C is the species concentration variable, 

𝜎′ is  the electrical conductivity, e is the charge of electron, 𝐷𝑚 is the coefficient of mass 

diffusivity, 𝐷𝑇  is the thermal diffusivity, 𝑐𝑝 is the specific heat at constant pressure, 𝑐𝑠 is 

the concentration susceptibility, 𝑛𝑒 is the number of density electron, k is  the thermal 

conductivity, KT is the thermal diffusion ratio. Also 𝜙 denotes the dissipation function, 

involving the viscous stress and it represents the rate at which energy is being dissipated 

per unit volume through the action of viscosity. In fact the energy is dissipated in a 

viscous fluid in motion on account of internal friction and for incompressible fluid. 

𝜙 = 𝜇 [(
𝜕𝑢

𝜕𝑥
)

2
+ (

𝜕𝑣

𝜕𝑦
)

2
+ (

𝜕𝑤

𝜕𝑧
)

2
+ (

𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
)

2
+ (

𝜕𝑤

𝜕𝑦
+

𝜕𝑣

𝜕𝑧
)

2
+ (

𝜕𝑤

𝜕𝑥
+

𝜕𝑢

𝜕𝑧
)

2
]               (3.13) 

which is always positive, since all the terms are quadratic; where 𝜇 is the coefficient of 

viscosity.  

 Let us consider a heat and mass transfer by mixed convection flow of an incompressible 

electrically conducting viscous fluid past an electrically non-conducting vertical porous 

plate 𝑦 = 0. Introducing the Cartesian co-ordinate system x- axis is chosen along the 

direction of flow and y- axis is normal to it. A uniform magnetic field is applied normal to 

the flow direction. In addition the analysis is based on the following assumptions:  
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The magnetic Reynolds number of the flow is taken to be large so that the induced 

magnetic field is not negligible. The magnetic field is of the form: 𝐇 = (𝐻𝑥,  𝐻𝑦, 0) 

The equation of the conservation of electric charge is ∇. 𝐉 = 0 where 𝐉 = (𝐽𝑥,  𝐽𝑦 , 0), the 

direction of propagation is considered only along the y-axis and does not have any 

variation along the y- axis and the y derivative of 𝐉 namely 
𝜕𝐽𝑦

𝜕𝑦
= 0, resulting in 𝐽𝑦= 

constant. Since the plate electrically non–conducting, this constant is zero and hence Jy = 0 

everywhere in the flow.  

The divergence equation of Maxwell equations is  ∇. 𝐇 = 0 which gives 
 𝜕𝐻𝑦

𝜕𝑦
= 0 ⇒ 𝐻𝑦 =

 constant = 𝐻0(say). So H = (𝐻𝑥,  𝐻0, 0).  

Now, from equation (3.10), we have 

 𝐉 = ∇𝐇 = |

𝑖̂ 𝑗̂ 𝑘̂
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝐻𝑥 𝐻0 0

| = (0 −
𝜕

𝜕𝑧
𝐻0) 𝑖̂ − (0 −

𝜕

𝜕𝑧
𝐻𝑥) 𝑗̂ + (0 −

𝜕

𝜕𝑦
𝐻𝑥 )𝑘̂  

or, 𝐉 = (0 − 0)𝑖̂ − (0 −
𝜕𝐻𝑥

𝜕𝑧
)𝑗̂  + ( 0 −

𝜕𝐻𝑥

𝜕𝑦
)𝑘̂ 

or, 𝐉 = 0. 𝑖̂ +
𝜕𝐻𝑥

𝜕𝑧
𝑗̂ −

𝜕𝐻𝑥

𝜕𝑦
𝑘̂ 

∴ 𝐉 = (0,
𝜕𝐻𝑥

𝜕𝑧
, −

𝜕𝐻𝑥

𝜕𝑦
)                                                                                                    (3.14) 

Therefore, 
 𝜇𝑒

𝜌
(𝐉 ∧ 𝐇) =

 𝜇𝑒

𝜌
|

𝑖̂ 𝑗̂ 𝑘̂

0
𝜕𝐻𝑥

𝜕𝑧
−

𝜕𝐻𝑥

𝜕𝑦

𝐻𝑥 𝐻0 0

| 

                                    =
 𝜇𝑒

𝜌
[(0 − 𝐻0

𝜕𝐻𝑥

𝜕𝑧
) 𝑖̂ − (0 + 𝐻𝑥

𝜕𝐻𝑥

𝜕𝑦
) 𝑗̂ + (0 − 𝐻𝑥

𝜕𝐻𝑥

𝜕𝑧
) 𝑘̂] 

                                    =
 𝜇𝑒

𝜌
(𝐻0

𝜕𝐻𝑥

𝜕𝑦
𝑖̂ − 𝐻𝑥

𝜕𝐻𝑥

𝜕𝑦
𝑗̂ − 𝐻𝑥

𝜕𝐻𝑥

𝜕𝑧
𝑘̂) 

i.e.,  
 𝜇𝑒

𝜌
(𝐉 ∧ 𝐇) =

 𝜇𝑒

𝜌
 (𝐻0

𝜕𝐻𝑥

𝜕𝑦
, −𝐻𝑥

𝜕𝐻𝑥

𝜕𝑦
, − 𝐻𝑥

𝜕𝐻𝑥

𝜕𝑧
)                                                   (3.15) 

Also, F = (Fx, Fy,  Fz)                                                                                                     (3.16)     

Thus the momentum equation (3.5) can be written in the Cartesian form with the help of 

the equation (3.15) and (3.16) as 
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∴
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧
= 𝐹𝑥 −

1

𝜌

𝜕𝜌

𝜕𝑥
+ 𝜐 (

𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2 + 
𝜕2𝑢

𝜕𝑧2) +
 𝜇𝑒

𝜌
𝐻0

𝜕𝐻𝑥

𝜕𝑦
                (3.17) 

∴
𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
+ 𝑤

𝜕𝑣

𝜕𝑧
= 𝐹𝑦 −

1

𝜌

𝜕𝜌

𝜕𝑦
+ 𝜐 (

𝜕2𝑣

𝜕𝑥2 +
𝜕2𝑣

𝜕𝑦2 +  
𝜕2𝑣

𝜕𝑧2) −
 𝜇𝑒

𝜌
𝐻𝑥

𝜕𝐻𝑥

𝜕𝑦
                 (3.18)  

∴
𝜕𝑤

𝜕𝑡
+ 𝑢

𝜕𝑤

𝜕𝑥
+ 𝑣

𝜕𝑤

𝜕𝑦
+ 𝑤

𝜕𝑤

𝜕𝑧
= 𝐹𝑧 −

1

𝜌

𝜕𝜌

𝜕𝑧
+ 𝜐 (

𝜕2𝑤

𝜕𝑥2 +
𝜕2𝑤

𝜕𝑦2 +  
𝜕2𝑤

𝜕𝑧2 ) −
 𝜇𝑒

𝜌
𝐻𝑥

𝜕𝐻𝑥

𝜕𝑧
             (3.19) 

Again H = (𝐻𝑥,  𝐻0, 0) 

and 𝐪. ∇=  𝑢
𝜕

𝜕𝑥
 + 𝑣

𝜕

𝜕𝑦
 + 𝑤

𝜕

𝜕𝑧
 

 ∴ (𝐪. ∇)𝐇 = ( 𝑢
𝜕

𝜕𝑥
 + 𝑣

𝜕

𝜕𝑦
 + 𝑤

𝜕

𝜕𝑧
 ) (𝐻𝑥𝑖̂ + 𝐻0𝑗̂   + 0. 𝑘̂) 

                 =(𝑢
𝜕𝐻𝑥

𝜕𝑥
+ 𝑣

𝜕𝐻𝑥

𝜕𝑦
 + 𝑤

𝜕𝐻𝑥

𝜕𝑧
) 𝑖̂   

∴ (𝐪. ∇ )𝐇 = (𝑢
𝜕𝐻𝑥

𝜕𝑥
 + 𝑣

𝜕𝐻𝑥

𝜕𝑦
 + 𝑤

𝜕𝐻𝑥

𝜕𝑧
) 𝑖̂                                                                      (3.20)       

Again  (𝐇. ∇)𝐪 = [(𝐻𝑥𝑖̂ + 𝐻0𝑗̂). (𝑖̂
𝜕

𝜕𝑥
+ 𝑗̂

𝜕

𝜕𝑦
+ 𝑘̂

𝜕

𝜕𝑧
)] (𝑢 𝑖̂ +  𝑣𝑗̂  + 𝑤𝑘̂) 

                          = (𝐻𝑥
𝜕

𝜕𝑥
+ 𝐻0

𝜕

𝜕𝑦
) (𝑢𝑖̂  + 𝑣𝑗̂ + 𝑤𝑘̂) 

                          = (𝐻𝑥
𝜕

𝜕𝑥
+ 𝐻0

𝜕

𝜕𝑦
) (𝑢𝑖̂  + 𝑣𝑗̂ + 𝑤𝑘̂) 

                          = (𝐻𝑥
𝜕𝑢

𝜕𝑥
+ 𝐻0

𝜕𝑢

𝜕𝑦
) 𝑖̂ + (𝐻𝑥

𝜕𝑣

𝜕𝑥
+ 𝐻0

𝜕𝑣

𝜕𝑦
) 𝑗̂ + (𝐻𝑥

𝜕𝑤

𝜕𝑥
+ 𝐻0

𝜕𝑤

𝜕𝑦
) 𝑘̂        (3.21) 

Also,  
1

𝜇𝑒𝜎′ ∇2𝐇 =
1

𝜇𝑒𝜎′ (
𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑦2 +  
𝜕2

𝜕𝑧2) (𝐻𝑥𝑖̂ + 𝐻0𝑗̂) 

                         =
1

𝜇𝑒𝜎′ (
𝜕2𝐻𝑥

𝜕𝑥2 +
𝜕2𝐻𝑥

𝜕𝑦2 +  
𝜕2𝐻𝑥

𝜕𝑧2 ) 𝑖̂ 

∴
1

𝜇𝑒𝜎′ ∇2𝐇 =
1

𝜇𝑒𝜎′ (
𝜕2𝐻𝑥

𝜕𝑥2 +
𝜕2𝐻𝑥

𝜕𝑦2 + 
𝜕2𝐻0

𝜕𝑧2 , 0, 0)                                                               (3.22) 

Thus the magnetic induction equation (3.6) yields 

𝜕𝐻𝑥

𝜕𝑡
+ 𝑢

𝜕𝐻𝑥

𝜕𝑥
+ 𝑣

𝜕𝐻𝑥

𝜕𝑦
+ 𝑤

𝜕𝐻𝑥

𝜕𝑧
= 𝐻𝑥

𝜕𝑢

𝜕𝑥
+ 𝐻0

𝜕𝑢

𝜕𝑦
+

1

𝜇𝑒𝜎′ (
𝜕2𝐻𝑥

𝜕𝑥2 +
𝜕2𝐻𝑥

𝜕𝑦2 +
𝜕2𝐻𝑥

𝜕𝑧2 )                (3.23) 

0 = 𝐻𝑥
𝜕𝑣

𝜕𝑥
+ 𝐻0

𝜕𝑣

𝜕𝑦
                                                                                                          (3.24) 

0 = 𝐻𝑥
𝜕𝑤

𝜕𝑥
+ 𝐻0

𝜕𝑤

𝜕𝑦
                                                                                                        (3.25) 

Again,  𝐉 = ∇𝐇 = (0,
𝜕𝐻𝑥

𝜕𝑧
, −

𝜕𝐻𝑥

𝜕𝑦
)  

𝐉2 = [
𝜕𝐻𝑥

𝜕𝑧
𝑗̂ + (−

𝜕𝐻𝑥

𝜕𝑦
) 𝑘̂] . [

𝜕𝐻𝑥

𝜕𝑧
𝑗̂ + (−

𝜕𝐻𝑥

𝜕𝑦
) 𝑘̂] = (

𝜕𝐻𝑥

𝜕𝑧
)

2
+ (

𝜕𝐻𝑥

𝜕𝑦
)

2
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∴  
𝐉2

𝜌𝐶𝑝𝜎′  =
1

𝜌𝐶𝑝𝜎′ [(
𝜕𝐻𝑥

𝜕𝑧
)

2
+ (

𝜕𝐻𝑥

𝜕𝑦
)

2
]                                                                              (3.26) 

Thus the energy equation (3.7) become 

𝜕𝑇

𝜕𝑡
+ 𝑢

𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
+ 𝑤

𝜕𝑇

𝜕𝑧
=

𝑘

𝜌𝐶𝑝
(

𝜕2𝑇

𝜕𝑥2 +
𝜕2𝑇

𝜕𝑦2 + 
𝜕2𝑇

𝜕𝑧2) +
1

𝜌𝐶𝑝
𝜙 +

1

𝜌𝐶𝑝𝜎′ [(
𝜕𝐻𝑥

𝜕𝑧
)

2
+ (

𝜕𝐻𝑥

𝜕𝑦
)

2
]  +                  

                                                                                            
𝐷𝑚𝐾𝑇

𝐶𝑠𝐶𝑝
(

𝜕2𝐶

𝜕𝑥2 +
𝜕2𝐶

𝜕𝑦2 + 
𝜕2𝐶

𝜕𝑧2)     (3.27) 

where 𝜙 = 𝜇 [(
𝜕𝑢

𝜕𝑥
)

2
+ (

𝜕𝑣

𝜕𝑦
)

2
+ (

𝜕𝑤

𝜕𝑧
)

2
+ (

𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
)

2
+ (

𝜕𝑤

𝜕𝑦
+

𝜕𝑣

𝜕𝑧
)

2
+ (

𝜕𝑤

𝜕𝑥
+

𝜕𝑢

𝜕𝑧
)

2
] 

and the species concentration equation (3.8) become  

𝜕𝐶

𝜕𝑡
+ 𝑢

𝜕𝐶

𝜕𝑥
+ 𝑣

𝜕𝐶

𝜕𝑦
+ 𝑤

𝜕𝐶

𝜕𝑧
= 𝐷𝑚 (

𝜕2𝐶

𝜕𝑥2 +
𝜕2𝐶

𝜕𝑦2 + 
𝜕2𝐶

𝜕𝑧2) +
𝐷𝑚𝐾𝑇

𝑇𝑚
(

𝜕2𝑇

𝜕𝑥2 +
𝜕2𝑇

𝜕𝑦2 +  
𝜕2𝑇

𝜕𝑧2)              (3.28) 

Thus in three dimensional Cartesian co-ordinate system the continuity equation, the 

momentum equation, the magnetic induction and the species concentration equation 

become 

Continuity equation                                               

 
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
= 0                                                                                                          (3.29) 

Momentum equation 

∴
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧
= 𝐹𝑥 −

1

𝜌

𝜕𝜌

𝜕𝑥
+ 𝜐 (

𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2 + 
𝜕2𝑢

𝜕𝑧2) +
 𝜇𝑒

𝜌
𝐻0

𝜕𝐻𝑥

𝜕𝑦
                  (3.30) 

∴
𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
+ 𝑤

𝜕𝑣

𝜕𝑧
= 𝐹𝑦 −

1

𝜌

𝜕𝜌

𝜕𝑦
+ 𝜐 (

𝜕2𝑣

𝜕𝑥2 +
𝜕2𝑣

𝜕𝑦2 +  
𝜕2𝑣

𝜕𝑧2) −
 𝜇𝑒

𝜌
𝐻𝑥

𝜕𝐻𝑥

𝜕𝑦
                   (3.31)       

∴
𝜕𝑤

𝜕𝑡
+ 𝑢

𝜕𝑤

𝜕𝑥
+ 𝑣

𝜕𝑤

𝜕𝑦
+ 𝑤

𝜕𝑤

𝜕𝑧
= 𝐹𝑧 −

1

𝜌

𝜕𝜌

𝜕𝑧
+ 𝜐 (

𝜕2𝑤

𝜕𝑥2 +
𝜕2𝑤

𝜕𝑦2 +  
𝜕2𝑤

𝜕𝑧2 ) −
 𝜇𝑒

𝜌
𝐻𝑥

𝜕𝐻𝑥

𝜕𝑧
               (3.32) 

Magnetic induction equation 

𝜕𝐻𝑥

𝜕𝑡
+ 𝑢

𝜕𝐻𝑥

𝜕𝑥
+ 𝑣

𝜕𝐻𝑥

𝜕𝑦
+ 𝑤

𝜕𝐻𝑥

𝜕𝑧
= 𝐻𝑥

𝜕𝑢

𝜕𝑥
+ 𝐻0

𝜕𝑢

𝜕𝑦
+

1

𝜇𝑒𝜎′ (
𝜕2𝐻𝑥

𝜕𝑥2 +
𝜕2𝐻𝑥

𝜕𝑦2 +
𝜕2𝐻𝑥

𝜕𝑧2 )                (3.33) 

0 = 𝐻𝑥
𝜕𝑣

𝜕𝑥
+ 𝐻0

𝜕𝑣

𝜕𝑦
                                                                                                                        (3.34)  

0 = 𝐻𝑥
𝜕𝑤

𝜕𝑥
+ 𝐻0

𝜕𝑤

𝜕𝑦
                                                                                                                       (3.35) 

Energy equation 

𝜕𝑇

𝜕𝑡
+ 𝑢

𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
+ 𝑤

𝜕𝑇

𝜕𝑧
=

𝑘

𝜌𝐶𝑝
(

𝜕2𝑇

𝜕𝑥2 +
𝜕2𝑇

𝜕𝑦2 + 
𝜕2𝑇

𝜕𝑧2) +
1

𝜌𝐶𝑝
𝜙 +

1

𝜌𝐶𝑝𝜎′ [(
𝜕𝐻𝑥

𝜕𝑧
)

2
+ (

𝜕𝐻𝑥

𝜕𝑦
)

2
] +        

                                                                                                      
𝐷𝑚𝐾𝑇

𝐶𝑠𝐶𝑝
(

𝜕2𝐶

𝜕𝑥2 +
𝜕2𝐶

𝜕𝑦2 +  
𝜕2𝐶

𝜕𝑧2)        (3.36) 
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where  𝜙 = 𝜇 [(
𝜕𝑢

𝜕𝑥
)

2
+ (

𝜕𝑣

𝜕𝑦
)

2
+ (

𝜕𝑤

𝜕𝑧
)

2
+ (

𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
)

2
+ (

𝜕𝑤

𝜕𝑦
+

𝜕𝑣

𝜕𝑧
)

2
+ (

𝜕𝑤

𝜕𝑥
+

𝜕𝑢

𝜕𝑧
)

2
] 

Concentration equation  

𝜕𝐶

𝜕𝑡
+ 𝑢

𝜕𝐶

𝜕𝑥
+ 𝑣

𝜕𝐶

𝜕𝑦
+ 𝑤

𝜕𝐶

𝜕𝑧
= 𝐷𝑚 (

𝜕2𝐶

𝜕𝑥2 +
𝜕2𝐶

𝜕𝑦2 + 
𝜕2𝐶

𝜕𝑧2) +
𝐷𝑚𝐾𝑇

𝑇𝑚
(

𝜕2𝑇

𝜕𝑥2 +
𝜕2𝑇

𝜕𝑦2 +  
𝜕2𝑇

𝜕𝑧2)              (3.37) 

The next two subsections deal with the specific problem. 

 

3.1.1 Case-𝚰: Unsteady MHD heat and mass transfer by mixed convection past an 

infinite vertical porous plate. 
 

Let us consider an unsteady heat and mass transfer by mixed convection  flow of an  

electrically conducting viscous fluid past an infinite vertical porous plate y = 0. The flow 

is also assumed to be in x- direction which is taken along the plate in upward direction and 

y- axis is normal to it. The temperature and species concentration at the plate are instantly 

raised from Tw and Cw to 𝑇∞ and 𝐶∞ respectively, which are thereafter maintained as 

constant, where 𝑇∞ and 𝐶∞ are the temperature and species concentration of the uniform 

flow respectively. A uniform magnetic field of strength H is applied to the plate to be 

acting along the y-axis, which is electrically non-conducting.  

In the heat and mass transfer by mixed convection flow along the vertical plate, the body 

force and the pressure gradient along the direction is 

 g𝛽(𝑇 −  𝑇∞) + g𝛽∗(C − 𝐶∞)                                                                                        (3.38) 

where g is the component of gravity force along the vertical direction, 𝛽  is the coefficient 

of volume expansion, 𝛽∗ is the volumetric coefficient expansion with concentration. With 

reference to the above assumptions, the continuity equation (3.29), the momentum 

equation (3.30) - (3.32) the magnetic induction equations (3.33) - (3.35), the energy 

equation (3.36) and the species concentration equation (3.37) become: 

Continuity equation 

𝜕𝑢

𝜕𝑥
 +

𝜕𝑣

𝜕𝑦
 +

𝜕𝑤

𝜕𝑧
= 0                                                                                                                        (3.39) 

Momentum equation 

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
 + 𝑤

𝜕𝑢

𝜕𝑧
= 𝑔𝛽(𝑇 −  𝑇∞) + 𝑔𝛽∗(𝐶 − 𝐶∞) + 𝜐 (

𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2 + 
𝜕2𝑢

𝜕𝑧2)                                                                                                           

                                                                                                          +
 𝜇𝑒

𝜌
𝐻0

𝜕𝐻𝑥

𝜕𝑦
           (3.40) 
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∴
𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
+ 𝑤

𝜕𝑣

𝜕𝑧
= 𝜐 (

𝜕2𝑣

𝜕𝑥2 +
𝜕2𝑣

𝜕𝑦2 +  
𝜕2𝑣

𝜕𝑧2) −
 𝜇𝑒

𝜌
𝐻𝑥

𝜕𝐻𝑥

𝜕𝑦
                                         (3.41) 

𝜕𝑤

𝜕𝑡
+ 𝑢

𝜕𝑤

𝜕𝑥
+ 𝑣

𝜕𝑤

𝜕𝑦
+ 𝑤

𝜕𝑤

𝜕𝑧
= 𝜐 (

𝜕2𝑤

𝜕𝑥2 +
𝜕2𝑤

𝜕𝑦2 + 
𝜕2𝑤

𝜕𝑧2 ) −
 𝜇𝑒

𝜌
𝐻𝑥

𝜕𝐻𝑥

𝜕𝑧
                                        (3.42) 

Magnetic induction equation  

𝜕𝐻𝑥

𝜕𝑡
+ 𝑢

𝜕𝐻𝑥

𝜕𝑥
+ 𝑣

𝜕𝐻𝑥

𝜕𝑦
+ 𝑤

𝜕𝐻𝑥

𝜕𝑧
= 𝐻𝑥

𝜕𝑢

𝜕𝑥
+ 𝐻0

𝜕𝑢

𝜕𝑦
+

1

𝜇𝑒𝜎′ (
𝜕2𝐻𝑥

𝜕𝑥2 +
𝜕2𝐻𝑥

𝜕𝑦2 +
𝜕2𝐻𝑥

𝜕𝑧2 )                  (3.43) 

0 = 𝐻𝑥
𝜕𝑣

𝜕𝑥
+ 𝐻0

𝜕𝑣

𝜕𝑦
                                                                                                                        (3.44) 

0 = 𝐻𝑥
𝜕𝑤

𝜕𝑥
+ 𝐻0

𝜕𝑤

𝜕𝑦
                                                                                                                       (3.45) 

Energy equation 

𝜕𝑇

𝜕𝑡
+ 𝑢

𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
+ 𝑤

𝜕𝑇

𝜕𝑧
=

𝑘

𝜌𝐶𝑝
(

𝜕2𝑇

𝜕𝑥2 +
𝜕2𝑇

𝜕𝑦2 + 
𝜕2𝑇

𝜕𝑧2) +
1

𝜌𝐶𝑝
𝜙 +

1

𝜌𝐶𝑝𝜎′ [(
𝜕𝐻𝑥

𝜕𝑧
)

2
+ (

𝜕𝐻𝑥

𝜕𝑦
)

2
]                                                  

                                                                                         +
𝐷𝑚𝐾𝑇

𝐶𝑠𝐶𝑝
(

𝜕2𝐶

𝜕𝑥2  +
𝜕2𝐶

𝜕𝑦2 +  
𝜕2𝐶

𝜕𝑧2)                (3.46) 

where 𝜙 = 𝜇 [(
𝜕𝑢

𝜕𝑥
)

2
+ (

𝜕𝑣

𝜕𝑦
)

2
+ (

𝜕𝑤

𝜕𝑧
)

2
+ (

𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
)

2
+ (

𝜕𝑤

𝜕𝑦
+

𝜕𝑣

𝜕𝑧
)

2
+ (

𝜕𝑤

𝜕𝑥
+

𝜕𝑢

𝜕𝑧
)

2
] 

Concentration equation  

𝜕𝐶

𝜕𝑡
+ 𝑢

𝜕𝐶

𝜕𝑥
 + 𝑣

𝜕𝐶

𝜕𝑦
 + 𝑤

𝜕𝐶

𝜕𝑧
= 𝐷𝑚 (

𝜕2𝐶

𝜕𝑥2 +
𝜕2𝐶

𝜕𝑦2 + 
𝜕2𝐶

𝜕𝑧2) +
𝐷𝑚𝐾𝑇

𝑇𝑚
(

𝜕2𝑇

𝜕𝑥2  +
𝜕2𝑇

𝜕𝑦2 + 
𝜕2𝑇

𝜕𝑧2)           (3.47) 

Since the plate occupying the plane y = 0 is of infinite extent and fluid motion is unsteady, 

so all the physical quantities will depend only upon y and t. Thus the given governing 

equations (3.39) – (3.47) reduced to one-dimensional equations, which are as follows: 

Continuity equation 

𝜕𝑣

𝜕𝑦
= 0                                                                                                                            (3.48) 

Momentum equation 

𝜕𝑢

𝜕𝑡
+ 𝑣

𝜕𝑢

𝜕𝑦
 = 𝑔𝛽(𝑇 −  𝑇∞) + 𝑔𝛽∗(𝐶 − 𝐶∞) + 𝜐

𝜕2𝑢

𝜕𝑦2  +
 𝜇𝑒

𝜌
𝐻0

𝜕𝐻𝑥

𝜕𝑦
                                     (3.49) 

𝜕𝑣

𝜕𝑡
+ 𝑣

𝜕𝑣

𝜕𝑦
= 𝜐

𝜕2𝑣

𝜕𝑦2 −
 𝜇𝑒

𝜌
𝐻𝑥

𝜕𝐻𝑥

𝜕𝑦
                                                                                                   (3.50) 

Magnetic induction equation 

𝜕𝐻𝑥

𝜕𝑡
+ 𝑣

𝜕𝐻𝑥

𝜕𝑦
= 𝐻0

𝜕𝑢

𝜕𝑦
+

1

𝜇𝑒𝜎′

𝜕2𝐻𝑥

𝜕𝑦2                                                                                                 (3.51) 

0 = 𝐻0
𝜕𝑣

𝜕𝑦
                                                                                                                       (3.52) 
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Energy equation 

𝜕𝑇

𝜕𝑡
+ 𝑣

𝜕𝑇

𝜕𝑦
=

𝑘

𝜌𝐶𝑝

𝜕2𝑇

𝜕𝑦2 +
𝜇

𝜌𝐶𝑝
[(

𝜕𝑢

𝜕𝑦
)

2
+ (

𝜕𝑣

𝜕𝑦
)

2
] +

1

𝜌𝑐𝑝𝜎′
(

𝜕𝐻𝑥

𝜕𝑦
)

2
+ 

𝐷𝑚𝐾𝑇

𝐶𝑠𝐶𝑝

𝜕2𝐶

𝜕𝑦2                       (3.53) 

Concentration equation  

𝜕𝐶

𝜕𝑡
+ 𝑣

𝜕𝐶

𝜕𝑦
 = 𝐷𝑚

𝜕2𝐶

𝜕𝑦2 +
𝐷𝑚𝐾𝑇

𝑇𝑚

𝜕2𝑇

𝜕𝑦2                                                                                               (3.54) 

Since the magnetic Reynolds number of the flow is large so that the viscosity of the fluid 

is small. Let 𝛿 be the small thickness of the boundary layer and 𝜀 ≪ 1 be the order of 

magnitude of 𝛿 i.e. 𝑂(𝛿) = 𝜀, then we can write  

𝑂(𝑦) = 𝜀, 𝑂(𝑣) = 𝜀, 𝑂(𝐻0) = 𝜀 

Also we assume that,   

𝑂(𝑢) = 1,        𝑂(𝑡) = 1,        𝑂(𝐻𝑥)  =  1 

Hence, 

𝑂 (
𝜕𝑢

𝜕𝑡
) = 1 , 𝑂 (

𝜕𝑢

𝜕𝑦
) =

1

𝜀
 , 𝑂 (

𝜕2𝑢

𝜕𝑦2
) =

1

𝜀2
 , 𝑂 (

𝜕𝐻𝑥

𝜕𝑦
) =

1

𝜀
 

𝑂 (
𝜕𝑣

𝜕𝑡
) = 𝜀 , 𝑂 (

𝜕𝑣

𝜕𝑦
) = 1 , 𝑂 (

𝜕2𝑣

𝜕𝑦2
) =

1

𝜀
        

𝑂 (
𝜕𝐻𝑥

𝜕𝑡
) = 1,     𝑂 (

∂2𝐻𝑥

∂𝑦2
) =

1

𝜀2
 

within the boundary layer. Then the equations (3.48) – (3.52) with corresponding order of 

each term are given below:  

Continuity equation         

𝜕𝑣

𝜕𝑦
= 0                                                                                                                            (3.55) 

1 

Momentum equation 

𝜕𝑢

𝜕𝑡
+ 𝑣

𝜕𝑢

𝜕𝑦
 = 𝑔𝛽(𝑇 −  𝑇∞) + 𝑔𝛽∗(𝐶 − 𝐶∞) + 𝜐

𝜕2𝑢

𝜕𝑦2  +
 𝜇𝑒

𝜌
𝐻0

𝜕𝐻𝑥

𝜕𝑦
                                 (3.56) 

1       𝜀  
1

𝜀
                                                                      

1

𝜀2
             𝜀   

1

𝜀
 

𝜕𝑣

𝜕𝑡
+ 𝑣

𝜕𝑣

𝜕𝑦
= 𝜐

𝜕2𝑣

𝜕𝑦2 −
 𝜇𝑒

𝜌
𝐻𝑥

𝜕𝐻𝑥

𝜕𝑦
                                                                                       (3.57) 

 𝜺     𝜺 1            
1

 ε
             1   

1

ε
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Magnetic induction equation 

𝜕𝐻𝑥

𝜕𝑡
+ 𝑣

𝜕𝐻𝑥

𝜕𝑦
= 𝐻0

𝜕𝑢

𝜕𝑦
+

1

𝜇𝑒𝜎′

𝜕2𝐻𝑥

𝜕𝑦2                                                                                                 (3.58) 

1         𝜀   
1

𝜀
       𝜀   

1

𝜀
               

1

𝜀2
 

0 = 𝐻0
𝜕𝑣

𝜕𝑦
                                                                                                                                       (3.59) 

        𝜀   1 

Again let 𝛿𝑻 be the thermal boundary layer thickness and let 𝜀 ≪ 1 be also the order of 𝛿𝑻 

i.e. 𝑂(𝛿𝑇) = 𝜀. Then we can write  𝑂(𝑦) = 𝜀,     𝑂(𝑣)  =  𝜀. 

We can also write 𝑂(𝑇) = 1,    𝑂(𝐶) = 1,    𝑂(𝑥) = 1   and   𝑂(𝑢) = 1. 

Hence, 

𝑂 (
𝜕𝑇

𝜕𝑡
) = 1, 𝑂 (

𝜕𝑇

𝜕𝑦
) =  

1

𝜀
 , 𝑂 (

𝜕2𝑇

𝜕𝑦2
) =  

1

𝜀2
, 𝑂 (

𝜕𝐶

𝜕𝑡
) =  1, 𝑂 (

𝜕𝐶

𝜕𝑦
) =

1

𝜀
 , 𝑂 (

𝜕2𝐶

𝜕𝑦2
) =

1

𝜀2
 

within the boundary layer. 

Then the equations (3.53) – (3.54) with corresponding order of each term are given below: 

Energy Equation 

𝜕𝑇

𝜕𝑡
+ 𝑣

𝜕𝑇

𝜕𝑦
=

𝑘

𝜌𝐶𝑝

𝜕2𝑇

𝜕𝑦2 +
𝜇

𝜌𝐶𝑝
[(

𝜕𝑢

𝜕𝑦
)

2
+ (

𝜕𝑣

𝜕𝑦
)

2
] +

1

𝜌𝑐𝑝𝜎′
(

𝜕𝐻𝑥

𝜕𝑦
)

2
+ 

𝐷𝑚𝐾𝑇

𝐶𝑠𝐶𝑝

𝜕2𝐶

𝜕𝑦2                       (3.60) 

1       𝜀 
1

  𝜀
           

1

𝜀2
                 

1

𝜀2
           1                         

1

𝜀2
                    

1

𝜀2
 

Concentration equation  

𝜕𝐶

𝜕𝑡
+ 𝑣

𝜕𝐶

𝜕𝑦
 = 𝐷𝑚

𝜕2𝐶

𝜕𝑦2 +
𝐷𝑚𝐾𝑇

𝑇𝑚

𝜕2𝑇

𝜕𝑦2                                                                                                (3.61) 

 1     𝜀  
1

ε
               

1

𝜀2
                

1

𝜀2
 

where we have found the order of other terms involved in the equation as follows: 

𝑂(𝑔𝛽(𝑇 −  𝑇∞)) = 1 , 𝑂(𝑔𝛽∗(𝐶 − 𝐶∞)) = 1,  

𝑂 (
 𝜇𝑒

𝜌
) = 𝜀2,   𝑂(𝜐) =  𝜀2, 𝑂 (

1

𝜇𝑒𝜎′
) = 𝜀2 , 𝑂 (

𝑘

𝜌𝐶𝑝
) = 𝜀2, 𝑂(𝐷𝑚) = 𝜀2,  

𝑂 (
𝐷𝑚𝐾𝑇

𝑇𝑚
) = 𝜀2, 𝑂 (

𝜐

𝐶𝑝
) = 𝜀2, 𝑂 (

1

𝜌𝐶𝑝𝜎′
) = 𝜀2, 𝑂 (

𝐷𝑚

𝐶𝑠𝐶𝑝
) = 𝜀2. 
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Since the viscosity is very small, we can neglect the terms of small orders. Thus we have 

from equations (3.55) – (3.61): 

𝜕𝑣

𝜕𝑦
= 0                                                                                                                            (3.62) 

𝜕𝑢

𝜕𝑡
+ 𝑣

𝜕𝑢

𝜕𝑦
 = 𝑔𝛽(𝑇 −  𝑇∞) + 𝑔𝛽∗(𝐶 − 𝐶∞) + 𝜐

𝜕2𝑢

𝜕𝑦2  +
 𝜇𝑒

𝜌
𝐻0

𝜕𝐻𝑥

𝜕𝑦
                                 (3.63) 

𝜕𝐻𝑥

𝜕𝑡
+ 𝑣

𝜕𝐻𝑥

𝜕𝑦
= 𝐻0

𝜕𝑢

𝜕𝑦
+

1

𝜇𝑒𝜎′

𝜕2𝐻𝑥

𝜕𝑦2                                                                                              (3.64) 

𝜕𝑇

𝜕𝑡
+ 𝑣

𝜕𝑇

𝜕𝑦
=

𝑘

𝜌𝐶𝑝

𝜕2𝑇

𝜕𝑦2 +
𝜇

𝜌𝐶𝑝
(

𝜕𝑢

𝜕𝑦
)

2
+

1

𝜌𝑐𝑝𝜎′ (
𝜕𝐻𝑥

𝜕𝑦
)

2
+  

𝐷𝑚𝐾𝑇

𝐶𝑠𝐶𝑝

𝜕2𝐶

𝜕𝑦2                                             (3.65) 

𝜕𝐶

𝜕𝑡
+ 𝑣

𝜕𝐶

𝜕𝑦
 = 𝐷𝑚

𝜕2𝐶

𝜕𝑦2 +
𝐷𝑚𝐾𝑇

𝑇𝑚

𝜕2𝑇

𝜕𝑦2                                                                                                (3.66) 

The boundary conditions for the problem are as follows: 

𝑡 > 0,   𝑢 = 𝑈0 (𝑡),   𝑣 = 𝑣 (𝑡),   
𝜕𝑇

𝜕𝑦
= −

𝑞

𝑘
,   

𝜕𝐶

𝜕𝑦
= −

𝑚

𝐷𝑚
,   𝐻𝑥 = 𝐻0  at  𝑦 = 0           (3.67) 

𝑡 > 0,   𝑢 = 0,   𝑇 ⟶ 𝑇∞,   𝐶 ⟶ 𝐶∞,   𝐻𝑥 ⟶ 0    as   𝑦 ⟶ ∞ 

where Hx is the induced magnetic field, H0 is applied constant magnetic field at the plate 

and m is the coefficient of mass flux per unite area. 

 

3.1.2 Case-𝚰𝚰: Steady MHD heat and mass transfer by mixed convection flow past a 

semi-infinite vertical porous plate 
 

Let us consider a steady heat and mass transfer by mixed convection flow of an 

electrically conducting viscous fluid past a semi-infinite vertical porous plate y = 0. The 

flow is also assumed to be in x-direction which is taken along the plate is upward direction 

and y-axis is normal to it. The detailed descriptions of the present problem are similar to 

those of Case –I. In the heat and mass transfer by mixed convection flow along the vertical 

plate, the body force and pressure gradient along the direction is 

𝑔𝛽(𝑇 − 𝑇∞) + 𝑔𝛽∗(𝐶 − 𝐶∞)                                                                                       (3.68) 

where 𝑔 is the component of gravity force along the vertical direction, 𝛽 is the coefficient 

of volume expansion, 𝛽∗ is the volumetric coefficient expansion with concentration. With 

reference to the above assumptions, the continuity equation (3.29), the momentum 

equations (3.30) – (3.32), the magnetic induction equations (3.33) – (3.35), the energy 

equation (3.36) and the species concentration equation (3.37) become: 
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Continuity equation 

𝜕𝑢

𝜕𝑥
 +

𝜕𝑣

𝜕𝑦
 +

𝜕𝑤

𝜕𝑧
 = 0                                                                                                        (3.69) 

Momentum equation 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧
= 𝑔𝛽(𝑇 − 𝑇∞) + 𝑔𝛽∗(𝐶 − 𝐶∞) + 𝜐 (

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
+  

𝜕2𝑢

𝜕𝑧2
) 

                                                                                                                 +
 𝜇𝑒

𝜌
𝐻0

𝜕𝐻𝑥

𝜕𝑦
                   (3.70) 

𝑢
𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
+ 𝑤

𝜕𝑣

𝜕𝑧
= 𝜐 (

𝜕2𝑣

𝜕𝑥2 +
𝜕2𝑣

𝜕𝑦2 +  
𝜕2𝑣

𝜕𝑧2) −
 𝜇𝑒

𝜌
𝐻𝑥

𝜕𝐻𝑥

𝜕𝑦
                                                      (3.71) 

𝑢
𝜕𝑤

𝜕𝑥
+ 𝑣

𝜕𝑤

𝜕𝑦
+ 𝑤

𝜕𝑤

𝜕𝑧
= 𝜐 (

𝜕2𝑤

𝜕𝑥2 +
𝜕2𝑤

𝜕𝑦2 +  
𝜕2𝑤

𝜕𝑧2 ) −
 𝜇𝑒

𝜌
𝐻𝑥

𝜕𝐻𝑥

𝜕𝑧
                                                 (3.72) 

Magnetic induction equation 

𝑢
𝜕𝐻𝑥

𝜕𝑥
+ 𝑣

𝜕𝐻𝑥

𝜕𝑦
+ 𝑤

𝜕𝐻𝑥

𝜕𝑧
= 𝐻𝑥

𝜕𝑢

𝜕𝑥
+ 𝐻0

𝜕𝑢

𝜕𝑦
+

1

𝜇𝑒𝜎′ (
𝜕2𝐻𝑥

𝜕𝑥2 +
𝜕2𝐻𝑥

𝜕𝑦2 +
𝜕2𝐻𝑥

𝜕𝑧2 )                          (3.73) 

0 = 𝐻𝑥
𝜕𝑣

𝜕𝑥
+ 𝐻0

𝜕𝑣

𝜕𝑦
                                                                                                                       (3.74) 

0 = 𝐻𝑥
𝜕𝑤

𝜕𝑥
+ 𝐻0

𝜕𝑤

𝜕𝑦
                                                                                                                      (3.75) 

Energy equation 

𝜕𝑇

𝜕𝑡
+ 𝑢

𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
+ 𝑤

𝜕𝑇

𝜕𝑧
=

𝑘

𝜌𝐶𝑝
(

𝜕2𝑇

𝜕𝑥2 +
𝜕2𝑇

𝜕𝑦2 + 
𝜕2𝑇

𝜕𝑧2) +
1

𝜌𝐶𝑝
𝜙 +

1

𝜌𝐶𝑝𝜎′ [(
𝜕𝐻𝑥

𝜕𝑧
)

2
+ (

𝜕𝐻𝑥

𝜕𝑦
)

2
]         

                                                                               +
𝐷𝑚𝐾𝑇

𝐶𝑠𝐶𝑝
(

𝜕2𝐶

𝜕𝑥2  +
𝜕2𝐶

𝜕𝑦2 +  
𝜕2𝐶

𝜕𝑧2)                         (3.76) 

where  𝜙 = 𝜇 [(
𝜕𝑢

𝜕𝑥
)

2
+ (

𝜕𝑣

𝜕𝑦
)

2
+ (

𝜕𝑤

𝜕𝑧
)

2
+ (

𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
)

2
+ (

𝜕𝑤

𝜕𝑦
+

𝜕𝑣

𝜕𝑧
)

2
+ (

𝜕𝑤

𝜕𝑥
+

𝜕𝑢

𝜕𝑧
)

2
] 

Concentration equation  

𝜕𝐶

𝜕𝑡
+ 𝑢

𝜕𝐶

𝜕𝑥
 + 𝑣

𝜕𝐶

𝜕𝑦
 + 𝑤

𝜕𝐶

𝜕𝑧
= 𝐷𝑚 (

𝜕2𝐶

𝜕𝑥2 +
𝜕2𝐶

𝜕𝑦2 + 
𝜕2𝐶

𝜕𝑧2) +
𝐷𝑚𝐾𝑇

𝑇𝑚
(

𝜕2𝑇

𝜕𝑥2  +
𝜕2𝑇

𝜕𝑦2 + 
𝜕2𝑇

𝜕𝑧2)          (3.77) 

Since the plate occupying the plane y = 0 is of semi-infinite extent and fluid motion is 

unsteady, so all the physical quantities will depend only upon x and y. Thus the given 

governing equations (3.69) – (3.77) reduced to two-dimensional equations, which are as 

follows: 

Continuity equation 

𝜕𝑢

𝜕𝑥
 +

𝜕𝑣

𝜕𝑦
 = 0                                                                                                                                  (3.78) 
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Momentum equation 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= 𝑔𝛽(𝑇 − 𝑇∞) + 𝑔𝛽∗(𝐶 − 𝐶∞) + 𝜐 (

𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2) +
 𝜇𝑒

𝜌
𝐻0

𝜕𝐻𝑥

𝜕𝑦
                     (3.79) 

𝑢
𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
= 𝜐 (

𝜕2𝑣

𝜕𝑥2 +
𝜕2𝑣

𝜕𝑦2) −
 𝜇𝑒

𝜌
𝐻𝑥

𝜕𝐻𝑥

𝜕𝑦
                                                                                (3.80) 

Magnetic induction equation 

𝑢
𝜕𝐻𝑥

𝜕𝑥
+ 𝑣

𝜕𝐻𝑥

𝜕𝑦
= 𝐻𝑥

𝜕𝑢

𝜕𝑥
+ 𝐻0

𝜕𝑢

𝜕𝑦
+

1

𝜇𝑒𝜎′ (
𝜕2𝐻𝑥

𝜕𝑥2 +
𝜕2𝐻𝑥

𝜕𝑦2 )                                                    (3.81) 

0 = 𝐻𝑥
𝜕𝑣

𝜕𝑥
+ 𝐻0

𝜕𝑣

𝜕𝑦
                                                                                                          (3.82) 

Energy equation 

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
=

𝑘

𝜌𝐶𝑝
(

𝜕2𝑇

𝜕𝑥2 +
𝜕2𝑇

𝜕𝑦2) +
𝜇

𝜌𝐶𝑝
[(

𝜕𝑢

𝜕𝑥
)

2
+ (

𝜕𝑣

𝜕𝑦
)

2
+ (

𝜕𝑤

𝜕𝑧
)

2
+ (

𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
)

2
]                                                                     

                                                                    +
1

𝜌𝐶𝑝𝜎′ (
𝜕𝐻𝑥

𝜕𝑦
)

2
+

𝐷𝑚𝐾𝑇

𝐶𝑠𝐶𝑝
(

𝜕2𝐶

𝜕𝑥2  +
𝜕2𝐶

𝜕𝑦2)                     (3.83) 

Concentration equation  

𝑢
𝜕𝐶

𝜕𝑥
 + 𝑣

𝜕𝐶

𝜕𝑦
 = 𝐷𝑚 (

𝜕2𝐶

𝜕𝑥2 +
𝜕2𝐶

𝜕𝑦2) +
𝐷𝑚𝐾𝑇

𝑇𝑚
(

𝜕2𝑇

𝜕𝑥2 +
𝜕2𝑇

𝜕𝑦2)                                                            (3.84) 

Since the magnetic Reynolds number of the flow is large enough, so that the viscosity of 

the fluid is small. Let 𝛿 be the small thickness of the boundary layer and 𝜀 ≪ 1 be the 

order of magnitude of 𝛿 i.e. 𝑂(𝛿) = 𝜀, then we can write 

𝑂(𝑦) = 𝜀, 𝑂(𝑣) = 𝜀, 𝑂(𝐻0) =  𝜀 

Also we assume that,   𝑂(𝑢)  = 1, 𝑂(𝑥)  = 1, 𝑂(𝐻𝑥)  =  1 

Hence, 

𝑂 (
𝜕𝑢

𝜕𝑥
) = 1, 𝑂 (

𝜕𝑢

𝜕𝑦
) =

1

𝜀
, 𝑂 (

𝜕2𝑢

𝜕𝑥2
) = 1, 𝑂 (

𝜕2𝑢

𝜕𝑦2
) =  

1

𝜀2
 

𝑂 (
𝜕𝑣

𝜕𝑥
) =  𝜀, 𝑂 (

𝜕𝑣

𝜕𝑦
) = 1, 𝑂 (

𝜕2𝑣

𝜕𝑥2
) = 𝜀, 𝑂 (

𝜕2𝑣

𝜕𝑦2
) =

1

𝜀
 

𝑂 (
𝜕𝐻𝑥

𝜕𝑥
) = 1, 𝑂 (

𝜕𝐻𝑥

𝜕𝑦
) =  

1

𝜀
, 𝑂 (

𝜕2𝐻𝑥

𝜕𝑥2
) = 1, 𝑂 (

𝜕2𝐻𝑥

𝜕𝑦2
) =

1

𝜀2
 

within the boundary layer. Then the equations (3.78) – (3.82) with corresponding order of 

each term are given below: 
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Continuity equation 

𝜕𝑢

𝜕𝑥
 +

𝜕𝑣

𝜕𝑦
 = 0                                                                                                                  (3.85) 

1        1 

Momentum equation 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= 𝑔𝛽(𝑇 − 𝑇∞) + 𝑔𝛽∗(𝐶 − 𝐶∞) + 𝜐 (

𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2) +
 𝜇𝑒

𝜌
𝐻0

𝜕𝐻𝑥

𝜕𝑦
                     (3.86) 

1   1     𝜀  
1

𝜀
                                                                        1        

1

𝜀2               𝜀    
1

𝜀
 

𝑢
𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
= 𝜐 (

𝜕2𝑣

𝜕𝑥2 +
𝜕2𝑣

𝜕𝑦2) −
 𝜇𝑒

𝜌
𝐻𝑥

𝜕𝐻𝑥

𝜕𝑦 
                                                                                (3.87) 

1  𝜀      ε  1              𝜀        
1

𝜀
                1   

1

𝜀
 

Magnetic induction equation 

𝑢
𝜕𝐻𝑥

𝜕𝑥
+ 𝑣

𝜕𝐻𝑥

𝜕𝑦
= 𝐻𝑥

𝜕𝑢

𝜕𝑥
+ 𝐻0

𝜕𝑢

𝜕𝑦
+

1

𝜇𝑒𝜎′ (
𝜕2𝐻𝑥

𝜕𝑥2 +
𝜕2𝐻𝑥

𝜕𝑦2 )                                                           (3.88) 

1  1        𝜀   
1

𝜀
        1   1       𝜀   

1

𝜀
                  1          

1

𝜀2 

0 = 𝐻𝑥
𝜕𝑣

𝜕𝑥
+ 𝐻0

𝜕𝑣

𝜕𝑦
                                                                                                                        (3.89)      

          1   ε       ε    1 

Again let 𝛿𝑻 be the thermal boundary layer thickness and let 𝜀 ≪ 1 be also the order of 𝛿𝑇 

i.e. 𝑂 (𝛿𝑇)  =  𝜀. Then we can write 𝑂(𝑦)  = 𝜀, 𝑂 (𝑣)  = 𝜀  

Also we can write 𝑂 (𝑇)  = 1, 𝑂(𝐶)  = 1, 𝑂(𝑥)  = 1 and  𝑂(𝑢)  = 1 

Hence 𝑂 (
𝜕𝑇

𝜕𝑥
) = 1,   𝑂 (

𝜕2𝑇

𝜕𝑥2) =  1,   𝑂 (
𝜕𝑇

𝜕𝑦
)  =  

1

𝜀
 ,   𝑂 (

𝜕2𝑇

𝜕𝑦2) =  
1

𝜀2 

𝑂 (
𝜕𝐶

𝜕𝑥
) = 1,   𝑂 (

𝜕2𝐶

𝜕𝑥2
) = 1,   𝑂 (

𝜕𝐶

𝜕𝑦
) =

1

𝜀
,   𝑂 (

𝜕2𝐶

𝜕𝑦2
) =

1

𝜀2
 

within the boundary layer. Then the equations (3.83) – (3.84) with corresponding order of 

each term are given below: 

Energy equation 

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
=

𝑘

𝜌𝐶𝑝
(

𝜕2𝑇

𝜕𝑥2 +
𝜕2𝑇

𝜕𝑦2) +
𝜇

𝜌𝐶𝑝
[(

𝜕𝑢

𝜕𝑥
)

2
+ (

𝜕𝑣

𝜕𝑦
)

2
+ (

𝜕𝑤

𝜕𝑧
)

2
+ (

𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
)

2
]                                                                     

1  1       𝜀 
1

 𝜀
                1       

1

𝜀2                     1             1              𝜀2            
1

𝜀2       1                                                                       

                                                                    +
1

𝜌𝐶𝑝𝜎′ (
𝜕𝐻𝑥

𝜕𝑦
)

2
+

𝐷𝑚𝐾𝑇

𝐶𝑠𝐶𝑝
(

𝜕2𝐶

𝜕𝑥2  +
𝜕2𝐶

𝜕𝑦2)                     (3.90)  

                                                                           
1

𝜀2                         1        
1

𝜀2 



31 
 

Concentration equation  

𝑢
𝜕𝐶

𝜕𝑥
 + 𝑣

𝜕𝐶

𝜕𝑦
= 𝐷𝑚 (

𝜕2𝐶

𝜕𝑥2 +
𝜕2𝐶

𝜕𝑦2) +
𝐷𝑚𝐾𝑇

𝑇𝑚
(

𝜕2𝑇

𝜕𝑥2  +
𝜕2𝑇

𝜕𝑦2)                                                            (3.91) 

1  1        𝜀 
1

𝜀
                 1       

1

𝜀2                       1        
1

𝜀2 

where we have found the order of other terms involved in the equation as follows: 

𝑂(𝑔𝛽(𝑇 −  𝑇∞)) = 1, 𝑂(𝑔𝛽∗(𝐶 − 𝐶∞)) = 1, 𝑂 (
 𝜇𝑒

𝜌
) = ε2, 𝑂(𝜐) = 𝜀2,  

𝑂 (
1

𝜇𝑒𝜎′
) =  𝜀2,   𝑂 (

𝐾

𝜌𝐶𝑝
) = 𝜀2,   𝑂(𝐷𝑚) = 𝜀2,   𝑂 (

𝐷𝑚𝐾𝑇

𝑇𝑚
) = 𝜀2,  

𝑂 (
𝜐

𝑐𝑝
) =  𝜀2,   𝑂 (

1

𝜌𝐶𝑝𝜎′) =  𝜀2,   𝑂 (
𝐷𝑚

𝐶𝑠𝐶𝑝
) = 𝜀2. 

Since the viscosity is very small, we can neglect the terms of small orders. Thus we have 

from equations (3.85) – (3.91): 

𝜕𝑢

𝜕𝑥
 +

𝜕𝑣

𝜕𝑦
 = 0                                                                                                                                  (3.92) 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= 𝑔𝛽(𝑇 − 𝑇∞) + 𝑔𝛽∗(𝐶 − 𝐶∞) + 𝜐

𝜕2𝑢

𝜕𝑦2 +
 𝜇𝑒

𝜌
𝐻0

𝜕𝐻𝑥

𝜕𝑦
                                (3.93) 

𝑢 
𝜕𝐻𝑥

𝜕𝑥
 + 𝑣

𝜕𝐻𝑥

𝜕𝑦
= 𝐻𝑥

𝜕𝑢

𝜕𝑥
+ 𝐻0

𝜕𝑢

𝜕𝑦
+

1

𝜇𝑒𝜎′

𝜕2𝐻𝑥

𝜕𝑦2                                                                            (3.94) 

𝑢
 𝜕𝑇

𝜕𝑥
 +  𝑣

𝜕𝑇

𝜕𝑦
  =

𝑘

𝜌𝐶𝑝

𝜕2𝑇

𝜕𝑦2  +  
𝜐

𝐶𝑝
(

𝜕𝑢

𝜕𝑦
)

2
+

1

𝜌𝐶𝑝𝜎′ (
𝜕𝐻𝑥

𝜕𝑦
)

2
+

𝐷𝑚𝐾𝑇

𝐶𝑠𝐶𝑝

𝜕2𝐶

𝜕𝑦2                                      (3.95) 

𝑢
 𝜕𝐶

𝜕𝑥
+  𝑣

𝜕𝐶

𝜕𝑦
 = 𝐷𝑚

𝜕2𝐶

𝜕𝑦2 +  
𝐷𝑚𝐾𝑇

𝑇𝑚

𝜕2𝑇

𝜕𝑦2                                                                                          (3.96) 

and   the boundary conditions for the problem are 

yHCCTTut x allfor  0,,,0,0                                                               (4.97) 

 𝑢 = 𝑈0,   𝑣 = 𝑣(𝑥),    
𝜕𝑇

𝜕𝑦
= −

𝑞

𝑘
,    

𝜕𝐶

𝜕𝑦
= −

𝑚

𝐷𝑚
,   𝐻𝑥 = 𝐻0  at   𝑦 = 0                            (3.98)               

𝑢 = 0,   𝑇 ⟶ 𝑇∞ ,    𝐶 ⟶ 𝐶∞ , 𝐻𝑥 → 0   as   𝑦 ⟶ ∞ 

where  Hx is the induced magnetic field, H0 is the induced magnetic field at the plate and 

m is the coefficient of mass flux per unite area. 
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CHAPTER IV 

 

 

The Finite Difference Numerical Scheme 
  

4.1 The Governing equations 

 

An unsteady heat and mass transfer by mixed convection flow of an electrically 

conducting viscous fluid past an infinite vertical porous plate have been considered. A 

uniform magnetic field of strength 𝐇 is applied to the plate to be acting along the y-axis, 

which is electrically non-conducting. We assumed that the magnetic Reynolds number of 

the flow be large enough so that the induced magnetic field is not negligible.  The induced 

magnetic field is of the form 𝐇 = (𝐻𝑥, 𝐻0, 0). The equation of the conservation of 

electric charge is ∇. 𝐉 = 0, where 𝐉 = (Jx, Jy, Jz ), the direction of propagation  is considered 

only along  the y-axis and does not  have any variation along the y-axis and the derivative 

of 𝐉 with respect to y namely 
𝜕𝐽𝑦

𝜕𝑦
= 0, resulting in  Jy = constant.  Since the plate is 

electrically non-conducting, this constant is zero and hence Jy = 0 everywhere in the flow. 

Within the framework of the above stated assumptions with reference to the generalized 

equations as described in Chapter III, Case-Ι, the physical variables are functions of y
 and 

t  only. Thus the problem under consideration is treated as one-dimensional problem and 

under the assumptions of usual Boussinesq’s and boundary-layer approximations can be 

put in the following system of coupled non-linear partial differential equations: 

𝜕𝑣

𝜕𝑦
= 0                                                                                                                              (4.1) 

𝜕𝑢

𝜕𝑡
+ 𝑣

𝜕𝑢

𝜕𝑦
 = 𝑔𝛽(𝑇 −  𝑇∞) + 𝑔𝛽∗(𝐶 − 𝐶∞) + 𝜐

𝜕2𝑢

𝜕𝑦2  +
 𝜇𝑒

𝜌
𝐻0

𝜕𝐻𝑥

𝜕𝑦
                                   (4.2) 

𝜕𝐻𝑥

𝜕𝑡
+ 𝑣

𝜕𝐻𝑥

𝜕𝑦
= 𝐻0

𝜕𝑢

𝜕𝑦
+

1

𝜇𝑒𝜎′

𝜕2𝐻𝑥

𝜕𝑦2                                                                                                (4.3) 

𝜕𝑇

𝜕𝑡
+ 𝑣

𝜕𝑇

𝜕𝑦
=

𝑘

𝜌𝐶𝑝

𝜕2𝑇

𝜕𝑦2 +
𝜇

𝜌𝐶𝑝
(

𝜕𝑢

𝜕𝑦
)

2
+

1

𝜌𝑐𝑝𝜎′ (
𝜕𝐻𝑥

𝜕𝑦
)

2
+  

𝐷𝑚𝐾𝑇

𝐶𝑠𝐶𝑝

𝜕2𝐶

𝜕𝑦2                                                (4.4) 

𝜕𝐶

𝜕𝑡
+ 𝑣

𝜕𝐶

𝜕𝑦
 = 𝐷𝑚

𝜕2𝐶

𝜕𝑦2 +
𝐷𝑚𝐾𝑇

𝑇𝑚

𝜕2𝑇

𝜕𝑦2                                                                                                    4.5) 
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The initial and boundary conditions for the problem are as follows: 

yHCCTTut x allfor  0,,,0,0                                                                 (4.6) 

𝑡 > 0,   𝑢 = 𝑈0 (𝑡),   𝑣 = 𝑉0 (𝑡),   
𝜕𝑇

𝜕𝑦
= −

𝑞

𝑘
,   

𝜕𝐶

𝜕𝑦
= −

𝑚

𝐷𝑚
,   𝐻𝑥 = 𝐻0  at  𝑦 = 0            (4.7) 

𝑡 > 0,   𝑢 = 0,   𝑇 ⟶ 𝑇∞,   𝐶 ⟶ 𝐶∞,   𝐻𝑥 ⟶ 0    as   𝑦 ⟶ ∞ 

where u and v are the velocity components in x- and y- direction respectively, H0 is the 

applied constant magnetic field, Hx is the induced magnetic field, 𝜇𝑒 is the magnetic 

permeability, q is the  constant heat  flux per unit area, m  is the  constant mass flux per 

unit area, 𝜐 is the  kinematic viscosity, g is the acceleration due to the gravity, 𝜌 is the 

density, 𝛽 is the coefficient of volume expansion, 𝛽∗ is the volumetric coefficient 

expansion with concentration. T and 𝑇∞ are the temperature of the fluid inside the thermal 

boundary layer and the fluid temperature in the free stream respectively, while C and 

𝐶∞  are the  corresponding concentration, Cp is the specific heat at constant pressure, 𝑐𝑠 is 

the concentration susceptibility, Tm is the mean fluid temperature, k is the thermal 

conductivity, KT is the thermal diffusion ratio, Dm is the coefficient of mass diffusion and 

other symbols have their usual meaning. 

 

4.2 Mathematical Formulation    

 

Since the solutions of the governing equations (4.1) – (4.5) under the initial and boundary 

conditions given by (4.6) and (4.7) will be based on the implicit Finite Difference Method, 

it is required to transfer the equations in suitable form. For this purpose we will again 

introduce the following non-dimensional quantities: 
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From the above dimensionless variables, we have 
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Using these relations, we obtain the following derivatives  
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Now substitute the values of the above derivatives into the equations (4.1) – (4.5) 

together with the initial conditions (4.6) and the boundary conditions (4.7), the following 

nonlinear coupled partial differential equations in terms of dimensionless variables are 

obtained: 
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where   represents the dimensionless time, Y  is the dimensionless Cartesian coordinate, 

U is the dimensionless primary velocity, T  is the dimensionless temperature, C  is the 

dimensionless concentration, 

 
3
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TTg
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 is the Grashof Number, 
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 is the Modified Grashof Number,  
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D   is the chemical molecular 

diffusivity and  
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0  is the Eckert Number. 

The corresponding initial and boundary conditions are now transformed as follows:       
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Parameter. 

Also for .as000000  YH,C,T,V,U,τ x  

Thus after introducing the dimensionless quantities and proper simplification, the obtained 

nonlinear coupled partial differential equations in terms of dimensionless variables (by 

omitting the bar on each term in practice) are as follows: 
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with the corresponding initial and boundary conditions:

YHCCTTU x allfor0,,,0,0                                                                      (4.18) 
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                                               (4.19) 

and  YH,C,T,V,U x as00000  
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4.3 The Finite Difference Numerical Solution 

 

In this section, we are now attempted to find the solution of the governing second order 

nonlinear coupled dimensionless partial differential equations (4.14) – (4.17) subject to the 

associated initial and boundary conditions (4.18) – (4.19) using the Finite Difference  

Method: For solving a transient free convection flow problem with mass transfer past a 

semi-infinite plate, Callahan and Marner (1976) used the explicit Finite Difference 

Method which is relatively simple and computationally fast but conditionally stable. On 

the other hand, the same problem was studied by Soundalgekar and Ganesan (1980) by an 

implicit Finite Difference Method which is unconditionally stable. However, the above 

two methods produced the same results.  

To solve the non-dimensional system by the Finite Difference technique, it is required to 

find a set finite difference equations corresponding to the given system of partial 

differential equations (4.14) – (4.17). Thus, to obtain the difference equations, region 

within the boundary layer is divided by some lines perpendicular to the Y -axis, where Y -

axis is normal to the plate as shown in Figure 4.3.1. Here it is also assumed that the 

maximum thickness of boundary layer is 50max Y  as corresponds to Y  i.e. Y  varies 

from 0 to 50 and the number of grids in Y  directions is N = 1000 and hence the constant 

mesh size along Y  axis becomes  50005.0  YY  with a smaller time-step 

.005.0  

 

Figure 4.3.1: Implicit finite difference system grid. 
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Let 
n

x

nn HCU ,,  and nT  denote the values of CU ,  Hx and T  at the end of nth time-step 

respectively. Using the implicit finite difference approximation, the following relations are 

obtained as: 
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Substituting above values into equations (4.14) – (4.17), we obtain 
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Corresponding to the initial conditions: 0,0,0,0 0

0

0

0

0

0

0

0  HCTU                      (4.23) 

and the corresponding boundary conditions: 

YCCHYTTU nnnnnn  100100 ,1,1
                                                                      (4.24)

  

0,0,0,0  n

L

n

L

n

L

n

L HCTU  where L  

Here the subscript k  designates the grid points with Y  coordinate and the superscript n 

represents a value of time, ,  n  where ,...2,1,0n  The velocity (U), temperature 



39 

 

(T), concentration (C) distributions and the induced magnetic field at all interior nodal 

points may be computed by successive applications of the above finite difference 

equations. The obtained values are shown graphically and in tabular form in CHAPTER 

V. 
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CHAPTER V 

 

 
Numerical Solution and Results Discussions 

 
 

The solution of the system of coupled nonlinear partial differential equations (4.14) – 

(4.17) and the corresponding initial and boundary conditions (4.18) and (4.19), 

respectively are obtained by using implicit Finite Difference numerical technique. In order 

to get insight into the physical phenomena of the problem, the numerical values regarding 

the velocity, temperature, induced magnetic field and concentration profiles have been 

carried out for different selected values of the established dimensionless parameters like 

the suction parameter (Vw), Dufour number (Df), magnetic parameter (M), Soret number 

(Sr), Grashof number (Gr), modified Grashof number (Gm) for mass transfer, the Prandtl 

number (Pr), Eckert number ( cE ) magnetic diffusivity (Pm) and Schmidt number (Sc).  

To observe the effect of one parameter on field variables, the values of all other 

parameters are chosen to be fixed. The fixed values are taken to be as Vw, = 0.5, Df = 1.0, 

M = 1.0, Sr = 2.0, Gr = 5.0, Gm = 2.0, Pr = 0.71, cE  = 0.5, Pm = 1.0 and Sc = 0.6 

respectively. The values of Grashof number Gr is taken to be large (Gr = 5.0), since this 

value corresponds to a cooling problem that is generally encountered in nuclear 

engineering in connection with the cooling of reactors.  Since the two most important 

fluids are atmospheric air and water, the values of the Prandtl number (Pr) are limited to 

0.71 corresponds to air (at 020 C), 1.0 corresponds to electrolyte solution like saline water 

and 7.0 corresponds to water (at 020 C) throughout the numerical investigation.  

The values of Sc are considered as 0.22, 0.30, 0.6 and 0.78 which represent specific 

condition of the flow; in particular, 0.22 corresponds to hydrogen, 0.30 corresponds to 

helium, 0.60 corresponds to water vapor that represents a diffusivity chemical species of 

most common interest in air while 0.78 represents ammonia at 250 C and 1 atmospheric 

pressure. The other values of parameters Vw, Df, M, Sr, Gr, Gm cE , and Pm are however 

chosen arbitrarily. With the above mentioned parameters the velocity and temperature 

profiles, the variation of mass concentration and induced magnetic field are presented in 

the following Figures (Figures 5.1 – 5.40). 
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Figures 5.1 – 5.4 show the effect of suction parameter (Vw) on the velocity and 

temperature profiles, the mass concentration and the induced magnetic field respectively. 

From Figures 5.1 – 5.3, we observed that an increase in the suction parameter lead to 

decrease the velocity, temperature and concentration profiles. The usual stabilizing effect 

of the suction parameter on the boundary layer growth is also conformed from these 

figures. We see that the effect of suction is to reduce the velocity profiles. This is because 

of sucking decelerated fluid particles through the porous wall reduce growth of the fluid 

boundary layer as well as thermal and concentration boundary layers. From these Figures, 

it is clear that the dimensionless temperature and concentration decrease due to fluid 

suction.  

 

 
Figure 5.1: Velocity profiles for different values of Vw (for Df = 2.0, M = 1.0, Sr = 2.0,  

Gr = 5.0, Gm = 2.0, Pr = 0.71, Pm = 1.0, Ec = 0.5 and Sc = 0.6). 

 

It is observed from Figure 5.4 that the induced magnetic field decrease with increasing Vw  

within a certain interval very close to the plate (0 < Y < 1.2 (approx.)) whereas after that 

interval (Y > 1.2 (approx.))  they become negative and asymptotically tends to zero away 

from the plate surface. In this negative region, the induced magnetic fields increase with 

the increase of Vw.  
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Figure 5.2: Temperature profiles for different values of Vw (for Df = 2.0, M = 1.0, Sr = 2.0,   

                    Gr = 5.0, Gm = 2.0, Pr = 0.71, Pm = 1.0, Ec = 0.5 and Sc = 0.6). 

 
Figure 5.3: Variation of concentration for different values of Vw (for Df = 2.0, M = 1.0,  

            Sr = 2.0,Gr = 5.0, Gm = 2.0, Pr = 0.71, Pm = 1.0, Ec = 0.5 and Sc = 0.6). 

Figures 5.5 – 5.8 depict the influence of the Dufour parameter (Df) on the dimensionless 

velocity, temperature and concentration distributions and the induced magnetic fields. It 

can be clearly seen from Figures 5.5 that as the Dufour effects increase, the velocity 

profiles increases. 
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Figure 5.4: Variation of induced magnetic field for different values of Vw (for Df = 2.0, M  

                    = 1.0, Sr = 2.0, Gr = 5.0, Gm = 2.0, Pr = 0.71, Pm = 1.0, Ec = 0.5 and Sc = 0.6). 

 

 

Figure 5.5: Velocity profiles for different values of Df (for Vw = 0.5, M = 1.0, Sr = 2.0,  

Gr = 5.0, Gm = 2.0, Pr = 0.71, Pm = 1.0, Ec = 0.5 and Sc = 0.6). 

 

It is observed in Figures 5.6 that diffusion-thermo effects greatly affect the fluid 
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increases. We also observe in Figures 5.7 that increasing values of the Dufour parameter 

(Df) leads to increase the concentration of the fluid flow. It is also observed from Figure 

5.8 that, close to the plate surface, the induced magnetic fields increase with the increase 

of Dufour parameter and a reverse effect is observed adjacent to the plate. 

 
Figure 5.6: Temperature profiles for different values of Df (for Vw = 0.5, M = 1.0, Sr = 2.0,  

                    Gr = 5.0, Gm = 2.0, Pr = 0.71, Pm = 1.0, Ec = 0.5 and Sc = 0.6). 

 
Figure 5.7: Variation of concentration for different values of Df (for Vw = 0.5, M = 1.0, Sr  

        = 2.0, Gr = 5.0, Gm = 2.0, Pr = 0.71, Pm = 1.0, Ec = 0.5, and Sc = 0.6). 
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Figure 5.8: Variation of induced magnetic field for different values of Df (for Vw = 0.5, M      

                    = 1.0, Sr = 2.0, Gr = 5.0, Gm = 2.0, Pr = 0.71, Pm = 1.0, Ec = 0.5 and Sc = 0.6). 

 
 

 
Figure 5.9: Velocity profiles for different values of M (for Vw = 0.5, Df = 1.0, Sr = 2.0,     

                    Gr = 5.0, Gm = 2.0, Pr = 0.71, Pm = 1.0, Ec = 0.5 and Sc = 0.6). 

Figure 5.9 – 5.12 show the effect of magnetic parameter (M) on the velocity and 

temperature fields, mass concentration and induced magnetic field. As M increases, 

velocity, temperature and concentration observed to increase in Figure 5.9 – 5.11. 
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Figure 5.10: Temperature profiles for different values of M (for Vw = 0.5, Df = 1.0, Sr         

                 = 2.0, Gr = 5.0, Gm = 2.0, Pr = 0.71, Pm = 1.0, Ec = 0.5 and Sc = 0.6). 

 

 
Figure 5.11: Variation of concentration for different values of M (for Vw = 0.5, Df = 1.0,  

                      Sr = 2.0, Gr = 5.0, Gm = 2.0, Pr = 0.71, Pm = 1.0, Ec = 0.5 and Sc = 0.6). 

 

Figure 5.12 shows that, close to the plate surface, the induced magnetic fields increase 

with the increase of M whereas the reverse effect is observed away from the plate surface 

before asymptotically approaches to zero. 
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Figure 5.12: Variation of induced magnetic field for different values of M (for Vw = 0.5,   

           Df = 1.0, Sr = 2.0, Gr = 5.0, Gm = 2.0, Pr = 0.71, Pm = 1.0, Ec = 0.5 and Sc = 0.6). 

 

The effects the Soret number (Sr) on the dimensionless velocity, temperature and 

concentration distributions and induced magnetic field are displayed in Figures 5.13 – 

5.16. We observe that the velocity, temperature and concentration profiles increase with 

increasing values of the Soret parameter Sr. It is observed that increasing the Soret number 

(Sr) increases the boundary layer thickness for the concentration.  

 
Figure 5.13: Velocity profiles for different values of Sr (for Vw = 0.5, Df = 1.0, M = 1.0,    

  Gr = 5.0, Gm = 2.0, Pr = 0.71, Pm = 1.0, Ec = 0.5 and Sc = 0.6). 
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Figure 5.14: Temperature profiles for different values of Sr (for Vw = 0.5, Df = 1.0, M =  

                      1.0, Gr = 5.0, Gm = 2.0, Pr = 0.71, Pm = 1.0, Ec = 0.5 and Sc = 0.6). 

 

 
Figure 5.15: Variation of concentration for different values of Sr (for Vw = 0.5, Df = 1.0, 

                M = 1.0, Gr = 5.0, Gm = 2.0, Pr = 0.71, Pm = 1.0, Ec = 0.5 and Sc = 0.6). 
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Figure 5.16: Variation of induced magnetic field for different values of Sr (for Vw = 0.5,   

         Df = 1.0, M = 1.0, Gr = 5.0, Gm = 2.0, Pr = 0.71, Pm = 1.0, Ec = 0.5 and Sc = 0.6). 

 

 
Figure 5.17: Velocity profiles for different values of Gr (for Vw = 0.5, Df = 1.0, M = 1.0, 

Sr = 2.0, Gm = 2.0, Pr = 0.71, Pm = 1.0, Ec = 0.5 and Sc = 0.6). 

 

From Figure 5.16 we see that, close to the plate surface, the induced magnetic fields 

increase with the increase of Sr but the reverse effect is observed little bit away from the 

plate surface as before. 
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Figures 5.17 – 5.20 depict the influence of Grashof number (Gr) on the velocity, 

temperature, concentration profiles and induced magnetic field. Figures show that both 

velocity and temperature increase rapidly with the increase of Gr, but the effect of Gr on 

the concentration distribution is found very small. Here concentration profiles increases a 

little with the increase of Gr.  

 
Figure 5.18: Temperature profiles for different values of Gr (for Vw = 0.5, Df = 1.0, M =   

                      1.0, Sr = 2.0, Gm = 2.0, Pr = 0.71, Pm = 1.0, Ec = 0.5 and Sc = 0.6). 

 

 
Figure 5.19: Variation of concentration for different values of Gr (for Vw = 0.5, Df = 1.0,  

                      M = 1.0, Sr = 2.0, Gm = 2.0, Pr = 0.71, Pm = 1.0, Ec = 0.5 and Sc = 0.6). 
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Figure 5.20: Variation of induced magnetic field for different values of Gr (for Vw = 0.5,  

              Df = 1.0, M = 1.0, Sr = 2.0, Gm = 2.0, Pr = 0.71, Pm = 1.0, Ec = 0.5 and Sc = 0.6). 

 

Figure 5.20 we see that, close to the plate surface, the induced magnetic fields increase 

with the increase of Gr but as before, induced magnetic field decreases with increasing 

values of Gr bit away from the plate surface. 

 

 
Figure 5.21: Velocity profiles for different values of Gm (for Vw = 0.5, Df = 1.0, M = 1.0, 

Sr = 2.0, Gr = 5.0, Pr = 0.71, Pm = 1.0, Ec = 0.5 and Sc = 0.6). 
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Figure 5.22: Temperature profiles for different values of Gm (for Vw = 0.5, Df = 1.0,  

                      M =1.0, Sr = 2.0, Gr = 5.0, Pr = 0.71, Pm = 1.0, Ec = 0.5 and Sc = 0.6). 

 

 
Figure 5.23: Variation of concentration for different values of Gm (for Vw = 0.5, Df = 1.0,  

                      M = 1.0, Sr = 2.0, Gr = 5.0, Pr = 0.71, Pm = 1.0, Ec = 0.5 and Sc = 0.6). 
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Gm but the concentration profiles slightly change with the effect of Gm. Here concentration 

profiles negligibly increase with the increase of Gm. The effect of Gm on induced magnetic 

field is as before. 

 
Figure 5.24: Variation of induced magnetic field for different values of Gm (for Vw = 0.5,  

                Df = 1.0, M = 1.0, Sr = 2.0, Gr = 5.0, Pr = 0.71, Pm = 1.0, Ec = 0.5 and Sc = 0.6). 

 
Figure 5.25: Velocity profiles for different values of Pr (for Vw = 0.5, Df = 1.0, M = 1.0,   

 Sr= 2.0, Gr = 5.0, Gm = 2.00, Pm = 1.0, Ec = 0.5 and Sc = 0.6). 
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Figure 5.26: Temperature profiles for different values of Pr (for Vw = 0.5, Df = 1.0, M = 

                      1.0, Sr = 2.0, Gr = 5.0, Gm = 2.00, Pm = 1.0, Ec = 0.5 and Sc = 0.6). 

 

 
Figure 5.27: Variation of concentration for different values of Pr (for Vw = 0.5, Df = 1.0,   

                     M = 1.0, Sr = 2.0, Gr = 5.0, Gm = 2.00, Pm = 1.0, Ec = 0.5 and Sc = 0.6). 

 

Displayed Figure 5.25 – 5.28 show the effect of Prandtl number (Pr) on the velocity and 
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situation is observed for both, when Pr = 7.0. Here they are found increasing first and then 

decrease with the increase of Pr far away before asymptotically approaches to zero.   

The effect of Pr on the concentration field is very small. Here concentration increases 

negligibly with the increase of Pr as shown in Figure 5.27. Also the induced magnetic 

field decrease with the increase of Pr close to the surface, while it changes its behavior a 

little bit away from the surface. 

 
Figure 5.28: Variation of induced magnetic field for different values of Pr (for Vw = 0.5,  

             Df = 1.0, M = 1.0, Sr = 2.0, Gr = 5.0, Gm = 2.00, Pm = 1.0, Ec = 0.5 and Sc = 0.6). 

 
Figure 5.29: Velocity profiles for different values of Pm (for Vw = 0.5, Df = 1.0, M = 1.0,    

  Sr = 2.0, Gr = 5.0, Gm = 2.00, Pr = 0.71, Ec = 0.5 and Sc = 0.6). 
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Figure 5.30: Temperature profiles for different values of Pm (for Vw = 0.5, Df  = 1.0, M =  

                      1.0, Sr = 2.0, Gr = 5.0, Gm = 2.00, Pr = 0.71, Ec = 0.5 and Sc = 0.6). 

 
Figure 5.31: Variation of concentration for different values of Pm (for Vw = 0.5, Df = 1.0,  

                      M = 1.0, Sr = 2.0, Gr = 5.0, Gm = 2.00, Pr = 0.71, Ec = 0.5 and Sc = 0.6). 

 

The influence of magnetic diffusivity parameter (Pm) on velocity, temperature, 

concentration distributions and induced magnetic field are described in Figures 5.29 – 

5.32. It is observed that velocity, temperature and concentration profiles are increased with 

the increase of Pm, but its effect on induced magnetic field is observed as usual. 
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Figure 5.32: Variation of induced magnetic field for different values of Pm (for Vw = 0.5,  

            Df  = 1.0, M = 1.0, Sr = 2.0, Gr = 5.0, Gm = 2.00, Pr = 0.71, Ec = 0.5 and Sc = 0.6). 

 

 
Figure 5.33: Velocity profiles for different values of Ec (for Vw = 0.5, Df = 1.0, M = 1.0,    

   Sr= 2.0, Gr = 5.0, Gm = 2.00, Pr = 0.71, Pm = 1.0 and Sc = 0.6). 

 

The effect of Eckert number Ec
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concentration profiles with increasing Ec Here effect of Ec on induced magnetic field is 

observed like other cases. 

 
Figure 5.34: Temperature profiles for different values of Ec (for Vw = 0.5, Df = 1.0, M =  

                      1.0, Sr = 2.0, Gr = 5.0, Gm = 2.00, Pr = 0.71, Pm = 1.0 and Sc = 0.6). 

 

 
Figure 5.35: Variation of concentration for different values of Ec (for Vw = 0.5, Df = 1.0,  

                      M = 1.0, Sr = 2.0, Gr = 5.0, Gm = 2.00, Pr = 0.71, Pm = 1.0 and Sc = 0.6). 
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Figure 5.36: Variation of induced magnetic field for different values of Ec (for Vw = 0.5,  

           Df  = 1.0, M = 1.0, Sr = 2.0, Gr = 5.0, Gm = 2.00, Pr = 0.71, Pm = 1.0 and Sc = 0.6). 

 
 

 
Figure 5.37: Velocity profiles for different values of Sc (for Vw = 0.5, Df = 1.0, M = 1.0,    

  Sr= 2.0, Gr = 5.0, Gm = 0.6, Pr = 0.71, Pm = 1.0 and Ec = 0.5). 

 

Finally, the effect of Schmidt number ( Sc ) on the velocity, temperature and concentration 
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are increasing with the increase of Sc. Concentration increase with the increase of Sc very 

close to the surface but it found decreasing while increasing Sc adjacent to it. The effect of 

Sc on induced magnetic field is observed like other cases. 

 
Figure 5.38: Temperature profiles for different values of Sc (for Vw = 0.5, Df = 1.0, M =  

                      1.0, Sr = 2.0, Gr = 5.0, Gm = 0.6, Pr = 0.71, Pm = 1.0 and Ec = 0.5). 

 

 
Figure 5.39: Variation of concentration for different values of Sc (for Vw = 0.5, Df = 1.0,   

                      M = 1.0, Sr = 2.0, Gr = 5.0, Gm = 0.6, Pr = 0.71, Pm = 1.0 and Ec = 0.5). 
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Figure 5.40: Variation of induced magnetic field for different values of Sc (for Vw = 0.5,Df    

                      = 1.0, M = 1.0, Sr = 2.0, Gr = 5.0, Gm = 0.6, Pr = 0.71, Pm = 1.0 and Ec = 0.5). 

 

The variations of the numerical values proportional to the coefficients of skin friction and 

heat transfer with the variation of the values of some important established dimensionless 

parameters are tabulated in Table (5.1) – (5.6).  

 

Table 5.1: Values proportional to the coefficients of skin-friction and heat transfer for 

different values of suction parameter (Vw).  

Vw             Skin friction           Heat transfer 

0.50 1.12918    1.63231 

1.00 1.10182   1.77776 

1.50 1.09151  2.11716 

 

From Table 5.1, it is seen that, with the increase in Vw, the coefficient of skin friction 

decrease and the rate of heat transfer increases. The usual stabilizing effect of the suction 

parameter on the boundary layer growth is also evident from this Table. 

 

From Table 5.2, it is seen that, with the increase in Dufour number Df, both the coefficient 

of skin friction and the rate of heat transfer decreases. 
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Table 5.2: Values proportional to the coefficients of skin-friction and heat transfer for 

different values of Dufour parameter (Df). 

Df             Skin friction           Heat transfer 

0.00 1.92917 2.17094 

0.50 1.12918    2.03628 

1.50 1.11181    1.76697 

2.00 1.10068    1.63231 

 

Table 5.3: Values proportional to the coefficients of skin-friction and heat transfer for 

different values of Grashof number Gr.  

 

Gr             Skin friction            Heat transfer 

2.00 2.24501    3.24532 

5.00 1.12918    1.63231 

6.00 0.98486    1.42369 

 

It is observed from Table 5.3 that, with the increase in Gr, both the coefficient of skin 

friction and the rate of heat transfer decreases. 

 

Table 5.4: Values proportional to the coefficients of skin-friction and heat transfer for 

different values of modified Grashof number (Gm).  

 

Gm             Skin friction             Heat transfer 

2.00 1.12918    1.63231 

3.00 1.12918    1.67122 

4.00 1.12918 1.77776 

 

It is observed from Table 5.4 that, with the increase in Gm, the coefficient of skin friction 

remain unchanged but and the rate of heat transfer increases. 

 

Table 5.5: Values proportional to the coefficients of skin-friction and heat transfer for 

different values of Prandtl number (Pr). 

 

Pr             Skin friction Heat transfer 

0.71 1.12918    1.63231 

1.00 1.12918    1.74231 

7.00 1.12918    1.97315 
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Table 5.5 exhibits that, with the increase in Pr, the coefficient of skin friction remain 

unchanged whereas the rate of heat transfer increases. 

 

Table 5.6: Values proportional to the coefficients of skin-friction and heat transfer for 

different values of Schmidt number (Sc). 

Sc             Skin friction            Heat transfer 

0.22 -1.12918    1.63231 

0.30 -1.12918    1.69696 

0.60 -1.12918    1.85859 

0.78 -1.12918    2.11716 

 

From Table 5.6 it is seen that, with the increase in Sc, the coefficient of skin friction 

remains unchanged whereas the rate of heat transfer gradually increases. 
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CHAPTER VI 
 

 

Conclusions and Recommendations 
 

 

An analysis of the steady MHD mixed convection heat and mass transfer flow of viscous 

incompressible electrically conducting fluid above a vertical porous plate have been studied  in the 

presence of induced magnetic field. The thermal diffusion (Soret) effect as well as the diffusion-

thermo (Dufour) effect are taken into account. An implicit Finite Difference numerical technique is 

used to obtain the solutions regarding the velocity, temperature, mass concentration and induced 

magnetic field and are presented for different selected values of the established dimensionless 

parameters. 

 

On the basis of the figures, some important observations are as follows: 

a. An increase in the suction parameter leads to decrease the velocity, temperature and 

concentration. 

b. The induced magnetic fields decrease within a certain interval very close to the plate and 

then the reverse effect is observed bit away from the plate surface for the case of suction. 

c. As the values of the Dufour parameter (Df) increase, the fluid velocity and temperature 

also increases. 

d. Increasing values of the Dufour parameter lead to increase the concentration in the fluid 

flow. 

e. As magnetic parameter (M) increases, the velocity, temperature and concentration 

increase. 

f. The fluid velocity, temperature and concentration increase with increasing values of the 

Soret parameter Sr. 

g. Both velocity and temperature increase rapidly with the increase of Grashof number Gr 

and modified Grashof number (Gm). 

h.  The effects of Gr and Gm on the concentration distribution are found very small. 

i. For Pr = 0.71and Pr = 1.0 both velocity and temperature decrease uniformly with 

decreasing Pr but an irregular situation is observed when Pr = 7.0. 

j. The velocity, temperature and concentration profiles are increased with the increase of 

magnetic diffusivity parameter Pm. 
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k. Both velocity and temperature profiles are increased with the increase of Eckert number 

Ec. 

l. A small increase of concentration profiles is found with increasing Ec. 

m. Both velocity and temperature profiles are increasing with the increase of Schmidt 

number Sc.  

n. Concentration increase with the increase of Sc very close to the surface but after that it 

found decreasing while increasing Sc. 

o. The induced magnetic fields decrease within a certain interval very close to the plate and 

then the reverse effect is observed bit away from the plate surface. 

p. The induced magnetic fields increase within a certain interval very close to the plate and 

then the reverse effect is observed bit away from the plate surface for all other parameter 

except suction parameter. 

On the basis of the tables, the following conclusions are made: 

a. With the increase in Vw, the coefficient of skin friction decrease and the rate of heat transfer 

increases. 

b. With the increase in Dufour number Df, both the coefficient of skin friction and the rate of 

heat transfer decreases. 

c. With the increase in Gr, both the coefficient of skin friction and the rate of heat transfer 

decreases. 

d. With the increase in Gm, Pr and Sc the coefficient of skin friction remain unchanged but and 

the rate of heat transfer increases. 

Further works are necessary to study the case of steady MHD heat and mass transfer by mixed 

convection flow past a semi-infinite vertical porous plate.              
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