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Abstract

In this thesis the standard ideal of a nearlattices is presented. By a nearlattice S we will
always mean a meet semilattice together with the property that any two elements
possessing a common upper bound, have a supremum. Cornish and Hickman [4] referred
this property as the upper bound property, and a semilattice of this nature as a semilattice
with the upperbound property. Cornish and Noor [5] preferred to call these semilattices as
nearlattices, as the behavior of such a semilattice is close to that of a lattice than an
ordinary semilattice. Of course a nearlattice with a largest element is a lattice. Since any
semilattice satisfying the descending chain condition has the upper bound property, so all
finite semilattices are nearlattices. In lattice theory, it is always very difficult to study the
non-distributive and non-modular lattices. Geatzer [12] studied the non-distributive
lattice by introducing the concept of distributive, standard and neutral elements in
lattices. Cornish and Noor [5] extended those concepts for nearlattices to study non-
distributive nearlattices. This thesis extend the concept of standard ideal of a nearlattices.
We also extend the homomorphism theorem of lattices to nearlattices. Finally we
generalize two isomorphism theorems of Gratzer, G. and Schmidt, E. T [14] to
nearlattices.
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Abstract

In this thesis the standard ideal of a nearlattices is presented. By a nearlattice S we will always
mean a meet semilattice together with the property that any two elements possessing a common
upper bound, have a supremum. Cornish and Hickman [4] referred this property as the upper
bound property, and a semilattice of this nature as a semilattice with the upperbound property.
Cornish and Noor [5] preferred to call these semilattices as nearlattices, as the behavior of such a
semilattice is close to that of a lattice than an ordinary semilattice. Of course a nearlattice with a
largest element is a lattice. Since any semilattice satisfying the descending chain condition has
the upper bound property, so all finite semilattices are nearlattices. In lattice theory, it is always
very difficult to study the non-distributive and non-modular lattices. Geatzer [12] studied the
non-distributive lattice by introducing the concept of distributive, standard and neutral elements
in lattices. Cornish and Noor [5] extended those concepts for nearlattices to study non-
distributive nearlattices. This thesis extend the concept of standard ideal of a nearlattices. We
also extend the homomorphism theorem of lattices to nearlattices. Finally we generalize two
isomorphism theorems of Gratzer and Schmidt [14] to nearlattices.



CHAPTER |
IDEALS AND CONGRUNCES
1.1 Preliminaries

The intention of this section is to outline and fix the notation for some of the
concepts of nearlattices which are basic to this thesis. We also formulate some results on
arbitrary nearlattices for later use. For the background material in lattice theory we refer
the reader to the text of Birkhoff [3] , Gratzer [11], [12] and Davey [8].

By a nearlattice S we always mean a lower (meet) semilattice which has the
property that any two elements possessing a common upper bound have a supremum.
Cornish and Hickman [4], referred this property as the upper bound property and a
semilattice of this nature as a semilattice with the upper bound property. The behaviour of
such a semilattice is closer to that of a lattice than an ordinary semilattice.

Of course, a nearlattice with a largest element is a lattice. Since any semilattice
satisfying the descending chain condition has the upper bound property, so all finite
semilattices are nearlattices.

Now we give an example of a meet semilattice which is not a nearlattice.
Example: In R? let us consider the set, S ={00)}u{Lo)}uiO}u{Ly)| y>1

shown in the Figure 1.1
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Figure 1.1



Let us define the partial ordering "<" on S by (x,y)<(X,Y,) ifand only if x<x,
and y<y,. Clearly, (S; s) is a meet semilattice. Both (1,0) and (0,1) have common
upper bounds. In fact {(1y)| y>1} are common upper bounds of them. But the

supremum of (1,0) and (0,1) does not exist. Therefore (S;s) is not a nearlattice.

The upper bound property appears in Gratzer and Lakser [13], while Rozen [24]
show that it is the result of placing certain associativity conditions on the partial join
operation. Moreover, Evans [9] referred nearlattices as conditional lattices. By a
conditional lattice he means a lower semilattice S with the condition that for each
Xes, {yeS | y < x} is a lattice; and it is very easy to check that this condition is
equivalent to the upper bound property of S. Also Nieminen [19] in his paper refers to

nearlattices as “partial lattices”. Whenever a nearlattice has a least element we will
denote it by 0. If x;,x,,L ,x, are elements of a nearlattice then by x, vx, vL v Xx,, we

mean that the supremum of x;,X,,L ,x, exists and x, v x, vL v X, symbolizing this

supremum.

A non-empty subset K of a nearlattice S is called a subnearlattice of S if for any
a,b e K, both anband avb (whenever it exists in S) belongto K (A and v are taken

in S), and the A and v of K are the restrictions of the A and v of S to K. Moreover, a

subnearlattice K of a nearlattice S is called a sublattice of S if avbeK for all
abekK.

A nearlattice S is called modular if for any ab,ceS with c<a,
an(bvc)=(aab)vc whenever bvc exists.

A nearlattice S is called distributive if for any x,x;,X, L ,X,,

XAV X VL VX, )= (XA X )V (XA X,)vL V(XA X, ) whenever x; v X, vL v X,

exists. Notice that the right hand expression always exists by the upper bound property of
S.

Lemma 1.1.1. A nearlattice S is distributive (modular) if and only if {y €S | y < x} is a

distributive (modular) lattice for each xeS. e



Let us consider the following two lattices: pentagonal lattice Ns and Diamond
lattice Ms. Many lattice theorists study on these two lattices and given several results.
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Hickman in [10] has given the following extensions of a very fundamental results of

lattice theory.

Theorem 1.1.2. A nearlattice S is distributive if and only if S does not contain a
sublattice isomorphic to Ny or M [in Figure 1.2 and 1.3].

Theorem 1.1.3. A nearlattice S is modular if and only if S does not contain a sublattice
isomorphicto N;. e

In this context it should be mentioned that many lattice theorists have worked with
a class of semilattice S which has the property that for each x,a;,a, L ,a, €S, if

a,va,vL va, exists then (xAa)v(xaa,)vL v(xaa,) exists and equals
XA(alva2 vL var). Bables [1] called them as prime semilattices while Shum [27]

referred them as weakly distributive semilattices.

Hickman in [15] has defined a ternary operation j by j(x,y,z)=(x A y)v (y A 2),
on a nearlattice S (which exists by the upper bound property of S). In fact he has shown,
which can also be found in Lyndon [17] Theorem 4, that the resulting algebras of the type
(S; j) form a variety, which is referred to as the variety of join algebras and following are
its defining identities.

(i) (6, x,x) = x

i ikyx)=ily.xy)

@i (106 yx)z, iy, x) = i(x jy,z,y),x)

(

(v) i(xy.z)=i(zy.x)



V) i(i(y.2)ikyx) y.z))= j(xy.x)
wi) (it y.x)y.z)=i(xy.2)
(i) j(x.y.i(xz.x))= j(x.y.x)

(viii) J(J(x,y,J(w,y,z)),J(x,y.z),J(x,y.i(x,y,z)))=J(x,y,z)
We do not elaborate it further as it is beyond the scope of this thesis.

We call a nearlattice S a medial nearlattice if for all x,y,zeS,
m(x,y,z)=(xAy)v(yaz)v(zax) exists. For a (lower) semilattice S, if m(x,y,z)
exists for all x,y,z e S, then it is not hard to see that S has the upper bound property and
hence is a nearlattice. Distributive medial nearlattices were first studied by Sholander [25,
26], and then by Evans [9]. Sholander preferred to call these as medial semilattices. He

showed that every medial nearlattice S can be characterized by means of an algebra
(S; m) of type <3> known as medial algebra, satisfying the following two identities:

(i) m(a,a,b)=
(i)  m(m(a,b,c),m(a,b,d),e)=m(m(c,d,e)a,b).

A nearlattice S is said to have the three properties if for any a,b,ce S, avbvc

exists whenever avb, bvc and cva exists. Nearlattices with the three property were

discussed by Evans [9], where he referred it as strong conditional lattices.

The equivalence of (i) and (iii) of the following lemma is trivial, while the proof of
(i) <=>(ii) is inductive.

Lemma 1.1.4. {Evans [9]}. For a nearlattice S the following conditions are equivalent:
(1) S has the three property.
(i) Every pair of a finite number n (2 3) of elements of S posses a
supremum ensures the existence of the supremum of all the n elements.
(iii) S is medial. ®

A family A of a subset of a set A is called a closure system on A if
Q) Ae A and
(i) Avisclosed under arbitrary intersection.



Suppose B is a subfamily of A. B is called a directed system if for any X,Y eB
there exists Z in B suchthat X,Y c Z.

If u{X :X eB}e A forevery directed system B contained in the closure system
A, then A is called algebraic. When ordered by set inclusion, an algebraic closure system
forms an algebraic lattice.



1.2 Ideals of Nearlattices

A non-empty subset | of a nearlattice S is called a down set if for any x € S and
yel, x<y implies x e .

A non-empty subset | of a nearlattice S is called an ideal if it is a down set and
closed under existent finite suprema. We denote the set of all ideals of S by 1(S), which

is a lattice. If S has a smallest element O then I(S) is an algebraic closure system on S

and is consequently an algebraic lattice.

However, if S does not possess smallest element then we can only assert that
I(S)u {@} is an algebraic closure system, where @ is the empty subset of S .

For any subset K of a nearlattice S, (K] denotes the ideal generated by K.

Infimum of two ideals of a nearlattice is their set theoretic intersection. Supremum
of two ideals | and J in alattice L is given by
Iv] = {x € L| x<iv j forsomeiel,je J}. Cornish and Hickman in [4] showed that

in a distributive nearlattice S for two ideals I and J,

v = {i V | iel,jeJwhereiv j exists}. But in a general nearlattice the formula for
the supremum of two ideals is not very easy. Let us consider the following lemma which
gives the formula for the supremum of two ideals. It is in fact an exercise in Gratzer [11],

p-54 for partial lattice.

Theorem 1.2.1. Let | and J be ideals of a nearlattice S. Let Aj=1u0UJ,

An:{XES|x3yvz;yvz exists and y,ZEAH} for n=1,2L , and K:uOAn.
n=

Then K=1v1J.
Proof: Since Ay c A, c A, cL c A, cL , K isanideal containing | and J. Suppose

H is any ideal containing | and J. Of course, A, < H. We proceed by induction.
Suppose A,;, c H forsome n>1andlet xe A,. Then x<yvz with y,ze A_;. Since
A,;cH and H isanideal, yvzeH andso xe H . Thatis A, < H for every n. Thus

K=Ilv].e



Theorem.1.2.2. Let K be a non-empty subset of a nearlattice S. Then
(K]= n§0{An| n>0f, where A, ={teS|t=j(k;tk,) for somek k,eK} and
A, = {t € S|t = j(a;,t,a,) for some a;,a, An_l} for n>1.

Proof: For any k e K clearly k = j(k,k,k) and so K c A,. Similarly, for any ac A, ;,
a=j(a,a,a) implies that A, ; cA,. Thus KcAj)c A cA,cL cA,cA cL.

Let te uOAn ;n=012L , and t, €S such that t, <t. Then te A, for some m=>0.
n=
Clearly, t, = j(t,t;,t) andso t, € A, ;. Thus U A, is down set.
n=

Now suppose, t,,t, € o A, and t, vt, exists. Let t; € A, and t, € A, for some
n=

r,s>0 with r<s (say). Then t t,eA, and t vt,=j(t;,t;vt,,t,) provides
t,vt, e A,

Finally, suppose H is an ideal containing K. If xeA,, then
x=j(ky,x,k, )= (k; A %)V (k, A X) for some k;,k, e K. As K< H and H is an ideal,
k; AX,k, AxeH and so xeH. Thus Ay c H. Again we use the induction. Suppose

A, , c Hforsome n>1.Let x e A, sothat x= j(a, ,x,a, ) for some a;,a, € A, ;. Then

xeH as a,a, eH and x=(a, Ax)v(a, AX).®

Theorem 1.2.3. A non empty subset K of a nearlattice S is an ideal if and only if x e K
whenever xe S and x= j(k,,x,k, ) for some k; ,k, €K .o

We now give an alternative formula for the supremum of two ideals in an arbitrary

nearlattice.

Theorem 1.2.4. For any two ideals K; and K,, K;vK,= n;O B, where
Bo = {xeS|x=j(k,xk,) ki eK;} and B, ={xeS|x=jlb,xb,)b b, B}
n=12L .

Proof : Clearly, K,,K, cB,cB,cB,cL =B,;,<B,cL .Suppose be n:;o B, and
b, <b; b,eS. Then beB, for some m>0. Also, b, = j(b,b;,b) and so b, €B,.,.

Thus o B, is a down set. Now suppose t,,t, € o B, such that t, vt, exists. Then there
n= n=



exist r,s>0 such that t,eB, and t,eB,. If r<s then ¢t t,eB;, and

t, vt, = j(t,,t; vt,,t, ) implies that t, vt, B, . Hence, U B, is an ideal.
n=

Finally, suppose H is an ideal containing K; and K,. If xeB, then
x=j(ky,x,k, )= (k; Ax)v (k, A X) for some k, € K, andk, € K,. Hence H is an ideal
and K;,K, c H, clearly xeH . Then using the induction on n it is very easy to see that

H o B, foreachn. e

In a lattice L, it is well known that for a convex sublattice C of L. C =(C]n|[C).

The following figure (Fig:1.4) shows that for a convex subnearlattice C in a general
nearlattice, this may not be true.

S
Figure 1.4

Here C={ab,c} is a convex subnearlattice of S. Observe that (C]=S and
[C)={a,b,c.x}, hence (C]n[C)=C.

Recently, Shiuly Akhter [28] has proved that for a convex sublattice C of a
distributive  nearlattice S,  (Cl]={xeS|x=(xnc))v(xac,)vL v(xac,)

for some c,,c, L ,cC, eC}. With the help of this result Rosen [24] have proved that
C=(C]n[C) when S is distributive. But in a non-distributive nearlattice of S, it is easy
to show that C =(C]~[C) when S is medial.

Theorem 1.2.5. {Cornish and Hickman [4, Theorem 1.1]}. The following conditions on a
nearlattice S are equivalent:

(1) S is distributive.
(ii) Forany H e H(S), (H]=fhvh,vL vh, |[h,hL h,eH |,

(iii) Forany 1,Jel(S), IvJ={a,va,vL va,|a,a,L a, elulf.



(iv) 1(S) is a distributive lattice.
(v) The map H — (H] is a lattice homomorphism of H(S) onto 1(S)

('which preserves arbitrary suprema).

Observe here that by Theorem1.2.4, (iii) of above could easily be improved to
(iii): Forany 1,3 €1(S), Ivd=fivijliel,jel}.

Let 1;(S) denote the set of all finitely generated ideals of a nearlattice S. Of
course 1¢(S) is an upper subsemilattice of 1(S). Also for any x,,X,,L ,X, €S,
(x,%,,L ,x,] is clearly equal to (x]v(x,]vL v(x,]. When S s distributive,
(kX b X ] (VY2 b Y = O]V O VL v D (v ]v (2 IvL v (yn])

:ivj(xi Ay;| for any x;,%, L Xu.Yi.Ya.L ¥, €S and so I¢(S)is a distributive

sublattice of 1(S).

A nearlattice S is said to be finitely smooth if the intersection of two finitely
generated ideals is itself finitely generated. For example, distributive nearlattices, finite
nearlattices, lattices, are finitely smooth. Hickman in [15] exhibited a nearlattice which is
not finitely smooth.

From Cornish and Hickman [4], we know that a nearlattice S is distributive if and only if
1(S) is so. Our next result shows that the case is not the same with the modularity.

Theorem 1.2.6. Let S be a nearlattice. If 1(S)is modular then S is also modular but the
converse is not necessarily true.

Proof: Suppose 1(S) is modular. Let a,b,ceS with c<a and bvc exists. Then
(cJc(a]. Since  1(S) is  modular, so, (aa(bvec)]=(a]a((b]v(c]
=((a] (b])v (c]=((anb)vc]. This implies that an(bvc)=(anb)vc, and so S is
modular.

Nearlattice S of Figure 1.5 shows that the converse of this result is not true.
X

ai

0
Figure 1.5
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Notice that (r] is modular for each r € S . Butin 1(S), clearly {(0],(a, ].(a;,y].(a,.0],S} is

a pentagonal sublattice. @
The following theorem is due to Bazlar Rahman [2]

Theorem 1.2.7. {Bazlar Rahman[2]} Let | and J be two ideals in a distributive
nearlattice S. If  AJ and | v J are principal, then both | and J are principal. e

A non empty subset F of a nearlattice S is called an up set if for xe S, yeF
with x>y imply xe F .

A non empty subset F of a nearlattice S is called a filter if it is an up set and
faf,eF forall f,,f, eF.

An ideal P in a nearlattice S is called a prime ideal if P=S and xAyeP

implies xe P or yeP.

A filter F is called a prime filter if either x e F or y € F whenever xv y exists

andisin F.

It is not hard to see that a filter F of a nearlattice S is prime ifandonlyif S—-F
is a prime ideal. The set of all filters of a nearlattice is an upper (join) semilattice ; yet it is
not a lattice in general, as there is no guarantee that the intersection of two filters is non
empty. The join F, v F, of two filters is given by
FLVvE, = {s € S| s> f, A f, for some f, e F,f, FZ}. The smallest filter containing a
subsemilattice H of S is {s €S |s>h for some he H} and is denoted by [H).

Moreover, the description of the join of filters shows that for all abeS,

[a)v (b]=[ab).

Following theorem and corollary is due to Noor and Rahman [22] which is an

extension of Stone’s separation theorem of Gratzer [11] theorem 15, pp74.
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Theorem 1.2.8. {Noor and Rahman[22]} Let S be a nearlattice. The following conditions
are equivalent:
(1) S is distributive.
(i) For any ideal | and any filter F of S, such that | nF =@, there
exists a prime ideal P o | and disjoint from F .e

Corollary 1.2.9. A nearlattice S is distributive if and only if every ideal is the intersection

of all prime ideals containing it.e

Lemma 1.2.10. A subset F of a nearlattice S is a filter if and only if S—F is a prime
down set.

Proof: Let xeS—F and t<x. Then x¢F, and so t¢F, as F is a filter. Hence
teS—F ,and so S—F is a down set. Now let x,yeS such that xAyeS—F. It

follows that x Ay ¢ F. This implies either xg F or yg¢F, as F is a filter. That is,
either xeS—F or yeS—F,andso S —F isa prime down set.

Conversely, suppose S—F is a prime down set. Let xeF and t>Xx. Then
xgS—F andso tgS—F as S—F isaprime down set. Thus te F and so F is an
upset. Finally let x,yeF. Then x¢S—-F, ygS—F. Since S—F is a prime, so
xAyeS—F.Therefore xAyeF,andso F isafilter. e

Following result is an easy consequence of above lemma.

Lemma 1.2.11. A subset F of a nearlattice Sis a prime filter if and only if S—F isa
prime ideal. ®

Now we include a generalization of theorem 1.2.8 in a general nearlattice.

Theorem 1.2.12. Let S be a nearlattice. F be a filter and |1 be a down set such that
| NnF =@ . Then there exists a prime down set P containing | but disjointto F .

Proof: Let y be the collection of all filter containing F and disjoint to I . Then y is non-
empty asF €y . Suppose C is a chain in x. Set M =u{X| X eC}. Let xeM and
y>x. Then xe X for some X €C. Since X is a filter, so ye X and hence yeM .
Thus M is an upset. Now let x,ye M . Then xe X and yeY forsome X,Y eC. Since

C isachain, soeither X Y or Y < X . Suppose X Y. Thisimplies x,yeY , and so
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xAyeY as 'Y is a filter. It follows that x A ye M and hence, M is a filter containing
F . Moreover M N | =¢. Therefore, M is the largest element of C. Thus by Zorn’s
lemma, M is a maximal filter containing F . Therefore by Lemma 1.2.10, L-M is a

minimal prime down set containing | but disjointto F .e

Corollary 1.2.13. Let S be a nearlattice with 0 and F be a proper filter of S . Then

there exists a prime down set P suchthat FNP =@ .e

The following lemma is very useful in proving many results of distributive nearlattice.

Lemma 1.2.14. If S, is a subnearlattice of a distributive nearlattice S and P, is a prime
ideal in S, then there exists a prime ideal P in S such that P, =S, " P .e

Following theorem is a generalization of Lemma 1.2.14, which will be needed in
establishing some results in other chapters.

Theorem 1.2.15. Let S, be a subnearlattice of S. and P, be a prime down set of S,.
Then there exists a prime down set P of S suchthat P, =P NS;.

Proof: Let H be a down set generated by P, in S. Then H (S, —P,)=@®.Now S, - P,
is an upset in S, and H N [S, —P,)= @ where, [S, — P,) is the filter generated by S, — P,
in S. Then by Theorem 1.2.12 , there exists a prime down set P > H and disjoint to
[S1 - Pl). Now PP cHNS; cPnS;.Also PnS; cP.Hence, bL=PnS;.o
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13 Congruences

An equivalence relation @ of a nearlattice S is called a congruence relation if
x; = y;(@) for i=12(x,,y,€9S), then

() Xy A Xy = Y; A Y,(@), and

(i) X vX,=Yy;vY,(0)provided x; v x, and y; v y, exists.

It can be easily shown that for an equivalence relation ® on S, the above
conditions are equivalent to the conditions that for x,y € S if x= y(@), then

(")  xat=yat(®@)forall tes and

(i)  xvt=yvt(®)forall teS provided both xvt and y vt exists.

The set C(S) of all congruences on S is an algebraic closure system on Sx S and

hence, when ordered by set inclusion, is an algebraic lattice.

Cornish and Hickman [4] showed that for an ideal | of a distributive nearlattice S,
the relation ©(1) , defined by x = y(@(1)) if and only if (x]v 1 =(y]v I, is the smallest
congruence containing | as a class. Moreover the equivalence relation R(I), is defined
by x=y(R(l)) ifand only if forany se S, saxel isequivalentto sayel. In fact,

this is the largest congruence of S having | asa class.

Suppose S is a distributive nearlattice and xeS we will use @, as an
abbreviation for @((x]). Moreover v, denote the congruence, defined by a=b (y,) if

andonlyif aaAx=bAX.

Cornish and Hickman [4] also showed that for any two elements a,b of a
distributive nearlattice S with a <b, the smallest congruence identifying a and b is
equal to y, N ®, and we denote it by @(a,b). Also in a distributive nearlattice S, they

observed that if S has a smallest element 0, then clearly ®, = (0, x) forany x e S.

Moreover, we see that:
(1) O, v v, =1, the largest congruence of S.

(i) O, Ny, = o, the smallest congruence of S and

(i) ©(ab) =6, vy, where a<b and (/ ) denotes the complement.
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Now suppose S is an arbitrary nearlattice and E(S) denote the lattice of
equivalence relations. For @,,@, c E(S) with @, v ®, denoting their supremum
x=y(@ vo,) if and only if there exist x=2z,,z,,L ,z,=y such that
z,,=2,(®, or @,) fori=12,L ,n.

The following result was stated by Gratzer and Lakser in [13] without proof and a

proof given below, appeared in Cornish and Hickman [4].

Theorem 1.3.1 For any nearlattice S, C(S) is a distributive (complete) sublattice of
E(S).

Proof: Suppose @,@ eC(S), Define  to be the supremum of @ and @ in the lattice of
equivalence relations E(S) on S. Let x=y(y). Then there exists x=2,,z,,L ,z, =Y
such that z,, =z,(®, or @,). Thus, for any teS, z,, at=2z, at(®, or @,) as
0,0 eC(S).

Hence xAt=y At(y) and consequently v is a semilattice congruence. Then, in
particular x A 'y =x(y) and x A y = y(y). To show that v is a congruence, let x = y(y),
with x <y, and choose any t € S such that both x vt and y vt exists. Then there exists
Z9,2;,2,,L ,z, such that x=24,z, =y and z; , =z;(®, or @,). Put w; =z, A y for all
i=0LL ,n. Then x=w,,w, =y, W, =w(®, or @,). Hence by the upper bound
property, w; vt exists  for  all i=0LL ,n(as w, vt<yvt) and
w,, vt=w; vit(@, or @,) for all i=0LL ,n(as @,@cC(S)), ie. xvt=yvi(y).
Then by Cornish and Noor [5] Lemma 2.3  is a congruence on S . Therefore, C(S) isa
sublattice of the lattice E(S).

To show the distributivity of C(S), let x=y(@ N (6, v @,)). Then x A y = y(O)
and x A y=Yy(0, vO,).Also xAy=x(@) and xAy=x(0, v 6,).

Since x A y=y(@, v 0,), there exists t,,t;,L ,t, such that (as we have seen in
the proof of the first part), x A y=t,,t, =Yy, t;;, =t,(@, or @,) and xAy=t, <t; <y
for each i=01L ,n. Hence t,, =t,(®) for all i=0LL ,n and so t,, =t,(® n®,) or
t,=t(0n06,). Thus xay=y(@n6,)v(©Nn6O,). By  symmetry,
xAy=x(©@n6,)v(©ne,)) and the proof completes by transitivity of the

congruences. e
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In lattice theory it is well known that a lattice is distributive if and only if every
ideal is a class of some congruence. Following theorem gives a generalization of this result

in case of nearlattices.

This also characterizes the distributivity of a nearlattice, which is an extension of
Cornish and Hickman [4] Theorem 3.1.

Thoerem 1.3.2. A nearlattice S is distributive if and only if every ideal is a class of some

congruence.

Proof: Suppose S is distributive . Then by Cornish and Hickman [4] Theorem 3.1 for

each ideal | of S @(I) is the smallest congruence containing | as a congruence class.
To prove the converse, let each ideal of S be a congruence class with respect to

some congruence on S. Suppose S is not distributive. Then by Theorem 1.1.2, we have
either N (Figure 1.2) or Mg (Figure 1.3) as a sublattice of S. In both cases consider

| =(a] and suppose | is a congruence class with respect to @. Since d e, d =a(®).
Now b=bac=ba(avc)=ba(dvc)=bac=d(®) Thatis, b=d(®) and this implies

bel,i.e b<a whichisa contradiction. Thus S is distributive. ®
Following results are due to Noor and Rahman [22].
Theorem 1.3.3.{ Noor and Rahman [22]} Let S be a distributive nearlattice then,

(i) Forideals 1 and J, @ (1nJ)=6(1)n6(J).
(ii) For ideals j; ieA anindexedset, @ (v J,)=vO(J,). ®

Theorem 1.3.4.{ Noor and Rahman [22]} For a distributive nearlattice S, the mapping
| - (1) is an embedding from the lattice of ideals to the lattice of congruences. e
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CHAPTER I
SOME SPECIAL ELEMENTS IN A NEARLATTICE
2.1 Introduction :

Gratzer and Schmidt [14] introduced the notion of some special elements e.g.
distributive, standard and neutral elements to study a larger class of non-distributive
lattices. Then Cornish and Noor [5] extended the concepts of standard and neutral
elements for nearlattices. They also studied a new type of element known as strongly
distributive element.

Recently Talukder and Noor [29] introduced the notion of modular elements in a
join semilattice directed below. This notion is also applicable for general lattices.

In this chapter we introduce the concept of modular elements in a nearlattice. We
have given several characterization of modular and strongly distributive elements. So
therefore, by studying these elements and ideals, we will be able to study a larger class of
non-distributive nearlattices.

In a lattice L, an element meL is called a modular element if for all x,yelL

with y<x, xa(mvy)=(xam)vy. Of course, in a modular lattice, every element is a

modular element. Moreover, if every element of a lattice is modular, then the lattice itself
Is a modular lattice.

In the pentagonal lattice of Figure 1.2, observe that m is modular but t is not.
Because, here m<s and s a(tvm)=s, But (sat)vm=m.

Let S be a nearlattice. An element meS is called a modular element if for all
t,x,yeS with y<x, xa[tam)v(tay)=tamax)v(tay). Of course, a nearlattice is

modular if and only if its every element is modular.



17

In a lattice L, an element d is called a distributive element if for all x,yelL,
dv(xay)=(dvx)a(dvy).

In order to introduce this notion for nearlattices, Cornish and Noor [5] could not

give a suitable definition for distributive elements. But they discovered an element
deS, such that tAd is a distributive element in the lattice (t] for every teS. They

found that these elements are also new even in case of lattices, and in fact, they are
much stronger than the distributive elements. So they referred them as “strongly

distributive” elements.

An element d of a nearlattice S is called a strongly distributive element if for all
t,x,yeS (tad)vtaxay)=[tad)vEtax)altad)v(tnay).
In other words t Ad is distributive in (t] for each teS.

An element seS is called a standard element if for all t,x,yeS,
tAf(xAy)v(xas)=taxay)v(taxnas).

Due to Zaidur Rahman and Noor [30] we know that s € S is standard if and only

if it is both modular and strongly distributive.

An element s e S is called neutral if (i) it is standard and (ii) for all x,y,teS,
S/\[(t/\x)v(t/\ y)]=(S/\t/\X)v(S/\t/\ y).

In this chapter we give several characterizations of modular, strongly distributive,

standard and neutral elements of a nearlattice.



18

2.2 Some special elements in a nearlattice

Theorem 2.2.1 The definition of modular element in a nearlattice S coincides with the

definition of modular element of a lattice, when S is a lattice.
Proof: Suppose m is a modular element of the lattice S. Let t,x,yeS withy<x, then

tAy<tax. Since m is modular, so (tAmAax)v(tay)={tax)amv(tay)
=xAfta(mv(tay))]=xa[tAm)v(tay)], which is the definition of modularity of m
in a nearlattice.

Conversely, Let m be modular according to the definition given for a
nearlattice. Let x,yeS with y<x.

Choose t=mvy .Then xa(mvy)=xa(tam)v(tnay))
=(t/\m/\X)\/(t/\y)
=(MAXx)vy

Hence m is modular according to the definition of modular element in a nearlattice. o
Here is a characterization of modular elements in a lattice.

Theorem 2.2.2 Let L be a lattice and meL. Then the following conditions are
equivalent.
Q) m is modular.
(i) For y<x with mvx=mvy and max=may implies x=y.
Proof: (i) = (ii); Suppose mis modular y<x and mvx=mvy, max=mAay.
Then x=xA(mv x)=xa(mvy)=(xAm)vy (by modularity of m)

=(yam)vy=y.

(ii) = (i); Suppose (ii) holds.

Let y<x,then (x Am)v y<xa(mv y)always holds.

Let xA(mvy)=p and(xam)vy=gq.Then q<p.

Now pAm=XAm

Also, gam=ma[(xam)vyl=ma[xam)v(xay)=(max)a[(xam)v(xay)=xam.
Thus paAm=qgam.

Again, gvm=yvm
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pvm=[xA(mvy)vm<(mvy)vm
=yvm=gvmspvm

as g<p.Thus pvm=gqvm=yvm.
Hence by (i) p=q,thatis xA(mvy)=(xAm)vy and so m is modular. e

Now we extend the above result and give a characterization of a modular element m in a

nearlattice.

Theorem 2.2.3 Let S be a nearlattice and meS. Then the following conditions are
equivalent.
() m is modular.
(ii) For txyeS with y<x, (tam)v(tax)=(tam)v(tay) and
taAmax=tamay impliestAax=tAay.
Proof:  (i)=(ii); Suppose m is modular, let tx,yeS with y<x,
tam)vtax)=(tam)v(tay)and tAmax=tamay.
Then tax=@tAx)A[tam)vEax)={trx)altam)v(tnay)
=(tAamAax)v(tay) (by modularity of m)
=(t/\m/\y)\/(t/\y)=t/\y.

(ii) = (i); Suppose (ii) holds. Let t,x,yeS with y<x

Now xaftam)v(tay)]z(taAmax)v(tay) always holds.

Let xA[tam)v(tay)=pand tAmax)v(tay)=q.Then p>q.

Choose r=(tAam)v(tay). Thenrap=pand raq=q.
r/\mzmA[(t/\m)v(t/\y)]:(tAm)/\[(t/\m)v(t/\y)]:t/\m.

Thus, (rAm)v(rAq)z(tAm)qu(t/\m)v(t/\mAx)v(t/\y)=(t/\m)v(tAy)=r .

Then (ram)v(rap)<sr=(ram)v(raq)<(ram)v(rap) as g<p

Hence (r Am)v(rap)=(ram)v(raq)=r,

Also, rAmap=ma p=m/\XA[(t/\m)v(t/\y)=XA(t/\m)/\[(t/\m)v(t/\y)]=X/\t/\m

and r/\m/\qzm/\qzm/\[(t/\m/\x)v(t/\y)]:m/\t/\X/\[(t/\m/\x)v(t/\y)]=X/\t/\m.

Thus raAmap=ramap and so by (i) rAp=raq, Hence p=qg and so m is

modular. e
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Now we include the following result in a nearlattice which is parallel to the
characterization theorem for modular elements in a lattice given in Theorem 2.2.2. But
this cannot be considered as a definition of a modular element in a nearlattice.

Theorem 2.2.4 Let S be a nearlattice and meS. The following conditions are

equivalent.
() Forall x,yeS with y<x
xA(mvy)=(xam)vy provided mv y exists.
(i) For all xyeS with  y<x if mvx, mvy exist and
mvXx=mvy,max=may,then x=y.
Proof: (i) < (ii) holds by the proof similar to the proof of Theorem.2.1.2 , For the last

part, let us consider the following nearlattice.

d

0
Figure-2.1
It is observed that m satisfies the condition of Theorem 2.1.4
Here a<b and bA[(d Am)v(d ra)]=ba(cva)=bad=h.
But (badAam)v(dAra)=0va=a,somisnotmodular. e

Theorem 2.2.5 In a Lattice, every strongly distributive element is distributive but the

converse is not necessarily true.

Proof. Let d be a strongly distributive element of a lattice L. Suppose x,yeL and

t=xvyvd.

Then dv(xay)=(tad)v(taxay)=[tad)vEax)|altad)vtay)]
=(dvx)a(dvy), and so d is distributive.
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Now consider the lattice in Figure 2.2.

1
d
t
| "‘
0
Figure 2.2

Here d is distributive but (t d)v(taranb)=r<t=[tad)v(tra)a[ltad)v(tab)] and

so it is not strongly distributive. ®

Following characterization of strongly distributive elements in a nearlattice is due to
Cornish and Noor [5].

Theorem 2.2.6 Let S be a nearlattice and deS. Then the following conditions are
equivalent.

() d is strongly distributive.

(i) Forall x,y,teS, (xa[tay)vtard))vtad)=(tarxay)vtad). e

An element seS is called a standard element if for all t,x,yeS
t/\[(X/\ y)v(x/\s)]:(t/\X/\ y)\/(t/\X/\S).
In a distributive nearlattice every element is standard. If every element of S is

standard then S is itself a distributive nearlattice.

Theorem 2.2.7 Every standard element in a nearlattice S is modular but a modular

element may not be standard.
Proof: Let seS be standard, let t,x,yeS with y<x

X/\[(t/\s)v(t/\y)]=X/\[(t/\y)v(t/\S)]
=(t/\X/\y)v(t/\S/\X)
=(t/\S/\X)v(t/\y)
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So s is modular.
Conversely, consider the lattice of Figure 1.2
Here m is modular
But sa(mvt)=sax=s
(sam)v(sat)=mv0=m

So m is not standard. e

Theorem 2.2.8 Every standard element is strongly distributive but the converse may not

be true.
Proof. Suppose s is standard in S. Let t,a,be S

Then, [(tas)v(taa)lv][tas)v(tab)
=(tas)v(tra)atas)v((tas)v(tra)a(tab)) (assis standard.)
=(saftra)vtas)vibaftra)v(tas))
=(trans)v(tas)v(tranb)v(trans)
=(tAs)v(tranb)

so s is strongly distributive.

In Figure 2.2, observes that t is strongly distributive, but it is not standard,
because d A(xvt)>(d Ax)v(dAt) .@

Remark:

In the pentagonal lattice of Figure 1.2, m is modular and t is strongly distributive .
Observe that, m<s and sA(tvm)=sax=s,but (sat)vm=0vm=m.Thustis not

modular.  On  the other hand, (xAm)v(xasat)=mvO=m, but
[(xAm)v(xas)|al(xam)v(xat)]=(mvs)a(mvt)=sax=s  implies m is not

strongly distributive.

We conclude the section with the following characterization of standard elements in a

nearlattice.

Theorem 2.2.9 Let S be a nearlattice. An element seS is standard if and only if it is

both modular and strongly distributive.
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Proof: If s is standard then by Theorem 2.2.7 and Theorem 2.2.8, s is both modular and
strongly distributive. Conversely, suppose s is both modular and strongly distributive. Let
t,x,yeS.
Then, (tAxAay)v(tarxas)=tax)a[(xas)v(taxnay)] (assismodular)
=(tAx)A[(xAs)v (tAx)A[(xAs)v(xAy)] (ass is strongly distributive)
=t/\XA[(X/\S)v(X/\ y)]zt/\[(X/\S)v(X/\y)]

S0 s is standard. e
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2.3 Modular ideals in a nearlattice

An ideal M of a nearlattice S is called a modular ideal if it is a modular element of
the ideal lattice 1(S). That is, M is modular if for all 1,JeI(S) with JcI,

In(MvI)=(InM)v .

An ideal | of a nearlattice S is called a standard ideal if it is standard element of
the ideal lattice 1(S).

Of course, every standard ideal of a nearlattice (lattice) is modular, but the
converse need not be true. In this section we include several characterizations of modular
ideals of a nearlattice.

Due to Cornish and Noor [5] we know that the supremum of two ideals in a
nearlattice is not very easy to handle.

But due to Talukder and Noor [29], we know that for a standard ideal K of a
nearlattice S and forany Jel1(S), KvJ=fv jlkeK,jed}

But in case of a modular ideal M of a nearlattice, we are unable to give a simple
description of M vJ . Even xeM v J does not imply x<mv j for some meM and

jeld.
For example, consider the following nearlattice S of Fiaure 2.3 and ideal lattice
1(S) of Figure 2.4.

o

Figure 2.3 Figure 2.4
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Here S is a modular nearlattice by Theorem 2.2.1. In I1(S), (b] is modular. Now
qe(t]v(b].But g« pvq forany pe(t]and qe(b].

Theorem 2.3.1 Let L be a lattice and me L, m is modular if and only if (m] is modular

in 1(L).

Proof : Suppose m is modular in L. Suppose J c 1 . Let xe I n((m]v J).

Then xel and xe(m]v J.

This implies x<mv j forsome jeJ.

So xvij<mvj.

Now jeldcl.

Thus xv jel and xv j=(xv j)a(mv j)=((xv j)Am)v j(asmis modular)
€ (I N (m])v J.

Therefore, xe (I N (m])v J.

Since the reverse inclusion is trivial, so 1 ~ ((m]v 3)=(1 n(m])v J.

Hence (m] is modular in I(L).

Conversely, let (m] be modular in I(L).

Suppose z<x. Then (x]A ((m]v (z])=((x] A (m])v (2]

That is, (X A (m Vv Z)]: ((X A m)v Z]

Therefore, x A(mv z)=(x Am)v z, and so m is modular. e

Our next result shows that in a nearlattice S, Theorem 2.3.1 is not true.

Theorem 2.3.2 For an element m of a nearlattice S, if (m] is modular in 1(S), then m is

modular, but the converse may not be true.

Proof: Suppose (m]is a modular ideal in S. Let z < x.

Thenforall teS taz<tax<x implies (t A z]< (x].

Now (t A X]/\ [(t A m]v (t A Z]]g (t A X]/\ [(m]v (t A Z]]
=(trx]a(m]vtaz]etax]aftam]v(taz]

So (tax]aftam]v(taz]=((tAx]a(tna m]) (taz].

This implies (t A X)A((EAm)v (tA2)]=(EAxAm)v(tAz)].

Andso, X Aftam)v(taz)]=tax)Aftam)v(taz)=(xatam)v(taz)

Therefore, m is modular in S.
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To prove the converse, let us consider the following nearlattice and its ideal

lattice.

) 0 1(S)
Figure 2.5 Figure 2.6

Here d is modular in S. But in 1(S) (Figure 2.6), {(0](d],(g] (g.e] S} is a pentagonal
sublattice. Hence (d] is not a modular ideal.e

Theorem 2.3.3 Let S be a nearlattice, 1,J<1(S) and 1,J e(a] for some acS. Then
IvI={xeS|x<ivj forsomeiel,jel}

Proof: Let xelvJ. Then by Theorem 1.2.1, x<iv j for some i, jeA, ,, where
Ay=1U1.

Since i, je A, ;,S0 i<i; v j,, j<i,v j, forsome i, i,, j;, j, €A, ,.

Then x<i,vi, v j, v j,, the supremum exists by the upper bound property of S as
i, i,, Jy, J, <a. Thus proceding in this way x<(p,vL v p,)v(q vL vaq,) for some
P, q; € A, =1 U J, and the supremum exists by the upper bound property again.

Therefore, x<iv j forsome icl, jelJ. e

Theorem 2.3.4 Let M be a modular ideal of a nearlattice S and J be an ideal. If x<mv j
for some meM, jeJ,then xv j=m, v j forsome m, eM.

Proof: Let x<mv j,then xv j<mv j.

Thus, xv je(xv jln(M v (j)=((xv j]laM)v(j].

So by Theorem 2.3.3[3], xv j< pvq forsome pe(xv jJnM and qe(j].

Since pe(xv jJAnM,s0 peM and p<xv j.

Thus xv j<pvqg<pv j<xv jimplies xv j=pv j,where peM . e
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Here is a characterizations of modular ideals in a nearlattice.

Theorem 2.3.5 Let M be an ideal of a nearlattice S with the condition that for all ideals J
of S, and M v ={XES|X§m\/ j, mvj exists for some meM,jeJl}. Then the
following conditions are equivalent.

(1) M is modular.

(i) xeM v J implies xv j=mv j for some meM, jel.
Proof: (i)= (ii); Suppose M is modular. Let xeM v J. Then by the given condition,
x<mv j forsome meM, jel.

Then by theorem 2.3.4,
Xv j=m, v j and so (ii) holds.

(ii) = (i) ; Suppose (ii) holds.

Let 1,Jel(S) with J 1

Suppose xel n(MvJ).Then xel and xeM v J.

Thus by given condition, xv j=mv j forsome meM, jel.
Now, m<xv j implies mel nM .

Therefore, xe(IAnM)vJ,andso In(MvI)c(IAM)v I,
Since the reverse inclusion is trivial. so | A(M v J)=(I nM)v J.

Hence M is modular. e

In lattices, we know from [29] that an element m is modular if and only if for all

b<awithaanm=bam&avm=bvmimply a=b.

We conclude the chapter with the following result which is proved by above

characterization of modular elements.

Theorem 2.3.6 Let M be a modular ideal of a nearlattice S. If I~nM and I vM are
principal, then I is principal.

Proof: Let I vM =(a] and I nM =(b].

Then by Theorem 2.3.3, a<ivm forsome iel,meM.

Thus, (a]J=M vIaoMv(bvi]oM v(i]=(a].



This implies M v I =M v (b vi].

Also, (b]=M n12M n(bvi]=(b].
This implies M n 1 =M n(bvi].
Moreover, (bvi]cl.

Therefore, 1 =(bvi] as M is modular.e

28
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CHAPTER Il

STANDARD IDEAL

3.1 Introduction: Standard ideal in a lattice have been studied extensively by Gratzer
and Schmidt [14] and Jamowitz [16]. Fried and Schmidt [10] and Niemeinen [19] have
extended the idea to convex sublattices, also c. f. [6] and [7]. For the background materials
on standard ideals we refer the reader to consult the text of Gratzer[11].

Cornish and Noor in [5] have generalized the concept of standard ideals to nearlattices.

According to [5], an ideal A of a nearlattice S is called a standard ideal if it is a standard
element of the ideal lattice I(S). That is, for any ideal 1,J e I(S),I A(JVA) =(l AJ)V A

Anelement s S is called neutral if

(i) it is standard and

(i) WXV teS,sA[EAX)VEAY]=(BAtAX)V(SALAY).

In this chapter we have given an elaborate description of standard ideals in nearlattices.

In section 1 we have given a characterization of standard ideals which generalize a result of
[14]. This is also an extension of result of [5]. We also show that if any standard ideal | both

| Asand | v sare principal, then | itself is principal.
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3.2 Standard ideal and Neutral element

Lemma 3.2.1 Let s be a standard element of the nearlattice S and a an arbitrary element of
S. Then ans is a standard element of the principal ideal (a].

Proof: Any element of the ideal (a] may be written in the form anx (x € S). Hence it is

enough to prove that (xna)n[(sna)u(yna)l=[(xna)n(sna)ul(xna)n(yna)l.
From L. S. of the above
(xna)nlsna)u(yna)l=(xna)nl(swy)na]

=(xna)n(svy)

=(xNnans)u(xmnany)

=[(xna)n(sna)]u[(xna)n(yna)]
Hence the lemma is proved. e

Theorem 3.2.2 Let | be an arbitrary ideal and s a standard ideal of the nearlattice S. If
I vs and | A sare principal, then I itself is principal.

Proof: Let I vs=(a] and | As=(b]. Then by theorem, a=xvs, for some xe | and
s, €S.Since b<a and x<a, So xvb exists. By the upper bound property of S, We claim
that | =(xvb]. Of course, (xvb]c . For the reverse inequality, Let tel. Since
t,xvb <a, so again by the upper bound property of S, w=tv xvb exists and we | .Then
@losv(wWlosv(xvblosv(x]=(a] ie. sv (w]=sv (xvb].Further,
(bl=snlosuW]losn(xvblosn(]=(] and so sn(w]=sn(xvb]. This two
equalities imply that (w]=(xvb] as s is standard and so w=xvbe(xvb]. Since,
t <w,t e (xvb] and hence | =(xv b], this completes the proof.e

Theorem 3.2.3 Lets, ands, be standard elements of the nearlattice S. Then the sub
nearlattice {s,,s,, x} of S is distributive for all x € S.

Proof: Our proof is based upon Th-Il [14]. According to this, We have to prove the validity
of
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au((bnc)=(aub)n(auc) (1)
an(buc)=(anb)u(anc) (2)
(@anmb)u(bnc)u(cna)=(aub)n(buc)n(cua) (3)

Condition (2) is valid for it asserts the same as (9) of [14]. Since b or c is standard, as a
consequence of condition (i) of o of Th-1[14], (1) holds if a is standard. Otherwise b and ¢

are standard. In this case let us start with the right member of (1), apply (9) of [14] for the
elements a, auc for the standard element b and then for a, b and the standard element c.

We get, (auc)n(aub)=[(auc)naluf(auwuc)nb]
=au(anb)u(cnb)
=au(cnhb)

Finally, we prove (3), (3) is a symmetric function of its variables, therefore we have to prove

it for one permutation of its variables only. Using the assertion of Th-3 [14], according to
which s, Us, and s, ns, are standard, further equality (9) of [14] and condition (i) of o of

Th- 1.
We get, (s, NS,) U (s, nx)U(s, nx)=(s;NS,)Ul(s;ns,)Ux]

=[(s; ns,) (s, NS,)]IN[(s;, ns,)uX]

= (s, Us,)N[(s;ns,)ux]

= (s, USs,) N (s, ux)N (s, ux)and this is just (3).
Thus the proof'is completed.®

Theorem 3.2.4 Let s be a neutral element of (n] and n is neutral in A. Then s is a neutral

element of a.

Proof: By the previous theorem s is standard in A. To show that s is neutral, we need only to
showthat sA[(XAY)v(XAt)]=(sAxAy)v(saxat) forall x,y,teA.

Now, SAIXAY)VXAD]=(AMNA((XAY)V(XAL))=SA(SAXAN)V(XAtLAN)
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(as nis neutral.)

=(SAXAYAN)V(SAXAtAN) (assisneutral in(n].)
=(SAXAY)V(SAXAL).
The proof is thus complete.®

Theorem 3.2.5 Let s and n be elements of a nearlattice A such that n is neutral, s<n and s
is standard in (n]. Then s is a standard element of A.

Proof: Let t,x,y be the elements of A. Then

[(xAy)v(nAs)IvIxAy)v(xan)n)
=([(xAy)v(nASIAXAY)V(((XAY)v(nAs)A(xan)

=(XAY)Vv((XAn)A[(XAYyAn)v(nas)]) asnis neutral.
=(XAY)v(XAyAan)v(xanas) assisstandard in (n]
=(xAy)v(xanns)

=(xAy)v(xas)

Hence using the neutrality of n

tAl(xAy) v (xAs)]
=tA[(xAy)v(nAS)IA((XAy)v(xan)
=((xAy)v(nas) ata((xay)v(xan)
=((xAy)v(nAS) A((tAXAY)V(tAXAnN))asnis neutral.
=(EAxAY)VIEAX)A((xAYyAN) v (DAS))].
=(EAxAy)v(EaxAnA((XAyan)v(nnas))
=(tAXAY)VEAXAYAN)V(tAXASAN) sincesstandard in (n].

=tAXAY)V({HEAXAS).
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So s is standard in A.e

Let A be a nearlattice and s be an element of A. Then s is said to standard if Vx,y,te A,
tAIXAY)V(XAS)=(tAxAy)v(taxas) (Notice that both sides exist by the upper

bound property).

Obviously, any element of a distributive nearlattice is standard. Now suppose s is a standard
element of a lattice L, then Vv x,y,telL,

tAIXAY)V(XAS)=tAXA(YV)]=EAX)A(YVS)=EAXAY)V(EAXAS)
This and a part of following proposition show that the two concepts coincide in a lattice.

Proposition 3.2.6 The following two conditions for an arbitrary element s of a nearlattice A
are equivalent.
(1) Forany x,y e A, XA (Y AS)=(XAY)Vv(XAS)where yvs exists.
(i) (@) If xvs and yvs existforany x,y e A then (x A y) v s exists and
(XAYy)vs=(XvS)A(yvs).
(b) Forany x,y € A, forwhichxvs>yvs imply x>vy.

Proof: (i) = (ii)

Suppose x,y e A are such that x v sand y v s exist. Then, (x A y) v s exists because of the

upper bound property of A. Due to (i),
(XvS)A(yvs)=[(xvs)ay]lvIxvs)as]l=(XAY)Vv(SAY)VvS=(XAY)VS.

AlsoifxAs>yAas and xvs>yvs,then
X=XA(XVS)>XA(YVS)
=(XAY)V(XAS)Z(XAY)V(YAS)
=yA(Xvs)zyna(yvs)=y
(i) = ().
Suppose x,ye A and yvs exists. Let p=xa(yvs) and g=(xAy)v(xas). Now

PAS=XASSg=(XAY)V(XAS)<XA(Yyvs)=p. Hence pas<qas<pAas, that is

pArs=qgAas.Observethatas p,s<yvs,pvs existsand since
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P=pA(yvs),pvs=[pa(yvs)lvs
=(pvs)a(yvs) (by (ii)(a))
=(pAy)vs (by (ii)(a))
= (XAY)VS
=(XAy)v(Xas)vs=qvs
Then by (ii) (b) , p = g , that is (i) holds.

Now suppose s is standard in A, x,y € A and yv s exists. Then letting yv s =r we obtain
XA(YVS)=XA[(rAay)v(rAs)]=(XATAY)V(XATAS)=(XAY)V(XAS), a S IS

standard, thus (i) and (ii) holds.

Figure-3.1

Finally, consider the nearlattice A in Fig-3.1. Here, for all x,y e A, the condition (i) holds;

but d A[(cra)v(cas)]>(dAacaa)v(dACAs).e
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3.3 Characterization of Standard ideals

We start this section with the following characterization of standard ideal in a nearlattice
which is due to [5]. We prefer to include the proof for the convenience of the reader.

Theorem-3.3.1 Let K be an ideal in a nearlattice. Then the following conditions are
equivalent.

(1) K is a standard ideal.
(i)  The binary relation®(K), defined by x=y(®(K))holds if and only if

x=(XXAy)v(xaa),y=(xay)v(yab)for some a,be K, is a nearlattice-

congruence.
(iii)  The binary relation @, defined by x=y(®) holds if and only if for all

teS,(xAat)v(tac)=(yat)v(tac) for some ceK, is a nearlattice-

congruence.
(iv) ForeachidealH, KvH ={kvh:kvhexistsand ke K and he H }

Moreover, (ii) and (iii) represent the same nearlattice-congruence, namely
O(K), the smallest join-partial congruence of A having K as a congruence

class.

Proof: (i) = (ii). Due to condition (i) the relation J =H(®,)(J,H € J(A))if and only if
J=0nH)vUnK) and H=(J nH)v(HNK) is a congruence on J(A). Then®,,,
(restriction to A) is a nearlattice-congruence on A andx = y(®,,,) ifandonly if

(X]=(xAylv((X]InK) and (y]=(xAy]v ((y]nK). Thus to prove (ii), it is sufficient to
prove that (x]=(xAy]v(X]nK)implies x=(xAy)v(yaa)for some aeK. Now

(X/\y]v((X]ﬁK):DAn,Where A, =(xAylu((x]nK) and An={teS|ts pvag,pvq

n=0

exists and p,geA, ,} for n=123...; and we show, by induction, that

(XAY]IV(X]InK)={t:t<(xAy)v(xaa) forsome a e K}.

Ifte Ajthente(xay]orte(xX]nK.Inthefirstinstance, t < x Ay < (XA Y) v (XAK)

and t € K. Thus the result holds forn=0. Suppose the result holds for n-1 for some n>1.
Lette A,. Thent<pvqg with p,ge A, ;.S0 p<(XAay)v(xak,) and
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q<(xAy)v(xak,) forsome kk,and k, € K.Then
t<(xAy)v(xvk)v(xak,)=((xAy)v(xak) forsome k e K (Since
(xak)v(xak,)<x andisinK, it is of the form x Ak for some k € K). Thus we
have (x A y) v (X]nk) ={t:t < (x A y) v (x Ak) for somek € K } in effect

X< (XAYy)v(xaa) forsome ae Kandsox =(xAy)v(XAa) ,asrequired.

(i) = (ii) . Let x = y(O(K)) .Since ®(K) isacongruence, x Ay =y At(0(K)) for any
te AL, Soxat=(xAayat)v(xataa) and yat=(xAyat)v(yatab) for some
a,beK.Then(xat)v(ta[(tra)v(tab)D=(xat)v(tara)v(tab)
=(xAyAt)v(tra)v(tab)=(yat)v(ta[(tra)v(tab)])-Observe that (t Aa)v (tAb)e K. Thus

X =y(®) . Conversely, if x=y(®D) thenforany te A, (xAt)v (tac)=(yat)v(tac) for
some ce S. Choosing t=x and t=y, we have x=(xAYy)v(Xxac) and
y=(XAYy)v(yAac) respectively. Thus, x=y(®(S)) and @ is the congruence 6(S).

(iii)= (iv). Let T ={svk:svkexistsands € Sandk € K}. Suppose x<svk,seS kekK.
Clearly svk=k(®(S)) and so x=xa(svk)=(Xxak)©®(S)). Hence for all
te A(xat)v(tac)=(xaAkAat)v(tac) forsome ceS.

Choosing t = x, we obtain x=(xAk)v(xAc) andso xeT . But T is closed under existent

finite suprema. It follows that T is an ideal of Aand T =S v K .

(iv)=(i). Let xe Jn(K v H) then xeJ and xe KvH.So x=kvh for suitable k € K
and heH. Then x=(xAk)v(xah) and so xe (JnK)v(JvH). The reverse inclusion
is obvious. Thus J (K v K)=(JnK)v(JnH); Kis astandard ideal. The final assertion

is clear in view of the proof of (ii) = (iii) .e

Theorem 3.3.2 For an ideal A of a nearlattice S, the following conditions are equivalent;
(i) Ais a standard ideal.
i)  Theequality In(AvK)=(nA)v(InK) holdsif I and K are principal
ideals.
@iy If for the principal ideals | and J the inequality J  (Av 1) holds, then
J=UnAvdnl).
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(iv) The relation ©(A) of S defined by x=y(®[A]) if and only if
x=(XAny)v(xaa) and y=(xAy)v(yab) for some abeA, is a

congruence relation.

Proof:

(i)= (ii) is obvious, from the definition of the standard ideal.

(i) = (iii) is clear.
(iii)= (iv). Obviously the relation is an equivalence relation.

Letx<yand x=y®(A) then y=xv(yab) forsome b e A, suppose for some teS,yvt

exists.
Thenxvt exists.

Hence, yvt=(xvt)v(yab)<(xvt)v((yvt)ab)<yvt

Thus, yvt=(xvt)v((yvt)Ab)

So xvt=yvit(O(A)).

Now, y At<xv (yab)e(x]v A, So (yat]lc (x]vA.

Then by (iii), (y At]=(XAyAt)v (AA (Y At]) = (X At]v (AA (Y At]) .

Then a similar proof of (i) implies (ii) of theorem 4.1.1 shows thaty At = (x At) v (y At A Q)

for some a e A.

Thus by lemma 2.1.3, ®(A) is a congruence relation.
(iv)= (i) holds by theorem-3.3.1.e
An element s is called an upper element of a nearlattice S if sv x exists forall xeS.
Central element: Anelement s e S is called a central element if
(i) Sisupper and neutral and

(if) S is complemented in each interval containing it.
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Theorem-3.3.3: The following conditions on an element z of a nearlattice S coincide.

(1) z is central .

(i) z isneutral and upper, and complemented in each interval, which contain it.

(iii)  z is standard and upper, and complemented in each interval, which contains
it.

Proof:

(i) = (ii) . Suppose (i) holds. Due to Lemma-3.2[18], z is neutral and the remainder is not

hard to obtain.

(il)= (i). As z is upper, standard and distribuant, proposition-2.2 and Lemma-3.1 [5]
imply that the map ®: A — (z]x(z], where [z) is the subnearlattice{t e A:t >z}, is a
neaelattice homomorphism. Also® is one-to-one. But @ is onto as (a,b) e (z]x(z] says
that a<z<b, and so (a,b) = ®(c), where c is the relative complement of z in the interval

[a, b]. Thus® is an isomorphism and it does the required thing for z. Hence z is central.

(i) = (iii) is obvious.

(iii) = (ii) . Suppose (iii) holds and x, y,t € S . Consider the interval
[(xAyAzZ)v(tAaxaz),zv(XAY)v(XxAat)], which certainly contains z. Let r be the

complement of z in this interval. From proposition-2.2 [18], we infer that,
XAY=(XAYIV[ZVXAY)VIXAD)]=(XAY)V(FTvVZ)=(XAYATN)V(XAYAZ).

Similarly, xAt=(XAtAr)v(XAtAZ).

Thus (XA Y)V((XAD) =(XAYAD)V(XATAT)V(XAYAT)V(XALAZ)
=(XAYANVXAtAT)V(rAZ)<T

andso zA[(XAY)V(XA)]Sraz=(XAYyAZ)v(EAXAZ).

Therefore, x A[(XAY) v (XAt)[=(ZAXAY)V(ZAXAL),

Which says that z is also distribuant and, therefore, neutral.
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From the above theorem, it is clear that a nearlattice is a relatively complemented distributive
lattice if and only if each of its elements is central.e

Proposition 3.3.4 The following conditions upon an element a of a nearlattice S are

equivalent.

Q) a is standard.
(i)  The relation ®,, defined by x=y(®,) if and only if xvy=(xvy)va, for

some a, <a, is a congruence relation.

(i) Ais a distributive element, that is av (xaAy)=(avx)a(avy) for any
x,yeS, andb=c whenever anb=anacand avb=avc.

(iv) For each ideal K, (a]vK ={a, vk:a <ak e K}.

(v) (a] is a standard element of the ideal nearlattice of S.e
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CHAPTER IV

HOMOMORPHISM AND STANDARD IDEALS

4.1 Introduction: Gratzer and Schmidt in [14] proved many results on homomorphism
kernels and standard ideals of a lattice. Their main aim was to translate several theorems of
group theory to lattice theory. In this chapter we have generalized some of their results to
nearlattices. We have also given the characterizations of those nearlattices whose all congruences
are standard (neutral) which are generalizations of two recent papers [6] and [7].

A congruence ® of anearlattice A is called a standard ( neutral) if ® = ®(S) for some standard

(neutral) ideal S of A.

For any two nearlattices A, and A, amap ®: A — A, is called an isotone if for any X,y € A
with x<y implies ®(x)<d(y) in A,.® is called a meet homomorphism if for all

X,y €A, O(XAY)=D(x) AD(y), clearly every meet homomorphism is an isotone.

A meet homomorphism @ : A, — A, is called nearlattice homomorphism if
D(XAY)=D(x) AD(y)when x Ay existsin A,. Since @ isisotone ®@(x),d(y) <D(xvy).
Therefore @(x) v ®(y) exists by the upper bound property of A,.

In section-2, we have shown that if s is a standard ideal of a nearlattice A, then ®; is the

extension of ®(S)toI1(A) and ©(S) is the restriction of ® to the nearlattices A. Then we have

shown that in a sectionally complemented nearlattices all congruences are standard. We also

show that in a relatively complemented nearlattice A with 0, if every standard ideal of A is
generated by a finite number of standard elements, then the congruence lattice C(A) is Boolean.

Finally we have generalized two results of [6] and [7] regarding nearlattices all of whose
congruences are standard (neutral).

In section-3, we have given homomorphism theorem for nearlattices. Then we have generalized

two isomorphism theorems of [14] for nearlattices.
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4.2 Homomorphism kernels and standard ideals

By [5, corollary-2.7], we know that the set of all standard ideals of a nearlattice A is a
subnearlattice of I(A). Also the congruence®, where S is standard form a sublattice of

O(1(A)), and S — ®, is an isomorphism. Suppose © is a congruence relation , ® defines in
the natural way a homomorphism of 1(A) under which | =J(1,J € I(A)) if and only if to any
Xel, there exists a yeJ such thatx=y(®) and conversely. We call this congruence
relation® of I(A) includes a congruence relation of A under whichx=y if and only if

(x]= (y](®) .This is called the restriction of ® to A. We now give the following result which is

a generalization of [4, Lemma 5].

Theorem 4.2.1 Let S be a standard ideal. Then ®; is the extension of ®(S)to 1(A) and ©(S)

is the restriction of ® to the nearlattice A.

Proof: Let ©(S)be the extension of ®(S) to I(A) and | =J(O(S)). We suppose | < J.
Choosinga y e J we can find an x e I(y > x) with x = y(®(S)) and so there exists an S, with

y=Xv(yAS,). Theideal S" generated by the y A S, satisfies S =S and I vS =J hence
| = J(®). On the other hand, if 1 =J(®,) then I vS =J with asuitableS < S . Then for any

yeJ itfollowsthat yelvS andso y=xvs=xv(yas) forsome seS as S is standard.
Thus, x = y(©(S)) by [Th-3.1.1], and hence ®(S) =0, .

To prove the 2" assertion, suppose (a] = (a A b](®,).

Then (a]=(a]la(b]®, =(aAb](®;) and hence (a]=(anb]vS for suitable S cS.
Thenae (aab]vS and since S is standard so by Theorem-3.1.1, a=(aAb)v(anas,) for
some s, € S . Similarly, we can show that b= (aAb)v (bAs,) forsome s, €S.

Thus a =bO(S). Hence O(S) is the restriction of ®; to A.e

Corollary 4.2.2 (Nasima Akhter [18]).The correspondence ®(S) — ®, is an isomorphism

between the lattice of all standard congruence relations of A and the lattice of all principal
standard congruence relations of 1(A).e

Theorem 4.2.3 Let S be a sectionally complemented nearlattice. Then every homomorphism
kernel of S is a standard ideal is the kernel of precisely one congruence-relation.
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Proof: Suppose the ideal I of S is homomorphism kernel induced by the congruence relation © .
Let a=b(®),a,beS then anb=a(®) and O0<aab<a. Since S is sectionally

complemented, So there exists c; Such thatanbAac=0 and (aab)vc=a. This implies
O=(aAb)ac=anc=c(0).

Since | is a homomorphism kernel.

So cel, Moreover, a=(anb)vc=(anb)v(anc)

Similarly, We can show that, b=(aab)v (aand)fordel.

Therefore, |is a standard ideal. At the same time, We have proved that if | is the kernel of
homomorphism induced by ®, then ® = 1(0).

Hence, every standard ideal is the kernel of precisely one congruence relation.e

Theorem 4.2.4. (Nasima Akhter [18]) Let A be a relatively complemented neaelattice with 0. If
every standard ideal of A is generated by a finite number of standard elements then C(A), the
congruence lattice is Boolean. Moreover, the converse of this is not true.®

Theorem 4.2.5 @:s, — s, is an onto homomorphism, where S,,S,are nearlattices and 0 is
least element of S, , then ker®is an ideal of S .
Proof: Since @isonto, 0 € S, thusker® = @ as pre-image of 0 exists in S,.

Now a,b e ker® = ®(a) =0 = O(b)

O(avh)=0@)vOh)=0v0 =>avbeker®.

Again acker®,se$S gives ©(a)=0

Also O(ars)=0(@)A0O(s)=0 As, =0 = anrsecker®, wheres, €S,

Hence ker®is an ideal of S.e

Theorem 4.2.6 Let A be a nearlattice. Then the following conditions are equivalent,

(i) All congruence of A are standard.
(i)A has a zero and for all x,yeA there exists aeA such that

X=(XAYy)v(xaa),a=00(XAY,X).
Proof: (i)= (ii) . Since the smallest congruence o of A is standard, A must have a zero.

Let x,y € A then ®(x A y,Xx) = O(l), for some standard ideal | .i.e. x=xA yO(l) , where | is

standard, hence x=(x A y)v (xAa), forsome ael.Hence a=00(xAY,X).
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(ii)= (i). Let @ be a congruence and | =[0]® . Suppose x = y(d). Then by (ii) there exists
ae A such that x=(xAy)v(xaa) and a=0(@O(xAYy,Xx)). Since O(XAY,X)<D, SO
a=0(®) and hence ael. Similarly, y=(xAy)v (yab),forsome bel. Thus by [Theorem-
3.1.1] l is a standard ideal and ® = ©®(l), and so (i) holds.e
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4.3 Isomorphism Theorem

In [14] Gratzer and Schmidt have proved isomorphism theorems for standard ideals in lattices. In
their paper they have translated several theorems of group theory to lattice theory using ideal,
standard ideal, factor lattice and join operation for subgroup, invariant subgroup, factor subgroup
and group operation respectively. In this section we generalize two isomorphism theorems for
standard ideals of nearlattices.

For any congruence ® on A, A/® denotes, the set of all congruence classes of A.We define A
onA/® by[a]l® A[b]® =[aAb]®. If for any a,beAavbexists, then we define

[a]® v [b]O =[a v b]e.

Theorem 4.3.1 A/ @ is a nearlattice.

Proof: Of course A/®is a meet semilattice. We need to show that it has the upper bound
property.

Let [a]®,[b]® <[c]®, then[a]® =[a]® A[c]® =[a A C]O

[b]® =[b]® A[c]® =[bAC]O

Now, (aAc)v (b A c)exists by the upper bound property of A. Hence,
[anclOv[bAacl®=[(anc)v(bac)]®andso [a]® v [b]® exists. Therefore A/® isa

nearlattice.
If ® is a congruence of a nearlattice A then the map @ : A— A/® defined by ®(a) =[a]® is

the natural homomorphism induced by ® . For a standard ideal S of A we denote the quotient
nearlattice A/QO(S), simply by A/S.

Now we give the homomorphism theorem for nearlattices which is a generalization of [11, Th-
11, P-26].e

Theorem 4.3.2 [Nasima Akhter[18], Th-2.2] Every homomorphic image of a nearlattice A is
isomorphic to a suitable quotient nearlattice A. In fact® : A— A, is a homomorphism of Aonto

A, and if ®is the congruence relation of A defined by x = y(®) if and only if ®(x)=d(y)
then A/® = A,; an isomorphism is given by W :[x]® — ®(x),x e A.e®
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Lemma 4.3.3 Let S be a nearlattice and A a standard ideal of S. Then [I N A, 1]=[A, | U A] for
all 1 €1(S). An isomorphism is given by the correspondence X — X U A(X €[l nA,1]). The
inverse correspondenceis Y - Y nI(Y €[A, 1 UA]).

Proof: From [14, cond. (o )(i)of Th-2], we get that X > X UAX €[InAI]) is a
homomorphism. If X, X, e[ nA/1] then AnX,=AnX,(for X,,X,cl and so
AnX, =AnX;nl=Anl,i=12).

Thus from [14, cond. (o) (ii) Th-2.], we get AU X, # AU X,

Therefore, X - X UA is an isomorphism of [I nA/1] into [A1UA], we prove that,
YND)UA=Y(Y e[AlUA]) and this will prove that, Y Y nI(Y €[A 1UA]) is the
inverse of X »> X UA(X e[l mA/1]) and the latter correspondence maps[l N A, 1] onto
[ATUA]. Indeed using [14, cond. (o) (i)of Th-2], we get
YADUA=Y UANHUA=YN(1uS)=Y and this completes the proof of the Lemma

Theorem 4.3.4 (First isomorphism theorem for standard ideals) : Let S be a nearlattice, A be a
standard ideal and | an arbitrary ideal of S. Then An1 is a standard ideal of I and
(TOUA/Az=T/I(ANI).

Proof : Corollary of Lemma-9 of standard ideals in lattice by Gratzer and Schmidt [14] is just
the first assertion of our theorem. The simplest mean to prove the isomorphism statement is the
use of the first general isomorphism theorem of REDEI [23], (Chapter-1). We have only to prove

that every congruence class of the nearlattice 1 U A may be represented by an element of I.
Indeed, any element x of 1 U Ais of the form yva where ae Aand y e |

[ Gratzer and Schmidt[14], cond. (o) (ii) Th-2],

Further, x =y ua = y(0[A]), and so the congruence class that contains x may be represented by
yel.

According to Gratzer and Schmidt [14] Th-4, The isomorphism theorem is equivalent to the
isomorphism to the intervals [A,1 U A] and[I n A, 1] of 1(S). We can add to the isomorphism
statement of Lemma 4.3.3

In the last proof of Lemma we have got a new proof of the isomorphism theorem. e
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Theorem 4.3.5 (2" isomorphism theorem of standard ideals): Let S be a nearlattice and A be
an ideal and T a standard ideal of S. A>T .Then A is standard if and only if A/T is standard
in S/T ,and inthiscase S/A=(S/T)/(AIT).

Proof: If A is standard, then from Lemma-6 [14], We get, that, A/T is standard in
S/T .Conversely, suppose A/T is standard in S/T . We show Gratzer and Schmidt [14], cond.
(» )ofTh -2 holds for A.

We have seen in the proof of Th-1[14,"(B)implies(y)" ], that it is enough to prove that
x=Y(O[A]) and x>y imply xnu=ynu(®[A]) for all ueS. (Here ©[A] denotes the
relation defined in cond. (¥ )of Th-2 of [14]. We denote by [ a] the image of the element a
under the homomorphism S~S/T. Then we have X = y(®[A/T]), and since A/T is standard
in S/T , therefore, with a suitable S A/T we get, XU = (YN T)US.

Further, since T is standard in S, we can find a teT such that xnu =[(y nu)us]ut; we
put s, =sut and get xNnu=[(ynu)ns,,s, € A.

This proves A is standard.

We remark that during the proof we have made effective use of the fact that the congruence
classes of S/T under ®[A/T] are the homomorphic image of those of S under G[A].e
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