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Abstract 

In this thesis study of the nature of the weakly complemented nearlattice is presented. By 

a nearlattice S we will always mean a meet semilattice together with the property that 

any two elements possessing a common upper bound, have a supremum. Cornish and 

Hickman [71 referred this property as the upper bound property, and a semilattice of this 

nature as a semilattice with the upperhound property. Cornish and Noor [8] preferred to 

call these semilattices as nearlattices, as the behaviour of such a sernilattice is close to 

that of a lattice than an ordinary semilattice. Of course a nearlattice with a largest element 

is a lattice. Since any semilattice satisfying the descending chain condition has the upper 

bound property, so all finite semilattices are nearlattices. In lattice theory, it is always 

very difficult to study the non-distributive and non-modular lattices. Gratzer [12] studied 

the non-distributive lattices by introducing the concept of distributive, standard and 

neutral elements in lattices. Cornish and Noor [8] extended those concepts for nearlattices 

to study non-distributive nearlattices. On the other hand. J.0 Varlet [33] studied another 

class of non-distributive lattices with 0 by introducing the concept of 0-distributivity. In 

fact this concept also generalizes the idea of pseudocomplement in a general lattice. In 

this thesis we have extended the concept of weakly complemented nearlattice in terms of 

homomorphism theorem 
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CHAPTER 1 

IDEALS, CONGRUNCES AND RELATIVE ANNIHILATORS IN A 

NEARLATTICE 

1. 1 Preliminaries 

The intention of this section is to outline and fix the notation for some of the 

concepts of nearlattices which are basic to this thesis. We also formulate some results on 

arbitrary nearlattices for later use. For the background material in lattice theory we refer 

the reader to the text of Birkhoff [41 . Gratzer [12]. [131 and Dave)' [10]. 

By a nearlattice S we will always mean a lower (meet) semilattice which has the 

property that any two elements possessing a common upper bound have a supremum. 

Cornish and Hickman [71, referred this property as the upper bound properly and a 

semilattice of this nature as a semilattice with the upper bound property. The behaviour of 

such a semilattice is closer to that of a lattice than an ordinary semilattice. 

Of course, a nearlattice with a largest element is a lattice. Since any semilattice 

satis'ing the descending chain condition has the upper bound property, so all finite 

semilattices are nearlattices. 

Now we give an example of a meet semilattice which is not a ncarlattice. 

Example: In R 2  let us consider the set 

shown in the Figure 1 .1 

= ((o,o)} {(i  ,o)} U {(o,i)} u {(l y) >1 

(0,1) 

(0ö (1,0) 

Figure 1.1 



Let us define the partial ordering "::~' on S by (x,y):!~(x1 ,y1 ) if and only if x:5x;  

and y:~ Yi  Clearly. (5: ~) is a meet semilattice. Both (1.0) and (0,1) have commor,  

upper bounds. In fact {(l,y) I v > i} are common upper bounds of them. But the 

supremum of(l,0) and (0,1) does not exist. Therefore is not a nearlattice. 

The upper bound property appears in Gratzer and Lakser [14], while Rozen [281 

show -that it is the result of placing certain associativity conditions on the partial join 

operation. Moreover, Evans [ill referred nearlattices as conditional lattices. By a 

conditional lattice he means a lower scniilattice S with the condition that for each 

x e s, S y ~ is a lattice: and it is very easy to check that this condition is 

equivalent to the upper bound property of S . Also Nicmincn [201 in his paper refers to 

nearlattices as "partial lattices ". Whenever a nearlattice has a least element we will 

denote it by 0. If x1 , x2 . , x,, are elements of a nearlattice then by x1  v x2  v v x, w 

mean that the supremum of x1 , x21 ...,x exists and x1  v v v x,, symbolizing thi; 

supremum. 

A non-empty subset K of a .iearlattice S is called a subnearlattice of S if for any 

a,h E K, both a Al) and a v b (whenever it exists in S) belong to K (A and v are taken 

in S), and the A and v of K are the restrictions of the A and v of S to K. Moreover, a 

suhnearlattice K of a nearlattice S is called a sub/attice of S if a v h K for all 

a,h K. 

A nearlattice S is called modular if for any a,h,c E S with c !~ a 

UA(bvc)=(aAb)vc whenever b v c exists. 

A nearlattice S is called distributive if for any x1 . x2 , • 

X A (x1  v x2  v v x,) = (x A x1  ) v (x i x2 ) v ... v (x A x,,) whenever x1  v x2  v v x 

exists. Notice that the right hand expression always exists by the upper bound property of 

S. 
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Lemma 1. 1. 1: A nearlattice S is distributive (niodular) if and only if {y E S I y !~- X1 is c' 

distributive ('modulal) lciitice for each x e S. 

Let us consider the following two lattices: pentagonal lattice N5  and Diamond 

lattice M5. Many lattice theorists study on these two lattices and given several results. 

x 

S 

a 

1-fl 

0 
Figure- I .2 

C 

 

C 

'I 

Figure-i .3 

 

Hickman in [15] has given the following extensions of very fundamental results of lattice 

theory. 

Theorem 1. 1. 2: A nearlattice S is distributive if and only if S does not contain 'i 

sublattice isomorphic to N 5  or M 5  [in Figure 1.2 and 1. 31. • 

Theorem 1. 1. 3: A nearlattice S is modular if and only US does not contain a sublatlice 

isomorphic to N 5 . 

In this context it should be mentioned that many lattice theorists (e.g. R. Bables 

[2], J. C. Varlet[33], R. C. Hickman[15] and K. P. Shurn[31]) have worked with a class of 

semilattice S which has the property that for each x,a j,a,, ' -,a,. E S. if a v a2  v v a, 

exists then (x A a1  )v (x A a2 )v. . . v (x A a,) exists and equals X A (a1  V 02  v. v ar ). 

Babies [2] called them as prime semilattices while Shum [31] referred them as weakly 

distributive semilattices. 

Hickman in [15] has defined a ternary operation j by (x, y, z) = (x A y)v (y A 

on a nearlattice S (which exists by the upper bound property of S). In fact he has shown, 

which can also be found in Lyndon [18] Theorem 4, that the resulting algebras of the type 
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(S; j) 
form a variety, which is refcrrecl to as the variety of join algebras and following are 

its defining identities. 

(i) x 

(x, y, = j(y, x, y) 

j(j(x, y, y, x)) = j(x, A), z, y),  x) 

 . (x,y,z)= (z,y,x) 

 j(j(x, y, z), j(x, y,x), j(x, Y. z)) = j(x, y, x) 

 j(j(x, y, Y. z) =AX, y, z) 

 j(x, y, .(x, z, = y, x) 

 t(j(x, y, y, z)), Ax ,  Y. z), j(x, y, AX, y,  ZM =AX, y, z) 

We do not elaborate it further as it is beyond the scope of this thesis. 

We call a nearlattice S a medial nearlattice if for all x,y,z € S 

m(x,y, z)= (x A y)v (y A z)v (z A x) exists. For a (lower) sernilattice S. if in(x,y, z) 

exists for all x,y,z e S. then it is not hard to see that S has the upper bound property and 

hence is a nearlattice. Distributive medial nearlattices were first studied by Sholander [29', 

30, and then by Evans [II]. Sholander preferred to call these as medial semilatlices. He 

showed that every medial nearlattice S can be characterized by means of an algebra 

s;m) of type (3), known as medial algebra, satisfying the following two identities: 

m(a,a.h)e 

m(m(a, b, c), ,n(a, h, d), e) = ;n(m(c, d, 

A nearlattice S is said to have the three properties if for any a, b.c E S. a v b v c 

exists whenever a v h. h v c and c v a exists. Nearlattices with the three properties 

were discussed by Evans [lii, where he referred it as strong conditional lattices. 

The equivalence of (i) and (iii) of the following lemma is trivial, while the prooff 

(i) <> (ii) is inductive. 



5,,  

Lemma 1. 1. 4: {Evans [1 1]}. For a nearlattice S the following conditions are 

S. 
equivalent: 

S has the three properties. 

ai) Every pair of a finite number n (~! 3) of elements of S posses a 

supremurn ensures the existence of the supremum of all the n elements. 

S is medial. 

A family A of a subset of a set A is called a closure system on A if 

Ae A and 

A is closed under arbitrary intersection. 

Suppose B is a subfamily of A: B is called a directed system if for any X,Y E B 

there exists Z in B such that X, Y Z. 

if u {x :X E B A for every directed system B contained in the closure system 

A , then A is called algebraic. When it is ordered by set inclution, an algebraic closure 

system forms an algebraic lattice. 
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1. 2 Ideals of Nearlattices 

A non-empty subset I of a nearlattice S is called a down set if for any x e S and 

yEI, x:!~y implies XE'. 

A non-empty subset / of a nearlattice S is called an ideal if it is a down set and 

closed under existent finite suprema. We denote the set of all ideals of S by i(s), which 

is a lattice. If S has a smallest element 0 then i(s) is an algebraic closure system on S 

and is consequently an algebraic lattice. 

1-lowever, if S does not possess smallest element then we can only assert that 

J(S)o {t} is an algebraic closure systcni. where is the empty subset of S 

For any subset K of a nearlattice S, (KI denotes the ideal generated by K. 

Infimum of two ideals of a nearlattice is their set theoretic intersection. Supremum 

of two ideals I and J in a lattice L is given by 

I v j = {x E L I x :!~ 1 v j /br sonic I E I, / E .i}. Cornish and Hickman in {7] showed that 

in a distributive nearlattice 5' tor two iaeais 1 uiiu .1 

i v ,i = jiv / I I E I, .1 E .1 where i v / exisl.s}. But in a general nearlattice the fomula for 

the supremum of two ideals is not very easy. Let us consider the following lemma which 

gives the formula for the suprcrnunl of two ideals. It is in fact an exercise in Gratzer [12]. 

p-54 for partial lattice. 

Theorem 1. 2. 1: Let I and .1 be ideals of a nearlattice S. Let /1 = 1 0.1, 

A = tX ESX:!~_ YVZ;YVZ 
exists and y,zEA,, 1 } fbr n=l,2,", and K= uA,7 . 

n=0 

Then K=IvJ. 

Proof: Since A0 ç  A1  c  A, ... A,7  c..., K is an ideal containing I and I. Suppose 

I-I is any ideal containing I and J. Of course, A0  g H. We proceed by induction. 

Suppose A_, ç H for some n ~: I and let x E A. Then x :!~ y v z with y. z E A,-I . Since 
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A_ 1 H and H is an ideal. v v 2 I-f and so x E H That is A,, H for every a. Thus 

K = I v J.' 

Theorem 1. 2. 2: Let K be a non-empty subset of a nearlattice S. Then 

(K}= {,, I n ~ o}, where A0  = {t I = t, 12) for some k1 , k2  E K} and 
n=0 

= It E SIt = j(a1 , t, a2 ) for some a1 , 02 c A_j fOr n ~ 1. 

Proof: For any k e K clearly k = j(k,k,k) and so K g A0 . Similarly, for any a 

a = /(a,a,a) implies that A,, c A. Thus K c A0  4 ç A2  c c A,1_1  c A,, 

Let t Ei uA;n = and t e S such that t 1  :~i . Then 1 A,,, for some in ~! 0. 

4 

Clearly, t1  = j(t, i t) arid so i Thus A,, is down set. 

Now suppose, 1"2 E U A,, and 11 v 12  exists. Let i I  E Ar  and 12 E Ac  for some 

r,s ~! 0 with r :~ s (say). Then 11,12 e A and i Vt2  = j(11 ,t1  V t2 I 2 ) provides 

ti  V 1 E 

Finally, suppose H is an ideal containing K. If x € A0 , then 

x= ,x, k2 )= (k1  A x)v (k2  Ax) for some k1 , k2  E K. As K c H and H is an ideal, 

k 1  A x, k 2  A x E H and so x E H. Thus A0  c H. Again we use the induction. Suppose 

I-I for some 11 ~ 1. Let x € A,, so that x = j (a1  ,x a7 ) for some a1 , a2  € Then 

XE H as a1  ,a2  e I-f and x= (0 1  A x)v (a2 A x).. 

Theorem 1. 2. 3: A non empty subsel K of a nearlattice S is an ideal if and only if 

xE K whenever x€S and x=j(k1 ,x,k,)forsome k, Ic, € K.. 

We now give an alternative formula for the supremum of two ideals in an arbitrarj 

nearlattice. 



Theorem 1. 2. 4: For any Iwo idea/s K 1  and K 2, K1  v K 2  = u B,, where 

B0  =xE Six = x, k,).k, E K,} and B,, = E Six = x. b),h. h, E 

n=1, 
00 

Proof: Clearly, K1 ,K 2  c 130  ç B1  c B2  c c B 1 ç  B,, C Suppose bE u B,:  and 
,i=0 

b1  :!~ b; b1  ES. Then hE B,,, for some in 0. Also, h1  = jb,b1 ,b) and SO b1  E Bm+i. 

Thus u B,, is a down set. Now suppose ,t E U B such that 'it2  exists. Then there 

exist r, s ~ 0 such that t E Br  and 12  EB. If r :-~ s then 2 e Bc  and 

vt, = j('i' t1  Vt,, 1 2) implies that I Vt2  e B, 1  . Hence, B,, is an ideal. 
- 

Finally, suppose H is an ideal containing K 1  and K 2. If x€B0  then 

x=/(k1 ,x,k,)=(k1  Ax)v(k2  Ax) for some k 1  E K 1  and k 2  E K 2 . Hence H is an ideal 

and K 1  , K2  g H, clearly x H Then using the induction on n it is very easy to see that 

i-I B,, for each n. . 

In a lattice L, it is well known that for a convex sublattice C of L. C = (C]n [c). 

The following figure (Fig: 1.4) shows that for a convex subnearlattice C in a general 

nearlattice, this may not be true. 

x 

Figure 1.4 

Here C = {a,b,c} is a convex subnearlatticc of S. Observe that (c]= S and 
ir 

[C)={a,b,c,x},hence (C]niC)-AC. 
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Recently, Shiuly Aktcr [32] has proved that Ioi a convex sublattice C of a 

distributive nearlattice S. (c]=xe Six (x c1 )v(x A c2 )v ... v (x A cj 

for some C1 ,C21  ,c, E ('}. With the help of this result Rosen [281 have proved that 

c = (c]- [c) when S is distributive. But in a non-distributive nearlattice of S. it is easy 

to show that C = (C]r c) when S is medial. 

Theorem 1. 2. 5: (Cornish and Hickman [7], Theorem 1. 11. The following conditions on 

a nearlattice S are equivalent: 

(i,) S is distributive. 

(ii For any H e li(s), (ifl = {h1  V h2  V v Ii,, Ih1  , h2  ,• ., h1, e H } 

For any i,J e i(s), 1 v.1 = {a1  v a2  v.. ' a,, a1 ,a2,,a,, E I 

i(s) is a distributive lattice. 

The map H —> (i-i] is a lattice homomorphism of H(s) onto i(s) 

( which preserves arbitrary suprema). 

Observe here that by TheoremL 2. 5. (iii) of above could easily be improved to 

(iii)': For any I,JEJ(S), ivj={ivjl ie I.JEJ}. 

Let I f  (s) denote the set of all fInitely generated ideals of a nearlattice S. Of 

course i f s) is an upper subsemilattice of i(s). Also for any x1 , x,, ....., E S, 

(x1 .x,,., x,] is clearly equal to (x1]v(x2]v  . .. v(x,,,}. When S is distributive, 

(x1 , x21 x,,, }n (y, y . y, ]= ((x1  v (x. ]v . . . v (x, n ((y1  Jv (y2 ]v. .. v (yj) 

= VX1  A y1 j for any x1 . x,. .....,,,,y1,  y2 , ••, y,, ES and so i 1(s) is a distributive 
ij 

sublattice of i(s). 

A nearlattice S is said to be finitely smooth if the intersection of two finitely 

generated ideals is itself finitely generated. For example, distributive nearlattices, finite 

nearlattices, lattices, are finitely smooth. I-Iickrnan in [15] exhibited a nearlattice which is 

not finitely smooth. 
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From Cornish and l-lickman {7], we know that a nearlattice S is distributive if and only if 

I(S) is so. Our next result shows that the case is not the same with the modularity. 

Theorem A. 2. 6: Let S he a nearlaltice. if I(S)is modular then S is also modular but 

the converse is not necessarily true. 

Proof: Suppose i(s) is modular. Let a.b.c E S with c a and b v c exists. Theu 

(c]c(a. Since i(s) is modular. so, (aAQ,vc)]=(a]A(bIvc}) 

=((a]AbDv(c}=((aAh)vc1. This implies that OA(bvc)=(aAb)vc, and so S is 

modular. 

Nearlattice S of Figure 1.5 shows that the converse of this result is not true. 

x 

a1  

0 
Figure 1.5 

Notice that (r} is modular for each r ES. But in i(s). clearly (0j(aJ(a1,y},(a2.b].S} is 

a pentagonal sublattice. 

The following theorem is due to Baziar Rahman [3] 

Theorem 1. 2. 7: {Bazlar Rahnian [3]} Let I and •J he iwo ideals in a distributive 

nearlattice S. If I A J and I v .1 are principal then both I and .1 are principal. • 

A non empty subset F of a nearlattice S is called an up set if for x E S, y e I'-

with  x.~y imply XE F 

.01 
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A non empty subset F cl a nearlattice S is called a filter if it is an up set and 

f1 Af2 EFfor all j,t7eP. 

An ideal I' in a nearlattice S is called a prime ideal if P # S and x A y E P 

implies XE? or yE?. 

A filter F is called a prime filter if either .  x E F or y E F whenever x v y exists 

and is in F 

It is not hard to see that a filter F of a nearlattice S is prime if and only if S - F 

is a prime ideal. The set of all filters of a nearlattice is an upper (join) semilattice ; yet it is 
40- not a lattice in general, as there is no guarantee that the intersection of two filters is non 

empty. The join FL 't ""2 of two filters is given by 

v F2  =sESl s~!f Af,for some f,  € J,f, i}. The smallest filter containing a 

subsemilattice H of S is Is S I s ~: h fir some h H} and is denoted by [H). 

Moreover, the description of the join of filters shows that for all a, b e S, 

[a)v (h] = [a A b). 

Following theorem and corollary is due to Noor and Rahman [21] which is an 

extension of Stone's separation theorem of Gratzer [121 theorem 15, pp74. 

Theorem 1. 2. 8: [Noor and Rahman[2111 Let S he a nearlattice. The following 

conditions are equivalent: 

('i) S is distributive. 

(ii) For any ideal I and any filter F of 5, such that I n F = (I.', there 

exists a prime ideal P 1 and dis/oinifromn F . 

Corollary 1. 2. 9: A nearlattice S is distributive if and only if every ideal is the 

intersection of'all prime ideals containing it.. 
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Lemma 1. 2. 10: A subset J? (.?ta nearlattice S is a filter if and only LI S - F is a prime 

down set. 

Proof: Let x e S - F and I :!~ x. Then xiz F. and so / F. as F is a filter. Hence 

I S F , and so S - F is a down set. Now let x, y € S such that X A y E S - F. It 

follows that X A y 0 F. This implies either x F or y o, F , as F is a filter. That is, 

either xeS — F or yES — F, and so S — b isaprime down set. 

Conversely, suppose S -- F is a prime down set. Let x E F and I ~: x. Then 

xS — F and so iS — F as S — F isaprime down set. Thus i e F and so F is an 

upset. Finally let x, y c F. Then x 0 S -. F, y iz S - F. Since S - F is a prime, SO 

X A y 0 S - F . Therefore x A y E F, and so ,F is a filter. • 

Following result is an easy consequence of above lemma. 

Lemma 1. 2. 11: A subset F of a nearlattice S is a prime liter LIand only ifS - F is a 

prime ideal.o 

Now we include a generalization of theorem 1. 2. 8 in a general nearlattice. 

Theorem 1. 2. 12: Let S be a nearlattice. F be a/liter and I be a down set such .that 

I r F = P.Then there exists a prime down set P containing I but disjoint to F. 

Proof: Let y be the collection of all filter containing F and lis/ornI 10 I . Then y is noti- 

empty aSFEX. Suppose C is a chain in X . Set M =.J{X xEC}. Let xEM an 

y,~x. Then xeX for some XeC. Since X is a filter ,so yEX and hence yEM. 

Thus M is an upset. Now let x, y e M . Then x X and y e Y for some X, Y E C. Since 

C is a chain , so either K Y or Y c X. Suppose X c Y. This implies x, y E Y , and so 

X A y E Y as Y is a filter. It follows that X A y E M and hence, M is a filter containing 

F. Moreover M n I = 4. Therefore, M is the largest element of C. Thus by Zorn's 

lemma, M is a maximal filter containing F. Therefore by Lemma 1.2.10, L - lA1 is a 

minimal prime down set containing I but disjoint to F.. 
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Corollary 1. 2. 13: Let S he a nearlattice with 0 and F he a proper filter of S Then 

there exists a prime down sci' P such that F n P = 0.. 

The following lemma is very useful in proving many results of distributive nearlattice. 

Lemma 1. 2. 14: If S1  is a suhnearlattice of a distributive nearlattice S and P is a prime 

ideal in S1 , then there exists a prime ideal P in S such that P1  = S1  c P.. 

Following theorem is a generalization of Lemma 1.2.14, which will be needed in 

establishing some results in other chapters. 

Theorem 1. 2. 15: Let S  he a suhneariattice of S. and P he a prime down set of S1 . 

Then there exists a prime down set P of S such that 1 P n S. 

Proof: Let H be a down set generated by P in S. Then Hn(S1 —P1 )=&Now S1 —P1  

is an upset in S and Ii m IS, 
 
-- i ) = (P where, IS, - p) is the filter generated by S - Pi  

in S. Then by Theorem 1.2.12 , there exists a prime down set P H and disjoint to 

- p1 ). Now P1  g H r' S1  c P S. Also P n S1  g P1 . Hence, P1  = P n S1.. 
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1. 3 Congrucnces 
-k 

An equivalence relation 6 of a nearlattice S is called a congruence relation if 

x y1 (&) for i = 1,2 (x, ,y, (=-  S). then 

(i) X1  AX-, Yi " Y2(6), and 

x1  v x2  y v y2  (o) provided x1  v x-, and y v Y2 exists. 

It can be easily shown that for an equivalence relation 0 on S , the above 

conditions are equivalent to the conditions that for x,y E S if x y(0), then 

XAtyAI((9) for alllES and 

xv t y v i'(0) for all t S provided both xv I and y v t exists. 

The set c(s) of all congruences on S is an algebraic closure system on S x S and 

hence, when ordered by set inclusion, is an algebraic lattice. 

Cornish and Hickman [7] showed that for an ideal I of a distributive nearlattice S, 

the relation e(i) , defined by x y0(I)) if and only if (xjv I = (y]v I, is the smallest 

congruence containing I as a class. Moreover the equivalence relation R(I), is defined 

by xy(R(I)) if and only if for any SES, S A X E I is equivalent to SAFE I. In fact, 

this is the largest congruence of S having I as a class. 

Suppose S is a distributive nearlattice and x E S we will use O  as an 

abbreviaton for @((x]). Moreover i1f,  denote the congruence, defined by a h (wy) i1 

and only if a Ax=hA A.T. 

Cornish and Hickman [7] also showed that for any two elements a,h of a 

distributive nearlattice S with a b, the smallest congruence identifying a and b is 

equal to xV,, 0b  and we denote it by &(a. h). Also in a distributive nearlattice S, they 

observed that if S has a smallest element 0. then clearly ®. = 0- (0,x) for any x E S. 
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Moreover, WC Sec that: 

v = -t, the largest congruence of S. 

= w, the smallest congruence of S and 

(iii) 6(a,b)'  = V wlere a :~ b and 
(/) denotes the complement. 

Now suppose S is an arbitrary nearlattice and E(S) denote the lattice of 

equivalence relations. For ,0 E E(S) with v denoting their supremum 

x y(0 v 2 ) if and only if there exist x = z0 , z 1  ," = such that 

or 02) for i l,2,,n. 

The following result was stated by (iratzer and Lakser in [14] without proof and a 

proof given below, appeared in Cornish and I I ickman [71. 

Theorem 1. 3. 1: For any ncarlatuice 8, c(s) is a distributive (coinplele) sublaltice of 

E(S). 

Proof: Suppose 0,0 e C(s. Define w to be the supremum of (9 and 0 in the lattice of 

equivalence relations E(S) on S. Let x y(i). Then there exists x = z, z1  , - , y 

such that z_1  = z1 (01  or 2)- Thus, for any t € S. z,_1  At z, A1(0 or 02)  as 

(9,0€C(S). 

Hence X A t i A '(w) and consequently iv is a semilattice congruence. Then, in 

particular x A y x(41) and X A y y(N'). 10 show that k1i is a congruence, let x 

with x :!~ y, and choose any t € S such that both x v t and y v t exists. Then there exisis 

Z0,Z1 ,Z,,,Z, such that x = = y and z z1 (o or (P2). Put ii', =Z, A ))  for all 

0,1,. Then x = w0 , w,, = y. w1 (01  or 0,) Hence by the upper bound 

property, w Vt exists for all i = 0,1,.. •,n(as w v I :!-~ y v t) and 

vl w1  vifrP1  or (P2) for all i=0,l,",n( as 0,0€C(S)), i.e. xv! yvt(). 

Then by Cornish and Noor [8] Lemma 2. 3 111 is a congruence on S. Therefore, c(s) is a 

sublattice of the lattice E(S). 
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To show the distrihutivity of c(s), let x y(@ n (e v e2 )). Then X A y y(e) 

and xAyy(O1 vC2 ). Also xAyx(C) and xAyx( v02 ). 

Since X A y = y(6 ;  V 9), there exists t,.t.,i,, such that (as we have seen in the 

proof of the first part), xAy=10,t,, =Y' ,_ t(e1  or e2 ) and xAy=t0 :5t 1 :5y for 

each i=O,l .... .. n. 1-lence t_1  t(e) for all i=O,l,".n and so t_1  = t1 (en&1 ) or 

t t,(9r'&). Thus xAyy((@r 1 )V(C(O2)). By symmetry, 

X A y x((e n e1  )v (en e2 )) and the proof completes by transitivity of the 

congrueflCeS.• 

In lattice theory it is well known that a lattice is distributive if and only if every 

ideal is a class of some congruence. Following theorem gives a generalization of this resuh 

in case of nearlattices. 

This also characterizes the distrihutivity of a nearlatticc, which is an extension of 

Cornish and Hickman [71 Theorem 3. 1. 

Thoerem 1. 3. 2: A nearlattice S is distributive f and only if ever)' ideal is a class of 

some congruence. 

Proof: Suppose S is distributive . Then by Comish and Hickman [7] Theorem 3.1 for 

each ideal 1 of S e(i) is the smallest congruence containing I as a congruence class. 

To prove the converse, let each ideal of S be a congruence class with respect to 

some congruence on S. Suppose S is not distributive. Then by Theorem 1. 1. 2, we have 

either N5  (Figure 1.2) or M 5  (Figure 1.3) as a sublattice of S. In both cases consider 

1 = (a} and suppose I is a congruence class with respect to e. Since d e 1, ci 

Now b =b AC =b A(a v c)h A(dv c)=h A c= d(e) ,that is, b d(e) and this implies 

b E 1, i.e. h :~ a which is a contradiction. Thus S is distributive. • 

Following results are due to Baziar Rahman [3]. 

Theorem 1. 3. 3: {Bazlar Rahman [3], theorem 3. 41 Let S he a distributive nearlaltice 

then, 

For ideals I and j, e (i n i) = e(i) n 
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'ii,) For ideals j i  I E A an indexed set, 9 v .J ) = v0(J1 ). . 

Theorem 1. 3. 4:{Bazlar Rabman [3], corollary 3. 5} For a distributive nearlattice S, the 

mapping I -+ &(i) is an e,nbedding from the lattice of ideals to the lattice of 

con gruenceS. . 

-4- 

:- 
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1. 4 Relative Annihulators: 
.4- 

Recall that a nearlattice S is distributive if for all x. V.: E S 

x A (y V z) = (x A y)v (x A:) provided y v z exists. Since lor al 

x, y, z E S , (x A y)v (x A z) always exists by the upper hound property, we give ar 

alternative definition of distributivity of S by the following lemma. 

Lemma 1. 4. 1: A nearlattice S is distributive if and only if for all t,x,y,z c S, 

tA((XAy)V(XAZ))(t AXAV)V(tAXAZ). 

Proof: Suppose S is distributive. Then obviously, 

IA((XAY)V(XAZ))(/ AXAy)V(t AX A:). 

Conversely, suppose S has the given property. Let a.b.c E S with h v c exists. Set 

I = b V C .Then 

aA(hvc)=aA((tAh)v(tA('))(ctAtAh)\/(attAc)(aAh)V(aA Therefore S 

is distributive . 

Recall that a nearlattice S is modular if for all x,y,z E S with z :~ x and whenever 

v v z exists then x A (y v z) = (x A y) v Z. Like lemma 1 .4.1, we can also easily 

characterize modular nearlattice by the following result. 

Lemma 1. 4. 2: A nearlaitice S is modular if and only i/for all I.x,y.z e S. with z :!~ x, 

X A (t A y)v (t A z)) = (x Al A y)v (i A 

Proof: Suppose S is modular. Then obviously, 

XA((tAy)V(I AZ))(XAIAY)v(IAZ). 

Conversely, suppose S has the given property. Let a,b,c E S with c !~- a and 

whenever hvc exists. Set I =bvc. the. 

Cl A(bVC) a A((t Ab)v(t AC))=(QAI Ab)v(aAt Ac)=(a Al A/))v(I Ac)=(aA.b)vc 

Therefore S is modular. 0 
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Now we generalized Theorem I and Theorem 2 of Katrinak, [17]. 

Theorem 1. 4. 3: For a nearlatice S the following conditions are equivalent: 

(7) S is distributive. 

(a,h) is an ideal/or all a,h 

(a,b) is an ideal whenever h a. 

Proof: Since (i) implies (ii) and (ii) implies (iii) are trivial, we shall prove only (iii) 

implies (i). 

Suppose (iii) holds. Let t,x,y,z e S. Then 

(tAxAy)v(tAxAz):5X implies (x,(tAxAy)v(1AxAz)) is an ideal. Again 

(1AxAy)!~(tAxAy)v(tAxAz) implies tAyE(x.(tAXAy)VtAXAZ). 

Similarly, t AZ E (x,(t AX A y)v (t AX A 

Hence (t A y)v t Az) E (x,(t AX A y)v (tAX A z). 

Thus, X A (t A y)v (t A < t AX A y)v (i A x A -,).Since the reverse inequality is trivial, 

SO XA((t Ay)Vt A z))(t AX Ay)V(I AXAZ). 

Therefore by lemma 1. 4. 1,5 is distributive. a 

Theorem 1. 4. 4: A nearlattice S is modular if and only if whenever b :!~- a, ij I AX E (b} 

and I A y C= (a, b) for any t G 5, then t A x) v (i A y) E (a, b). 

Proof: Suppose S is modular. Since t A y E (a,b), so a At A y :5 h. Also I AX !~- b :5 a. 

Thus by modularity of S. aA((tAx)v(tAy))(aAtAY)v(tAX):!~b, and so 

(IA x)v (t A y) C (a,b) 

-J 
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Conversely, let the given condition holds, suppose i.x, y, z e S, with z :!~ x. Then 

/AZ)VtAXAY):5X and IAZE((/Az)v(tAXAy)]. Also, 

lAXAY:!-~(tAZ)V(tAXAY) implies IAyE(x,(IAZ)v(IAXAY)). Then byhypOtheSiS 

(r A Z)V (t A y)€ (x,(t A z)v (t A X A 

This impliesx A((t A y)v (t A ( AX A y)v(t A ). Since the reverse inequality is 

trivial, so by lemma 1. 4. 2, S is modular. * 

Following result is a generalization of a lemma of Katrinak [17] in section 3. 

Lemma 1. 4. 5: In any distributive i:earlattice S, each of the following conditions on a 

given filter F implies the next. 

,) For all a, b E S, there exists an element x c F such that a A x and b AX 

are comparable. 

(i i) The filters containing F form a chain. 

'iii) F is prime. 

p ('iv) F contains aprimefiltcr. 

Proof: (i) implies (ii): Suppose (1) holds. If (ii) fails then there exists non-comparable 

filters G and H containing F. Choose elements a E G - H and h E G - H. Then by (i) 

there exists x e F such that a A X.  and b A x are comparable. Suppose a A x :!~ b A X. 

Since x E F - G, so a A x E G. Then a A x :!~- h implies h E G which gives a 

contradiction. Therefore (ii) holds. 

(ii) implies (iii): Suppose (ii) holds. Let a,h ES with avh exists and a v b E F 

Let G=Fv{a) and Ii=Pvb) By(ii)either GH or HçG. SupposeGH. 

Then a E H and so a = x A b for some x F Since x. av h e F so x A (a v b) F 

Thus by distributivity of S. (x A a)v (x A h) = (x A a)v a = a E F. Therefore F is prime. 
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(iii) implies (iv) is trivial. 

For a lattice L, the identity (a,h)v (b. a) = L for all a,h E. L is well known in lattice 

theory. This identity in fact, characterizes relatively Stone and relatively normal lattice; 

c.f. [171 and [5]. 

Theorem 1. 4. 6: For o distributive nearlallice S the identity (a,h) v (h,a) = S for all 

a,b E S bolds if and only if all the conditions of lemma 1.4.5 are equivalent. 

Proof: Suppose the identity holds. We need only to show that (iv) implies (1) of lemma 

1.4.5. Let a,b E S . Suppose P is a prime lilter contained in P. Choose z e P . Since 

(a,b)v(b,a)=S, so z=xvy for some xE(a,h) and yE(h,a) . Since P is prime 

either x € P or y E P. Suppose x E P. Then x E F. and x € (a,h) implies a AX :~ b and 

so a A X b A X. Therefore (i) holds. 

Conversely, suppose all the conditions of the lemma 1.4.5 are equivalent. Let there 

exists a,b E S such that I = (a, b) v (b, a) is proper ideal of S. Then by theorem 1. 2. 7, 

there exists a prime filter P disjoint from I. Then by (iii) implies (i), there exists X C P 

such that a AX and b A X are comparable. Suppose a A x :!~ b A x. Then a x < b implies 

x (=- (a,h) which is a contradiction as P / = (j. 'ihcrctorc v 'b, a) = S .0 

We conclude this section with the following generalization of Katrinak [17], 

Theorem 4. 

Theorem 1. 4. 7: For any distributive nearlattice 5, the following conditions are 

equivalent: 

A. 
(i) For all a.beS, (a,h)v(b,a)=S. 
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('ii) For any prime filter P and hr any a,h E S. there exists x e P such that 

0 A X and b A x are comparable. 

(iii) The filters containing any given prime iter form a chain. 

Proof: (i) implies (ii) easily follows from the proof of first part of Theorem 1.4.6; while 

(ii) implies (iii) holds by lemma 1.4.5. 

(iii) implies (i): Suppose (iii) holds. Let for a,b E s, I = (a,h) v (b,a) be a proper 

ideal of S. Then by stones representation theorem there exists a prime filter P disjoint 

from I. Let G = P v [a) and H = P V Fb). By (iii) either G g H or H c G. Suppose 

G c H. Then aePvh) implies a=xAh for some xP. Then xe(b,a), which is a 

contradiction as P n I = cI. Therefore (a,b) v (b,a) = S.. 

4 
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DISJUNCTIVE NEARLATTICES AND SEMIBOOLEAN ALGEBRAS 

A distributive nearlattice S with 0 is called thsjzmcizve nearlattice if 0 :~ a <b implies 

there is an element x E S such that x A a = 0 where 0 <x ~5 h. A subset A of a complete 

lattice L is said to he join-dense if L = Jv R I R c Al.  

A non empty subset T of a nearlattice S is called large if x At = y At for all t 

(x,y e s) imply x = y, while T is called join-dense if each 2 G S is the join of i's 

predecessors in T. Following result shows that two concepts coincide when T is a convex 

subsemilattice of a distributive nearlattice and hence an ideal of a nearlattice is large if and 

only if it is join-dense. 

2. 1 Disjunctive Nearlattice and Semiboolean Algebras 

Lemma 2. 1. 1: A convex subsemilattice .J of a distributive nearlattice S is large if and 

only ?f it is join- dense in S. 

)01 
Proof: Obviously, every join-dense subset of S is large in S. Thus, let .1 be large inS 

Suppose x E S and {j, } are its predecessors in .J. Let t he an upper bound of {j, }• Clearly, 

for any jEJ, j, Aj:!~XA j:!~j and so XA jei by the convexity of.J . Thus. XAJ = Jk 

for sornek. Hence, xAj:!~I for all /E.J it follows that xAj=xAtt'/ for all jeJ 

Since .1 is large, X At = x, i.e., x t. This implies that x is the supremum of {j }•• 

Now we give a characterization of oin dense ideals in terms of skeletal congruences. 

Lemma 2. 1. 2: An idecil .1 of a distributive nearlattice is 5 join-dense if and only if 0(i) 

is dense in cs), that is 0(1)1  = a, the smallest element of C(S). 
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Proof: Suppose I is join-dense. Then by ieninia 2.1, .1 is large. Let x ye(,I'). then 

X A] = y A] for all j E J . This impiies x = y as .1 is large. So ®(i) = (o. That is, On is 

dense. 

Conversely, let ()(JY = a. Suppose X A .1 Y A] for all j E J. Then according to 

Baziar Rahman [3], x y ®(.i (= a) and so x = y. This implies I is large and so by 

lemma 2. 1. 1, it is join-dense.. 

We know that for an ideal 1 of a distributive nearlattice S, the relation R(I) defined by 

x y,  R(I) if and only if for all r ES, xr e I is equivalent to yAr El is a congruence of 

S. Moreover, it is the largest congruence of S containing I as a class. 

Proposition 2. 1. 3: For an icleai 1 of a distributive near/at/ice S S I R(J) is disjunctive. 

Proof: If I is a prime idea', then S I R(J) is a two clement chain {i,s -- i} and so it is 

disjunctive (in fact, Boolean). Suppose I is not prime, consider the interval I ç  {x] [yj 

inS! R(J), where x,y E S. We claim that there exists at least one t 0 I, such that t AX € I. 

If not, then for all t o I,x,'t I and since [xAt}c[yAt], so Y A 10 I. This implies that 

x y R(l) and so x] = [v] . which is a contradiction. Moreover, there exists a I Z I such that 

.1 At E I but y A t 0 I. For otherwise x v R(I) would lead to another contradiction. Put 

s=yAt. Then I c[S][y] and [XIA[sj=[x]ALvAtI[xAYAI]=J and this implies that 

SIR(I) is distributive.. 

Following theorem gives characterizations of distributive nearlattices. 

Theorem 2. 1. 4: For a distributive near/a/lice S wit/i 0, the following conditions are 

equivalent: 

S is disjunctive. 

For all a€S, (a]=a] 

R((OD=a). 



OW 

Proof: (I) implies (ii): Supposc S is disjunctive. For any a E, S obviously. (a] g (a]11 . To 

prove the reverse, let xE(ar. if x(a]. then x a i.e..x # xa. Then O XAa <x. 

Since S is disjunctive there exists t with 0 <1 :!~ x such that t AX A a = 0 i.e. , I A a = 0. 

This implies t E (a]1. Since x E (a]11 , so X A 1 = 0, i.e. , t = 0, which gives a contradiction. 

1-lence xe (a]. In other words (a] = a]U For all a c S. 

(ii) implies (iii): Suppose (ii) holds and x y R((O]) for some x,y eS. If x # y, then 

either xAy<y or xAy<x. Suppose XA J1  < y. Then y1 c(xAy]1. Since (a]=a}11  for 

all a c S. y]1 A y]1 . Thus. (y c (x A Y
11

. So there exists t e (x A v]'. such that 

i (yr. Then I AXA y = 0 but , y # 0, which implies x A y y R((OD, and SO 

x y R((OD, which is a contradiction. Therefore. R((0]) = W. 

(iii) implies (1): Suppose R((0]) = w. Let 0 :~ x < y (x.),  E s). Since R(0]) = a, there 

exists t e S such that tAX = 0 but i A y 0. For otherwise x V R((0}, which implies 

x = y and there is a contradiction to our assumption. Thus we have 0 <t A y y, such that 

x At A y = 0, and soS is disjunctive. 

In chapter 1, we have already denoted the set of all finitely generated ideals of a 

nearlattice S by i(s). Of course t 1(s) is a join semilattice of i(s). In 1151, Hickman 

exhibited a nearlattice Sf'or which it (s) is a meet semilattice. But in [7], Cornish and 

I-lickman have shown that if S is distributive then i f (s) is a distributive sublattice of i(s), 

the lattice of ideals. 

Lemma . 1. 5: A distributive nearlaltice S with 0 is clisjunc(ivc if and only if i(s) is 

disjunctive. 

Proof : Let S be disjunctive and (a1  ...............  Or]C (1).. ............. h,} in i1(s). Choose 

At 
xEb1  ............  

Now, by the 

b,]—(a. ............ r] Then 

upper hound property of S, 

(a1  AX .............  Ur  Ax]=(a1  ........... ar]n(x]x]. 

(a1  Ax)v ...........  v((Ir  Ax)=e (say) exists and 
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A 

0 !~, e <x. Since S is disjunctive, there exists ci e S such that 0 = d A C and 0 <ci :!~ x. Thus 

d]re}= (01 and SO d]n(a. .......... .an  r(x] = (01 This implies tht 

(d}r(a1  ...........  ar]=(0}.  Of course. (o]:,,- (d]c (x] (b..............h,} and hence. i 1(s) is 

disjunctive. 

Conversely, let i,(s) be disjunctive and suppose 0 :~ c <d; c, d E S. Then, 

(ojc c] c (d]. Since i1 s) is disjunctive, there exists (a1 . ......... ,ar ] in 11(s) such that 

(c]r(á1  ........... ar]= (o], where (o] ~ (a. .............  ir] (d]. Now, by the upper bound 

property of 5, a1  v .........  va1  = f(say) exists. Thus, we have c AJ = 0 and 0<J' :~ d, 

and which proves that S is disjunctive.. 

Theorem 2. 1. 6: In i clisirihuw'e nearlaiIicc S with 0 , f/ic following condilions are 

equivalent: 

(0 S is disjunctive. 

Each dense ideal J (i.e. J' = (01) is join-dense. 

For each dense ideal .J, e(.i L 
) = 

For each dense ic/cal j, e(i ) = eJ)11. 

Proof: Since .J' =(o] iland only i .1'' =5 and J isjoin-dense ifand only if e(i =a, 

obviously (ii), (iii) and (iv) are equivalent. 

(i) implies (ii): Suppose .J is dense ideal and X A) = y A / (x,y c= s) for all j € J. If 

x # y, then either X A y <x or x A y < j'. Without loss of generality suppose X A y <x. 

Since S is disjunctive, there exists * 0) E 5, a :~ x such that a A x A y = 0. Then, 

0=aAxAyAj=aAxAj forall jE.J.Hencc, aAx=0 as.Jis dense ; i.e., a=0which 

is a contradiction. Thus .J is join-dense. 

(ii) implies (i): For any a € S, (a]v (a11  is always a dense ideal. Thus, with holding 

(ii), (a]v (ci]' is join-dense. Then by lemma 2.1.1, 
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U) = ® (a]v (a])®(a]v ®(a]) = ®((a])' n®(a]). Ilius, ®(a]) c ®((a = 

Taking the kernel on both sides we have ar  (a] by using theorem 2.2.3(11), due to Baziar 

Rahman [3]. It follows that (a] = (a]1L and hence S is disjunctive. 

Next theorem is an extension of 2.2 oF Cornish [6]. We omit the proof as this can he 

proved exactly in a similar way the corresponding result of [6] was proved. 

Theorem 2. 1. 7: For a dislribuüve nearlattice S with 0, the following conditions are 

equivalent: 

(1) S is disjunctive. 

(ii,) For each congruence CD, CD = O(ker c1). 

'iii) For each ideal .1, 

I \ r 
For each congruence CD kerk(D 

.L 
) = ker CI))\i  

For each congruence CD, ker((Dll ) = (ker 
I))ii. 

The kernel of each skeletal congruence is an annihilator ideal. • 

Due to Baziar Rahman [3], a nearlattice S with 0 is called semiboolean if it is 

distributive and [0,x] is complemented for all XES. By 1.4.5 of Bazlar Rahman [3], we 

know that the lattice of all ideals of a nearlattice is isomorphic to the lattice of congruences if 

and only if S is semiboolean. Using this result we get the following theorem, which is an 

extension of 2.3 of [6]. 

Theorem 2. 1. 8: For a distributive near/at/ice S with 0 the following conditions are 

equivalent: 

ri) S is seinihoolean. 

For each congruence (I), CD' = ®ker CD') 

For each ideal J, oti' ) = 

For each ideal .1 , ®Jl)= ®(i) 
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Proof : (I) implies (ii): Suppose S is semihoolcan. Then by I .4.5 of Baziar Rahmau [31, 

I(S) is isomorphic to C(S). Hence for any congruence '-1'. O(ker'-P). Taking 'P = we 

see that (i)-  implies (ii). 

(ii) implies (iii) follows from theorem 2.2.3 of Baziar Rahman [3], (ii) and (iii)(i) 

is obvious. 

(iv) implies (i): Suppose (iv) holds. Put I = (av (a] Then .1' = (0] and SO = S. 

Then by (iv), 0(a]v(a]1)U = r. It follows that ®((a] ®(aJ) = o and so 

c ®((aD = = 00 . Since ker 1-' (a]1 , we have ®(a]') g kI0 = )" and so 

=-
LL e(afl' . Thus ®((aj)I = 0,. But (a]1 = (a]th. Now, by (iv), 

®(a] )11 = O(a] ) = e(a). But ®a'=  ®(a]' 
)11, 

and so O(a]' ) = = IV, Now if 

o :!~ a :!:- b, then a b ('1'a) and so a b ). Then (a]v (a]'  = Q,}v (alL and so 

b = a v j for some j E (a]'. Then / A a = 0, and so [o,h] is complemented. Hence S •s 

semibookan. a 

The skeleton Sc(S)={OEc(S)IO=1) for some 1)  Cz C(S))= 0Ec(S)l®= 0"1 s 

a complete Boolean lattice. The meet of a set ®, } c Sc(S) is r' 0, I as in c(S), while the join 

is given by vO, = (v e,)' (n® 
Y. 

and the complement of 0 E Sc(S) is 0'. The fact 

that Sc(S) is complete follows from the fact that Sc(S) is precisely the set of closed elements 

associated with the closure operation 0 —* ®' on the complete lattice C(S) and Sc(S) is 

Boolean because of Glivenko's theorem. c.f. Gratzer 1121,theorem 4, p.58. 

The set KScS) = {Ker0 I 0 c Sc(S)} is closed under arbitrary set-theoretic intersections 

and hence is a complete lattice. We will use the symbol V to denote the join in Sc(S) and in 

KScS). We also denote A(s) = .J I J e i(s):.i = Ill 
}, which isa complete Boolean lattice. 

The following theorems are extensions of 2.4 and 2.5 of Cornish [6] to nearlattices. 
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Theorem 2. 1. 9: For a distributive izearlallice S with 0, the following conditions are 

equivalent. 

(0 S is disjunctive. 

The map ® —* Ke) of Sc(S) 0,110 KSc(S) is one-to-one. 

(ii:) The map 0 —> Ker) j  Sc(S) onto KSc(S). 

(iv) The map 0 —> Ker0 is a lattice isomorphism of Sc(S) onto KSc(S) , whose 

inverse is the map J —+ 

Proof: (i) implies (iv) . Suppose S is disjunctive. Then by theorem 2. 1. 7(vi) 

KSc(S) = A(s). By 2.1.7 (ii) , cJ = = ®(Keri 1  For any 1 E Sc(S). Thus, the map 

0 -* Ker® is one-to-one. Clearly it preserves meet. 

Now using 2.1.7(i'), for ®, (l) E ScS), Ker®vD) 

= Ker(O n 
)1)= (Ker ®L n c1 ))' = (KerO n KercD' 

)L = 
(Ker®) n (Ker)l y = 

Ker®vKercD as KSc(S) = A(S). Thus 0 — Ke,g is a lattice isomorphism. Moreover, by 

2.1.7, Ker®J)ll)= (Ker®(.J))11 = jIL 
.. J for all .J A(S)= KSc(S), while 

= = 1 for all € Sc(S). Therefore .1 —> 0(J)' is the inverse of 

®—*Ker®. 

(iv) implies (ii) is trivial. 

(ii) implies (iii): 11 0 —* Ker® is one-to-one, then i t is a meet isomorphism of the 

lattice Sc(S) onto the lattice KSc(S) , then of course it is a lattice isomorphism and so (iii) 

holds. 

Finally we shall show that (iii) implies (I). If (iii) holds, then of course 0 --> Kere is a 

lattice homomorphism of Sc(S) onto KSc(S). Hence KSc(S) must be Boolcan. Since for all 

a E S, (a} = Ker(®a) , the map a -+ (aj embeds S, as a join-dense subnearlattice, into the 

complete Boolean lattice KSc(S). Therefore S must be disjunctive. .. 
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We conclude this chapter with the following theorem which is also a generalization of 

Cornish [6], Theorem 2.5. 

Theorem 2. 1. 10: A distributive nearlattice S is se,nihooiean if and only if the map 

9 -4 Kei€ is a lattice isomorphism of Sc(S) onto KSc(S) . whose inverse is the map 

Proof: If S is semiboolean, then of course it is disjunctive and so by Theorem 2.1.9, the 

inverse of 9 - Ker® is .1 -* e()11. Now by Theorem 2.1.8, ®()11  = ®jll) for any 

.1 E KSc(S). Since by theorem 2.1.7, .1 A(S) so J = 
. Thus .J - ®(i) is the inverse. 

Conversely, suppose J --* ®(.j) is the inverse of B --> Ker®. Then by Theorem 2.1.9, 

S is disjunctive and so Ker(®(K)ll)=  (Kcr®(K)) 1  =. K 1  for any ideal K. This implies 

E KSc(S). Then using the description of the inverse, 

®(K11)=  ®(Ker(®(K)ll 
))= ®(K)11 . Hence by Theorem 2.1.8, S is semiboolean. 
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0-DISTRIBUTIVE NEARLATTICE AND SEMI-PRIME IDEALS IN A 

NEARLATTICE 

3. 1 Introduction 

J.C. Varlet [331 has given the definition of a 0-distributive lattice to generalize th 

notion of pseudocomplemented lattice. According to him a lattice L with 0 is called a 0. 

distributive lattice if for all a, b.c E L with a A h = 0 = a A C imply a A v = 0. in othcr 

words, a lattice with 0 is 0-distribu0ve if and only if tör each a e L , the set of elements 
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disjoint to a is an ideal 01 1. . 01 course, every dstrihutive lattice with 0 s 0-distributive. 

Also, every pseudocomplcmentcd lattice is 0-distributive, in fact, in a pseudocomplemented 

lattice L, the set of all elements disjoint to a r= L , is a principal ideal (a* 
. Many authors 

including Balasubramani and Venkatanarasimban [1], Jayaram [16] and Pawar and Thakare 

[25] studied the 0-distributive and 0-modular properties in lattices and meet semilattices. in 

fact, Jayaram [16] has referred the condition of 0-distributive nearlattice given in this chapter 

as weakly 0-distributive semilattice in a general meet sernilaUice. 

Recently, Ray [26] has generalized the concept of 0-distributivity and gave the 

definition of semi-prime ideals in a lattice. An ideal I of a lattice L is called a semi-prime 

ideal if for all x,y,z E L. XAVE I and xiz E / imply xA(yv z)E I. Thus, for lattice I. 

with 0. L is called 0-distributive if and only ii' (0) is a semi-prime ideal. In a distributi'e 

lattice L, every ideal is a semi-prime ideal. Moreover, every prime ideal is semi prime. In a 

pentagonal lattice (Fi('ure 3. I) (01 is serni-nrme but not prime. 1-lere (h] and (C] are prime, 

but (a] is not even semi••primc. Again in Figure 3.2, (01, (al. (b], (c} are not semi-prime. 

In this chapter we will provide a number of characterization of 0-distributive 

nearlattices. We also extend the concept of 0-distributivty and give the notion of semi-prime 

ideals in nearlattice. Then we include a number of separation properties in a general 

nearlattice with respect to the annihilator ide21s. Moreover. by studying a congruence related 
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to Glivenko congruence we give a separation theorem related to separation properties in 

distributive nearlattices given by Noor and Baziar Rahman 

Let us define a 0-distributive nearlattice as follows: A nearlattice S with 0 is called 0- 

distributive if for all x,y,zES with XAy=0=xAz and yvz exists imply 

X A (y v z) 0. 

It can easily be shown that it has the following alternative definition: 

S is 0-distributive if for all x,  y, z,t e S with x A y = 0 = X A z imply 

X A ((t A )')v (I A = 0: t A v)v (t A z) exists by the upper hound property of S. Of c0Utsc, 

every distributive nearlattice S with 0 is 0-distributive. Figure 3.1 is an example of a non-

modular nearlattice which is 0-distributive, while Figure 3.2 gives a modular nearlattice 

which is not 0-distributive. 

c d 

a 

c 

 

0 
Figure 3.2 

 

 

1 

Figure 3.1 

 

A proper filter lvi of a nearlattice S is called maximal if for any filter Q with  Q Q M 

implies either Q = M or Q = S. Dually, we define a minimal prime ideal (down set) 

Let L he a lattice with 0. An element a is called the pseudocomplemnent of a if 

aa =0 and if ax =0 for some x L. then A lattice L with 0 and I is called 

pseudocomplemented if its every element has a pseudocomplement. Since a nearlattice S with 

1 is a lattice, so the concept of pseudocoinplementation is not possible in a general nearlattice. 

A nearlattice S with 0 is called sectionally pseudocornplemented if the interval [O,x] for each 
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XE S is pseudocomplemented. For A c S, \C denote A = jXE Six A a= 0 for all a E A}. 

IfS is distributive then clearly A '  is .nklcai ulS. 

• '•'. 

Moreover, A' = fla}'}. If A is an ideal, then obviously A' is the pseudocomplement of A 

OEA 

in i(s) and we denote it by A*. Therefore, for a distributive nearlattice S with 0, I(S) is 

pseudocomplemented. 

em 
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3. 2 0-Distributive Nearlattice 

Theorem 3. 2. 1: If a nearlattice S i'ith 0 is sectionally /)seucloco,nplemenled then i(s) is 

pseudocomplemented. 

Proof: Suppose S is sectionally pseudocomplernented. Let I G i(s). = JX G S1 x A i = 0 

for all i € i}. Suppose x E I and z~ x. Then x A i 0 for all i E I and so I A = 0 for all 

i e I. Hence I I'. Now let x,y E J and xv y exists. Let r xv y. Then 

0:~-x,y,rAi<r for all 1. and XA(rAi)=O=yA(rAi). Since [0. I] is 

pseudocomplernented, x,y !~ (r A i for all i I. where (r A i)*  is the relative 

pseudocomplernent of r A i in {o. r}. Then xv y <— (r A i), and so r A I A (x v y) = 0. That is 

i A v y) = 0 for all i e I. This implies xv y I. Therefore, I' is an ideal. Clearly 1 is 

the pseudocomplement oil in i(S). Hence i(S) is pseudocomplcmented.• 

Following example (Figure 3.3) shows that i(s) can be pseudocomplemented but S is not 

sectionally pseudocomplemented. 
S 

x 

] (r] 
A \ / 

(x] (t] 

(x,] / 

I(S) 
60 (01 

Figure 3.3 Figure 3.4 

In S, observe that I has no sectionally pseudocomplement in [0,x]. But i(s) is 

pseudocomplement and the ideal J is the pseudocomplement of both 1t] and (r]. Again, 

Figure 3.1 gives a non-distributive nearlattice S where i(s) is pseudocomplemented. 
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Theorem 3. 2. 2: I/the inte;weclion of all prune ideals of a nearlattice S with 0 is {o}, then S 

is 0-distributive. 

Proof: Let a,h,c e S such that a All = 0 = a AC and b v cexists. Let P be any prime ideal of 

S. If a e P. then a A (he c) a implies that a t (/, v E I' f (t o P, then by the jrimeness 

of P, h.c€ P. and so bvcE P. This implies aA(hvc) P. Thus aA(hvc) is in every 

prime ideal P of S, and hence a A (h v c) = 0, proving that S is 0-distributive. 

From Baziar Rahman 3] we know that a nearlattice S is distributive if and only if 

I(S) is distributive, which is also equivalent to that D(S), the lattice of filters of S is 

distributive. Thus if S is a nearlattice with 0 such that i(s) (similarly D(S)) is distributive, 

then S is 0-distributive. 

Following lemma are needed for tiirther development of the thesis. 

Lemma 3. 2. 3: Every proper Jilter of a nearlattice with 0 is contained in a maxima/f liter. 

Proof: Let F be a proper filter, in S with 0.Lct be the set of all proper filters containing F. 

Then is non-empty as F q Let C be a chain in (F and let Al = UXIX E c}. We claim 

that Mis a filter with FcM. Let xliland y2:x. Then x e X for some XeC. Hence 

y X as X is a filter. Therefore, y e .l. Let x,y € lvi Then x e Xand y e Y for some 

X,Y E C. Since C is a chain, either X c Y or 1' c  X. Suppose X c  Y. So x,y c Y. Then 

x A y E Y as Y is a filter. Hence x A V lvi. Moreover Al contains F. So Al is a maximum 

element of C. Then by Zorn's lemma Fhas a maximal element, say Q with F c Q.. 

Lemma 3. 2. 4: Let S be a nearlattice with 0. A proper Jilter Al in S is maximal if and only if 

for any element a 0 M, there exists an element b e M with a A b = 0. 

Proof: Suppose Al is maximal and a Al. Let a A b # 0 for all h E Al. Consider 

M = y E SlY > a A h,Jbr some bE lvi }. Clearly Al;  is a filter and is proper as 0 M. For 

every b E M we have Ii :-~ a A h and so h e i'v11 . Thus Al c M 1 . Also a o Al but a e All 
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So M c M1 , which contradicts the niaxitnality of M. Hence there must exist some h M 

such that a A b = 0. 

Conversely, if the proper filter lvi is not maximal, then as 0 E S. there exists a maximal filter 

N such that M c N. For any element a E N M there exists an element h E M such that 

a A b = 0. Hence a,h E j\1 imply 0 = 0 A h E N. which is a contradiction. Thus M must be a 

maximal filter.. 

Following result gives several nicc characterizations of 0-distributive nearlattice. 

Theorem 3. 2. 5: For a nearlattice S wit/i 0, the following conditions are equivalent. 

"i) S is 0-distrihulive. 

{a}1  is an ideal/br all a e S. 

A1  is an ideal for all A c S. 

('iV, i(s) is pseudocoinpicinented. 

(vP) i(s) is 0-distributive 

(vi) Eveiy n70xin101 Ill/er is prime. 

Proof: (i) implies (ii) implies (iii) are trivial. 

(iii)implies(iv): For any ideal I of S, / I  is clearly the pseudocornplcmcnt of / in i(s) if 

E I(S), and so (iv) holds. 

(iv)impIiesv): Since every pseudocomplemented lattice is 0-distributive, so (v) H. 

v) implies vi): Let i(s) be 0-distributive and F be a maximal filter. Suppose j,g 0 F with 

f v g exists. By Lemma 3.2.4, there exist a,h e F such that a A f = 0 = h A g. Hence 

(f]AaAb]=0} and (g]A(aAb](0}. Then (f vgA (aA b]=((f]v(gDA(aAh]=(0.1, 

by 0-distributivity of i(s). Hence (1 v g) A (a A b) = 0. Since F is maximal, 0 F. 

Therefore f v g o F, and so F is prime. 
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vi)impliesi): Let (vi) holds. Suppose a,h,c E S such that a A b = 0 = a AC and b v 

exists. If a A (b v c) # 0, then by Lemma 3.2.3. a A (b v c) E F for some maximal filter F ci' 

S. Then a E F and b v c e F. As F is pnrne, by assumption, so either a c F and b E F 0 

CE F. That is, either aAbE F or a ACE F. This implies OE F. which gives a 

contradiction and hence a A (h v c) = 0. In other words, S is 0-distributive. . 

Corollary 3. 2. 6: In a 0-distributive near/al/ice, every proper filter is contained in a prime 

filler.. 

Theorem 3. 2. 7: Every prime down set of a nearlaltice contains a minimal prime down set. 

Proof: Let P be a prime down set of L and let x be the set of all prime down sets .1 such 

that J c  P. Then P is non-empty since P E X. Let C be a chain in y and let 

M=n{X: XEC}. 

We claim that M is a prime down set. M is non-empty as 0 E M. Let a e M and 

h:~-a. Then a E X for all XEC. Hence hEX for all X E C as A' isa down set. The ill  

b E M. Now let x A y E Al for some x, V E S. Then x A v E A' for all X E C. As X is a 

4- 
prime down set, so either x E X or y e X. Thus either M = niX: x e X} or 

M = n{X: y c x}, proving that either x E A! or y E A'! Thus Al is a prime down set. Thus 

by applying the dual form of Zorn s Lemma. we conclude the existence of a minimal member 

of P.. 

Theorem 3. 2. 8: in a 0-distributive nearlallice 8, ?f {o} # A is the intersection of all non-zero 

ideals of S. then A1  = E S {x}' # {o}}. 

Proof: Let XE AL .  Then x A a = 0 for all a E A. Since A so {x}1  # {0}. Thus 

xEE A S{X} ~{O}}.Thatis ' GvESl{x ~{o}} 

-1 
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Conversely, let x E e S x' {o}}. Since S is 0-distributive, so (}' is a non-zero 

ideal of S. Then A ç {x}' and so A' {x}L This implies x € A' ,which completes the 

proof.. 

Theorem 3. 2. 9: Let S be a nearlaltice wi/h 0. S is 0-distributive if and only i/for any Jilter F 

disjoint with {x}'; x c S, there exist a prime/liter containing F and disjoint with {x}' 

Proof. Let S be 0-distributive. Consider the set of all filters of S containing F and disjoint 

with {x}' . Clearly F is non-empty as F c F. Then using Zorn's lemma, there exists a 

maximal element Q in IF . Now we claim that x E Q . If not, then Q v [x) D Q. So by the 
A 

maximality of Q, {Q vlx)}n {x} l'hen there exists t E Q v[x) and r e {x}1 . Then 

t qAx for some q G Q and tAx=0.Thus. 0=! Ax~qAx, and SO JAX =0.This implies 

q E {x}', which contradicts the fact that Q n {x,' = 4). Therefore x E Q. Finally, let z V Q. 

Then {Qv [z)}r' {x}' # 4). Let y E tQ v {z)}n {x}'. Then y AX = 0 and y -~_, q AZ for some 

qEQ. Thus 0=yAx~:qAxAz, which implies qAXAZ=O. Now xEQ implies 

q AX € Q, and z A (q A x) = 0. Hence by Lemma 3.2.4, Q is a maximal filter of 5', and so by 

Theorem 3. 2. 5, Q is prime. 

Conversely, let X A y = 0 = X A Z and y v z exists. If X A (y v z) * 0. Thei 

y v z 4Z {x}'. Thus [y v z)r (x}' = . So, there exists a prime filter Q containing k v z) and 

disjoint with {x}' . As v.: € {x}'. so y. Thus y V z Q. as  Q is prime. This implies 

iy v Q, a contradiction. Hence x A v = 0 and so S is 0-distributive. . 

Pawar and Thakare [251 have mentioned as a corollary to the above result that for 

distinct elements a,b € S for which a A 6 ~ 0 are separated by a prime filter in a .0-

distributive semilattice, which is not true. For example, Figure 3.1 is an example of a 0- 

distributive nearlattice, where a,b are distinct and a A b # 0. But there does not exist any 

prime filter containing b but not containing a. 
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Now we give few more characterizations for 0-distributive nearlattices. 

Theorem 3. 2. 10: Let S be a nearlattice with 0 . Then the following conditions are 

equivalent. 

(1,) S is 0-distributive. 

"i: Every maximal filter of S is prime. 

Every minimal prime down set a/S is a minimal prime ideal. 

Eveiy proper filler of S is disjoint from a minimal prime ideal. 

(v_) For each non-zero element a E S there is a minimal prime ideal not 

containing a. 

(vi) Each non-zero elemnenh a € S is contamed in a prime filler. 

Proof (ii) (ii)implies(i): loUows from Theorem 3.2. 5. 

implies (iii): LetA be a minimal prime down set. Then S-A is a maximal filter. 

Then by (ii), S-A is a prime filter, and so A is an ideal. That is, A is a minimal prime ideal. 

implies (ii): Let F be a maximal filter of S . Then S-F is a minimal prime down set 

- 
Thus by (iii) S-F is a minimal prime ideal and so F is a prime filter. 

(i) implies (iv): Let F be a proper filter of S. Then by Corollary 3.2.6, there is a prime filter 

Q P. Then S-Q is a minimal prime ideal disjoint from F. 

(v): Let a E S and a # 0 . Then [a)is a proper filter. Then by (iv) there exists a minimal prime 

idealA such that An[a)=. Thus a A. 

v) implies (iv): Let a E S and a #- 0. Then by (v) there is a minimal prime ideal P such that 

aP.Thus aeL — P and L-P is a prime filter. 
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(iv) implies (i): Let S he not 0-distributive. Then there exist a,h, c e S such that 

a A b = 0 = a A c and b v c exists but a A(b v c) # 0. Then by (vi) there exists a prime filter Q 

such that a A v E Q. Let F = [a A (b v a)). This is proper as 0 0 F and F g Q. Now, 

aAbvc)EQ implies aEQ and hvceQ. Since aAh=O=aAc, so b,cQ as 0Q 

but b v c e Q, which contradicts that Q is prime. Hence a A v c) = 0 and so S is 0 

distributive. . 

Theorem 3. 2. 11: Let S be a 0-distributive nearlattice and x E S. Then a prime ideal ) 

containing {x}' is a minimal prime ideal containing {x}'  if and only if for p E P there is 

qES_P such that pAqE{X}. 

Proof: Let P be a prime ideal of' S coitaining x}L  such that the given condition holds. Let K 

be a prime ideal containing {xT such that K ç P. Let p c= P. Then there is q E S - P such 

that pAqE{x}'. Hence p.q€ K. Since K is prime and q e K, so pe K. Thus .P c K 

and so K = P. Therefore, P must be a minimal prime ideal containing {x}'. 

Conversely, let P be a minimal prime ideal containing {x}L.  Let p e P. Suppose for 

-41 all qES—P, pAq{x}1. Set D=(S—P)v[p). We claim that x}mD=. If not, let 

y E {x n D. Then y ~! r A p for some r E S - P. Thus 
, p A r :!~ y € x}', which is a 

contradiction to the assumption. Then by Theorem 3.2.9. there exists a maximal (prime) filter 

QD D and disjoint with {x}.  By the proof olTheorem 3.1.9, XE Q. Let M = S-Q. Then Al 

is prime ideal. Since XEQ, so xM. Let 1E{x}L.  Then IAx=OEM implies teAl as 

Al is prime. Thus {x11  c Al. 

Now A'lnD=4. Thereforc, A4m(S—P)=. and hence lvi c: I'. Also Al # P. 

because p E D implies pe,  Al but p e P. 1 Icoce lvi is a prime ideal containing {x} '  which is 

properly contained in P. This gives a contradiction to the minimal property of P. 

Therefore, the given condition holds. o 
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Now we refer the reader aboui a coniecuire made by Noor and Baziar Rahman [21] 

that whether the well known Stone's separation property holds in a 0-distributive nearlattice. 

Separation theorem for distributive nearlattices is given in 1.211. Unfortunately this does not 

hold even in case of a 0-distributive lattice. Consider the pentagonal lattice 

0,a,b,c,1; 0< a <b <1, 0< c <i}, which is 0-distributive. Consider I = (a] and F =[b). 

Here I n F = 4) and there does not exist any prime filter Q containing F and disjoint with 1. 

But in a 0-distributive nearlattice, instead of a general ideal, we can give a separation  

theorem for an annihilator ideal I = .J when i is a subset of S. An ideal I in a nearlattice 

with 0 is called an annihilator ideal if I = .J for some .1 c S. 

Recently, Zaidur Rahrnan, Baziar Rahman and Noor [34] have studied the semi-prime 

ideals in a nearlattice. This concept was given by Ray [261. in a general lattice. An ideal Iof a 

nearlattice S is called a semi-prime ideal if For all x,y,: E S, x A y E I and x A Z E / imply 

X A (y v z) e I provided y v: exists. Thus, lbr nearlattice S with 0, S is called 0-distribulive 

if and only if (0] is a semi-prime ideal in S. In a distributive nearlattice S, every ideal is a 

semi-prime ideal. Moreover, every prime ideal is semi-prime. From [34], it is known that for 

any subset A of a nearlattice S, A is a semi-prime ideal ifS is 0-distributive. Here we give a 

separation theorem by using the semi-prime ideals. 

1. 

Theorem 3. 2. 12: (The Separation Theorem) A nearlattice S is 0-distributive if and only ?f 

Jhr a proper filter F and an annihilator 1 = J 1  ,where .1 is a non empty subset of S, with 

F n I = 4), there exists a prime filler Q containing F such that Q rm I = 4). 

Proof: Suppose S is 0-distributive and I = .J for some non-empty subset .1 of S. Let T be 

the set of all filters containing F. and disjoint with I. Then using Zorn's lemma, there exists a 

maximal filter Q containing F and disjoint with 1. Since by Theorem 5 of [341 / is semi- 

prime, so by Theorem 10 of[34], Q is prime. 

Conversely, suppose the condtion hoids. Suppose S is not 0-distributive. Then there 

exist a, b, c € S such that a A b = 0, a A c = 0 and a A (b v c) # 0, b v c exists. Then 
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b v c {a}. Let F = [b v c). Since 0 F. P' is proper. Then proceeding according to the 

proof of converse part of Theorem 3. 2. 9. we find that a A (h v c)= 0, and so S is 0- 

distributive.. 

A nearlattice S with 0 is called weakly complemented if for any pair of distinct 

elements a, b of S, there exists an element c disjoint from one of these elements but not from 

the other. 

Theorem 3. 2. 13: S is weakly complemented if and only if R is an equality relation and hence 

is a nearlattice congruence 

Proof: Suppose S is weakly complemented. Let a b(R). Suppose a # b. Then there exists c 

such that a AC = 0 but 1 AC # 0. This implies a * b(R). which is a contradiction . 1-lence 

a = h . So, R is an equality relation. That is, R is a nearlattice congruence. 

Suppose R is equality. We need to prove S is weakly complemented . Let a,b e S and a # b. 

Then a 0 b(R). This implies there exists c E S. such that a A C = 0 but b A c # 0. Uence S is 

weakly complemented. • 

in the following nearlattice S. R is a nearlattice congruence. Here the classes are (0), 

(a,1, (b), (1), (c, d, c). But S is neither 0-distributive nor weakly complemented. 

a e 

U 

Figure 3.5 

111 
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Theorem 3. 2. 14: For any nearla/tiec S, the quolient lattice is weakly complemented 

Furthermore, a nearlattice S with 0 is 0-distributive if and only if is a distributive 

nearlattice and R is a nearlatlice congruence 

Proof: Let A and B be two classes in such that A< B. Then there exists a € A and 
I? 

b E B such that a< b in S . So, by the definition of R there is an element c e S, such that 

ai'c=O but hAc#O. Suppose xE[0]. Then xEO(R) and so OAx=O which implies 

XAX=X=O. So O]= M. This implies AAC=[a]A[c]=tO} but BAC#{0}. Hence IS 

-4 

weakly coplernented. 

Now let S be a nearlattice for which R is a nearlattice congruence and is 
R 

distributive. Let a,b.c E S with a t h 0 = a AC such that h v c exists. Then 

[a]AIh]vcD[a}A[h])v1a]A[cD0]'l=[01. 
This implies [aA(hvc)]=[0]. Since 

Eo] = {o}, so a A (b V = 0. Hence S is 0-distributive. 

Conversely, let S be 0-distributive. Then by Theorem 3.2.13, R is a nearlattice 

congruence. Let [a], [b], [c] E 
S

. We need to prove [a] A (fh] v Ec1 = (ia] A [b]) v ([a] A lcD 

provided [b]v [c] exists. Suppose lblv [c] = [d]. Then Jh] = [hJA [d]= [bAd], 

c = [c] A [d] = c A d], and so [h} v [c] = [(h t d) v (c A cl)1. So we need to prove that 

[aA((bAd)v(cAd))]=[(aAb Ad)V (aA
c/)LLet aA((hAd)v(cAd))AX0.51flCe 

(a,\bAd)vaAcAd):~a/\((bAd)v(CAc1)) so, ((aAhAd)v(aAcAd))AXO. On 

the other hand, if '(aAhAd)v(aAcAd))/\xO, then aAhAdAx=0=QACAdA.\ 

and by 0-distrihutivity of S. a A ((h A d)v (c A d))A x =0. 

Thus a A ((b A d)v (c A d)) (a A (b A d))v (a A (c A d))(R) and hence 

[a]A(lib]v [cD= ffa]A[h])v ([a]A [cD.  16 



Theorem 3. 2. 15: If a 0-distributive near/al/ice S is weakly complemented then S is 

distributive 

Proof: ifS is weakly complemented. Then by Theorem 3.2.15 of Zaidur Rahman [34], R is an 

equality relation and so by above theorem S 
- 

implies S is distributive.' 

A nearlattice S with 0 is called Sectionally complemented if the intervals O,x] are 

complemented for each x E S. A nearlattice which is sectionally complemented and 

distributive is called a Semi Boolean nearlattice. 

Corollary 3. 2. 16: If a 0-distributive nearlattice S is sectionally complemented and weakly 

complemented, then S is semi Boolean. 

Theorem 3. 2. 17: Suppose S is sectionally complemented and in every interval [0, x], every 

element has a unique relative complement . Then S is semi Boolean if and only if it is C-

distributive. 

Proof: Let S be 0-distributive and for every x E S, the interval [0,xJ is unicomplemented. Let 

x.y e S with x # y. If they are comparable, without loss of generality, suppose x<  y. Then 

0 :~ x < y . Then there exists a unique I c= [0, y] such that I AX = 0 and tv x = y. Thus 

tAx=O but IAy=/ #O. If x. y arenoicomparable,then 0:5xAy<x and 0xAy<y. 

Then there exist s,/ESsuch that xA1'As=O, (xAy)vs=x, xyAt=O and 

(xAy)v1=y. Now sAt:!~xAy implies sA1!~xAyAs=O, which implies sAt=O. 

Now SAI=O and SAXAV=O implies 0=sA((xAy)vt)=sAy as S is 0-distributive, 

but S AX * 0. Therefore, S is weakly complemented and so by above corollary, S is semi 

Boolean. Since the reverse implication always holds in a Semi-Boolean nearlattice, this 

completes the proof. 
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There is another characterization of 0-distributive nearlattices. 

Theorem 3.2. 18: Let S he a neariatlice with 0. Then S is 0-distributive if and only if[0,x 

is a 0-distributive lattice/br every x e S. 

Proof: Let S is a ncarlatticc with 0 then S is 0-distributive. Then trivially [0,x] is also 0- 

distributive. 

Conversely, suppose [0 .x] lr all x E S. Let a,h,c E S with a A b = 0 = a AC and 

h v c exists. Let a A (h v c)=t Consider the interval lob v C]. Then t E [o,h v c]. Also 

b.cE [0,bvc 

Now lAb=aA(bvc)AbaAb0 

t AC = aA(bvc)Ac = a AC =0 

Since [0,b v C] is 0-distributive, so, I A (h v c) = 0. 

So, 0=11-'(hvc)=aA(bvc)A(bVC)=0A(hvc) 

Hence, S is 0-distributive. o 

A nearlattice S with 0 is called Sectionally complemented if the intervals {0x are 

complemented for each x E S.. A nearlattice which is sectionally complemented and 

distributive is called a Semi Boolean nearlattice. 

Corollary 3. 2. 19: If a 0-distributive nearlaitice S is sectionally complemented and weakly 

complemented. then S is semi Boolean. 

Theorem 3. 2. 20: Suppose S is sectionally complemented and in evemy interval [0,x] . every 

element has a unique relative complement . Then S is ,vcnzi Boolean if and only if it is 0- 

distributive. 

Proof: Let S be 0-distributive and for every x € 5, the interval [0,xl is unicomplemented. Lt 

x,y e S with x # v. If they are comparable. without loss of generality, suppose x< y. Then 

0 x <y. Then there exists a unique t e [O,yl such that t A x = 0 and I v x = y. Thus 

tix=O but tt..y=t#O. Il'x, yare noicomparable, then 0:~xAy<x and 0~5xAy<y. 
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Then there exist s,t e S such that x A y A S = 0, (x A y)v s = x, x A y At = 0 and 

(xAy)vt=y. Now SAI:!~XAy implies SAI!-~XAyAS=O, which implies sAt=0. 

Now SAI=O and SAXAY=O implies 0=sA((xAy)vt)=sAy asS is 0-distributive. 

but s AX # 0. Therefore, S is weakly complemented and so by above corollary, S is semi 

Boolean. Since the reverse implication always holds in a Scrni-Boolean nearlattice, this 

completes the proof.. 

There is another characterization of 0-distributive nearlatti ces. 

Theorem 3. 2. 21: Let S he a nearlattice ii'ith 0. Then S is 0-distributive if and only if to,xl 

is a 0-distributive lattice/or eveiy x E S. 

Proof: Let S is a nearlattice with 0 then S is 0-distributive. Then trivially [0,x} is also 0- 

distributive. 

Conversely, suppose 0,x] for all x S. Let a,h.c E S with a A b = 0 = a A C and 

bvc exi,ts. Let aA(bvc)t Consider the interval [0,hvc}. Then t E[0,hvc]. Also 

h,cE[0,bvc] 

Al 
Now tAb=aA(bvc)AhaAh=0 

I AC = a A v c) A C = a AC =0 

Since [0.h v c] is 0-distributive, so, t A (b v = 0. 

So, 0=l A (hvc)=aA(h\/c)A(bVc)=aA(/VC) 

1-lence. S is 0-distributive. . 

Now we give a generalization of theorem 1.4. 1. of Zaidur Rahrnan 35J. 

Theorem 3. 2. 22: Let S he a 0-distributive nearlattice and [0,x] be 1-distributive for every 

x E S. then the following conditions are equivalent. 

S is sectionally complemented. 

(ii) (x]v (x]' = (x'jv (xl* c cve,y x E S 
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(iii) The prime ideals of 0, x] are unordered for each x e S. 

Proof: (i) implies (ii): Suppose S is sectionally complemented. Then for every x ES, 10A 

is complemented. If (ii) does not holds, then there exist elements s,I € S such that 

st]vtj*. Now 0!~sAt:5s. Then by (i), there exists 71E0,s] such that 

rASAt=rAt =0 and rv(sAI)=s. Thus rEI] and so s=rv(SAt)et] vt] gives :1 

contradiction. 1'herefore. (ii) must holds. 

implies (iii): Suppose (ii) holds but (iii) does not. Then there exist prime ideal P,Q of 

some [0,x], x e S such that P c Q. Thus there exists y e Q P Since Q is a prime ideal of 

4 
x o Q. By (ii) (y]v (v] = S Thus x E (y]v 

(]*• 
Then X ~ p V q for some p E (vl 

and q e (yr. Then q A y = 0 E P. Since y P and I' is prime, so q E P c Q. Also p :!-~ y 

implies p c Q. Therefore, x :5 p v q implies x E Q gives a contradiction. Hence the prime 

ideals of [0,x] for each s E S are unordered. 

implis(i): Since here every [0,x] is both a 0-distributive and i-distributive lattice, so by 

Razia Sultana [27], 0.x] must he complemented. 



48 

-.4 
3. 3 Semi-prime ideals in a Nearatticc 

An ideal I of a nearlattice S is called a semi-prime ideal if for all x,y,z E 

X A y € I and x A Z E I imply x A (y v z) e I provided y v z exists. Thus, for a nearlattice S 

with 0, S is called 0-distributive if and only 11(0] is a semi-prime ideal. In a distributive 

nearlattice S, every ideal is a semi-prime ideal. Moreover, every prime ideal is semi-prime. 01 

course every nearlattice S with 0 itself is semi-prime. In the nearlattice of Figure 3.1, (b] and 

(d] are prime, (cj is not prime but semi-prime and (a] is not even semi-prime. Again in 

Figure 3.2, (01, (a]. (hi ,(cl and (d] are not semi-prime. 

Lemma 3. 3. 1: P'ion empty intersection of all prime 'senhi prime) ideals of a nearlattice is a 

semi-prime ideal. 

Proof: Let a,b,c € Sand 1 = fl{ F: P is a prime ideal } and I is nonempty. Let a Ab c I 

and a A C E I. Then a A h E P and a AC G P for all P. Since each P is prime (semi-prime), 

so aA(bVC)EP for all P. Hence aA(hvc)E I, and so I is semi-prime. • 

Corollary 3. 3. 2: Intersection of two prime ('senmi prime) ideals is a semi-prime ideal.. 

Lemma 3. 3. 3: Every/liter disjointfiroin an ideal I is contained in a maximal Jilter disjoint 

from J 

Proof: Let F be a filter in L disjoint from 1. Let 'F be the set of all filters containing F 

and disjoint from I. Then 'F is noncntpty as F E 'F Let C be a chain in 'F and let 

M = U(X : X E C). We claim that M is a filter. Let x EE M and p ~! x. Then x € X for some 

XEC.l-  lence yEX as X isa filter. Therefore, yEM. Let x,yeM. Then xc-X and 

y E V for some X. V e C. Since C is a chain, either A' C Y or V c: X X.  Withoui. loss of 

generality suppose X c Y. So x,v c V. Then x A y E Y and so X Aye M. Moreover, 

M D F. So M is a maximum element of C. Then by Zorn's Lemma, 'F has a maximal 

element, say QF. • 

-.4 



49 

-.4 

Lemma 3. 3. 4: Let I be an ideal a/a near/al/ice S. A/I/icr 'tI disjoint from I is a inaxitnal 

.filter disjoin/from I if and only ifjbr all a M ihere exists b E M such that a A b E I. 

Proof: Let M be maximal and disjoint from I and a o M. Let a A h I for b e M. 

Consider M1 = {y E L : y ~! a A b, b e M }. Cleady All, is a filter. For any b E /vi, 

b ~: a A b implies b E M1 . So M 1  M. Also ?v11  n I = 4). For if not, let x eM,nI. This 

implies x E I and x ~! a A h for some b E M. Hence a A h E I, which is a contradiction. 

Hence M1  n I # 4). Now M c M1  because a o lvi but a E M1 . This contradicts the 

maximal ity of M. Hence there exists h € M such that a A h E I. 

Conversely, if M is not maximal disoiiit from 1, then there exists a filter N D M 

and disjoint with I. For any a E N - M, there exists h E M such that a A b e I. Hence, 

a,b E N implies a A b E I r N, which is a contradiction. Hence lvi must be a maximal filter 

disjoint with I. 

Theorem 3. 3. 5: Let S be a O-disirihuiive nearlattice. Then fin- A c S, 

A' = {x E S x A a 0 far all a E A) is a semi-prime ideal. 

Proof: We have ah'eady mentioned that A 1  is a down set of S. Let x,y A' and xv y 

exists. Then xAa=0=yAa for all a E A. Since S is 0-distributive, so aA(xvy)=O for 

all a E A. This implies xv y e A' and so A' is an ideal. 

NowletxAyEA' and xAzeA' and yvz exists. Then. xAyAa=0=XAzAa for all 

a E A. This implies (x A a)i\ v = 0 = (x A a) A. z and so by 0-distributivity again, 

xAaA(yvz)= 0 for all a E A. Hence xA(y\' z)e A' and so A' isa semi-prime ideal.. 

Let A S and J be an ideal of S. We define 

A' = (x S X A a e .1 for all a e A). This is clearly a down set containing J. In 

presence of distributivity. this is an ideal. 41' is called an annihilator of A relative to .J. We 

denote 1,(S), by the set of all ideals containing J. Of course, 1, (S) is a bounded lattice 
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with .J and S as the smallest and the largest elements. If A E I (5). and A' is an ideal, then 

A" is called an annihilator ideal and it is the pseudocomplernent of A in I,(S). 

Theorem 3. 3. 6: Let A be a non-empty subset o/ a nearlattice S andJ be an ideal of S. Then 

A -' = fl(P P is minimal prime down set containing J but not containing A) 

Proof: Suppose X = fl(P: A P,Pisa mininial prime down set). Let x E A". Then 

X A a E J for all a E A. Choose any P of right hand expression. Since A ci P, there exists 

ZE A but z P. Then XAZE.J c P. So x c P,asP is prime. Hence x E X. 

Conversely, let xc X. If x o A", then xAh o ,J for some bE A. Let D = [xAb'. 

Hence D is a filter disjoint from .1. Then by Lemma 3.2.3, there is a maximal filter M D 

but disjoint from J. Then L-M is a minimal prime down set containing J. Now x 0 S - M as 

xED implies xEM.Moreover, AS — M as bc A, but hEMimplies bS — M,Which 

is a contradiction to x X . Hence x E A" . 

Following Theorem gives some nice characterization of semi-prime ideals. 

Theorem 3. 3. 7: Let S be a nearlattice and .J be an ideal of S. The Jbllowing conditions are 

equivalent. 

(i) J is semi-prime. 

{a}" = {x E S : x A a e .J} is a semi-prime ideal containing J. 

('iii) A" = {x € S X A a E I for all a e A} is a se/ni prime ideal containing J. 

i, (S) is pseudocoinpiemented 

I, (S) is a 0 -distrihutive lattice. 

Every maxi,nalfihter disjoint front .1 is prime. 

Proof: (i) implies (ii) : la}" is clearly a down set containing I. Now let x,y e {a}" and 

xvy exists. Then XA(2€.J, yaEJ. Since .1 is semi prime, so aA(xvy)c I. This 

implies xv y € {a}". and so it is an ideal containing .1. Now let x A y € {a}" and 
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A 

xAzE{a}with yvz exists. Then x/\y/\ae.J and xAz,\aEJ. Thus, (xAa)AyEJ 

and (x A a) A Z € .J. Then (x A a) A (y v z') J, as .J is semi-prime. This implies 

X A (y v z) E {a}' , and so {a}' is semi-prime. 

implies(iii): This is trivial by Lemma 3.2.1. as A1" = fl([a}1" ; a A). 

implies (iv): Since for any A E I,(S), Ad" is an ideal, it is the pseudocomplement of A 

in I.  (S), so I, (8) is pseudocomplemented. 

(iv) implies (v): This is trivial as every pseudocomplemented lattice is 0-distributive. 

implies (vi) : Let Is (S) is 0-distributive. Suppose F is a maximal filter disjoint from J. 

Suppose f,g F and f v g exists. By Lemma 3.2.4. there exista,b c F such that 

aAfE.J,bAgEJ. Then fAarbc.J,gAaAbEJ. Hence (f]A(aAb]c.J and 

(gj A (a A bl J. Then (f v gl A (a A b] = ((f' v  (g A (a A ç J, by the 0-distributive 

property of Ia (S). Hence, (fvg)AaAbeJ. This implies fvgF as Fn.J=d,, and 

-t 
so F is prime. 

implies(i): Let (vi) holds. Suppose a,b,c S with a A b € J, a AC € J with b v c 

exists. If a A (b v c) J, then [a A (b v c)) n.J = 4). Then by Lemma 3.2.3, there exists a 

maximal jilter F [a A (b v c)) and disjoint from J. Then a e F. b v c e F. By (vi) F is 

prime. Hence either a A b e F or a A C E F. In any case J n F # 4>, which gives a 

contradiction. Hence a A (b v c) E .1, and so .1 is semi-prime.. 

Corollary 3. 3. 8: In a neariatlice S, eveiy Jilter disjoint to a semi-prime ideal .1 is contained 

in a prime filter. • 
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A 

Theorem 3. 3. 9: If J is a semi-prime ideal of a nearlattice S and J ;6  A = 1A is an 

ideal containing .J}, Then A' = {x E S : # .1 }. 

Proof: Let x e A''. Then X A a E J for all a e A. So a € J_J for all a e A. Then 

A {x}" and so {x}" # J .Conversely. let x E S such that # J. Since .1 is semi- 

prime, so {x}' is an ideal containing .1. Then A c {xH and so A" {x}"'. This 

implies x E A' , which completes the proof. 

Ray have provided a series of characterizations of 0-distributive lattices in [26]. Here 

we give some results on semi-prime ideals related to their results for nearlattices. 

Theorem 3. 3. 10: Let S be a nearlatlice and J be an ideal. Then the following conditions are 

equivalent. 

J is semi-prime. 

Every maxima/filter of S disjoint with J is prime. 

Every minimal prime down set containing J is a minimal prime ideal 

containing .1. 

Evemy filter disjoint with J is disjoint from a minimal prime ideal containing J. 

For each element a I, there is a minimal prime ideal containing .J but not 

containing a. 

Each a 0 J is contained in a prime filter disjoint to .1. 

Proof. (ii) (ii) implies (i): Follows from Theorem 3.3.7. 

implies (iii): Let A be a minimal prime down set containing .1 Then S-A is a maximal 

filter disjoint with J. Then by (ii) S-A is prime and so A is a minimal prime ideal. 

implies (ii): Let F be a maximal filter disjoint with J. Then S-F is a minimal prime down 

set containing J. Thus by (iii), S-F is a minimal prime ideal and so F is a prime filter. 

91 
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(i)implies (iv): Let F a filter of S disjoint from J. Then by Corollary 3.3.8, there is a prime 

filter Q F and disjoint from F. 

(iv)implies(v): Let a ES, a J. Then [a)n.J = -p. Then by (iv) there exists a minimal 

prime ideal A disjoint from [a). Thus a ft A. 

(v)impliesvi): Let a E S. a e I. Then by (v) there exists a minimal prime ideal P such that 

a F, which implies a c S -- P and S-P is a prime filter. 

(vi)implies(i): Suppose .1 is not semi-prime . Then there exists a,b,c L such that 

a A b E .1, a A C E J and b v c exists, but a A (b vc)o J. Then by (vi) there exists a prinie 

filter Q ulsjoint from J and a A (b v c) E Q. Let F = [a A (b v c)). Then .1 n F = and 

FcQ.Now aAbvc)EQ implies aEQ, hvcEQ.SinceQis prime so either aAbE! 

or a A C E Q . This gives a contradiction to the fact that Q n.J = . Therefore, 

a A v c) E .1 and so J is semi-prime. 

Now we give another characterization of semi-prime ideals with the help of Prime 

Separation Theorem using annihilator ideals. 

Theorem 3. 3. 11: Let J he an ideal in a nearlaitice S. .1 is semi- prime i/and only jf/or all 

Jilter F disjoint to {x)-'J , there is a prune filter containing F disjoint to {x}1  

Proof: Using Zorn's Lemma we can easily find a maximal filter Q containing F and disjoint 

to {x}". We claim that x E Q. If not, then Q v [x) Q. By maximality of Q., 

(Q v [x)) (- {x" } If t E (Q v [x)) n {x}1', then t ~: q A X for some q c Q and t A X E I.. 

This implies q AX E J and so q E {xJ -LJ gives a contradiction. Hence x E Q. 
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Now let z Q. Then (Q v [z)) n {x} :A . Suppose y E (Q v [z)) r {x} then y ~: q1  A Z 

• and y A Z E .1 for some q1  E Q. This implies q1  A X A Z .1 and q1  A x E Q. Hence by 

Lemma 3. 3. 4, Q is a maximal filter disjoint to . Then by Theorem 3.3.7, Q is prime. 

Conversely, let X A y E J. X A Z E .1 and y v z exists. If X A (y v z) .1, then 

y v z {}1 . Thus [y v z) m {x}'-' = . So there exists a prime filter Q containing {y v z) 

and disjoint from {x} . As y,z ,so y,z Q. Thus yv z Q, as  Q is prime. This 

implies [y  v z) Q, a contradiction. Hence x A (y v z) E I , and so .1 is semi-prime. • 

Here is another characterization of semi-prime ideals. 

Theorem 3. 3. 12: Let J be a semi-prime ideal of a nearlattice S and x E S. Then a prime 

ideal P containing is a minimal prime ideal containing (x) if and only iffor p € F, 

there exists q E S - P such that p A q E {x}. 

Proof: Let P be a prime ideal containing {x}1' such that the given condition holds. Let K 

be a prime ideal containing fxl-'J such that K c P. Let p E P. Then there is q € S - P such 

that p A q e {x}. Hence p A q € K. Since K is prime and q 0 K, so p e K. Thus, P c K 

1 
and so K = P. Therefore, P must be a minimal prime ideal containing {}1  

Conversely, let P be a minimal prime ideal containing {x} . Let p E P. Suppose 

forall q€ S — P, pq 0 {x} Let D = (S — P) v [p). We claim that {x}1  nD =o. If not, 

let y E n D. Then p A q :!~ y € {x}1  , which is a contradiction to the assumption. Then 

by Theorem 3.3.11, there exists a maximal (prime) filterQ D and disjoint to {x}' . By the 

proof of Theorem 3.3.11, x€Q. Let M =S — Q. Then M is a prime ideal. Since XEQ.,SO 

• t A X € I ç M implies t € M as M is prime. Thus {x}1  c M. Now M n D = . This 

• implies Mn(S—P)=ço and hence Mc?. Also M#P. because p€D implies pIl'I 

• but p € P. Hence M is a prime ideal containing {}1  which is properly contained in P. 

This gives a contradiction to the minimal property of P. Therefore the given condition 

holds.. 
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Observe that by Theorem 3.3.7 we can easily give a Separation theorem in a 0- 

distributive nearlattice for A when A is a finite subset of S. But now we are in a position 

to give a proof of the theorem for any subset A. 

Theorem 3. 3. 13: Let F he a filter of a 0-distributive nearlattice S such that F r A
l 
 = 

for any non-empty subset A of S. Then there exists a prime jIlter Q F such that 

Qr'A' 4). 

Proof: By Theorem 3. 2. 5, A1  is a semi-prime . Thus by Lemma 3 3 3, there exists a 

maximal filter Q F such that Qr A' 4). Since A' is semi-prime, so by Theorem 3. 3. 

7, Q is prime.. 
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WEAKIX COMPLEM ENTEI) NEARLATTICE 

- 

4. 1 Introduction 

In iis chapter we will study the homomorphism on nearlattices. Then we include 

homomorphism theorem for nearlattices. We establish some results on homomorphic 

images of semi prime ideals. We also show that in a 0-distributive semi lattice, a map 

/ S t{a}il  : a e s} is a semi lattice homomorphism if and only if .f{a}' )= {f(a)}'. 

Finally, we included some characterizations of weakly complemented nearlattices relative 

to .1. 

Varlet [33] tirst introduced the concept of 0-distributive lattices. Then many authors 

including [1, 19, 22. 23. 24. 25] studied them for lattices and semi lattices. A nearlattice S 

with 0 is called 0-distributive if for all a,h,c E S with a A b = 0 = a AC imply a A d = 0 

for some d ~! b, c Chakraborty [9]. The concept of semi-prime ideals of a lattice is 

introduced in [26]. Recently, Begum and Noor [22] have extended the concept for meet 

semi lattices. An ideal J of a nearlattice S is called a semi-prime ideal if for all 

a,b,c ES with aAb E J, a ACE], imply clAd E .J for some d~: b,c. 1-lence a 

nearlattice S with 0 is called 0-distributive if (o] is a semi prime ideal of S. A meet semi. 

lattice S is called directed above if for all a,h S. there exists c E S such that c ~: a,b. 

We know that every modular and distributive semi lattice have the directed above 

property. Moreover Chakraborty[9] have shown that every 0-distributive meet semi lattice 

is directed above. 

Let S and T be two nearlattices. A map f S -0-  is said to be a homomorphism if 

I is a meet preserving map. That is, for all a, h E S .f((1 A h) = 1(a) A J(b). A 

homomorphism is called 0-hornoii.orphism if f(0) = 0. A one-to-one homomorphism is 

called a monomorphism or an embedding. A onto homomorphism is called an 

epimorphism. If f: A - B is an epimorphism, we say that B is a homomorphic image of 

A. An epimorphism is called an isomorphism if it is a one-to-one map. A homomorphism 

f A -* A is called an endomorphism, and an isomorphism f : A - A is called an 
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automorphism. The nearlattiec S and 7' are isomorphic if there exists an isornorphism f 
-4 

from S to T. We denoi.e it symbolically by S T. 
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4. 2 Homomorphism and semi prime ideals 
-4 

Let AS and J be an ideal of S. We defincA' = {xeS:xAaEJ for all 

a E A ), then A" is called an annihilator of A rdativc to 1 which is clearly a down set 

containing J. If it is an ideal, then it is called an annihilator ideal relative to J. By 9, 251 

we know that, for any a E A, a}" is an ideal if and only if S is 0-distributive. 

The following result is due to Noor and Begum[24). 

Lemma 4.2. 1: Let J be an ideal of a nearlattice S. Suppose A,B c S and a,h ES their 

the following hold. 

- 
(1) IfAnB=.J then BcA" 

AnA"=.J. 

A c B implies that B" ç A' 

i) a :!~ h implies that {b}" ç {a}' and {a1 ' 

ta}" (m{a}'' =.J. 

{aAh}" ={a}" n{b}" 

(viO ÂçÁ". 

(viii) A" = A1'.. 

Homomorphism theorem for lattice can be found in (iratzcr [121, theorem ii. In :. 

similar way, we can easily state the following homomorphism theorem for nearlattices. 

We prefer to omit the proof as it is almost similar to the proof of homomorphism theorem 

for lattices. 

Theorem 4. 2. 2: ('Homomorphism iiorem for nearlatlices) Evemy homomorphic image of 

a nearlattice S is isomnorpluc to a suitable quotient nearlaltice of S. In fact, if : S - T 

is a honiomnorphism of S onto T and 0 is a con gruence relation of S defined by 

Y(G) if and only if(x)= (y). Then SI® 



Theorem 4. 2. 3: Let S and T bu 'wo near/al/ices. I is an ideal of S . / : S -> T is a 

-4 
homomorphism and onto such that f (i()) = I Then I is semi-prime in S implies 

j'(i) is semi-prime in 7'. 

Proof: Suppose I is semi-prime. Let x,y.z E T with XA V f(I) and x AZ E [(I). 

Then there exists a.b,c E S such that x f(a),y = f(h),z 

Now f(a)A f(b) = f(a A b) E f(I). 

f(a) A f(c) = f(a A c) e .f(i). This implies a A b, a A c e I. Since I is semi-prime, so  

there exists ci E S, d ~! b, c such that a A ci E I. Let I = f(d). Then t = f(d) ~! fb), f(c). 

That is, t ~: y, z. Also f(a)A .f(d) = f(a A d) E f(J). Thus X Al E f(I), and so f(I) is 

semi-prime.. 

Since S is O-disrtibutive if and only if (o} is a semi prime ideal so the following 

corollary immediately follows by above theorem. 

Corollary 4. 2. 4: Let S and T he Iwo nearlattices with 0. / : S - T is 0- 

homomorphism, onto and (o) = 0. Then T is 0-distributive /f S is 0-distributive. 

Lemma 4. 2. 5: Let J he a semi-prime ideal of a nearlattise S. f S - {a}1 : a € s} 

given by fa) = {a}". Then the following results holds: 

f is a meet homomoephism. 

For aeS,f(a)=J if and only ifacf. 

f({a}' )= {f(a)}1' 

Proof: (i) Let a,b e S . Now 

I \ L faAh) = (aAb L 
/
i 

 

{a iJ. ) .1. 
=  

= j(a) n 1(h) 



= f(a) A 1(b) 
WE 

Hence the map is a meet homomorphism. 

(u) If f(a)= J, then (a}1'' = I. Thus a}' {a} = S and so a E {a} . This 

implies a = a A a e I. 

Conversely, if a e I, then f(a)= a}J! = S1  

(iii) f({a} )= {{b}" I I) E {a}' } 

f((a}' )= t{b}'' I aAb 4 

= j{b}" I [(a A b) E .J} 

= t{b}' f(a)Af(b)EJ} 

{f(a)} 

Hence the proof is completed. 

Corollary 4. 2. 6: Let S he a 0-distributive nearlatlice S. f S —k {a} : a € s} given 

by f(a) = {a}11 . Then the ibilowing results hold. 

(i) f is a meet homomorphism. 

('ii) For a E S,f(a)= {o} if and only i/a = 0. 

(iii) f({a} )= {f(a)}' 

Note: Observe that lemma 4. 2. 5 is also true for an ordinary ideal J of S. But we have 

consider semi primeness of I as {a} and 1a}-L.," are ideals only when I is semi-prime. 

Similarly, in a semi lattice with 0, [a} or are ideals only when S is 0-distributive. 
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4. 3 Weakly complemented Nearlattices 

Let S be a nearlattice with 0. S is called weakly complemented if for any pair of 

distinct elements a,b E S, there exists an element c such that only one of a AC and b A C 

is equal to 0. 

Similarly, for an ideal .1 of a ncarlallice S, we call S is weakly complemented 

with respect to J if for any pair of distinct elements a,h S. there exists an element c 

such that only one of a A c and b A c belongs to I. In particular, if a <h, then there 

exists c E S such that QACEJ but hAc.J 

Note that the definition of weakly complemented semi lattice relative to ideal .J can 

14 
also be given in the following way: 

For an ideal J of a nearlattice 5, S is called weakly complemented relative to J ii 

for all a,b E S ,a # b implies that either {a}1' - {b}" # (1) or b}1' - {a}" :PL P. These 

semi lattices are also known as disjunctive semi lattices relative to J. 

Theorem 4. 3. 1: Let S be a nearlattice and J be a semi-prime ideal of S. Then the 

following are equivalent: 

- (1) f : S —> a}" I a E s} dfined by f(a) = a" is isomorphism. 

(ii) {a}1  = {b}! E i, (s) implies that a = h fhr all a,h E S. 

('iii) S is weakly complemented relative to I. 

Proof:(i)implies (ii): Let (a} = {h}' and a # b. Then as I is an isomorphism, we 

have, f()# fb) which implies that {a}'" # {b}11' . Then there exists x E {a}k1 

such that x 0 {b}1' which implies that x A Z 0 .J for some z e {b}'. Since {a}" = 

then we have x AZ .J for some z E {a}' which implies x o {a}' 1'. This gives is a 

contradiction. Hence {a}" = {h} implies a = b. 

IT (ii) implies (iii): Let a <b. Then by lemma 4.2.1 and (ii), we have {a}" {b}" . Hence 

there exists x E {a}" such that x , which implies that S is weakly complemented 

relative to J. 



62 

(iii)implies (ii): Let a # b then either a Al <a or a A b <h. Assume that a A b <a. As 

S is weakly complemented, so there exists x E {a A b}" such that x A a 0 J. 

Thus we have x A (a A b) c J. This implies (x A a) A h E .1, and so (x A a) E {b}" and 

x A a {a}' . Hence {a}' ~ {b} and so (ii) holds. 

ii)implies(i): To prove f is an isomorphisin. For all a,h E 8, a = h 

j' ar' •)J_ = (bç )_i_ 

( )L I = (h 
 )-L i, 

- < f(a) = f(b) 

This imp! es f is well defined and one to one. 

Obviously, the mapping is onto. 

Moreover, by lemma 4. 2. 5, f is a A preserving map. Therefore, f is an isomorphism. 

. 

We conclude the thesis with the following result as ø} is semi-prime if and only if 

S is 0-distributive. 

Corollary 4. 3. 2: Let S be a 0-distributive nearlallice. Then the following are 

equivalent: 

(1) f : S —* {a }il I a E s} defined by f(a) = a} is an isomorphism. 

{a}' = {b}L c i(s) implies that a = b for all a,h E S. 

S is weakly complemented.. 

I 
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