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Abstract 
In this thesis the standard ideal of a nearlattices is presented. By a nearlattice S we will 
always mean a meet semilattice together with the property that any two elements 
possessing a common upper bound, have a supremum. Cornish and Hickman [4] referred 
this property as the upper bound property, and a semilattice of this nature as a semilattice 
with the upperbound property. Cornish and Noor [5] preferred to call these semilattices as 
nearlattices, as the behavior of such a semilattice is close to that of a lattice than an 
ordinary semilattice. Of course a nearlattice with a largest element is a lattice. Since any 
semilattice satisfying the descending chain condition has the upper bound property, so all 
finite semilattices are nearlattices. In lattice theory, it is always very difficult to study the 
non-distributive and non-modular lattices. Geatzer [12] studied the non-distributive 
lattice by introducing the concept of distributive, standard and neutral elements in 
lattices. Cornish and Noor [5] extended those concepts for nearlattices to study non-
distributive nearlattices. This thesis extend the concept of standard ideal of a nearlattices. 
We also extend the homomorphism theorem of lattices to nearlattices. Finally we 
generalize two isomorphism theorems of Gratzer, G. and Schmidt, E. T [14] to 
nearlattices. 
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Abstract 

In this thesis the standard ideal of a nearlattices is presented. By a nearlattice S we will always 
mean a meet semilattice together with the property that any two elements possessing a common 
upper bound, have a supremum. Cornish and Hickman [4] referred this property as the upper 
bound property, and a semilattice of this nature as a semilattice with the upperbound property. 
Cornish and Noor [5] preferred to call these semilattices as nearlattices, as the behavior of such a 
semilattice is close to that of a lattice than an ordinary semilattice. Of course a nearlattice with a 
largest element is a lattice. Since any semilattice satisfying the descending chain condition has 
the upper bound property, so all finite semilattices are nearlattices. In lattice theory, it is always 
very difficult to study the non-distributive and non-modular lattices. Geatzer [12] studied the 
non-distributive lattice by introducing the concept of distributive, standard and neutral elements 
in lattices. Cornish and Noor [5] extended those concepts for nearlattices to study non-
distributive nearlattices. This thesis extend the concept of standard ideal of a nearlattices. We 
also extend the homomorphism theorem of lattices to nearlattices. Finally we generalize two 
isomorphism theorems of Gratzer and Schmidt [14] to nearlattices. 
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CHAPTER I 

 

IDEALS AND CONGRUNCES 

 

1.1 Preliminaries 

 
The intention of this section is to outline and fix the notation for some of the 

concepts of nearlattices which are basic to this thesis. We also formulate some results on 

arbitrary nearlattices for later use. For the background material in lattice theory we refer 

the reader to the text of Birkhoff [3] , Gratzer [11], [12] and Davey [8]. 

 

By a nearlattice S  we always mean a lower (meet) semilattice which has the 

property that any two elements possessing a common upper bound have a supremum. 

Cornish and Hickman [4], referred this property as the upper bound property and a 

semilattice of this nature as a semilattice with the upper bound property. The behaviour of 

such a semilattice is closer to that of a lattice than an ordinary semilattice.   

 

Of course, a nearlattice with a largest element is a lattice. Since any semilattice 

satisfying the descending chain condition has the upper bound property, so all finite 

semilattices are nearlattices. 

 

Now we give an example of a meet semilattice which is not a nearlattice. 
Example: In 2R  let us consider the set,  ( ){ } ( ){ } ( ){ } ( ){ }11100100 >∪∪∪= yy,,,,S   

shown in the Figure 1.1 

 

 

 

 

 

 

 

 

 
 
                                     y 
 
 
            (0,1) 
 
 
             (0,0)     (1,0) 
 
 
 

Figure 1.1 
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Let us define the partial ordering ""≤  on S  by ),(),( 11 yxyx ≤  if and only if 1xx≤  

and 1yy≤ . Clearly, ( )≤;S  is a meet semilattice. Both (1,0) and (0,1)  have common 
upper bounds. In fact ( ){ }11 >yy,  are common upper bounds of them. But the 

supremum of (1,0) and (0,1) does not exist. Therefore ( )≤;S  is not a nearlattice. 

 

The upper bound property appears in Gratzer and Lakser [13], while Rozen [24] 

show that it is the result of placing certain associativity conditions on the partial join 

operation. Moreover, Evans [9] referred nearlattices as conditional lattices. By a 

conditional lattice he means a lower semilattice S  with the condition that for each 
{ }xySy,Sx ≤∈∈  is a lattice; and it is very easy to check that this condition is 

equivalent to the upper bound property of S . Also Nieminen [19] in his paper refers to 

nearlattices as “partial lattices”. Whenever a nearlattice has a least element we will 
denote it by 0. If nx,,x,x L21  are elements of a nearlattice then by nxxx ∨∨∨ L21 , we 

mean that the supremum  of nx,,x,x L21  exists and nxxx ∨∨∨ L21  symbolizing this 

supremum.  

 
A non-empty subset K  of a nearlattice S  is called a subnearlattice of S  if for any 

Kb,a ∈ , both ba ∧ and ba ∨ (whenever it exists in S ) belong to K  (∧  and ∨  are taken 

in S ), and the ∧  and ∨  of K  are the restrictions of the ∧  and ∨  of S  to K . Moreover, a 

subnearlattice K  of a nearlattice S  is called a sublattice of S  if Kba ∈∨  for all 
Kb,a ∈ . 

 
A nearlattice S  is called modular if for any Sc,b,a ∈  with ac ≤ , 

( ) ( ) cbacba ∨∧=∨∧  whenever cb∨  exists. 

 
A nearlattice S  is called distributive if for any nx,,x,x,x L21 , 

( ) ( ) ( ) ( )nn xxxxxxxxxx ∧∨∨∧∨∧=∨∨∨∧ LL 2121  whenever nxxx ∨∨∨ L21   

exists. Notice that the right hand expression always exists by the upper bound property of 

S . 

 
Lemma 1.1.1. A nearlattice S is distributive (modular) if and only if { }xySy ≤∈  is a 

distributive (modular) lattice for each Sx∈ . ● 
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Let us consider the following two lattices: pentagonal lattice N5  and  Diamond 

lattice M5. Many lattice theorists study on these  two lattices and given several results. 

 

 

 

 

 

 

 

 

Hickman in [10] has given the following extensions of a very fundamental results of 

lattice theory. 

 
Theorem 1.1.2. A nearlattice S  is distributive if and only if S does not contain a 
sublattice isomorphic to 5N  or 5M  [in Figure 1.2 and 1.3]. ● 

 
Theorem 1.1.3. A nearlattice S  is modular if and only if S does not contain a sublattice 
isomorphic to 5N . ● 

 

In  this context it should be mentioned that many lattice theorists have worked with 
a class of semilattice S  which has the property that for each Sa,,a,a,x r ∈L21 , if 

raaa ∨∨∨ L21  exists then ( ) ( ) ( )raxaxax ∧∨∨∧∨∧ L21  exists and equals 

( )raaax ∨∨∨∧ L21 .  Bables [1] called them as prime semilattices while Shum [27] 

referred them as weakly distributive semilattices. 

 
Hickman in [15] has defined a ternary operation j  by ( ) ( ) ( )zyyxz,y,xj ∧∨∧= , 

on a nearlattice S  (which exists by the upper bound  property of S ). In fact he has shown, 

which can also be found in Lyndon [17] Theorem 4, that the resulting algebras of the type 
( )j;S  form a variety, which is referred to as the variety of join algebras and following are 

its defining identities. 
(i) ( ) xx,x,xj =  

(ii) ( ) ( )y,x,yjx,y,xj =  

(iii) ( ) ( )( ) ( )( )x,y,z,yj,xjx,y,xj,z,x,y,xjj =  

(iv) ( ) ( )x,y,zjz,y,xj =  

                 e 
 
  
   
    a           b                 c 

    
                          
              d 

Figure-1.3 

               x 
 
 
s                         
                          t 

   
   m                    
                                    
                  0 

Figure-1.2 
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(v) ( ) ( ) ( )( ) ( )x,y,xjz,y,xj,x,y,xj,z,y,xjj =  

(vi) ( )( ) ( )z,y,xjz,y,x,y,xjj =  

(vii) ( )( ) ( )x,y,xjx,z,xj,y,xj =  

(viii) ( )( ) ( ) ( )( )( ) ( )z,y,xjz,y,xj,y,xj,z,y,xj,z,y,wj,y,xjj =  

We do not elaborate it further as it is beyond the scope of this thesis. 

 
 We call a nearlattice S  a medial nearlattice if for all Sz,y,x ∈ , 

( ) ( ) ( ) ( )xzzyyxz,y,xm ∧∨∧∨∧=  exists. For a (lower) semilattice S , if ( )z,y,xm  

exists for all Sz,y,x ∈ , then it is not hard to see that S  has the upper bound property and 

hence is a nearlattice. Distributive medial nearlattices were first studied by Sholander [25, 

26], and then by Evans [9]. Sholander preferred to call these as medial semilattices.  He 

showed that every medial nearlattice  S  can be characterized by means of an algebra 
( )m;S  of type 3 , known as medial algebra, satisfying the following two identities: 

(i) ( ) ab,a,am =  

(ii) ( ) ( )( ) ( )( )b,a,e,d,cmme,d,b,am,c,b,amm = . 

 
 A nearlattice S  is said to have the three properties if for any Scba ∈,, , cba ∨∨  

exists whenever ba ∨ , cb ∨  and ac ∨  exists. Nearlattices with the three property were 

discussed by Evans [9], where he referred it as strong conditional lattices. 

 

 The equivalence of (i) and (iii) of the following lemma is trivial, while the proof of 

(i)  < = > (ii) is inductive. 

 

Lemma 1.1.4. {Evans [9]}. For a nearlattice S  the following conditions are equivalent: 

(i) S  has the three property. 
(ii) Every pair of a finite number ( )3n ≥  of elements of S  posses a 

supremum ensures the existence of the supremum of all the n elements. 

(iii) S  is medial. ● 

 
A family A of a subset of a set A is called a closure system on A if  

(i) A∈ A and  

(ii) A is closed under arbitrary intersection. 
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Suppose B is a subfamily of A. B is called a directed system if for any  ∈Y,X B 

there exists Z  in B such that ZY,X ⊆ . 

 
If { ∈∪ X:X B ∈}  A for every directed system B contained in the closure system  

A , then A is called algebraic. When ordered by set inclusion, an algebraic closure system 

forms an algebraic lattice. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

6 

1.2 Ideals of Nearlattices 

 
A non-empty subset I  of a nearlattice S  is called a down set if for any Sx∈  and 

Iy∈ , yx ≤  implies Ix∈ . 

 

A non-empty subset I  of a nearlattice S  is called an ideal if it is a down set and 
closed under existent finite suprema. We denote the set of all ideals of S  by ( )SI , which 

is a lattice. If S has a smallest element 0 then ( )SI  is an algebraic closure system on S  

and is consequently an algebraic lattice. 

 
However, if S  does not possess smallest element then we can only assert that 

( ) { }Φ∪SI  is an algebraic closure system, where Φ  is the empty subset of S . 

 
For any subset K  of a nearlattice S , ( ]K  denotes the ideal generated by K . 

 

Infimum of two ideals of a nearlattice is their set theoretic intersection. Supremum 
of two ideals I  and J  in a lattice L  is given by 

{ }Jj,IisomeforjixLxJI ∈∈∨≤∈=∨ . Cornish and Hickman in [4] showed that 

in a distributive nearlattice S  for two ideals I  and J , 
{ }existsjiwhereJj,IijiJI ∨∈∈∨=∨ . But in a general nearlattice the formula for 

the supremum of two ideals is not very easy. Let us consider the following lemma which 

gives the formula for the supremum of two ideals. It is in fact an exercise in Gratzer [11], 

p-54 for partial lattice. 

 
Theorem 1.2.1. Let I  and J  be ideals of a nearlattice S . Let JIA ∪=0 , 

{ }1−∈∨∨≤∈= nn Az,yandexistszy;zyxSxA  for L,,n 21= , and nn
AK

∞

=
∪=

0
. 

Then JIK ∨= .  
Proof: Since LL ⊆⊆⊆⊆⊆ nAAAA 210 , K  is an ideal containing I  and J . Suppose 

H  is any ideal containing I  and J . Of course, HA ⊆0 . We proceed by induction. 

Suppose HAn ⊆−1  for some 1≥n  and let nAx∈ . Then zyx ∨≤  with 1−∈ nAz,y . Since 

HAn ⊆−1  and H  is an ideal, Hzy ∈∨  and so Hx∈ . That is HAn ⊆  for every n. Thus 

JIK ∨= .● 
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Theorem.1.2.2. Let K  be a non-empty subset of a nearlattice S . Then 

( ] { }0
0

≥∪=
∞

=
nAK nn

, where ( ){ }Kk,ksomefork,t,kjtStA ∈=∈= 21210  and 

( ){ }12121 −∈=∈= nn Aa,asomefora,t,ajtStA  for 1≥n . 

Proof: For any Kk ∈  clearly ( )k,k,kjk =  and so 0AK ⊆ . Similarly, for any 1−∈ nAa , 

( )a,a,aja =  implies that nn AA ⊆−1 . Thus LL ⊆⊆⊆⊆⊆⊆⊆ − nn AAAAAK 1210 . 

Let L,,,n;At nn
210

0
=∪∈

∞

=
, and St ∈1  such that tt ≤1 . Then mAt ∈  for some 0≥m . 

Clearly, ( )t,t,tjt 11 =  and so 11 +∈ mAt . Thus nn
A

∞

=
∪

0
is down set.  

Now suppose, nn
At,t

∞

=
∪∈

021 and 21 tt ∨  exists. Let rAt ∈1  and sAt ∈2  for some 

0≥s,r  with sr ≤  (say). Then sAt,t ∈21  and ( )221121 t,tt,tjtt ∨=∨  provides 

121 +∈∨ sAtt . 

Finally, suppose H  is an ideal containing K . If 0Ax∈ , then 

( ) ( ) ( )xkxkk,x,kjx ∧∨∧== 2121  for some Kk,k ∈21 . As HK ⊆  and H  is an ideal, 
Hxk,xk ∈∧∧ 21  and so Hx∈ . Thus HA ⊂0 . Again we use the induction. Suppose 

HAn ⊆−1 for some 1≥n . Let nAx∈  so that ( )21 a,x,ajx=  for some 121 −∈ nAa,a . Then 

Hx∈  as Ha,a ∈21  and ( ) ( )xaxax ∧∨∧= 21 .● 

 

Theorem 1.2.3. A non empty subset K  of a nearlattice S  is an ideal if and only if Kx∈  
whenever Sx∈  and  ( )21 k,x,kjx=  for some Kk,k ∈21 .● 

  

We now give an alternative formula for the supremum of two ideals in an arbitrary 

nearlattice. 

 

Theorem 1.2.4. For any two ideals 1K  and 2K , nn
BKK

∞

=
∪=∨

021  where 

( ){ }ii Kk,k,x,kjxSxB ∈=∈= 210  and ( ){ }12121 −∈=∈= nn Bb,b,b,x,bjxSxB , 

L,,n 21= . 

Proof : Clearly, LL ⊆⊆⊆⊆⊆⊆⊆ − nn BBBBBK,K 121021 . Suppose  nn
Bb

∞

=
∪∈

0
 and 

Sb;bb ∈≤ 11 . Then mBb∈  for some 0≥m . Also, ( )b,b,bjb 11 =  and so 11 +∈ mBb . 

Thus nn
B

∞

=
∪

0
 is a down set. Now suppose nn

Bt,t
∞

=
∪∈

021  such that 21 tt ∨  exists. Then there 
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exist 0≥s,r  such that rBt ∈1  and sBt ∈2 . If sr ≤  then sBt,t ∈21  and 

( )221121 t,tt,tjtt ∨=∨  implies that 121 +∈∨ sBtt . Hence , nn
B

∞

=
∪

0
 is an ideal. 

 Finally, suppose H  is an ideal containing 1K  and 2K . If 0Bx∈  then 

( ) ( ) ( )xkxkk,x,kjx ∧∨∧== 2121  for some 11 Kk ∈  and 22 Kk ∈ . Hence H  is an ideal 

and HK,K ⊆21 , clearly Hx∈ . Then using the induction on n it is very easy to see that 

nBH ⊇  for each n. ● 

 
In a lattice L , it is well known that for a convex sublattice C  of L . ( ] [ )CCC ∩= . 

The following figure (Fig:1.4) shows that for a convex subnearlattice C  in a general 

nearlattice, this may not be true. 

 

 

 

 

 

 

 

 

 
Here { }c,b,aC =  is a convex subnearlattice of S . Observe that ( ] SC =  and 

[ ) { }x.c,b,aC = , hence ( ] [ ) CCC ≠∩ . 

 

Recently, Shiuly Akhter [28] has proved that for a convex sublattice C  of a 
distributive nearlattice S , ( ] ( ) ( ) ( ){ ncxcxcxxSxC ∧∨∨∧∨∧=∈= L21  

}Cc,,c,csomefor n ∈L21 . With the help of this result Rosen [24] have proved that 

( ] [ )CCC ∩=  when S  is distributive. But in a non-distributive nearlattice of S , it is easy 

to show that ( ] [ )CCC ∩=  when S  is medial. 

 
Theorem 1.2.5. {Cornish and Hickman [4, Theorem 1.1]}. The following conditions on a 

nearlattice S  are equivalent: 

(i) S  is distributive. 
(ii) For any ( )SHH ∈ , ( ] { }Hh,,h,hhhhH nn ∈∨∨∨= LL 2121 . 

(iii) For any ( )SIJ,I ∈ , { }JIaaaaaaJI nn ∪∈∨∨∨=∨ ,,, 2121 LL . 

                                 a                b 
 
 
                                                                x 
 
 
 
                                                      c 
                                    
                                    S 

Figure 1.4 
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(iv) ( )SI  is a distributive lattice. 

(v) The map ( ]HH →  is a lattice homomorphism of ( )SH  onto ( )SI  

( which preserves arbitrary suprema). ● 

 

Observe here that by Theorem1.2.4, (iii) of above could easily be improved to 
(iii)/: For any ( )SIJ,I ∈ , { }Jj,IijiJI ∈∈∨=∨ . 

 
Let ( )SI f  denote the set of all finitely generated ideals of a nearlattice S . Of 

course ( )SI f  is an upper subsemilattice of ( )SI . Also for any Sx,,x,x m ∈L21 , 

( ]mx,,x,x L21  is clearly equal to ( ] ( ] ( ]mxxx ∨∨∨ L21 . When S  is distributive, 

( ] ( ] ( ] ( ] ( ]( ) ( ] ( ] ( ]( )mmmm yyyxxxy,,y,yx,,x,x ∨∨∨∩∨∨∨=∩ LLLL 21212121

( ]jiji
yx ∧∨=   for any Sy,,y,y,x,,x,x nm ∈LL 2121  and so ( )SI f is a distributive 

sublattice of ( )SI .  

 
A nearlattice S  is said to be finitely smooth if the intersection of two finitely 

generated ideals is itself finitely generated. For example, distributive nearlattices, finite 

nearlattices, lattices, are finitely smooth. Hickman in [15] exhibited a nearlattice which is 

not finitely smooth. 

From Cornish and Hickman [4], we know that a nearlattice S  is distributive if and only if 
( )SI  is so. Our next result shows that the case is not the same with the modularity. 

 
Theorem 1.2.6. Let S  be a nearlattice. If ( )SI is modular then S  is also modular but the 

converse is not necessarily true. 
Proof: Suppose ( )SI  is modular. Let Sc,b, ∈a  with ac ≤  and cb ∨  exists. Then 

( ] ( ]ac ⊆ . Since ( )SI  is modular, so, ( )( ] ( ] ( ] ( ]( )cbacba ∨∧=∨∧  

( ] ( ]( ) ( ] ( )( ]cbacba ∨∧=∨∧= . This implies that ( ) ( ) cbacba ∨∧=∨∧ , and so S  is 

modular. 

Nearlattice S  of Figure 1.5 shows that the converse of this result is not true. 

 

 

 

 

 

                                                              x 
 
 
 
            a2                                   y 
a1                        
                                                               b 
                                                
                              0 

Figure 1.5 
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Notice that ( ]r  is modular for each Sr ∈ . But in ( )SI , clearly ( ] ( ] ( ] ( ]{ }S,b,a,y,a,a, 2110  is 

a pentagonal sublattice. ● 

 

The following theorem is due to Bazlar Rahman [2]  

 

Theorem 1.2.7. {Bazlar Rahman[2]} Let I  and J  be two ideals in a distributive 

nearlattice S. If JI ∧  and JI ∨  are principal, then both I  and J  are principal. ● 

 
A non empty subset F  of a nearlattice S  is called an up set if for Sx∈ , Fy∈  

with yx ≥  imply Fx∈ . 

A non empty subset F  of a nearlattice S  is called a filter if it is an up set and 
Fff ∈∧ 21  for all Ff,f ∈21 . 

 
An ideal P  in a nearlattice S  is called a prime ideal if SP ≠  and Pyx ∈∧  

implies Px∈  or Py∈ .  

 
A filter F  is called a prime filter if either Fx∈  or Fy∈  whenever yx ∨  exists 

and is in F . 

 

It is not hard to see that a filter F  of a nearlattice S  is prime if and only if FS −  

is a prime ideal. The set of all filters of a nearlattice is an upper (join) semilattice ; yet it is 

not a lattice in general, as there is no guarantee that the intersection of two filters is non 
empty. The join 21 FF ∨  of two filters is given by 

{ }22112121 Ff,FfsomeforffsSsFF ∈∈∧≥∈=∨ . The smallest filter containing a 

subsemilattice  H  of S  is { }HhsomeforhsSs ∈≥∈  and is denoted by [ )H .  

Moreover, the description of the join of filters shows that for all Sb,a ∈ , 

[ ) ( ] [ )baba ∧=∨ . 

 

Following theorem and corollary is due to Noor and Rahman [22] which is an 

extension of Stone’s separation theorem of Gratzer [11] theorem 15, pp74. 
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Theorem 1.2.8. {Noor and Rahman[22]} Let S  be a nearlattice. The following conditions 

are equivalent: 

(i) S  is distributive. 

(ii) For any ideal I and any filter F  of S , such that Φ=∩ FI , there 
exists a prime ideal IP ⊇  and disjoint from F .● 

 

Corollary 1.2.9. A nearlattice S  is distributive if and only if every ideal is the intersection 

of all prime ideals containing it.● 

 

Lemma 1.2.10. A subset F of a nearlattice S  is a filter if and only if FS −  is a prime 

down set. 

Proof: Let FSx −∈  and xt ≤ . Then Fx∉ , and so Ft∉ , as F  is a filter. Hence 
FSt −∈  , and so FS −  is a down set. Now let Sy,x ∈  such that FSyx −∈∧ . It 

follows that Fyx ∉∧ . This implies either Fx∉  or Fy∉ , as F  is a filter. That is, 

either FSx −∈  or FSy −∈ , and so FS −  is a prime down set. 

Conversely, suppose FS −  is a prime down set. Let Fx∈  and xt ≥ . Then 

FSx −∉  and so FSt −∉  as FS −  is a prime down set. Thus Ft∈  and so F  is an 
upset. Finally let Fy,x ∈ . Then FSx −∉ , FSy −∉ . Since FS −  is a prime, so 

FSyx −∉∧ . Therefore Fyx ∈∧ , and so F  is a filter. ● 

 

Following result is an easy consequence of above lemma. 

 
Lemma 1.2.11.  A subset F of a nearlattice S is a prime filter if and only if FS −  is a 
prime ideal.● 

 

Now we include a generalization of theorem 1.2.8 in a general nearlattice. 

 

Theorem 1.2.12. Let S  be a nearlattice. F  be a filter and I  be a down set such that 

Φ=∩ FI . Then there exists a prime down set P  containing I  but disjoint to F . 
Proof: Let χ  be the collection of all filter containing F  and disjoint to I . Then χ  is non-
empty as χ∈F . Suppose C  is a chain in χ . Set { }CXXM ∈∪= . Let Mx∈  and 

xy ≥ . Then Xx∈  for some CX ∈ . Since X  is a filter , so Xy∈  and hence My∈ . 

Thus M  is an upset. Now let My,x ∈ . Then Xx∈  and Yy∈  for some CY,X ∈ . Since 

C  is a chain , so either YX ⊆  or XY ⊆ . Suppose YX ⊆ . This implies Yy,x ∈  , and so 
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Yyx ∈∧  as Y  is a filter. It follows that Myx ∈∧  and hence, M  is a filter containing 

F . Moreover φ=∩ IM . Therefore,  M  is the largest element of C . Thus by Zorn’s 

lemma, M  is a maximal filter containing F . Therefore by Lemma 1.2.10, ML −  is a 

minimal prime down set containing I  but disjoint to F .● 

 

Corollary 1.2.13. Let S  be a nearlattice with 0 and F  be a proper filter of S  . Then 

there exists a prime down set P  such that Φ=∩ PF .● 

 

The following lemma is very useful in proving many results of distributive nearlattice.  

 
Lemma 1.2.14. If 1S  is a subnearlattice of a distributive nearlattice S and 1P  is a prime 

ideal in 1S , then there exists a prime ideal P in S such that PSP ∩= 11 .● 

 

Following theorem is a generalization of Lemma 1.2.14, which will be needed in 

establishing some results in other chapters. 

 
Theorem 1.2.15. Let 1S  be a subnearlattice of S . and 1P  be a prime down set of 1S . 

Then there exists a prime down set P  of S  such that 11 SPP ∩= . 

Proof: Let H  be a down set generated by 1P  in S . Then ( ) Φ=−∩ 11 PSH . Now 11 PS −  

is an upset in 1S  and [ ) Φ=−∩ 11 PSH  where, [ )11 PS −  is the filter generated by 11 PS −  

in S . Then by Theorem 1.2.12 , there exists a prime down set HP ⊇  and disjoint to 
[ )11 PS − . Now 111 SPSHP ∩⊆∩⊆ . Also 11 PSP ⊆∩ . Hence, 11 SPP ∩= .● 
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1.3 Congruences 

 
An equivalence relation Θ  of a nearlattice S  is called a congruence relation if 
( )Θii yx ≡  for ),(2,1 Syxi ii ∈= , then 

 (i) ( )Θ2121 yyxx ∧≡∧ , and  

 (ii) ( )Θ2121 yyxx ∨≡∨  provided 21 xx ∨  and 21 yy ∨  exists. 

It can be easily shown that for an equivalence relation Θ  on S , the above 
conditions are equivalent to the conditions that for Sy,x ∈  if ( )Θyx ≡ , then  

 (i/) ( )Θtytx ∧≡∧  for all St ∈  and 

 (ii/) ( )Θtytx ∨≡∨  for all St ∈  provided both tx ∨  and ty ∨  exists. 

 
The set ( )SC  of all congruences on S is an algebraic closure system on SS ×  and 

hence, when ordered by set inclusion, is an algebraic lattice. 

 

Cornish and Hickman [4] showed that for an ideal I  of a distributive nearlattice S, 
the relation ( )IΘ  , defined by ( )( )Iyx Θ≡  if and only if ( ] ( ] IyIx ∨=∨ ,  is the smallest 

congruence containing I  as a  class.  Moreover the equivalence relation ( )IR , is defined 

by ( )( )IRyx ≡  if and only if for any Ss∈ , Ixs ∈∧  is equivalent to Iys ∈∧ . In fact , 

this is  the largest congruence of S  having I  as a class. 

 
Suppose S  is a distributive nearlattice and Sx∈  we will use xΘ  as an 

abbreviation for ( ]( )xΘ . Moreover  xψ  denote the congruence, defined by ( )xba ψ≡  if 

and only if xbxa ∧=∧ . 

 
Cornish and Hickman [4] also showed that for any two elements b,a  of a 

distributive nearlattice S  with ba ≤ , the smallest congruence identifying a  and b  is 
equal to ba Θ∩ψ  and we denote it by ( )b,aΘ . Also in a distributive nearlattice S , they 

observed that if S  has a smallest element 0, then clearly ( )xx ,0Θ=Θ  for any Sx∈ .  

 

Moreover, we see that: 
(i) τψ =∨ aaΘ , the largest congruence of S . 

(ii) ωψ =∩ aaΘ , the smallest congruence of S  and 

(iii) ( ) aab,a ψ∨=′ ΘΘ  where ba ≤  and ( )/  denotes the complement. 
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Now suppose S  is an arbitrary nearlattice and ( )SE  denote the lattice of 

equivalence relations. For ( )SE, ∈21 ΦΦ  with 21 ΦΦ ∨  denoting their supremum 
( )21 ΦΦ ∨≡ yx  if and only if there exist yz,,z,zx n == L10  such that 

( )211 ΦΦ orzz ii ≡−  for n,,,i L21= . 

 

The following result was stated by Gratzer and Lakser in [13] without proof and a 

proof given below, appeared in Cornish and Hickman [4]. 

 
Theorem 1.3.1  For any nearlattice S ,  ( )SC  is a distributive (complete) sublattice of  

( )SE . 

Proof: Suppose ( )SC, ∈ΦΘ , Define ψ  to be the supremum of Θ  and Φ  in the lattice of 
equivalence relations ( )SE  on S . Let ( )ψyx ≡ . Then there exists yz,,z,zx n == L10  

such that ( )211 ΦΦ orzz ii ≡− . Thus, for any St∈ , ( )211 ΦΦ ortztz ii ∧≡∧−  as 

( )SC, ∈ΦΘ . 

Hence  ( )ψtytx ∧≡∧  and consequently ψ  is a semilattice congruence. Then, in 

particular ( )ψxyx ≡∧  and ( )ψyyx ≡∧ . To show that ψ  is a congruence, let ( )ψyx ≡ , 

with yx ≤ , and choose any St∈  such that both tx ∨  and ty ∨  exists. Then there exists 

nz,,z,z,z L210  such that yz,zx n == 0  and ( )211 ΦΦ orzz ii ≡− . Put yzw ii ∧=  for all 

n,,,i L10= . Then yw,wx n == 0 , ( )211 ΦΦ orww ii ≡− . Hence by the upper bound 

property, twi ∨  exists for all n,,,i L10= (as tytwi ∨≤∨ ) and 

( )211 ΦΦ ortwtw ii ∨≡∨−  for all n,,,i L10= ( as ( )SC, ∈ΦΘ ), i.e. ( )ψtytx ∨≡∨ . 

Then by Cornish and Noor [5] Lemma 2.3 ψ  is a congruence on S . Therefore, ( )SC  is a 

sublattice of the lattice ( )SE .  

To show the distributivity of ( )SC , let ( )( )21 ΘΘΘ ∨∩≡ yx . Then ( )Θyyx ≡∧  

and ( )21 ΘΘ ∨≡∧ yyx . Also ( )Θxyx ≡∧  and ( )21 ΘΘ ∨≡∧ xyx .  
Since ( )21 ΘΘ ∨≡∧ yyx , there exists nt,,t,t L10  such that (as we have seen in 

the proof of the first part), yt,tyx n ==∧ 0 , ( )211 ΘΘ ortt ii ≡−  and yttyx i ≤≤=∧ 0  

for each n,,,i L10= . Hence ( )Θii tt ≡−1  for all n,,,i L10=  and so ( )11 ΘΘ ∩≡− ii tt  or 

( )21 ΘΘ ∩≡− ii tt . Thus ( ) ( )( )21 ΘΘΘΘ ∩∨∩≡∧ yyx . By symmetry, 

( ) ( )( )21 ΘΘΘΘ ∩∨∩≡∧ xyx  and the proof completes by transitivity of the 

congruences.● 

 



 
 

15 

In lattice theory it is well known that a lattice is distributive if and only if every 

ideal is a class of some congruence. Following theorem gives a generalization of this result 

in case of nearlattices. 

 

This also characterizes the distributivity of a nearlattice, which is an extension of 

Cornish and Hickman [4] Theorem 3.1. 

 
Thoerem 1.3.2. A nearlattice S  is distributive if and only if every ideal is a class of some 

congruence. 

Proof: Suppose S  is distributive . Then by Cornish and Hickman [4] Theorem 3.1 for 
each ideal I  of S  ( )IΘ  is the smallest congruence containing I  as a congruence class. 

 To prove the converse, let each ideal of S  be a congruence class with respect to 

some congruence on S . Suppose S  is not distributive. Then by Theorem 1.1.2, we have 
either 5N  (Figure 1.2) or 5M  (Figure 1.3) as a sublattice of S . In both cases consider 

( ]aI =  and suppose I  is a congruence class with respect to Θ . Since  ( )Θ≡∈ adId , . 

Now ( ) ( ) ( )Θdcbcdbcabcbb =∧=∨∧≡∨∧=∧=  That is, ( )Θdb ≡  and this implies 

Ib∈ , i.e. ab ≤  which is a contradiction. Thus S  is distributive. ● 

 

Following results are due to Noor and Rahman [22]. 

 

Theorem 1.3.3.{ Noor and Rahman [22]} Let S  be a distributive nearlattice then,  
(i) For ideals I  and J , ( ) ( ) ( )JIJI ΘΘΘ ∩=∩ . 
(ii) For ideals Aiji ∈  an indexed set, ( ) ( )ii JJ ΘΘ ∨=∨ . ● 

 

Theorem 1.3.4.{ Noor and Rahman [22]} For a distributive nearlattice S, the mapping 
( )II Θ→  is an embedding from the lattice of ideals to the lattice of congruences. ● 
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CHAPTER II 

 

SOME SPECIAL ELEMENTS IN A NEARLATTICE 
 

2.1 Introduction :  
 

Gratzer and Schmidt [14] introduced the notion of some special elements e.g. 

distributive, standard and neutral elements to study a larger class of non-distributive 

lattices. Then Cornish and Noor [5] extended the concepts of standard and neutral 

elements for nearlattices. They also studied a new type of element known as strongly 

distributive element. 

 

Recently Talukder and Noor [29] introduced the notion of modular elements in a 

join semilattice directed below. This notion is also applicable for general lattices. 

 

In this chapter we introduce the concept of modular elements in a nearlattice. We 

have given several characterization of modular and strongly distributive elements. So 

therefore, by studying these elements and ideals, we will be able to study a larger class of 

non-distributive nearlattices. 

 
In a lattice L , an element Lm∈  is called a modular element if for all Lyx ∈,  

with xy ≤ , ( ) ( ) ymxymx ∨∧=∨∧ . Of course, in a modular lattice, every element is a 

modular element. Moreover, if every element of a lattice is modular, then the lattice itself 

is a modular lattice. 

 

In the pentagonal lattice of Figure 1.2, observe that m is modular but t is not. 
Because, here sm <  and ( ) smts =∨∧ , But  ( ) mmts =∨∧ . 

 
Let S be a nearlattice. An element Sm∈  is called a modular element if for all 
Syxt ∈,,  with xy ≤ , ( ) ( )[ ] ( ) ( )ytxmtytmtx ∧∨∧∧=∧∨∧∧ . Of course, a nearlattice is 

modular if and only if its every element is modular. 
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In a lattice L, an element d is called a distributive element if for all Lyx ∈, , 

( ) ( ) ( )ydxdyxd ∨∧∨=∧∨  . 

 

In order to introduce this notion for nearlattices, Cornish and Noor [5] could not 

give a suitable definition for distributive elements. But they discovered  an element 
Sd ∈ , such that dt ∧   is a distributive element in the lattice ( ]t  for every St∈ . They 

found that  these  elements are also new even in case of lattices, and in fact, they are 

much stronger than the distributive elements. So they referred them as “strongly 

distributive” elements.   

 

An element d of a nearlattice S is called a strongly distributive element if for all 
Syxt ∈,,  ( ) ( ) ( ) ( )[ ] ( ) ( )[ ]ytdtxtdtyxtdt ∧∨∧∧∧∨∧=∧∧∨∧ . 

In other words dt ∧  is distributive in ( ]t  for each St∈ . 

 
An element Ss∈  is called a standard element if for all Syxt ∈,, , 

( ) ( )[ ] ( ) ( )sxtyxtsxyxt ∧∧∨∧∧=∧∨∧∧ . 

 

Due to Zaidur Rahman and Noor [30] we know that Ss∈  is standard if and only 

if it is both modular and strongly distributive.  

 
An element Ss∈  is called neutral if (i) it is standard and (ii) for all Styx ∈,, , 

( ) ( )[ ] ( ) ( )ytsxtsytxts ∧∧∨∧∧=∧∨∧∧ . 

 

In this chapter we give several characterizations of modular, strongly distributive, 

standard and neutral elements of a nearlattice. 
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2.2 Some special elements in a nearlattice 

 
Theorem 2.2.1 The definition of modular element in a nearlattice S coincides with the 

definition of modular element of a lattice, when S is a lattice. 
Proof:  Suppose m is a modular element of the lattice S. Let Syxt ∈,,  with xy ≤ , then 

xtyt ∧≤∧ . Since m is modular, so ( ) ( ) ( ) ( )[ ]ytmxtytxmt ∧∨∧∧=∧∨∧∧  

( )( )[ ] ( ) ( )[ ]ytmtxytmtx ∧∨∧∧=∧∨∧∧= , which is the definition of modularity of m 

in a nearlattice. 

Conversely, Let m be modular according to the definition given for a 
nearlattice. Let Syx ∈,  with xy ≤ .  

Choose ymt ∨=  . Then  ( ) ( ) ( )( )ytmtxymx ∧∨∧∧=∨∧  

          
( ) ( )
( ) yxm

ytxmt
∨∧=

∧∨∧∧=
 

Hence m is modular according to the definition of modular element in a nearlattice. ● 

 

Here is a characterization of modular elements in a lattice. 

 
Theorem 2.2.2 Let L be a lattice and Lm∈ . Then the following conditions are 

equivalent. 

(i) m is modular. 
(ii) For xy ≤  with  ymxm ∨=∨  and ymxm ∧=∧  implies yx = . 

Proof: )()( iii ⇒ ; Suppose m is modular xy ≤  and ymxm ∨=∨ , ymxm ∧=∧ . 

Then ( ) ( ) ( ) ymxymxxmxx ∨∧=∨∧=∨∧=  ( by modularity of m )  

        ( ) yymy =∨∧= . 

 
)()( iii ⇒ ; Suppose )(ii  holds. 

Let xy ≤ , then ( ) ( )ymxymx ∨∧≤∨∧  always holds. 

Let ( ) pymx =∨∧  and ( ) qymx =∨∧ . Then  pq ≤ . 

Now mxmp ∧=∧  

Also, ( )[ ] ( ) ( )[ ] ( ) ( ) ( )[ ] mxyxmxxmyxmxmymxmmq ∧=∧∨∧∧∧=∧∨∧∧=∨∧∧=∧ . 

Thus mqmp ∧=∧ . 

Again, mymq ∨=∨  
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( )[ ] ( )

mpmqmy
mymmymxmp

∨≤∨=∨=
∨∨≤∨∨∧=∨

 

as pq ≤ . Thus mymqmp ∨=∨=∨ . 

Hence by )(ii  qp = , that is ( ) ( ) ymxymx ∨∧=∨∧  and so m is modular. ● 

 

Now we extend the above result and give a characterization of a modular element m in a 

nearlattice. 

 
Theorem 2.2.3 Let S be a nearlattice and  Sm∈ . Then the following conditions are 

equivalent.  

(i) m is modular. 
(ii) For Syxt ∈,,  with xy ≤ , ( ) ( ) ( ) ( )ytmtxtmt ∧∨∧=∧∨∧  and 

ymtxmt ∧∧=∧∧  implies ytxt ∧=∧ . 

Proof: )()( iii ⇒ ; Suppose m is modular, let Syxt ∈,,  with xy ≤ , 

( ) ( ) ( ) ( )ytmtxtmt ∧∨∧=∧∨∧  and ymtxmt ∧∧=∧∧ .  

Then  ( ) ( ) ( )[ ] ( ) ( ) ( )[ ]ytmtxtxtmtxtxt ∧∨∧∧∧=∧∨∧∧∧=∧   

( ) ( )ytxmt ∧∨∧∧=  ( by modularity of m) 

( ) ( ) ytytymt ∧=∧∨∧∧= . 

 
)()( iii ⇒ ; Suppose )(ii  holds. Let Syxt ∈,,  with xy ≤   

Now ( ) ( )[ ] ( ) ( )ytxmtytmtx ∧∨∧∧≥∧∨∧∧  always holds. 

Let ( ) ( )[ ] pytmtx =∧∨∧∧  and ( ) ( ) qytxmt =∧∨∧∧ . Then qp ≥ .  

Choose ( ) ( )ytmtr ∧∨∧= . Then ppr =∧  and qqr =∧ . 

( ) ( )[ ] ( ) ( ) ( )[ ] mtytmtmtytmtmmr ∧=∧∨∧∧∧=∧∨∧∧=∧ . 

Thus, ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) rytmtytxmtmtqmtqrmr =∧∨∧=∧∨∧∧∨∧=∨∧=∧∨∧  . 

Then ( ) ( ) ( ) ( ) ( ) ( )prmrqrmrrprmr ∧∨∧≤∧∨∧=≤∧∨∧   as pq ≤  

Hence ( ) ( ) ( ) ( ) rqrmrprmr =∧∨∧=∧∨∧ , 

Also, ( ) ( )[ ] ( ) ( ) ( )[ ] mtxytmtmtxytmtxmpmpmr ∧∧=∧∨∧∧∧∧=∧∨∧∧∧=∧=∧∧  

and ( ) ( )[ ] ( ) ( )[ ] mtxytxmtxtmytxmtmqmqmr ∧∧=∧∨∧∧∧∧∧=∧∨∧∧∧=∧=∧∧ . 

Thus pmrpmr ∧∧=∧∧  and so by )(ii  qrpr ∧=∧ , Hence qp =  and so m is 

modular. ● 
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Now we include the following result in a nearlattice which is parallel to the 

characterization theorem for modular elements in a lattice given in Theorem 2.2.2. But 

this cannot be considered as a definition of a modular element in a nearlattice. 

 
Theorem 2.2.4 Let S be a nearlattice and Sm∈ . The following conditions are 

equivalent. 
(i) For all Syx ∈,   with xy ≤  

( ) ( ) ymxymx ∨∧=∨∧  provided ym ∨  exists. 

(ii) For all Syx ∈,   with xy ≤  if xm ∨ , ym ∨  exist and 

ymxm ∨=∨ , ymxm ∧=∧ , then yx = . 

Proof: )()( iii ⇔  holds by the proof similar to the proof of Theorem.2.1.2 , For the last 

part, let us consider the following nearlattice. 

 

 

 

 

 

 

 

It is observed that m satisfies the condition of Theorem 2.1.4  
Here ba <  and ( ) ( )[ ] ( ) bdbacbadmdb =∧=∨∧=∧∨∧∧ .   

But  ( ) ( ) aaadmdb =∨=∧∨∧∧ 0 , so m is not modular. ● 

 
Theorem 2.2.5 In a Lattice, every strongly distributive element is distributive but the 

converse is not necessarily true.  
Proof. Let d be a strongly distributive element of a lattice L. Suppose Lyx ∈,  and 

dyxt ∨∨= .  

Then  ( ) ( ) ( ) ( ) ( )[ ] ( ) ( )[ ]ytdtxtdtyxtdtyxd ∧∨∧∧∧∨∧=∧∧∨∧=∧∨  

           ( ) ( )ydxd ∨∧∨= ,  and so d is distributive. 

 

 

 

    
              d 
 
   b                                m  
                          
                          c 
 
    a 
 
                    0        

Figure-2.1 
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Now consider the lattice in Figure 2.2. 

 

 

 

 

 

 

 

 
Here d is distributive but ( ) ( ) ( ) ( )[ ] ( ) ( )[ ]btdtatdttrbatdt ∧∨∧∧∧∨∧=<=∧∧∨∧  and 

so it is not strongly distributive.  ● 

 

Following characterization of strongly distributive elements in a nearlattice  is due to 

Cornish and Noor [5]. 

 
Theorem 2.2.6 Let S be a nearlattice and Sd ∈ . Then the following conditions are 

equivalent.  

(i) d is strongly distributive. 
(ii) For all Styx ∈,, , ( ) ( )[ ]( ) ( ) ( ) ( )dtyxtdtdtytx ∧∨∧∧=∧∨∧∨∧∧ . ● 

 
 An element Ss∈  is called a standard element if for all Syxt ∈,,  

( ) ( )[ ] ( ) ( )sxtyxtsxyxt ∧∧∨∧∧=∧∨∧∧ . 

 In a distributive nearlattice every element is standard. If every element of S is 

standard then S is itself a distributive nearlattice. 

 
Theorem 2.2.7 Every standard element in a nearlattice S is modular but a modular 

element may not be standard. 
Proof: Let Ss∈  be standard, let Syxt ∈,,  with xy ≤  

( ) ( )[ ] ( ) ( )[ ]stytxytstx ∧∨∧∧=∧∨∧∧  

      ( ) ( )xstyxt ∧∧∨∧∧=  

      ( ) ( )ytxst ∧∨∧∧=  

                                    1 
 
                                                    d 
              t 
                                               x 
   a         b  
                          r 
 
 
 
   
                0 

Figure 2.2 
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 So s is modular. 

Conversely, consider the lattice of Figure 1.2 

Here m is modular 
But  ( ) sxstms =∧=∨∧  

 ( ) ( ) mmtsms =∨=∧∨∧ 0  

So m is not standard. ● 

 
Theorem 2.2.8 Every standard element is strongly distributive but the converse may not 

be true. 
Proof. Suppose s is standard in S. Let Sbat ∈,,   

Then,     ( ) ( )[ ] ( ) ( )[ ]btstatst ∧∨∧∨∧∨∧  

( ) ( )[ ] ( )( ) ( ) ( )[ ] ( )( )btatststatst ∧∧∧∨∧∨∧∧∧∨∧=  (as s is standard.) 

( ) ( )[ ]( ) ( ) ( )[ ]( )statbstats ∧∨∧∧∨∧∨∧∧=  

( ) ( ) ( ) ( )satbatstsat ∧∧∨∧∧∨∧∨∧∧=  

( ) ( )batst ∧∧∨∧=  

so s is strongly distributive. 

In Figure 2.2, observes that t is strongly distributive, but it is not standard, 
because ( ) ( ) ( )tdxdtxd ∧∨∧>∨∧  .● 

 

Remark:  
In the pentagonal lattice of Figure 1.2, m is modular and t is strongly distributive . 

Observe that, sm ≤  and ( ) sxsmts =∧=∨∧ , but ( ) mmmts =∨=∨∧ 0 . Thus t is not 

modular. On the other hand, ( ) ( ) mmtsxmx =∨=∧∧∨∧ 0 , but 

( ) ( )[ ] ( ) ( )[ ] ( ) ( ) sxstmsmtxmxsxmx =∧=∨∧∨=∧∨∧∧∧∨∧    implies m is not 

strongly distributive. 

 

We conclude the section with the following characterization of standard elements in a 

nearlattice. 

 
Theorem 2.2.9 Let S be a nearlattice. An element Ss∈   is standard if and only if it is 

both modular and strongly distributive. 
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Proof: If s is standard then by Theorem 2.2.7 and Theorem 2.2.8, s is both modular and 

strongly distributive. Conversely, suppose s is both modular and strongly distributive. Let 
Syxt ∈,, . 

Then, ( ) ( ) ( ) ( ) ( )[ ]yxtsxxtsxtyxt ∧∧∨∧∧∧=∧∧∨∧∧  ( as s is modular) 

       ( ) ( ) ( )[ ] ( ) ( )[ ]yxsxxtsxxt ∧∨∧∧∧∨∧∧∧=  ( as s is strongly distributive) 

         ( ) ( )[ ]yxsxxt ∧∨∧∧∧= ( ) ( )[ ]yxsxt ∧∨∧∧=  

  so s is standard. ● 
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 2.3 Modular ideals in a nearlattice 

 
An ideal M of a nearlattice S is called a modular ideal if it is a modular element of 

the ideal lattice ( )SI . That is, M is modular if for all ( )SIJI ∈,  with IJ ⊆ , 

( ) ( ) JMIJMI ∨∩=∨∩ . 

 

An ideal I of a nearlattice S is called a standard ideal if it is standard element of 
the ideal lattice ( )SI . 

 

Of course, every standard ideal of a nearlattice (lattice) is modular, but the 

converse need not be true. In this section we include several characterizations of modular 

ideals of a nearlattice.  

 

Due to Cornish and Noor [5] we know that the supremum of two ideals in a 

nearlattice is not very easy to handle. 

 

But due to Talukder and Noor [29], we know that for a standard ideal K of a 
nearlattice S and for any ( )SIJ ∈ , { }JjKkjkJK ∈∈∨=∨ ,  

 

But in case of a modular ideal M of a nearlattice, we are unable to give a simple 
description of JM ∨  . Even JMx ∨∈  does not imply jmx ∨≤  for some Mm∈  and 

Jj∈ . 

For example, consider the following nearlattice S of Figure 2.3 and ideal lattice 
( )SI  of Figure 2.4. 

 

 

 

 

 

 

 

 

                         t                   x          
        r         
 
 
                   s          
    p     q                y               b 
 
                                          
                
                        0             S 

Figure 2.3 

                    S 
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                        (s]       (y]           
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                        0              I(S) 

Figure 2.4 
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Here S is a modular nearlattice by Theorem 2.2.1. In )(SI , ](b  is modular. Now 

( ] ( ]btq ∨∈ . But qpq ∨≤/  for any ( ]tp∈  and ( ]bq∈ . 

 
Theorem 2.3.1 Let L be a lattice and Lm∈ , m is modular if and only if ](m  is modular 

in )(LI . 

Proof : Suppose m is modular in L. Suppose IJ ⊆ . Let ( ]( )JmIx ∨∩∈ .  

Then Ix∈  and ( ] Jmx ∨∈ .  

This implies jmx ∨≤  for some Jj∈ .  

So  jmjx ∨≤∨ .  

Now IJj ⊆∈ .  

Thus Ijx ∈∨  and ( ) ( ) ( )( ) jmjxjmjxjx ∨∧∨=∨∧∨=∨ ( as m is modular) 

( ]( ) JmI ∨∩∈ . 

Therefore, ( ]( ) JmIx ∨∩∈ . 

Since the reverse inclusion is trivial, so ( ]( ) ( ]( ) JmIJmI ∨∩=∨∩ . 

Hence ](m  is modular in )(LI . 

Conversely, let ](m  be modular in )(LI . 

Suppose  xz ≤ . Then ( ] ( ] ( ]( ) ( ] ( ]( ) ( ]zmxzmx ∨∧=∨∧  

That is, ( )( ] ( )( ]zmxzmx ∨∧=∨∧   

Therefore, ( ) ( ) zmxzmx ∨∧=∨∧ , and so m is modular. ● 

 

Our next result shows that in a nearlattice S , Theorem 2.3.1 is not true. 

 
Theorem 2.3.2 For an element m of a nearlattice S, if ( ]m  is modular in ( )SI , then m is 

modular, but the converse may not be true. 
Proof: Suppose ( ]m is a modular ideal in S. Let xz ≤ .  

Then for all St∈  xxtzt ≤∧≤∧  implies ( ] ( ]xzt ⊆∧ . 

Now ( ] ( ] ( ][ ] ( ] ( ] ( ][ ]ztmxtztmtxt ∧∨∧∧⊆∧∨∧∧∧      

      ( ] ( ]( ) ( ] ( ] ( ] ( ][ ].ztmtxtztmxt ∧∨∧∧∧⊆∧∨∧∧=  

So ( ] ( ] ( ][ ] ( ] ( ]( ) ( ]ztmtxtztmtxt ∧∨∧∧∧=∧∨∧∧∧ . 

This implies ( ) ( ) ( )( )( ] ( ) ( )( ]ztmxtztmtxt ∧∨∧∧=∧∨∧∧∧ . 

And so, ( ) ( )[ ] ( ) ( ) ( )[ ] ( ) ( )ztmtxztmtxtztmtx ∧∨∧∧=∧∨∧∧∧=∧∨∧∧  

Therefore, m is modular in S. 
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To prove the converse, let us consider the following nearlattice and its ideal 

lattice. 

  

 

 

 

 

 

 

 

 
Here d is modular in S. But in ( )SI  (Figure 2.6), ( ] ( ] ( ] ( ]{ }Seggd ,,,,,0  is a pentagonal 

sublattice. Hence ( ]d  is not a modular ideal.● 

 
Theorem 2.3.3 Let S be a nearlattice, ( )SIJI ∈,  and ( ]aJI ∈,  for some Sa∈ . Then                     

{ jixSxJI ∨≤∈=∨  for some }JjIi ∈∈ ,  

Proof: Let JIx ∨∈ . Then by Theorem 1.2.1, jix ∨≤  for some  1, −∈ nAji , where 
JIA ∪=0 . 

Since 1, −∈ nAji , so 2211 , jijjii ∨≤∨≤  for some 22121 ,,, −∈ nAjjii .  

Then 2121 jjiix ∨∨∨≤ , the supremum exists by the upper bound property of S as   

ajjii ≤2121 ,,, . Thus proceding in this way ( ) ( )nn qqppx ∨∨∨∨∨≤ LL 11  for some 
JIAqp ii ∪=∈ 0, , and the supremum exists by the upper bound property again. 

Therefore, jix ∨≤  for some Ii∈ , Jj∈ . ● 

 
Theorem 2.3.4 Let M be a modular ideal of a nearlattice S and J be an ideal. If jmx ∨≤  

for some JjMm ∈∈ , , then jmjx ∨=∨ 1  for some Mm ∈1 . 

Proof: Let jmx ∨≤ , then jmjx ∨≤∨ . 

Thus, ( ] ( ]( ) ( ]( ) ( ]jMjxjMjxjx ∨∩∨=∨∩∨∈∨ . 

So by Theorem 2.3.3[3], qpjx ∨≤∨  for some ( ] Mjxp ∩∨∈  and ( ]jq∈ . 

Since ( ] Mjxp ∩∨∈ , so Mp∈  and jxp ∨≤ . 

Thus jxjpqpjx ∨≤∨≤∨≤∨  implies jpjx ∨=∨ , where Mp∈ . ● 

 

          f           g     
 
 
e                                            h 
                 
                      b     c       
   a                                      d 
                              
                  0                      S 

Figure 2.5 
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Here is a characterizations of modular ideals in a nearlattice. 

 

Theorem 2.3.5 Let M be an ideal of a nearlattice S with the condition that for all ideals J 
of S, and { jmjmxSxJM ∨∨≤∈=∨ ,  exists for some }JjMm ∈∈ , . Then the 

following conditions are equivalent. 

(i) M is modular. 
(ii) JMx ∨∈  implies jmjx ∨=∨  for some Mm∈ , Jj∈ . 

Proof: )()( iii ⇒ ; Suppose M is modular. Let JMx ∨∈ . Then by the given condition, 

jmx ∨≤  for some Mm∈ , Jj∈ . 

Then by theorem 2.3.4, 
jmjx ∨=∨ 1  and so (ii) holds. 

 
)()( iii ⇒ ; Suppose (ii) holds. 

Let ( )SIJI ∈,  with IJ ⊆  

Suppose ( )JMIx ∨∩∈ . Then Ix∈  and JMx ∨∈ .  

Thus by given condition, jmjx ∨=∨  for some Mm∈ , Jj∈ . 

Now, jxm ∨≤  implies MIm ∩∈ . 

Therefore, ( ) JMIx ∨∩∈ , and so ( ) ( ) JMIJMI ∨∩⊆∨∩ . 

Since the reverse inclusion is trivial. so ( ) ( ) JMIJMI ∨∩=∨∩ . 

Hence M is modular. ● 

 

In lattices, we know from [29] that an element m is modular if and only if for all 

ab ≤  with mbma ∧=∧  & mbma ∨=∨  imply ba = . 

 

We conclude the chapter with the following result which is proved by above 

characterization of modular elements. 

 

Theorem 2.3.6 Let M be a modular ideal of a nearlattice S. If MI ∩  and MI ∨  are 

principal, then I is principal. 
Proof: Let ( ]aMI =∨  and ( ]bMI =∩ . 

Then by Theorem 2.3.3, mia ∨≤  for some MmIi ∈∈ , . 

Thus, ( ] ( ] ( ] ( ]aiMibMIMa ⊇∨⊇∨∨⊇∨= . 
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This implies ( ]ibMIM ∨∨=∨ . 

Also, ( ] ( ] ( ]bibMIMb ⊇∨∩⊇∩= . 

This implies ( ]ibMIM ∨∩=∩ . 

Moreover, ( ] Iib ⊆∨ . 

Therefore, ( ]ibI ∨=  as M is modular.● 
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CHAPTER III 
 

STANDARD IDEAL 

 

 3.1 Introduction: Standard ideal in a lattice have been studied extensively by Gratzer 

and Schmidt  [14] and Jamowitz [16]. Fried and Schmidt [10] and Niemeinen [19] have 

extended the idea to convex sublattices, also c. f. [6] and [7]. For the background materials 

on standard ideals we refer the reader to consult the text of Gratzer[11]. 

Cornish and Noor in [5] have generalized the concept of standard ideals to nearlattices. 

According to [5], an ideal A of a nearlattice S is called a standard ideal if it is a standard 
element of the ideal lattice I(S). That is, for any ideal .)()(),(, AJIAJISIJI ∨∧=∨∧∈  

 An element Ss∈  is called neutral if 

(i)  it is standard and 

 (ii)      )()()]()[(,,, ytsxtsytxtsStyx ∧∧∨∧∧=∧∨∧∧∈∀ . 

In this chapter we have given an elaborate description of standard ideals in nearlattices. 

In section 1 we have given a characterization of standard ideals which generalize a result of 

[14]. This is also an extension of result of [5]. We also show that if any standard ideal I  both 

sI ∧ and sI ∨ are principal, then I  itself is principal.  
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3.2    Standard ideal and Neutral element 

 
Lemma 3.2.1  Let s be a standard element of the nearlattice S and a an arbitrary element of 
S. Then sa ∩  is a standard element of the principal ideal ](a . 

Proof: Any element of the ideal ](a  may be written in the form )( Sxxa ∈∩ . Hence it is 

enough to prove that )]()[()]()[()]()[()( ayaxasaxayasax ∩∩∩∪∩∩∩=∩∪∩∩∩ . 

From L. S. of the above  

])[()()]()[()( aysaxayasax ∩∪∩∩=∩∪∩∩∩

 

           

)()( ysax ∪∩∩=

 

)()( yaxsax ∩∩∪∩∩=

 

)]()[()]()[( ayaxasax ∩∩∩∪∩∩∩=

 

Hence the lemma is proved.●  

Theorem 3.2.2    Let I be an arbitrary ideal and s a standard ideal of the nearlattice S. If 

sI ∨  and sI ∧ are principal, then I itself is principal. 

Proof:   Let ](asI =∨  and ](bsI =∧ . Then by theorem, 1sxa ∨=  for some Ix∈  and 

Ss ∈1 . Since ab ≤  and ax ≤ , So bx ∨  exists. By the upper bound property of S, We claim 

that ]( bxI ∨= . Of course, Ibx ⊆∨ ]( . For the reverse inequality, Let It ∈ . Since 

abxt ≤∨, , so again by the upper bound property of S, bxtw ∨∨=  exists and Iw∈ .Then 

](](](](]( axsbxswsa =∨⊇∨∨⊇∨⊇  i.e. ](]( bxsws ∨∨=∨ .Further, 

](](](](]( bbsbxswsIsb =∩⊇∨∩⊇∪⊇∩=  and so ](]( bxsws ∨∩=∩ . This two 

equalities imply that ](]( bxw ∨=  as s is standard and so ]( bxbxw ∨∈∨= . Since, 

](, bxtwt ∨∈≤  and hence ]( bxI ∨= , this completes the proof.● 

Theorem 3.2.3 Let 1s  and 2s  be standard elements of the nearlattice S. Then the sub 

nearlattice },,{ 21 xss  of S is distributive for all .Sx∈  

Proof: Our proof is based upon Th-II [14]. According to this, We have to prove the validity 

of    
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)()()( cabacba ∪∩∪=∩∪                                            (1) 

)()()( cabacba ∩∪∩=∪∩                                            (2) 

)()()()()()( accbbaaccbba ∪∩∪∩∪=∩∪∩∪∩        (3) 

Condition (2) is valid for it asserts the same as (9) of [14]. Since b or c is standard, as a 
consequence of condition (i) of δ of Th-1[14], (1) holds if a  is standard. Otherwise b and c 

are standard. In this case let us start with the right member of (1), apply (9) of [14] for the 
elements caa ∪,  for the standard element b and then for a, b and the standard element c. 

We  get, ])[(])[()()( bcaacabaca ∩∪∪∩∪=∪∩∪  

      )()( bcbaa ∩∪∩∪=  

      )( bca ∩∪=  

 Finally, we prove (3), (3) is a symmetric function of its variables, therefore we have to prove 

it for one permutation of its variables only. Using the assertion of Th-3 [14], according to 
which 21 ss ∪  and 21 ss ∩  are standard, further equality (9) of [14] and condition (i) of δ of 

Th- 1.  

We get, )()()( 2121 xsxsss ∩∪∩∪∩ ])[()( 2121 xssss ∪∩∪∩=  

  ])[()]()[( 212121 xssssss ∪∩∩∩∪∩=  

  ])[()( 2121 xssss ∪∩∩∪=  

  )()()( 2121 xsxsss ∪∩∪∩∪= and this is just (3). 

 Thus the proof is completed.● 

Theorem 3.2.4 Let s be a neutral element of (n] and n is neutral in A. Then s is a neutral 

element of a. 

Proof: By the previous theorem s is standard in A. To show that s is neutral, we need only to 
show that    )()()]()[( txsyxstxyxs ∧∧∨∧∧=∧∨∧∧  for all Atyx ∈,,  . 

Now,       )()())()(()()]()[( ntxnxsstxyxnstxyxs ∧∧∨∧∧∧=∧∨∧∧∧=∧∨∧∧    
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(as n is neutral.) 

)()( ntxsnyxs ∧∧∧∨∧∧∧=   (as s is neutral  in (n].)         

)()( txsyxs ∧∧∨∧∧= . 

The proof is thus complete.●                                                                                       

Theorem 3.2.5  Let s and n be elements of a nearlattice A such that n is neutral, ns ≤  and s 

is standard in (n]. Then s is a standard element of A. 

Proof: Let yxt ,,  be the elements of A. Then  

)))]()[()]()[( nnxyxsnyx ∧∨∧∨∧∨∧

))())()((())()]()([( nxsnyxyxsnyx ∧∧∧∨∧∨∧∧∧∨∧=  

)])()[()(()( snnyxnxyx ∧∨∧∧∧∧∨∧=  as n is neutral. 

)()()( snxnyxyx ∧∧∨∧∧∨∧=  as s is standard in (n] 

)()( snxyx ∧∧∨∧=  

)()( sxyx ∧∨∧=  

Hence using the neutrality of n  

)]()[( sxyxt ∧∨∧∧  

))()(()]()[( nxyxsnyxt ∧∨∧∧∧∨∧∧=  

))()(())()(( nxyxtsnyx ∧∨∧∧∧∧∨∧=  

))()(())()(( nxtyxtsnyx ∧∧∨∧∧∧∧∨∧= as n is neutral. 

))]()(()[()( snnyxxtyxt ∧∨∧∧∧∧∨∧∧= . 

))()(()()( snnyxnxtyxt ∧∨∧∧∧∧∧∨∧∧=  

)()()( nsxtnyxtyxt ∧∧∧∨∧∧∧∨∧∧=  since s standard in (n]. 

)()( sxtyxt ∧∧∨∧∧= . 
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So s is standard in A.● 

Let A be a nearlattice and s be an element of A. Then s is said to standard if ,,, Atyx ∈∀  
)()()]()[( sxtyxtsxyxt ∧∧∨∧∧=∧∨∧∧ . (Notice that both sides exist by the upper 

bound property). 

Obviously, any element of a distributive nearlattice is standard. Now suppose s is a standard 
element of a lattice L, then ,,, Ltyx ∈∀  

)()()()()]([)]()[( sxtyxtsyxtsyxtsxyxt ∧∧∨∧∧=∨∧∧=∨∧∧=∧∨∧∧  

This and a part of following proposition show that the two concepts coincide in a lattice. 

Proposition 3.2.6  The following two conditions for an arbitrary element s of a nearlattice A 

are equivalent. 
(i) For any )()()(,, sxyxsyxAyx ∧∨∧=∧∧∈  where sy ∨  exists. 

(ii) (a)  If sx ∨  and sy ∨  exist for any Ayx ∈,  then syx ∨∧ )(  exists and   

     )()()( sysxsyx ∨∧∨=∨∧ . 

(b) For any Ayx ∈, , for which sysx ∨≥∨  imply yx ≥ . 

Proof: )()( iii ⇒  

Suppose Ayx ∈,  are such that sx ∨ and sy ∨  exist. Then, syx ∨∧ )(  exists because of the 

upper bound property of A. Due to (i), 
.)()()(])[(])[()()( syxsysyxssxysxsysx ∨∧=∨∧∨∧=∧∨∨∧∨=∨∧∨  

Also if sysx ∧≥∧   and sysx ∨≥∨ , then  

)()( syxsxxx ∨∧≥∨∧=      

   )()()()( syyxsxyx ∧∨∧≥∧∨∧=  

   ysyysxy =∨∧≥∨∧= )()(  

)()( iii ⇒ . 

Suppose Ayx ∈,  and sy ∨  exists. Let )( syxp ∨∧=  and )()( sxyxq ∧∨∧= . Now 

psyxsxyxqsxsp =∨∧≤∧∨∧=≤∧=∧ )()()( . Hence spsqsp ∧≤∧≤∧ , that is 

sqsp ∧=∧ . Observe that as spsysp ∨∨≤ ,,  exists and since  
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  ssypspsypp ∨∨∧=∨∨∧= )]([),(

  

                   

)))((()()( aiibysysp ∨∧∨=

 

                             

))()(()( aiibysyp ∨∧=

 

             

syx ∨∧= )(

 

sqssxyx ∨=∨∧∨∧= )()(  

Then by (ii) (b) , qp = , that is (i) holds. 

Now suppose s is standard in A, Ayx ∈,  and sy ∨  exists. Then letting rsy =∨  we obtain 

)()()()()]()[()( sxyxsrxyrxsryrxsyx ∧∨∧=∧∧∨∧∧=∧∨∧∧=∨∧ , as s is 

standard, thus (i) and (ii) holds.  

 

 

 

 

 

Finally, consider the nearlattice A in Fig-3.1. Here, for all Ayx ∈, , the condition (i) holds; 

but )()()]()[( scdacdscacd ∧∧∨∧∧>∧∨∧∧ .● 

 

 

 

 

 

 

                      c                               s 

  

      a             d                

    

                      

             Figure-3.1 
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3.3 Characterization of Standard ideals 

 

We start this section with the following characterization of standard ideal in a nearlattice 

which is due to [5]. We prefer to include the proof for the convenience of the reader. 

Theorem-3.3.1  Let K be an ideal in a nearlattice. Then the following conditions are 

equivalent. 

(i) K is a standard ideal. 
(ii) The binary relation )(KΘ , defined by ))(( Kyx Θ≡ holds if and only if 

)()(),()( byyxyaxyxx ∧∨∧=∧∨∧= for some Kba ∈, , is a nearlattice-

congruence. 
(iii) The binary relation Φ , defined by  )(Φ≡ yx  holds if and only if for all 

)()()()(, cttycttxSt ∧∨∧=∧∨∧∈  for some Kc∈ , is a nearlattice-

congruence. 
(iv) For each ideal H, hkhkHK ∨∨=∨ :{  exists and Kk ∈  and Hh∈ } 

      Moreover, (ii) and (iii) represent the same nearlattice-congruence, namely     
     )(KΘ , the smallest join-partial congruence of A  having K  as a congruence   

     class. 

Proof:  )()( iii ⇒ . Due to condition (i) the relation ))(,)(( AJHJHJ k ∈Θ≡ if and only if 

)()( KJHJJ ∩∨∩=  and )()( KHHJH ∩∨∩=  is a congruence on )(AJ . Then AK /Θ  

(restriction to A) is a nearlattice-congruence on  A  and )( / AKyx Θ≡   if and only if  

)]((](]( Kxyxx ∩∨∧=   and )]((](]( Kyyxy ∩∨∧= . Thus to prove (ii), it is sufficient to 

prove that )]((](]( Kxyxx ∩∨∧= implies )()( ayyxx ∧∨∧= for some Ka∈ . Now 

U
∞

=

=∩∨∧
0

)]((](
n

nAKxyx , where )]((](0 KxyxA ∩∪∧=  and qpqptStAn ∨∨≤∈= ;{  

exists and }, 1−∈ nAqp  for ,.....;3,2,1=n  and we show, by induction, that 

)()(:{)]((]( axyxttKxyx ∧∨∧≤=∩∨∧  for some }Ka∈ . 

If 0At ∈  then ]( yxt ∧∈  or Kxt ∩∈ ]( . In the first instance, )()( kxyxyxt ∧∨∧≤∧≤  

and Kt ∈ . Thus the result  holds for 0=n . Suppose the result holds for n-1 for some 1≥n . 
Let nAt ∈ . Then qpt ∨≤  with 1, −∈ nAqp . So )()( 1kxyxp ∧∨∧≤  and 
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)()( 2kxyxq ∧∨∧≤  for some k Kkandk ∈21 .Then 

)()()()()( 21 kxyxkxkxyxt ∧∨∧=∧∨∨∨∧≤  for some Kk ∈ (Since 

xkxkx ≤∧∨∧ )()( 21  and is in K, it is of the form kx ∧  for some Kk ∈ ). Thus we 

have )()(:{)](()( kxyxttkxyx ∧∨∧≤=∩∨∧  for some Kk ∈ } in effect 

, )()( axyxx ∧∨∧≤  for some Ka∈ and so )()( axyxx ∧∨∧=  ,as required. 

)()( iii ⇒ . Let ))(( Kyx Θ≡ .Since )(KΘ  is a congruence, ))(( Ktyyx Θ∧≡∧  for any 

At ∈ }, So )()( atxtyxtx ∧∧∨∧∧=∧  and )()( btytyxty ∧∧∨∧∧=∧  for some 

Kba ∈, . Then )()()()])()[(()( btattxbtatttx ∧∨∧∨∧=∧∨∧∧∨∧             

)])()[(()()()()( btatttybtattyx ∧∨∧∧∨∧=∧∨∧∨∧∧= .Observe that Kbtat ∈∧∨∧ )()( . Thus 

)(Φ≡ yx  . Conversely, if )(Φ≡ yx  then for any )()()()(, cttycttxAt ∧∨∧=∧∨∧∈  for 

some Sc∈ . Choosing xt =  and yt = , we have )()( cxyxx ∧∨∧=  and 

)()( cyyxy ∧∨∧=  respectively. Thus, ))(( Syx Θ≡  and Φ  is the congruence )(SΘ . 

)()( iviii ⇒ . Let }:{ KSandkskexistsandsksT ∈∈∨∨= . Suppose KkSsksx ∈∈∨≤ ,, . 

Clearly ))(( Skks Θ≡∨  and so ))()(()( Skxksxx Θ∧≡∨∧= . Hence for all 

)()()()(, cttkxcttxAt ∧∨∧∧=∧∨∧∈  for some Sc∈ . 

Choosing xt = , we obtain )()( cxkxx ∧∨∧=  and so Tx∈ . But T is closed under existent 

finite suprema. It follows that T is an ideal of A and KST ∨=  . 

)()( iiv ⇒ . Let )( HKJx ∨∩∈  then Jx∈  and HKx ∨∈ . So hkx ∨=  for suitable Kk ∈  

and Hh∈ . Then )()( hxkxx ∧∨∧=  and so )()( HJKJx ∨∨∩∈ . The reverse inclusion 

is obvious. Thus )()()( HJKJKKJ ∩∨∩=∨∩ ; K is a standard ideal. The final assertion 

is clear in view of the proof of )()( iiiii ⇒ .● 

 

Theorem 3.3.2   For an ideal A of a nearlattice S, the following conditions are equivalent; 

(i) A is a standard ideal. 
(ii) The equality  )()()( KIAIKAI ∩∨∩=∨∩  holds if I and K are principal 

ideals. 
(iii) If for the principal ideals I and J the inequality )( IAJ ∨⊆  holds, then 

)()( IJAJJ ∩∨∩= . 



37 
 

(iv) The relation )(AΘ  of S defined by ])[( Ayx Θ≡  if and only if 

)()( axyxx ∧∨∧=  and )()( byyxy ∧∨∧=  for some Aba ∈, , is a 

congruence relation. 

 Proof:   

( ) ( )iii ⇒  is obvious, from the definition of the standard ideal. 

( ) ( )iiiii ⇒  is clear. 

( ) ( )iviii ⇒ .  Obviously the relation is an equivalence relation. 

Let yx ≤ and )(Ayx Θ≡   then )( byxy ∧∨=  for some Ab∈ , suppose for some tySt ∨∈ ,  

exists. 

 Then tx∨   exists. 

Hence, tybtytxbytxty ∨≤∧∨∨∨≤∧∨∨=∨ ))(()()()(  

Thus, ))(()( btytxty ∧∨∨∨=∨  

So ))(( Atytx Θ∨≡∨ . 

Now, Axbyxty ∨∈∧∨≤∧ ]()( , So Axty ∨⊆∧ ](]( .  

Then by (iii), ])((](])(()(]( tyAtxtyAtyxty ∧∧∨∧=∧∧∨∧∧=∧  . 

Then a similar proof of (i) implies (ii) of theorem 4.1.1 shows that )()( atytxty ∧∧∨∧=∧   

for some Aa∈ .  

Thus by lemma 2.1.3, )(AΘ  is a congruence relation. 

( ) ( )iiv ⇒   holds by theorem-3.3.1.● 

An element s is called an upper element of a nearlattice S if xs ∨   exists for all Sx∈ . 

Central element:  An element Ss∈  is called a central element if  

(i) S is upper and neutral and 

(ii) S is complemented in each interval containing it. 
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Theorem-3.3.3:  The following conditions on an element z of a nearlattice S coincide. 

(i) z is central . 

(ii) z  is neutral  and upper, and complemented in each interval, which contain it.  

(iii) z is standard and upper, and complemented in each interval, which contains 

it. 

 Proof:      

)()( iii ⇒ . Suppose (i) holds. Due to Lemma-3.2[18], z is neutral and the remainder is not 

hard to obtain. 

)()( iii ⇒ .  As z is upper, standard and distribuant,  proposition-2.2  and Lemma-3.1 [5] 

imply that the map ](](: zzA ×→Φ , where [z) is the subnearlattice }:{ ztAt ≥∈ , is a 

neaelattice homomorphism. AlsoΦ  is one-to-one. But Φ  is onto as ](](),( zzba ×∈  says 

that bza ≤≤ , and so )(),( cba Φ= , where c  is the relative complement of z in the interval 

[a, b]. ThusΦ  is an isomorphism and it does the required thing for z. Hence z is central.  

)()( iiii ⇒ . is obvious. 

)()( iiiii ⇒ . Suppose (iii) holds and Styx ∈,, . Consider the interval 

)]()(),()[( txyxzzxtzyx ∧∨∧∨∧∧∨∧∧ , which certainly contains z. Let r be the 

complement of z in this interval. From proposition-2.2 [18], we infer that, 
)()()()()]()([)( zyxryxzryxzxyxzyxyx ∧∧∨∧∧=∨∨∧=∧∨∧∨∨∧=∧ . 

Similarly, )()( ztxrtxtx ∧∧∨∧∧=∧ . 

Thus )()()()()()( ztxryxrtxryxtxyx ∧∧∨∧∧∨∧∧∨∧∧=∧∨∧  

rzrrtxryx ≤∧∨∧∧∨∧∧= )()()(  

and so  )()()]()[( zxtzyxzrtxyxz ∧∧∨∧∧=∧≤∧∨∧∧ . 

Therefore, )()()]()[( txzyxztxyxx ∧∧∨∧∧=∧∨∧∧  , 

Which says that z is also distribuant and, therefore, neutral. 
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From the above theorem, it is clear that a nearlattice is a relatively complemented distributive 

lattice if and only if each of its elements is central.● 

Proposition 3.3.4 The following conditions upon an element a of a nearlattice S are 

equivalent. 

(i) a  is standard. 
(ii) The relation aΘ , defined by )( ayx Θ≡  if and only if 1)( ayxyx ∨∨=∨  for 

some aa ≤1 , is a congruence relation. 

(iii)  A is a distributive element, that is )()()( yaxayxa ∨∧∨=∧∨  for any 

,, Syx ∈  and cb =   whenever caba ∧=∧  and caba ∨=∨ . 

(iv)  For each ideal K, },:{]( 11 KkaakaKa ∈≤∨=∨ . 

(v) (a] is a standard element of the ideal nearlattice of S.● 
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CHAPTER IV 

HOMOMORPHISM AND STANDARD IDEALS 
 

 

4.1 Introduction:  Gratzer and Schmidt in [14] proved many results on homomorphism 

kernels and standard  ideals of a lattice. Their main aim was to translate several theorems of 

group theory to lattice theory. In this chapter we have generalized some of their results to 

nearlattices. We have also given the characterizations of those nearlattices whose all congruences 

are standard (neutral) which are generalizations of two recent papers [6] and [7]. 

 
A  congruence Φ  of  a nearlattice A is called a standard ( neutral) if )(SΘ=Φ  for some standard 

(neutral) ideal S of A. 

For any two nearlattices 1A  and 2A  a map 21: AA →Φ  is called an isotone if for any 1, Ayx ∈  

with yx ≤   implies )()( yx Φ≤Φ  in 2A .Φ  is called a meet homomorphism  if for all 

)()()(,, 1 yxyxAyx Φ∧Φ=∧Φ∈ , clearly every meet homomorphism is an isotone. 

A meet homomorphism 21: AA →Φ  is called nearlattice homomorphism if 

)()()( yxyx Φ∧Φ=∧Φ when yx ∧  exists in 1A . Since Φ  is isotone )()(),( yxyx ∨Φ≤ΦΦ . 

Therefore )()( yx Φ∨Φ  exists by the upper bound property of 2A . 

In section-2, we have shown that if s is a standard ideal of a nearlattice A, then SΘ  is the 

extension of )(SΘ to )(AI  and )(SΘ  is the restriction of SΘ  to the nearlattices A. Then we have 

shown that in a sectionally complemented nearlattices all congruences are standard. We also 

show that in a relatively complemented nearlattice A with 0, if every standard ideal of A is 
generated by a finite number of standard elements, then the congruence lattice )(AC  is Boolean. 

Finally we have generalized two results of [6] and [7] regarding nearlattices all of whose 

congruences are standard (neutral). 

In section-3, we have given homomorphism theorem for nearlattices. Then we have generalized 

two isomorphism theorems of [14] for nearlattices. 
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4.2 Homomorphism kernels and standard ideals 
 

By [5, corollary-2.7], we know that the set of all standard ideals of a nearlattice A is a 
subnearlattice of )(AI . Also the congruence SΘ , where S is standard form a sublattice of  

))(( AIΘ , and SS Θ→  is an isomorphism. Suppose Θ  is a congruence relation , Θ  defines in 

the natural way a homomorphism of )(AI  under which ))(,( AIJIJI ∈≡  if and only if to any 

Ix∈ , there exists a Jy∈  such that )(Θ≡ yx   and conversely. We call this congruence 

relationΦ   of )(AI  includes a congruence relation of A under which yx ≡  if and only if 

)]((]( Φ≡ yx .This is called the restriction of Φ  to A. We now give the following result which is 

a generalization of [4, Lemma 5]. 

Theorem 4.2.1  Let S be a standard ideal. Then SΘ  is the extension of )(SΘ to )(AI  and )(SΘ  

is the restriction of SΘ to the nearlattice A. 

Proof:  Let )(SΘ be the extension of )(SΘ  to )(AI  and ))(( SJI Θ≡ . We suppose JI ⊆ . 
Choosing a Jy∈  we can find an )( xyIx ≥∈  with ))(( Syx Θ≡  and so there exists an xyS  with 

)( xySyxy ∧∨= . The ideal 'S  generated by the xySy ∧  satisfies SS ⊆'  and JSI =∨ '  hence 

)(Θ≡ JI . On the other hand, if )( SJI Θ≡  then JSI =∨ '  with a suitable SS ⊆' . Then for any 

Jy∈   it follows that SIy ∨∈  and so )( syxsxy ∧∨=∨=  for some Ss∈  as S is standard. 
Thus, ))(( Syx Θ≡  by  [Th-3.1.1 ], and hence SS Θ=Θ )(  . 

To prove the 2nd assertion,  suppose )]((]( Sbaa Θ∧≡ . 

Then )]((](](]( SS babaa Θ∧=Θ∧≡  and hence '](]( Sbaa ∨∧=  for suitable SS ⊆' . 

Then Sbaa ∨∧∈ ](   and since S is standard so by Theorem-3.1.1, )()( 1sabaa ∧∨∧=  for 

some Ss ∈1 . Similarly, we can show that )()( 2sbbab ∧∨∧=  for some Ss ∈2 . 

Thus )(Sba Θ≡ . Hence )(SΘ  is  the restriction of SΘ  to A .●  

Corollary 4.2.2 (Nasima  Akhter [18]).The correspondence SS Θ→Θ )(  is an isomorphism 

between  the lattice of all standard congruence relations of  A and the lattice of all principal 
standard congruence relations of )(AI .● 

Theorem 4.2.3 Let S be a sectionally complemented nearlattice. Then every homomorphism 

kernel of S is a standard ideal is the kernel of precisely one congruence-relation. 
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Proof:  Suppose the ideal I of S is homomorphism kernel induced by the congruence relation Θ . 
Let Sbaba ∈Θ≡ ,),(  then )(Θ≡∧ aba  and  aba ≤∧≤0 . Since S  is sectionally 

complemented, So there exists c ; Such that 0=∧∧ cba  and acba =∨∧ )( . This implies 

)()(0 Θ≡∧=∧∧= ccacba .  

Since I  is a homomorphism kernel. 
So Ic∈ , Moreover, )()()( cabacbaa ∧∨∧=∨∧=  

Similarly, We can show that, )()( dabab ∧∨∧= for Id ∈ . 

Therefore, I is a standard ideal. At the same time, We have proved that if I is the kernel of 
homomorphism induced by Θ , then )(Θ=Θ I . 

Hence, every standard ideal is the kernel of precisely one congruence relation.● 

Theorem 4.2.4. (Nasima Akhter [18])  Let A be a relatively complemented neaelattice with 0. If 

every standard ideal of A is generated by a finite number of standard elements then C(A), the 

congruence lattice is Boolean. Moreover, the converse of this is not true.● 

Theorem 4.2.5  21: ss →Θ  is an onto homomorphism, where 21 , SS are nearlattices and '0 is 

least element of 2S , then Θker is an ideal of S . 

Proof: Since Θ is onto, 2
'0 S∈  thus Φ≠Θker  as pre-image of '0 exists in 1S . 

Now )(0)(ker, ' baba Θ==Θ⇒Θ∈  

Θ∈∨⇒∨=Θ∨Θ=∨Θ ker00)()()( '' bababa . 
Again Ssa ∈Θ∈ ,ker  gives  '0)( =Θ a . 

Also  Θ∈∧⇒=∧=Θ∧Θ=∧Θ ker00)()()( '
1

' sassasa , where 21 Ss ∈   

Hence Θker is an ideal of S.● 

Theorem 4.2.6  Let A be a nearlattice. Then the following conditions are equivalent, 

(i) All congruence of A are standard. 
(ii) A has a zero and for all Ayx ∈,  there exists Aa∈  such that 

),(0),()( xyxaaxyxx ∧Θ≡∧∨∧= . 

Proof: ( ) ( )iii ⇒  . Since the smallest congruence ω of A is standard, A  must have a zero. 

Let Ayx ∈,  then )(),( Ixyx Θ=∧Θ , for some standard ideal I .i.e. )(Iyxx Θ∧≡   , where I  is 

standard, hence ),()( axyxx ∧∨∧=  for some Ia∈ . Hence ),(0 xyxa ∧Θ≡ . 
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( ) ( )iii ⇒ . Let Φ  be a congruence and Φ= ]0[I . Suppose )(Φ≡ yx . Then by (ii) there exists 

Aa∈  such that )()( axyxx ∧∨∧=  and )),((0 xyxa ∧Θ≡ . Since Φ≤∧Θ ),( xyx , so 

)(0 Θ≡a  and hence Ia∈ . Similarly, ),()( byyxy ∧∨∧= for some Ib∈ . Thus by [Theorem-

3.1.1] I is a standard ideal and )(IΘ=Φ , and so (i) holds.● 
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4.3  Isomorphism Theorem 
 

In [14] Gratzer and Schmidt have proved isomorphism theorems for standard ideals in lattices. In 

their paper they have translated several theorems of group theory to lattice theory using ideal, 

standard ideal, factor lattice and join operation for subgroup, invariant subgroup, factor subgroup 

and group operation respectively. In this section we generalize two isomorphism theorems for 

standard ideals of nearlattices. 

For any congruence Θ on  A, Θ/A denotes, the set of all congruence classes of A . We define ∧  
on Θ/A  by .][][][ Θ∧=Θ∧Θ baba  If for any baAba ∨∈ ,, exists, then we define 

.][][][ Θ∨=Θ∨Θ baba  
 
Theorem 4.3.1 Θ/A  is a nearlattice. 

Proof: Of course Θ/A is a meet semilattice. We need to show that it has the upper bound 

property. 
Let  Θ≤ΘΘ ][][,][ cba , then Θ∧=Θ∧Θ=Θ ][][][][ cacaa   

Θ∧=Θ∧Θ=Θ ][][][][ cbcbb  

Now, )()( cbca ∧∨∧ exists by the upper bound property of A. Hence, 

Θ∧∨∧=Θ∧∨Θ∧ )]()[(][][ cbcacbca and so Θ∨Θ ][][ ba exists. Therefore Θ/A  is a 

nearlattice. 
If Θ  is a congruence of a nearlattice A then the map Θ→Φ /: AA  defined by Θ=Θ ][)( aa  is 

the natural homomorphism  induced by Θ . For a standard ideal S of A we denote the quotient 
nearlattice )(/ SA Θ , simply by SA / . 

Now we give the homomorphism theorem for nearlattices which is a generalization of [11, Th-

11, P-26].● 

 

Theorem 4.3.2 [Nasima Akhter[18], Th-2.2] Every homomorphic image of a nearlattice A is 
isomorphic to a suitable quotient nearlattice A. In fact 1: AA →Φ  is a homomorphism of  A onto 

1A  and if Θ is the congruence relation of A  defined by )(Θ≡ yx  if and only if )()( yx Φ=Φ  

then 1/ AA ≅Θ ; an isomorphism is given by Axxx ∈Φ→ΘΨ ),(][: .● 
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Lemma 4.3.3  Let S be a nearlattice and A a standard ideal of S. Then ],[],[ AIAIAI ∪≅∩  for 

all )(SII ∈ . An isomorphism is given by the correspondence ]),[( IAIXAXX ∩∈∪→ . The 

inverse correspondence is ]),[( AIAYIYY ∪∈∩→ . 

Proof:  From [14, cond. ofi))(( 'σ Th-2], we get that ]),[( IAIXAXX ∩∈∪→  is a 

homomorphism. If ],[, 21 IAIXX ∩∈  then 21 XAXA ∩=∩ (for IXX ⊆21 ,  and so 
)2,1,1 =∩=∩∩=∩ iIAIXAXA i . 

Thus from [14, cond. )()( ' iiσ Th-2.], we get 21 XAXA ∪≠∪  

Therefore, AXX ∪→  is an isomorphism of ],[ IAI ∩  into ],[ AIA ∪ , we prove that, 

]),[()( AIAYYAIY ∪∈=∪∩  and this will prove that, ]),[( AIAYIYY ∪∈∩→  is the 

inverse of ]),[( IAIXAXX ∩∈∪→  and the latter correspondence maps ],[ IAI ∩  onto 

],[ AIA ∪ . Indeed using [14, cond. ofi))(( 'σ Th-2], we get 

YSIYAIAYAIY =∪∩=∪∩∪=∪∩ )()()()(  and this completes the proof of the Lemma 

.● 

 

Theorem 4.3.4  (First isomorphism theorem for standard ideals) : Let S be a nearlattice, A be a 

standard ideal and I an arbitrary ideal of S. Then IA∩  is a standard ideal of I and 
)/(/)( IAIAAI ∩≅∪ . 

Proof :  Corollary of Lemma-9 of standard ideals in lattice by Gratzer and Schmidt [14] is just 

the first assertion of our theorem. The simplest mean to prove the isomorphism statement is the 

use of the first general isomorphism theorem of REDEI [23], (Chapter-1). We have only to prove 

that every congruence class of the nearlattice AI ∪  may be represented by an element of I. 
Indeed, any element x of AI ∪ is of the form ay ∨  where Aa∈  and Iy∈   
[ Gratzer and Schmidt[14], cond. )()( ' iiσ Th-2.], 

Further, ])[( Ayayx Θ≡∪= , and so the congruence class that contains x may be represented by 

Iy∈ . 

According to Gratzer and Schmidt [14] Th-4, The isomorphism theorem is equivalent to the 
isomorphism to the intervals ],[ AIA ∪  and ],[ IAI ∩  of )(SI . We can add to the isomorphism 

statement of Lemma 4.3.3 

In the last proof of Lemma we have got a new proof of the isomorphism theorem.● 
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Theorem 4.3.5  (2nd isomorphism theorem of standard ideals):  Let S  be a nearlattice and A  be 
an ideal and T a standard ideal of S. TA ⊇ .Then A  is standard if and only if TA /  is standard 
in TS / , and in this case )//()/(/ TATSAS ≅ . 

Proof:  If A  is standard, then from Lemma-6 [14], We get, that, TA /  is standard in 

TS / .Conversely, suppose TA /  is standard in TS / . We show Gratzer and Schmidt [14], cond. 
2)( '' −ofThγ  holds for A. 

We have seen in the proof of Th-1[14, )"()(" γβ implies  ], that it is enough to prove that 
])[( Ayx Θ≡  and yx>  imply ])[( Auyux Θ∩≡∩  for all Su∈ . (Here ][AΘ  denotes the 

relation defined in cond. of)( ''γ Th-2 of [14]. We denote by [ a ] the image of the element a 

under the homomorphism TSS /~ . Then we have ])/[( TAyx Θ≡ , and since TA /  is standard 

in TS / , therefore, with a suitable TAs /∈  we get, suyux ∪∩=∩ )( . 

Further, since T  is standard in S , we can find a Tt∈  such that tsuyux ∪∪∩=∩ ])[( ;  we 

put tss ∪=1  and get Assuyux ∈∩∩=∩ 11 ,)[( . 

This proves A  is standard. 

We remark that during the proof we have made effective use of the fact that the congruence 
classes of TS /  under ]/[ TAΘ  are the homomorphic image of those of S under ][AΘ .● 
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