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Abstract

Transform methods has their great importance in the field of applied sciences,
especially in engineering sciences. To most of us Laplace transform iswell known and
we are acquainted to solve differential equations with this important tool. But it deals
with the continuous variable/analog signals. In this computer world we need the tools
to deal with discrete variable/digital signals. Unfortunately we have alittle knowledge
about themi.e. we are not familiar with discrete transforms. The main objective of this
thesis was to be familiarized with some discrete transforms. For the purpose Z-
transform, which is the most conversant one of the family of discrete transforms is
taken. Also discrete counterpart of the Fourier transform, DFT and its calculation
technique Fast Fourier Transform (FFT) is considered. Some detail of those transforms
has been addressed. Fortunately we have devised alemmafor Z-transform, along with
its proof has been presented. Finally a brief introduction to the newest transform, the
Wavelet transform is introduced.
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INTRODUCTION

Transform means shift from one form to other. The methods which transforms something
from one form to some other form are termed as transform methods. Generally it is required
or used to shift variables from one type to other type (e.g t —» s). As variables/parameters
have two different forms (e.g. continuous and discrete) so the transform methods will have
aso two types, one will handle continuous and the other will handle discrete
variables/parameters. When the whole of the space is to be considered then for continuous
variable one require integration and for discrete variable summation is used. Thus to
transform continuous variable integrals are used. We generally use the terminology “Integral
Transform” for the purpose. Similarly for discrete variables “Discrete Transform” is used.
For both the transforms some Kernel is to be used. For integral transform integration isto be
performed over the domain after multiplication by the kernel. In a similar fashion summation
is taken over the domain after multiplication by the kernel. On the basis of this kernels the
transformed are labeled. Sometimes the domain may be finite, in these cases they are |abeled
as finite transforms (e.g. Finite Fourier transforms). Transform methods have their own
meritsin the field of applied sciences, especially in the field of engineering sciences. When a
physical system is modeled sometimes differential equations (Ordinary or Partial) arises. For
example when a simple circuit is modeled a differential equation is raised. In which
inductance, capacitance, resistance and em.f. will be present. These differential equation can
be solved by general mathematical tools for solving differential equations, but also can be
easily solved by Laplace transform method. Because after introducing the Laplace transform
to the differential equation one will require some algebraic manipulation and finaly the
inverse transform will provide the required result. If the initial or boundary conditions were
given the arbitrariness present in the solution can be removed to get particular solutions. The
Laplace transform is very much useful in solving ordinary differential equation with less
effort. If partial differential equations are there (of two independent variables) Laplace
transform reduces the form to ordinary differential equations. Which are less tedious than
partial differential equations. From these discussion it is clear that Laplace transform is
useful tool especially to applied scientist and engineers. In a similar fashion it is observed
that when Z-transform is applied to difference equation one get a form which after algebraic
manipulation and inverse transform provide the solution of the difference equation.

Difference equation arises in case of discrete functions as differential equations arisesin case
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of continuous function. Thus it is observe that transform methods, both integral and discrete,
is an essential tool to be familiarized to applied scientist and engineers. In the field of signa
processing time and frequency are the matter of interest. So in the field of signal processing
both integral transforms and discrete transforms are used. Many common integral transforms
used in the field of signal processing have their discrete counterpart (e.g. Fourier and wavel et
transforms have their discrete counterparts as Discrete Fourier Transform (DFT), Discrete
Sine transform (DST), Discrete Cosine Transform (DCT),Discrete Wavelet Transform
(DWT), etc.). There are some other discrete transforms, eg. Z-transform, Discrete
Chebyshev transform, Hadamard transform, Fast Fourier Transform (FFT, a popular
implementation of the (DFT), Fast wavelet transform.

With the advent of fast and cheap digital computers, there has been renewed emphasis on the
anaysis and design of digital systems, which represent amajor class of engineering systems.
However, it is amistake to believe that the mathematical basis of this area of work is of such
recent vintage. The first comprehensive text in English dealing with difference equations
was the treatise of the calculus of Finite Differences due to George Boole and published in
1860. Much of early impetus for the finite calculus was due to the need to carry out
interpolation and to approximate derivatives and integrals. Later, numerical methods for the
solution of difference equations were devised, many of which were based on finite difference
methods, involving the approximation of the derivative terms to produce a difference

eguation.

Digital systems operate on digital signals, which are usually generated by sampling a
continuous-time signal, which is asignal defined for every instant of a possibly infinite time
interval. The sampling process generates a discrete-time signal, defined only at the instants
when sampling takes place so that a digital sequence is generated. After processing by a
computer, the output digital signa may be used to construct a new continuous-time signal,
perhaps by the use of a zero-order hold device, and this in turn might be used to control a
plant and process.

In many engineering applications the function (signal) under consideration is a continuous
function of time that needs to be processed by a digital computer. To do this the continuous
time-domain signal x(t) must be sampled at discrete intervals of time. The sample signal

X(t) is then processed as an approximation to the true signal x(t).



Let x(t) be an energy-limited continuous-time (analog) signal. If we measure the signal

amplitude and record the result at aregular interval h, we have a discrete-time signal
x(n)=x(t,), n=012,...,N-1 where t, =nh

For simplicity in writing and convenience of computation, x(n) is generally used with the
sampling period h understood. This discretized sample values constitute a signal, called a
digital signal.

In order to have a good approximation to a continuous bandlimited function x(t) from its

samples {x(n)}, the sampling interval h must be chosen such that h<p/Q where2Q

is the bandwidth of the function x(t) [i.e.,X{(cw) = 0 means (Fourier transform of x(t) is

zero] for al |w|>Q. The choice of h above is the Nyquiest sampling rate, and the Shannon

recovery formula

sinp (t—nh)

x(t)=2x(nh)m

enables usto recover the function x(t).

The relation between a continuous function x(t) and its sample values x(kT), k=0, £1, £2,.....,
where T is a fixed interval of time, is one of prime importance in digital processing
techniques. If the Fourier transform of x(t) can aways be recovered from the knowledge of
its sample values x(KT), provided that the sampling rate is “fast enough” i.e. at a rate that is
at least twice the highest significant frequency of the signal. This remarkable result is known
as the sampling theorem and plays a central role in digital processing techniques. Functions
whose transform is zero everywhere except for a finite interval are known as band-limited
waveforms in signal analysis. Such signals do not actually exist in the real world, but

theoretical considerations of band limited waveforms are fundamental to the digital field.

In an ideal situation we can assume that sampling is performed instantaneously and thus

represent the sampled waveform by

o0

()= 3 x(t)d (t—KT) = 3 x(KT)d (t—KT) (0.2)

k=—o0



x(t)

.37 -2T-T 0 T 2T 3T ...
Fig.: Sample function

where d (t—KkT)is the impulse functions. The sampled function is redly a train of impulse

functionsin this sense, but it is otherwise treated as if it were a continuous function of t. We
recognize (1) as a comb function where the impulses are weighted by the sample values
X(KT). In redlity, we cannot obtain an infinite number of samples as suggested in (1).That is,
we must always settle for N samples over atotal time duration NT, and in this case, Eq.(1) is
approximated by

N-1

(1) = x(KT)d (t —KT) (0.2)

k=0

A desired portion of a signal can be removed from the main signal by multiplying the

original signal by another function, which is zero outside the interval desired. Let f(t) be a
real-valued window function. Then the product f,(t)= f(t)f(t—b) will contain the

information of f (t) near t =b. The matter will be discussed atter.

Not only analog (continuous) signals are discretized to analyze, but aso in the numerical
solution of ordinary differential equations, the derivatives are discretized by replacing them
by the finite (forward) differences. This gives rise to difference equations of the higher order.
Thus a continuous process described by a differential equation is approximated by a discrete
process described by its counterpart a difference equation. For example, in a third order

ordinary differential equation

T

ay ¥+ a.y"' +uyy + ayy = F(x)

The derivatives can be replaced by

NN CE Yn+2—<¥n+1+¥n ' — Yn+a—3¥n+2 +3Vn4s—¥n
- R h* ' h*




which result in athird order differences equation of the form

b3_111:|+5 H bE_Tu +2 ik bl_vrl +1 & bﬂ_vn = F{lj

F

A sequence is a numerical valued function whose domain of definition is the set of integers.

It is denoted by {a,}or a, or w(n). A kth order linear difference equation in the

sequence v, isof theform
Qi Vnii + Ap 1 Vn+ie—1 - 3 V41 i AgVn = f(n] (03)

where n=0,1,2,...Thus (0.3) represents not just a single equation but an infinite system of

equations one equation for every n. Here the coefficients a,,a,,a,,.....,d;.... are al constant
and do not depend on n. Here f{n) depends only on n. When a, is chosen as one (0.3) is

sad to be in the standard form. If f =0 for al n, then (0.3) is said to be non-

homogeneous, otherwise it is said to be homogeneous. The order of the difference equation
(0.3) isthe positive integer k which is the greatest difference in the index of non-zero values

of y. Equation (0.3) is linear because each term in one (0.3) is the first degree (linear) in v,.
Thus (0.3) is non-homogeneous kth order linear difference equation with constant

coefficients.

Difference equation is also referred to as recurrence relation since it is also referred to as
recurrence relation since it expresses v, ,.in terms of one or more of the previous terms (of

the segquence) namely In this case (0.3) can be written as

Yrsk—3r 2 n+10Vae
Viak = —Op-q Va1 - — V21 — Ay Y, + f(n). The difference equation (0.3)
models a physical system. So f;, is known as system input (System excitation or forcing
sequence or driving sequence) while v, is referred to as system output (System response).

The structure of the system is defined by the values of the coefficients and order of the
equation. Thus any system output depends on the system input and the structure of the

system. The general solution of (0.3) determines the output y;,, which depends only on 7t
(but no longer on the prior terms of the sequence) and describes the complete sequence vy, in
the closed form. Thus any sequence vy, that satisfies the difference equation (0.3) is a

solution of (0.3).



First order homogeneous difference equation

To proceed to solve afirst order linear difference equation y,, ., by, = Uforrt = (0 and
b is a constant with boundary condition y, =d, let the solution be y, =r" with r = 0. Then
y.,=r"".  Subdtituting these in the given difference equation, we have

M —br"=0=r=>b

Thus the generd solution of the difference equation v, ., — by, =0 isgivenby y, =cb™

(since if b" is a solution then any non-zero constant multiple of it is also a solution). In

addition as boundary condition is y, = d then @ = y, = ¢h” « ¢ = d. Then the particular
solution is y,, = db™.The solution y,, defines a discrete function whose domain is the set

of al non-negative integers.

Second order linear homogeneous difference equation with constant coefficients

Let usconsider @, v, 4, + UV, .1 T @5V, =0 (0.4)
Let usassume (asearlier) y, =r", r=0 (0.5)

asasolution of (0.4). Then substituting (0.5) in (0.4), weget a,r™?+ar™ +a,r" =0
=ar’+ar+a,=0

Thus (0.5) is solution of (0.4) if ar’+ar+a,=0 (0.6)

The equation (0.6) which isaquadratic in r is known as the characteristic/auxiliary equation

of (0.4). Let theroots of thisequation be r, and r,. Three cases may arise.

Case 1: When theroots are real and district

In this case clearly 7;"and 735"are two linearly independent solutions. Thus the general of

(0.4) will be the linear combinations of them, i.e.
Yo = Clrln + Czrzn

Case 2: When theroots arerea and equal (say r)




In these case r" and nr" will be two different solutions. Hence the general solution in this

case will be y, =(c,+c,n)r"

Case 3: When the roots are complex

Since the complex roots occurs in pair, let the roots are given by a+ib. Then the general
solution will take the form y, =r"(c cosm +c,sinmg ), ~Ja? +b? and q= tan‘lE

This analysis can be extended to kth order difference equation by considering the nature of
the k roots of the auxiliary equation which will be a kth degree polynomial.

Before proceeding to non-homogeneous difference equations let us recollect the followings:
o The forward-difference or advancing difference operator £ is defined by

Afi = firr— fi

0 The shift operator E is defined as the operator that increases the argument of a function

by one tabular interval. Thus Ef, = Ef (% )= f (X +h)=f (X.,) = fis
0 AandEaerdlaed E=1+4.
The difference equation
A Vi + Qe-1Vnir—1 T+ @V + aodn = f(n) (0.3)
can be written in terms of E asfollows
(a,F*+a, E¥ '+ ...+, E+a,)y, = f(n) (0.7)

Non-homogeneous Equations

The general solution of a non-homogeneous linear difference equation with constant
coefficients (0.3) is the sum of the complementary function and any particular solution. Here
the complementary function (C.F.) of (0.3) is the general solution of the corresponding
homogeneous equation (0.4). Particular solution, more often known as particular integral
(P.I.) of (0.3), can be obtained by (a) method of undetermined coefficients (b) short cut

inverse operator methods.



(a) Method of undeter mined coefficients

The particular integral is assumed in a particular form depending on the form of the RHS
function f,. On the basis of the RHS functions are chosen and after taking their linear
combination P.I. is formed. That P.l. is substituted on the LHS and comparing the
coefficients are calcul ated.

(b) Inverse operator methods

The non-homogeneous equation (8) can be written as
F(E)y, = f(n) (0.8)

where F(E) = (a,E*+ a,_,E**+ .. +a,E+a,) is afunction of the operator E. Then

Pl= J%Ejf(n]l

Case L. If f(n) =a™ then

3 mn__1 n i
Pl.= L a2 , provided F(a)#0.

plo_ 1 an:n(n—l)(n—Z)....(n—k_l)a
 (E-a) ki

n—k

Case2: If f(n) = sinwun then

PI—Lsinan— 1 (em-e™) 1f 1 a"— 1 b
" F(E) ~ F(E) 2i 2i| F(E) F(E)
wherea=¢€? and h=¢e".

Similarly if f{rn}) = vosan, then




Case4: If f{n) =n™ or polynomial in 1. Replace Eby 1+ Aand expand 1/F(1+ A)
in binomial series in ascending powers of A up to A™ .Express f(n ) in afactorials and use

ﬂ[.t:]“ — 'ﬂ[_t:]ﬂ -1

Case5: If f(nn) = a™V(n)where V() ispolynomial in 7t. Then

PI= —{@"V(m)}=a" ——V(n)

It is clear that the discrete transforms have their great importance in the field of signal
processing but a little is known to us about them. Especialy at the undergraduate level a
very little information is provided to the students about them. Also some new transforms are
emerging which may have their uses in the field of signa processing, which also include
signal compression, pattern recognition etc. Though the main objective of this research isto
make familiarize the different discrete transforms, we have devised a corollary in the
properties of z-transform. The scope of utilizations of the existing discrete transforms will
also be sorted.

This thesis will address Z-transform (Chapter-2), Discrete Fourier transforms (Chapter-3)
and a brief introduction to Wavelet transform (Chapter-4).



CHAPTER-2

Z-TRANSFORM

Before the discussion of the main topic some related topics will be addressed.
Discrete-time signal and systems

A discrete signal has values which are defined only at discrete values of time or some other
appropriate variable, for example space. Such a signal may be generated by sampling a

continuous-time signal at regular time intervalsn , n=0,1,...,where T is sampling period.
Thus if the analog input signal x(t)=€e™ is applied to a digital filter, it will give rise the

sequence  x(n)= > x(t)d (t-nT). For t=nT, the sampled signal sequence is

N=—o0

Discrete signal may also be generated, artificially via some agorithm in a computer. The
amplitude of a discrete-time signa may have discrete values (discrete time, discrete

amplitude), or it may be continuous.

By tradition, a discrete-time signal is represented as a sequence of numbers:

x(m), n=0,1,... (2.1a)
x(n ), n=0.1,... (2.1b)
Xy, n=0,1,... (2.1¢)

Where the symbol x(r1), x(n ) or x,, indicatesthe value of the signal at the discrete time n (or
n ).For convenience we will use the symbol x (i) to denote both the value of the sequence at
the discrete time n and the sequence itself unless we wish to emphasize the difference. The

meaning will be clear from the context.

Let x(t) be an energy-limited continuous-time (analog) signal. If we measure the signal

amplitude and record the result at aregular interval h, we have a discrete-time signal

10



x(n)=x(t,), n=012,.....,N -1 where t, = nh

For simplicity in writing and convenience of computation, x(n) is generally used with the
sampling period h understood. This discretized sample values constitute a signal, caled a
digital signal.

In order to have a good approximation to a continuous band limited function x(t) from its

samples {x(n)}, the sampling interval h must be chosen such that h<p /Q where2Q is

the bandwidth of the function x(t) [i.e.,X(w) = 0 means (Fourier transform of x(t) is zero]

for al |W| > Q). The choice of h aboveisthe Nyquiest sampling rate, and the Shannon recovery

formula

. sinp (t—nh)
neZ p(t_nh)

enables usto recover the function x(t).

A discrete-timeis essentially mathematical algorithm that takes an input sequence, x (1), and
produces an output sequence, ¥(rt). Example of discrete-time systems are digital controllers,
digital spectrum analyzers, and digital filters. A discrete-time system may be linear or
nonlinear, time invariant or time varying. Linear time-invariant (LTI) systems form an

important class of systems used in DSP.

A discrete-time system is said to be linear if it obeys the principles of superposition. That is,
the response of alinear to two or more inputsisequal to the sum of the response of the systems
to each input acting separately in the absence of all the other inputsis equal to the sum of the
response of the system to each input acting separately in the absence of al the other inputs.

For example, if an input xl(n) to the system givesrise to the output v, (1), and another input
xz (), produces the output v (), the response of the system to both inputs will be

ey () + s () - wy vy (n) + wavs (n) (2.2
where u,and u; are arbitrary constants.

A discrete-time system is said to be timeinvariant (sometimes referred to as shift invariant) if
its output is independent of the time theinput is applied. For example, if the input x (1) gives
the output v(r1),then the input x(ri — k) will give the output y(rt — k):

11



x(n)—>y(n) (2.39)
x(n—k)— y(n-k) (2.3b)

That is, adelay in the input causes a delay by the same amount in the output signal. The input-

output relationship of an LTI system is given by the convolution sum
y(r) = Ypo_. h(f)x(n— k) (2.4)

where h(k) is the impulse response of the system. The values of h(k) completely define the
discrete-time system in the time domain. An LTI system is stable if its impulse response
satisfies the condition

Li=—w [R(R)| < 00 (2.5

This condition is satisfied if h(k) is of finite duration or if h(k) decays towards zero as k

increases.

A causal system is one which produces an output only when there is an input. All physical
systems are casua. In general, a casua discrete-time sequence, x(ri), or the impulse

response, h(k), of adiscrete-time system is zero beforetime Othat isx(rn) =0, n < 0,k < 0

The Laplace transform plays avery important role in the analysis of analog signals or systems
and in solving linear constant coefficient differential equations. It transforms the differential
eguations into the complex s-plane where algebraic operations and inverse transform can be
performed to obtain the solution.

Like the Laplace transform, the z-transform provides the solution for linear constant
coefficient difference equations, relating the input and output digital signals in the time

domain. It gives amethod for the analysis of discrete time systems in the frequency domain.

The analysis of any sampled signal or sampled data system in the frequency domain is
extremely difficult using s-plane representation because the signal or system equations will
contain infinite long polynomials due to the characteristic infinite number of poles and zeros.
Fortunately this problem may be overcome by using the z-transform, which reduces the poles

and zeros to afinite number in the z-plane.

12



The purpose of the z-transform is to map (transform) any points=+s +iw inthe s-planeto a
corresponding point z(rL_&) in the z-plane by the relationship z=¢€" where T is sampling

period (seconds)

Under this mapping, the imaginary axis, s = 0maps on the unit circle |z| = 1 in the z-plane.
Also, theleft hand half-plane @ < 0 correspondsto theinterior of theunit circle |z| = 1 inthe
z-plane. Considering that the real part of x is zero, i.e. s =0 we have z=¢€"" =1/ +iwT

which gives the values of z (in polar form) shown asin the following table.

S:0,Ws=2—p
T
iw 0 w,/8 w,/4 3w, /8 w,/2 5w/8 3w, /4 Tw, /8 wy

z=1WT 100 /45 1/90° 1/135 1/180° 1,225 1./270° 1,315 1./360°

The z-transform plays the same role in the analysis of discrete-time signals and LTI systems
asthe Laplace transform does in the analysis of continuous-time signalsand LTI systems. For
example, we shall see that in the z-domain (complex z-plane) the convolution of two time-
domain signals is equivaent to multiplication of their corresponding z-transforms. This
property greatly smplifiesthe analysis of the response of an LTI system to various signals. In
addition, the z-transform provides us with a means of characteristic an LTI system, and its

response to various signals, by its pole-zero locations.

The transform is used to characterize signals in terms of their pole-zero patterns. The z-
transform of asignal is used to obtain the time-domain representation of the signal. The one-

side z-transform is used to solve linear difference equations with nonzero initial conditions.

21 The Direct z-transform

The z-transform of a discrete-time signal x(n) is defined as the power series

X(z)= ) x(n)z™" (2.6)

n=-ow

13



where z is a complex variable. The relation (2.6) is sometimes called the direct z-transform
because it transforms the time-domain signal x(n) into its complex plane representation X(z).

The inverse procedure [i.e., obtaining x(n) from X(z)] is called the inverse z-transform .
For a convenience, the z-transform of asignal x(n) is denoted by
X&) = £{x(n)} (2.7)

Since the z-transform is an infinite power series, it exists only for those values of z for which
this series converges. The region of converges. The region of convergence (ROC) of X(2)

attains afinite value. Thus any time we cite a z-transform we should also indicate its ROC.
Let us express the complex variable z in polar form as
z=re" (2.8)

wherer = |z| and § = 4z . Then X(z) can be expressed as

z=re¥ = i X(n)r’ne’irq

N=—o0

X(2)

Inthe ROC of X(2), |X(z)| < oo . But

x()- < S [x(n)rre |- 3 x(nr

N=—c0 N=—o0

o0

> x(n)re™

N=—o0

Hence |X(z)|isfiniteif the sequence x(r)r~" is absolutely summable.

The problem of finding the ROC for X(z) is equivalent to determining the range of values of
r for which the sequence x(n)r™" is absolutely summable. To elaborate, let us rewrite the

above equation as

x(:])

X(2)< 3 x|+ 3

n=—c0 n=0

gi‘x(—n)r”

-
n=0

If X(z) convergesin someregion of the complex plane, both summations of the above equation
must be finite in that region. If the first sum of the above converges, there must exist values
of r small enough such that the product sequence x(—m)r", 1 <n < o ,is absolutely
summable. Therefore, the ROC for the first sum consists of all pointsinacircle of someradius

rywhere r; < oo. On the other hand, if the second sum converges, there must exist values of r
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large enough such that the product sequence x(r)/r™, 0 < n < oo is absolutely summable.

Hence the ROC for the second sum consists of all points outside acircle of radius > r .

Since the convergence of X(z) requires that both sums be finite, it follows that the ROC of
X(2) is generdly specified as the annular region in the z-plane, r; < r < ry., which is the
common region where both sums are finite. On the other hand, if r; > r;, thereis no common

region of convergence for the to sums and hence X(z) does not exist.
2.2 Importance Properties of the ROC for the z-transform

(1) The ROC does not contain any poles.

(i)  Whenx(n) isof finite duration, then the ROC is the entire z-plane, except possibly z=0
and/or z=oo.

(@iii)  1f x(n) isaright-sided sequence, the ROC will not include infinity.

(iv)  If x(n) is aleft-sided sequence, the ROC will not include z=0.However, if x(n)=0 for
al n>0, the ROC will include z=0.

(v) If x(n) istwo-sided, and if the circle |z|=r;; isin the ROC, then the ROC will consist of
a ring in the z-plane that includes the circle |z|=r. That is the ROC includes the
intersection of the ROC’s of the components.

(vi) If X(2) isrational, then the ROC extends to infinity, i.e. the ROC is bounded by poles.

(vii)  If x(n) is causal, then the ROC includes z=co.

(viii) I x(n) is anti-causal, then the ROC includes z=0.

23 THE ONE-SIDED Z-TRNSFORM

The two sided z-transform requires that the corresponding signals be specified for the entire
timerange—o < 1 < co. Thisrequirement preventsits use for avery useful family of
practical problems, namely the evaluation of the output of non-relaxed systems. Aswe
recall, this systems are described by difference equations with nonzero initial conditions.
Sincetheinput is applied at afinitetime, say i, both input and output signals are specified
for n > iy, but by no means are zero for 1 < ;. Thus the two-sided z-transform cannot be
used.

2.3.1 Definition and properties

The one-sided or unilateral z-transform of asignal x(n) is defined by
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No confusion will arise asin this case n will take only non-negative integral values, whereas
in the case of direct z-transform n can take both negative and positiveintegral values. The one-
sided z-transform differs from the two-sided transform in the lower limit of the summation,
which is aways zero, whether or not the signal x(n) iszerofor n< 0 (i.e., causal). Dueto this

choice of lower limit, the one-sided z-transform has the following characteristics:

o] It does not contain information about the signal x(n)for negative values of time (i.e.,
for an n<0).

o] It isunique only for causal signals, because only these signals are zero for n<0.

0 The one-sided z-transform X (z) of x(n) is identical to the two-sided z-transform of

thesignal x(n)u(n). Since x(n)u(n) is causal, the ROC of its transform, and hence

theROC of X (z) isawaysthe exterior of acircle. Thuswhen we deal with one-sided

z-transforms, it is not necessary to refer to their ROC.

2.3 Thelnverse z-transform

Often, we have the z-transform X (z) of asignal and we must determine the signal sequence.
Theinverse z-transform (1ZT) allows usto recover the discrete-time sequence x (i), given its
z-transform. The procedure for transforming from the z-domain to the time domain is called

the inverse z-transform. Symbolicaly, the inverse z-transform may be defined as
x(n) = £7X ()] (2.9
where X (z) isthe z-transform of x (1) and £~ tisthe symbol for the inverse z-transform.

The mathematical basis for obtaining x (i) from X (z) can be derive by using the Cauchy

integral theorem, as zisa complex variable.

Since X (z)= i x(n)z™", let usmultiply both sides of by 2"~ and integrate both sides over

k=—w

a closed contour within the ROC of X ().which encloses the origin. Thus we have........

JX (2= Y x(k) 2z (2.10)
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where C denotes the closed contour in the ROC of X (xz), taken in a counter clock-wise
direction. Since the series converges on this contour, we can interchange the order of

integration and summation on the right-hand side of (2.10). Thus (2.10) becomes
!‘[_ X(z)2"dz= Y i w(k)z2 " dz (2.11)
k== t

Using the Cauchy integral theorem, which states that

Lk=n

— || 2" dz = 212
2pi -[ ‘ {O,k;tn 212

where C is any contour that encloses the origin. By applying (2.12), the right-hand side of

(2.11) reduces to 2pi x(n) and hence the desired inversion formula be
x(n) = L ;_[ X (zyz"'dz (2.13)
2pi

Although the contour integral in (2.13) providesthe desired inversion formulafor determining

the sequence x(n) from the z-transform, it is not generally used to obtain inverse z-transforms.

In practice ,X (x) is often expressed as aratio of two polynomialsin z* or equivalently in z:

botbyz™ bz E by

gtz Y hage ™ 2t tapeM

X(2) =

(2.14)

In this form, the inverse z-transform, x (1), may be obtained using one of several methods

including the following three:

Q) Power series expansion method;
(2 Partial fraction expansion method,
3 Residue method.

Each method has its own merits and demerits. In terms of mathematical rigour, the residue
method is perhaps the most elegant. The power series method, however, lends itself most
easily to computer implementation.

2.3.1 Power series method

Given the z-transform, X (z), of a casual sequence as in Equation (2.14), it can be expanded

into an infinite seriesinz=* or z by long division (also called synthetic division):

17



By+hge Yebge i ey

X =

iyt Mo em i e g M
=x(0)+x(Dz ' +x@)z* +x(B)e ™ + - (2.15)

In this method, the numerator and denominator of X (z) arefirst expressed in either descending

powers of x ascending powers of =~ and the quotient is then obtained by long division.

The long division approach provides us the following relations:

x(0)=hy,/ay; x(l):[bl—x(o)al]/ao; x(2):[b2—x(1)a1—x(0)a2]/ao;
X(3) =[b,~ x(2) 2~ x(1) 2, ~ X(0)a, ]/ 8y +vvvvvee... x(n):[bn_ix(n_i)ﬂ/ao.

i=1

n

Thus we have x(n):[bn—Z“x(n—i)ey}/a0 for n>1 and x(0)=h,/a,

i=1
2.3.2 Partial fraction expansion method
In this method, the z-transform is first expanded into a sum of simple partia fractions. The
inverse z-transform of partia fraction is then obtained from tables (such atable is presented

as Table 2.1) and then summed to give the overall inverse z-transform. As has been considered

earlier, let we have given

bbby abge 4wl

X(2) = (2.16)

oty e Yhuge 24 +ape ™
If the poles of X (k) areof first order and ¥ = M, then X () can be expanded as

C C C
1 — + 2 — ++—M —
1—pyz7'  1—pyz! 1—puz™?

X(2) =By +

=B, +

M
Gz , Gz | Cu? =B+, G2 (2.17)

z-p z-Pp,  Z-Py =i}

where g, arethe poles of X () (assumed distinct), €, are the partial fraction coefficients and
Be = by/uy (2.18)

The €}, are aso known as the residues of X (), by definition.

If the order of the numerator is less than that of the denominator in Equation (2.16), that is
N < M, then Bgwill be zero. If N > M then X (2) must be reduced first, to make N < M, by
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long division with the numerator and denominator polynomials written in descending powers

of z~1. The reminder can be then be expressed as in Equation (2.17).

The coefficient, €};, associated with the pole p;; may be obtained by multiplying both sides of
Equation 4.15by (z — pg)/z and = = py :

X(2)

C = (Z_ pk)

z=py
If X(z) contains one or more multiple-order poles (that is poles that are coincident) then extra
terms are required in equation (2.17) to take this into account. For example, if X(z) contains

an mth-order pole at z = p;, the partial fraction expansion must include terms of the form

i1 (2 py)

The coefficients, D;, may be obtained from the relationship

) :(mii)!c(ijz—n”:ii[(z_ pk)m@}

2.3.3 Residue method

z=p

In this method the IZT is obtained by evaluating the contour integral

x(n) = $| [z (2)dz (2.19)

where C is the path of integration enclosing all poles of X(z). For rational polynomials, the
contour integral in equation (2.19) is evaluated using afundamental result in complex variable

theory known as Cauchy’s residue theorem :

_ 1

x(n) = i |L_ z"X (z)dz

= sum of theresidues of 2" X (x) at all the polesinside C.

In the last section, it was stated that the partial fraction coefficients, the ;, , are also referred

to asresidues of X(z) and away of obtaining their valueswas given. Thekey point to remember
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isthat every residue, Cy, is associated with apole, p, . In the present method, the residue of

z"'X(z) atthepole p,isgiven by

Res[ F (2), pk]:(m—]_'l)!j%mll[(z— pF(2)],., (2.20

where F(2) = £"7'X (), mistheorder of the pole at p, and Res[ F (z), p, | istheresidue

of F(z) a p,. For asimple (distinct) pole, equation (2.20) reduces to

Res[F (2),p, ]=(2- ) F(2)=(2- D) ZX (2)

2.4
(i)

(i)

(iii)

(iv)

(v)

(vi)

(2.21)

Z=Py

PROPERTIES OF Z-TRANSFORM

Linearity

Z
Z{ax(n)tax,(n)j=aX(z)£a,X,(2)

Scaling in z-domain

If Z{x(n)}=X(z) with ROC:r, <|z]<r, then Z{a“x(n)} = X(a‘lz) with
ROC :|a|r, <|Z] <[a]r,

Timereversal

If Z{x(n)} = X (2) with ROC:r, <|z]<r, then Z{x(-n)}=X(z") with

ROC:—1<|z|<l
r r

1 2
Differentiation in the z-domain or multiplication effect of n

dX (2)
dz

If Z{x(n)}=X(z) then Z{nx(n)}=-z

Convolution of two sequences

If Z{x (n)}=X,(z) and Z{x,(n)} = X,(z) then
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(vii) Correlation of two sequences
If Z{x (n)} = X,(2) and Z{x,(n)} = X,(z) then

z{i xl(n)Xz(n—U}: X,(2) X, (")

N=—0

(viii) Multiplication of two sequence
If Z{x (n)} = X,(2) and Z{x,(n)} = X,(z) then
2 (% (M) = X (2)= 5 05X 2

2pi
(ix)  Parseval’s relation

If x(n) and x,(n) are complex-valued sequences, then

Z ixl(n)xz(n) :ii!j'.‘{.(v)xz vi Vv
2p

N=—o0
(x) Initial value theorem

If Z{x(n)} = X(2), x(n) iscausal [i.e, x(n)=0 for n<0], then x(0)=lim X (2)

Z—0

(xi)  Final valuetheorem.

If Z{x(n)}=X(2) then Iimx(n):lzigl](z—l)x(z)

n—oo

Corollary-1: As Z{a"} = then
l-al/z
7 n(n—l)(n—2)...(n—m—1)an,m _d 1 nem
m! da"|1-al/z
Proof: From the definition Z{a"} = > a"z " =1+az ' +a’z* +..... =(1—az‘1)_l: .
rrt 1-alz

. 1
i.e. Zia"t= .

{ } l1-alz
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If we consider a as parameter then we can differentiate both sides with respect to a, thus we

will have i[z{a"}}i{ ! } Upon interchanging the differentiation and
da da|1-a/z

transformation operator we get Z {na”‘l} = ﬁ; n>1
z(1-alz

The above result can be easily verified using the properties, as follows:

Z{a”’l}:ia”’lz’”:z’1+az’2+azz’3+ ......
n=1
] -1 22 _ 1 _ 1
-z (1+az +a’z +"")_z(1—a/z)_z—a

So Z{na"*} can be obtained using the muitiplication effect of n. Thus

Z{na“‘1}=—zdi{ 1 }: z = 1 - nx1
zlz-a] (z-a)" z(1-alz)

Continuing the process m times and after simplification we will get the result.

Table 2.1: Some important Z-transform, with ROC

x(n) X(2) ROC
d(n) 1 Entire z-plain
1 17>1
u(n) 1-z7*
a'u(n) 1 |7 >d]
1-az*
e"u(n) 1 7> e
] 1-ez*
cosbn)u(n 1
( Juln) 1-z*cosb 4>
(sinbn)u(n) 1-z*'cosb +z? 17>1
z'sinb

1-z'cosb + 272

Now some example will be presented.

22



Problem 2.1: Find the z-transform and indicate the ROC of the following problems

()  x(n)={2,534,9}

x(n) _ {l,—l,?,&?}
Gy x(n)=d(n)

i) x(n)

v x(n)=d(n+k

(i1)

vy Xm=u)=1" g

Solution:

() Given that,
x(n)={2534,9}
Here, x(1)=2,x(2)=5,x(3)=3,x(4)=4,x(5)=9,

Weknow, X (z)= Zw: x(n)z™"

-n

X
—~
N
~
I
Mo

X
—~

>
~

N

=x(0)2°+x(1) 2+ x(2)z*+x(3)z° + x(4) z**
=2+52"'+3z?+4z2°%*+9z*
ROC: Entire z-plane except z = 0.
(i)  Giventhat, x(n)={1’_1’$’5’7}
Here, x(-2)=1,x(-1)=-1,x(0)=2,x(1)=5,x(2)=7,

Weknow, X (z) = > x(n)z "

nN=-ow
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2

=2 x(

=x(-2)z* +x:(_ )z+x( )2’ +x(1) 2z +x(2) 2
=7 —7+2+52"'+727

ROC: Entire z-planeexcept z = 0 and Z=00

(iii)  Giventhat,x(n)=d(n)={10,0,0.....

Z{x(n)}=2{d(n)}=3d(n)z"
=1z°+ 0z "+ ....,snced (n)={1,0,0,0.....}

ROC: Entire z-plane.
(iv)  Given that,
x(n)=d (n-k)
Weknow, if Z{x(n)}= X(z )then Z{x(n-k)} =z*X(z) and Z{d (n)} =1
z*1=

Z{d(n-k)}=

ROC: Entire z-plane except z = 0.
(v) From the definition

Z{d(n+k)}=id(n+k)z‘”:0+0+....+1.z“""+0+0+ ..... =z
1L n=-k

=0
Since d (m) = ol ,thus d (n-k)=
0, m=0 0, n#-k

ROC: Entire z-plane except z=o0

(vi)  Giventhat, x(n)=u(n) :{i’ :ig

Weknow,u(n)={111,....}

Thus Z{x(n)} = i u(n)z"=..0+0+1.2° +1.2 +1.2% +...

N=—00
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ROC: The ROC istheinterior part of thecircle |7 =1 i.e, where |7 <1

Problem 2.2: Find the z-transform of x(n)=a"u(n)+b"u(-n-1)

0 m<0

Solution: ~ We know, u(m)z{1 >0

, thus u(—n—l)z{

and Z{x(n)}=> x(n)z"

Z{x(n)} =Z{x(n)}+Z{x,(n)}, from linearity property

= Z{a”u(n)} + Z{b”u(—n—l)}

= i a"z"+ i b"z™"
n=0

N=—o0

= i a'z"+ Zw:b‘“z”
n=0

n=1
= (1+ azt+a’z?+ ....)+(b‘lz+ b2z +b3Z + )
= (l+ az'+a’z?+ ) + b‘lz(1+ blz+b?Z + )

1 bz
= ot 1
l1-az= 1-bz

provided ‘az‘l‘ <1 and ‘b‘lz‘ <1

The first condition requires that |z>|a| and that for the second is |z]<|b| . If both the

conditions are not satisfied simultaneously then we will not get the required transform. Both

the conditions can only be satisfied if |a| < |b| , thus z will lie within an annular region. In this

case z-transform will exists and ROC be |a| < z<|b].

Problem 2.3: Find the z-transform of

() x(n)=u(-n) (ii) x(n)=na"u(n)
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(i)

Solution:

From the definition we have

0 0

Z{x(n)}=> x(n)z"=> u(-n)z" = i z" zgz“ =1le; 1z<1

N=—o n=—w n=—w

(i) To determine the z-transform we first try to find the z-transform of a"u(n) . From the

definition we have,

Z{a”u(n)}: i a”u(n) :ganzn —1+azt+azri+.. =(1—az‘1)_l

N=—o00

— provided ‘az‘1‘<1 e, |Z>[a

1-azt’
But we know if Z{x}(n)=X(z) then Z{x(n)}:—z%X(z)
Z{na”u(n)}:—zi( 1 j: az’ with the condition |z > |a
dz\1-az™ (1_ az‘1)2

Problem 2.4: Find the inverse z-transform of Iog(1+ az‘l), ERE!

Solution:

Let, X(z)= Iog(1+ az‘l)
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= z{(-a)" " u(n-1)} = e n>1
2{a(-a)"u(n-1)} - 1fzaz ns1

Againweknow if Z{nx(n)} =-z—X(2)

tusit 220 x(2)] = y(n) e 2 * (2 =1

()™ a"u(n-1)

Hence Z {(1+ az‘l)} =

Problem 2.5: Find the inverse z-transform of (1— 27+ 2‘2)(1+ 27 +47%+87°3 +16z‘4)

Solution:

We have the convolution theorem as:

If Z7*{X,(z)} =x(n) and Z*{X,(2)} =x(n)

then Z‘l{Xl(z)Xz(z)}:mimxl(m)xz(n—m)

Here Z'{1-27-77%}={1-21}

and Z*{1+27'+42° +82°+162*} ={2"} where 0<n<4

zt {(1— 271+ 7?)(1+22" + 427 +82° +162°* )}

= > % (m)x,(n-m)

where x, (m)={1-2,1} and xz(m)z{zm} ,0<m<4
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%(1)=0,i<0, % (0)=1, x(1)=-2,%(2)=1, x(k)=0; k>2
and
%(i)=0,i<0, %(0)=1, % (1) =2, %,(2) =4, %(3) =8, %,(4)=16, X,(j)=0; j>4.
Sowewill have to calculate terms
%(0)%(0) 3 %(0)% (1) +% (1)%(0); % (0) % (2)+x% (L)% (1) +x(2)%(0);
%(0)%(3)+%(1)%(2)+%(2)%(1); % (0)%(4)+% (1) % (3) +%(2) % (2);
% (1) % (4)+%(2) %, (3)+%(2)x,(2) and x,(2)x,(4)
Andthevaluesare 1, 2—2, 4-4+1, 8-8+2, 16-16+4, —32+8,16
i, {1,01,2,4,-24,16)
Thus we have the required inverse transform as
{1.0.1,2,4,-24,16}
Note: The result can also be obtained by the following way

(1— 2zt + 2‘2)(l+ 2z'+47%+87° +l6z‘4) =1+722%2+27°%+47%-247°+167°°

which is nothing but the z-transform of ~ {1,0,1,2,4,-24,16}

Problem 2.6: Find the inverse z-transform of >
(1-a2”)

Solution:

Weknow, Z {
1-az

1 1}: a"u(n)

and the convolution theorem as Z*{X,(z) X,(z)} = i % (M) x, (n—m)

where Z7*{X,(2)} =x(n) and Z*{X,(z)} = %,(n)
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- iama”’m = a”ilz (n+1)a“

m=0 m=0

Problem 2.7: Solve the difference equation using Z-transform
y(n+2)-4y(n+1)+3y(n)=5"; given y(0)=1,y(1)=1
Solution:  Given that,

y(n+2)-4y(n+1)+3y(n)=5"; y(0)=1,y(1)=1
Let Z{y(n)}=Y(2)
Taking Z-transform on the both sides of the given equation we get

Z{y(n+2)}-4z{y(n+1)}+3Z{y(n)}=Z {5}

z z(z-3)

(z-3)(z-1)(z-5) " (z-3)(z-1)

or, Y(z)=
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1 1 1 1

21 (z-1)(1-3)(1-5)  (3-1)(z-3)(3-5) ' (5-1)(5-3)(z-5)

1 1/8 1/4 1/8
= + - +
z-1 z-1 z-3 z-5

B 9/8_ 1/4 N 1/8
z-1 z-3 z-5

1 1 1 1 1
1-1/z 4 1-3/z 8 1-5/z

i.e, Y(z):g

Taking inverse z-transform we get

9 1 1
:_1n__3n _5n
y(n) 8 4 +8

. 9 1 1
e, =—--3+=5
i.e, y(n) 523 g
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CHAPTER-3

DISCRETE FOURIER TRANSFORM AND FAST FOURIER TEANSFORM

Frequency analysis of discrete-time signalsis usualy and most conveniently performed on a
digital signal processor, which may be a general-purpose digital computer or specially
designed digital hardware. To perform frequency analysis on adiscrete-time signal{x (1)}, we
convert the time-domain sequence to an equivalent frequency-domain representation. We
know that such a representation is given by the Fourier transform X (w) of the sequence
{X(r)}. However, X(w) is a continuous function of frequency and therefore, it is not a
computationally convenient representation of the sequence {X(r1)}. The discrete Fourier
transform (DFT) and inverse discrete Fourier transform (IDFT) are computational tools that
play a very important role in many digital signal processing applications, such as frequency
analysis (spectrum analysis) of signals, power spectrum estimation, and linear filtering. The
importance of the DFT and IDFT in such practical applicationsis due to alarge extent on the
existence of computationally efficient algorithms, known collectively asfast Fourier transform
(FFT) agorithms, for computing the DFT and IDFT. For the sake of quick understanding to

the engineers, in this chapter V=1 will be represented by j, though generally we represent that

by i. Before discussing about DFT and others we will present some related topics first.
TheFourier Transform

Recall that a periodic signal x,(t) with periodic T and its exponential Fourier series

coefficients X [k] arerelated by

TI2

X, (t) = i X [k]e!® X[k]:% I x, (t)e 't (3.1)

k=—0 -T/2

If the period T of a periodic signal x,(t) is stretched without limit, the periodic signal no
longer remains periodic but becomes asingle pulse x(t) corresponding to one period of x, (1)
The harmonic spacing f,=1/T approaches zero, and its Fourier series spectrum becomes a
continuous curve. In fact, if we replace f, by an infinitessimally small quantity df — 0 the

discrete frequency kf, may be replaced by the continuous frequency f. Thefactor 1/T inthe
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integral relation means that the coefficients X [k]| approach zero and are no longer a useful
indicator of the spectral content of the aperiodic signd x(t). However, if we eliminate the
dependence of X [k] on the offending factor 1/T in the integral and work withTX [k] as
follows,

TI2

TX[K]= [ x, ()@t

-T/2

the integral on the right-hand side often exists as T — « (even though TX[k] is in
indeterminate form), and we obtain meaningful results. Further, since k f, — f , the integral

describes afunction of f. Asaresult, we defineTX [k] and obtain

T

X ()= limTX[K]= [ x(te et

Thisrelation describesthe Fourier transform X (f) of thesigna x(t) and may also bewritten

in terms of the frequency variable w as
X (w)= j x(t)eMdt  (the w -form)

The Fourier transform provides a frequency-domain representation of the aperiodic signad

x(1).
Thelnverse Fourier Transform

A periodic signal x,(t) can be reconstructed from its spectral coefficients X [k] , using

0

% ()= 3 X[Ke™

k=—0

If T—oo , resulting in the aperiodic signal x(t), It is quantity TX[k] that describe its
spectrum X ( f ), and we must modify the above expression (multiply and divided by T ) to

give X, (t) = i TX [k]eJZpkrot 1: i TX [k]eijkfot fo

k=—o0 T k=—
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As T—>o and kf, > f, the summation tends to an integration over (—oo,oo). With

f, > df -0, weobtain X(t)= [ X(f)e/®"df

Thisistheinverse Fourier transform, which allowsusto obtain x(t) fromitsspectrum X ( f)

. Theinverse transform relation may be also be written in terms of the variable w (by nothing

o0

that dw =2pdf ) togive  X(t)= % I X (w)e™ dw (from the w -form)

Ideal Sampling

Ideal sampling describe a sampled signal as a weighted sum of impulses, the weights being

equal to the values of the analog signal at the impulse locations. An ideally sampled signa
X, (t) may be regarded as the product of an analog signal x(t) and a periodic impulse train

i(t).
The ideally sampled signal may be mathematically described as

o0 0 o0

X (1) =x(t)i(t)=x(t) D d(t-nt))= > x(nt))d (t-nt;)= > x[n]d (t-nt,)

N=—o0 N=—o0 N=—o0

Here the discrete signal x[n] simply represents the sequence of sample values x(nts).

Clearly, the sampling operation leads to a potentia loss of information in the ideally sampled

signal x, (t), when compared with its underlying analog counterpart x(t). The smaller the

sampling interval t_, thelessisthe loss of information.

Intuitively, there must always be some loss of information, no matter how small an interval
we use. Fortunately, our intuition notwithstanding, it is indeed possible to sample signals

without any loss of information.
Let us consider a signal x(t), which is band-limited to some finite frequency B .Let the
impulsetrain i(t) isaperiodic signal with period T =t, =1/ S and Fourier series coefficients

| (k)=S. ItsFourier transformisatrain of impulses (at f = kS) whosestrengthsequal 1 (k)

0 00

1(f)=Y I[K]d (f —kS) =S> d(f -kS)

k=—o0 k=—o0
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Theideally ssmpled signal x, (t) istheproduct of x(t) and i(t). Itsspectrum X, ( f) isthus
described by the convolution

X, (£)=X ()1 (f)=X(f)xs> d(f-ks)=S3 X(f-kS)

k=—w

The spectrum X, (f) consists of X ( f) and its shifted replicas or images. It is periodic in

frequency, with a period that equals the sampling rate S.

Since the spectral image at the origin extends over (-B, B), and the next image (centered at
S ) extends over (S—B, S+ B), theimage will not overlap if
S-B>B o S>2B

There will have three choices of the sampling frequency S of the spectra of an ideally

sampled band-limited signal. Aslong as the images do not overlap, each period is areplica of

the scaled analog signal spectrum SX ( ). Wecanthusextract X ( f) (and hence x(t) asthe
principal period of X, () (between —0.5S and 0.5S). By passing theideally sampled signal
through an ideal lowpass filter with a cutoff frequency of 0.5S and again of 1/S over the

frequency range -0.5S< f <0.5S

The sampling theorem tells us that an analog signal band-limited to a frequency B can be

sampled without loss of information if the sampling rate S exceeds 2B (or the sampling interval

t, issmaller than 2_18 )- The critical sampling rate S, = 2B is often called the Nyquist rate

or Nyquist frequency and the critical sampling interval t, =1/S,=1/2B is called the
Nyquist interval.

If the sampling rate S islessthan 2B , the spectral images overlap and the principle period
(-0.5S,0.5S) of X, ( f)isnolonger anexactreplicaof X ( ). Inthiscase, wecannot exactly
recover X(t), and thereisloss of information due to under sampling. Undersampling results

in spectral overlap. Componentsof X ( ) outsidethe principlerange (-0.5S,0.5S) fold back

into this range (due to the spectral overlap from adjacent images). Thus, frequencies higher
than 0.5S appear as lower frequenciesin the principa period. Thisis aliasing. The frequency
0.5Sisalso caled the folding frequency.
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Aliasing: A frequency |f,|>0.5S gets aliased to a lower frequency f, in the range

(-0.5S, 0.5S) .

Sampling is a band-limiting operation in the sense that in practice we typicaly extract only
the principal period of the spectrum, which is band-limited to the frequency range
(-0.5S,0.5S). Thus, the highest frequency we can recover or identify is 0.5Sand depends

only on the sampling rate S.
Sampling of Sinusoids and Periodic Signals

TheNyquist frequency for asinusoid x(t) =cos(2p ft+q) is S, = 2f,. TheNyquist interval
ist, =1/2f,, or t, =T /2. Thisamounts to taking more than two samples per period. If, for

example, we acquire just two samples per period, starting at a zero crossing, all sample values
will be zero, and will yield no information.

If a signax(t)=cos(2p fit+q)is sampled a S, the sampled signad is
x[n]=cos(2p f,/ S+q). Its spectrum is periodic, with principle period (-0.5S, 0.5S). If
f, <0.5S, thereisno aliasing, and the principle period shows apair of impulsesat +f, (with
strength 0.5). If f, >0.5S, we have aliasing. The components at +f,are aiased to a lower
frequency +f, inthe principle range. To find the aliased frequency |fa| , We subtract integer
multiples of the sampling frequency from f, unit theresult f, = f,— NS liesin the principle
range (-0.5S, 0.5S). The spectrum then describes a sampled version of the lower-frequency
aliased signal x, (t)=cos(2p ft+q). The diased frequency always lies in the principle

range.

A periodic signa x,(t) with period T can be described by a sum of sinusoids at the

fundamental frequency f, =1/T anditsharmonics k f,. In general, such asignal not be bana-

limited and cannot be sampled without aliasing for any choice of sampling rate.

The spectrum of a sampled signal is not only continuous but also periodic. The periodicity is
a consequence of the duality and reciprocity between time and frequency and leads to the

formulation of the discrete-time Fourier transform (DTFT).
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31 The Discrete-Time Fourier Transform

The Discrete-Time Fourier Transform describe the spectrum of discrete-time signals and

formalizes the concept that discrete-time signals have periodic spectra. Ideal sampling of an
analog signal x(t) leads to the ideally sampled signal x, (t) whose spectrum X (f) is

periodic. We have

0 o0

X ()= x(kt,)d (t—kt,) X, (f)=S> X(f-ks) (3.11)

k=—o0 k=—o0

Using the Fourier transform pair d (t—a ) < exp(—j2pa f ), the spectrum X () may aso
be described by

0 0

X (t)=> x(kt;)d (t—kt,) X, ()= x(kt,)e ! (3.1.2)

k=—o0 k=—o0

Note that X (f) is periodic with period S and its central SX (). To recover the analog
signal x(t), we passed the sampled signal through an ideal lowpass filter whose gain equals

1/S over —-0.55< f <0.5S.

Formally, we obtain x(t) (or itssamples x(nt,) ) from the inverse Fourier transform result

S/2 S/2

x(t):é [ X, () x(nts)zé [ %, ()" (313)

-s/2 -s/2

Equations (3.1.2) and (3.1.3) define a transform pair. They allow us to obtain the periodic
spectrum X () of an ideally sampled signal from its samplesx(nt,), and to recover the
samples x(nt,) from the spectrum. We point out that these relations are the exact duals of the

Fourier seriesrelations for aperiodic signal x,, (t) and its discrete spectrum X [k] (the Fourier

series coefficients). We can revise these relations for discrete-time signalsif we usethe digital

frequency F = f /S and replace x(nt,) by the discrete sequence x[n] to obtain

X, (F)=Y x[k]e'*< x[n]:é j X, (F)e*™dF (the F-form) (3.1.4)
k=—o0 -1/2
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The first result define X (F ) as the discrete-time Fourier transform (DTFT) of x[n]. The
second result is the inverse DTFT (IDTFT), which allows us to recover x[n] from its
spectrum. The DTFT X (F) is periodic with unit period because it assumes unit spacing

samplesof x[n]. Theinterval -0.5<F <0.5 (or 0< F <1) definesthe principle period.
The DTFT relations may also be written in terms of the radian frequency Q as

X, (Q)= i x[k]e x[n]:%? X, (Q)e"dO (3.1.5)

k=—00 -p

The quantity X, () isnow periodic with period Q=2p and represents a scaled (stretched
by 2p ) version of X (F). The principle period of X () corresponds to the interval

—-p <Q<p or 0<Q<2p . Wewill find it convenient to work with the F-form because, asin

the case of Fourier transforms, it rids us of factors of 2p in many situations.

3.1.1 Connection between the DTFT and the Fourier Transform

If thesignal x[n] isobtained by ideal sampling of an analog signal x(t) at asampling rate S
, the Fourier transform X, (F) of theanalogimpulsetrain x, (t)=> x(t)d (t—k/S) equals
XF,(F)‘H”S and represents a frequency-scaled version of Xp(F) with principle period
(-0.5S, 0.5S). If S exceedsthe Nyquist sampling rate, the Fourier transform X (f) of x(t)
equalsthe principle period of SXP(F)‘FM/S. If S isbelow theNyquist rate, SXp(F) matches
the periodic extension of X ( f ). In other words, the DTFT of adiscrete-timesignal x[n] is

related to both the Fourier transform X, (F ) of the underlying impulse-sampled analog signal

X, (t) and to the Fourier transform X () of x(t).

3.1.3 TheDFSandtheDFT

Sampling and duality providethe basisfor the connection between all of the frequency-domain
transforms and the concepts are worth repeating. Sampling in one domain induces a periodic
extension in the other. The sample spacing in one domain isthe reciprocal of the period in the
other. Period analog signals have discrete spectra, and discrete-time signals have continuous

periodic spectra. A consequence of these conceptsis that a sequence that is both discrete and
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periodic in onedomainis also discrete and periodic in the other. Thisleadsto the development
of the discrete Fourier transform (DFT) and discrete Fourier series (DFS), alowing us a
practica means of arriving at the sampled spectrum of sampled signas using digital
computers. The connections between the various transforms are summarized in Table 3.1

Table 3.1 Connections Between Various Transforms

Operation in the Time Domain Result in the Frequency Domain Transform
Aperiodic continuous x(t) Aperiodic continuous X ( f) FT
Periodic extension of x(t)= x,(t) | Samplingof X (f)= X[K] FS
Period=T Sampling interval =1/T = f,

Sampling of x, (t)= x,[n] Periodic extension of X[k]= X,.s[k] | DFS
Sampling interval =t Period= S=1/t,

Sampling of x(t)= x[n] Periodic extensionof X (f)= X (F) |DTFT
Sampling interval =1 Period=1

Periodic extension of x[n]=> x,[n] | Samplingof X [F]= Xy, [K] DFT
Period=N Sampling interval =1/ N

3.2 DFT and IDFT

The N-point discrete Fourier transform (DFT) X, [K] of an N-sample signal x[n] and the

inverse Fourier transform (IDFT), which transforms X, [k] to x[n], are defined by

N -1
e ()= S x(nye i k=0,1,2.,N-1 (3.2.1)

n=0

_ %NZ::LXDFT e12pnk/N I’]:O,]_,Z,...,N_l (322)

0

Each relation is a set of N equations. Each DFT sample is found as aweighted sum of all the

samplein x(n) . One of the most important properties of the DFT and its inverse in implied
periodicity. The exponential exp(+j2pnk/N) in the defining relations is periodic in both n

and k with period N:

j2p nk/N j2p (n+N)K/N j2pn(k+N)/N
gi2p — gl2p(n+N) — gl2pn(k+N)
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As aresult, the DFT and its inverse are also periodic with period N, and its sufficient to
compute the results for only one period (0 to N-1). Both x[n] and X, [k] have a starting

index of zero.

Let us give an example to calculate the DFT

Let x(n)={1210}.with N=4,and e '*™" = 1?™2 e giccessively compute

k=0: Xper( Zslx e’=1+2+1+0=4
n=0
k=1: X,r()= ix(n)e"'”'”2 =1+2e P2 1e? 10=—j2
n=0
k=2: X, (2):23:x(2)e’j”p —1+2e P 1e1® 10=0
n=0
k=3: Xger (3):231x(n)e"'3”‘”2 =1+2e/®? e ® 10=j2

o

n=

The DFT isthus  Xper (K) = {4,-j2,0,j2} .

Here is an example to calculate the DFT of a sequence and get that back through IDFT.

Let us consider a sequencex(n)={2,0,1,-2}. The DFT in this case will be given by

3

X(1)=> x(k)e** wherel=0,1,23

3 3
Hence X(O)=Zx k)e P ok2 — Zx =1
k= k=0
3

X (1)= ix(k)e"'p'l'k’z =>"x(k)[cos(kp / 2)- jsin(kp /2)]=2.1+0+1L(-D +(-2).(j) =1- 2]

k=0

w

X(2)= ix(k)e‘”"ak’z = > x(k)[ cos(kp ) jsin(kp)]=2.1+0+1(1)+(-2).(-) =5

k=0

w

X(3):Zgzx(k)e’jp'&k’2 > x(k)[ cos(3kp /2)— jsin(3kp /2)]

k=0 k=0
=21+0+1.(-D)+(-2).(-])=1+2]j
From the definition we will have

3
%Zx 1)e'®"* where k=0,1,2,3
1=0
Thus
13 | 1
x(O):ZZX(I)e""O"’Z=Z(1+1—2j+5+1+2j):2
1=0
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EZX )elPtV2 = Zx )[cos(lp /2) + jsin(lp / 2)]
=—[1.1+ (1-2j).j+5.(-D)+(1+2j).(-)) ]=0
x(2):%ix P22 — ZX [cos(lp) + jsin(Ip)]
=Z[l.l+(1—2j).(—1)+5.(1)+(1+2j).(—1)]=1
iix e a2 :%gx(l)[cos(:%lp /2)+ sin@p /2)]
=%[1.1+(1—2j).(—j)+5.(—1)+(1+2j).(j)]=—2
Now we will illustrate the properties of DFT in the following with examples:

€) Let y(n)={1,2,3,4,5,0,0,0}, n=0,1,2,...,7. Find one period of the circularly shifted
signals f (n)=y(n-2), g(n)=y(n+2) , and thecircularly folded signal h(n) = y(-n) over

0<n<7.
1. Tocreate f(n)=y(n-2), wemove thelast two samplesto the beginning. So,
f(n)=y(n-2)={0,012,34,50}, n=012,...,7

2. Tocreate, g(n) = y(n+2) we move thefirst two samples to the end. So,
g(n)=y(n+2)={34,5,0,0,0,1,2},n=012,..,7

3. To create, h(n) = y(-n) we foldy(n) to {0,0,0,5,4,3,2,1}, n=-7,-6,-5,..,0 and

create its periodic extension by moving all samples (except y(0) ) past y(0) to get

h(n) = y(-n)={1,0,0,0,5,4,3,2}, n=0,1,2,...,7

(b)  Letusfind the DFT of x(n)={11,0,0,0,0,0,0}, n=0,12,...,7

Sinceonly x(0) and x(1) are nonzero, the upper index in the DFT summation will be n=1 and

the DFT reducesto

1
Xoer (K) =D x(n)e#™® =14e P | k=0,1,2,..,7

n=0
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Since N =8, we need compute X, (k) only for K<0.5N =4. Now, X, (0)=1+1=2
and X, (0)=1-1=0. For therest (k=1,2,3), we compute,
Xper () =1+€71%/* =1.707- j0.707, Xy (2) =1+€ P2 =1,

Xoer (3) =1+ €1%/* = 0.293- j0.707 .
By conjugate symmetry, X, (K) = X5 (N —K) = X (8—K) . Thisgives

Xoer (5) = Xer (3) = 0.293+ 0.707, Xoer (6) = Xoer (2) =1+ ,

X per (7) = X2or (1) =1.707+ j0.707.
Thus, X (K) ={2,1.707 - j0.707,0.293— j0.707,0,1+ j,0.293+ j0.707,1.707 + j0.707} .

(c) Consider the DFT pair x(n) ={1,2,1,0} < X, (k) ={4,—j2,0,j2} with N=4.

1 (Time Shift) Tofind y(n) = x(n—2) , we move the last two samples to the beginning
to get

y(n)=x(n-2)={1,0,1,2}, n=0,1,2,3.

To find the DFT of y(n)=x(n-2), we use the time-shift property (with n,=2 ) to give
Yorr (K) = Xper ()& = X ()& = {4,j2,0,- 2} .

2. (Modulation) Thesequence Z,. (k) = X, (k—1) equals {j2,4,-j2,0} .ItsIDFT is
z(n) = x(n)e'®"* = x(n)e”"* = {1,j2,-1,0}.

3. (Folding) The sequence g(n) = x(-n) is

o(n) = {X(0), x(-1), X(-2), x(-3)} ={1.0,1.2}

Its IDFT equalsto Gpe; (K) = Xper (—K) = Xper (K) ={4,(2,0,—- 2}

4. (Conjugation)  The sequence p(n) =x"(n) is p(n)=x"(n)=x(n)={1,210}. Its

DFT is
I:)DFT (k) = ><I;FT (_k) = {4' ] 2’ 0’_]2}* = {41_j2’ 0’ J 2} .

5. (Product) The sequence h(n)=x(n)x(n) is the point wise product. So,
h(n) ={1,4,1,0}.
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ItsDFT is H . (K) :%XDFT(k). 5, () :§f4_- j2.0.j2)1 {4,j2,0,-j2)

We need to keep in mind that thisis a periodic convolution.

The resultis H, . (k) :%{24,—j16,0,j16} ~(6,-]4,0,j4)

6. (Periodic Convolution) The period convolutionis c(n) = x(n).: x(n) gives
c(n)={1,2,2,0} 1 {1,2,1,0} ={2,4,6,4}

Its DFT is given by point wise product

Corr (K) = Xogr (K) Xoer (K) = {16,-4,0,-4} .

7. (Regular Convolution) Theregular convolution s(n) = x(n) * x(n) gives
s(n)={1,2,1,0} . {1.2,1,0} = {1,4,6,4,1,0,0} .

Since x(n) has 4 samples (N =4), the DFT S, (k) of s(n) isthe product of the DFT of
the zero-padded (to length N+N-1=7 ) signal x,(n) ={1,2,1,0,0,0,0} and equals

(16,-2.34 }10.28,~2.18+ [1.05,0.02+ }0.03,0.02 }0.03,~2.18 j1.05,~2.35+ [10.28}
8.  (Central Ordinates) It is easy to check that x(O):%Z X, (k) and

Xorr (0) = Z x(n).

Q. (Perseval’s Relation) We have Z‘x(n)z‘ =1+4+1+0=6.

Since X5 (k) ={16,-4,0,4} ; we also have %2|XDFT(k)|2 :%(16+ 4+4)=6 .

3.2.1 TheDFT of Periodic Signalsand the DFS

The Fourier seriesréelations for aperiodic signal X, (t) are

X, (t)= > X (k)e'® s X(K) =%jxp (t)e ™ dt (32.3)

k=—o0

If we acquire X(N) ,N=0,1..,N~-1 a5N samplesof X,(t) over one period using asampling

rate of S Hz (corresponding to a sampling interval of s ) and approximate the integral
1 1
expression for X(K) by asummation using dt >t; t—>nt; T=Nt; gnd fo=—=—

we obtain
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N-1 _ N-1 A
X, .o (k) = ﬁZ X(n)e 12Kt Z%Z x(Me @ N k=01, N-1 (3.2.4)

The quantity Xors(K) defines the discrete Fourier series (DFS) as an approximation to the

Fourier series coefficients of aperiodic signal and equals N times the DFT.

3.2.2 Thelnverse DFS

Torecover X(N) from oneperiod of Xors(K) | we usethe Fourier series reconstruction whose

summation index covers one period (from k=0 to k=N-1) to obtain
N-1 . N-1 .

x(n) = Z X pes (K)e! :z Xpes (K)&! ™™ , n=012.,N-1 (3.25)
k=0 k=0

This relation describes the inverse discrete Fourier series (IDFS). The sampling interval s
does not enter into the computation of the DFS or its inverse. Except for a scale factor, the
DFS and DFT relations are identical .

Here is an example of the DFT of a Sinusoid:

Thesignal X(t) = 4cos(100pt) issampled at twice the Nyquist rate for three full periods. The

frequency of X(1) is 50Hz, the Nyquist rateis 100Hz, and the sampling frequency is S=200Hz.

The digital frequency is F =50/200=1/4=3/12=k/N | This means N=12 for three full
periods. The two nonzero DFT values will appear at k=3 and k=N-3=9. The nonzero DFT

vaueswill be X(3)= X(9)=(0.5)(4)(N)=24

3.3  Matrix representation of DFT

The formulas for the DFT and IDFT given by (3.2.1) and (3.2.2) may be expressed as
X(h) = IV a(m)wy k=01,..,N—-1 (3.3.1)

x(rn) = % YN (R)W" n=01.,N—1 (3.3.2)

where, by definition, W, =e'®'"  which isan Nth root of unity.
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We note that the computation of each point of the DFT can be accomplished by N complex
multiplications and (N — 1) complex additions. Hence the N-point DFT values can be

computed in a total of.....complex multiplications and N (/N — 1) complex additions.

Let us define an NV-point vector X, of the signa sequence x(r), n=0,1,2, .........., N — 1,

an N-point vector X of frequency samples, and an ¥ X N matrix W, as

x(0) X(0)
An = x(:l) , Xy = X(:l) )
x(N-1) X(N—-1)
1 1 1 1 1]
1w, W owe't
W, =[1 w2 owgd W (3.3.3)
1 WNN—l WNZ(N—l) W[\(]N—l)(N—l)

With these definitions, the N-point DFT may be expressed in matrix form as

xﬁ' = W:‘u"xj‘u' (3'3'4)
where W, Is the matrix of the linear transformation. We observe that W, is a symmetric
matrix. If we assume that the inverse of W, exists, then (3.3.4) can be inverted by

premultiplying both sides by W3!. Thus we obtain
Xy = Wi'Xy
But thisisjust an expression for the IDFT.

In fact, the IDFT as given by (3.3.2), can be expressed in matrix form as
Xy =~ WiXy (3.3.5)

where W}, denotes the complex conjugate of the matrix W,. Comparison of (3.3.5) with
(3.3.4) leads us to conclude that W' = % W, (3.3.6)

which, inturn, impliesthat W, W3 = NI, (3.3.7)
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where Iyisan N x N identity matrix. Therefore, the matrix W, in the transformation is an
orthogonal (unitary) matrix. Furthermore, itsinverse existsand is given as W3, /. Of course,

the existence of theinverse of W ,, was established previously from our derivation of the IDFT.
Example3.3.1 Compute the DFT of the four-point sequence x(m)y=(0 1 2 3)

Solution: Thefirst step isto determine the matrix W . By exploiting the periodicity property
of W yand the symmetry property

w‘f—ﬂ/: — _W‘{}_
The matrix W, may be expressed as

W2 w o we w11 1 1 11 1 1
WP WS WS WS oW W W 1 —j -1 |

W - — =
WS w2 WS WS | oW W W 1 -1 1 -1
VV40 Vv43 W46 VV49 1 W43 VV42 M. l J _1 _J

Then
6

—2+2

X,;ZW,I.I,;: _-; JII

-2 —12]

The IDFT of xymay be determined by conjugating the elements in W to obtain W}.and
applying the formula (3.3.5).

34  Reationship of the DFT to other transforms
3.4.1 Reationship tothe z-transform:
Let us consider a sequence x (1) having the z-transform
X&) =Yn——ex(mz" (3.4.1)

with aROC that includes the unit circle. If X (z) issampled at the IV equally spaced points on

theunit circle z;, = ™ /¥ 0,1,2,...,N — 1, we obtain

X(K) = X(@)|,_son w/n k=01,., N—1 (3.4.2)

= ¥ (e /N
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The expressionin (3.4.2) isidentical to the Fourier transform X (w) evaluated at the NV equally
spaced frequencies wy = 2w /N, k=0,1,..,N—1.

If the sequence x (1) has afinite duration of length V or less, the sequence can be recovered

fromits W-point DFT. Consequently, X (z) can be expressed as a function of the DFT {X (k)}

asfollows
N-1
X)) = Z x(m)ze™"
=0
X(@) = EA2 RN X (e Nz (343)
. _ A om-1 N=1f 2T /N -1y
i.e. X(z) = EZH=[I X(k) Xn=c (E z7)
11—V s X(k)
or, X&) = —— X

When evaluated on the unit circle, (3.4.3) yields the Fourier transform of the finite-duration
sequence in terms of its DFT, in the form

1—e 70 e X(k)
X(w) = ———¥}¢

; k=0 " —i(a—an /M)

Thisexpression for the Fourier transform isapolynomial (Lagrange) interpolation formulafor
X (w) expressed in terms of the values {X (k)} of the polynomial at a set of equally spaced
discrete frequencieswy, = 2 /N, k=0,1,...,N—1

3.4.2 Relationship tothe Fourier series coefficients of a continuous-time signal.
Suppose that x,, () is a continuous-time periodic signal with fundamental period 1, = 1/#;.
The signal can be expressed in a Fourier series

_ N i 2pkF,
X =D Ge
k=—c0

where {v;} are the Fourier coefficients. If we sample x,(t) at auniform rate F, = N/1Tp, =

1/1 ,we obtain the discrete-time sequence

L £ N-1 54
x(m) =x,(n ) = Z cpe 2T AN = Z cpel®™ N = Z lz Cht, Is:ﬁ" /N

R=—wx n=—wx R=0( Li=—w
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It is clear that the above equation isin the form of an IDFT formula, where

XU =N ) oy =NG

{=—w
o~ [ .
and Cp = Xim—wx Crt,

Thusthe {{;} seguenceisan aliased version of the sequence {cy}.

For a N-point sequence the convolution theorem takes the following form

N-1 N-1
If |D|——r%2x(|)eizf"k’N =x(k) and IDI——F%ZY(I)e”p'k’N =y(k) then
1=0

1=0 =

N-1 N-1
IDI—‘I’% X ()Y (1)e®*N =>" x(m)y(k—m), wheretheright hand side product isknown

=0 m=0

asthe convulation. Let us examine with an example how the product is calculated and for the

purpose we take two sequencex(n)={4,3,2,1} andy(n)={1,2,3,4}, and their product as

Thus z(0)= i x(m) y(-m)=x(0).y(0)+x(1).y(-1)+x(2).y(-2)+ x(3).y(-3)

m=0

=41+34+23+1.2=24

z(1) = i x(m) y(1-m)=x(0).y(1)+x(1).y(0)+x(2).y(-1)+ x(3).y(-2)

m=0

=42+31+24+13=22

z(2)= mzsl_ox(m) y(2—m)=x(0).y(2)+x(1).y(1)+x(2).y(0)+x(3).y(-1)

=43+32+21+14=24
and z(3) = 23: x(m)y(3—m)=x(0).y(3)+x(1).y(2)+x(2).y(1)+x(3).y(0)

m=0

=44+33+22+1.1=30
3.5  Efficient Computation of the DFT: FFT Algorithms

In view of the importance of the DFT in various digital signal processing applications, such
as linear filtering, correlation analysis, and spectrum analysis, its efficient computation is a
topic that has received considerabl e attention by many mathematicians, engineers, and applied
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scientists. Basically the computational problem for the DFT is to compute the sequence
{X(})} of N complex-valued numbers given another sequence of data {x(r)} of length iV,

according to the formula

N-1

X (k) = Z xmMWE  0<k<N-1 (3.5.1)

n=u
where Wy, = g~420/N (3.5.2)
In general, the data sequence x (1) is also assumed to be complex valued.

Similarly, the IDFT becomes

AN-1

1% .
x(n) = EZ XGOWs"  0o<n<N-1 (3.5.3)
k=0

Since the DFT and IDFT involves basically the same type of computations, our discussion of
the efficient computational algorithmsfor the DFT applies aswell to the efficient computation
of the IDFT.

We observe that for each value of k, direct computation of X (k) involves N complex
multiplications (4N real multiplications) and NV — 1 complex additions (4N —2 real additions).
Consequently, to compute all N values of the DFT requires & complex multiplications and
N? — N complex additions.

Direct computation of the DFT isbasically inefficient primarily because it does not exploit the
symmetry and periodicity properties of the phase factor W,

In particular, these two properties are:

Symmetry property: W = ok (3.5.4)

Periodicity property: WHETN = i (3.5.5)

The computationally efficient algorithms described in this section, known collectively as fast
Fourier transform (FFT) algorithms, exploit these two basic properties of the phase factor.

3.5.1 Direct Computation of the DFT

For a complex-valued sequence x(n) of N points, the DFT may be expressed as
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AN-1

Xa(k) = Z Ixﬁ (n) cos 23; + x4 () sin 2n J (3.5.6)
Xy (k) = —Elxﬁ(n) sin 2 _ x,(n) cos J (3.5.7)
n=0 N

The direct computation of (3.5.6) and (3.5.7) requires:

1. 2n? evaluations of trigonometric functions.
2. 4N* rea multiplications.
3. 4N(N — 1) real additions.

4. A number of indexing and addressing operations.

These operations are typical of DFT computational algorithms. These operations in items 2
and 3 result in the DFT values X (k) and X, (k) The indexing and addressing operations are
necessary to fetchthedatax (i), 0 < n < N — 1 and the phase factors and to store the resullts.
The variety of DFT agorithms optimize each of these computational processing in a different

way.
3.5.2 Divide-and-conquer approach to computation of the DFT

The development of computationally efficient algorithms for the DFT is made of possible if
we adopt a divide-and-conquer approach. These approach is based on the decomposition of an
N-point DFT into successively smaller DFTs. This basic approach leads to a family of

computationally efficient algorithms known collectively as FFT agorithms.

To illustrate the basic notions, let us consider the computation of an N-point DFT, where N

can be factored as a product of two integers, that is,
N =L (3.5.8)

The assumption that V is not a prime number is not restrictive, since we can pad any sequence

with zeros to ensure a factorization of the form (3.5.8).

Now the sequence x(r1), 0 <n <N —1 can be stored in either a one-dimensiona array
indexed by rn or as a two-dimensional array indexed by {and m, where 0 <[ <L -1

and 0 <m < M. Notethat I istherow index and rm is the column index. Thus, the sequence
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x(r) can be stored in a rectangular array in a variety of ways, each of which depends on the

mapping of index nto theindies (I, m).
For example, suppose that we select the mapping n=M +m (3.5.9)

This leads to an arrangement in which the first row consists of the first M elements of x (),
the second row consists of the next M elements of x (1), and so on. On the other hand, the

mapping n=I0l+m (3.5.10)
stores thefirst L elements of x (1) in the first column.

A similar arrangement can be used to store the computed DFT values. In particular, the
mapping is from the index k& to a par of indices (p,gq), where 0 <p<L -1 and
0 < g <m— 1. If we select the mapping k=M +gq (3.5.11)

the DFT is stored on arow-wise basis, where thefirst row containsthefirst M elements of the
DFT X (k), the second row contains the next set of M elements, and so on. On the other hand,

the mapping k=g +p (3.5.12)

result in a column-wise storage of X (k), where the first L elements are stored in the first

column, the second set of L. elements are stored in the second column, and so on.

Now suppose that x (r1) is mapped into the rectangular array x (I, ) and X (k) is mapped into
a corresponding rectangular array X (g, g). Then the DFT can be expressed as a double sum
over the elements of the rectangular array multiplied by the corresponding phase factors. To
be specific, let us adopt a column-wise mapping for x (1) given by (3.5.10) and the row-wise

mapping for the DFT given by (3.5.11). Then

M-11-1

X(p,q) = Z Zx(!, m)w, M Fm b (3.5.13)
m=0 i=0

But Wyt O T =l oy (35.14)

However,Wy' —=1,Wy" =Wy, =Wy ,andWy =W, = W’

With these simplifications, (3.5.13) can be expressed as
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M-1

X@.q) = ZIW‘ [Z X m) Wy
=0

=0

] W, (3.5.15)

The expression in (3.5.15) involves the computation of DFTs of length M and length L. To
elaborate, let us subdivide the computation into three steps:

1. First, we compute the M-point DFTs

M-1

F(,q) = Z x(Lm)W, , 0<g<M-1 (3.5.16)

=0

foreachof rows! =0,1,..,L —1

2. Second, we compute a new rectangular array (I, q) defined as

| o<i<siL-1
G(l,q) =Wy ¥(l,q) 0<q<M-_1 (3.5.17)

3. Finally, we compute the L-point DFTs

L-1
X(pq) = Z G(l,q) Wy (3.5.18)
i=C

for each columng = 0,1, ..., M — 1, of thearray (I, q).

Onthe surfaceit may appear that the computational procedure outlined aboveis more complex
than the direct computation of the DFT. However, let us evaluate the computational
complexity of (3.5.15). Thefirst step involves the computation of L. DFTs, each of M-points.
Hence this step requires LM? complex multiplications and L. (M — 1) complex additions.
The second step requires L. complex multiplications. Finally, the third step in the
computation requires ML* Complex multiplications and M (L — 1) complex additions.

Therefore, the computational complexity is

Complex multiplications: NM+L+1) (3.5.19)
Complex additions: NM+L-2)
where N=M. Thus the number of multiplications has been reduce from N* to

N(M + L + 1) and the number of additions will reduce from N(N — 1) to N(M + L — 2).
For example, suppose that N= 1000 and we select I. = 2 and M = 500. Then, instead of

having to perform 10% Complex multiplications via direct computation of the DFT, this
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approach leads to 503,000 complex multiplications. This represents a reduction by
approximately afactor of 2.
When N is highly composite number, that is, iV can be factored into a product of prime
numbers of the form N=mnr;..1, (3.5.20)
then the decomposition above can be repeated (t — 1) More times. This procedure resultsin
smaller DFTs, which, in turn, leads to a more efficient computational agorithm.
In effect, the first segmentation of the sequence :x (i) into a rectangular array of M columns
with L elementsin each column resulted in DFTs of sizes L and M. Further decomposition of
the data in effect involves the segmentation of each row (or column) into smaller rectangular
arrays which result in smaller in DFTs. This procedure terminates when iV is factored into its
prime factors.
Toillustrate this computational procedure, let us consider the computation of an ¥ = 15 point
DFT. Since N =5 x 3 =15, we sdlect L = 5 and M = 3. In other words, we store the 15-
point sequence x () column-wise as follows:

Row 1. x(0,0)=x(0) x(0,1)=x(5 x(0,2)==x(10)

Row?2: x(1,0)=x(1) x(1,1)=x(6) x(1,2)=x(11)

Row 3. x(2,0)=x2) x21)=x(7) x(22)=x(12)

Row4: x(3,0)=x3) x(3,1)=x(8) x(3,2) =x(13)

Row5: x(4,0)=x(4) x(41)=x09) x42)=1x(14)

Now, we compute the three-point DFTs for each of the five rows. This leads to the following

5 X 3 array:

F(0,00  F(0,1)  F(0,2)
F(L0) KL  F(L2)
F(20) K21 F22)
F(3,0) KB  F3B2)
F(40)  F(41)  F(42)

Then next step is to multiply each of the terms F(I,q) by the phase factors

Wy =W, 0<I<4and0 < g < 2. Thiscomputation resultsin the 5 x 3 array:

I
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Column 1 Column 2 Column 3

6(0,0) 6(0,1) 6(0,2)
6(1,0) G(1,1) G(1,2)
6(2,0) G(2,1) G(2,2)
6(3,0) G(3,1) 6(3,2)
G(4,0) G(4,1) G(4,2)

The final step is to compute the five-point DFTs for each of the three columns.This

computation yields the desired values of the DFT in the form

x(0,0) = x(0) x(0,1) = x(1) x(0,2) = x(2)
x(1,0) = x(3) x(1,1) =x(4) x(1,2) = x(5)
x(2,0) = x(6) x(2,1) =x(7) x(2,2) = x(8)
x(3,0) =x(9) x(3,1) = x(10) x(3,2) = x(11)
x(40)=x(12) x(41)=x(13) x(4,2) = x(14)

It isinteresting to view the segmented data sequence and the resulting DFT in terms of one-
dimensional arrays. When the input sequence x(n) and the output DFT X(Kk) in the two-

dimensional arrays are read across from row 1 through row 5, we obtain the following

sequences:
INPUT ARRAY

x(0) x(5) x(10) x(1) x(6) x(11) x(2) x(7) x(12) x(3) x(8) x(13) x(4) x(9) x(14)
OUTPUT ARRAY

x(0) x(1) x(2) x(3) x(4) x(5) x(6) x(7) x(8) x(9) x(10) x(11) x(12) x(13) x(14)

We observed that the input data sequenceis shuffled from the normal order in the computation
of the DFT. On the other hand, the output sequence occurs in normal order. In this case the
rearrange of the input data array is due to the segmentation of the one-dimensional array into
arectangular array and the order in which the DFTs are computed. This shuffling of either the

input data sequence or the output DFT sequence is a characteristic of most FFT algorithms.
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To summarize, the algorithm that we have introduced involves the following computations:
Algorithm 1

Store the signal column-wise.

Compute the M-point DFT of each row.

1.
2.
3. Multiply the resulting array by the phase factors iflf].f.' :
4. Compute the L-point DFT of each column

5.

Read the resulting array row-wise.

An additional algorithm with a similar computational structure can be obtained if the input
signal is stored row-wise and the resulting transformation is column-wise. In this case we
selected as n=Ml+m k=qgL+p (35.21)

This choice of indices leads to the formulafor the DFT in the form

M-11-1 M-1 L-1

X(p,q) = Z Zx(!, mWy WP wl = Z Wy [Z x(l,m) Wyt J Wy (3.5.22)
=0 i=0 =0 =0

Thus we obtain a second agorithm.

Algorithm 2

Store the signal row-wise.

Compute the L —point DFT at each row.

1.
2.
3. Multiply the resulting array by the factors iflfj.f;’
4. Compute the M —point DFT of each row.

5.

Read the resulting array column-wise.

The two agorithm given above have the same complexity. However, they differ in the
arrangement of the computations. In the following sections we exploit the divide-and-conquer
approach to drive fast algorithms when the size of the DFT isrestricted to be a power of 2 or

apower of 4.
3.5.3 Radix-2 FFT Algorithms
In the preceding section we described two agorithms for efficient computation of the DFT

based on the divide-and-conquer approach. Such an approach is applicable when the number
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N of data pointsis not a prime. In particular, the approach is very efficient when N is highly

composite, that is, when N can be factored as N = ry7; ...1;,, where the {r, ] are prime.

Of particular importance asthe caseinwhichry =r; = -+ =1, =r,sothaa N = r". Insuch
a case the DFTs are of size r, so that the computation of the N —point DFT has a regular
pattern. The number r is called radix of the FFT agorithm.

Radix-2 algorithms are by far the most widely used FFT agorithm.

Let usconsider the computation of the N = 2% point DFT by the divide-and-conguer approach
specified by (6.1.16) through (6.1.18). We select M = N /2 And L = 2. This selection results
inasplit of the N —point data sequence into two .....-point data sequences f; (1) and f5(r)
corresponding to the even-numbered and odd-numbered samples of :x(rt), respectively, that

is,
FG) =x(2n); fa(n) =x(2n+ 1); n=20,1, ...,E -1 (3.5.23)

Thus f, (r) and f- (n1) are obtained by decimating :x (1) by afactor of 2, and hence theresulting
FFT algorithm is called a decimation-in-time a gorithm.

Now the N-point DFT can be expressed in terns of the DFTs of the decimated sequences as

follows:
N—-1

X =Zx(‘n)i’1«"“ k=01,..,N—-1
=
= Z x(m) Wy + Z x () Wyt (3.5.24)
e wa
(m/3)-1 (M/3)-1

= Z x(m) W™ + Z x(2m + 1) Wemey
mi=0 =0

But Wy = W,z With this substitution, (3.5.24) can be expressed as

1

(N/2)-1 (N/D)-1
X = D AW +wh > LW,

=0 =0
= K, (k) + WF(K) 0,1,..,.N—1 (3.5.25

where F;(k) and F;(k) are the N/2-point DFTs of the sequences f,(rm) and f;(m),
respectively.
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Since ¥, (k) and k. (k) are periodic, with period /2, we have F,(k + N/2) = ¥,(k) and
F,(k + N/2) = F,(k). In addition, the factor W,~™* = —W¥. Hence (35.25) can be
expressed as

X(k) = Fy (k) + WEE (k) k=01,.,5-1  (3526)
X (k+2) = Fy (o - whE®() k=01,..,5-1 (35.27)

We observed that the direct computation of ¥, (k) requires (V/2)* complex multiplications.
The same applies to the computation #. (k) Furthermore, there are N /2 additional complex
multiplications required to compute Wi k;(k) Hence the computation of X (k) requires
2(N/2)* +N/2 = N?/2 + N/2 complex multiplications. The first step resultsin areduction
of the number of multiplications from N* To ¥*/2 + N/2 which is about afactor of 2 for N

large.

To be consistent with our previous notation, we may define

G, (k) = Fy (k) k=01,.,2-1

Ga(k) = WK, (k) k=01,..,--1

1

Then the DFT X (k) may be expressed as

X(k) = Gy(k) + Go(k); X (k+3)=6,(k) = Go(k) k=01,..,5-1 (3528

Having performed the decimation-in-time once, we can repeat the process for each of the

sequences [, (i) and f. (). Thus f; (r1) would result in the two N /2- point sequences

v (M) = fHC2); vy () ={0Cr+1) n=0,1, ...,% -1 (3.5.29)
and f- (i) would yield
vy () =fz2n); vy, () = fC2n+1) n=20,1, ...,% -1 (3.5.30)

By computing N /4 -point DFTs, we would obtain the NV /2-point DFTs ¥, (k) and ¥, (k) from
therelations

. ' . N ; N
Fu (k) =V () + Wi vy (n); Fy (k +E] =V () —Waah () k=04,.,5-1
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Fa(h) = Vy () + WV, () K (k+3) = Ve () —WE 0, () k=01,..,5—1

where the{V; (k)] arethe N/4 -point DFTs of the sequences {v; (n)]

Table3.2 Computational complexity for direct computation of the DFT vs. FFT agorithm

Number of Complex Multiplications Complex Multiplications  Speed
Points in Direct Computation in FFT Algorithm, improvement
N N? (N/2)logs N Factor
4 16 4 4.0
8 64 12 53
16 256 32 8.0
32 1,024 80 12.8
64 4,096 192 21.3
128 16,384 448 36.6
256 65,536 1,024 64.0
512 262,144 2,304 113.8
1,0242 1,048,576 5,120 204.8

We observe that the computation of {'L:ﬂ (!1:)} requires 4(N/4)* multiplications and hence the
computation of #;(k) and F;(k) can be accomplished with N%/4 + N/2 complex
multiplications. An additional ¥/2 complex multiplications are required to compute X (k)
from F;(k) and F;(k). Consequently, the total number of multiplications is reduced
approximately by afactor of 2 againto N?/4 + N.

The decimation of the data sequence can be repeated again and again until the resulting
sequences are reduced to one-point sequences. For N = 2%, this decimation can be performed
T = logs N. Thus the total number of complex multiplications is reduced to (N /2) log .
The number of complex additionsis Nlog, N. Table 6.1 presents a comparison of the number

of complex multiplicationsin the FFT and in the direct computation of the DFT.
3.6  SomePractical Guidelines

In general, the DFT is only an approximation to the actual (Fourier series or transform)
spectrum of the underlying analog signal. The DFT spectral spacing and DFT magnitude is
affected by the choice of sampling rate and how the sample values are chosen. The DFT phase
is affected by the location of sampling instants. The DFT spectral spacing is affected by the
sampling duration. Here are some practical guidelines on how to obtain samples of an analog

signal x(t) for spectrum anaysis and interpret the DFT (or DFS) resullts.
Choice of sampling instants:
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The defining relation for the DFT (or DFS) mandates that samples of x (r1) be chosen over the
range 0 <n < N — 1 (through periodic extension, if necessary). Otherwise, the DFT (or

DFS) phase will not match the expected phase.
Choice of samples:

If a sampling instant corresponds to ajump discontinuity, the sample value should be chosen
as the midpoint of the discontinuity. The reason is that the Fourier series (or transform)

converges to the midpoint of any discontinuity.
Choice of a frequency axis:

The computation of the DFT (or DFS) isindependent of the sampling frequency S or sampling
interval t,=1/S. However, if an analog signal isasampled at asampling rate S, its spectrum
isperiodic with period 5. The DFT spectrum describes one period (N samples) of this spectrum
starting at the origin. For sampled signals, it is useful to plot the DFT (or DFS) magnitude and
phase against the analog frequency f =kS/N Hz, k=0,1,...,N -1 (with spacing 5/N).
For discrete-time signals, we can plot the DFT against the digital frequency ¥ = k/N, k =
0,1,...,N — 1 (with spacing 1/N).

Choice of frequency range:

To compare the DFT results with conventional two-sided spectra, it is to be remembered that
by periodicity, a negative frequency —jf; (at the index —k;) in the two-sided spectrum,
corresponds to the frequency S — f;. (at theindex —k ) in the (one-sided) DFT spectrum.

I dentifying the highest frequency:
The highest frequency in the DFT spectrum corresponds to the folding index & = 0.5\ and
equal f = 0.5S Hzfor the sampled analog signals. This highest frequency is also called the

folding frequency. For purpose of comparison, it is sufficient to plot the DFT spectra only
over 0<F <05N (or 0<F <0.5 for the discrete-time signals or 0< f <0.5SHz for

sampled analog signals)
Plotted reordered spectra:

The DFT (or DFS) may aso be plotted as two-sided spectra to reveal conjugate symmetry
about the origin by creating its periodic extension. This is equivalent to creating a reordered
spectrum by relocating the DFT samples at indices past the folding index k=0.5N to the left

of the origin (because X (—k) = X (N —k)).

58



CHAPTER-4
WAVELET TRANSFORM

Before throwing light about Wavelet transform we will introduce some concept essential for
the understanding the topic. Though the title of the chapter is indicating that an in depth
discussion on the topics will be available here, but our presentation will be at introductory

level.
41 WINDOW FUNCTION

A desired of asignal can be removed from the main signal by multiplying the original signal
by another function, which is zero outside the interval desired.

Let h(t) € L*(R) beareal-valued window function. Then the product f ()¢ (t — b) = f, (1)

will contain the information of f(t) near t = b. In particular, if f(t) = c_, ,,(t) , then

@, teb—1,b+1)
fo (@) = {0' & bk (4.1)

By changing the parameter b we can slide the window function along the time axis to analyze
the local behavior of the function f (t) in different intervals.

The two most important parameters for a window function are its center and width; the | atter
is usualy twice the radius. It is clear that the center and the standard wide of the window
functionin Fig. 4.1 are 0 and 2t, respectively. For ageneral window function ¢ (t), we define

itscenter t* as

1 e
¢ = o f Rl 4.2)

and the root-mean-square (RMS) radius A, as

1 = ; 1/2
Ay = WI f dlé@Id ] 43)

For the particular window of Fig. 4.1, it is easy to verify thatt* =0 and Ay= 1 /3.
Therefore, the RMS width is smaller than the standard width by 1 /+/3.
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-t 0 t
Figure4.1- Characteristic Function
The function ¢ (t) describe above with finite A, is called a time window. Similarly, we can

have a frequency window ¢ (w) with center w* and the RMS radius Ay define analogous to

(4.2) and (4.3) as

o =—— [ wld@la (4.)
I6]" /-
1 s ~ . 12

Ay = B U_m(w—w )d(w)| d (45)

Aswe know, theoretically afunction cannot be limited in time and frequency simultaneously.

However, we can have ¢(t). such that both A and Agare both finite; in such a case the

function ¢(t) is called a time-frequency window. It is easy to verify that for the window of
Fig. 41 w =0 and Ay= oo This window is the best (ideal) time window but the worst

(unacceptable) frequency window.

A figure of merit for the time-frequency window is its time-frequency-width product AgAy,

which is bounded from below by the uncertainty-principle and is given by

Dyply= - (4.6)

Where the equality holds only when £ is of the Gaussain type.
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4.2 DISCRETE SHORT-TIME FOURIER TRANSFORM

We indicate that we could obtain the approximate frequency contents of a signa f(t) in the
neighborhood of some desired location in time, say t=b, by first windowing the function using
an appropriate window function ¢ (t) to produce the window function f,,(t) = f(t)¢(t — b)
and then taking the Fourier transform of f,(t). This is the short-time Fourier transform
(STFT). Formally, we can define the STFT of a function f(t) with respect to the window
function ¢ (t) evaluated at the location (b, £). In the time-frequency plane as

N—-1
Gof (b &) =h ) f(ti) bt = b)e sonts (421)
k=0
where tx =by=kh, k=01,. N—1 (4.2.2)
and = n=-2_72 (4.2.3)
In particular, when h=1, we have
J"l'—1l
Gof (m&) = ) 1) bk = m)e~sm = (4.2.4)
k=0

43 CONTINUOUSWAVELET TRANSFORM

The STFT one of many ways to generate a time frequency analysis of signals. Another linear
transform that provides such analyses is the integral (or continuous) wavelet transform. The
terms continuous wavelet transform (CWT) and integral wavelet transform (IWT) isnormally
used interchangeably. Fixed time-frequency resolution of the short-time Fourier transform
(STFT) poses a serious constrain in many applications. In additions, developments on the
discrete wavelet transform (DWT) and the wavelet series (WS) make the wavelet approach
more suitable than the STFT for signal and image processing. To clarify our points, let us
observethat theradii Ay and Ay of thewindow function for STFT do not depend upon location
inthe t — w plane. For instance, if we choose ¢ (t) = g,,(t), once it is fixed, so are Ag,, and
A§,,, regardliess of the window location in the t — w plane. Once the window function is
chosen, the time-frequency resolution is fixed throughout the processing. To understand the
implications of such a fixed resolution, let us consider the chirp signal, as shown in the

following figure, in which the frequency of the signal increases with time.
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Figure 4.2- Chrip signal with frequency changing linearly with time

If we choose the parameters of the window function ¢ (t) [u in the case of g,,(t)] such that
Ay In approximately equal to AB, the STFT as computed using (4.2.1) will be able to resolve
the low-frequency portion of the signal better, while there will be poor resolution of the high-
frequency portion. On the other hand, if Ais approximately equal to CD, the low frequency

will not be resolve properly. Observethat if Ay isvery small, Ay will be proportionally large,

and hence the low-frequency part will be blurred.

Our objective is to devise a method that the can give good time-frequency resolution at an
arbitrary location in the t — w Plane. In other words, we must have a window function whose
radius increases in time (reduces in frequency) while resolving the low-frequency contents,
and the creases in time (increases in frequency) while resolving the high-frequency contents
of asignal. This objective leads us to the development of wavelet functions 1) (t).

431 Inverse Waveet transform

Since the purpose of the inverse transform is to reconstruct the original signal/function from
its transformed form, in the case of integral wavelet transform it involves a two-dimensional
integration over the scale parameter a and the trandation parameter b. The expression for the

inverse wavelet transform is

1%,.%1
f (t) “c £ db j W f (ba)y,,da (4.3.1)
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where C, is aconstant that depends on the choice of wavelet and is given by

G = dew< o (4.3.2)

The condition (4.3.2), known as the admissibility condition, restricts the class of function that

can be wavelets. In particular, It implies that all wavelets must have y (0) = Iy(t)dt =0in

order to make the left hand side of (4.3.2) afinite number.

Equation (4.3.1) is essentially a superposition integral. Integration with respect to a sums all
the combinations of the wavelet components at |ocation b, while the integral with respect to b
includes all locations along the b-axis. Since computation of the inverse wavelet transformis
quite cumbersome and the inverse wavel et transform is used only for synthesizing the original
signal, itisnot used asf

63



1)

2)

3)

4)

5)

6)
7)

Books Consulted

Ambardar, A.,2004, Analog and Digital Signal Processing, Thomson Asia Pte. Ltd.,
Singapore

Andrews, L.C., and Shivamaggi, B.K., 2003, Integral Transforms for Engineers,
Prentice-Hall of India, New Delhi

Ifeachor E.C, and Jervis, B.W., 2012, Digital Signal Processing, Dorling Kindersley
(India) Pvt. Ltd., New Delhi

Jaideva, C.G. and Andrew K.C., 2006, Fundamentals of Wavelets, Wiley India Pvt.
Ltd., New Delhi

Proakis, J.G., 2002, Digital Signal Processing, Prentice-Hall of India Private Limited,
New Delhi

Ramana, B.V., 2011, Higher Engineering Mathematics, TataMcGraw-Hill, New Delhi
Sdlivahanan, S., Vdlavarg), A., and Gnanapriya C., 2003, Digital Signal Processing,
Tata McGraw-Hill Publishing, New Delhi

64



	1st_pages.pdf (p.1-8)
	Ch-1.pdf (p.9-17)
	Ch-2.pdf (p.18-38)
	CH-3.pdf (p.39-66)
	CH-4.pdf (p.67-71)
	Ref_Books_consulted.pdf (p.72)

