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Abstract 

Nonliflear oscillator models have been widely used in many areas of physics and 

engineering and are of sip i4icant importance in mechanical and structural dynamics for 

the comprehensive rnaderstanding and accurate prediction of motion. 

The aim of the pnesent study is to solve the second order autonomous nonlinear 

differatiaI systems with s410ng and high ((9th)) order nonlinearity in presence of small 

damping by combing H&s homotopy perturbation and the extended form of the KBM 

methods. The results olta1ned by the presented method are compared with those solutions 

obtained by the fourth order Runge-Kutta method in graphically. 
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= 0.1, s = 0.1 and f = x9  and the corresponding 

numerical solution is denoted by solid line (-) - 
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C4JAPI'ER I 

Introduction 

Most otreat systems are modeled ft nonlinear differential equations. Obtaining exact 

solution for these "onlinear probterms is difficult and time consuming for researchers, 

thus scientists are tried to tTaid ne approaches to overcome this difliculties. 

The subject of differcntiail equations constitutes a large and very important branch of 

modern mathematics. Nirnerous physical, mechanical, chemical, biological. 

mechanics in which we want to deribe the motion of the body (automobile, electron, 

or satellite) under the action of' a given force, and many other relations appear 

mathematically in the form of differential equations that are linear or nonlinear, 

autonomous or non-autonomous. Also, in ecology and economics the differential 

equations are vastly used. Basically, many differential equations involving physical 

phenomena are nonlinear such as spring-mass systems, resistor-capacitor-inductor 

circuits, bending of beams, chemical reactions, the motion of a pendulum, the motion 

of the rotating mass around another body, population model etc. In mathematics and 

physics, linear generally means "simple" and nonlinear means "complicated". The 

theory for solving linear equations is very well developed because linear equations are 

simple enough to be solvable. Nonlinear equations can usually not be solved exactly 

and are the subject of much on-going research. In such situations, mathematicians, 

physicists and engineers convert the nonlinear equations into linear equations i.e., 

they linearize them by imposing some special conditions. Small oscillations are well-

known example of the linearization for the physical problems. But, such a 

linearization is not always possible and when it is not, then the original nonlinear 

equation itself must be used. The study of nonlinear equations is generally confined to 

a variety of rather special cases, and one must resort to various methods of 

approximations. 

At first van der Pot [I] paid attention to the new (self-excitations) oscillations and 

indicated that their existence is inherent in the nonlinearity of the differential 

equations characterizing the process. Thus, this nonlinearity appears as the very 

c.ssence of these phenomena and by linearizing the differential equations in the sense 

of smaii oscillations, one simply eliminates the possibility of investigating such 



problems. Thus, it is necessary to deal with the nonlinear differential equations 

directly instead ofewading them by dropping the nonlinear terms. To solve nonlinear 

differential equations there exist some methods such as perturbation method [2-57], 

homotopy perturbation [58-67] method, variational iterative method [68], harmonic 

balance method [69] etc. Among the methods, the method of perturbations. i.e., 

asymptotic expansions in terms of a small parameter are first and foremost. 

A perturbation method known as the asymptotic averaging method" in the theory of 

nonlinear oscillations was first introduced by Krylov and Bogoliubov (KB) [2] in 

1947. Primarily, the method was developed only for obtaining the periodic solutions 

of second order weakly conservative nonlinear differential systems. Later, the method 

of KB has been improved and justified by Bogoliubov and Mitropolskii [3] in 1961. 

In literature, this method is known as the Krylov-Bogoliubov-Mitropolskii (KBM) (2, 
A 

3] method. 

A perturbation method is based on the following aspects: the equations to be solved 

are sufficiently "smooth" or sufficiently differentiable a number of times in the 

required regions of variables and parameters. The KBM [2, 3] method was developed 

for obtaining only the periodic solutions of second order weakly nonlinear differential 

equations without damping. Now a days, this method is used for obtaining the 

solutions of second, third and fourth order weakly nonlinear differential systems for 

oscillatory, damped oscillatory, over damped, critically damped and more critically 

damped cases by imposing some special restrictions with quadratic and cubic 

non I inearities. 

14 

Several authors [5-57] have investigated and developed many significant results 

concerning the solutions of the weakly nonlinear differential systems. Extensive uses 

have been made and some important works are done by several authors [5-57] based 

on the KBM method. 

The method of KB [2] is an asymptotic method in the sense that s —> 0. An 

asymptotic series itself may not be convergent, but for a fixed number of terms, the  

approximate solution tends to the exact solution as e 
- 0. It may be noted that the 

term asymptotic is frequently used in the theory of oscillations in the sense that 

2 



-* 0 But, in this case. the mathematical method is quite different. It is an 

Important approach to the study of such nonlinear oscillations in the small parameter 

expansion. 'I'wo widel)' spread methods in this theory are mainly used in the literature: 

one is averaging asymptotic KBM method and the other is multiple-time scale 
method. The KBM method is particularly convenient and extensively used technique 

for determining the approximate solutions among the methods used for studying the 

weakly nonlinear differential systems with small nonlinearity. The KBM method 
starts with the solution of linear equation (sometimes called the generating solution of 
the linear equation) assuming that in the nonlinear case, the amplitude and phase 

variables in the solution of the linear differential equation are time dependent 

functions instead of constants. This method introduces an additional condition on the 

first derivative of the assumed solution for determining the solution of second order 

nonlinear differential systems. The KBM method demands that the asymptotic 

solutions are free from secular terms. These assumptions are mainly valid for second 

and third order equations. But, for the fourth order differential equations, the 

correction terms sometimes contain secular terms, although the solution is generated 

by the classical KBM asymptotic method. For this reason, the traditional solutions fail 

to explain the proper situation of the systems. To remove the presence of secular 

terms for obtaining the desired results, one needs to impose some special conditions. 

Ji-l-luan He [58-61] has developed a homotopy perturbation technique for solving 

second order strongly nonlinear differential systems without damping effects. Uddin 

el al. [62-64] have presented an approximate technique for solving second order 

strongly nonlinear oscillatory differential systems with quadratic and cubic 

nonlinearity in presence of small damping by combing the He's [58-61] hornotopy 

perturbation and the extended form of the KBM [2-4] methods. 

The KBM [2, 3] method is failed to tackle the strongly and weakly nonlinear 

differential systems with high order nonlinearity. Also He's [58-61] homotop:y 

perturbation technique is failed to tackle both the strongly and weakly nonlinear 

differential systems in presence of small damping. In this thesis, He's homotopy 

perturbation method (HPM) has been extended for obtaining the analytical 

approximate solutions of second order strongly and weakly nonlinear differential 

systems with high order nonlinearity in presence of small damping based on the 

extended form of the KBM mcdcd. The results may b used in mechanics, physics:, 

a 
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chemistry, plasma physics, circait and control theory, population dynamics, 

economics, etc. 

In Chapter II, the review of literature is presented. In Chapter III, an approximate 

analytical technique has been extended for solving second order strongly and weakly 

nonlinear differential system with high order nonlinearity in presence of small 

damping. Finally, in Chapter IV, the conclusions are given. 

VON 
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CHAPTER II 

Literature Review 

The nonlinear differential equations are generally difficult to solve and their exact 

solutions are difficult to obtain. But, mathematical formulations of many physical 

problems often results in differential equations that are nonlinear. In many situations, 

linear differential equation is substituted for a nonlinear differential equation, which 

approximates the original equation closely enough to give expected results. In many 

cases such a linearization is not possible and when it is not, the original nonlinear 

differential equation must be considered directly. During last several decades in the 

20th century, some famous Russian scientists like Krylov and Bogoliubov [2]. 

Bogoliubov and Mitropolskii [3], Mitropolskii [4], have investigated the nonlinear 

dynamics. To solve nonlinear differential equations there exist some methods. Among 

the methods, the method of perturbations, i.e., an asymptotic expansion in terms of 

small parameter is foremost. Firstly, Krylov and Bogoliubov (KB) [2] considered the 

equation of the form 

(2.1) 

where I denotes the second order derivative with respect to 1, e is a small positive 

parameter and f is a power series in E , whose coefficients are polynomials in 

x, i, sint and cost and the proposed solution procedure proposed by Krylov and 

Bogoliubov [2] is known as KB method. In general, f does not contain either & or I 

explicitly. In literature, the method presented [2, 3] is known as Krylov-Bogoliubov-

Mitropolskii (KBM) method. To describe the behavior of nonlinear oscillations by the 

solutions obtained by the perturbation method. Poincare [5] discussed only periodic 

solutions, transient were not considered. 

The KBM [2, 3] method started with the solution of the linear equation, assuming that 

in the nonlinear systems, the amplitude and phase variables in the solution of the 

linear equations are time dependent functions rather than constants. This procedure 

introduces an additional condition on the first derivative of the assumed solution for 

determining the desired results. Some mirthful works are done and elaborative uses 

have been made by Stoker [6], McLachlan [7], Minorsky [8] and Bellman [9]. 

5 



Duffing [10] has investigated many significant results for the periodic solutions of the 

following damped nonlinear differential system 

Sometimes, different types of nonlinear phenOmena occur, when the amplitude of a 

dynamic system is less than or greater than unity. The damping is negative when the 

amplitude is less than unity and the damping is positive when the amplitude is greater 

than unity. The governing equation having these phenomena is 

(l--x2 )±xr-0. (2.3) 

In literature, this equation is known as van der Pol [IJ equation and is used in 

electrical circuit theory. Kruskal [1 I] has extended the KB [2] method to solve the 

fully nonlinear differential equation of the fbi lowing form 

= F(x,,e). (2.4a) 

Cap [12] has studied nonlinear system of the form 

x+w 2 x=eF(x,x). (2.4b' 

Generally, F does not contain s or t explicitly, thus the equation (2.1) becomes 

x+a)2x=ef(x,i). (2.5) 

In the treatment of nonlinear oscillations by the perturbation method, only periodic 

solutions are discussed, transients are not considered by different investigators, where 

as KB [2] have discussed transient response. 

When c = 0, the equation (2.5) reduces to linear equation and its solution can be 

obtained as 

x = acos(w/ + ). (2.6) 

where a and are arbitrary constants and the values of a and are determined by 

using the given initial conditions. 

When c # 0, but is sufficiently small, then KB [2] have assumed that the solution of 

equation (2.5) is still given by equation (2.6) together with the derivative of the form 

= —awsin(wt +p). (2.7) 

where a and are functions of 1, rather than being constants. In this case, the 

solution of equation (2.5) is 

x = a(t)cos(wi + (P(t)) (2.8) 

and the derivative of the solution is 

= sin(an - (0(,)).  

6 



Differentiating the assumed solution equation (2.) with respect to time I. we obtain 

àcosy - awsinyv usinu, ci' = wl + p(t). (2.10) 

Using the equations (2.7) and (2. 10), we get 

aCoSçu .asiny. (2.11) 

Again, differentiating equation (2.9) with respect to 1, we hate 

X = —awsin t1l -- atY COSi// - aooCOSy/. (2.12) 

Putting the value of . from equation (2.12) into the equation (2.5) and using 

equations (2.8) and (2.9), we obtain 

àwsiny/ + awcosy = - ej(acosy, a(9sin çu). (2.13) 

Solving equations (2.11) and (2.13), we have 

= - sinyi[(acosyi,— a(oSinyJ).  

= ---- cosy f(acosvi, - asin çu). (2.15) 
a co 

It is observed that, a basic differential equation (2.5) of the second order in the 

unknown x, reduces to two first order differential equations (2.14) and (2.15) in the 

unknowns a and ço. 

Moreover, a and ço are proportional to ; a and are slowly varying functions of 

the time period T = It is noted that these first order equations are now written in 

terms of the amplitude a and phase o as dependent variables. Therefore, the right 

sides of equations (2.14) and (2.15) show that both a and ç are periodic functions of 

period T. In this case, the right-hand terms of these equations contain a small 

parameter c and also contain both a and co, which are slowly varying functions of 

the time i with period T = . We can transform the equations (2.14) and (2.15) into 

more convenient form. Now, expanding sinyf(acosyi,—asinyi) and 

cosyif(acosyi,—awsinqi) in Fourier series with phase ci', the first approximate 

solution of equation (2.5) by averaging equations (2.14) and (2.15) with period 

2,r 
is 

CO 



2,7 

(a) -  

27z- 
Jsin ig [(acosy, - aw sin y.')dw, 

w 
2r 

(2.16) 

2r 
J  cos y /(a  cos . - (1(0 S i ll i/i)dy/. 

wa 

where a and are independent of time i under the integrals. KR [2] have called 

their method asymptotic in the sense that t; - 0. An asymptotic series itself is not 

convergent, but for a fixed number of terms the approximate solution tends to the 

exact solution as c -> 0. Later, this technique has been extended mathematically by 

13ogo1iubov and Mitropolskii [3], and has extended to non-stationary vibrations by 

Mitropolskii [4]. They have assumed the solution of equation (2.5) in the following 

form 

x = a cos yi + 6U1  (a,yi) cu (a,yi) +  ............ -i e"u,,(a,y) -i- (2.17) 

where 11k' (k = I, 2. ........ n) are periodic functions of y, with a period 27, and the 

terms a and y  are functions of time i and the following set of first order ordinary 

differential equations are satisfied by a and y 

it = A1 (a)+i 2 A2 (a)+..........-F'A(a)+ O(e"), 
(2.18 a b) 

= w + B1 (a) + 6 2 B2(a) + .......+ e"B,,(a) + 

The functions 11k Ak  and Bk,  (k = I, 2. ........ n) are to be chosen in such a way that 

the equation (2.17), after replacing a and y' by the functions defined in equation 

(2.18), is a solution of equation (2.5). Since there are no restrictions in choosing 

functions Ak  and Bk , it generates the arbitrariness in the definitions of the functions 

uk  (Bogoliubov and Mitropolskii [3] ). To remove this arbitrariness, the following 
Ir 

additional conditions are imposed 

= 0, 

J0 
u,(a,ç1f)sin yidyi = 0. 

(2.19a, b) 

Secular terms are removed by using these conditions in all successive approximations. 

Differentiating equation (2.17) two times with respect to t, substituting the values of, 

and x into equation (2.5), and using the relations equation (2.18) and equating 

the coefficients of , (k = 1, 2. ........ n), leads to 

W 2  ((Uk + Uk) = f(k_O(a, t + 2w (a Bk  cos + Ak  sin y'), (2.20) 

8 



where (Uk ), denotes partial dcrivative's with respect to ,i 

J (a,yi)=f(a cos ii,—awsinc'), 

c/A c/B 
/ (cosyi,— acvsiny) + (aB -- Al  --)cosy ± (241 B1  aA1 t)s 

(2.2 Ia. b) 
nvi - 

(/a c/a 
2o(A (zi ), -F B1  (u )ç,,,, ). 

Here f' is a periodic function ol 41,1 with period 2.7 which depends also on the 

amplitude a. Therefore, f" °  and it, can be expanded in a Fourier series as 

f °(a,yi) = g °(a) ± (g '(a)cosnyi + J'1(a)sin ni/f), 

( 2a b) 

11k (a,yi) = v (a) + (v k 
°(a) cos ny + (0 '(a)sin ini). 

= 

where 

kl) g(a) = Jf(a cos yi, - awsin)d'. (2.23) 
2,r 

Here, = co,'") 0 for all values of k, since both integrals of equation (2.19) are 

vanished. Substituting these values into the equation (2.20), we obtain 

w2v 1) (a) + w2(l - n2)[v'(a)cosny + v(a)sin ny!] 
n= 2 

= gk_I)(a) + (g °(a) + 2w aBk  ) cos nyi (h °(a) + 2w Ak  )sin çu (2.24) 

+ [g ' ( cos nyi + h'(a)sin nyi]. 

Now, equating the coefficients of the harmonics of the same order, yield 

g °(a) + 2waBk  = 0, /i'1 (a) + 2wAk  = 01  v°(a) = g(a) 

W 

v(a) 
= g(kl)(a) 

w(a) = 
h°(a) 

i. 

(2.25) 

w2(1 2)' w 2(1n2 )' 

These are the sufficient conditions to obtain the desired order of approximation. For 

the first order approximation, we have 

2r 

A = --_- 

 h°>(a)  

Jf(acostw, —  awsin yi)sin yidyi, 
2w 27rw 0 

(2.26a, b) 
2,r 

B, = - 
g ° (a) 

= - I Jf(acos/w,—  awsinyi)cosydyi. 
2aw 27raw 

Thus, the variational equations in eqlmatlon (1 2.18) become 

4'  



f(o cosill'-  (/0) SIll I/I) Sill I/I (fl/I. 
27rw 

(2.27a, h) 
2,7 

w_ --- Jf(a  cos l/f, (l0)Sifl) cos l//dl//. 
2iraw 

It is seen that, the equation (2.27) are similar to the equation (2.16). Ilius. the first 

approximate solution obtained by 130g0liuhov and Mitropolskii [3] is identical to the 

original solution obtained by KB [2]. The correction term it,  is obtained From 

equation (2.22) by using equation (2.25) as 

+ 
g,,°1(a)cosnyJ + h ° (a)sinnyi 

(728) 
0) 2 

ii2 (O(l —n) 

The solution equation (2.17) together with it, is known as the flrst order improved 

solution in \vhich a and yi are obtained from equation (2.27). It' the values of' the 

functions A1  and B1  are substituted from equation (2.26) into the second relation of' 

equation (2.21b), the function j)  and in the similar way, the functions A21  B, and 

112  can be found. Therefore, the determination of the second order approximation is 

completed. The KB [2] method is very similar to that of van der Pol [1] and related to 

it. van der Pol has applied the method of variation of constants to the basic solution 

X = aCOS0)t +bsina1 of I + a 2 x = 0, on the other hand KB [2] has applied the 

same method to the basic solution x = acos(w1 + p) of the same equation. Thus, in 

the KB [2] method the varied constants are a and ço, while in the van der Pol's 

method the constants are a and b. The method of KB [2] seems more interesting 

ir from the point of view of applications, since it deals directly with the amplitude and 

phase of the quasi-harmonic oscillation. The solution of the equation (2.4a) is based 

on recurrent relations and is given as the power series of the small parameter. Cap 

[16] has solved the equation (2.4b) by using elliptical functions in the sense of KB 

[2]. The KB [2] method has been extended by Popov [13] to damped nonlinear 

differential systems represented by the following equation 

1+ 2k+ w2x = ef(,x), (2.29) 

where 2k± is the linear damping force and 0 <k <a It is noteworthy that, because 

of the importance of the Popov's method in the physical systems, involving damping 

force, Mendelson [14] and Bojadziev 115] have retrieved P000v's [13] results. In case 

10 



of damped nonlinear differential systems. the firsr.. equation of equation (2. I $a) has 
4 

been replaced by 

(2 --k a + sA1 (a) + e 2 A2 (a) .............. + "i! (a) + ()(c" '). (2. 1 8a) 

Murty and Deekshatulu [161 have developed a simple analytical method to obtain the 

time response of second order nonlinear over daniped systems with small nonl inearit 

represented by the equation (2.29), based on tl..c KB [2] method of variation of 

parameters. In accordance to the KBM [2. 31 method. Murty ci al. [I 71 have found a 

hyperbolic type asymptotic solution of an over uamped system represented by the 

nonlinear differential equation (2.29), i.e., in tie case k > w . They have used 

hyperbolic functions, cosh and sinh instead c1 their circular counterpart. which 

are used by KBM 12, 3]. Popov [13] and Mendels n (14]. Murty [IS] has presented a 

unified KBM method for solving the nonlinear systems represented by the equation 

(2.29), which cover the undamped, damped and over-damped cases. Bojadziev and 

Edwards [19] have investigated solutions of oscillatory and non-oscillatory systems 

represented by equation (2.29) when k and w are slowly varying functions of time I. 

Initial conditions may be used arbitrarily for the case of oscillatory or damped 

oscillatory process. But, in case of non-oscillatory systems coshço or sinh should 

be used depending on the given set of initial conditions (Murty ci al. [17], Murty [18], 

Bojadziev and Edwards [19]). Arya and Bojadziev [20, 211 have examined damped 

oscillatory systems and time dependent oscillating systems with slowly varying 

parameters and delay. Sattar [22] has developed an asymptotic method to solve a 

second order critically damped nonlinear system represented by equation (2.29). He 

has found the asymptotic solution of the equation (2.29) in the following form 

x = 0(1 + yi) + & u1 (a,yi) + ...........+ s'u,7 (a, (/,/) + O(e), (2.30) 

where a is defined by the equation (2.18a) and ip' is defined by 

çi' = I ± eC'1 (a) + e2C2(a) + ...........+ e"C,,(a) + O(e" ) (2.1 8b) 

Also Sattar [23] has extended the KBM asymptotic method for three dimensional over 

damped nonlinear systems 

Osiniskii [24] has extended the KBM method to the following third order nonlinear 

differential equation 

+ c1  -t- c, ± c3 x = ef(I,,x), (2.31) 



KBM method to over damped nonlinear differential systems. Also. Alam el al. [41 

have extended the KBM method to certain non-oscillatory nonlinear systems with 

slowly varying coellicients. Alam and Sattar [42] have studied time dependent third 

order oscillating systems with damping based on the extended form of the KBM 

method. A lam 143] has presented perturbation theory based cin the K B Ni method to 

find the approximate solutions of second order nonlinear systems with large damping. 

Later, Alam [44. 45] has extended the KBM method for solving ni/i, (a ~ 2.3) order 

nonlinear differential systems. Alani [46] has also presented a unified KBM method. 

which is not the formal form of the original KBM method for solving n/h, (n -~- 2,3) 

order nonlinear systems. The solution contains some unusual variables, yet this 

solution is very important. Alam [47] has extended the KBM method presented in 

1381 to find the approximate solutions of critically damped nonlinear systems in 

presence of different damping forces by considering different sets of variational 

equations. Alam [48] has also extended the KBM method to a third order over 

damped system when two of the eigen values are almost equal (i.e., the system is near 

to the critically damped) and the rest is small. Alani [49] has presented an asymptotic 

method for certain third order non-oscillatory nonlinear system, which gives desired 

results when the damping force is near to the critically damping force. Alarn [50] has 

developed a simple method to obtain the time response of second order over damped 

nonlinear systems under some special conditions. Alarn [51] has investigated a unified 

KBM method for solving 12th order nonlinear differential equation with varying 

coefficients. Alam and Hossain [52] have extended the method presented in [50] to 

obtain the time response of nth order (n -~! 2), over damped systems. Alam and Sattar 

[53] have developed an asymptotic method for third order nonlinear systems with 

slowly varying coefficients. Nayfeh [54, 55] and Murdock [56] have developed 

perturbation methods and theory for obtaining the solutions of weakly nonlinear 

differential systems. Sachs el cml. [57] have developed a simple ODE model of tumor 

growth and anti-angiogenic or radiation treatment. 

The 1-JPM was first proposed by the Chinese mathematician ii Huan He [58]. The 

essential idea of this method is to introduce a homotopy parameter, say p, which 

varies from 0 to 1. At p = 0, the system of equat ions usually has been reduced to a 

simplified form which normally admits a rather simple solution. As p gradually 

increases continuously toward 1, the system goes through a sequence of deformations, 

and the solution at each stage is close to that at the prevous stage of the deformation. 

13 



Eventually at p 1 the system takes the original form of the equation and the final 

stage of the deformation give the desired solution. 

I-Ic [58] has investigated a novel homotopy perturbation technique to find a periodic 

solution of a general nonlinear oscillator for conservzative systems. lie [58] has 

considered the following nonlinear di tièi'cntial equation ir the form 

A(u) - 1(r) = 0, r EE 0, (2.34) 

with the boundary conditions 

B(u, 
ou
—) = 0. r E I, (2,35) a' 

where A is a general differential operator. B is a bundary operator, f(r) is a 

known analytical function, F is the boundary of the domain Q 
. Then He 1581 has 

written Eq. (2.34) in the following form 

L(u) + N(u) - f(r) =0, (2.36) 

where L is linear part, while N is nonlinear part. He [58] has constructed a 

homotopy v(r, p) ) x [0,1] - 9 which satisfies 

H(v, p) = (I - p)[L(v) - L(u0 )] + p[A(u) 1(r)] = 0, p E [0,1], r E 0 (2.37a) 

or 

H(v, p) = L(v) - L(u0 ) + pL(u0 ) + p[N(v) - f(r)J = 0, (2.37b) 

where p E [0, I] is an embedding parameter, u0  is an initial approximation of 

equation (2.34), which satisfies the boundary conditions Obviously, from equation 

(2.37), it becomes 

• H(v, 0) = L(v) - L(u0 ) = 0, (2.38) 

H(v, 1) = A(v) - f(r) =0. (2.39) 

The changing process of p from zero to unity is just that of v(r,p) from 110 (r) to 

u(r). He [58] has assumed the solution of Eq. (2.37) as a power series of p in the 

following form 

V = V0  -3- pv1  + j, 2V 2  -t ..... (2.40) 

The approximate solution of Eq. (2.34) is given by setting p = in the form 

u=v0 +V1 +v2 +.-.. (2.41) 

The series (2.41) is convergent for most of the cases, and also the rate of convergence 
depends on how one choose A(u). 

-'a. 
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lie I51 has obtained the approximate solution of nonlinear differential equation with 

convolution product nonlinearities. He [60] has developed some new approaches to 

Dulling equation with strongly and high order nonlinearity without damping. Also, 

He [61] has presented a new interpretation of homotopy perturbation method. Uddin 

el al. [62] and Uddin and Sattar 163. 641 have presented an approximate technique for 

solving second order strongly nonlinear differential systems with damping by 

combing the Hes [58-61] homotopy perturbation and the extended f'orm of the KBM 

[2-4] methods. Uddin ci al. [65] have also developed an analytical approximate 

technique for solving a certain type of fourth order strongly nonlinear oscillatory 

differential system with small damping and cubic nonlinearity by combining I-Ic's 

hornolopy perturbation [58-611 and the extended form of the KBM [2-4] methods. 

Recently, Uddin el al. [66] have also developed an approximate analytical technique 

for solving second order strongly nonlinear generalized Dufuing equation with small 

damping. Belendcz c/ al. [67] have applied He's homotopy perturbation method to 

Duffing harmonic oscillator. He [68] have presented a variational iteration method for 

solving nonlinear differential systems. Ghadimi and Kaliji [69] have presented an 

application of the harmonic balance method on nonlinear equation. Ganji c/ al. [70] 

have presented an approximate solutions to van der Pol damped nonlinear oscillators 

by means of He's energy balance method. 

.4 
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Cl LAP'I'ER III 

An Approximate Technique for Solving Second Order Strongly Nonlinear 

Differential Systems with High Order Nonlinearity in Presence of Small Damping 

3.1. Introduction 

Most of the phenomena in the real world are essentially nonlinear and described by 

nonlinear differential systems. Sc), the study of nonlinear differential systems is very 

important in all areas of applied mathematics, physics, engineering, medical science, 

economics and other disciplines. in general, it is too much difficult to handle nonlinear 

problems and it is often very difficult to get an analytical solution than a numerical one. 

Common methods for constructing approximate analytical solutions to the nonlinear 

differential equations are the perturbation techniques. Some well known perturbation 

techniques are the Krylov-Bogoliubov-Mitropolskii (KBM)[2, 3] method, the Lindstedt-

Poincare (LP) method [55, 56], and the method of multiple time scales[55]. Almost all 

perturbation methods are based on an assumption that small parameters must exist in the 

equations, which is too strict to find wide application of the classical perturbation 

techniques. It determines not only the accuracy of the perturbation approximations, but 

also the validity of the perturbation methods itself. However, in science and engineering, 

there exist many nonlinear problems which do not contain any small parameter, 

especially those appear in nature with strongly and high order nonlinearity in presence of 

small damping. Therefore, many new techniques have been proposed to eliminate the 

'7 "small parameter" assumption, such as the homotopy perturbation method (HPM) [58- 

61], variational iteration method [68], energy balance method [70], etc. Arya and 

Bojadziev [21] have presented time depended oscillating systems with small damping, 

slowly varying parameters and delay. Sachs et al. [57] have presented simple ODE 

models of tumor growth and anti-angiogenic or radiation treatment. He [59] has obtained 

the approximate solution of nonlinear differential equation with convolution product 

nonlinearities. In recent years, He [601 has developed some new approaches to Duffing 

equation with strongly and high order non-linearity without damping. He [611 has 

presented a new interpretation of homotopy perturbation method. He [68] has presented 

the variational iteration method for strongly nonlinear differential systems without 

-A 
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damping. Uddin ci al. [62-64] have presented an approximate technique for solving 

strongly cubic and quadratic nonlinear differential systems with damping elThcts. 

Recently Uddin ci al. [66] have developed an approximate analytical technique for 

solving second order strongly nonlinear generalized Duffing equation with small 

damping. Belendez c/ al. [671 have presented the application of Herns homotopy 

perturbation method to Dulling harmonic oscillator without damping. From our stud, it 

has been seen that the most of the authors [58-61 , 67] have studied non-linear differential 

systems with small nonlinearity and without considering damping effects. But most of the 

physical and engineering problems occur in nature in the form of nonlinear differential 

systems with small damping effects. In this thesis, we are interested to present a coupling 

technique for solving second order strongly nonlinear differential systems with high order 

nonlinearity in presence of small damping based on the Fle's homotopy perturbation and 
Ik 

the extended form of the KBM methods but the classical perturbation techniques are 

unable to tackle this situation. The presented method transforms a difficult problem under 

simplification, into a simple problem which is easy to solve, especially with high order 

non-linearity. The advantage of the presented method is that the first approximate 

solutions show a good agreement with the corresponding numerical solutions. 

3.2. The method 

Let us consider the second order ordinary differential systems modeling with high order 

nonlinearity in presence of small damping in the following form: 

+2k(r)+v2x=—e1 f(x,i), (3.1) 

where the over dots denote differentiation with respect to time i,v is a 

Ir constant, c,  (s1  = 1.0) is a parameter which is not necessarily small, k ~! 0, 2k, is the 

linear damping coefficient, r = s/, is the slowly varying time, c is a small positive 

parameter and the coefficients in equation (3.1) are varying slowly in that their time 

dervatives are proportional to s, f(x,i) is a given high order nonlinear function which 

satisfies the following condition: 

= —f(x,±). (3.2) 

We are going to use the following transformation to change the dependent variable 

x = y(1)e. (3.3) 

17 



Now differentiating equation (3.3) twice with respect to time i and substituting the 

values of 1, x and x into equation (3. 1) and then simplifying we obtain 

' - •, 
y + (v 2 

 -- k)y = e / (ye -A-,  .(y - k y)e ). 

According to the homotopy perturbation method 158-67 I Eq. (3.4) can he re-written as 

+ y = Ày — e f(ve,(j --- kv)c''). (3.5) 

where 

=02  — k 7  + A. (3.6) 

Here w is known as the angular frequency of the nonlinear differential systems and is a 

constant for undamped nonlinear oscillators. But for the damped nonlinear differential 

systems, o is a time dependent function and it varies slowly with time I and 2 is an  

unknown function which can he evaluated by eliminating the secular terms from 

particular solution. To handle this situation, we are interested to use the extended form of 

the KBM [2, 3] method by Mitropolskii [4]. According to this method, the solution of 

equation (3.5) can be chosen in the following form: 

y=acosq, (3.7) 

where- a and q vary slowly with time I. In physical problems, a and are known as 

the amplitude and phase variables respectively and they keep an important role to the 

nonlinear physical systems. The following first order differential equations are satisfied 

by amplitude a and phase variable : 

- 6=A1 ((I,v)+e2 A7 (a,z-)+..., 
(3.8a, b) 

= w(r) -+- eB, (a,r)+ c 

where e is a small positive parameter, A1  and B1, j = 11 25 3• are unknown functions. 

Now differentiating equation (3.7) twice with respect to time I with the help of equation 

(3.8) and substituting the values of , j, y into equation (3.5) and then equating the 

coefficients of sincp and cos, we obtain 

A1  =—au'/(2(), B =0, (3.9) 

where prime denotes differentiation with respect to r. Now inserting equation (3.7) into 

equation (3.3) and equation (3.9) into equation (3.8a, b), we obtain the following 

equations: 

18 



x=(ie'cos. (3.10) 

a = 

çr'=co(r). 
(3.11a, b) 

First approximate solution o1 equation (3.1) is given by equation (3.10) with help of 

equation (3. I la, b) by the presented method. Usually the integration of equation (3.11) is 

performed by the well-known techniques of calculus [54-56], but sometimes they are 

calculated by a numerical procedure 139-66]. Thus, the first approximate solution of 

equation (3.1) is determined. 

3.3. Example 

* As an example of the above procedure, let us considem the second strongly nonlinear 

differential systems with high (91h) order [59, 60] nonlinearity in presence of small 

damping as the following form: 

1+ 2k(v)i+ v2 x = x9 , (3.12) 

where f(x,) = x9 . Now using the transformation equation (3.3) into equation (3.12) and 

then simplifying them, we obtained 

P+(v2  k 2)yy9 e 8 " (3.13) 

According to the homotopy perturbation [58-66] technique, equation (3.13) can be 

written as 

+w 2 y = 2y_ey9 e 8 k 1 , (3.14) 

where co is calculated from equation (3.6). According to the extended form of the KBM 

[2-4] method, the solution of equation (3.14) is obtained from equation (3.7). 

From the trigonometric identity, we obtain 

cos9  q.' =(c0s9q+ 9cos7+ 36cos5 + 84cos3+ 126cos)/256. (3.15) 

For avoiding the secular terms in particular solution of equation (3.14), we need to 

impose that the coefficient of the cosqo term is zero. Setting this term to zero, we obtain, 

2 a 
126 E,  a9  e 

256 

whieh leads to 

(3.16) 
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63 &1a8 e 8k1  
,t=--------. (.17) 

128 

Putting the value of 2 from equation (3.17) into equation (3.6). we obtain the following 

frequency equation: 

63ca8 e --Ski 

--k + -----
-. 

(3.18) 
128 

From equation (3.18), it is clear that the frequency of the damped nonlinear physical 

systems depends on both amplitude a and time t. When I - 0 then equation (3.18) 

yields 

=\

fv2_-k +6 . (3.19) 100 =w(0) 
128 

where &, a0  are known as the initial frequency and amplitude of the nonlinear physical 

systems. 

Integrating the first equation of equation (3.11 a), we get 

a=ao J. (3.20) 

Now putting equation (3.20) into equation (3.18), we obtain a six degree polynomial in 

& in the following form: 

a 6 +pa 2  +r-0, (3.21) 

where 

p=k 2  —v 2 , r =
_63sc

• 
 (3.22) 

128 

Finaly, the first order analytical approximate solution of equation (3.12) is obtained as 

follows: 

x=ae k( cosc, (3.23) 

0)0  a = a0  
VU) (3.24a,b) 

p=çp +J'w(r)dt, 

-k 
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where w0  is obtained by equation (3.19) w is calculated from equation (3.21) by using 

the well-known Newton—Raphson method and a and ço are given by equation (3.24 a. 

h). 

3.4 Results and Discussions 

In this thesis, we have extended lie's homotopy perturbation method fr solving the 

second order typical [59. 60] strongly nonlinear differential systems with high order 

nonlinearity in presence of small damping. it is almost impossible to solve the strongly 

nonlinear differential systems, especially with high order nonlinearity by the classical 

perturbation methods [2-4, 21, 54-57]. But the suggested method has been successfully 

applied to solve the second order strongly nonlinear differential systems with high (91h ) 

order nonlinearity in presence small damping. The first order approximate solutions of 

equation (3.12) is computed with small damping and high order nonlinearity by equation 

(3.23) and the corresponding numerical solutions are obtained by using fourth order 

Runge-Kutta method. The variational equations of the amplitude and phase variables 

appeared in a set of first order differential equations. The integration of these variational 

equations is performed by the well-known techniques of calculus [54-56]. In the lack of 

analytical solutions, numerical procedure [21, 54-67] is applied to solve them. The 

amplitude and phase variables change slowly with time 1. The behavior of amplitude and 

phase variables characterizes the oscillating processes and amplitude tends to zero in 

presence of small damping as i —+ co. Presented technique can take full advantage of the 

classical perturbation method. It is also noticed that the presented method is also capable 

to handle the typical second order weakly (e = 0.1) nonlinear differential systems with 

high order nonlinearity in presence of small damping. Comparison is made between the 

solutions obtained by the presented technique and those obtained by the numerical 

procedure in Figs. 3.1-3.2 for both strongly ( = 1.0) and weakly (E1  = 0.1) nonlinear 

differential systems high order nonlinearity in presence of with small damping for small 

amplitude. In Figs.3.1-3.2, it is seen that the solutions obtained by the presented method 

show a good agreement with those solution obtained by the numerical procedure with 

several small damping effects. 
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Fig.3.1(a). First approximate solution of equation (3.12) is denoted by dotted lines 

(- • -) by obtained the presented analytical technique with the initial conditions 

a0  = 0.5, qoo  = 0 or [x(0) = 0.5, (0) = —0.07853] with v = 1.0, k = 0.15, 61  = 1.0, e = 0.1 

and f = x9  and the corresponding numerical solution is denoted by solid line (-). 

Fig.3.1(b). First approximate solution of equation (3.12) is denoted by dotted lines 

(- • -) obtained the presented analytical technique with the initial conditions 

a0 =0.5,q 0 =O or [x(0)=0.5, (0)=-0.07535] with v=1.0,k=0.15, 1 0.1, 6=0.1 

and f = x9  and the corresponding numerical solution is denoted by solid line (-). 
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it Fig.3.2(a). First approximate solution of equation (3.12) is denoted by dotted lines 

(- • -) obtained the presented analytical technique with the initial conditions 

a0  = 0.5, ço0  =0 or [x(0)=0.5, i(0)=-0.1O360] with v =1.0, k =0.2, 61  = 1.0, 6=0.1 

and f = x9  and the corresponding numerical solution is denoted by solid line (-). 

0.5 
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--0-

-0.25 

-0.5 

Fig.3.2(b). First approximate solution of equation (3.12) is denoted by dotted lines 

(- • -) obtained the presented analytical technique with the initial conditions 

a0  = 0.5, g = 0 or [x(0) = 0.5, (0) = —0.10036] with v = 1.0, k = 0.2, & = 0.1, e = 0.1 

and f = x9  and the corresponding numerical solution is denoted by solid line (-). 
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CHAPTER IV 

Conclusions 

The determination of amplilu(le and phase variables is important for both strongly and 

weakly nonlinear differential systems in presence of small damping and they play 

very important role for physical problems. The advantage of the presented 

approximate technique is that it is able to give the position of the physical objects at 

any time as well as amplitudes and phases. The amplitude and phase variables 

characterize the oscillatory processes. In presence of damping, amplitude a -> 0 as 

I - (i.e., for large time t). 

It is also mentioned that, the classical KBM method is failed to tackle the second 

order strongly and weakly nonlinear differential systems with high order nonlinearity 

and in presence of damping and He's homotopy perturbation method is failed to 

handle nonlinear systems in presence of damping. Some limitations of He's homotopy 

perturbation (without damping) technique and the KBM method (weak nonlinearity) 

have been overcome by the presented method. 

The presented method does not require a small parameter in the equation like the 

classical one. The method has been successfully implemented to illustrate the 

effectiveness and convenience of the suggested procedure and shown that the first 

approximate solutions show a good agreement with those solutions obtained by the 

numerical procedure with high order nonlinearity in presence of several small 

damping for both strongly (e1  = 1.0) and weakly (c = 0.1) nonlinear physical 

systems. The graphical representations show good agreement (Figs. 3.1- 3.2) between 

the first approximate analytical solutions and the corresponding numerical solutions 

for second order strongly and weakly nonlinear differential systems with high order 

nonlinearity. 
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