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Abstract 

An analytical technique has been developed based on an iteration method to determine higher-

order approximate periodic solutions for a nonlinear oscillator with discontinuity for which the 

elastic force term anti-symmetric and quadratic. Usually, a set of nonlinear algebraic equations 

is solved with this method. However, analytical solutions of these algebraic equations are not 

always possible, especially in the case of large oscillations. A modified approximate analytic 

solution of the quadratic nonlinear oscillator "i + x2  sgn(x) = 0" has been obtained based on 

an iteration procedure. Here we have used the truncated Fourier series in each iterative step. 

The approximate frequencies obtained by the technique shows a good agreement with the 

exact frequency and periodic solutions with the exact ones. The percentage of error between 

exact frequency and fourth approximate frequency of the method is as low as 0.00003%.The 

method is mainly illustrated by the quadratic nonlinear oscillator but it is also useful for many 

other nonlinear problems. 
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CHAPTER 1 

Introduction 

Nonlinear oscillation is a topic to intensive research for many years in the field of physics, 

mathematics and engineering. A large variety of approximate techniques have been developed 

to determine periodic solutions of nonlinear oscillatory systems. Dynamical systems are 

mathematical objects used to model physical phenomena whose state (or instantaneous 

description) changes over time. These models are used in financial and economic forecasting, 

environmental modeling, medical diagnosis, industrial equipment diagnosis, and in many other 

applications. Systems of nonlinear equations arise in many fields of practical importance such 

as engineering, medical science, chemistry, and robotics. Nonlinear equations have also 

demonstrated their usefulness in ecology, business cycle and biology. A large number of 

problems in engineering and science can be formulated in the form of differential equations. 

Nonlinear systems are also important in the field of music, game etc. Such as, in music, all 

sound comes in waves which are a nonlinear equation. So it helps to know, how those waves 

interact with each other when recording music, or when at a live event and setting up the 

speakers. Generally speaking, dynamics is a concise term referring to the study of time-

evolving processes, and the corresponding system of equations, which describes this 

evolution, is called a dynamical system. Therefore the solution of such problems lies 

essentially in solving the corresponding differential equations. The differential equations may 

be linear or nonlinear, autonomous or non-autonomous. The world around us is inherently 

nonlinear. A vast body of scientific knowledge has developed over a long period of time, 

devoted to a description of natural phenomena. Ultimately, many differential equations 

involving physical phenomena are nonlinear. Differential equations, which are linear, are 

comparatively easy to solve and nonlinear are laborious and in some cases it is impossible to 

solve them analytically. In many cases it is possible to replace such a nonlinear equation by a 

related linear equation, which approximates the actual non-linear equation closely enough to 

give useful results. The method of small oscillations is a well-known example of the 
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linearization. But such a linearization is not always possible and when it is not possible, then 

the original nonlinear equation itself must be used. The study of nonlinear equations is 

generally confined to a variety of rather special cases, and one must resort to various method 

of approximation. 

Van der Pol first paid attention to the new (self-excited) oscillations and indicated that their 

existence is inherent in the nonlinearity of the differential equations characterizing the process. 

This nonlinearity appears, thus, as the very essence of these phenomena and by linearizing the 

differential equation in the sense of the method of small oscillations, one simply eliminates the 

possibility of investigating such problems. Thus it is necessary to deal with the nonlinear 

problems directly instead of evading them by dropping the nonlinear terms. Many methods 

- exist for constructing analytical approximations to the solution to the oscillatory system. Such 

as perturbation methods, harmonic balance method, iteration method etc. Among the methods, 

the method of perturbation, i. e., asymptotic expansions in terms of a small parameter are 

foremost. 

Analytical solutions for nonlinear differential equations or linear differential equations with 

variable coefficients play an important role in the study of nonlinear dynamical systems, but 

sometimes it is difficult to find these solutions, especially for nonlinear problems with strong 

nonlinearity. Perturbation method is used for small nonlinear problems. One the other hand 

iteration method is used for small as well as large amplitude of oscillations. 

The perturbation methods are, in principle, for solving problems with a small parameter. In 

this case, the solution is analytically expanded in power series of the parameter. However, 

there exist many nonlinear problems in which parameters are not small and other methods 

such as harmonic balance method are able to provide analytical approximations valid for large 

value of amplitudes. 

Harmonic balance method is a technique for determining analytic approximations to the 

periodic solutions of differential equations by using a truncated Fourier series representation. 

An important advantage of this method is that it can be applied to nonlinear oscillatory 
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problems where the nonlinear terms are not "small" i.e., no perturbation parameter need to 

exist. A disadvantage of harmonic balance method is that it is a priori difficult to predict 

whether a first order harmonic balance calculation will provide a sufficiently accurate 

approximation to periodic solution for a given nonlinear differential equation or not. 

The iteration method [25] was proposed by Mickens in 1987. The method introduces a reliable 

and efficient process for wide variety of scientific and engineering application for the case of 

nonlinear systems. Two important advantages of iteration method are as follows: 

Only linear, inhomogeneous differential equations are required to be solved at each 

level of the calculation. 

The coefficients of the higher harmonics, for a given values of the iteration index, 

decrease rapidly with increasing harmonic number. This implies that higher order 

solutions may not be required. 

In computational mathematics, an iterative method is a mathematical procedure that generates 

a sequence of improving approximate solutions for a class of problems. A specific 

implementation of an iterative method, including the termination criteria, is an algorithm of 

the iterative method. An iterative method is called convergent if the corresponding sequence 

converges for given initial approximations. A mathematically rigorous convergence analysis 

of an iterative method is usually performed; however, heuristic-based iterative methods are 

also common. 

In the problems of finding the root of an equation (or a solution of a system of equations), an 

iterative method uses an initial guess to generate successive approximations to a solution. In 

contrast, direct methods attempt to solve the problem by a finite sequence of operations. In the 

absence of rounding errors, direct methods would deliver an exact solution (like solving a 

linear system of equations Ax = b by Gaussian elimination). Iterative methods are often the 

only choice for nonlinear equations. However, iterative methods are often useful even for 

linear problems involving a large number of variables (sometimes of the order of millions), 
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where direct methods would be prohibitively expensive (and in some cases impossible) even 

with the best available computing power. 

It is worthy to note that the majority of scientists have not been led to their discoveries by a 

process of deduction from general advances, or general principles, but rather by a thorough 

examination of properly chosen particular case. The generalizations have come later, because 

it is far easier to generalize an established result than to discover a new line of argument. 

Generalization is the temptation of a lot of researchers working now with nonlinear dynamical 

systems. 

The important development of the theory of nonlinear dynamical systems, during these 

centuries, has essentially its origins in the studies if the "natural effects" encountered in these 

systems, and the rejection of non-essential generalizations, i.e. the study of concrete nonlinear 

systems have been possible due to the foundation of results from the theory or nonlinear 

dynamical system field. 

In this thesis, a quadratic nonlinear oscillator, describing a dynamical system, has been 

considered. The main object of this thesis is to determine the new approximate frequencies and 

corresponding analytical solutions of 'Quadratic Nonlinear Oscillator' by iterative procedure 

and compare them to some existing results. 

11 

4 



CHAPTER 2 

161 

Literature Review 

Most phenomena in our world are essentially nonlinear and are described by nonlinear 

equations. Nonlinear processes are one of the biggest challenges and are not easy to control 

because the nonlinear characteristic of the system abruptly changes due to some small changes 

of valid parameters including time. Thus, the issue becomes more complicated and hence 

needs ultimate solution. Thus, the studies of approximate solutions of nonlinear differential 

equations play a vital role in understanding the internal mechanism of nonlinear phenomena. 

Advanced nonlinear techniques are significant to solve inherent nonlinear problems, 

particularly those involving dynamical systems and related areas. In recent years, both 

mathematicians and physicists have made significant improvement in finding a new 

mathematical tool related to nonlinear dynamical systems whose understanding will rely not 

only on analytic techniques but also on numerical and asymptotic methods. Many effective 

and powerful methods have been established in handling nonlinear dynamical systems. The 

study of nonlinear problems is of crucial importance not only in all areas of mathematics but 

also in engineering and other disciplines, since most phenomena in the world are essentially 

nonlinear and are described by nonlinear differential equations. It is not easy to solve 

nonlinear problems and in general it is often more difficult to get an analytic approximation 

than a numerical one for given nonlinear problems. In a lot of situations, linear differential 

equation is used for a nonlinear differential equation, which approximates the former equation 

close enough to give expected results. In many cases linearization is not possible and when it 

is not, the original differential equations must be tackled directly. There are many analytical 

techniques to solving nonlinear differential equations, such as: Perturbation method [1-8], 

Harmonic Balance (HB) method [9-19], Homotopy Perturbation method [20-23], Iterative 

method [24-34] etc. 

1 
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The perturbation method is the most widely used method in which the nonlinear term is small. 

The perturbation method aims getting a periodic solution in the form of a power series with 

respect to small parameter s. This method introduced by Poisson [1], was at first applied 

formally, without any theoretical justification. Nevertheless, it has been successfully used to 

obtain some effective solution especially in celestial mechanics. However, the main 

contribution of the perturbation method is due to Poincare [35] who elaborated in 1892 its 

theoretical grounds and made possible its systematic application to various nonlinear 

problems. The method of Lindstedt-Poincare (LP) [1, 36, 37], Homotopy method [38-40], and 

Differential Transform method [41-43] are most important among all perturbation methods. 

The method of Lindstedt-Poincare [1, 30] is an introductory method to solve the following 

second order nonlinear differential equation 

0)
0
2 (2.1) 

where a 0  is the unperturbed frequency and e is a small parameter. 

The fundamental idea in Lindstedt's technique is based on the observation that the 

nonlinearities alter the frequency of the system from the linear one a and a'() .To account 

for this change in frequency, he introduced a new variable r = ot and expand ao and x in 

powers of 6 as 

x=x0 (v)+6x1 (v)+62 x2 (r)+..., 
(2.2) 

where w, i = 0,1,2,... are unknown constants to be determined. 

Substituting equation (2.2) into equation (2.1) and equating the coefficients of the various 

powers of c , the following equations are obtained 

10 + xo  =0 

11 +x1 =-2w 0 —f(x0,10 ) 

12 +x2 =-2  co, I1 —(c)+2w2)I0 —f(x0,10 )x1 +f(x0,10 )(a)110 +±1 ) 

(2.3) 
+ x, = 9,7, (x0 , x1, x2 ....., X ._1 ..., X,fl) 



where over dots represent the differentiation with respect to r. Clearly equation (2.3) is a 

- linear system and it is solved by the elementary techniques. This method is used only for 

finding the periodic solution, but the method cannot discuss transient cases. An important 

aspect of various perturbation methods is their relationship with each other. Among them, 

Krylov and Bogoliubov are certainly to be found most active. In most treatments of nonlinear 

oscillations by perturbation methods only periodic oscillations are treated, transients are not 

considered. Krylov and Bogoliubov [36] have introduced a new perturbation technique to 

discuss transients in the equation 

I+o2x=f(x,,t,). (2.4) 

where over dots denote ordinary derivative with respect to time t, e is a small positive 

parameter, f is a power series in e, whose coefficients are polynomials in x, , sint and 

cost. The method of Krylov and Bogoliubov start with the solution of the linear equation, 

assuming that in the nonlinear case, the amplitude and phase in solution of the linear equation 

are time dependent functions rather than constants. This procedure introduces an additional 

condition on the first derivative of the assumed solution for determining the desired results. 

The method of Krylov and Bogoliubov is an asymptotic method. Generally an asymptotic 

series itself may not be convergent, but up to a fixed number of terms, the approximate 

solution tends to the exact solution because of e —*0. It is noted that the asymptotic term is 

frequently used in the field of oscillations also in the sense that e - co. But in this case the 

mathematical treatment is quite different. Some vital works are done and the elaborative uses 

have been made by Stoker [44], Minorsky [45], Nayfeh [1, 3, 6], Bellman [46]. Duffing [47] 

has investigated many significant results about the periodic solutions of the following 

nonlinear damped differential equation. 

I+2k+co2x=—sx3. (2.5) 

When the amplitude of the dependent variable of the dynamic system is less than or greater 

than unity then different types of nonlinear phenomena occur. The damping is negative when 

the amplitude is less then unity and the damping is positive when the amplitude is greater than 

unity. The governing nonlinear differential equation having these phenomena is 

- e(1 - x2  ) + x =0. (2.6) 
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The equation (2.6) was introduced by Van-der-Pol [48] and in literature. The equation has 

very extensive field of application in connection with self-excited oscillations in electron-tube 

circuits. 

Harmonic balance (HB) method is another technique for finding the periodic solutions of a 

nonlinear system. Harmonic balance method is originated by Mickens [24]. The method of 

harmonic balance provides a general technique for calculating approximations to the periodic 

solutions of differential equations. It corresponds to a truncated Fourier series and allows for 

the systematic determination of the coefficients to the various harmonics and the angular 

frequency. The mathematical foundations of harmonic balancing have been investigated by 

several researchers. However, in order to avoid solving an infinite system of algebraic 

equations, it is better to approximate the solution by a suitable finite sum of trigonometric 

function. This is the main task of harmonic balance method. Thus approximate solutions of an 

oscillator are obtained by harmonic balance method using a suitable truncation of Fourier 

series. The significance of the method is that, it may be applied to differential equations for 

which the nonlinear terms are not small. 

A vast amount of literature on the method of HB is available. Selected lists of the articles that 

study and apply this method to a variety of differential equations are given in the references 

Mickens [9, 10, 50], Lim and Wu [11], Twari et al. [12], Gottlieb [13], Alam et al. [14], Leung 

and Zhongjin [17], Ghadimi and Kaliji [18], Wu et al. [49]. The formulation of the method of 

harmonic balance focuses primarily by Mickens [9] and further work has been done by 

Mickens [7, 27], Gottlieb [13], Hosen [19], Lim and Wu [26], Hu [51, 53], Hu and Tang [52], 

Wu et al. [59] and so on, for solving the strong nonlinear problems. However, it should be 

indicated that various generalizations of the method of harmonic balance have been made by 

several investigators such as, an intrinsic method of harmonic analysis by Huseyin and Lin 

[54], the use of Jacobi elliptic functions by Garcia et al. [55] and two time scale harmonic 

balance by Summers and Savage [56]. Recently combining the method of averaging and 

harmonic balance, Lim and Lai [57] presented an analytic technique to obtain first 

approximate perturbation solution; their solutions gives desired results for some non-

conservative systems when the damping force is very small. Another technique is developed 



by Yamgoue and Kofane [58] to determine approximate solutions of nonlinear problems with 

strong damping effect; more than two harmonic terms are involved in their solution. Further 

work has been done by various researches. Some of them who handled strong nonlinearities 

are Wu et al. [49, 59], Belendez Ct al. [60], Gottlieb [13, 61] and Mickens [30]. 

The following methodology of direct harmonic balance method was given by Mickens [30]. 

He considered the equation for all Truly Nonlinear (TNL) oscillators as: 

F(x,i,I)=0, (2.7) 

where F(x,,i) is of odd-parity, i.e. 

F(—x,—±,—I) = —F(x,i,I). (2.8) 

A major consequence of this property is that the corresponding Fourier expansions of the 

periodic solutions only contain odd harmonics (Mickens [67]), i. e., 

X(t) = {Ak  cos[(2k —1)t] + Bk  sin[(2k —1)Qt]}. (2.9) 

The N -th order harmonic balance approximation to x(t) is the expression 

N 

XN (t) = {A cos[(2k - 1) t] + B sin[(2k —1) t]}, (2.10) 

where A,B7,QN  are approximations to Ak ,Bk ,nfor k=1, 2,3 ......... N. 

For the case of a conservative oscillator, equation (2.7) generally takes the form 

I+f(x,A.)=0, (2.11) 

where A. denotes the various parameters appearing in f(x, 2) and f(—x, 2) = —f(x, 2) .The 

following initial conditions are selected 

x(0)=A, x(0)=0 (2.12) 

And this has the consequence that only the cosine terms are needed in the Fourier expansions, 

and therefore we have 

XN(t) = A '  cos[(2k-1)N t] (2.13) 



Observe that XN  (t) has (N + 1) unknowns, the N coefficients, (211', A V A) and Q,, the 

angular frequency. These quantities may be calculated by carrying out the following steps: 

Step-i: Substitute equation (2.13) into equation (2.11) and expand the resulting form into an 

expression that has the following structure 

H cos[(2k 
- 1)N t] + HOH 0, HOH= Higher Order Harmonic (2.14) 

where they 1jk  are functions of the coefficients, the angular frequency, and the parameters, 

i.e., Hk =Hk (Al'',A'........AN,N, 2). 

Herein equation (2.14), we only retain as many harmonics in our expansion as initially occur 

in the assumed approximation to the periodic solution. 

Step-2: Set the functions 1k  to zero, i.e., 

Hk =O, k=1,2 ......... N. (2.15) 

The action is justified since the cosine functions are linearly independent, as a result any linear 

sum of them that is equal to zero must have the property that the coefficient are all zero. 

Step-3: Solve the N equations, in equation (2.15), for (4I , A3N 4)  and Q., in terms of 

AN 

Using the initial conditions, equation (2.12), we have for 4 the relation 

N 

x,,(0)=A=4+A"( 2). k 
k=2 

(2.16) 

An important point is that equation (2.15) will have many distinct solutions and the "one" 

selected for a particular oscillator equation is that one for which we have known a priori 

restrictions on the behavior of the approximations to the coefficients. However, as the worked 

examples in the next section demonstrate, in general, no essential difficulties arise. 

10 



For the case of non-conservative oscillators, where i appears to an "odd power" the 

calculation of approximations to periodic solutions follows a procedure modified for the case 

of conservative oscillators presented above. Many of these equations take the form 

+f(x, A1) = g(x, i, ,2)±, (2.17) 

where 

f(—x, A1) =—f(x,  '0 g(—x,  -, ,) =—g(x, , A2), (2.18) 

and (2, 22) denote the parameters appearing in f and g. For this type of differential equation, 

a limit-cycle may exist and the initial conditions cannot, in general, be a priori specified. 

Harmonic balancing, for systems where limit-cycles may exist, uses the following procedures: 

£ 

Step-i: Take the N -th order approximation to the periodic solution to be 

x7(t) = AN cos(N t)  + Ak cos[(2k-1)N t]+ Bk sin[(2k-1) N  t]}, (2.19) 

where the 2N unknowns AIN,A2,AN MN ,B2 ........ Band n,,  are tobedetermined. 

Step-2: Substitute equation (2.19) into equation (2.17) and write the result as 

{Hk  COs[(2k -1)cN t]+Lk  sin[(2k-1) N  t]}+HOH 0, (2.20) 

where the {Hk } and {Lk  }, k =1 to N, are functions of the 2 N unknowns which are 

mentioned above. 
Ir 

Step-3: Next equate the 2N functions {Hk} and {Lk } to zero and solve them for the (2N-1) 

amplitudes and the angular frequency. If a "valid" solution exists, then it corresponds to a 

limit-cycle. In general, the amplitudes and angular frequency will be expressed in terms of the 

parameters A1 and  A2. 
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Mickens [50] has presented the following example: 

1- 

Let us consider the differential equation given by 

x(0)=A, ±(0)=0 (2.21) 

The exact period can be calculated and its value is 

1(A)=2hAJ_
ds 

 =2I5A, (2.22) 
°  

S 

where the value of the integral is available in Gradshteyn. and Ryzhik [62]. The corresponding 

exact angular frequency is 

Q A 
2c1.2533141 

exact( ) (2.23) 

For the first-order harmonic balance, the solution is x (t) = A cos 0, 0= 01  t. This calculation 

is best achieved if equation (2.21) is written to the form 

xI+1=0. (2.24) 

Substituting x1  (t) into this equation gives 

(A cos 0)(—A cos 0) + 1+ HOH 0, 

or 
, (2.25) 

[(QIA)+l]+HQHO  

Therefore, in lowest order, the angular frequency is 

=
1.4142 

(2.26) 

The second order harmonic balance approximation is 

x2(t)= A1  cos 0+4 cos30, 0=22t. (2.27) 

Substituting this expression into equation (2.24) gives 

(A cos0 + 4 cos30)[—(A1  cos 8+94 cos39)]+ 1 0. (2.28) 

Performing the required expansions, we obtain 

12 



[Q2(AI  ;94)+l]_ 02  (AI2 +lOAIA)  cos  20HOH ft (2.29) 

Setting the constant term and the coefficient of cos20 to zero gives 

_Q2(AI  ±942)+1= 0, 
Al2  +10A1 4 = 0. (2.30) 

with the solutions 

A = _(L), 
200 

(2.31) 2 10 109Al2  

Therefore 

x2(t) = A1[cos(2 0(-L)cos(3O2 t)]. (2.32) 
10 

and requiring 

x2 (0)=A_—(--)A1 orA1  =(
10  
-)A. (2.33) 

gives 

X2 (t) = 
10  
()A [cos(2  t) - (--) cos(3 2  t)]. (2.34) 

with 

200 
= 
 162 1 1.2191138 

A) 
= 109A (j09 

-)-i- orc~2(A) 
= A 

(2.35) 

qr 
Recently, some authors have an iteration procedure [25, 30, 31, 32, 33, 34] which is valid for 

small together with large amplitude of oscillation, to attain the approximate frequency and the 

harmonious periodic solution of such nonlinear problems. Beside this method, there are some 

methods (Matko and afariè [63], Matko [64], Matko and Milanovié [65]) which are used to 

find approximate solution in the case of large amplitude of oscillations. 

Iterative technique is also used as a technique for calculating approximate periodic solutions 

and corresponding frequencies of truly nonlinear oscillators for small and as well as large 

amplitude of oscillation. In the paper Xu and Cang [66] provided a general basis for iteration 

method as they are currently used to calculate the approximate periodic solutions of various 
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nonlinear oscillatory systems successfully. Further, Mickens [30] used the iterative technique 

to calculate a higher-order approximation to the periodic solutions of a conservative oscillator. 

The general methodology of iteration procedure by Mickens [25] is as follows: 

He considered the differential equation of interest is 

F(,x)=0, x(0)=A, x(0)=0, (2.36) 

where over dots denote differentiation with respect to time, t. 

Further he assume that equation (2.36) can be rewritten the nonlinear oscillator modeled by the 

equation 

I+f(I,x)=0,x(0)—A, x(0)=0. (2.37) 

In general, the equation (2.37) is of odd parity. i.e., f(—i,—I)  

He chooses the natural frequency Q of this system. Then adding 02X  to both sides of 

equation (2.37), gives 

I ±g22X =E22X 
- f(I, x) E G(x, I), (2.38) 

where )2xis currently unknown. 

He formulated the iteration scheme of equation (2.38) in the following way 

xk+I+Qkxk+I -G(xk,xk) ; k=0,1,2,3,... (2.39) 

together with initial condition 

x0  (r) = A cos(c 0t) (2.40) 

Hence Xk +t satisfies the initial conditions 

Xk,I (0)A, Xk+j (0)0. (2.41) 

At each stage of the iteration, nk  is determined by the requirement that secular terms should 

not occur in the full solution of Xk+I  (t). 

The above procedure gives the sequence of solutions: x0  (t), x1  (t), x2  (t), ..., Since all solutions 

are obtained from solving linear equations, they are, in principle, easy to calculate. The only 

difficulty might be the algebraic intensity required to complete the calculations. Though the 
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equation (2.37) is of odd parity, the solution will only contain odd multiples of the angular 

frequency (Mickens {67]). 
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CHAPTER 3 

An analytic investigation of the quadratic nonlinear oscillator by an iteration method 

3.1 Introduction 

The latter half of twentieth century saw remarkable advances in our understanding of physical 

systems governed by nonlinear equations. Nonlinear problems have many important 

applications in several aspects of mathematical-physical sciences as well as other natural and 

applied sciences. Most of the phenomena in our world are essentially nonlinear and are 

described by nonlinear equations. Again we know that most of the natural systems are 

nonlinear and not nice. Although it is possible in many cases when they are formulated by 

differential equations, to replace the nonlinear differential equation by a corresponding linear 

differential equation which approximates the original equation, such linearization is not 

always feasible or possible. In such situation several methods have been devised to find 

approximate solutions to nonlinear problems, such as the Perturbation method [1-8] where the 

nonlinear term is small, and Harmonic balance method [9-19] is another technique for 

determining analytical approximate periodic solution by using a truncated Fourier series 

representation. This method can be applied when the nonlinear terms are not small and no 

perturbation parameter is required. The iteration method have been studied earlier by some 

authors like [24-30, 67] etc. Haque et al. [31, 33], Haque [32, 34] have also studied some 

important and more complicated nonlinear oscillators by direct and extended iteration 

procedure. 

The main purpose of this thesis is to improve the solution presented by Hosen [19], Mickens 

and Ramadhani [68] and Belendez et al. [69]. We have utilized the truncated Fourier series to 

expand the nonlinear terms in 'Cosine series'. Approximations from first to the fourth (in a 

particular case the third approximation) have been presented and compared to the existing 

solutions. 
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3.2 The method 

Let us consider the initial value problem governing by the nonlinear oscillator 

I+f(I,x)=O, x(0)=A, (0)=O, (3.1) 

where over dots denote differentiation with respect to time, t. 

We choose the natural frequency 0 of this system. Then adding 2xto both sides of equation 

(3.1) and rearranging, we obtain 

1+ Q2x = 2x-f(I,x) G(x,I). (3.2) 

Now, we formulate the iteration scheme as 

Xk+1+Xk+  =G(xk ,Ik ); k=O,1,2,3,... (3.3) 

together with initial condition 

x0  (1) = A cos( 0t). (3.4) 

Hence Xk+I  satisfies the initial conditions 

Xk+l  (0) = A, k+1(0) = 0. (3.5) 

At each stage of the iteration, f2k  is determined by the requirement that secular terms should 

not occur in the full solution of Xk+  (1). 

The above procedure gives the sequence of solutions: x0  (t), x1  (t), x2  (t),... 

The method can be proceed to any order of approximation; but due to growing algebraic 

complexity the solution is confined to a lower order usually the second [25]. 

At this point, the following observations should be noted: 

The solution for Xk+I  (t) depends on having the solutions fork less than (k +1). 

The linear differential equation for Xk+I  (t) allows the determination of f2k  by the 

requirement that secular terms be absent. Therefore, the angular frequency, "Q" 

appearing on the right-hand side of equation (2.3) in the function Xk (t), is K2k - 
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3.3 Example 

Let us consider the differential equation representing the quadratic nonlinear oscillator 

I+x2  sgn(x)= 0, (3.6) 

where, 

Ii, x>0, 
sgn(x) (3.7) 

—1, x<0. 

We choose the case x> 0, therefore equation (3.6) becomes 

(3.8) 

It is noted that, if we consider the case x <0 then the solution cannot be convergent for this 

technique. 

Now adding O2xto both sides of equation (3.8), we obtain 

+Q2x=c22x—x2 (3.9) 

Let us formulate the iteration scheme in the following way: 

Xk+I +I) Xk+I =cXk —x (3.10) 

The initial condition is 

x0(t)Acos8, (3.11) 

For the first iteration (i. e. when k = 0 and 9 = Q t), substituting equation (3.11) into equation 

(3.10) and using truncated Fourier series the equation (3.10) becomes 

=Acos9—A2 cos2 8 
(3.12)  

= 02  cos 9—A2  (0.848826c0s 0 + 0.169765 cos 30-0.0242522 cos 50 

+ 0.00808406cos 70-0.00367457 cos 90 + 0.00 1 97862 cos 110). 

To avoid secular term in the solution for x1 , we require setting the coefficient of cos 0 to zero 

on the right hand side, 

i. e, 

0A-0.848826A2  =0 
A- 



so )=0.921318../ (3.13) 

Now we obtain from equation (3.12) after dropping the secular terms 

I + c22x = —A2  (0.169765 cos 30— 0.0242522 cos 50 I 1 (3.14) 
+ 0.00808406 cos 70— 0.00367457 cos 90 + 0.00 197862 cos 110) 

Here the particular solution of equation (3.14) is 

A2  
x1' = (0.169765 cos30 - 0.0242522 cos50 + 0.00808406 cos70 

D2  + 

—0.00367457 cos90 + 0.00197862 cosl10) 

—A 2 0.169765 0.02425221 0.00808406 
cos70 

—8 —24 
cos50 cos30— 2 = 

—48  

0.00367457 0.00197862 
cos90+ cosll0) 

- —80C —120 
= A(0.025 cos30 - 0.00119048 cos50 + 0.000198413 cos70 

(3.15) 
- 0.0000541126 cos90 + 0.000019425 cosl 10) 

The complementary solution of equation (3.14) is 

x=B cos 8, (3.16) 

where B is any arbitrary constant. 

Hence the general solution of equation (3.14) is 

x1(t) = x +x° 

= B cos 0 + A(0.025 cos30 — 0.00119048 cos50 + 0.000198413 cos70 

—0.0000541126 cos90 + 0.000019425 cosl10) (317) 

Applying initial condition x1  (0) = A into the above equation, we have, 

B = 0.976027A 

Putting this value of B into equation (3.17), we obtain, 

x1 (t) = A(0.976027cos0 + 0.025 cos30 — 0.00119048 cos50 

+ 0.000198413 cos70-0.0000541126 cos90 (3.18) 

+ 0.0000 19425 cosl 18) 

This is the first approximate solution of equation (3.9). 

Now for k =1 and 0= Cl (t) we obtain from equation (3.10) 
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=cx-x,2 (3.19) 

Substituting x1 (t) from equation (3.18) into the right hand side of equation (3.19),we obtain, 

+ c21 x2  = A (0.976027c0s0+ 0.025 cos30 - 0.00119048 cos50 

+0.000198413 cos70-O.0000541126 cos90 

+ 0.000019425 cosl 18)- A2  (0.976027 cosO (3.20) 

+ 0.025 cos30 - 0.00119048 cos58+0.000198413cos70 

- 0.0000541126cos90 + 0.000019425cos1 18)2 

which after multiplication yields, with the corresponding truncated Fourier series, 

+ = A(0.976027cos0 + 0.025 cos38 -0.00119048 cos50 

+0.000198413 cos70-0.0000541126 cos90 + 0.000019425 cosl10) 
(3.21) 

-A2(0.817358cos0+0.192994 cos39-0.0143718 cos50 

+ 0.00581554 cos79-0.00276284 cos99+0.00152151 cosl10), 

Secular term will not appear in the solution for x2  if the coefficient of the cosO term is zero, 

1. e, 

0.976027AQ = 0.817359A2  

cl =0.915115R (3.22) 

Now we obtain from equation (3.21) after removing secular term 

x2  +x2  =A(0.025 cos39-0.00119048 cos50 

+ 0.000198413 cos70-0.0000541126 cos98 

+ 0.000019425 cosl 10)- A2(0.1 92994 cos30 (3.23) 

-0.0143718 cos59+0.00581554 cos70 

- 0.00276284 cos90 + 0.00152151 cosl 18) 

Here the particular solution of equation (3.23) is 

x' = 
1 

{A(0.025 cos30 - 0.00119048 cos50 + 0.000198413 cos70 
D2  + 

-0.0000541126 cos90+ 0.000019425 cosl10) 

-A2(0.192994 cos30-0.0143718 cos58+0.00581554 cos78 

-0.00276284 cos98+0.00152151 cosl18)} 
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2 0.025 0.00119048 0.000198413 0.0000541126 
=c~A( cos39- cos58+ cos70- cos99 1 

-8 -24 -48 -80Q 

0.000019425 2 0.192994 0.0143718 
+ cosl 10)-A ( cos3,9- cos50 

-1201 -8~ -24 

0.00581554 0.00276284 0.00152151 
+ cos79- cos99+ cos110) 

-48 -80 -120Q 
= A(0.0256823 cos30-0.000665468 cos50+0.000140543 cos70 

(3.24) 
-0.0000405632 cos90+0.0000149787 cos 110) 

The complementary solution of equation (3.23) 

x=Mcos81 (3.25) 

where M is any arbitrary constant. 

The general solution of equation (3.23) is 

x2(t) = x +x' 

= M cos 0 + A(0.0256823 cos 39-0.000665468 cos 59 (3.26) 

+ 0.000140543 cos 70- 0.0000405632 cos 90 + 0.0000149787 cos 110) 

Applying initial condition x2  (0) = A into the above equation, we have, 

M = 0.974868A 

Putting this value of M into equation (3.26), we obtain, 

x2  (t) = A(0.974868 cos 0 + 0.0256823 c0s30 - 0.000665468 cos 59 

+ 0.000140543 cos 70 - 0.0000405632 cos 90 + 0.0000149787 cos 110 (3.27) 

The third approximation x3  and the value of n2will be obtained from the solution of 

. 3+cx3  =c 2 -x (3.28) 

Substituting x2  (t) from equation (3.27) into the right-hand side of equation (3.28), we obtain, 

+Q2X
3 = 2A(0.974868 cos 0 + 0.0256823 cos30 - 0.000665468 cos 50 

+ 0.000 140543 cos 70- 0.0000405632 cos 90 + 0.0000 149787 cosi 10) 

- A2  (0.974868 cos 0 + 0.0256823 c0s30 - 0.000665468 cos 59 

+ 0.000 140543 cos 70 - 0.0000405632 cos 90 + 0.0000 149787 cosl 19)2 
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=O A(0.974868 cos 0 + 0.0256823 cos30 - 0.000665468 cos 50 

r + 0.000 140543 cos 70- 0.0000405632 cos 90 + 0.0000149787 cos 110) 
(3.29) 

- A  2  (0.815657 cos0+0.193656 cos30-0.0134172 cos50 

+ 0.00591789 cos 70- 0.0027829 cos90 + 0.00152773 cosi 10), 

Secular terms will not appear in the solution for x3  if the coefficient of the cos 9 term is zero, 

1. e, 

0.974868A02 
 = 0.815657A2  

i.e. I = O.914705.J (3.30) 

Now we obtain from equation (3.29) without secular term as 

X3  + nx 3  = )A(0.O256823 cos30 - 0.000665468 cos 50 

+ 0.000140543 cos70-0.0000405632 cos90 
(3.31) 

+ 0.0000 149787 cos 110) -  A2(0. 193656 cos30 -0.0134172 cos 50 

+ 0.00591789 cos 70- 0.0027829 cos 90 + 0.00152773 cos 110) 

Here the particular solution of equation (3.31) is 

x' = 
1 pA(0.0256823 cos39-0.000665468 cos 50 + 0.000140543 cos70 

D2  + 

-0.0000405632 cos 99+0.0000149787 cos 110)-A2 (0.193656 cos30 

-0.0134172 cos 50 + 0.00591789 cos 70- 0.0027829 cos90 

± 0.00152773 cos1l8)} 

cos30- 
0.000665468 0.000 140543 

cos50+ cos70 22 -24Q -48 

0.0000405632 
cos90+  0.0000149787 cosll0)_A2(°A93656 cos30 

- -80 -120Q 

0.0134172 0.00591789 0.0027829 
- cos50± cos cos90 

-24 -48c~ - -80 

0.00152773 
+ cosll0) 

-120) 

= A(0.02572 17 cos30 - 0.000640443 cos 58 + 0.000144427 cos 79 

-0.0000410693 cos 90+0.0000150912 cos 110) (3.32) 

The complementary solution of equation (3.31) is 
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x=Pcos0, (3.33) 

where P is any arbitrary constant. 

The general solution of equation (3.31) is 

x3(t) = x' +x' 

= P cos 0 + A(0.0257217 cos30 - 0.000640443 cos 59 + 0.000 144427 cos 79 (3.34) 

-0.0000410693 cos 90+0.0000150912 cos 110) 

Applying the initial condition x3(0) = A into the above equation, we have 

P=0.9748 

Putting this value of P into equation (3.26), we obtain, 

x3 (t) = A(0.9748 cos 9+0.0257217 cos30 - 0.000640443 cos59 
(3.35) 

+ 0.000144427 cos 79-0.0000410693 cos 90+0.0000150912 cos 110) 

The fourth approximation x4  and the value of f23will  be obtained from the solution of 

X 4  +)3X 4  = 3- : (3.36) 

Substituting x3(t) from equation (3.35) into the right-hand side of equation (3.36), we obtain, 

X 4  +x4  =c~A(0.9748 cos0+0.0257217 cos39-0.000640443 cos50 

+0.000144427 cos 70 - 0.0000410693 cos 90 + 0.0000150912 cos 1 10) 

- A2  (0.9748 cos 0 + 0.0257217 cos30 - 0.000640443 cos 59 

+ 0.000 144427 cos 70 - 0.0000410693 cos 90 + 0.0000150912 cos 119)2 

= A(0.9748 cos 0 + 0.0257217 cos39-0.000640443 cos50 

+ 0.000144427 cos79- 0.0000410693 cos99 

+0.0000150912cos119)-A2 (0.815558 cos0 (337) 
+ 0.193691 cos39 -0.0 133655 cos58 + 0.0059299 cos70 

- 0.00278203 cos99 + 0.00152736 cos 119), 

Secular terms will not appear in the solution for x4  if the coefficient of the cos 0 term is zero 

i.e., 

0.9748AQ2  = 0.815558A2  

= 0.914681,J (3.38) 

Thus 92, 9211  Q2 and 923  can be obtained by equations (3.13), (3.22), (3.30), and (3.38) 

respectively, which represent different approximations of frequencies of the oscillator (3.6). 
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3.4 Results and Discussion 

An Iteration method is developed based on Mickens [25] to solve 'quadratic nonlinear 

oscillator'. In this section, for the accuracy frequencies of the oscillator obtained by the 

modified technique of iteration method presented in the thesis will be compared with the 

existing results obtained from some different methods together with the exact frequency of the 

oscillator. To estimate the accuracy, we have calculated the percentage errors (denoted by Er 

(%)) by the definitions 

Er = I100{ e (A)_ i (A)}/R(u4) I ' i= 0,1,2,3,..., 

where Q1  represents the approximate frequencies obtained by the adopted method and Qe  

represents the corresponding exact frequency of the oscillator. 

Herein we have calculated the first, second, third and fourth approximate frequencies which 

are denoted by 920 5 Q 1  02  and c 3  respectively. A comparison among the existing results 

obtained by Hosen [19], Mickens and Ramadhani [68] and Belendez et al. [69] with our 

obtained results is shown in the following table. 

Table: Comparison of the approximate frequencies obtained by the presented technique with 

other existing results and exact frequency n,  (Belendez et al. [69]) of quadratic nonlinear 

oscillator. 
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Exact 0.9146814 

Frequency 

First Second Third Fourth 

Approximate Approximate Approximate Approximate 

Frequency Frequency Frequency Frequency• 

Er(%) Er(%) Er(%) Er(%) 

Adopted 0.921318..J 0.915114-J 0.914705-IA 0.9146807IA 

Method 0.73 0.047 0.0026 0.00003 

Hosen [19] 0.921318.JA 0.914427/A 0.914733ji - 

0.73 0.028 0.0056 

Belendez et 0.921318JA 0.914274JA 0.914711-IA - 

al. [69] 0.73 0.045 0.0032 

Mickens and 0.921318JA 0.914044JA - - 

Ramadhani 0.73 0.070 

[68] 

It is noted that Mickens and Ramadhani [68] presented only second approximate frequencies 

by harmonic balance method. Belendez et al. [69] put forward up to third approximate 

frequencies by using modified He's homotopy perturbation method. Hosen [19] also presented 

up to third approximate frequencies by using modified harmonic balance method. 

Clearly from the table, it is seen that the forth-order approximate frequency obtained by the 

adopted method is almost same with exact frequency. The table also shows that in most of the 

cases our solution gives significantly better result than other existing results. The advantages 

of this method include its simplicity and computational efficiency. 

25 



3.5 Convergence and Consistency Analysis 

We know the basic idea of iteration methods is to construct a sequence of solutions Xk  (as 

well as frequencies nk)  that have the property of convergence 

urn urn 

k — co 

Here Xe  is the exact solution of the given nonlinear oscillator. 

In the present method, it has been shown that the solution in each iterative step yields less 

error compared to the previous iterative step and finally, 

In, -RI =O.91468O7/—O.91468hR <e, where c is a small positive number and A is 

chosen to be unity. From this, it is clear that the adopted method is convergent. 

• An iterative method of the form represented by equation (3.3) with initial guesses given in 

equations (3.4) and (3.5) is said to be consistent if 

urn urn 
XkXe l =O or t)k _)I_0. 

In the present analysis we see that 

urn 
IR — I= 0 asI 3 0 -I=0. e  

Thus the consistency of the method has been achieved. 
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CHAPTER 4 

CONCLUSION 

The iteration method is a powerful and effective mathematical tool in solving nonlinear 

differential equations of mathematical physics, applied mathematics and engineering. In this 

thesis, an iteration method has been employed for analytic treatment of the quadratic nonlinear 

differential equation. The adopted method is convergent and the obtained solution is 

consistent. The performance of this method is reliable, simple and gives many new solutions. 

The results obtained by the presented technique are not only fit to be used in the case of small 

nonlinearities but also fit to be used in the case of high nonlinearities. 
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