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Abstract

In this thesis study of the nature of the weakly complemented nearlattice is presented. By
a nearlattice S we will always mean a meet semilattice together with the property that
any two elements possessing a common upper bound, have a supremum. Cornish and
Hickman [7] referred this property as the upper bound property, and a semilattice of this
nature as a semilattice with the upperbound property. Cornish and Noor [8] preferred to
call these semilattices as nearlattices, as the behaviour of such a semilattice is close to
that of a lattice than an ordinary semilattice. Of course a nearlattice with a largest element
is a lattice. Since any semilattice satisfying the descending chain condition has the upper
bound property, so all finite semilattices are nearlattices. In lattice theory, it is aluﬁys
very difficult to study the non-distributive and non-modular lattices. Gratzer [12] studied
the non-distributive lattices by introducing the concept of distributive, standard and
neutral elements in lattices. Cornish and Noor [8] extended those concepts for neariattices
to study non-distributive nearlattices. On the other hand, J.C Varlet [33] studied another
class of non-distributive lattices with 0 by introducing the concept of 0-distributivity. In
fact this concept also generalizes the idea of pseudocomplement in a general lattice. In
this thesis we have extended the concept of weakly complemented nearlattice in terms of

homomorphism theorem
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CHAPTER

IDEALS, CONGRUNCES AND RELATIVE ANNIHILATORS IN A
NEARLATTICE

1. 1 Preliminaries

The intention of this section is to outline and fix the notation for some of the
concepts of nearlattices which are basic to this thesis. We also formulate some results on
arbitrary nearlattices for later use. For the background material in lattice theory we refer

the reader to the text of Birkhoff [4] , Gratzer [12], [13] and Davey [10].

By a nearlattice S we will always mean a lower (meet) semilattice which has the
property that any two elements possesﬁng a common upper bound have a supremum.
Cornish and Hickman [7], referred this property as the upper bound property and a
semilattice of this nature as a semilattice with the upper bound property. The behaviour of

such a semilattice is closer to that of a lattice than an ordinary semilattice.
Of course, a nearlattice with a largest element is a lattice. Since any semilattice
satisfying the descending chain condition has the upper bound property, so all finite

semilattices are nearlattices.

Now we give an example of a meet semilattice which is not a nearlattice.
Example: In R* let us consider the set, S§= {(’0,0)}&.} {1 ,())}u {(0.1)}u {(I,y) \ y> 1-}

shown in the Figure 1.1

(0,1)
0.0) (1,0)

Figure 1.1
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Let us define the partial ordering "<" on S by (x,1)< (X, ) if and only if x<x,
and y<y,. Clearly, (S:<) is a meet semilattice. Both (1.0) and (0,1) have cOMmMOr:

upper bounds. In fact {(1 y)[ y>l} are common upper bounds of them. But the

supremum of (1,0) and (0,1) does not exist. Therefore (S:<) is not a nearlattice.

The upper bound property appears in Gratzer and Lakser [14], while Rozen [28]
show that it is the result of placing certain associativity conditions on the partial join
operation. Moreover, Evans [11] referred nearlattices as conditional lattices. By a

conditional lattice he means a lower semilattice S with the condition that for each

yéx} is a lattice: and it is very easy to check that this condition is

xes, {y eS
equivalent to the upper bound property of S. Also Nieminen [20] in his paper refers to
nearlattices as “partial lattices”. Whenever a nearlattice has a least element we wili

denote it by 0. If x,, x,, -, x, are elements of a nearlattice then by x, VX, V-V X,, We
mean that the supremum of x,, x,, ==+, X, exists and x; vx, vV X, symbolizing this

n

supremum.

A non-empty subset K of a aearlattice S is called a subnearlattice of S if for any
a.be K, both anband avb(whenever it exists in S') belong to K (A and v are taken
in §), and the A and v of K are the restrictions of the A and v of § .lo K . Moreover, a
subnearlattice X of a nearlattice S is called a sublattice of S if avbeK for all

abek.

A nearlattice S is called modular if for any ab,ceS with c<a,

an(bve)=(anb)vec whenever bvc exists.

A nearlattice S is called distributive if for any X, X, X,
xA(xIvxzv---vx”):(xnx,)v(xnxz)v---v(xnx”) whenever X, VX; V'V X,
exists. Notice that the right hand expression always exists by the upper bound property of

S,



ysx} isa

Lemma 1. 1. 1: A nearlattice S is distributive (modular) if and only if {y es

distributive (modular) lattice for each x € S. ®

Let us consider the following two lattices: pentagonal lattice N5 and Diamond
lattice Ms. Many lattice theorists study on these two lattices and given several results.

X

| e
S
t
a c
m
0 d
v Figure-1.2 Figure-1.3

Hickman in [15] has given the following extensions of very fundamental results of lattice

theory.

Theorem 1. 1. 2: A nearlattice S is distributive if and only if S does not contain a

sublattice isomorphic to N5 or M [in Figure 1.2 and 1. 3]. ®

> Theorem 1. 1. 3: 4 nearlattice S is modular if and only if S does not contain a sublattice

isomorphic to Ns. @

In this context it should be mentioned that many lattice theorists (e.g. R. Bables
[2],J. C. Varlet[33], R. C. Hickman[15] and K. P. Shum(31]) have worked with a class of
semilattice S which has the property that for each x,4,.4,,",a, €S, if ava,v---va,
exists then (xAa)v(xAay)v-v(xaa,) exists and equals x ~a,va,v-va,).
Bables [2] called them as prime semilattices while Shum [31] referred them as weakly

distributive semilattices.

Hickman in [15)] has defined a ternary operation j by jlx, y, z)=(xn y)v(yaz),
on a nearlattice S (which exists by the upper bound property of ). In fact he has shown,
which can also be found in Lyndon [18] Theorem 4, that the resulting algebras of the type



(S ; j) form a variety, which is r_efcrred (o as the variety of join algebras and following are
its defining identities.

@ jlexx)=x

@  jeeyx)=ilxy)

Giy (e yx)z 0y x)= il i,z ) x)

@v)  i(wyz)=jzyx)

© GGy 2) i y.x) il y.2) = j(x %)

i) (e yx)y.2)=ixy.2)

i) ey, Gzx)= (%)

wiii) G0y i0w 2,20 (2. 2) (. (e 2)) = (%, 3.2)

We do not elaborate it further as it is beyond the scope of this thesis.

We call a nearlattice S a medial nearlattice if for all x,y,zeS§,
m(x,y, z) = (x A y)v (yAz)v (z A x) exists. For a (lower) semilattice S, if m(x, 9,2)
exists for all x,y,z€ S . then it is not hard to see that S has the upper bound property and

hence is a nearlattice. Distributive medial nearlattices were first studied by Sholander [29,
30], and then by Evans [11]. Sholander preferred to call these as medial semilattices. He

showed that every medial nearlattice S can be characterized by means of an algebra
(S;m) of type (3) _known as medial algebra, satisfying the following two identities:

(1) m(a,a,b)z a

(i1) m(m(a,b,c), m(a,b,d).e)= m(ml(c,d,e).a,b).

A nearlattice S is said to have the three properties if for any a, b.ceS,avbve
exists whenever avb, bwve and cva exists. Nearlattices with the three properties

were discussed by Evans [11], where he referred it as strong conditional lattices.

The equivalence of (i) and (iii) of the following lemma is trivial, while the proof of

1
i

(i) <=> (ii) is inductive.



Lemma 1. 1. 4: {Evans [11]}. For a nearlattice S the following conditions are

equivalent:
(i) S has the three properties.
(ii) Every pair of a finite number n (2 3) of elements of S posses a
supremum ensures the existence of the supremum of all the n elements.
(iii) S is medial. ®

A family A of a subset of a set 4 is called a closure system on 4 if
(1) Ae A and

(11) A is closed under arbitrary intersection.

Suppose B is a subfamily of 4. B is called a directed system if forany X,Y eBb

there exists Z in B suchthat X,Yc Z.

If U{X:XeB}e A forevery directed system B contained in the closure system

A, then A is called algebraic. When it is ordered by set inclution, an algebraic closure

system forms an algebraic lattice.



1. 2 Ideals of Nearlattices

A non-empty subset / of a nearlattice § is called a down set if for any x e S and

yel, x<y implies xe /.

A non-empty subset / of a nearlatiice S is called an ideal if it is a down set and
closed under existent finite suprema. We denote the set of all ideals of S by I(S), which

is a lattice. If S has a smallest element 0 then [ (S) is an algebraic closure system on S

and is consequently an algebraic lattice.

However, if S does not possess smallest element then we can only assert that

1(S)u {(D} is an algebraic closure system, where @ 1s the empty subset of S .
For any subset K of a nearlattice S, (K ] denotes the ideal generated by K.

Infimum of two ideals of a nearlattice is their set theoretic intersection. Supremum
of two ideals I and J in a lattice & is given by
IvJ= {x el | x<ivj forsomeiel,je J}. Cornish and Hickman in [7] showed that
in a  distributive nearlattice S for two ideals ] and g,
IvJ= {fv j ‘ iel jeJwhereiv | exists}. But in a general nearlattice the fomula for
the supremum of two ideals is not very easy. Let us consider the following lemma which

gives the formula for the supremum of two ideals. It is in fact an exercise in Gratzer [12],

p-54 for partial lattice.

Theorem 1. 2. 1: Let [ and J be ideals of a nearlattice S. Let Ay =10J,

x<yvz;yvz exists and )J,ZEA,,_I} for n=1,2,-, and K=U 4,.
n=0

Anz{xeS

Then K=1vJ.

Proof: Since A, < 4, < 4, c--< 4, <, K is anideal containing I and J. Suppose
H is any ideal containing / and J. Of course, 4, < H . We proceed by induction.

Suppose 4, ; < H for some n>1 and let x € 4,. Then x <yvz with y, ze 4,_, . Since



~1

A,,c K and H isanideal, yvze H andso xe H . That is 4, ¢ H for every u. Thus

K=1vJ.»

Theorem 1. 2. 2: Let K be a non-empty subset of a nearlattice S. Then

t = jlk,, t, k,) for some ki, k,e K} and

(K]= @0{44”1 n 0}, where A, ={IES
A, = {r eS|t= jla,. t, a,) for some a,, a,e A”_,}ﬁ)r nel
Proof: For any k € K clearly k= jlk,ke.k) and so K < 4,. Similarly, for any a€ 4, ,,

a= j(a,a,a) implies that 4, , < 4,. Thus Kc4dycdcdcc 4. p=d, S

‘n=012, and t, €S such that t; <¢. Then fe 4, for some m=0.

n?

Let te U A4
n=0

Clearly, ¢, = j(t.t,,t) and so 1, € 4,,,,. Thus o 4, is down set.
H=

Now suppose, f./, € U 4, and t,vi, exists. Let ; € 4, and 1, € 4, for some

r.s>0 with r<s (say). Then f,t,e€d;, and VL, = jlt, .t Vit ) provides
ty Vi, € Ay,

Finally, suppose H is an ideal containing K. If xed,, then
x=j(k.,x, k)= (k Ax)v (k, nx) for some k,k,e K. As K< H and H is an ideal,
k,Ax,ky Axe H and so xe H. Thus A, < H. Again we use the induction. Suppose
A, , < Hfor some n=1. Let x € 4, sothat x= jla,,x.a, ) for some a,,a, €4, . Then

xe H as ay,a, € H and x=(a, Ax)v(a, Ax).0

Theorem 1. 2. 3: A non empty subset K of a nearlattice S is an ideal if and only if

xc K whenever xe S and x= j(k,x,k, ) for some k;, k, € K .®

We now give an alternative formula for the supremum of two ideals in an arbitrary

nearlattice.



=4}
Theorem 1. 2. 4: For any two ideals K, and K, K, vK,= UnB” where
n=

B{,:{xeSlx;;'(kl,x, kz),k,.&'!\’,]g and Buz{xe.ﬁ' x=j(b, x bz),b],hze&,_]},

n=1, 2,-.

Proof : Clearly, K, K, c By cB,cB,c'c B, ,c B, <. Suppose be L_JUB,, and

b, <b; byeS. Then he B, for some m=0. Also, b, =j(b,b1,b) and so b, €B,,.

Thus UUB” is a down set. Now suppose ,,/; € LA B, such that ¢, v, exists. Then there
= n=

exist r,s>0 such that f,eB, and (,eB,. If r<s then 1,,€B; and

tvty=j(t. b vy, t,) implies that #, v¢, € B,,,. Hence , U B, is an ideal.

n=0

Finally, suppose H is an ideal containing K, and K,. If xeB, then
x= j(k ,x,k, )=(k A x)v (k, Ax) for some k, € K, and k; € K. Hence H is an ideal
and K,, &, c H, clearly xe H . Then using the induction on n it is very easy to see that

H o B, foreachn. e

In a lattice L, it is well known that for a convex sublattice C of L. C=(C]n[C).

The following figure (Fig:1.4) shows that for a convex subnearlattice C in a general

nearlattice, this may not be true.

Figure 1.4

Here. C={a,b,c} is a convex subnearlattice of S. Observe that (C]=S and

[C)= {a,b,c,x}, hence (C]n|C)=C.



Recently, Shiuly Akter [32] has proved that for a convex sublattice ¢ of a
distributive nearlattice s (C]= {x e S| x=(xnc)vxac, Yveevixac,)
for some ¢,,¢,, +,C, e C}. With the help of this result Rosen [28] have proved that
c=(C]n [C) when S is distributive. But in a non-distributive nearlattice of S, it is casy

to show that C = (C ]r\ [C) when S is medial.

Theorem 1. 2. 5: {Cornish and Hickman [7], Theorem 1. 1}. The following conditions on

a nearlattice S are equivalent:

(i) S is distributive.

(ii) Forany H e H(S), (H]= v hy v~ hy | yhyo b, € H .

(iii) Forany 1,J€I(S), IvJ ={a,va,v--va,|a,a,.a,elVJ}.
(iv) 1(S) is a distributive !aréfce‘

) The mapl H-(H | is a lattice homomorphism of H (S) onto 1 (S)

( which preserves arbitrary suprema). ®

Observe here that by Theoreml. 2. S, (iii) of above could easily be improved to

(iii)’: For any I,JEI(S), IvJ={fvﬂ ief.jEJ}.

Let I, (S) denote the set of all finitely generated ideals of a nearlattice S. Of
course If(S) is an upper subsemilattice of I(S). Also for any XX, X%,€S,

(xl,xz,---,xm] is clearly equal to (x,]v(xz]v---v(_xm]. When S is distributive,

(50 %0 %0 01 720 2] = (v v v (e, D (1] (] v v ()

=I_\:_(x, Ay_f-] for any X, X,, s X5 Y5 Vo *'7» Y, €5 and so }f(S) is a distributive

sublattice of 1(S).

A nearlattice S is said to be finitely smooth if the intersection of two finitely
generated ideals is itself finitely generated. For example, distributive nearlattices, finite

nearlattices, lattices, are finitely smooth. Hickman in [15] exhibited a nearlattice which is

not finitely smooth.
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From Cornish and Hickman [7], we know that a nearlattice S is distributive if and only if

1(S) is so. Our next result shows that the case is not the same with the modularity.

Theorem 1. 2. 6: Let S be a nearlattice. If I (S)is modular then S is also modular but
the converse is not necessarily true.

Proof: Suppose I(S) is modular. Let a,pceS with c<a and bve exists. Then
(c]lc(a]. ~ Since I (s) is  modular,  so, (an(pve)=(a]a (6]v ()
= (@) @] v (c]= (@ Ab)vc]. This implies that a A (bvec)=(anb)vc, and so S is
modular. |

Nearlattice S of Figure 1.5 shows that the converse of this result is not true.

Figure 1.5

Notice that (r] is modular for each r € §. But in 1(S). clearly {(0}(a,]) (a,,»] (ay,b] S} is

a pentagonal sublattice. ®
The following theorem is due to Bazlar Rahman [3]

Theorem 1. 2. 7: {Bazlar Rahman [3]} Let [ and J be two ideals in a distributive

nearlattice S. If I AJ and I~ J are principal, then both I and J are principal. ®

A non empty subset F of a nearlattice S is called an up set if for xe S, yeF

with x> y imply x e F.
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A non empty subset F of a nearlattice S is called a filter if it is an up set and

finfoeF forall f,f,eF.

An ideal P in a nearlattice S is called a prime ideal if P#S and xAyeP

implies xe P or ye P.

A filter F is cailed a prime filter if either x € F* or y € F© whenever x Vv y exists

andisin F .

It is not hard to see that a filter ¥ of a nearlattice S is prime if and only if §—F
is a prime ideal. The set of all filters of a nearlattice is an upper (join) semilattice ; yet it is
not a lattice in general, as there is no guarantee that the intersection of two filters is non
empty. The join v F, of tWo filters is given by

EvE= {s € S‘ s> fi A f, for some fie F, f, € Fz} The smallest filter containing a

subsemilattice H of S is {s eS| s=h for some he H } and is denoted by [H).

Moreover, the description of the join of filters shows that for all a,beS,

[a)v (b]=[arb).

Following theorem and corollary is due to Noor and Rahman [21] which is an

extension of Stone’s separation theorem of Gratzer [12] theorem 15, pp74.

Theorem 1. 2. 8: {Noor and Rahman[21]} Let S be a nearlattice. The following
conditions are equivalent:

(i) S is distributive.

(i1) For any ideal I and any filter F of S, such that I\F =@, there

exists a prime ideal P = 1 and disjoint from F .e

Corollary 1. 2. 9: A nearlattice S is distributive if and only if every ideal is the

intersection of all prime ideals containing il.®
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Lemma 1. 2. 10: A subsel  of a nearlattice S is a filter if and only if S—F is a prime
down set.
Proof: Let xeS—~F and t<x. Then x¢ F, and so (¢ [, as F is a filter. Hence
feS—F ,and so S—F is a down set. Now let x,yeS such that x AyeS-F. It
follows that x Ay F. This implies either x¢ F or ye¢l, as F is a filter. That is,
either xe S—F or yeS—F,andso S—F isa prime down set.

Conversely, suppose S—F is a prime down set. Let xeF and (2x. "I;llell
xe¢S—F andso teS—F as S—F is a prime down set. Thus 7€ F and so F is an
upset. Finally let x,ye /. Then x¢S~-F, yeS—F. Since S—F is a prime, so

xAy¢&S—F.Therefore xAnyelF, and so JF is a filter. @
Following result is an easy consequence of above lemma.

Lemma 1. 2. 11: A subset F of a nearlattice S is a prime filter ifand only if S—F isa

prime ideal. o
Now we include a generalization of theorem 1. 2. 8 ina general nearlattice.

Theorem 1. 2. 12: Let S be a nearlattice. F be a filter and 1 be a down set such that
I A F = . Then there exists a prime down sei P containing 1 but disjoint to F .

Proof: Let % be the collection of all filter containing F and disjoint to I . Then 7 is nofi-

-

empty as F €y . Suppose C is a chain in y. Set M :u{X XEC}. Let xe M and

y2x.Then xe X for some X eC. Since X is a filter , so y€ X and hence ye M.
Thus M is an upset. Now let x,ye M . Then xe X and yeY forsome X,YeC. Since
C is a chain , so either X <V or ¥ < X . Suppose X c Y. This implies x,ye? , and so
xAyeY as Y is a filter. It follows that x A y e M and hence, M is a filter containing
F . Moreover M I =¢. Therefore, M is the largest element of C. Thus by Zorn’s

lemma, M is a maximal filter containing . Therefore by Lemma 1.2.10, L-M isa

minimal prime down set containing / but disjoint to F .e
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Corollary 1. 2. 13: Let S be a nearlattice with 0 and F be a 1f:u‘:::gpm"ﬁz'rerr of S . Then

there exists a prime down set P such that FNP =®.e
The following lemma is very useful in proving many results of distributive nearlattice.

Lemma 1. 2. 14: If S, is a subnearlattice of a distributive nearlattice S and P, is a prime

ideal in S,, then there exists a prime ideal P in S such that I; = Sy,nP.e

Following theorem is a generalization of Lemma 1.2.14, which will be needed in

establishing some results in other chapters.

Theorem 1. 2. 15: Let S, be a subnearlattice of S. and P, be a prime down set of S|.
Then there exists a prime down set P of S such that P, =P N Sy.

Proof: Let H be a down set generaied by P, in S. Then H N (S,-P)=.Now S, - P,
is an upset in S} and H N [S, ~ P)=@ where, [S, = P,) is the filter generated by S, — B

in S. Then by Theorem 1.2.12 , there exists a prime down set P o H and disjoint to

[S,-B).Now P,c HNS; = PN S;. Also PN S, c P Hence, A =P N 5.
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1.3 Congruences

An equivalence relation @ of a nearlattice § is called a congruence relation if
x;, =,(@) for i =12 (x,,y,€S). then

(@) XY AXy EN A (©). and

()  x, v, =y Vvy,(®) provided x, v x, and y; v y, exists.

It can be easily shown that for an equivalence relation @ on S, the above

conditions are equivalent to the conditions that for x,y € S if x = y(@), then
(if) XAL=EYA !(@) forall e .S and

(i) Xvi=yv r(@) for all £ e S provided both xv ¢ and yv ¢ exists.

The set C(S) of all congruences on § is an algebraic closure system on Sx.§ and

hence, when ordered by set inclusion, is an algebraic lattice.

Cornish and Hickman [7] showed that for an ideal I of a distributive nearlattice S,

the relation @(7) , defined by x = y(@(1)) if and only if (x]v 1= (y]v I, is the smallest
congruence containing / as a class. Moreover the equivalence relation R(1 ), is defined
by x = y(R(/)) if and only if for any s€ S, saxel isequivalentto sAyel.In fact,

this is the largest congruence of S having / as a class.

Suppose S is a distributive nearlattice and xeS we will use O, as an
abbreviation for @((x]). Moreover v, denote the congruence, defined by a=b (y,) if

andonlyif anx=5bAx.

Cornish and Hickman [7] also showed that for any two elements a,b of a
distributive nearlattice S with a <5, the smallest congruence identifying ¢ and b is
equal to y, N@, and we denote it by @(a.b). Also in a distributive nearlattice S, they

observed that if S has a smallest element 0, then clearly ©, = ©(0,x) for any xeS.




Moreover, we see that:
(1) @, v v, = 1, the largest congruence of §.

(i1) @, Ny, = o, the smallest congruence of S and

(iii) @(a,b] =@, vy, where a <b and (" ) denotes the complement.

Now suppose S is an arbitrary nearlattice and E(S) denote the lattice of
equivalence relations. For @, @, € E(S) with @, v @, denoting their supremum
x=y(@ v®,) if and only if there exist x=2,,z;,*",Z, =y such that

2, =2,(®, or @,) for i=12,,n.

The following result was stated by Gratzer and Lakser in [14] without proof and a

proof given below, appeared in Cornish and Hickman [7].

Theorem 1. 3. 1: For any nearlattice S, C(S) is a distributive (complete) sublattice of
E(S). |

Proof: Suppose ©,D e C(S). Define v to be the supremum of © and @ in the lattice of
equivalence relations E(S) on S. Let x = y(y). Then there exists x=2zg,z,,"",2, =¥

such that z,, =z,(®, or ®,). Thus, for any teS, z, At=z at(@, or ®,) as
o, < C(S).

Hence x At=y At(y) and consequently y is a semilattice congruence. Then, in
particular x A Y Ex(ql) and x Ay = y(w). To show that v is a congruence, let x = y(q;),
with x <y, and choose any ¢ € S such that both x v ¢ and v v ¢ exists. Then there exists
ZysZys 25, "s 2, » SUCh that x=2,,z, =y and z; =z,(®, or @,). Put w, =z, Ay for all
i=0,1,-,n. Then x=wy,w,=y. W, =W, (@, or @, ). Hence by the upper bound
property, w; Vi exists for  all i=0,1,--,n(as w,vi<yvit) and
W, VI=W, vi(®, or @,) for all i=01--,n(as 6,0 eC(S)), ie xvi=yvi(y).
Then by Cornish and Noor [8] Lemma 2. 3 v is a congruence on S . Therefore, C (S ) isa

sublattice of the lattice £(S).
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To show the distributivity of C(S), let x=3(@ N (O, v @,)). Then x A y= y(®)
and x A y=(0, v ©,). Also xA y=x(@) and x A y=x(&, v O, ).

Since x A y = y(@, v ©,), there exists #,.¢,,-+.1, such that (as we have seen in the
proof of the first part), x Ay =lo.f, =V, I =1,(0, or ®,) and xAy=t,<t; <y for
each i=01---,n. Hence f,,=t,(@) for all i=0]l,-.n and so t, =t NnO,) or
by =t (@no, ). Thus xay=y(©@ne)v @noe, ). By symmetry,
iny=x((@n6)v(@n©,)) and the proof completes by transitivity of the

congruences. ®

In lattice theory it is well known that a lattice is distributive if and only if every
ideal is a class of some congruence. Following theorem gives a generalization of this result

in case of nearlattices.

This also characterizes the distributivity of a nearlattice, which is an extension of

Cornish and Hickman [7] Theorem 3. 1.

Thoerem 1. 3. 2: A nearlattice S is distributive if and only if every ideal is a class of
some congruence.
Proof: Suppose S is distributive . Then by Cornish and Hickman [7] Theorem 3.1 for
each ideal / of S @(1) is the smallest congruence containing / as a congruence class.

To prove the converse, let each ideal of S be a congruence class with respect to
some congruence on S . Suppose S 1s uot_distributive. Then by Theorem 1. 1. 2, we have

either Ny (Figure 1.2) or M (Figure 1.3) as a sublattice of S. In both cases consider
I =(a] and suppose I is a congruence class with respect to @. Since del,d=a(®).
Now b=bac=bnlavc)=bna (dvc)=bnrc= d(®) , thatis, b= d(®) and this implies

bel.ie b<a which isa contradiction. Thus S is distributive. ®

Following results are due to Bazlar Rahman [3].
Theorem 1. 3. 3:{Bazlar Rahman [3], theorem 3. 4} Let S be a distributive nearlatt:ce

then,

(i) For ideals I and J, © (InJ)=6(1)n6(J).
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(ii) For ideals j, i€ A anindexed set, © (v JI.):V@(J,-). ®

Th.eorem 1. 3. 4:{Bazlar Rahman [3], corollary 3. 5} For a distributive nearlattice S, the
mapping 1 — @(I ) is an embedding from the lattice of ideals to ihe lattice of

congruences. ®
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1. 4 Relative Annihilators:

Recall - that a nearlattice S is distributive if for all x,y,z€ S
sa(yvz)= (x A y) v(xa z) provided yVz exists. Since for al!
x,y,Zz€S ,(xx\ y)v(x;\ z) always exists by the upper bound property, we give ar.

alternative definition of distributivity of S by the following lemma.

Lemma 1. 4. 1: A nearlattice S is distributive if and only if for all t,x,y,z€S,

IA((xAy)v (x/\z))= (t AxA_v)v(r Ax/\z).
Proof: Suppose S is distributive. Then obviously,
IA((x/\y)v (x/\z))= (! AX Ay)v({ AXNA z).
Conversely, suppose S has the given property. Let a,b,c € S with b v ¢ exists. Set
t =bve.Then
an(bve)=an((ta b)v(trc))=(antAa b)vi(ant A c)=(anb)via ac). Therefore S
is distributive ®
Recall that a nearlattice S is modular if for all x,y,z €S with z < x and whenever
yvz exists then xA(yv z)=(xAy)vz. Like lemma 1.4.1, we can also easily
characterize modular nearlattice by the following result.
Lemma 1. 4. 2: A nearlattice S is modular if and only if for all t.x,y,z€ S , with z < x,
x/\((! /\y)v(f/\z))z[x/\! /\_y)v(r /\z).
Proof: Suppose S is modular. Then obviously,
xA((rAy)v(I /\Z))-——‘ (Jff\! Ay)v(f f\z).
Conversely, suppose S has the given property. Let a,b,ceS with c<a anl
whenever bve exists. Set b=bwe; ~ thea

az\(bvc):a/\((u\b)v(l Ac)):(am’/\b)v(am*Ac):(aAIAb)v(tx\c)z(af\,b)vc
. Therefore S is modular. ®
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Now we generalized Theorem 1 and Theorem 2 of Katrinak, [17].
Theorem 1. 4. 3: For a nearlatice S the following conditions are equivalent:
(i) S isdistributive.
(ii) <a,b) is an ideal for all a,be S .
(iii) (a,b) is an ideal whenever b = a.
Proof: Since (i) implies (ii) and (ii) implies (iii) are trivial, we shall prove only (iii)
implies (i).

Suppose (iii) holds. Let #,x,y,z€ S . Then
((axay)vitaxaz)sx impliés (x,taxAp)v(nxnaz)) is an ideal. Again
(tAxAy)<(tAxAy)v(EAxAz) implies tAye (x.enxAy)vEaxaz).
Similarly, f Az e (x,(tAxAp)v(EAxAz).
Hence (t Ay)v(az)e (x(axay)vitnxa z)).
Thus, x A ({t A yvitaz)< (taxay)vitaxa z). Since the reverse inequality is trivial,

S0 x/\((tx\y)v(tz‘\z))z(!f\x A_y)v(.tz\x/\z).

Therefore by lemma 1. 4. 1, S is distributive. ©

Theorem 1. 4. 4: A nearlattice S is modular if and only if whenever b<a, if t AX € (b]
and t Ay €(a,b) forany t €S, then(t A x)v (¢ A y) e (a,b).

Proof: Suppose S is modular. Since Ay € (a,b), so antAy<b.Also tAx<b<a.
Thus by modularity of &, a N(ZSI (t Ay))=lant /\y)v (tAx)<b, and so

(tAx)v(t AY)eE (a,b).
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Conversely, let the given condition holds, suppose 7.x.y,2 € S, with z <x. Then
(!Az)v(s‘/\xx\y)ﬁx and fx\ze((!/\z)v(tx\xz\y)]. Also,

IAXAYS (r/\z)v (! AXNA y) implies t A y € (x,(f A z)v (1 Ax/\y)). Then by hypothesis

(t Az)v (t A y)e (x,(r A z)v (t AXA y))
This implies x A (¢ A y)v (t A z)) < tAxA vt A z). Since ti]f: reverse inequality is
trivial, so by lemma 1. 4. 2, S is modular. ®

Following result is a generalization of a lemmé of Katrinak [17] in section 3.
Lemma 1. 4. 5: In any distributive nearlattice S, each of the following conditions on a

given filter F implies the next.

(i) Forall a,be S, there exists an element x € F such that anx and bax

are comparable.
(i)  The filters containing F fbrfm a chain.
(iii)  F is prime.
(iv)  F contains a prime filter.

" Proof: (i) implies (ii): Suppose (i) holds. If (ii) fails then there exists non-comparable
filters G and H containing F . Choose elements ae G —H and be G- H.Thenby (1)
there exists x € F such that aAax and bAx are comparable. Suppose aAX <bnx.

Since xeF -G, so anxeG. Then anx<b implies beG  which gives a
contradiction. Therefore (ii) holds.

(i) implies (iii): Suppose (ii) holds. Let a,beS with avb existsand avbeF.
Let G :Fv[a) and H = Fv|[b) By (ii) , either GcH or HcG. SupposeG < H -

Then ae H  and so a=xAb for some xe F_Since x,avbeF s0 xnlavb)el

Thus by distributivity of S, (x A G)V (I A b) = (x A G)V a=aeF  Therefore I' is prime.



(iii) implies (iv) is trivial, @

For a lattice L, the identity {a.b)V (b.a)= L for all a.b € L is well known in lattice
theory. This identity in fact, characterizes relatively Stone and relativelj/ normal lattice;
c.f. [17] and [5].

Theorem 1. 4. 6: For a distr.fburive nearlattice S the identity (a,b}v (b,a) =S for al!
a,b €8S polds if and only if all the conditions of lemma 1.4.5 are equivalent.

Proof: Suppose the identity holds. We need only to show that (iv) implies (i) of lemma

145 Let a.beS . Suppose P isa prime fiiter contained in I Choose ze€ P . Since
(a,b)v(b,a)=S, so z=xv y for some xe{a,b) and y (b,a) . Since P is prime ,
either x € P or ye P.Suppose x € P. Then xe F, and x € (a,b) implies a A x <band
so a A x <b A x. Therefore (i) holds.

Conversely, suppose all the conditions of the lemma 1.4.5 are equivalent. Let there
exists a,b e S such that I = (a,b)v (b,a) is proper ideal of S. Then by theorem 1. 27
there exists a prime filter P disjoint from 7 . Then by (iii) implies (i), there exists x € P:
such that a Ax and b Ax are comparable. Suppose anx<bAax. Thenanx< h implies
x € {a,b) which is a contradiction as P/ = ®. Therefore (a,byv (b,a)=S .0

We conclude this section with the following generalization of Katrinak [17],

Theorem 4.
Theorem 1. 4. 7: For any distributive nearlattice S, the following conditions are

equivalent:

(i) Forall a.bes§, (a,b)v(b,a)zS.



(i)  For any prime filter P and for any a,b & S . there exists x € P. such that
anx and b Ax are comparable.
(iii)  The filters containing any given primeﬁt‘fer form a chain.
Proof: (i) implies (ii) easily follows from the proof pf first part of Theorem 1.4.6; while
(i) implies (iii) holds by lemma 1.4.5.
(iii) implies (i): Suppose (iii) holds. Let for a,be S, I = (a,b)v (b,a) be a proper

ideal of S. Then by stones representation theorem there exists a prime filter P disjoint

from I.Let G=Pv[a) and H =P [b). By (iii) either G H or H < G. Suppose
Gc H.Then ae Pv[b) implies a =x A b for some x € P.Then xe <b,a>, which is a

contradiction as P~ [ = @ . Therefore (a,b)v (b,a)=S.®
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DISJUNCTIVE NEARLATTICES AND SEMIBOOLEAN ALGEBRAS

A distributive nearlattice S with 0 is called disjunctive nearlattice if 0<a <b implies
there is an element x €S such that xAa=0 where 0 <x<bh. A subset A of a complete

lattice L is said to be join-dense if L= {v R ‘ Rc A}_

A non empty subset 7' of a nearlattice S is called large if xAl=ynt forall teT,

(x,yeS) imply x=y. while 7 is called join-dense if each zeS is the join of iis
predecessors in 7. Following result shows that two concepts coincide when T is a convex

subsemilattice of a distributive nearlattice and hence an ideal of a nearlattice is large if and

2. 1 Disjunctive Nearlattice and Semiboolean Algebras

Lemma 2. 1. 1: A convex subsemilattice J of a distributive nearlattice S is large if and

Proof: Obviously, every join-dense subset of S is large in S. Thus, let J be large inS .

Suppose x € S and {j,.} are its predecessors in J . Let t be an upper bound of {j,}. Clearly,
forany jeJ, jAjSxaj<jandso xAjed by the convexity of J . Thus, xA j=j,
for somek. Hence, xa j<t for all jeJ; it follows that x A j=xALA for alljeJ.

Since J is large, x A7 =x, i.e., x <. This implies that x is the supremum of {j,}.
Now we give a characterization of join dense ideals in terms of skeletal congruences.

Lemma 2. 1. 2: An ideal J of a distribuiive nearlattice is S join-dense if and only if 0e(J)

is dense in  C(S), that is ©(J)" = @, the smallest element of C(S).



Proof: Suppose J is join-densc. Then by lemma 2.1, J is large. Let x 5y(®[.}l))._ then
xAj=ynj forall jeJ.Thisimplies x =y asJis large. So 0(J)" = w. That is, ®(J) is

dense.

Conversely, let (»*)(J)'L = . Suppose xA j=yAj forall jeJ. Then according to
Bazlar Rahman [3], x=y ©(J)" (=) and so x=y. This implies J is large and so by

lemma 2. 1. 1, it is join-dense. e

We know that for an ideal 7 of a distributive nearlattice S, the relation R(I) defined by
x=yR(I) ifand only if forall re S, xArel is equivalentto y Ar el isacongruence of

S . Moreover, it is the largest congruence of S containing / as a class.
Proposition 2. 1. 3: For an ideal I of a distributive nearlattice S, S/ R(f ) is disjunctive.

Proof: If I is a prime ideal, then §/R(/) is a two element chain {I,S§—1} and so it is
disjunctive (in fact, Boolean). Suppose /is not prime, consider the interval Ic;[x]c[y]
inS/R(I), where x,yeS. We claim that there exists at least one 7 & I,suchthat fAaxel.
If not, then for all r&I,xAt ¢l and since xat]c [yAt], so yatel. This implies that
x=yR(I) and so [x]=[y] . which is a contradiction. Moreover, there exists a ¢ ¢ I such that
xatel but yatel. For otherwise x= yR(I) would lead to another contradiction. Put
s=ynt.Then I C [S] = [y] and [x]/\ |_S] = [x]/\ [y AI]z [x AYA i] = [ and this implies that
S/ R(I) is distributive.

Foliowing theorem gives characterizations of distributive nearlattices.

Theorem 2. 1. 4: For a distributive nearlattice Swith 0, the following conditions are
equivalent:

(i)  Sisdisjunctive.

(i)  Forall aeS, (a]=(u]".

dii)  R((0])=w.
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Proof: (i) implies (ii): Suppose & is disjunctive. For any ¢ & S, obviously, (a]g (a]“. To
prove the rcvérse, let xe (a]Li M xe (a], then x€a ie. . x#xaa. Then 0<xnAna<x.
Since S is disjunctive there exists ¢ with 0 <7 <x such that tAxAa=0 ie. , tAa=0.
This implies ¢ € (a]". Since x e (a]*, s0 xA1=0, ie.,t=0, which gives a contradiction.

Hence x € (a]. In other words (a]= (a]” Forall aes.

(ii) implies (iii): Suppose (ii) holds and x =y R((OD for some x,yeS.If x#y,then
either x Ay <y or xA y<x.Suppose x Ay <y. Then yr e (xx\y]l. Since (a]: (a]Jl for
all aeS, (' #(xAay]. Thus, (] = (xa yI*. So there exists & (x A y]. such that
:&(y]L. Then tAxApy=0 but tAy #0, which implies xAy#y R((OD, and so

x # y R((0]), which is a contradiction. Therefore, R((0])=w.

(iii) implies (i): Suppose R((0)=. Let 0<x<y (x.ye S). Since R((0])= @. there
exists €S such that i Ax=0 but 1A py=0. For otherwise x=y R((0]), which implies
x =y and there is a contradiction to our assumption. Thus we have 0 <7 Ay <y, such that

xAtAy=0,and soS isdisjunctive. ¢

In chapter I, we have already denoted the set of all finitely generated ideals of a
nearlattice S by If(S). Of course [_f(S) is a join semilattice of I(S). In [15], Hickman
exhibited a nearlattice S for which 7, (S) is a meet semilattice. But in [7], Cornish and

Hickman have shown that if S is distributive then 7, () is a distributive sublattice of 1(S),

the lattice of ideals.

Lemma Z. 1. 5: A distributive nearlattice S with 0 is disjunctive if and only if 1,(.5') is

a’f'aj;'undive.
Proof : Let S be disjunctive and (@@, | (Byseesvececensd,] in I,(S). Choose
Felbiniay ,b,]—(a,_...........,a,]. Then (a,Ax,...........,u,Ax]z(ai,.........,a,]ﬁ(x](:(x].

Now, by the upper bound property ofS, (ai Ax)v...........v(a, Ax):e (say) exists and
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0<e<x.Since S is disjunctive. there exists ¢ € S such that 0 =d Ae and 0 <d < x. Thus

(d]ﬁ (e] = (0] and SO (:a']m {as S (.',,]m (x] = (0] . This implies  thet
(d]f\(al,.........,a,]=(0]. Of course, (0]#(&’];(3‘]; (. A— bl and hence, I},(S) is
disjunctive.

Conversely, let If(S) be disjunctive and suppose 0<c<d; c,deS. Then,
({}]g(c]g(d].. Since 7 (S) is disjunctive, there exists (a,,.........,ar] in !f(S) such that
(c]m(al, ......... ] (0] where (0]+\a1 a] ] Now, by the upper bound

property of S, @, V .......va, = f (say) exists. Thus, we have c A f =0 and 0< f<d,
and which proves that § is disjunctive. ®

Theorem 2. i. 6: {i « distributive nearlattice Swith O, the following conditions are
equivaleni:

(i) S isdisjunctive.

(i) Each densc ideal J (i.e. J* =(0)) is join-dense.

(iii)  For each dense ideal J, @ ): (J)L

(iv)  For each dense ideal J, @( ) o).

Proof : Since J* = (0] if and only if /" =5 and Jis join-dense if and only if ®(J)" =

obviously (ii), (iii) and (iv) are equivalent.

(i) implies (ii): Suppose J is dense ideal and xA j=yAj (x,y € S) forall jeJ.If
x # y, then either x Ay <x or xAy<y. Without loss of generality suppose xAy<x.
Since S is disjunctive, there exists a(;t O)E S, a<x such that aaxAay=0. Then,
O=anxaynj=anxnaj forall je.J.Hence, anx=0 as./is dense; ie.,a=0 which

is a contradiction. Thus J is join-dense.

(i) implies (i): For any ae S, (a]v (a]* is always a dense ideal. Thus, with holding

(ii), (a]v (a]* is join-dense. Then by lemma 2.1:1;
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w=0 ((a]v (a]J‘)L =(®(a]v O(al* )L = 0((a)) r’\@((;::r]l )L. Thus, @((all)L c0(d)- =0,.
Taking the kernel on both sides we have (al"* = (a] by using theorem 2.2.3(ii), due to Bazlar

Rahman [3]. It follows that (a]=(a]"" and hence S is disjunctive.

Next theorem is an extension of 2.2 of Cornish [6]. We omit the proof as this can be

proved exactly in a similar way the corresponding result of [6] was proved.

Theorem 2. 1. 7: For a distribuiive nearlattice S with 0, the following conditions are

equivalent:
(i) S is disjunctive.
" (ii)  For each congruence ®, ®~ = O(ker ®)".
(iii)  For each ideal J, R(J)" =O(J)".
(iv)  For each congruence @, kf:r((bl ) = (kcr o).

()  Foreach congruence ®, ker(®* )= (ker ®)"".
(vi)  The kernel of each skeletal congruence is an annihilator ideal. ®

Due to Bazlar Rahman [3], a nearlattice Swith 0 is called semiboolean if it is
distributive and [O,x] is complemented for all xeS. By 1.4.5 of Bazlar Rahman [3], we
know that the lattice of all ideals of a nearlattice is isomorphic to the lattice of congruences if
and on_ly if S is semiboolean. Using this result we get the following theorem, which is an

extension of 2.3 of [6].

Theorem 2. 1. 8: For a distributive nearlattice S with 0 , the following conditions are

equivalent:

(i) S is semiboolean.

(ii)  For each congruence ®, ®* = E-)(ker O+ )

(i) Foreach ideal J, ©(J*)=06(J)".

(iv)  Foreach ideal J , ®(J*)=0(J)".
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Proof : (i) implies (ii): Suppose S is semibcolean. Then by 1.4.5 of Bazlar Rahman [3],
1(S) is isomorphic to C(S). Hence for any congruence V', Y= @(ker‘{‘). Taking ‘¥ = ®*, we

see that (i implies (ii).

(ii) implies (iii) follows from theorem 2.2.3 of Bazlar Rahman [3], (ii) and (iii) = (iv)

is obvious.

(iv) implies (i): Suppose (iv) holds. Put J = (a]v (a]* . Then J* =(0] and so J* =
Then by v, O(alv(a}) =7 1t follows that ©((a)" ol f=0 and so
of(al) co(@)” =, =0,. Since ker ¥, =(a]", we have o((al')cw, =©, and so
0, -0,  cola). Ths ofal) =0, Bu (d =(a™. Now, by @)
ofal')" =el(a})=eal'). But 0,

0<a<b, then a=b (¥,) and so a=b @((a]" )) Then (a]v (a]" = (]v (o] and so

@((a]l )LL, and so @((a]l)z ©," =%¥,. Now if

b=av j for some je (a]*. Then jaa=0, and so [O.b] is complemented. Hence S is

semiboolcan. e

The skeleton Sc(S)={©® € ¢(S)| © = ®* for some D e c(S)y= {@ ec(S)|®= @J‘L} S
a complete Boolean lattice. The meet of a set 0,}c Se(S) is M®, | as in ¢(S), while the join
is given by v@®, =(v@, )" = (~o* )'L and the complement of ® e Se(S) is ©*. The fact
that Sc(8) is complete follows from the fact that Sc(S) is precisely the set of closed elements

associated with the closure operation ® — @ on the complete lattice C(S) and Sc(S) is

Boolean because of Glivenko’s theorem, c.f. Gratzer | 12],theorem 4, p.58.

The set KSc(S)= {Ker® |® e Se(S)} is closed under arbitrary set-theoretic intersections
and hence is a complete lattice. We will use the symbol v to denote the join in Sc(S) and in

KSc(S). We also denote A(S)= {.] | &Sk =0 }, which is a complete Boolean lattice.

The following theorems are extensions of 2.4 and 2.5 of Cornish [6] to nearlattices.
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Theorem 2. 1. 9: For a distributive nearlattice S with 0, the following conditions are

equivalent:
(i) S isdisjunctive.
(i7)  The map © — Ker® of Se(S) onto KSc(S) is one-to-one.
(iti)  The map © — Ker® f Sec(S) onto KSC(S).
(iv)  The map © — Ker® is a lattice isomorphism of SC(S) onto KSC(S ) , whose

inverse is the map J — @(J)“' )

Proof: (i) implies (iv) . Suppose S is disjunctive. Then by theorem 2. 1. 7(vi)
KSe(S)= A(S). By 2.1.7 (i) , ® =®* =©(Ker®)"* for any ® e Sc(S). Thus, the map

® — Ker® is  one-to-one. Clearly it preserves meet.

Now using 2.1.7(iv), for 0, e Se(S), Ker(@v®)
~ker@* not) )= (Ker(@* M0 )" = (Ker@* m Kerd*)" = (Ker®)" (Kerd)* ) =
Ker®yKerd as KSc(S) = A(S). Thus © — Ker® is a lattice isomorphism. Moreover, by
217, Ker(@()™)=(KerO@)* =™ =7 for all  JeA(S)=KSe(S), while

O(Ker®)" =d* =@ for all ®eSc(S). Therefore J—©(J)~ is the inverse of
® — Ker®.

(iv) implies (ii) is trivial.

(ii) implies (iii): If ® — Ker® is one-to-one, then it Is a meet isomorphism of the
lattice Sc(S) onto the lattice KSc(S) , then of course it is a lattice isomorphism and so (iii)

holds.

Finally we shall show that (iii) implies (i). If (iii) holds, then of course ® — Ker® isa
lattice homomorphism of Se(S) onto KSe(S). Hence KSe(S) must be Boolean. Since for all

aes, (a]=Ker(®,), the map a — (a] embeds S, as a join-dense subnearlattice, into the

complete Boolean lattice KSc(S). Therefore S must be disjunctive. .
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We conclude this chapter with the following theorem which is also a generalization of
Cornish [6], Theorem 2.5.

Theorem 2. 1. 10: A distributive nearlattice S is semiboolean if and only if the map
® — Ker® is a lattice isomorphism of SC(S) onlto KSC(S) . whose inverse is the map

J = 0(J).

Proof : If S is semiboolean, then of course it is disjunctive and so by Theorem 2.1.9; the
inverse of ® —> Ker® is J — ©(J)*. Now by Theorem 2.1.8, ©(J)~ = (-)(J“') for any

J e KSe(S). Since by theorem 2.1.7, .J € A(S) so J =" Thus J — ©(J) is the inverse.

Conversely, suppose J — @(J) is the inverse of ©@ — Ker® . Then by Theorem 2.1.9;
S is disjunctive and so Ker(@(K)“)=(Ker®(K) H — k* for any ideal K. This implies
K e KSc(S). Then using the description ~of the inverse,

ok )= (E')(Ker(@)(K)Jl Dz ®(K)™* . Hence by Theorem 2.1.8, S is semibaolean.
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0-DISTRIBUTIVE NEARLATTICE AND SEMI-PRIME IDEALS IN A
NEARLATTICE

3.1 Introduction

J.C. Varlet [33] has given the definition of a 0-distributive lattice to generalize the
notion of pseudocomplemented lattice. According to him a lattice L with 0 is called a (-
distributive lattice if for all a,b.ce L with anb=0=anc imply an (bve)=0. In other
words, a lattice with 0 is O-distributive if and only if for cach a e L, the set of elements
disjoint to a is an ideal of L. Of course, every distributive lattice with 0 is O-distributive.
Also, every pseudocomplemented lattice is O-distributive. In fact, in a pseudocomplemented
lattice L, the set of all elements disjoint td ae L, is a principal ideal (a"]. Many authors
including Balasubramani and Venkatznarasimhan [1], Jayaram [16] and Pawar and Thakare
[25] studied the O-distributive and 0-modular properties in lattices and meet semilattices. In
fact, Jayaram [16] has referred the condition of 0-distributive nearlattice given in this chapter

as weakly O-distributive semilattice in a general meet semilattice.

Recently, Rav [26] has generalized the concept of 0-distributivity and gave the

definition of semi-prime ideals in a lattice. An ideal I of a lattice L is called a semi-prime
ideal if for all x,y,ze L. xayel and xazel imply xA(yvz)e I. Thus, for lattice 7,
with 0. L is called O-distributive if and only if (0] is a semi-prime ideal. In a distributive
lattice L, every ideal is a semi-prime ideal. Moreover, every prime ideal is semi prime. In a
pentagonal lattice (Figure 3.1) (0] is semi-prime but not prime. Here (b] and (c] are prime,

but (a] is not even semi-prime. Again in Figure 3.2, (01, (a]. (b], (c] arc not semi-prime.

In this chapter we will provide a number of characterization of 0-distributive
nearlattices. We also extend the concept of O-distributivty and give the notion of semi-prime
ideals in nearlattice. Then we include a number of separation properties in a general

nearlattice with respect to the annihilator ideals. Moreover, by studying a congruence related
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to Glivenko congruence we give a separation theorem related to separation properties in

distributive nearlattices given by Noor and Bazlar Rahman {21}

Let us define a O-distributive nearlattice as follows: A nearlattice S with 0 is called 0-
distributive if for all x,y,zeS with xAy=0=xAaz and yvz exists imply
xa(yvz)=0.

It can easily be shown that it has the following alternative definition:

S is  O-distributive if for all x,y,zgteS with xAy=0=xAz imply
xallea y)v (t A :)) =03 (f A y)v (t A z) exists by the upper bound property of S. Of course,
every distributive nearlattice S with 0 is 0-distributive. Figure 3.1 is an example of a non-
modular nearlattice which is O-distributive, while Figure 3.2 gives a modular nearlattice

which is not O-distributive.

b U S
bQ/ \
0

Figure 3.1 Figure 3.2

0

A proper filter M of a nearlattice S is called maximal if for any filter O with Q0 o M

implies either Q = M or Q =S . Dually, we define a minimal prime ideal (down set)

Let L be a lattice with 0. An element & is called the pseudocomplement of a if
anda =0 and if anx=0 for some xe L, then x<a . A lattice L with 0 and 1 is called
pseudocomplemented if its every element has a pseudocomplement. Since a nearlattice S with
1 is a lattice, so the concept of pseudocomplementation is not possible in a general nearlattice.

A nearlattice S with 0 is called sectionally pseudocomplemented if the interval [0, x] for each
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x e S is pseudocomplemented. For 4 < S, we denote A= {). € S\x Ara=0 forall ae A}.

£S5 is distributive then clearly A" is anideal of S.

Moreover, A* = ﬂ{{a}’L } If A is an ideal, then obviously 4* is the pseudocomplement of A

aeA

in I(S) and we denote it by A" . Therefore, for a distributive nearlattice S with 0, I(S) is

pseudocomplemented.
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3. 2 0-Distributive Nearlattice

Theorem 3. 2. 1: If a nearlattice S with 0 is sectionally pseudocomplemented, then 1 (S') is

pseudocomplemented.

Proof: Suppose S is sectionally pseudocomplemented. Let /€ I(S). Jhi= {x = S. xni=0
forall ie I}. Suppose x e I and ¢ <x. Then xAi=0 for all ie] andso 1 Ai=0 for all
iel. Hence fel*. Now let x,yel* and xvy exists. Let r=xvy. Then
0<x,yrai<r for all i, and xA (rAi)=0=yA (r A i). Since [0_.1‘] is
pseudocomplemented, x,y < (rai) for all iel, where (rai)” is the relative
pseudocomplement of » A7 in [0,7]. Then xv y< (rai),andso rain (xvy)=0. That is
in(xvy)=0 forall ie/.Thisimplies xvye I* . Therefore, I* is an ideal. Clearly I* is

the pseudocomplement of 1 in 7(S). Hence (S) is pseudocomplemented.

Following example (Figure 3.3) shows that ;’(S) can be pseudocomplemented but S is not

sectionally pseudocomplemented.

I(S)

(0]

Figure 3.4

Figure 3.3

In S, observe that ¢ has no sectionally pseudocomplement in [0,x]. But 1(S) is
pseudocomplement and the ideal J is the pseudocomplement of both (r] and (r] Again,

Figure 3.1 gives a non-distributive nearlattice S where [ (S) is pseudocomplemented.
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Theorem 3. 2. 2: If the intersection of all prime ideals of a nearlattice S with 0 is {0} then §
is O-distributive.

Proof: Let a,b,ce S suchthat aab=0=anc and bv cexists. Let P be any prime ideal of
S.If ae P, then aa(bve)<a implies thai a A (hve)e P.1f ag P, then by the primeness
of P, bce P,and so bvce P. This implies a A (bvc)e P. Thus a A(bv ) is in every

prime ideal P of S, and hence a A (b v ¢) =0, proving that S is 0-distributive.

From Bazlar Rahman [3] we know that a nearlattice S is distributive if and only if
I(S) is distributive, which is also equivalent to that D(S), the lattice of filters of § is
distributive. Thus if S is a nearlattice with 0 such that 1(S) (similarly D(S)) is distributive,

then S is O-distributive.
Following lemma are needed for further development of the thesis.

Lemma 3. 2. 3: Every proper filter of a neariattice with 0 is contained in a maximal filter.

Proof: Let F be a proper filter in S with 0.Let ¢ be the set of all proper filters containing F.
Then & is non-empty as F e & Let C be a chain in ¥ and let M =U{X|X = C}. We claim
that M is a filter with /- M . Let xe Mand y=x. Then xe X for some X e C. Hence
ye X as X is a filter. Therefore, ye /. Let x,yeM. Then xe Xand yeY for some
X,Y eC. Since C is a chain, either X ¥ or ¥ € X' . Suppose Xc¥Y.So x,pye¥. Then
xAyeVYas Y is a filter. Hence xAye M . Moreover M contains F. So M is a maximum

element of C. Then by Zorn’s lemma #has a maximal element, say O with F < O .®

Lemma 3. 2. 4: Let S be a nearlattice with 0. A proper filter M in S is maximal if and only if

Jfor any element a ¢ M, there exists an element b e M with anb=0.

Proof: Suppose M is maximal and agM. Let anb=0 for all beM . Consider

M, = {y € S‘ y>anb, for somebe M } Clearly M, is a filter and is proper as 0 ¢ M . For

every be M we have h>anb and so he M. Thus M c M,. Also ag M but aeM, .
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So M < M,, which contradicts the maximality of M. Hence there must exist some be M

such that anb =0.
Conversely, if the proper filter M is not maximal, then as 0 e S, there exists a maximal filter
N such that M < N. For any element ae N — M there exists an element b e M such that

anb=0.Hence a,be N imply 0=abe N, which is a contradiction. Thus M must be a

maximal filter. @
Following result gives several nice characterizations of O-distributive nearlattice.

Theorem 3. 2. 5: For a nearlattice S with 0, the following conditions are equivalent:
(i) S is O-distributive.
(ii) {a}* is anideal forall ae S .
(iii) A" isanideal forall ACS.
(iv} I (S) is pseudocomplemented.
) I (S ) is O-distributive.
(vi)  Every maximal filter is prime.

Proof: (i) implies (if) implies (i) are trivial.

(:‘:'f') implies (r'v): For any ideal / of S, I* is clearly the pseudocomplement of /in I(S) if

1* € I(S), and so (iv) holds.
(iv)implies (v): Since every pseudocomplemented lattice is 0-distributive, so (iv) = (v).

(v)implies(vi): Let I(S) be O-distributive and £ be a maximal filter. Suppose f,g & F with
fvg exists. By Lemma 3.2.4, there exist a,be F such that aA f=0=bnAg. Hence
(Fn(ans]=(] and (g]alans]=(0]. Then (v glalant]=(]v(eDAlanb]= (],
by O-distributivity of I(S). Hence (f v'g);\(a/\b)z 0. Since F is maximal, O¢ F .

Therefore fv g ¢ F,and so F'is prime.
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{vi)implies (i): Let (vi) holds. Suppose a,b,ceS such that anb=0=anc and bve

exists. If a(bve)#0, then by Lemma 3.2.3, a albve)e F' for some maximal filter F° of
S. Then ae F and bvce FF. As F'is primle, by assumption, so either ae F and b e For
ceF. That is, either anbeF or anceF. This implies 0eF, which gives a

contradiction and hence @ A (b v ¢j= 0. In other words, S is O-distributive. @

Corollary 3. 2. 6: In a O-distributive nearlattice, every proper filter is contained in a prime

filter. e

Theorem 3. 2. 7: Every prime down set of a nearlaitice contains a minimal prime down set.
Proof: Let P be a prime down set of L and let y be the set of all prime down sets .J such
that J< P. Then P is non-empty since Pey. Let C be a chain in % and let
M=n{X: XeCh

We claim that M is a prime down set. M is non-empty as 0 e M . Let a € M and
b<a. Then ae X forall X eC.Hence be X forall XeC as X isa down set. Then

beM.Nowlet xAyeM forsome x,yeS. Then xAye X forall XeC.As X is a
prime down set, so either xe Xor yelX. "Thus either M:m{X 2 xeX} or
M= ﬁ{X JyE X} , proving that either xe Mor y€ M . Thus M is a prime down set. Thus

by applying the dual form of Zorn’s Lemma, we conclude the existence of a minimal member

of P.e

Theorem 3. 2. 8: In a O-distributive neariattice S, if {0}# A is the intersection of all non-zero
i} = o)}
Proof: Let xe A*. Then xAna=0 for all ae 4. Since 4# {0}, so {x}* #{0}. Thus

X'e {xe S‘ {x}i B {0}} Thatis 4* < {‘ce ﬁ" )t = {0}}

ideals of S, then A" = {xe S
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Conversely, let x € {x eS|{x} # {O}E Since S is O-distributive, so {x}" is a non-zero

ideal of S. Then 4c {x}" and so 4* > {x}**. This implies x € 4*,which completes the

proof. @

Theorem 3. 2. 9: Let S be a nearlattice with 0. S is O-distributive if and only if for any filter I*
disjoint with {x}" ; x € S, there exist a prime filter containing I and disjoint with {x}" .
Proof. Let S be 0-distributive. Consider the set & of all filters of S containing /" and disjoint
with {x}* . Clearly # is non-empty as F e # Then using Zorn’s lemma, there exists a
maximal element Q in ¢ . Now we claim that xe Q. If not, then Qv[x)> Q. So by the
maximality of O, {Q v[x)}n {x}" #¢. Then there exists e Qv|x) and re{x} . Then
t>gAaxforsome geQ and t Ax=0.Thus, 0 =t Ax2gAx, and so g A x = 0.This implies
ge {x}J' , which contradicts the fact that O {x}i' =¢. Therefore x e Q.Finally, let z¢ Q.
Then {Qv[z)}{x}" =¢. Let ye{Qv 2} {x}l.. Then yAx=0 and y=qAz for some
geQ. Thus 0=yAx=gaxnz, which implies gaxAaz=0. Now xe(Q implies
gaxeQ, and zA(gAx)=0.Hence by Lemma 3.2.4, O is a maximal filter of S, and so by
Theorem 3. 2. 5, Q is prime.

Conversely, let xAy=0=xAz and yvz exists. If xa(yv z)#0. Thea
yvze{xt. Thus [y vz)N {x}' = ¢. So, there exists a prime filter containing [y v z) and
disjoint with {x}*. As y,ze{x}*.s0 y.z¢ Q. Thus yvzeQ,as Q is prime. This implies

[yvz)@ 0, acontradiction. Hence x A (yv z)=0 and so § is O-distributive. o

Pawar and Thakare [25] have mentioned as a corollary to the above result that for

distinet elements a.,be S for which aanh=0 are separated by a prime filter in a 0-
distributive semilattice, which is not true. For example, Figure 3.1 is an example of a 0-

distributive nearlattice, where a,b are distinct and aAb#0. But there does not exist any

prime filter containing b but not containing a.
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Now we give few more characterizations for 0-distributive nearlattices.

Theorem 3. 2. 10: Let S be a nearlattice with 0 . Then the following conditions are
equivalent:

(i) S is O-distributive.

(ii) Every maximal filter of S is prime.

(iii)  Every minimal prime down set of S is a minimal prime ideal.

(iv)  Every proper filter of S is disjoint from a minimal prime ideal.

) For each non-zero element a€S, there is a minimal prime ideal not

containing a .
i)  Each non-zero element a € S is contained in a prime filter.

Proof (ir') (ff) implies (i): follows from Theorem 3. 2. 5.

(i) implies (7ii): Let 4 be a minimal prime down set. Then S-4 is a maximal filter.

Then by (ii), S-4 is a prime filter, and so 4 is an ideal. That is, 4 is a minimal prime ideal.

(iii) implies (ii): Let F be a maximal filter of S . Then S-F is a minimal prime down set .

Thus by (iii) S-F is a minimal prime ideal and so £ is a prime filter.

i) implies (iv): Let F be a proper filter of S. Then by Corollary 3.2.6, there is a prime filter
(i) imp p

Q o F . Then S-Q is a minimal prime ideal disjoint from £\

(v): Let ae Sand a# 0. Then [a)is a proper filter. Then by (iv) there exists a minimal prime

ideal 4 such that A [a)=¢. Thus a¢ 4.

(v) implies (iv): Let a e Sand a# 0. Then by (v) there is a minimal prime ideal P such that

a¢ P.Thus ae L— P and L-P is a prime filter.



40

(iv) implies (i): Let S be not O-distributive. Then there exist a,b,ce Ssuch that
anb=0=anc and bv cexists but A (bvc)#0. Then by (vi) there exists a prime filter O
such that aA(bvc)eQ. Let F=[an(bvc)). This is proper as 0¢ Fand Fc Q. Now,
an(bvc)eQ implies ae O and bveceQ. Since anb=0=anc,s0 bcegQ as 0¢Q ,
but bvceQ, which contradicts that @ is prime. Hence an(bve)=0 and so S is 0-

distributive. ®

Theorem 3. 2. 11: Let S be a O-distributive nearlattice and x € S. Then a prime ideal ”
containing {x}i is a minimal prime ideal conlaining {x}l if and only if for pe P there is
geS—P suchthat prqe {xh

Proof: Let P be a prime ideal of S containing ix}" such that the given condition holds. Let K
be a prime ideal containing {x}" such that K < . Let pe P. Then there is g € S— P such
that page {x}L, Hence page K. Since K isprimeand g& K,s0o pe K. Thus ,Pc K
and so K = P. Therefore, P must be a minimal prime ideal containing {x}" .

Conversely, let P be a minimal prime ideal containing {x}L. Let p e P. Suppose for
all ge S—P, page{x}. Set D=(S-P)v|p). We claim that {x} "D=¢.Ifnot, let
ye{x}) "D. Then y2rap for some reS—P. Thus , par<ye {x}*, which is a
contradiction to the assumption. Then by Theorem 3.2.9, there exists a maximal (prime) filter
© o D and disjoint with {x}". By the proof of Theorem 3.1.9, xe Q. Let M = S-Q. Then A{
is prime ideal. Since xe 0, s0 xg M. Let 1 e {x}l. Then tAx=0e M implies te M as
M is prime. Thus {x}" < M.

Now M N D =¢. Therefore, M M (S - P] =¢,and hence M P. Also M #P,
because p e D implies p ¢ M but p e P. Hence M is a prime ideal containing {x}* which is

properly contained in P . This gives a contradiction to the minimal property of 7.

Therefore, the given condition holds.
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Now we refer the reader about a conjecture made by Noor and Bazlar Rahman [21]
that whether the well known Stone’s separation property hoids in a 0-distributive nearlattice.
Separation theorem for distributive nearlattices is given in [21]. Unfortunately this does not
hold even in case of a O-distributive lattice. Consider the pentagonal lattice
{0,a,b,c,; 0<a<b<1,0<c<l}, which is 0-distributive. Consider /=(a] and F = [5).

Here I~ F = ¢ and there does not exist any prime filter containing F and disjoint with Z.

But in a O-distributive nearlattice, instead of a general ideal, we can give a separation
theorem for an annihilator ideal 7 =.J*when ] is a subset of S. An ideal / in a nearlattice 5

with 0 is called an annihilator ideal if 7 =.J" for some J < S.

Recently, Zaidur Rahman, Bazlar Rahman and Noor [34] have studied the semi-prime
ideals in a nearlattice. This concept was given by Rav [26] in a general lattice. An ideal I of a
nearlattice S is called a semi-prime ideal if for all x,y,z€ S, xnye ] and x A zel imply
xA(yvz)el provided yv z exists. Thus, for nearlattice S with 0, S is called O-distributive
if and only if (0] is a semi-prime ideal in S. In a distributive nearlattice S, every ideal is a
semi-prime ideal. Moreover, every prime ideal is semi-prime. From [34], it is known that for

any subset 4 of a nearlattice S, At is a semi-prime ideal if S is O-distributive. Here we give a

separation theorem by using the semi-prime ideals.

Theorem 3. 2. 12: (The Separation Theorem) A nearlattice S is O-distributive if and only ‘:f:f-
for a proper filter F and an annihilator I =J + where J is a non empty subset of S, wir‘h
F I =4, there exists a prime filter Q containing F such that QN1 =¢.
Proof: Suppose S is O-distributive and 7 =.J + for some non-empty subset .J of S. Let # be
the set of all filters containing F, and disjoint with 7. Then using Zorn’s lemma, there exists a
maxifnal filter O containing F and disjoint with I. Since by Theorem 5 of [34] [ is semi-
prime, so by Theorem 10 of [34], O is prime.

Conversely, suppose the condition holds. Suppose S is not O-distributive. Then there

exist a,b,ceS such that anb=0, anc=0 and an(bvc)#0, bvec exists. Then
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bvce {a}l. Let F= [b v c). Since 0 F, I is proper. Then proceeding according to the
proof of converse part of Theorem 3. 2. 9. we find that an(bve)=0, and so S is 0- :'

distributive.®

A nearlattice S with 0 is called weakly complemented if for any pair of distinct
clements a, b of S, there exists an element c disjoint from one of these elements but not from -

the other.

Theorem 3. 2. 13: S is weakly complemented if and only if R is an equality relation and hen-ce'
is a nearlattice congruence .

Proof: Suppose S is weakly complemented. Let a = b(R). Suppose a # b . Then there exists ¢ -
such that aac=0 but #Ac#0. This implies a # b(R). which is a contradiction . Hence
a=b.So, R is an equality relation. That is, R is a nearlattice congruence.

Suppose R is equality. We need to prove S is weakly complemented . Let abeSand a#b. |
Then a # b(R). This implies there exists ¢ € S, such that anc=0 but bac#0. Hence S is

weakly complemented.

In the following nearlattice S, R is a nearlattice congruence. Here the classes are {0},

{a}, {b}, {1}, {c. d, e}. But S is neither O-distributive nor weakly complemented.

Figure 3.5
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: B .
Theorem 3. 2. 14: For any nearlattice S, the quotient laltice = is weakly complemented .

-

Furthermore, a nearlattice S with 0 is O-distributive if and only if = is a distributive «
nearlattice and R is a nearlattice congruence.

. ‘S\‘ o -
Proof: Let A4 and B be two classes in 7 such that A< B. Then there exists a€ 4 and

b e Bsuch that a< b in S . So, by the definition of R there is an element ¢ € S, such that

anc=0 but bac#0. Suppose x € [{]] Then x=0(R) and so 0Ax=0 which implies

-

xax=x=0.So0 [0]= {0}. This implies AAC = [a]x\[clz {0} but BAC # {0}. Hence % is -
weakly complemented.
Now let S be a nearlattice for which R is a nearlattice congruence and lj;— is

distributive. Let ab,ceS with anb=0=anc such that bve exists. Then
[a]A (2] [eD = (a] A [B])v (] A [e)=[0]v[o]=[0]. This implies [an(bve)]=[0]. Since |
[0]= {0}, s0 aa(pv c)=0. Hence S is O-distributive .
Conversely, let S be O-distributive. Then by Theorem 3.2.13, R is a nearlattice

congruence. Let [a][b}[c]e % " We need to prove [a]a(8]v[e)=(alAB)v (alAleD

orovided  [p]v[e] exiss. Suppose  [lvlc]=[a]. Then [p]=[b]ald]=[pndl.
s [c]ald]=[cad], and so  [lvic]=[bAd)v(ca d)]. So we need to prove that
[aA((bAd)v(r.'Ad))]=[(a/\b/\d)v(ax\cx\d)]. Let an((b ad)v(cand))ax=0.Since
(anbad)v(ancad)can(bad)vicad) so, ((anbad)v(ancad)ax=0. On '
the other hand, if ((anbad)v(ancad)nx=0,then anbrdax=0=ancndnx
and by O-distributivity of S. @ A (b Ad)v (cAd))Ax=0.
Thus an(brd)vicnd)=(an(brd)vianlcrd))(R) and hence

[a]a (b]v [eD = (] AfpD v (lalale])- o
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Theorem 3. 2. 15: If a O-distributive nearlattice S is weakly complemented then S is .
distributive

Proof: If S is weakly complemented. Then by Theorem 3.2.15 of Zaidur Rahman [34], R is an

el

. - IS - - . - . .
equality relation and so by above theorem § = = implies S is distributive . @

A nearlattice S with 0 is called Sectionally complemented if the intervals [0,x] are
complemented for each xeS. A nearlattice which is sectionally complemented and

distributive is called a Semi Boolean nearlattice.

Corollary 3. 2. 16: If a O-distributive nearlattice S is sectionally complemented and weakly -

complemented , then S is semi Boolean.

Theorem 3. 2. 17: Suppose S is sectionally complemented and in every interval [0, x], every
element has a unique relative complement . Then S is semi Boolean if and only if it is (-
distributive.

Proof: Let S be O-distributive and for every x € S, the interval /0,x] is unicomplemented. Let
x,y e Swith x# y. If they are comparable, without loss of generality, suppose x< y. Then
0<x<y. Then there exists a unique 7e&[0,y] such that iAx=0 and ivx=y. Thus
tAx=0 but tAy=1#0,Ifx, yare not comparable, then 0<xAypy<x and 0<xAy<y.
Then there exist s.feSsuch that xAvAas=0, (xAy)vs=x, xayat=0 and
(xAy)vi=y. Now sat<xAy implies sant<xayas=0, which implies sA¢ =
Now sat=0 and saxay=0 implies 0=sA((xAy)vi)=sAy as S is O-distributive,
but s A x#0. Therefore, S is weakly complemented and so by above corollary, S is semi
Boolean. Since the reverse implication always holds in a Semi-Boolean nearlattice, this

completes the proof. e



45

There is another characterization of O-distributive nearlattices.

-

Theorem 3. 2. 18: Let S be a nearlattice with 0. Then S is O-distributive if and only if [O,x] i
is a O-distributive lattice for every x € §.
Proof: Let S is a nearlattice with 0 then S is O-distributive. Then trivially [0,x] is also 0- :
distributive. :

Conversely, suppose [0.x] forall xeS. Let a,b,ceS with anb=0=aAc and *
bve exists. Let an(bve)=t Consider the interval [0,6v c|. Then te [0,6v c]. Also s
b,ce[O,bvc] - :
Now tab=anlbve)ab=anb=0

IAC=aA(bVC)AC=aAC'-=U

Since [0,6 v ¢| is O-distributive, so, 7 A (bve)=0.
So, 0=t~ (bvc)zaA(bvc)A(bVC)=aA(bvc)

Hence, S is 0-distributive. @

A nearlattice S with 0 is called Secﬁonally complemented if the intervals [0,x] are
complemented for each xeS..A nearlatiice which is sectionally complemented and

distributive is called a Semi Boolean nearlattice.

Corollary 3. 2. 19: If a O-distributive nearlattice S is sectionally complemented and weakly

complemented , then S is semi Boolean. @

Theorem 3. 2. 20: Suppose S is sectionally complemented and in every interval [0,x] , every
element has a unique relative complement . Then S is semi Boolean if and only if it is 0-

distributive.
Proof: Let S be 0-distributive and for every x € S, the interval [0,x] is unicomplemented. Let

x,y e Swith x# y. If they are comparable, without loss of generality, suppose x< y. Then
0<x<y. Then there exists a unique /€ [0,y] such that tAx=0 and fvx=y. Thus

tAx=0but tAy=t=0.Ifx, y are not comparable, then 0 £xAy<x and 0<xAy<y.-
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Then there exist s,7eSsuch that xAyAas=0, (xAy)vs=x, XAYAL =0 and
(xAy)vt=y. Now sat<xay implies sAt<xAyrs=0, which implies sA#=0.
Now sAar=0 and sAaxay=0 implies 0=sA((xAy)vi)=sAy as S is O-distributive, -
but s A x % 0. Therefore, S is weakly complemented and so by above corollary, S is semi
Boolean. Since the reverse implication always holds in a Semi-Boolean nearlattice, this

completes the proof. ®
There is another characterization of 0-distributive nearlattices.

Theorem 3. 2. 21: Let S be a nearlattice with 0. Then S is O-distributive if and only if [O.x]
is a O-distributive lattice for every x € S.

Proof: Let S is a nearlattice with 0 then S is O-distributive. Then trivially [0,x] is also 0- :
distributive.

Conversely, suppose [0, x] forall xe§. Let a,b.ceS with anb=0=anc and
bve exists. Let aa(bve)=t Consider the interval [0,V c]. Then ¢ e_[O,b ve] Also
bce [O,b % c]

Now tab=an(bvc)ab=anb=0
rAc=aA(bvc)x\c=aAc=0

Since [0,6 v ¢| is O-distributive, so, 7 A (Bve)=0.

So, 0=1albve)=an(bve)albv c)=-a Albve)

Hence, S is O-distributive. @
Now we give a generalization of theorem 1.4.1. of Zaidur Rahman [35].

Theorem 3. 2.22: Let S be a O-distributive nearlattice and [0,x] be 1-distributive for every
x € S, then the following conditions are equivalent.

(3 S is sectionally complemented.

(i) (x]v ()c]l - (x]v (x]* =8 forevery xe S
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(iii) The prime ideals of [0, x| are unordered for each x € S.

o1

Proof: (i)implies (i) : Suppose S is sectionally complemented. Then for every x € S, [O,x']

is complemented. If (i/) does not holds, then there exist elements s,/€ S such that
7 -
se(t]v(r]. Now O0<sat<s. Then by (i), there exists re[{].s] such that :

rAasAt=rat=0 and rv(saf)=s. Thus re (] and so s=rv(sat)e (] v (] givesa

contradiction. Therefore, (ii) must holds.

(if) implies (iii) : Suppose (ii) holds but (iii) does not. Then there exist prime ideal P,Q of
some [O,x], x e S such that P < Q. Thus there exists y e O~ P . Since Q is a prime ideal of
[O,x], x¢ Q. By (i) (y]v (v]‘ =S Thus xe (y]v (y]* . Then x < pvgq forsome pe (v]
and qe(y]'. Then gay=0e P.Since y¢ P and P is prime,so ge Pc Q. Also psy
implies p e Q. Therefore, x < pvq implies xeQ gives a contradiction. Hence the prime

ideals of [0,x] for each s € S are unordered.

(iif) implies (i) : Since here every [O,x] is both a O-distributive and 1-distributive lattice, so be

Razia Sultana [27], [0, x] must be complemented.
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3. 3  Semi-prime ideals in a2 Nearlattice

An ideal I of a nearlattice S is called a sen&i—prime ideal if for all x,y,z€ S,
xayel and xazel imply xAn(yvz)el provided y v z exists. Thus, for a nearlattice 5
with 0, S is called O-distributive if and only if (0] is a semi-prime ideal. In a distributive

nearlattice S, every ideal is a semi-prime ideal. Moreover, every prime ideal is semi-prime. OF '
- course every nearlattice S with 0 itself is semi-prime. In the nearlattice of Figure 3.1, (b] and
(d] are prime, (c] is not.prime but semi-prime and (@] is not even semi-prime. Again in

Figure 3.2, (0], (a]. (b].(c]and (d] are not semi-prime.

Lemma 3. 3. 1: Non empty intersection of all prime (semi prime) ideals of a nearlattice is a
semi-prime ideal.

Proof: Let a,b,ce Sand I =ﬂ{P:P is a prime ideal } and 7 is nonempty. Let anbel
and ancel.Then anbe P and ance P forall P. Since each Pis prime (semi-prime),

so an(bve)e P forall P.Hence an(bve)el,andso I is semi-prime. ®

Corollary 3. 3. 2: Intersection of two prime(semi prime) ideals is a semi-prime ideal.®

“

Lemma 3. 3. 3: Every filter disjoint from an ideal I is contained in a maximal filter df.s‘jofﬁ?
from ]

Proof: Let F be a filter in L disjoint from 7. Let & be the set of all filters containing F
and disjoint from 7. Then # is nonempty as Fe® . Let C be a chain in  and let
M =J(X : X € C). We claim that M is a filter. Let xeM and y 2 x. Then xe X for som.e :
XeC.Hence ye X as X is a filter. Therefore, ye M. Let x,ye M . Then xe X and
yeV for some X,YeC. Since C is a chain, gither X < Yor Y < X. Without loss of
generality suppose X < t. So x,yeY. Then xayel and so xAyeM. Moreover,
M > F.So M is a maximum element of C. Then by Zorn’s Lemma, ¥ has a maximal

element,say O F . ®
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Lemma 3. 3. 4: Let I be an ideal of a nearlattice S. A filter M disjoint from I is a maximal
filter disjoint from 1 if and only if for all a & M , there exists heM suchthatr anbel.
Proof: Let M be maximal and disjoint from / and ag M. Let anb¢] for beM.
Consider M,={yeL:y>anb, beM }. Cleatly M, is a filter. For any beM,
b>anb implies be M,. So M, 2 M. Also M,nI=¢. For if not, let xe M, 1. This
implies xe/ and x>anb for some be M. Hence anbel, which is a contradiction.

Hence M,nI#¢. Now M <M, because ag M but aeM,. This contradicts the

maximality of M . Hence there exists b€ M suchthat anbe .
Conversely, if M is not maximal disjoint from /7, then there exists a filter N oM
and disjoint with 7. For any ae N-M, there exists he M such that a Abe . Hence,

a,be N implies anbe I NN, whichisa contradiction. Hence M must be a maximal filter

disjoint with /.

Theorem 3. 3. 5: Lei S be a O-distributive nearlattice. Then  for A4c S,
At = {x eS:xna=0 forallae A} is a semi-prime ideal.

Proof: We have already mentioned that A* is a down set of S. Let x,y€ A" and xvy
exists. Then xAa=0=yAa forall ae 4. Since S is 0-distributive, so aa(xv y)= 0 for
all ae A. This implies xv y € 4* andso 4" is an ideal.

Now let xAye A* and xAze 4™ and yvz exists. Then xAyAra=0=xAznra for all
ae A. This implies (xAa)Ay=0=(xAa)az and so by 0-distributivity agairn,

xanan(yvz)=0 forall ae A.Hence xA(yvz)e A* and so A" is a semi-prime ideal. ®

Let AcS and J be an ideal of & We define

A ={xeS:xnaelJ forallae A}. This is clearly a down set containing J. In

presence of distributivity, this is an ideal. A is called an annihilator of A relative to /. We

denote 1,(S), by the set of all ideals containing J. Of course, I,(S) is a bounded lattice
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with J and S as the smallest and the largest elements. If Ae,(S),and A* is an ideal, then .

4 is called an annihilator ideal and it is the pseudocomplement of 4 in 1,(S).

Theorem 3. 3. 6: Let A be a non-empty subset of a nearlattice S and J be an ideal of S. Then
A =N(P : P is minimal prime down set containing J but not containing A).
Proof: Suppose X =(\(P:4A« P,Pisa minimal prime down set). Let x¢€ A* . Then :

xanaedJ forall ae A. Choose any P of right hand expression. Since 4 & P, there exists

zeAbut zg P.Then xAnzeJ c P. So x € P,as P is prime. Hence xe X .

Conversely, let xe X. If x¢ A% then xAbgJ forsome be 4. Let D=[xAb"
Hence D is a filter disjoint from J. Then by Lemma 3.2.3, there is a maximal filter M 2D
but disjoint from J. Then L-M is a minimal prime down set containing J. Now xgS—-M as

x e D implies x € M . Moreover, A §—M as be A.but be M implies b ¢ S — M, which

is a contradiction to x € X . Hence xeA™.®
Following Theorem gives some nice characterization of semi-prime ideals.

Theorem 3. 3. 7: Let S be a nearlattice and J be an ideal of S. The following conditions are
equivalent.

(i) J is semi-prime.

(ii' {a}" ={xeS:xnael}isa semi-prime ideal containing J .

(iii) A" ={xeS:xnaelJ forallac A} isa semi prime ideal containing J.

(iv) 1,(S) is pseudocomplemented

) 1,(S) is a 0 —distributive lattice.

(vi) Every maximal filter disjoint from J is prime.
Proof: (i)implies (ii): {a}" is clearly a down set containing .J. Now let x,y € {a}* and
xvy exists. Then xnaeJ,ynae /. Since J is semi prime, so an(xvy)eJ. This

implies xv yef{af™, and so it is an ideal containing .J. Now let xAyeia}l” and
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XAZE {a}*‘ with yv z exists. Then xaynraeJ and xAzraeJ. Thus, (xAna)ayed
and (xaa)azeJ. Then (xna)a(yvz)ed, as J is semi-prime. This implies

xA(yvz)e {a}l" , and so {a}i" is semi-prime.

(if) implies (#if) : This is trivial by Lemma 3.2.1, as AY =N{a}* ;ae A).

(iii) implies (iv) : Since for any 4 € /,(S), A" is an ideal, it is the pseudocomplement of A

in 1,(S),so 1,(S) is pseudocomplemented.

(iv) implies (v) : This is trivial as every pseudocomplemented lattice is 0-distributive.

(v)implies (vi) : Let I,(S) is O-distributive. Suppose I is a maximal filter disjoint from J.
Suppose f,g¢ F and fvg exists. By Lemma 3.2.4, there exista,be F such that
anfed,baged. Then franbeld ,gnanbel. Hence (f]a(anblcJ and
(gla(anbleJ. Then (fvgla(anb]= (f1lvighnr(anblc J, by the 0-distributive
property of 7,(S). Hence, (fvg)rnanbeJ. This implies fvge F as Fn.J=4¢, and

so F is prime.

(vi) implies(i): Let (vi) holds. Suppose a,b,ce S with anbed,anceJ with bve
exists. If aa(bve)eJ, then [aa(bve)nJ=¢. Then by Lemma 3.2.3, there exists a
maximal filter F o[aA(bvc)) and disjoint from J. Then ae F,bvce F. By (vi) F 1s
prime. Hence either anbe For anceF. In any case JNF #¢, which gives a

contradiction. Hence a A(bv¢)eJ,and so J is semi-prime.®

Corollary 3. 3. 8: In a nearlattice S, every filter disjoint to a semi-prime ideal J is contained

in a prime filter. @
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Theorem 3. 3. 9: If J is a semi-prime ideal of a nearlattice S and J# A={J,:J, isan
ideal containing J}, Then A™ ={xe§: {x}l-’ = 5 5 .

Proof: Let xe A~ . Then xaaeJ for all aed. So ae{x}* for all ae 4. Then
Ac{x}* and so {x}"’ #J .Conversely, let x€S such that {x}* %J . Since J is semi-
prime, so {x}’ is an ideal containing J. Then Ac{x}*, and so A~ 2 {x}"". This

implies x € 4™, which completes the proof.

Rav have provided a series of characterizations of 0-distributive lattices in [26]. Here

we give some results on semi-prime ideals related to their results for nearlattices.

Theorem 3. 3. 10: Let S be a nearlattice and J be an ideal. Then the following conditions are
equivalent.
(i) J is semi-prime.
(i) Every maximal filter of S disjoint with J is prime.
(iii)  Every minimal prime down set containing J is a minimal prime ideal
containing J.
(iv)  Every filter disjoint with J is disjoint from a minimal prime ideal containing J.

) For each element a ¢ .J, there is a minimal prime ideal containing J but not

containing a.
(vi)  Each a ¢ J is contained in a prime filter disjoint to J.

Proof. (ii) (if) implies (i) : Follows from Theorem 3.3.7.

(ii) implies (iii): Let A be a minimal prime down set containing JJ. Then S-4 is a maximal

filter disjoint with J . Then by (ii) S-4 is prime and so 4 is a minimal prime ideal.

(iii) implies (i) : Let F be a maximal filter disjoint with .JJ. Then S-F is a minimal prime down

set containing J. Thus by (iii), S-F is a minimal prime ideal and so F is a prime filter.
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(i) implies (r‘v): Let F a filter of S disjoint from J. Then by Corollary 3.3.8, there is a prime
filter O o F and disjoint from F.

(iv)implies(v): Let ae S, agJ. Then [a)n.J =¢. Then by (iv) there exists a minimal

prime ideal 4 disjoint from [a). Thus a ¢ 4.

(v)implies(vi): Let ue S, ae.J . Then by (v) there exists a minimal prime ideal P such that

a & P, which implies a € S - P and S-P is a prime filter.

(vi)implies(i): Suppose J is not semi-prime . Then there exists a,b,c €L such that
anbelJ, anceJand bvc exists, but aa (b v c)e.f J . Then by- (vi) there exists a prime
filter O aisjoint from J and aa(bve)eQ. Let F=[an(bvec)). Then JAF=¢ and
FcQ.Now an(bve)eQ implies aeQ, bvce . Since Q is prime so either anbe ()
or anceQ . This gives a contradiction to the fact that QOn.J=¢ . Therefore,

an(bvc)eJ and so Jis semi-prime. o

Now we give another characterization of semi-prime ideals with the help of Prime

Separation Theorem using annihilator ideals.

Theorem 3. 3. 11: Let J be an ideal in a nearlattice S. .J is semi- prime if and only if for all

filter F' disjoint to {x}™ , there is a prime filter containing F disjoint to {x}* .

Proof: Using Zorn’s Lemma we can easily find a maximal filter O containing F and disjoint
to {x}*. We claim that xeQ. If not, then Qv[x)> Q. By maximality of @,
@V {x #d. If te(@vx)n{x}", then t=gAx for some geQ and tAxeJ.

This implies g Ax e J and so g € {x}™ gives a contradiction. Hence x€ Q.



54
Now let z ¢ Q0. Then (Qv[z)){x}" #¢. Suppose ye(Qv[z))N{x}" then y2q Az
and yanzeJ for some g, € Q. This implies g AxAzeJ and g, Axe Q. Hence by
Lemma 3. 3. 4, O is a maximal filter disjoint to {x}** . Then by Theorem 3.3.7, Q is prime.
Conversely, let xAyeJ,xazeJ and yvz exists. If xa(yvz)edJ, then
yvze{x}™. Thus [yv z)~{x}" =¢@. So there exists a prime filter Q containing [y v z)
and disjoint from {x}*'. As y,ze{x}*’, 50 y,z¢ Q. Thus yvzeQ, as Q is prime. This

implies [y v z) ¢ Q, a contradiction. Hence x A (yvz)eJ, and so J is semi-prime. @
Here is another characterization of semi-prime ideals.

Theorem 3. 3. 12: Let J be a semi-prime ideal of a nearlattice S and x € S. Then a prime
ideal P containing {x} is a minimal prime ideal containing {x}" ifand only if for pe P,
there exists g e S— P suchthat page{x}™ .
Proof: Let P be a prime ideal containing {x}* such that the given condition holds. Let K
be a prime ideal containing {x}* suchthat K c P.Let pe P.Thenthereis ge S - P such
that p Aq e {x}™ .Hence pAge K. Since K is prime and g K,so pe K. Thus, Pc K
and so K = P. Therefore, P must be a minimal prime ideal containing {x} .

Conversely, let P be a minimal prime ideal containing {x}* .Let peP.Suppose
forall ge S—P, page{x}™.Let D=(S-P)v[p).We claim that (x}* "nD=¢p.1f not,
let ye{x}*” "D.Then pag<ye {x}**, which is a contradiction to the assumption. Then

by Theorem 3.3.11, there exists a maximal (prime) filter @ o D and disjoint to {x}* . By the
proof of Theorem 3.3.11, xe Q. Let M =S5—-Q. Then M is a prime ideal. Since x € (.80
taxeJc M implies te M as M is prime. Thus {x}" ¢ M. Now M D=¢. This
implies 2/ N (S—P)=¢ and hence M c P. Also M # P, because p e D implies p¢g M
but pe P. Hence M is a prime ideal containing {x}* which is properly contained in P.

This gives a contradiction to the minimal property of P. Therefore the given condition
holds. e
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Observe that by Theorem 3.3.7 we can easily give a Separation theorem in a 0-

distributive nearlattice for 4*, when 4 is a finite subset of S . But now we are in a position

to give a proof of the theorem for any subset 4.

Theorem 3. 3. 13: Let F be a filter of a 0-distributive nearlattice S such that F N At =

for any non-empty subset A of S. Then there exists a prime filter QD F such that
OnAt=b.
Proof: By Theorem 3. 2. 5, Al— is a semi-prime . Thus by Lemma 3. 3. 3, there exists a

maximal filter Q o F such that QN AL =¢. Since A" is semi-prime, so by Theorem 3. 3.

7, Q is prime. ®
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WEAKLY COMPLEMENTED NEARLATTICE

4, 1 Introduction

In nis chapter we will study the homomorphism on nearlattices. Then we include
homomorphism theorem for nearlattices. We establish some results on homomorphic
images of semi prime ideals. We also show that n a O-distributive semi lattice, a map
f:S—> {{mr}J‘L ‘a € S} is a semi lattice homomorphism if and only if f({a}L )= {fla)}*.
Finally, we included some characterizations of weakly complemented nearlattices relative

to J.

Varlet [33] first introduced the concept of O-distributive lattices. Then many authors
including [1, 19, 22, 23, 24. 25] studied them for lattices and semi lattices. A nearlattice S
with 0 is called O-distributive if for all a.b,ce§ with anb=0=anc imply an d=
for some d>b, ¢ Chakraborty [9]. The concept of semi-prime ideals of a lattice is
introduced in [26]. Recently, Begum and Noor [22] have extended the concept for meet
semi lattices. An ideal J of a nearlattice S is called a semi-prime ideal if for all
a,bceS with anbed, anceld, imply andeJ for some d =b,c. Hence 4
nearlattice § with 0 is called O-distributive if (0] is a semi prime ideal of S. A meet semi
lattice S is called directed above if for all a,b € S , there exists ¢ € § such that ¢ > a,b.
We know that every modular and distributive semi lattice have the directed above

property. Moreover Chakraborty[9] have shown that every 0-distributive meet semi lattice

is directed above.

Let S and 7 be two nearlattices. A map 7 :S — 7 is said to be a homomorphism if
f is a meet preserving map. That is, for ali a,beS, f'(amb)z,f(a)n f(b) A
homomorphism is called 0-homomorphism if f (D): 0. A one-to-one homomorphism is
called a monomorphism or an embedding. A onto homomorphism is called an
epimorphism. If f: 4 — B is an epimorphism, we say that B is a homomorphic image of

A. An eplmorphlsm is called an isomorphism if it is a one-to-one map. A homomorphxsm

f:4->4 is called an endomorphism, and an isomorphism f:4— 4 is called an
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automorphism. The nearlattice S and 7" are isomorphic if there exists an isomorphism f

from S to 7. We denote it symbolically by S=T7'.
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4. 2 Homomorphism and semi prime ideals

Let AcS and J be an ideal of S. We define 4™ = {xeS:xraeJ for all

aec A}, then A" is called an annihilator of 4 relative to ./ which is clearly a down set

containing J . If it is an ideal, then it is called an annihilator ideal relative to J. By [9, 25]

we know that, for any a € 4,{a}"™ is an ideal if and only if S is O-distributive.

The following result is due to Noor and Begum(24].

Lemma 4. 2. 1: Let J be an ideal of a nearlattice S. Suppose A,B < S and a,b € S then

the following hold:

(i) IfAnB=J,then Bc A™
(i) AnA" =J.
(iii) A < B implies that B A"

(iv)  a<b implies that {p}" < {a}” and iRt |1} a
4 | S {

v Aaf” nfaft =J.
(VU {a;’\b}l’l’ :{a}lil'f m{b}l’i’_
(‘HI) Ac Alfl,r .

1,44, _ 4t

(viii) A A7 e

Homomorphism theorem for lattice can be found in Gratzer [12], theorem 11. Ina
similar way, we can easily state the following homomorphism theorem for nearlattices.

We prefer to omit the proof as it is almost similar to the proof of homomorphism theorem

for lattices.

Theorem 4. 2. 2: (Homomorphism tiieorem for nearlattices) Every homomorphic image of
a nearlattice S is isemorphic to a suiiable quotient nearlattice of S. In fact, if ®:S =T
is a homomorphism of S onio T and © is a congruence relation of S defined by

x = y(®) ifand only if ®(x)=D(y). Then S/O=T e
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Theorem 4. 2. 3: Let S and T be two nearlattices. I is an ideal of S. f:8 > 7T isa
homomorphism and onto such that I "(f(! ))= I. Then I is semi-prime in S implies

7(2) is semi-prime in T .

Proof: Suppose [ is semi-prime. Let x,y.ze7 with )_'A_vef(]) and xz\zef(f),.

Then there exists a,b,c € S such that x = f{a),y = f(b),z = fle).
Now f(a)a f(b)= flanb)e f(1).

fla)a f (2)= flanc)e f (I). This implies anb,ance . Since I is semi-prime, so
there exists d € S,d > b,c such that and e I. Let t= f(d). Then t = f(d)> £(b), f(c).
That is, 2 y,z. Also f(a)x\f(a')zf(ax\d)ef(]). Thus x At ef(]), and so f(f) is

semi-prime. ®

Since S is O-disrtibutive if and only if (0] is a semi prime ideal so the following

corollary immediately follows by above theorem.

Corollary 4. 2. 4: Let S and T be two nearlattices with 0. f:S—>T is 0-

homomorphism, onto and f“l({))z 0. Then T is O-distributive if S is O-distributive. ®

Lemma 4. 2. 5: Let J be a semi-prime ideal of a nearlattise S. f:S —> {{a}l’L’ a€ S}

given by f(a) = {a}"“i" . Then the following results holds:

(i)  f is a meet homomoephism.
(i)  For aES,f(a)=J ifandonly if ae J .
i) fllal )= {r(}"
Proof: (i) Let a,b € S . Now
flanb)={anb}

- {a}lJlf m{b}J.,J.,

= fla)n £(b)
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= f(a)A 1)
Hence the map is a meet homomorphism.

(i) 1f f(a)=J, then {a}*'" =.J. Thus {a}*" ={a}"""""/ = and so ae{a" . This

implies a=anae.J.
Conversely, if ae J , then f(a)={a}"" =8 =J.
(i) rla} )={p}* 16 e fa} |
7llay )= o} 1anbe ]
{o}* | flanb)e J}
= {1 (@)n o)< I}

={r(@)}"

Hence the proof is completed. @

Corollary 4. 2. 6: Let S be a O-distributive nearlattice S. f:5 — {{a}L"‘ cae S } given

by f (a) = {a}J‘L . Then the following results hold:

(i)  f is a meet homomorphism.

(i) For aeS, f(a)={0} ifand only if a=0.
i) fla})={r(*
Note: Observe that lemma 4. 2. 5 is also true for an ordinary ideal J of §. But we have

. s . 4 1.d ‘ . - 5
consider semi primeness of J as {a} / and {a} %1 are ideals only when J is semi-prime.

Similarly, in a semi lattice with 0, {a}" or {af"" are ideals only when.S is 0-distributive.
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4. 3 Weakly complemented Nearlatiices

Let S be a nearlattice with 0. S is cailed weakly complemented if for any pair of
distinct elements a,b € S, there exists an element ¢ such that only one of ¢ Ac and bAac

is equal to 0.

Similarly, for an ideal J of a nearlattice S, we call Sis weakly complemented
with respect to J if for any pair of distinct elements a.b € S, there exists an element ¢
such that only one of aAac and hac belongs to J. [n particular, if a <b, then there

exists c € S suchthat anceJ but bacéEJ .

Note that the definition of weakly complemented semi lattice relative to ideal .J can

also be given in the following way:

For an ideal J of a nearlattice S, S is called weakly complemented relative to J it
for all a,beS,a+b implies tlllat either {a}l" - {b}l’ O or {b}l' —{a}lf # @ . These
semi lattices are also known as disjunctive semi lattices relative to J.

Theorem 4. 3. 1: Let S be a nearlattice and J  be a semi-prime ideal of S. Then the

following are equivalent:

i f:S—> {{a}L-’l’ lae S} defined by fla)=ta}""" is isomorphism.
(ii) {a}l’ i {b}l‘ el (S) implies that a=b forall a,beS.

(iii) S is weakly complemented relative to J .

Proof: (i)implies (ii): Let {a} ={b}" and a#b. Then as [ is an isomorphism, we
have, f(a)# f (b) which implies that {afo {b}"*. Then there exists xe {a}-t
such that x ¢ {b}l‘l’ which implies that x Az & J for some z e {p}*. Since {a}" = {p}"

then we have xAzgJ for some ze {af"” which implies x & {a}**. This gives is a

contradiction. Hence {a}* = {p}" implies a=5.

(if)implies (jii): Let a <b. Then by lemma 4.2.1 and (ii), we have {a}*' o {b}" . Hence
there exists x € {a}J“’ such that x ¢ {p}" , which implies that S is weakly complemented

relative to J .
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(iii)implies (ii): Let a# b then either anb <a or anb <b. Assume that a nb<a.As

S is weakly complemented, so there exists x € {anb}" suchthat xAagJ.

Thus we have xA(anb)eJ. This implies (xna)abeJ, and so (xna)e {b} and
xAagfal . Hence {a}" = {b}"™ . and so (ii) holds. -

(if)implies(i): To prove f isan isomorphism. Forall a,beS, a=b

o {a} = 11"

& fla)=1(b)
This impl.es f is well defined and one to one.
Obviously, the mapping is onto.

Moreover, by lemma 4. 2. 5, f isa A preserving map. Therefore, f is an isomorphism.

We conclude the thesis with the following result as (0] is semi-prime if and only if

S is O-distributive.

Corollary 4. 3. 2: Let S be a O-distributive nearlatiice. Then the following are

equivalent:

i f:85—> {{a}J‘L lae S} defined by f(a)= {a}™ is an isomorphism.

() fa} ={p}" € I(S) implies that a=b forall a,be .

(iii) S is weakly complemented. @
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