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Abstract 

A modified approximate analytic solution of the cubic nonlinear oscillator " + x3  = 0" has 

been obtained based on an iteration method. Here we have used the truncated Fourier series 

in each iterative step. The approximate frequencies obtained by this technique show a good 

agreement with the exact frequency. The percentage of error between exact frequency and 

our fifth approximate frequency is as low as 0.009%. The calculation with this technique is 

very easy. The modified technique accelerates the rapid convergence of the solution, reduces 

the error solution and increases the validity range. 
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CHAPTER I 

Ir 

Introduction 

Differential equation is a mathematical tool, which has its application in many branches of 

knowledge of mankind. Numerous physical, mathematical, economical, chemical, 

biological, biochemical, and many other relations appear mathematically in the form of 

differential equations that are linear or nonlinear, autonomous or non-autonomous. 

Generally, in many physical phenomena, such as spring-mass systems, resistor-capacitor-

inductor circuits, bending of beams, chemical reactions, the motion of pendulums, the 

motion of the rotating mass around another body, etc., the differential equations are 

occurred. Also, in ecology and economics the differential equations are vastly used. 

Basically, many differential equations involving physical phenomena are nonlinear. 

Differential equations, which are linear, are comparatively easy to solve and nonlinear are 

laborious and in some cases it is impossible to solve them analytically. In such situations 

mathematicians, physicists and engineers convert the nonlinear equations into linear 

equations by imposing some conditions. In case of small oscillation, linearization is a well-

known technique to solve the problems. But, such a linearization is not always possible and 

when it is not possible, then the original nonlinear equation itself must be used. To solve 

nonlinear differential equations, there exist some methods such as Perturbation technique, 

Harmonic Balance, Method of Multiple Scales, Homotopy Perturbation, Iterative method 

etc. Among the methods, the method of Perturbations, i.e., asymptotic expansions in terms 

of a small parameter are foremost. 

Perturbation methods have received much auention as these methods for accuracy and 

quickly computing numerical solutions of dynamic, stochastic, economic equilibrium 

models for both single-agent or rational expectations models and multi-agent or game 

theory models. A perturbation method is based on the following aspects: the equations to 

be solved are sufficiently "smooth" or sufficiently differentiable a number of times in the 

required regions of variables and parameters. 

Harmonic Balance (HB) method is a procedure of determining analytical approximations 

to the periodic solutions of differential equations by using a truncated Fourier series 



representation. An important advantage of the method is that it can be applied to nonlinear 

oscillatory problems for which the nonlinear terms are not "small" i.e., no perturbation 

parameter need to exist. A disadvantage of the method is that it is a priory difficult to 

predict for a given nonlinear differential equation whether a first order harmonic balance 

calculation will provide a sufficiently accurate approximation to periodic solution. 

The Iterative method was introduced R E Mickens in 1987. The method introduces a 

reliable and efficient process for wide variety of scientific and engineering application for 

the case of nonlinear systems. There are two important advantages of Iterative method, one 

is "Only linear, in homogeneous differential equations are required to be solved at each 

level of the calculation" and another is "The coefficients of the higher harmonic, for a 

given value of the iterative index decrease rapidly with increasing harmonic number. This 

implies that higher order solutions may not be required". 

The outline of this thesis is as follows: In Chapter II, some basic conceptions are given. 

In Chapter III, the review of literature is presented. In Chapter 1V, the Iterative method 

has been described for obtaining approximate analytic solutions of the Cubic Truly 

Nonlinear Oscillator. In Chapter V, the convergence and consistency analysis of the 

adopted method has been shown. Finally, some concluding remarks are included in 

Chapter VI. 
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CHAPTER II 

Basic Conceptions 

This chapter introduces preliminary concepts relating to the thesis: 

2.1 Nonlinear Equation 

A differential equation consists of product of dependent variable, or product of derivative 

or product of dependent variable and derivative or transcendental function of dependent 

variable is called nonlinear differential equation. 

The following ordinary differential equations are all nonlinear: 

+5 + 6y2  -0 
- dx2  dx 

dx2 dx(~~Y-) 

dx 2 dx 

+ e = 0 
dx 

2.2 Truly Nonlinear Functions 

If f(x) has no linear approximation in any neighborhood of x = 0, then f(x) is a Truly 

Nonlinear function. 

The following are several explicit examples of Truly Nonlinear functions 

2.3 Truly Nonlinear Oscillators 

If f(x) is a Truly Nonlinear function, then the differential equations containing "f(x)" are 

said to be Truly Nonlinear Oscillator. 

The following are particular examples of Truly Nonlinear Oscillators 



x + x3  =0 

If I 
.+x3  =0 

. + x + x =0 

.+x '  =0 

2.4 Phase Plane 

If a plane is such that, each point of this plane describe the position and velocity of a 

dynamic particle, then this plane is called phase plane. 

The differential equation describing many nonlinear oscillators can be written in the form: 

d 2X 
+ 
+' dx)  = 0 (2.1) 

WiT dt 

A convenient way to treat equation (2.1) is to rewrite it as a system of two first order 

ordinary differential equations 

4 =y, .J=—f(x,y) (2.2) 
dt 
Equations (2.2) may be generalized in the form 

4=F(x,y), 
dy  
—=G(x,y) (2.3) 

dt dt 

A point which satisfies F(x,y)= 0 and G(x,y) =0 is called an equilibrium point The 

solution to (2.3) may be pictured as a curve in the x 
- 
y phase plane passing through the 

point of initial conditions (x0 , y0 ). Each time a motion passes through a given point (x , y), 

its direction is always the same. This means a given motion may not intersect itself. A 

periodic motion corresponds to a closed curve in the x-y plane. In the special case that 

the first equation of (2.3) is 
dx 

 =y, as in the case of equations (2.2), the motion in the 
dt 

upper half-plane y >0 must proceed to the right, that is, xmust increase in time fory >0, 

and vice versa for y <0. 

2.5 Trajectory 

If a curve is such that each point of the curve represents the position and velocity of a 

dynamic particle, the curve is called the path or Trajectory of the particle. 

.19 



Consider a second order nonlinear differential equation of the form 

d 2 x 1  dx"\ (2.4) 

If we puty = 
 dx  
 then the equation (2.4) is replaced by the equivalent system 
dt 

dx dy 
—j=Y d_f(x Y) (2.5) 

More generally, we shall consider systems of the form 

dx dy 
(2.6) - Px,y), - = Q(x,y)  

where P and Q have continuous first order partial derivative for all (x, y). 

For any number t = t0  and any pair (x0 , y0) of real number, there exists a unique solution of 

the equation (2.6), we obtain 

x = f(t) 

- y=g(t) 

where x0  = f(t0 ), y0  g(10 ) 

If both f and g are not constant functions, then equation (2.7) defines a curve in the 

phase plane, which is called a path or orbit or trajectory of the system. 

2.6 Limit Cycle 

A closed trajectory in the phase plane such that other non-closed trajectories spirally 

moved toward it, either from the inside or the outside, as t —* oo , is called a limit cycle . If 

all trajectories that start near a closed trajectory (both inside and outside) spiral toward the 

closed trajectory as t —* oo , then the limit cycle is asymptotically stable. If the trajectories 

on both sides of the closed trajectory spiral away as t — >oo, then the closed trajectory is 

unstable. 

2.7 The Autonomous System 

Consider the system (2.6). Such a system, in which the independent variable t is not 

explicitly appears in the function P and Q on the right, is called an autonomous system. 

The following example is an autonomous system 

5 

(2.7) 



— =y 
dx 

di 

dt 
 

2.8 The Non-autonomous system 

Consider the systems of the form 

dx  
-= P(x,y,t) 
di 

'4±=Q(x,y,t) 
dt 

where P and Q have continuous first partial derivatives for all (x,y). Such a system, in 

which the independent variable t is explicitly appears in the function P and Q on the right, 

is called a non-autonomous system. 

The following example is a non-autonomous system 

dx 
—=sint 
di 
dy 
- = cost 
di 

2.9 Critical Point 

Consider the autonomous system (2.6). 

A point (x0,y0 ) at which both P(x0,y0) = 0 and Q(x0,y0 ) = 0 is called a critical point. 

2.10 Isolated Critical Point 

A critical point (x0 ,y0 ) of the system (2.6) is called isolated if there exists a circle 

(x - x0 + - 

, )2 r2  about the point (x0 , y0 ) such that (x0 , y0 ) is the only critical point 

of the system (2.6) within this circle. 

2.11 Classifications of Critical Point: 

(a) Centre 

The isolated critical point (0, 0) of the system (2.6) is called a Centre if there exists a 

neighborhood of (0, 0) which contains countably infinite numbers of closed path 



F, (n = 1,2,...) each of which contains (0, 0) as interior point and which are such that the 

diameters of the paths approaches to 0 as n —> oo . 

(b) Saddle Point 

The isolated critical point (0, 0) of the system (2.6) is called a saddle point if there exists a 

neighborhood of (0, 0) in which the following two conditions hold: 

There exists two paths which approaches and enter into (0, 0) from a pair of 

opposite 

directions as t - + oo and there exists two paths which approach and enter into (0, 0) from 

a different pair of opposite directions as t —* - co. 

In each of the four domains, between any two of the four directions in (i), 

there are infinitely many paths which are arbitrarily closed to (0, 0) but 

which do not approach to (0,0) eitheras t —*+co or as t — — . 

-4. 

(c) Spiral Point 

The isolated critical point (0, 0) of the system (2.6) 

is called a spiral point if there exists a neighborhood of (0, 0) such that every path P in 

this neighborhood has the following properties: 

P is defined for all t >10  or t <t0 , for some number to . 

P approaches to (0, 0) as r - + oo or as t —* — 

P approaches to (0, 0) in a spiral like manner, winding around (0, 0) an infinite 

number of times t — +ci or as t — — co. 

(d) Node 

The isolated critical point (0, 0) of the system (2.6) 

is called a node point if there exists a neighborhood of (0, 0) such that every path P in 

this neighborhood has the following properties: 

P is defined for all t > to  or t <t0 , for some number t. 

P approaches to (0,0) as t —*+ oo or as t —* —  . 

(iii)Penters into (0,0) as t —*+co or as t--), —  oo . 

7 



(e) Stable critical point: 

If Consider the system (2.6). Suppose (0, 0) is an isolated critical point of the above system. 

Let C be a path of the system (1.4) and x=f(t), y=g(t) be a solution of (2.6), which 

define C parametrically. Let (x, y) = (f(z), g(t)) be a point on C. Define 

D(t) = + [g(r)]2  

where D(t) is the distance between the critical point (0, 0) and R(f(t), g(t)),  then the 

critical point (0, 0) is called stable if for every e > 0, there exists a 8 > 0 such that 

D(t0 )<ä,for some to  

and D(10 )<e,forall t :!~1<c. 

(1) Asymptotically Stable 

Consider the system (2.6) 

- Suppose (0, 0) is an isolated critical point of the above system. Let C be a path of the 

system (2.7) and x = f(t), y = g(t) be a solution of the system (2.6), which define C 

parametrically. Let (x, y) = (f(t), g(t)) be a point on C. Define 

D(t) = /[f(t)]2  + [
9 

(t)]2  

where D(t) is the distance between the critical point (0, 0) and R(f(t), g(t)), then the 

critical point (0, 0) is called asymptotically stable if it is stable and 

lim lim 
g(t)=O 

t —*+co 

2.12 Characteristic Equation 

Consider the linear system 

- ax + by 
dt 
dy 

 = cx + dy 
dt 

where a, b, c, d are real constants. 

Clearly the origin (0, 0) is critical point of the above system. We assume that 

(2.8) 

8 



'a dl 
I#o 

bl 

and hence (0, 0) is the only critical point of (2.8). By Euler method, the solution of (2.8) is 

found of the form 

Ix=A1 (2.9) 

where A and B are arbitrary constants. If (2.9) is a solution of (2.8), then we have 

22 _(a+d)2+(ad—bc)=0 (2.10) 

Equation (2.10) is called the characteristic equation of (2.8) and its roots are called 

characteristic roots or Eigen values of equation (2.8). 

2.13 Nature 

Nature of the roots Nature of the Nature of the stability of critical point (0, 0) 

critical point 

Real, unequal and Node Asymptotically stable if the roots are negative; 

of same sign unstable if the roots are positive 

Real, unequal and Saddle point Unstable 

of opposite sign 

Real and equal Node Asymptotically stable if the roots are negative; 

unstable if the roots are positive 

Complex conjugate but Spiral point Asymptotically stable if the real part of the 

not purely imaginary roots are is negative; unstable if the real part is 

positive 

Purely imaginary Centre Stable but not asymptotically stable 

2.14 Free Oscillating System 

If there are no external forces applied during the oscillation on a system, then the system is 

called free oscillating system. For a free oscillating system, the initially applied force is 

proportional to the restoring force. If f (x) is the restoring force and F is the applied 

force on the system, then 

Fcic —j(x) 

F = —kj(x) 



where k is the constant of proportionality. 

d 2x 
m—+kf(x)=O[.F=ma] 

dt2  

d  2  x k + 
- f (x) =0, 

dim 

+ f(x) = 0 

Equation (2.11) is the governing equation for a free oscillating system. 

(2.11) 

2.15 Natural Frequency 

Without external force every system oscillates together with a frequency, which is called 

natural frequency. 

90 
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CHAPTER III 

1 

Literature Review 

The characteristics of nonlinear differential equations are peculiar. But mathematical 

formulations of physical and engineering problems often results in differential equations 

that are nonlinear. A nonlinear system of equations is a set of simultaneous equations in 

which the unknowns appear as variables of a polynomial of higher degree than one or in 

the argument of a function which is not a polynomial of degree one. On the other hand, in a 

nonlinear system of equations, the equations to be solved cannot be written as a linear 

combination of the unknown variables or functions that appear in it or others. If nonlinear 

known functions appear in the equations, it does not matter. Specially, a differential 

equation is regarded as linear if it gets linear in terms of the unknown function as well as 

its derivatives, even if nonlinear in terms of the other variables appearing in it. 

As nonlinear equations are difficult to solve, nonlinear systems are commonly 

approximated by linear equations. This works well up to some accuracy and some range 

for the input values, but some interesting phenomena such as chaos and singularities are 

hidden by linearization. It follows that some aspects of the behavior of a nonlinear system 

appear commonly to be chaotic, unpredictable or counterintuitive. Although such chaotic 

behavior may resemble random behavior, it is absolutely not random. In this position there 

are several analytical approaches to find approximate solutions to nonlinear problems, such 

as: Harmonic Balance (HB) method [1-6], Perturbation method [7-13], Homotophy 

Perturbation method [14], Homotophy method [15-20], Energy Balance method [21], 

Cubication method [22-23], Iterative methods [24-40], etc. 

At first Van der Pol [41] paid attention to the new (self-excitations) oscillations and 

indicated that their existence is inherent in the nonlinearity of the differential systems 

characterizing the procedure. This nonlinearity appears, thus, as the very essence of these 

phenomena and by linearizing the differential equation in the sense of the method of small 

oscillation, one simply eliminates the possibility of investigating such problems. Thus, it is 

11 



necessary to deal with the nonlinear problems directly instead of evading them by dropping 

the nonlinear terms. 

The perturbation method is the most widely utilized method in which the nonlinear term is 

small. The solution of a differential equation is expanded in a power series of a small 

parameter in the perturbation method. The method of Krylov-Bogoliubov-Mtropolskii 

(KBM) [42-43], Multiple Scale method [44], Homotophy Perturbation method [14] and 

Homotophy method [15-20] are most important among all perturbation methods. 

The method of Lindstedt-Poincare method [7,27] is an introductory method to solved the 

following second order nonlinear differential equations 

I+w0 2x+ef(I,x)=0, (3.1) 

where w is the unperturbed frequency and e is a small parameter. 

The fundamental idea in Lindstedt's technique is based on the observation that the 

nonlinearities alter the frequency of the system from the linear one a to CO(E) . To 

account for this change in frequency, he introduces a new variable r = wi and expand a 

and x in power of e as 

x=x0(r)+sx1(r)+2x2(r)+ ... ...  , (3.2) 

a)=a)0 +ga+s' 2w2 + ... ... 

where a,, i = 0,1,2......., are unknown constants to be determined. 

Substituting equation (3.2) into equation (3.1) and equating the coefficients of the various 

powers of g,  the following equations are obtained 

54+x0 =0 

i +x1  =-2 1 I—f(x0,i0 ) 

12 



X2  +x2  =-2w11 —f(x0 , x0)—(w 21  +2a 2 )5 0  —f(x0 , i0 )x1 
(33) 

1,, +x, = g,,(x0 ,x1 ,... 

where over dot represents the differentiation with respect to r. 

Clearly equation (3.3) is a linear system and it is solved by the elementary techniques. 

This method is used only for finding the periodic solution, but the method cannot discuss 

transient case. 

Further, Krylov and Bogoliubov [42] introduced a technique to discuss transients of the 

same equation. This method starts with the solution of the linear equation, assuming that, 

in the nonlinear case, the amplitude and phase in the solution of the linear equation are 

time dependent function rather than constants [7]. 

The solution of corresponding unperturbed equation (i.e., for c = 0 ) of equation (3.1) can 

be written as 

x = acos(w01 + o) (3.4) 

where a and 0 are two arbitrary constants to be determined from the initial conditions 

x(0) = x0  and i(o) = y0 . Here a and 0 are called amplitude and phase. 

Now to determine an approximate solution of equation (3.1) for e small but different from 

zero, Krylov and Bogoliubov assumed that the solution is still given by equation (3.4) with 

varying a and 0 subject to the conditions 

cLv 
---a&0 sin, q2=c00t+O (3.5) 
di' 

Differentiating equation (3.4) with respect to time I and using equation (3.5), we obtain 

13 



da d9 
—cos--asinq'=0 (3.6) 
dt dt 

Again differentiating equation (3.5) with respect to time t, we obtain 

d 2 x 2 da. dO 
= —aa)0  cosço—a)0  ---sinço—aw0  ----cosq (3.7)

dt dt 

Substituting equation (3.7) into equation (3.1) and using equation (3.4) and equation (3.5), 

we obtain 

da . dO 
w. sin+ --aa0  cosçt' = —ef(acos9, —a 0  sm) (3.8) 

dt dt 

Solving equation (3.6) and equation (3.8) 
da 
- and 

dO
yields 

dt dt 

da C 
JI_=___sin9f(acos). —aa)0 sinco)  

dt 
(3.9) 

a)0   

dO 6 
= ----cos, f(acos,, —aw0  sinq) 

dt aw0  

Equation (3.4) together with equation (3.9) represents the first approximate solution of 

equation (3.1). Further, the technique was modified and justified by Bogoliubov and 

Mitropolskii [43] in 1961. They assumed a solution of the nonlinear differential equation 

(3.1) of the form 

x(t,$)= acosw +sx1(a,')+ ... + n  x(a,')+O(e'') (3.10) 

where Xk,  k = 1,2,• . •, n is a periodic function of ç' with period 21r , a and u vary with 

time t according to 

Ida 

Jdi  
Idyl 
I— = co0  + c B 1  (a)+. B (a)+ 
I dt 

14 



where the function Xk, Ak  and  Bk  are chosen such that equation (3.10) and equation 

(3.11) satisfy the differential equation (3.1). Later this solution was used by Mitropolskii 

[45] to investigate similar system (i.e., equation (3.1)) in which the coefficient very slowly 

with time. Popov [46] extended this method to nonlinear strongly damped oscillatory 

systems. By Popov's [46] technique, Murty, et. al. [47] extended the method to over 

damped nonlinear system. Murty [48] further presented a unified KBM method to obtain 

under and over-damped solution of a second- order nonlinear differential equation. 

Shamsul and Sattar [49] extended Murty's [48] unified KBM method to solve a third-order 

nonlinear differential equation. 

Harmonic Balance method is the most useful technique for finding the periodic solutions 

of nonlinear system which is patented by Mickens [1] and farther work has been done by 

Lim et al [2], Wu et al [3], Gottlieb [4], Hu [5],, Beléndez et al. [6] and so on for solving 

the strong nonlinear problems. If a periodic solution does not exist of an oscillator, it may 

Al be sought in the form of Fourier series, whose coefficients are determined by requiring the 

series to satisfy the equation of motion. However, in order to avoid solving an infinite 

system of algebraic equations, it is better to approximate the solution by a suitable finite 

sum of trigonometric function. This is the main task of harmonic balance method. Thus 

approximate solutions of an oscillator are obtained by harmonic balance method using a 

suitable truncated Fourier series. 

The method is capable to determining analytic approximate solution to the nonlinear 

oscillator valid even for the case where the nonlinear terms are not small i.e., no particular 

parameter need exist. 

The formulation of the method of harmonic balance focuses primarily by Mickens [1]. 

However, it should be indicated that various generalizations of the method of harmonic 

balance has been made by an intrinsic method of harmonic analysis by Huseyin & Lin 

[50]. Lately, combining the method of averaging and harmonic balance, Lim & Lai [29] 

presented analytic technique to obtain first approximate perturbation solution; their 

solutions gives desired results for some non-conservative systems when the damping force 

is very small. Another technique is developed by Yamgoue and Kofane [51] to determine 

approximate solutions of nonlinear problems with strong damping effect, more than two 

harmonic terms are involved in their solution. 

15 



Mickens [27] has given the general procedure for calculating solutions by means of the 

- method of direct Harmonic Balance as follows: 

He considered the equation for all Truly Nonlinear (TNL) oscillators as: 

F(x,±,i)=O, (3.12) 

where F(x,*,I) is of odd-parity, i.e. 

F(—x,—i,—I)---F(x,5.,I). (3.13) 

A major consequence of this property is that the corresponding Fourier expansions of the 

periodic solutions only contain odd harmonics, i. e., 

00 
X(t) = {4 cos[(2k —1))t] +Bk  sin[(2k-1)t]}. (3.14) 

The N-th order harmonic balance approximation to x(t) is the expression 

xN(t) =E I4 (' cos[(2k —1)nN  t] +B sin[(2k -1)DN  t]}, (3.15) 

where A7, are approximations to Ak , Bk , D for k = 1, 2, 3 ......... N. 

For the case of a conservative oscillator, equation (3.12) generally takes the form 

I + f(x, 2) = 0, (3.16) 

where 2 denotes the various parameters appearing in f(x, 2) and 

f(—x, 2) = —f(x, 2) .The following initial conditions are selected 

x(0)=A, I(0)=0 (3.17) 

And this has the consequence that only the cosine terms are needed in the Fourier 

expansions, and therefore we have 

XN (t) = EAk cos[(2k - 1))N  t] (3.18) 

Observe that xN(t)  has (N+1) unknowns, the N coefficients, (NA,NA)  and K2
NI 

the angular frequency. These quantities may be calculated by carrying out the following 

steps: 

-01 

Step-i: Substitute equation (3.18) into equation (3.16), and expand the resulting form into 

an expression that has the following structure 
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Hk  cos[(2k 1XN  t] + HOH 0, HOH= Higher Order Harmonic (3.19) 

where they Hk  are functions of the coefficients, the angular frequency, and the parameters, 

i.e., Hk=Hk(A',A4".........  

Herein equation (3.19), we only retain as many harmonics in our expansion as initially 

occur in the assumed approximation to the periodic solution. 

Step-2: Set the functions Hk  to zero, i.e., 

Hk =0, k=1,2 ......... N. (3.20) 

The action is justified since the cosine functions are linearly independent, as a result any 

linear sum of them that is equal to zero must have the property that the coefficient are all 

zero. 

-k 
i NN Step-3: Solve the N equations, n equation (3.20), for (4 ,A3.. ........AN  )and ON.  in terms 

of N  

Using the initial conditions, equation (3.17), we have for AN  the relation 

XN (0) = A = AN + A (AN  2). (3.21) 

An important point is that Eq. (3.20) may have many distinct solutions and the "one" 

selected for a particular oscillator equation is that one for which we have known a priori 

restrictions on the behavior of the approximations to the coefficients. However, as the 

worked examples in the next section demonstrate, in general, no essential difficulties arise. 

For the case of non-conservative oscillators, where 1 appears to an "odd power" the 

calculation of approximations to periodic solutions follows a procedure modified for the 

case of conservative oscillators presented above. Many of these equations take the form 

I+f(x, A1 )=g(x, ±, 4)±, (3.22) 
Ik 

where 

f(—x, A1 ) = —f(x, A1 ), g(—x, - i, 22) = —g(x, *, 2,)1 (3.23) 
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and (A1 , 22) denote the parameters appearing in f and g. For this type of differential 

equation, a limit-cycle may exist and the initial conditions cannot, in general, be a priori 

specified. 

Harmonic balancing, for systems where limit-cycles [4] may exist, uses the following 

procedures: 

Step-i: The N -th order approximation to the periodic solution to be 

XN (t) = N 
cos(N t) + {A '  cos[(2k - 1) N  t] + B sin[(2k 

- 1)N t]), (3.24) 

where the 2 N unknowns A1" 4,92N  B,' and N  are to be detennined. ................, N , 
Step-2: Substitute equation (3.24) into equation (3.22) and write the result as 

{Hk  cos[(2k - 1))N  t] + Lk  sin[(2k - 1) N  t]} + HOH 0, (3.25) 

where the {Hk  } and {Lk  }, k =1 to N, are functions of the 2 N unknowns which are 

mentioned above. 

Step-3: Next equate the 2N functions {Hk } and (Lk } to zero and solve them for 

the (2N —1) amplitudes and the angular frequency. If a "valid" solution exists, then it 

corresponds to a limit-cycle. In general, the amplitudes and angular frequency will be 

expressed in terms of the parameters A1  and A2 . 

Mickens [27] has presented the following example: 

x 

is solved by the following way- 

(3.26) 

For the first-order harmonic balance, the solution is x1 (i) = A cos O, 0 = Ol t . This 

calculation is best achieved if Equation (3.26) is rewrites to the form 

 

(3.27) 

Substituting x (t) into this equation gives 
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A 

:1! 

(AcosO)(-121 2 Acos9)+1+HOH =0 (3.28) 

or, 
[—(  2 

) +11 +HOH=O (3.29) 

Therefore, in lowest order, the angular frequency is 

1.4142 
(330) 

The second harmonic balance approximation is 

x2 (0 = A1  cosO+A2  cos30, 0=Q2t (3.31) 

Putting this expression into Equation (3.27) gives 

(Al  cosO+ A2  cos 30)[—C2 22  (A1  cos O+9A2  cos O)]+1= 0, (3.32) 

And on performing the required expansions, we obtain 

[ 2[A ±9AJ i] 2[AI 
+10A1A2 ) cos 29+HOH = 0 (3.33) 

Setting the constant term and the coefficient of cos 29 to zero gives 

I 

_Q2AI2 ±9A]+1]0 
Al' +10A1 A2  =0 (3.34) 

with the solutions 

2_ 200 
A2 =JAI)' 2 

- 109A 
(3.35) 

Therefore, 

x2 (t) = At[cos()2t)_Lj-ojcos(3c2I)j 

and requiring 

x2(0)=A=1-2--)Ai  or A1 
10 ( 9 )

A  

Gives 
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X2 (t) = )A[cos(Q,t) 
— J 

cos(3Q21)1 (3.36) 
-1 (9 10  

with c 2  - 
200 

(109 

l62 1 
2 109Al2 JA2 

or,Q2(A) = 
1.2191138 

A 

Recently some researchers used iterative technique [24-40] for calculating approximations 

to the periodic solutions and corresponding frequencies of TNL oscillator for small and as 

well as large amplitude of oscillation. The method was originated by Mickens in 1987. In 

the paper, he provided a general basis for iterative methods as they are currently used in the 

calculation of approximations to the periodic solutions of various nonlinear oscillatory 

differential equation successfully. 

The general methodology of iterative procedure by Mickens [27] is presented in Chapter 

Iv. 

Mickens [27] has presented the following example by iterative procedure: 

Let us consider the oscillator 

I+x3 =0, x(0)=A,x(0)=0 (3.37) 

and initial condition 

x0(t) = Acos(Q0t) (3.38) 

A possible iterative scheme for this equation is 

+ Xk+I = k k — x. (3.39) 

For k0, we have 

I +~x1  =c~x0  --x =(AcosO)—(AcosO)3 
(3.40) 

— — A2(3/4)]AcosO—(A3  /4)cos30, A — 

where 0= 00t. To derive this result use was made of the following trigonometric relation. 

Secular tenns will not appear in the solution for x1 (t) if the coefficient of the cosO term is 

zero, i. e., 
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-t 
Q .JA3  =0, (3.41) 

and 

(1Y 
A (3.42) 

Under the no secular term requirement, equation (3.40) reduces to 

I +)x1 = 
- Icos3O (3.43) 
4) 

The particular solution for this equation takes the form 

Dcos(39) 

Substitution of this into equation (3.43) gives 

(-90 + 
= LJ 

and 

A3 
= 

A  3  )( 4 A 

32 L32A3A2) 24 

Therefore, the full solution to equation (3.43) is 

x1 (t) x + = C cos 0 +44-)cos 30, 

where C cos 0 is the solution to the homogeneous equation 

Il  +c~x1  =0. (3.44) 

Since x1(0)=A,then 
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A=C+I - I 
t24) 

or 

C=I-"1A, 
24) 

and the full solution to equation (3.43) is 

x1 (t) = A[ 
23  
—cosO+  1 

 
—cos39]. 

24 24 
(3.45) 

If we stop the calculation at this point, then the first-approximation to the periodic solution 

is 

23 i x1 (t)=A[-cos1  'At + ' —cos 3 
24 tI4 ) 24 

(3.46) 

However, to extend our calculation to the next level, x1 (1) takes the form given by 

equation (3.37), but 9 is now equal to 0,t,i.e., 

1 [23
co

s(n
,t)+ 
 24 

(3)t)] x1 (t) = A —cos 

124 
=A 

23 
 cos9+  1  cos39 

24 
(3.47) 

Note, we denote the phase of the trigonometric expressions by 9, i. e., 9= n1 t .This short-

hand notation will be used for the remainder of the chapter. 

The next approximation, x2  (t), requires the solution to 

X2  +nX2  =fx -x. (3.48) 

-4'  

We now present the full details on how to evaluate the right-hand side of equation (3.48). 

These steps demonstrate what must be done for this type of calculation. In the calculations 



for other TNL oscillators, we will generally omit many of the explicit details contained in 

- this section. 

To begin, consider the following result 

(a1  cos 9+ a2  cos 39)3 = (a, cos 9)3 + 3(a1  cos 9)2  (a2  cos 39) + 3(a, cos 0)(a2  cos 39)2  + (a, cos 39)3 

Using 

cosO cos02  = ![cos(9 +O2)+cos(O —p2)] 

and the previous expression for (cos 9 )3,  we find 

(a1  cosG+a2  cos30)3 = j cos9+f cos39+f3  cos50+f4  c0s79+f5  cos90 (3.49) 

where 

I; =-.[a +aa2  +2a,a], 

f2 =1[a +6aa2  +3a}, 

f) = . [aa +a,a], 

f4 =—a,a, 

3 
- 

a2  
_J5 

- 4 

For our problem, we have 

23 
a, =—AczA, 

24 

a2  =---AE/3A. 
-4' 24 

Using these results, equation (3.48) becomes 

x2  +)x2  =(0a1 —/)cosO+(a2  —J)cos3O—f3 cos5O—f4 cos7O—Jcos9O. 

23 

(3.50) 



Secular terms may be eliminated in the solution for x2  (t) if the coefficient of the cos 0 

V term is zero, i. e., 

(3.51) 

and 

Q(A)= - = .-[a +a2 /3+2a,82  ]A3  faA 
a1  4 

= A3[a 2  + a/3 + 2/32] = Q(A)h(a, /3), 
(3.52) 4 

where 

h(a,/3)=a2  +a/3+2/32  (3.53) 

Examination of equation (3.52) and (3.53) shows that h(a, ,8) provides a correction to the 

2 23 1 
square of the first-order angular frequency Q0 (A). Since a = andfl = then 

= ,A = (0.866025)A, (3.54) 

01 (A) = (0.849326)A, (3.55) 

Let us now calculate x2  (t). This function is a solution to 

x2  +x2  =(Qa2  —f2 )cos30—f3  cos50—f4  c0s70—f5  cos99 (3.56) 

The particular solution is 

x" (3.57) (t) = L1  cos30 + L, cos50 + L3  cos 78 + L4  cos90  

where (L1 ,L2,L1,L4 ) are constants that can be found by substituting x into Eq. (3.56) 

and equating similar terms on both the left and right sides. Performing this procedure gives 

'I' 
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- - (-8)Q 

A[3,fl(a'+afl+2j8')-(a'+6a2fl+3fl') 
 2 

1

24 a +afi+2fl 

- j_3 = A (a/3+a/32) 1 
2 24 2  24[a2 +afl+2/J2 j' 

__ 

A 2 

48Q [a2 +ap+2p2 ]' 

p3 1 
8002 _ La2 +afi+2fi2 ] 

In these expressions, we have replaced Q2  by the results in Equation (3.52) and (3.53) 

The complete solution for x2  (t) is 

x2(t)= x"(t)+x" = CcosO+x" 

For t0, we have 

A = C + (L1  + 4 + L3  + L4). 

If we define 

L=AL1; i=1,2,3,4; 

Then 

C =1—(L1+L2 +L3 +L4)A, 

and 

x2 (t)=[1—(Li +L2 +L3 +L4)]ACOSO+A [Li c0539+L2 CoS5O+L3 c0579+L4 cos90)J, 
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where 0=0(A)t. 

-T 

Using the numerical values for a and fi, the L 's can be calculated; we find their values 

to be 

L1 = 0.042876301 (4.29).102, 

L2 = 0.001729754 (1.73).10, 

L3 = 0.000036038 (3.60).10, 

= 0.0000003 13 (3.13).10. 

Therefore, we have for x2  (t) the expression 

x2  (I) = A[(0.955) cos 9 + (4.29). 102  cos39 + (1.73). 1 0-  cosSO + (3.60). 10' cos 70 + (3.13). 10 cos 90] 

Further a generalization of this work was then given by Lim and Wu E281. Their procedure 

is as follows: 

They assumed the equation in the form 

I+f(x)=0, x(0)=A, 1(0)=0, 

where A is given positive constant and f(x) satisfies the condition 

f(—x) = —f(x). 

Adding w2 x on both sides of equation (3.58), we obtain 

I+w2 x =w 2 x-f(x)g(x), 

where co is priory unknown frequency of the periodic solution x(t) being sought. 

They proposed the iterative scheme of equation (3.60) 

(3.58) 

(3.59) 

(3.60) 

- 

X 
2

k+ I + ü Xk+l = 9(x_1 ) + 9(x_1  )(xk - Xk_I ); k = 0, 1, 2,..., (3.61) 

where g = 
 ag  
 and the inputs of starting fi.tnctions are 



x_1 (t) = x0 (t) = A cos(at). (3.62) 

With the initial conditions 

Xk (0)A, k(°)=°' k =1,2,3 (3.63) 

Then substituting equation (3.62) into equation (3.61) and expanding the right hand side of 

equation (3.61) into the Fourier series yields 

91x_1 (01 + g [xk_l (t)] [x1  (t) - Xk_l (t)] = a1  (A, a)) cos a)! 

N (3.64) 
+ a2 _1 (A,w)cos[(2n —1)a)t}, 

where the coefficients a21,_, (A,co) are known functions of A and w, and the integer N 

depends upon the function g(x) of the right hand side of equation (3.60) , On view of 

equation (3.64), the solution of equation is taken to be 

N a21,_1  (A, a) 
cos[(2n - l)a)I], (3.65) Xk+I(t) = Bcosa)t_

[(2 —1]o2  

where B is, tentatively, an arbitrary constant. In equation (3.65), the particular solution is 

chosen such that it contains no secular terms [27], which requires that the coefficient 

a1  (A, w) of right-side term cos 0.)t in equation (3.64) satisfy 

a1 (A,w)=0 . (3.66) 

Equation (3.66) allows the determination of the frequency as a function A. 

Next, the unknown constant B will be computed by imposing the initial conditions in 

equation (3.63). Finally, putting these steps together gives the solution Xk+l  (t). 

In 2005, this process was extended by Mickens. He consider the equation as 

+f(I,i,x)=0, x(0)=A, (0)=0, (3.67) 

where over dots denote differentiation with respect to time, t. 

We choose the natural frequency ) of this system. Then adding Q2 x on both sides of 

equation (3.67), we obtain 

1+ Q2 x = 2 x -f(I,i,x) G(x,±,5). (3.68) 

Now, formulate the iterative scheme as 
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Xk+I + Xk+I =G(xk _I  9Xk_1 ,Xk_I );+GX (xk _ I  ,Xk_l ,Xk_l )(xk Xk_I) 
(3.69) 

+ G (xk_l 'xkl ,Xk_I )(5k - xk_I) + (xkl, Xk_I Xki )(k - xk_I) 

aG ÔG aG 
where GX , G 

ax 
=-, GX  . =-. (3.70) 

ax ax 

And Xk+I  satisfies the conditions 

Xk+ (0)A, xk+l (0)=0. (3.71) 

The starting function are taken to be [50] 

x_1  (t) = x0  (t) = A cos( 0t) (3.72) 

The right hand side of equation (3.69) is essentially the first term in a Taylor series 

expansion of the function G(xk,±k,k)  at the point (xk_,±k _ j ,IkI ) [52]. To illustrate this 

point, note that 

Xk = Xk_I +(xk — Xki), (3.73) 

and for some function G(x), we have 

G(xk ) = G[xk_l + (xk - xk )]= G(xkl ) + G (xk - Xk) + ... . (3.74) 

An alternative, but very insightful, modification of above scheme was proposed by Hu [31]. 

He used the following equation in place of equation (3.73) 

; =xO +(xk —xO ) (3.75) 

Then, equation (3.74) is changed to 

G(xk )=G [xQ+(xk — xo)]=G(xo)+GX(xk — xo)+..., (3.76) 

and the corresponding modification to equation (3.69) is 

Xk+ I +Q/(  Xk+l  =G(x0, 10 );+G,(x0 , io)(xk x0) 
(3.77) 

+G(x0, O' o)( — 0 )+G(x0 , ito , -  YO ) 

This scheme is computationally easier to work with, for k ~: 2, than the one given in 

equation (3.69). The essential idea is that if x0  (1) is a good approximation, then the 

expansion should take place at x = x0 . Also, as pointed out by Hu [30], the x0  (t) in 
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(xk - x0 ) is not the same for all k . In particular, x0  (1) in (x1  - x0 ) is the 

function A cos(21 t), while the x0  (t) in (x2  - x0 ) is the function A cos(Q2t) 

Further, Mickens [27] used the iterative technique to calculate a higher-order 

approximation to the periodic solutions of a conservative oscillator for which the elastic 

force term is proportional to x"3  . Hu [53] applied the modified iterative technique of 

Mickens [27] to find approximate of nonlinear oscillators with fractional powers and cubic 

nonlinear oscillator respectively. Recently, Haque [35-40] has applied Mickens iterative 

and modified iterative method to determine approximate periodic solutions of a class of 

nonlinear jerk equations. 

Al 
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CHAPTER IV 

ii 

Approximate Analytic Solutions of the Cubic Truly Nonlinear Oscillator by Iterative 

Method 

4.1 Introduction 

In this chapter, we have developed a modified iterative technique for the determination of 

approximate solution as well as frequency of the Cubic Truly Nonlinear Oscillator. A 

particular example governing such a problem is considered and the solution of the problem 

is obtained using the presented method. 

4.2 The method 

Assume that the nonlinear oscillator 

F(I,x)=O, x(0)=A, x(0)=O, (4.1) 

and further assume that it can be rewritten to the form 

I+f(I,x)=O, (4.2) 

where over dots denote differentiation with respect to time, t. 

We choose the natural frequency f of this system. Then adding )2 x to both sides of 

equation (4.2), we obtain 

I +C22X 
= 

- 
f(I, x) G(x, 1) (4.3) 

Now, we formulate the iteration scheme as 

Xk+I +Qxk+! =G(xk ,Ik ); k=O,l,2,3............... (4.4) 

together with initial condition 

x0(t) = A cos(f 0I). (4.5) 

Hence Xk+I  satisfies the initial conditions 

Xk+I (0)A, 1k+,(0)=0• (4.6) 

At each stage of the iterative, K2k  is determined by the requirement that secular terms [28] 

should not occur in the full solution of Xk+I  (1). 
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The above procedure gives the sequence of solutions: x0  (t), x 1  (1), x-, (t),. 

The method can be proceed to any order of approximation; but due to growing algebraic 

complexity the solution is confined to a lower order usually the second [52]. 

At this point, the following observations should be noted: 

The solution for Xk+I  (t) depends on having the solutions fork less than (k +1). 

The linear differential equation for Xk+I  (t) allows the determination of C2k  by the 

requirement that secular terms be absent. Therefore, the angular frequency, "Q" 

appearing on the right-hand side of equation (4.4) in the function Xk  (t), is nk - 

4.3 Solution Procedure 

Let us consider the cubic nonlinear oscillator 

I + x 3  =0 (4.7) 

Now adding 2 xto both sides of equation (4.7), we obtain 

I+ 2 x 2 x-x 3 (4.8) 

Now the iterative scheme is according to equation (4.4) 

Xk+I +Xk + j = 1 Xk Xk (4.9) 

The initial condition is rewritten as 

x0(t)=AcosO (4.10) 

where C = Q0 t. For k = 0.the equation (4.9) becomes 

I1 +0x1 =QAcosO—A3 cos3C 

+C22 
x1  = Q A cosC —(0.75 A3  cosO + 0.25 A3  cos30) 

i +x1 =( —0.75 A2)AcosO-0.25A3  cos30  

To check secular terms in the solution, we have to remove cos9 from the right hand side of 

equation (4.11), we get 

—0.75A2  =0 (4.12) 

By solving equation (4.12), we have 

920  = 0.8660254037844386 A (4.13) 

So equation (4.11) becomes 
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1, + c~ x1  = —0.25 A3  cos39 (4.14) 

Now the particular solution of equation (4.14) is 

—0.25 A3  
x1" = cos30 —9 Q2 

+ 

—0.25 A3  
x'= cos30 

—8 

x =0.04166666666666667 Acos30 (4.15) 

Therefore the full solution to equation (4.34) is 

x1 (t) = x" + x' 

= C cos 9+0.04166666666666667 A cos30 (4.16) 

where C cos 9 is the solution to the homogeneous equation 

I1 +Qx1 =0 (4.17) 

Since x (0) = A, then 

x1  (0) = C. 1+0.04166666666666667 A 

A = C + 0.04166666666666667 A 

C = 0.9583333333333334 A 

Putting this value of C into equation (4.16), we obtain 

x1 (t)= 0.9583333333333334AcosO+0.04166666666666667Acos39 (4.18) 

This is the first approximate solution of equation (4.7) 

The next approximation, x, (t), requires the solution to 

+QI X2 = o2 X1  -X (4.19) 

Substituting x(t) from equation (4.18) into equation (4.19) we obtain 

+ 02 x2  =0 (0.9583333333333334Acos0 + 0.04166666666666667Acos39) 

—(0.6912976924435 A3  cosO+ 0.2774884478877286 A3  cos30 

+ 0.029947943020832226 A3  cos58) 

X, 
+ g22 x2  =(0.95833333333333340 —O.6912976924435A2)Acos6 + 

(0.04166666666666667 02 - 0.2774884478877286 A  2  ) A cos30 (4.20) 

—0.029947943020832226 A3  cos50 

To check secular terms in the solution, we have to remove cos9 from the right hand side of 

equation (4.20) we get 
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4,  

0.95833333333333341-0.6912976924435A2  =0 (4.21) 

By solving equation (4.21), we have 

= 0.8493257129433129 A (4.22) 

So equation (4.20) becomes 

X2  + 02  x2  = (0.04166666666666667 - 0.2774884478877286 A2) A cos30 

—0.029947943020832226A3cos5O 

+02 x2  = —0.247431976 A3  cos30 —0.029947943020832226 A3  cos50 (4.23) 

Now, the particular solution of equation (4.23) is 

—0.247431976 A3 0.029947943020832226 A3  
x2' = cos30— cos50 

—8Q —24 

= 0.04287627Acos30+0.0017298439Acos50 

Therefore the full solution to equation (4.23) is 

x2(t)=x" +X" 

= C1  cos 0 + 0.04287627 A cos30 + 0.0017298439 A cos50 (4.24) 

where C1  cosO is the solution to the homogeneous equation 

I2 +x2 =0 (4.25) 

Since x2(0)=A,then 

A = C,.1+0.04287627A+0.0017298439A 

C1  = 0.955393886 A 

Putting this value of C1  into equation (4.24), we obtain 

x2  (z) = 0.955393886 A cosO + 0.04287627 A cos30 + 0.0017298439 A cos50 (4.26) 

This is the second approximate solution of equation (4.7) 

The next approximation, x3  (1) requires the solution to 

x3 +Qx3 =Qx2 —x (4.27) 

Substituting x2 (t) from equation (4.26) into equation (4.27), we obtain 

X3 
+Q2  x3  = 

02 (0.955393886 A cosO + 0.04287627 A cos30 + 0.0017298439 A cos50) 

—(0.686 1464084277498 A3  cosO + 0.27807006828009906 A3  cos30 

+0.0330428668780662 A3  cos50) 
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I, + x3  = I(0.955393886-0.6861464084277498A2)AcosO+ 

Q (0.04287627 A cos30 + 0.0017298439 A cos50) - 

(0.27807006828009906 A3  cos30 + 0.0330428668780662 A3  cos50) (4.28) 

To check secular terms in the solution, we have to remove cosO from the right hand side of 

equation (4.28), we get 

0.955393886 n2  — 0.6861464084277498 A  2  =0 (4.29) 

By solving equation (4.29), we have 

2 =0.8474560185405289A (4.30) 

So equation (4.28) becomes 

X3  + n2 x3 —0.247277116 A3  cos30 —0.03 1800524A3  cos50 (4.31) 

Now, the particular solution of equation (4.31) is 

—0.2472771 16A3 —0.031800524A3  
xi" = cos30+ cos50 

—24 n2 

0.043038747Acos30+0.00184497A cos50 

Therefore the full solution to equation (4.28) is 

(h) x3(t) = 
 XI 

= C., cosO + 0.043038747 A cos30 + 0.00184497 A cos50 (4.32) 

where C2  cos C is the solution to the homogeneous equation 

X3  + 
02 x3  =0 (4.33) 

Since x3(0)=A,then 

A = C2  +0.043038747A+0.00184497A 

C2  =0.955116283A 

Putting this value of C2  into equation (4.32), we obtain 

x3  (t) = 0.955116283 A cosO + 0.043038747 A cos38 + 0.00184497 A cos50 (4.34) 

This is the third approximate solution of equation (4.7), 

The next approximation, x4  (t), requires the solution to 

34 + X4 - (4.35) 

Substituting x3(t) from equation (4.34), into equation (4.35), we obtain 



X4  +Q x4  = Q(0.955116283A cosO +0.043038747Acos3O+0.00184497Acos5O) 

—(0.6856980269210919 A3  cosO+ 0.2781545518586844 A3  cos30 

+0.03330310894460576 A3  cos50 

=(0.9551162830 —0.6856980269210919A2)AcosO+ 

02 (0.043038747 A cos30 + 0.00184497 A cos50) (4.36) 

—(0.278154551 8586844A3cos3G + 0.03330310894460576A3cos50) 

To check secular terms in the solution, we have to remove cosO from the right hand side of 

equation (4.36), we get 

0.955116283Q —0.6856980269210919A2  = 0 (4.37) 

By solvir equation (4.37), we have 

= 0.8473021830725166A (4.38) 

So, the equation (4.36) becomes 

X4  + x4  = —0.247256145 A3  cos30-0.031978566A3  cos50 (4.39) 

Now, the particular solution of equation (4.39) is 

—8) 
c.os30+ 

—0.031978566 
 A 3cos50 

-  

=0.043050742Acos30+0.001855971403Acos59 

Therefore the full solution to equation (4.39) is 

x4 (t)= x +x" 

= C3  cosO + 0.043050742 Acos3O + 0.001855971403 Acos5O (4.40) 

Since x4(0)= A, then 

A = C3  + 0.043050742 A + 0.001855971403 A 

C3  =0.9550932806A 

Putting this value of C3  into equation (4.40), we obtain 

x4  (t) = 0.9550932806 A cosO + 0.043050742 A cos30 + 0.001855971403 A cos50 (4.41) 

This is the fourth approximate solution of equation (4.7). 

The next approximation, x5  (t), requires the solution to 

(4.42) 

Substituting x4 (t) from equation (4.41) into equation (4.42), we obtain 
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x5 =0  (0.9550932806 AcosO + 0.043050742 A cos39+ 0.001855971403 A cos59) 

—(0.6856598003473948 A3  cosO+ 0.278 16061652570045 A3  cos39 + 

0.03332556997552419 A3  cos58) 

x5  = (0.9550932806 - 0.6856598003473948 A2) A cos 9+ 

(0.043050742 Acos30+ 0.00185597 1403 A cos50)— 

(0.27816061652570045 A3  cos30+ 0.03332556997552419A3  cos59) (4.43) 

4t. To check secular terms in the solution, we have to remove cosO from the right 

Ic of equation (4.43) we get 

0.95509328060 —0.6856598003473948 A2  = 0 (4.44) 

ing equation (4.44), we have 

04  = 0.8472887677067594 A (4.45) 

Ltion (4.43) becomes 

I + 0 x5  8 —0.247254547 A3  cos39 —0.03199317 A3  cos50 (4.46) 

Now, the particular solution of equation (4.46) is 

—0.247254547A3 —0.03199317A3  
x 

—8 
= cos30+ 

—24 02 cos50 

= 0.043051785 A cos30 + 0.001856875968 Acos59 

Therefore the full solution to equation (4.46) is 

x5(1) = x +x5
1  " 

= C4  cosO + 0.043051785 A cos39 + 0.001856875968 A cos59 (4.47) 

Since x5(0) = A, then 

A = C4  + 0.04305 1785 A + 0.001856875968 A 

:.C4 =0.955091339A 

Putting this value of C4  into equation (4.47), we obtain 

x5(t) = 0.955091339Acos9+ 0.043051785Acos30+ 0.001856875968Acos50 (4.48) 

This is the fifth approximate solution of equation (4.7) 

The next approximation, x (t), requires the solution to 

+ 0 X6  = X5  - X (4.49) 
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Substituting x5(I) from equation (4.48) into equation (4.49), we obtain 

X6  +n x6  =f(0.955091339Acos9+0.043051785Acos39+0.001856875968Acos50) 

—(0.6856565968983345 A3  cost9 + 0.27816115241228423 A3  cos30 

+0.03332745558547966 A3  cos50) 

X6 +0 x6  = (0.955091339Q —0.6856565968983345A2 )AcosO 

+0 (0.043051785 A cos3e + 0.001856875968 A cos59) 

—(0.27816115241228423A3  cos30+ 0.03332745558547966A3  cos50) (4.50) 

To check secular terms in the solution, we have to remove cos9 from the right hand side of 

equation (4.50), we get 

0.955091339Q —0.6856565968983345A2= 0 

.Q5  = 0.8472876496310915 A 

So, equation (4.50) becomes 

+ Q x6  = —0.24725443261687 127 A3  cos39 —0.03199441108482046 A3  cos50 

Here, the particular solution of equation (4.52) is 

—0.2472544 A3 —0.03 199441 108482046 A3  
x6" = 

—8 
cos39+ 

—24 Q 
—cos50 

x" = 0.04305190240092375 Acos39 + 0.0018569539196533911 Acos50 

Therefore the full solution to equation (4.52) is 

x6(t) +x" 

(4.51) 

(4.52) 

x6(t) = C5  cosO + 0.04305 190240092375 Acos3O + 0.0018569539196533911 Acos5O (4.53) 

By using x6(0) = A, then we have 

C5  = 0.9550911436794228 A 

equation (4.53) becomes 

x6(t) = 0.9550911436794228 A cose+0.04305190240092375 Acos30 

+0.0018569539196533911 A cos50 

This is the sixth approximate solution of equation (4.7). 

Thus f2o ,  Q  1  K2
" , , 

Q respectively obtained by equations (4.13), (4.22), (4.30), 

(4.38), (4.45), (4.51) represent the approximation of frequencies of oscillator (4.7). 
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4.4 Results and discussions 

An iterative method is presented to obtain approximate solution of cubic nonlinear 

oscillator. In order to test the accuracy of the modified approach of iterative method, we 

compare our results with the other existing results from different methods. To show the 

accuracy, we have calculated the percentage errors by the definitions 

(A)-c, (A)I 
xlOO, where 1=0,1,2 

0e(A) 

We have used a modified iteration method to obtain approximate solutions of the above 

oscillator. It has been shown that, in most of the cases our solutions give significant results 

than other existing results. 

Herein we have calculated the first, second and third approximate frequencies which are 

denoted by QØ , 01 , and C22 respectively. All the results are given in the following table, to 

compare the approximate frequencies. We have also given the existing results determined 

by Mickens iterative method [27] and Mickens HB method [27]. 
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4.5 Table 

Comparison of the approximate frequencies obtained by the presented technique and other 

existing results with exact frequency Q,, [27] of cubic nonlinear oscillator. 

Exact 0.847213A 

Frequency 

Amplitude First Second Third Fourth Fifth 

A Approximate Approximate Approximate Approximate Approximate 

Frequency Frequency Frequency Frequency Frequency 

Er(%) Er(%) Er(%) Er(%) Er(%) 

Mickens 0.866025 A 

Parameter 2.2 
- - - - 

Expansion 

Method [27] 

Mickens I-lB 0.866025 A 0.8489A 

Method [27] 2.2 0.20 
- - - 

Mickens 0.866025 A 0.849326A 

Iteration 2.2 0.2 
- - - 

Method [27] 

Adopted 0.866025 A 0.849326A 0.847456A 0.847302A 0.847289A 

Method 2.2 0.25 003 0.01 0.009 

From the table, it is seen that the third-order approximate frequency obtained by adopted 

method is almost same with exact frequency. It is found that, in each of the cases our 

solution gives significantly better result than other existing results. The compensation of 

this method consists of its simplicity, computational efficiency and convergence. It is also 

observed that the Mickens' iterative technique is convergent for this oscillator. 
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CHAPTER V 

Convergence and Consistency Analysis 

We know the basic idea of iterative methods is to construct a sequence of solutions Xk  (as 

well as frequencies K2k ) that have the property of convergence 

urn urn 
Xk Or,= 

k — co k  

Here Xe  is the exact solution of the given nonlinear oscillator. 

In the present method, it has been shown that the solution yield the less error in each 

iterative step compared to the previous iterative step and finally 

I4 - RI = 10.847289 - 0.847213 1 <e, where e is a small positive number and A is 

chosen to be unity. From this, it is clear that the adopted method is convergent. 

An iterative method of the form represented by equation (4.2) with initial guesses given in 

equation (4.3) and equation (4.4) is said to be consistent if 

urn tim 
k e xk —xC l--0 Or, 

k - oo  

In the present analysis we see that 

tim 
K 
- Qj 

- 
0,as  IQ4 - e 

=0. 
k — c 

Thus the consistency of the method is achieved. 
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