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Abstract 

Electrocardiogram (ECG) is a measurement of bio-electric potential produced by 

rhythmical cardiac activities, contraction and relaxation of the cardiac muscle produced 

at sinoatrial (SA) node. This electric potential associated with the cardiac cycle can be 

detected at the surface of the body, amplified and recorded as a time record of each 

cardiac cycle. Different cardiac function such as heart rate, abnormality of rhythm can 

easily be identified by ECG and it is a low cost tools in the medical diagnostic system. 

Therefore, ECG signal modeling and processing is one of the most significant topic in 

biomedical signal analysis. 

Most of the ECG models are complex and their computational time is high. In this 

research, a Gaussian wave-based model is proposed which can simulate ECG wave as 

well as its P, Q, R, S and T components individually. In addition, dynamically shifting 

baseline of the model reduces the preprocessing of ECG signal. The coefficient of the 

model is calculated by nonlinear least square technique using Gauss-Newton algorithm. 

The model fits well with real ECG by Normalized Root Mean Square error (NRMSE) of 

0.0034 at the normal condition. Further analyses have been performed to evaluate the 

models ability of representing the different cardiac Dysrhythmias like atrial fibrillation, 

brachycardia and tachycardia successfully. For better model fitting denoised ECG plays 

a significant role. 

Bionic wavelet Transform (BWT) is based on auditory model but it is not efficient for 

ECG signal processing since ECG is generated from the heart. So for denoising ECG, a 

new adaptive wavelet transform is developed based on heart- arterial interaction model. 

Adaptability is adjusted instantaneous amplitude of the signal and its first-order 

difference. The automatically adjusted resolution is achieved by introducing the active 

control mechanism of the cardiac system into the wavelet transform. It is very hard to 

know what entropy function used in the bio-system. This is the problems of other 

transforms. But, the discrete BWT uses active control mechanism in the cardiac system 

to adjust the wavelet function rather than entropy function as criterion. Moreover, due to 

various oscillating behavior of different types of ECG signal constant Quality factor (Q) 

of wavelet is not as effective as variable Q. The variable Q is changed with the 

instantaneous value of a signal and it will make BWT more adaptive compared to 

Tunable Q wavelet transform (TQWT). As in variable Q-wavelet transform like DBWT 
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which is the discrete version of BWT, Q is changed with the instantaneous value of a 

signal and its first order difference instead of Q-factor is tuned to a fixed value in 

TQWT. In addition, our proposed modified S-median thresholding technique has an 

adjustable factor and introduced in the system for better performance. In order to 

compare DBWT with other wavelet transform, experiments on traditional WT, multi-

adaptive BWT, TQWT were conducted on both constructed signals and real ECG 

signals. The results show that novel DBWT performs better than these three wavelet 

transforms, and is appropriate for cardiac signal processing, especially over noisy 

environment. 

Ix 
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CHAPTER 1 

INTRODUCTION 

1.1 Electrocardiography 

The heart is one of the major organs of the human body, vital to our survival. It is basically 

a large pump, whose sole purpose is to maintain blood circulation and keep organ alive. 

This mechanical event is performed by the electrical activity of the heart. Without 

electrical event mechanical event, i.e. blood circulation, is not possible. These electrical 

events are investigated by Electrocardiogram (ECG) which is one of the most useful. 

easily available and low cost tools for the early diagnosis and evaluation of many cardiac 

problems. But this ECG signal which is non-stationary in nature can potentially be 

corrupted by various types of noises and artifacts like electrode pop or contact noise, 

motion artifacts, electromyographic noise, baseline drift, etc. [1] that undergoes incorrect 

diagnosis and may cause cardiac death. This leads a huge scope to model, remove noise 

and artifact, compression, feature extraction of this biomedical signal. So the study of such 

non-stationary signal is very necessary to prevent misdiagnosis (which can lead abnormal 

morphological change in the ECG cardiac cycle, such as if the P wave get broaden or notch 

look this will indicate a delay in the depolarization of the left atrium which can create 

problems in the conduction system. Tall P wave indicates right atrial enlargement. 

Abnormally large Q wave indicates Myocardial Infarction. Irregular T wave indicates 

myocardial ischemia, infraction, ventricular hypertrophy, bundle branch block etc. During 

open-heart surgery polyvinyl chloride (PVC) tubing (or possibly other plastic parts) in the 

pump can generate electricity through piezoelectric or static electricity effects. This artifact 

looks somewhat like QRS or pacemaker spikes and hence creates misdiagnosis. 

1.2 State of The Art 

The establishment of the clinical electrocardiograph (ECG) by the Dutch physician 

Willem Einthoven in 1903 marked the beginning of a new era in medical diagnostic 

techniques, including the entry of electronics into health care. Since then, electronics, and 

subsequently computers, have become integral components of biomedical signal analysis 
1 

1 
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systems, performing a variety of tasks from data acquisition and processing for removal of 

artifacts to feature extraction and interpretation. 

Though there is an ideal value of PQRST of the ECG signal, but in most of the cases the 

captured ECG waveforms are different from the ideal one which may complicate in the 

subsequent analysis of the ECG, because it varies from man to man. The morphological 

change occurs due to drug, age, gender, preexisting condition, gender/family history, 

activity etc [1]. 

Recently, the time- frequency representation (TFR) has been extensively used for the 

analysis of such non-stationary signal since TFR can obtain the frequency information and 

its variation along the time simultaneously. In addition, introduction of some biological 

functions or model parameters in the TFR are also necessary and that makes TFR novel 

one. Such novel adaptive wavelet transform called Discrete Bionic Wavelet Transform 

(DBWT) based on the biological active heart-arterial interaction model which is very much 

compatible with the biomedical signal like ECG signal processing. Moreover, no other 

transforms are based on the biological model. So bio-system based DBWT is appropriate 

for bio-signal processing. The unique feature of the BWT is that its resolution in the time-

frequency domain can be adaptively adjusted by the signal instantaneous amplitude and its 

first order differential. Furthermore, it is very hard to know what entropy function used in 

the bio-system. This is the problems of other transforms. But, the DBWT uses active 

control mechanism in the cardiac system to adjust the wavelet function rather than entropy 

function as criterion. Another interesting decisive factor for choosing the DBWT is that, it 

is a special subset of Adaptive Wavelet Transform (AWT). But the performance of DBWT 

is highly dependent on the T-function stemming from biological model whereas the 

performance of AWT is highly dependent on the entropy function. As DBWT is a special 

division of adaptive transforms and uses biological model. Therefore, DBWT can be a 

better option for ECG signal processing. Moreover, DBWT can effectively reduce the 

computational cost and complexity as it is discrete dyadic version of CWT. 

A supplementary factor is that, presently, signal-processing strategies are typically based 

on Band Pass Filters (BPFs), and are implemented using separate hardware and 

microprocessors. Consequently, with these techniques it is hard to control the signal 

processing performance because there are too many signal-processing units involved [2] 

Recently, K. Nie et al. and C. P. Behrenbech [2] [3] independently experimented with new 
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signal processing strategies based on wavelet transform (WT) in order to simplify and 

minimize the hardware, because WT inherently supports all the features of signal 

processing provided by separate hardware and microprocessors but in fewer units. 

One of the common approaches is the adaptive filters architecture which has been used for 

the noise cancellation of ECGs containing power line interference, baseline wandering, 

EMG noise and motion artifacts. Other effective techniques such as principle component 

analysis, independent component analysis, neural networks, Kalman filtering have also 

been used to extract a noise-free ECG. Over the past several years, with the advances of 

the ECG signal processing, wavelet transform (WT) method also received a promising 

result for denoising of signals, feature extraction having multiresolution characteristics. 

All the above approaches use traditional linear filters to span the signal in time-frequency 

domain (WT also can be viewed as a linear BPF bank), and may not be effective for a 

normal human heart, which analyzes the signal by an active and nonlinear system. 

Research into the physiology of the human heart shows that the active and nonlinear 

mechanisms in the heart are necessary for maintaining its high sensitivity and frequency 

selectivity. The drawbacks with the existing linear signal-processing strategies motivated 

us to investigate the potential application of DBWT an active and nonlinear method 

stemming from the active biological model. 

Bionic wavelet transforms are comparatively new topics which were first used in the 

speech signal processing and recently is being used in the biomedical signal processing [4]. 

As T-function reflects the dynamic control mechanism from the biosystem it is especially 

suitable for the biological signals. But there is no specified wavelet for cardiac signal. So 

we proposed a DBWT for cardiac signal processing using heart-interaction model. 

Moreover, the mathematical model proposed in the thesis is very simple and can be used as 

a reference model for the future research. An application of our proposed techniques is 

discussed using support vector machine. 
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1.3 Objectives 

The objectives of this research work are: 

. To present the mathematical model of ECG based on the morphology of PQRST of 

the cardiac cycle. 

• To fit the model with the realistic signal collected from the database like MIT-BIH 

and from the BIOPAC system. 

• To denoise and remove different noise from the noisy ECG signals using proposed 

DBWT and adaptive thresholding (hard, soft and nonlinear) techniques. 

• To evaluate the performance of the proposed method and to compare with other 

techniques 

• To present the quantitative and qualitative evaluation of the transformed signal. 

• To demonstrate an application of the proposed techniques using support vector 

machine. 

1.4 Contributions 

In this research some useful contributions have been done by the author. Some original 

outcomes of this research are listed below: 

A simplified mathematical model has been developed which can simulate ECG 

wave as well as P, Q, R, S and T wave individually. It is capable of simulating 

various kind of practical phenomena such as brachycardia (slow heart rate), 

tachycardia (fast heart rate), atrial fibrillation etc. 

A T-function is proposed inspired by human heart-arterial interaction model which 

was not used before. Discrete Wavelet transform is then adapted by this T-function 

which is called Discrete bionic wavelet transform. It is very much suitable for ECG 

signal processing as it is adapted by active biological heart-arterial interaction 

model. Although DBWT exist, but they used ear model based on otoaccustic 

emission which is not appropriate specially for ECG signal processing while 

maintaining the features of Bionic Wavelet transform. 

• A modified s-median thresholding method also proposed which has a tuning 

parameter. The parameter is chosen where SNR improvement posses highest value. 
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1.4 Application of This Research 

In this research a novel wavelet transform named Discrete Bionic Wavelet Transform 

(DBWT) is proposed. There are many application of this transform in biomedical signal 

like ECG, EMG, PCG denoising, compression, telemedicine etc. Moreover, the coefficient 

of the transform can be used to create features for support vector machine, artificial neural 

network etc. to detect and classify of different diseases. 

1.4 Organization of The Thesis 

The thesis is organized as follows. 

Chapter II: This chapter contains the background knowledge of the ECG signal, its 

characteristic and origin. Different types of noise and its origin are also discussed here. 

Chapter III: In this chapter source of noises in ECG signal are discussed. 

Chapter IV: In this chapter we proposed a simplified mathematical model for generating 

ECG in cardiac dysrhythmias which is fitted by non-linear least square techniques. 

Goodness of fitting is analyzed for evaluating the performance of the model in both time 

domain and frequency domain. 

Chapter V: In this section a novel wavelet transform is proposed where T-function is 

stemmed from heart-arterial interaction model. A modified S-median thresholding 

technique is also introduced for better performance. Performance of the proposed transform 

with modified thresholding techniques is compared with recent and well known wavelet 

techniques. 

Chapter VI: Finally the thesis concludes with some closing remarks and directions of 

further research are discussed in this chapter. 
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CHAPTER II 

THE FUNCTION OF HEART AND ECG 

2.1 Human Heart 

The human heart is a biological pump. It receives blood from veins and pumps the blood 

into arteries. The heart contains four chambers and several one-way valves as shown in 

Fig 2.1 a wall or septum divides the heart into left and right sides, in a double pump 

configuration. Each side is then further divided into an upper chamber called atrium, and a 

lower chamber called ventricle. The right side of the heart receives de-oxygenated blood 

from the venous systems which is then pumped to the lungs via the pulmonary loop where 

the carbon dioxide in the blood is exchanged for oxygen. The left side of the heart receives 

the oxygenated blood from the lungs and pumps it into the systemic loop for distribution 

throughout the body. The structure and function of heart are depicted in Fig. 2.1 and Fig. 

2.2. 

Supenor Pulmonary 
Vena Cava \ i---  Artery 

L. 

Right - 

Athum 

Inferior 
Vena Cava 

Right 
Wnthcle  

Aorta Pulmonary 
Vein 

Left 
Athum 

Pulmonary 
Vein 

Left 
Venthcle 

Septum 

Figure 2.1: Structure of heart 
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Figure 2.2: Human Heart chambers and blood flow diagram. Where grinded arrow 

represents the flow of contaminated (CO2) blood and normal arrow denotes fresh (02) 

blood. 

The human heart is myogenic (rnyo=muscle, geneori gin), that is, the signal for the heart to 

beat comes from the heart itself and not from an external source such as nerve cell. 

Although the heart is supplied with motor nerves that can influence either the rate of 

contraction or strength of contraction, the extrinsic nerves plays no role in the genesis of 
1 

the heart beat. If the extrinsic nerves (sympathetic and para-sympathetic) were cut, or even 

if the heart were to be removed from the body, it would continue to beat rhythmically as 

long as it was supplied with oxygen and vital nutrients, had wastes material removed and 

its normal temperature maintained. Thus the heart possesses unique ability to initiate and 

undergo a cardiac muscle or heartbeat by itself without any stimulation from rest of the 

body. This property of cardiac muscle is called inherent rhythmicity or automaticity. 

2.1.1 Control and Coordination of Myocardium 

The control and coordination of myocardium 'S (myomuscle, cardia=heart) inherent 

rhythmicity is dependent on a specialized system of conductive tissue within the heart. 

Before each contraction of the heart, an electric current must first pass through the 

myocardial fibers. The conduction system of the heart is responsible for generating these 

electrical currents and conveying them in an orderly fashion to all parts of the heart. The 



conduction system consists of the following areas of specialized conducting tissues: 

Sinoatrial (SA) node, intermodal and interatrial pathways, the atrioventricular (AV) node, 

the bundle of His, right and left bundle branch. 

The contraction of the various muscles of the heart enables the blood to be pumped. While 

the myocardial muscle cells can contract spontaneously, under normal conditions these 

contractions are triggered by action potentials originating from pacemaker cells situated in 

two areas of the heart - the Sino-Atrial (SA) and Atrio-Ventricular (AV) nodes. The SA 

pacemaker cells can spontaneously generate action potentials at 60-80 times per minute, 

but are themselves under the control of the sympathetic and parasympathetic nervous 

system. The SA node generally triggers the action potential for a heartbeat, but the AV 

node can take over this role if for some reason the SA node fails. 

2.1.2 Sequence of Events of Human Heartbeat 

The normal cycle of a heartbeat has the following sequence of events: 

The SA node normally generates an action potential i.e. electrical impulse, which 

spreads across both atria. The SA node, without neural and endocrine stimulation, 

spontaneously depolarizes at the rate between 60 to 80 times per minute. It paces 

the electrical and mechanical events of the entire heart. Therefore, the SA node is 

called the natural pacemaker. 

This spreading action potential results in the simultaneous contraction of the left 

and right atria via interatrial pathways. 

This action potential is also passed to the AV node via the inter-nodal conducting 

fibres, which is a part of the Junctional tissue between the right atrium and ventricle. 

During the contraction of the atria, blood from the atria is pushed to the respective 

ventricle. 

The AV node's own action potential is triggered by the action potential arriving 

from the SA node after a slight delay. The delay allows the atria to contract before 

excitation of the ventricles occurs. The delay also helps to protect the ventricles 

from rapid atrial impulses. The AV action potential is spreaded to the ventricles via 

further conducting fibers, resulting in a delay of about 11 Omsec, which is sufficient 



to ensure that the atrial contraction is over. 

After passing the AV node, the impulse is carried to the ventricles through the 

bundle of Hiss, a conmion bundle of specialized conductive fibers lying along the 

upper part of the interventricular septum. The bundle of Hiss runs down within the 

upper interventricular septum and branches into a right and left bundle. 

The right bundle branch carries the impulse to the right ventricle; the left bundle 

branch carries the impulse to the left ventricle. Each bundle branch further 

subdivided into numerous small conducting fibers called purkinje fibers, which relay 

the electric impulse dircctiv to ventriclar muscle, stimulating the ventricle to 

contract. 

The action potential triggers both ventricles to contract and push blood into the 

arterial system. The left ventricle supplies the systemic arterial system while the 

right ventricle supplies the pulmonary system where the blood is oxygenated by the 

lungs. 

All muscles of the heart then relax and blood continues to flow due to the elastic 

recoil of the arterial walls. During this period both atria and ventricles fill with 

blood as it returns from the body via the venous system. A series of one- way 

valves at the input and outputs of the atria and ventricles determine the direction of 

blood flow. 

In summary, the contraction of the cardiac muscle is associated with an electric impulse 

initiated at the sinuatrial node, which sweeps over the conduction path of the heart, 

preceding the mechanical change in the muscle. In each normal cardiac cycle, the 

electrical event follow the sequence : (1) Depolarization and repolarization of the (SA) 

node; (2) depolarization and repolarization of atrial muscles;(3) Depolarization and 

repolarization of AV node and bundle;(4) Depolarization and repolarization of purkinje 

network;(5) Depolarization and repolarization of ventricular muscles. The whole process 

can be shown in block diagram as Fig. 2.3. 
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Figure 2.3: Sources of electrical activity in heart. 
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2.2 Electrocardiography (ECG) 

The various propagating action potentials within the heart produce a current flow, which 

generates an electrical field that can be detected, in significantly attenuated form, at the 

body surface, via a differential voltage measurement system as a time record of the 

electrical events occurring during each cardiac cycle. Thus, heart rate can be accurately 

determined and abnormalities of rhythm and conduction can be identified. The electrical 

and mechanical device that records the electrical activity of each cardiac cycle is called an 

electrocardiograph. The study of electrocardiograph's application and its interpretation is 

called electrocardiography. 

So, ECG (or in German EKG) is a graphic representation of the electrical activity of the 

heart's conduction system recorded over a period of time. Under normal conditions, ECG 

tracings have a very predictable direction, duration, and amplitude. Because of this, the 

various components of the ECG tracing can be identified, assessed, and interpreted as to 

normal or abnormal function. The ECG is also used to monitor the heart's response to the 

therapeutic interventions. Because the ECG is such a useful tool in the clinical setting, the 

respiratory care practitioner must have a basic and appropriate understanding of ECG 

analysis. The electric current associated with and generated during the cardiac cycle is 

detected by placing a positive electrode and a negative electrode on the selected areas of 

the skin surface and recording the electric current changes occurring between the 

electrodes as the heart beats. The particular arrangements of two electrodes, one positive 

10 
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and the other negative, with respect to a third electrode, the ground electrode is called 

Lead. 

2.2.1 ECG Leads 

There are 15 Leads: 3 Standard bipolar limb leads (I, II, III), 6 precordial unipolar chest 

leads (V1,V2 V3,V4,V5,V6), 3 augmented unipolar limb leads (AVF, AVR,AVL) and 3 

bipolar chest leads (CR,CL,CF). The most commonly employed leads are bipolar limb 

leads and in this research ECE will be investigated by lead II. 

2.2.2 Morphology of ECG 

The ECG, over a single cardiac cycle, has a characteristic morphology as shown in Fig 2.4 

comprising a P wave, a QRS complex and a T wave. The normal ECG configurations are 

composed of waves, complexes, segments, and intervals recorded as voltage (on a vertical 

axis) against time (on a horizontal axis). A single waveform begins and ends at the 

baseline. When the waveform continues past the baseline, it changes into another 

waveform. Two or more waveforms together are called a complex. A flat, straight, or 

isoelectric line is called a segment. A waveform, or complex, connected to a segment is 

called an interval. All ECG tracings above the baseline are described as positive 

deflections. Waveforms bellow the baseline are negative deflections. 

I 
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Time (sec) 

- Figure 2.4: The human ECG signal over one cardiac cycle. 
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P wave 

The propagation of the SA action potential through the atria results in contraction of the 

atria (depolarization), producing the P wave. (Fig 2.4). 

PR interval 

The PR interval begins with the onset of the P wave (Pi) and ends at the onset of the Q 

wave (Qi). It represents the duration of the conduction through the atria to the ventricles. It 

is shown in Fig 2.4. The PR Segment begins with the endpoint of the P wave (Pi) and ends 

at the onset of the Q wave (Qi). It represents the duration of the conduction from the 

atrioventricular node, down the bundle of its end through the bundle branches to the 

muscle. It is shown in Fig 2.3. 

QRS complex 

The QRS complex corresponds to the period of ventricular contraction or depolarization. 

The atrial repolarization signal is swamped by the much larger ventricular signal. It is the 

result of ventricular depolarization through the Bundle Branches and Parkinje fibres. The 

QRS complex is much larger signal than the P wave due to the volume of ventricular tissue 

involved, although some signal cancellation occurs as the waves of depolarisation in the 

left and right sides of the heart move in opposite directions. If either side of the heart is not 

41 functioning properly, the size of the QRS complex may increase. As shown in Fig 2.4. 

QRS can be measured from the beginning of the first wave in the QRS to where the last 

wave in the QRS returns to the baseline. 

ST segment 

The ST segment represents the time between the ventricular depolarisation and the 

repolarisation. The ST segment begins at the end of the QRS complex (called J point) and 

ends at the beginning of the T wave. Normally, the ST segment measures 0.12 second or 

less. The precise end of depolarisation (5) is difficult to determine as some of the 

ventricular cells are beginning to repolarise. It is shown in Fig 2.4. 
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T wave 

The T wave results from the repolarisation of the ventricles and it has longer duration than 

the QRS complex because the ventricular repolarisation happens more slowly than 

depolarisation. Normally, the T wave has a positive deflection of about 0.5mv, although it 

may have a negative deflection. It may, however, be of such low amplitude that it is 

difficult to read. The duration of the T wave normally measures 0.20 second or less. 

QT interval 

The QT interval begins at the onset of the Q wave (Qi) and ends at the endpoint of the T 

wave (T), representing the duration of the ventricular depolarisationlrepolarisation cycle. 

The normal QT interval measures about 0.38 second and varies in males and females and 

with age. As a general rule, the QT interval should be about 40 percent of the measured R-

R interval. The QT interval is shown (Fig 2.4). 

Table 2.1 below provides aproxiinate values for the duration of various waves and 

intervals in the and typical Lead II ECG features and their normal 

values in sinus rhythm are rresenfèd in Table 2.2. 

Table 2.1: Descriptions of ECG signal components 

Segment Amplitude(mV) Duration (Sec.) Representation 

P 0.25 0.08 Polarization of Artia 

Q 25% of R Spetal Depolarization 

R 1.60 Ventricular Depolarization 

P-R Interval 0.12- 0.20 Time taken SA node to travel to 

Ventricle 

QRS 

Complex 

0.09 Ventricular depolarization and 

Contraction 

T 0.1 -0.5 0.16 Beginning of ventricular relaxation 

S-I segment 0.05-0.15 Interval between S and T Wave 
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Table 2.2: Typical lead II ECU features and their normal values in sinus rhythm at a heart 

rate of 60 bpm for a healthy male adult [1] 

feature Normal value Normal limit 

P width 110 ms ±20 ms 
PQ/PR interval 160 ms ±40 ms 

QRS width 100 ms ±20 ms 
QTc interval 400 ms ±40 ms 
P amplitude 0.15 mV ±0.05 mV 
QRS height 1.5mV ±0.5mV 

ST level 0 mV ±0.1mV 
T amplitude 0.3mV ±0.2mV 

Note: There are some variations among lead configurations. Heart rate, respiration patterns, 

drugs, gender, diseases, and ANS activity also change the values. QTc = aQT where a = 

(RR)-"2  About 95% of (normal healthy adult) people have a QTc between 360 ms and 440 

ms. Female durations tend to be approximately 1% to 5% shorter except for the QT/QTc, 

which tends to be approximately 3% to 6% longer than for males. Intervals tend to elongate 

with age, at a rate of approximately 10% per decade for healthy adults [1]. 



CHAPTER III 

NOISES IN ECG 

3.1 Sources of ECG Noises 

Electrocardiographic (ECG) signals may be corrupted by various kinds of noise. Typical 

examples are [5]: 

Power line interference 

Electrode contact noise 

Motion artifacts 

Muscle contraction (electromyography, EMG) 

Baseline drift and ECG amplitude modulation with respiration 

Instrumentation noise generated by electronic devices used in signal processing, 

Electrosurgical noise 

and other, less significant noise sources [6] . A brief description of each noise signal listed 

will be given below. 

Power Line Interference: 

50 ±0.2 I-Iz mains noise (or 60 Hz in many data sets) with an amplitude of up to 

50% of full scale deflection (FSD), the peak-to-peak ECG amplitude. 

Typical parameters: 

Frequency content 

Amplitude 

Electrode Contact Noise 

:50 or 60 Hz (fundamental in U.S 60 Hz other like 

Asia 5 0Hz) with harmonics 

:Up to 50 percent of peak-to-peak ECG amplitude. 

Electrode contact noise is transient interference caused by loss of contact between 

the electrode and skin, which effectively disconnects the measurement system 

from the subject. The loss of contact can be permanent, or can be intermittent, as 

would be the case when a loose electrode is brought in and out of contact with the 

skin as a result of movements and vibration. This switching action at the 

measurement system input can result in large artifacts since the ECG signal is 

usually capacitively coupled to the system. With the amplifier input disconnected, 

15 
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60 Hz interference may be significant. Electrode contact noise can be modeled as a 

randomly occurring rapid baseline transition (step) which decays exponentially to 

the baseline value and has a superimposed 60 Hz component. This transition may 

occur only once or may rapidly occur several times in succession. 

Characteristics of this noise signal include the amplitude of the initial transition, 

the amplitude of the 60 liz coniponcnt, and the time constant of the decay. 

Typical parameters: 

Duration : 1 sec. 

Amplitude : maximum recorder output. 

Frequency-60 Hz Time constant : about 1 sec. 

4.- 

Motion Artifacts 

Motion artifacts are transient (but not step) baseline changes caused by changes in 

the electrode-skin impedance with electrode motion. As this impedance changes, 

the ECG amplifier sees a different source impedance, which forms a voltage divider 

with the amplifier input impedance. Therefore, the amplifier input voltage 

depends on the source impedance, which changes as the electrode position 

changes. The usual cause of motion artifacts will be assumed to be vibrations or 

movement of the subject. The 

shape of the baseline disturbance caused by motion artifacts can be assumed to 

be a biphasic signal resembling one cycle of a sine wave. The peak amplitude and 

duration of the artifact are variables. 

Typical parameters: 

Duration :100-500 ms 

Amplitude :500 percent of peak-to-peak ECG amplitude. 

Muscle Contractions (EMG) 

Muscle contractions cause artifactual millivolt-level potentials to be generated. 

The baseline electromyogram is usually in the microvolt range and therefore is 

usually insignificant. It can be assumed to be transient bursts of zero-mean 

band-limited Gaussian noise. The variance of the distribution may be 

estimated from the variance and duration of the bursts. 
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Ivpical parameters: 

Standard Deviation :1 U percent of peak-to-peak FC( i amplitude 

Duration: :50 rns 

Frequency Content :dc to 10 000 1-Iz 

e) Baseline Drift and ECG Amplitude Modulation with Respiration 

The drift of the baseline with respiration can be represented as a sinusoidal 

component at the frequency of respiration added to the ECG signal. The amplitude 

and frequency of the sinusoidal component should be variables. The amplitude of 

the ECG signal also varies by about 15 percent with respiration. The variation 

could be reproduced by amplitude modulation of the ECG by the sinusoidal 

component which is added to the baseline.. 

Typical parameters: 

Amplitude variation :15 percent of peak-to-peak (p-p) ECG amplitude 

Baseline variation :15 percent of p-p ECG amplitude variation at 0.15 

to 0.3 Hz. 

1) Noise Generated by Electronic Devices Used in Signal Processing 

Artifacts generated by electronic devices in the instrumentation system . The 

input amplifier has saturated and no information about the ECG can reach the 

detector. This can be represented by white noise and colored noise. In this case an 

alarm must sound to alert the ECG technician to take corrective action. 

g) Electrosurgical Noise 

Electrosurgical noise completely destroys the ECG and can be represented by a 

large amplitude sinusoid with frequencies approximately between 100 kHz and 1 

MHz. Since the sampling rate of an ECG signal is 250 to 1000 Hz, an aliased 

version of this signal would be added to the ECG signal. The amplitude, 

duration and possibly the aliased frequency should be variable. 

Typical parameters: 

Amplitude :200 percent of peak-to-peak ECG amplitude. 

Frequency Content : Aliased 100 kHz to 1 MHz Duration-i - lOs 
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3.2 Different noise under study 

In this research the following noises are studied. Electromyographic interference because 

of its random properties and high frequency content. Baseline drift due to respiration 

because of its low frequency properties. In addition, white noise, colored noise, real 

muscle artifact, electrode movement and composite of the above mentioned noise are 

studied in this chapter. 

3.2.1 Synthetic noises 

White noise is a random signal with a flat power spectral density. It has all frequency 

components. Flicker noise or color noise is a type of low-frequency electronic noise with 

an inversely proportional power spectral density compared with the frequency. Resistance 

fluctuation is the main reason for flicker noise generation and that's why all resistors has 

flicker noise. For the current study, we have modeled the noise color by a single parameter 

representing the slope of a spectral density function that decreases monotonically with 

frequency by S(f)cs-  - 

Where f is the frequency, a'  is the variance of the original signal and fi is the slope; a 

measure of noise color. White noise (,8=0), pink or flicker noise (/3=1), and brown noise or 

the random walk process (92), are three of the most commonly referenced noises .White 

noise and color noise are simulated having 3dB input SNR using MATLAB. 

3.2.2 Real Noise 

Real noises are extracted from the noise stress test database in MIT-BIH [7]. Low-

amplitude, muscle noise is common in ECG. Different noises was tested on the ECG data 

recorded from BIOPAC data acquisition system [8]. The noisy signal was generated by 

adding Baseline Wander(BW), Electrode Movement( EM), and Motion Artifact (MA) 

(Noise Stress Test Database of MIT-BIH) and white and color noise were added to the clean 

ECG signals . Different types of noisy ECG signal are shown in Fig. 3.1. 
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Figure 3.1: Different types of noisy ECG signal. Original record are collected from MIT-

BIH arrythmia database of record no 101. 

3.3 Necessities of ECG Denoising 

Cardiovascular diseases (CVDs) are the most widespread cause of death in many 

countries all over the world. Electrocardiogram (ECG) is one of the most basic useful, 

easily available and low cost tools for the early diagnosis and evolution of many cardiac 

problems. ECG signal can potentially be corrupted by various types of noises which may 

lead to incorrect diagnosis. According to World Health Organization (WHO) 2003 reports 

CVDs made up 16.7 million, or 29.2% of total global deaths. It is widely accepted that, 

ECG is one of the reliable and low cost tools for detecting most of the CVDs. Like other 

electrical signal, ECG signals are corrupted by various kinds of noise. The presence of 

noise in signal systems can severely affect interpretation of the data and lead to an incorrect 

diagnosis. So ECG denoising is necessary to prevent misdiagnosis. 



CHAPTER IV 

ECG SIGNAL MODELING: A SIMPLE MATHEMATICAL APPROACH 

4.1 ECG MODEL 

Electrocardiogram (ECG) is a measurement of bio-electric potential produced by 

rhythmical cardiac activities contraction and relaxation of the cardiac muscle produced at 

SA node. This electric potential associated with the cardiac cycle can be detected at the 

surface of the body, amplified and recorded as a time record of each cardiac cycle. 

Different cardiac function such as heart rate, abnormality of rhythm can easily be identified 
POW 

by ECG that's why ECG signal modeling and processing is the most significant topic in 

biomedical signal analysis. 

Different techniques have been developed in the past for modeling of ECG. For feature 

extraction and data compression a pole-zero models of the ECG was represented by [9] 

Another research [10] reported ECG signals with pole-zero models, the poles and 

zeros form clusters and the clusters can be related to the constituent waves of the 

ECG. Transform-type methods like nonlinear transform using multiplication backward 

difference for detecting QRS. Another Orthonormal basis of Hermite functions for pattern 

recognition purposes in ECG was stated by [11] using only QRS complex. Polynomial 

approximation modeling was used to model the ECG for data compression [12]. Other 

researchers like [13] used parametric modeling of the discrete cosine transform of the 

ECG for data compression. However, this types of modeling do not provide a direct 

representation of the constituent waves in the ECG as medical experts are needed for 

making diagnoses. 

Chip Away Decomposition (ChAD) algorithm which is an iterative method for Gaussian 

parameter determination was used for decomposing and representing the ECG model by 

[14]. References [15] [16]improved the proposed model in Reference [17] with accounting 

for T wave asymmetry. Modeling of ECG with seven Gaussian functions have been 

investigated by Clifford et al. [18] by means of 3D state-space model which require 

numerical integration using a fourth-order Runge-Kutta method. S. Paravena et al. [19] 

used a large number of Gaussian with no base line drift factor. They used 4 to 133 

20 
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Gaussian function based on minimum bank method and zero crossing method. But fitting 

this model to the real ECG signal, starting and end point of any interval using zero crossing 

method is not efficient. Moreover, increasing number of Gaussian functions require much 

time to run the program. Authors in [20] proposed a model using Gaussian function but 

they cannot represent QRS wave individually as well as it is unable to fit with the real ECG 

at a significant level. They used double differentiation of the Gaussian function which is 

time consuming and need complex mathematical operation. The fitting techniques were 

inefficient because they were not capable to fit any negative values in their model which 

was quite common in real data. 

This work proposes a Gaussian wave base model which can simulate ECG wave as well as 

P, Q, R, S and I wave individually and is very simple as compared to compared to earlier 

mentioned model. In addition, there is no needing for preprocessing the baseline like [20], 

the model can automatically shift the baseline as normally exist in the real ECG. The 

coefficient of the model is calculated section by section by nonlinear least square technique 

using gauss-Newton algorithm. The performance of the proposed model and fitting 

algorithm are evaluated by using several morphologically different waveforms from 

recorded and collected ECG database thereby exemplifying model performance for each 

morphology. To understand the effectiveness of fitting, goodness of fitting are calculated. 

Real data are pre-processed for better fitting by using wavelet base filtering with soft 

thresholding technique. Finally, the frequency-domain analysis of ECG signals is 

demonstrated. 

4.1.1 Proposed Approach 

ECG signal is the combination of P. Q, R, S and T waves and it has more and less 

symmetric "bell curve" shape that quickly falls toward both sites which is one of the 

characteristic of Gaussian wave. Gaussian function is widely used in signal processing 

where the signals are illustrated as normal distribution. The modeling approaches, would 

prefer a model in a way that the individual waves and the anomalies between them 

are represented by a small set of model parameters, and model coefficients should 

correspond to a particular wave of interest. 
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If i E(P,Q,R,S,T) than Gaussian wave for each component of ECG wave have following 

parameter: A1  is height of curves peak, t1  is the center position of the peak and B1  controls the 

width then ECG components can be written as: 

•4" (,_,)2 

2B 2  
P wave: Ae p ) + C

P (4.1) 

Q wave: Aq e '1' + Aq2e '12 + Cq (4.2) 

((:1)2  
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+ C r (4.3) 
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 S wave : Ae 
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T wave : A1e 2B J + (4.5) 

Simply the general equations of 4.1 to 4.5 can be written as 

((z—z )2) 
-I --i L 

= A,e 28, 
 + A,1e '1  +c1 (4.6) 

lEp,r,S,1 iEq,j1 

0.2 - Modeling of ECG componep nd Complete ECG signal 

-—Pwavel —Owavel 

0.1 ------------- 

9 

A I__Rwavell 

fli 

H Twavel 
0.2 

0 

Figure 4.1: ECG component and complete ECG signal. Here individual ECG components 

are placed to their respective places using shifting and zero padding techniques. 
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If we perform normal sum of Eq. (4.6), the individual P, Q, R, S. T component of ECG will 

be overlapped with each other wave. To solve this problem, ECG components are fitted to 

their right position using shifting and zero padding method (shown in Fig. 4.1). 1-lere, c1  can 

be used for model fitting to adjust the baseline, noisy signal generation which is an extra 

feature of this model. 

4.1.2 Novelty of The Proposed Approach 

Though generating ECG by using signal like Gaussian is done by [19] [20] the novelty of 

our proposed model are as follows: 

The proposed system can generate ECG and is capable of simulating various kind of 

practical phenomena such as brachycardia (slow heart rate), tachycardia (fast heart 

rate) and HRV (Heart Rate Variability) etc. 

It does not need three dimensional state space which is difficult for realization and 

simulation. 

An extra baseline parameter ci  of the model reduces the pre-processing of signal by 

automatically adjust the baseline. 

Noisy ECG signal can be modeled simply by adding a noise parameter in c1  with the 

model. 

This section discusses the experimental recoding of ECG signal, preprocessing, fitting 

procedures, FFT method, and performance evaluation parameters. 

4.2 Material and Methods 

4.2.1 Experimental Recording of ECG 

The experiment is performed to collect the data for this research work. The subject is a 

male of 26 years old with no known cardiovascular disorder. For ECG and measurement, 

required equipments are BIOPAC electrode lead set (SS2L), BIOPAC disposable vinyl 

electrodes (EL503), BIOPAC data acquisition unit (MP36) [8] [76] with cable and power. 

For ECG measurement, white lead was placed on right forearm, red lead on the left leg and 

the black lead was placed on right leg as shown in Fig. 4.2. Subjects was seated in a chair 

relaxing and asked to be as still as possible to ensure lower motion artifact and EMG signal 

on the data. After running calibration sequence ECG data was recorded. 
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Figure 4.2: (a)MP36 BIOPAC system (b)Placement of lead in ECG measurement. 

4.2.2 Preprocessing 

The acquired ECG data are preprocessed to remove noise, artifacts, and baseline wander 

using Savitzky-Golay Filtering [21][73].To this end, two frequency-selective fourth-order 

Butterwort filters [22] are used: one high-pass filter with cutoff frequency at 0.5 Hz and one 

low-pass filter with cutoff frequency at 90 Hz. To suppress the interferences from the 

power line grid, a notch filter centered around 50 was used. Again, this filter is 

implemented as a fourth-order Butterworth filter like [23]. 

4.3 Nonlinear Fitting 

For fitting the mathematical model with the real world data statistical hypothesis testing 

like: test of normality of residuals, chi square test, analysis of variance, least square test etc 

[24] is needed. As it observed that, ECG model is nonlinear in the coefficients. So the 

nonlinear least square techniques can be the best choice for this fitting. Nonlinear models 

are more difficult to fit than linear models because the coefficient cannot be estimated 

using simple techniques instead an iterative approaches required to solve this problem. 

Consider that an ECG function y=f(x) of a variable of x tabulated at I values, where 

yj=f(xj), y2=f(x2) ... ... ... ... ... y1=(x). Moreover, assuming that the known analysis form the 

function depending onj parameters f(x;,Ø2  ............... Ø) and the set of i equation will be 

Ar 
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f(x1 ;Ø1 ,ç62 ...., 0) 
y2=f(x2;Ø1,Ø2 .... ,Ø1) 

(47) 

y1=f(x1;Ø1,Ø2 .... ,Ø1) 

We have to solve the equation to obtain the value of çi,q$2  .............. Ø which satisfies our 

model properly. At first an initial value is picked for 0k  and defined 

d/3kykf(Xk.ØPO2........... (4.8) 

And then the estimation for the change dczk  needed to reduce d/3k to 0 

k djik  =  i ±f- dcj (4.9) 

For k=1,2.....,i where 

0(0I'02'...'øj) (4.10) 

This element can be written as a .1  matrix of partial derivatives of 

df df 
dØ1 ........... df 

df 
  -- '411 

k1 dç61•
dq$) 

df df  [

io  
dçb1 .......... d 1  

Then, 

dflk = Ak,(4'øI (4.12) 

And the brief equation is 

dfi=Adç? (4.13) 

If by defining aATA  and b=ATd/3 

We find, 
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ad95=b (4.14) 

Then Eq. (4.14) is solved for dØ using Gaussian elimination techniques. This offset is 

applied to 0 and a new dØ is calculated. By interactively applying this procedure until the 

elements of dq$ become smaller than desired limit, a solution is obtained. The sum of 

square residuals is calculated by R2  =djJ.d/3after the final iteration. 

4.4 Performance Evaluation Parameters 

4.4.1 Fourier Transform 

As Fourier transform of a Gaussian function is also a Gaussian function [25] and the Fourier 

transform of(4.6) can be expressed as [77]: 

fly 

b, (t-: )2 -
ja A1e - e" (4.15) 
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Where, b
, =i 2Bt (4.16) 

Ii 

LT 
As can be observed from Eq. (4.15), there is an inverse relationship width bi  between time 

domain and frequency domain, because frequency domain Gaussian function is not 

shifted. So is simply the sum of the corresponding ECG component. 

4.4.2 Coherence 

The magnitude squared coherence (MSC) estimate is a function of frequency with values 

between 0 and 1 that indicates how well the model ECG corresponds to real ECG at each 

frequency. The MSC estimate C., of the input signals (x and y) using Welchis  averaged, 

modified periodogram method [26][74]. The MSC is nothing but a function of the power 

spectral densities (P,(O and P(0)  of x and y and the cross power spectral density (P(f)) 

ofx and y. 

Ar 
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cxy 
= P(f)PYY  (f) 

(4.17) 

In this research; x, y represents the model and real ECG signal respectively and x and y 

must be the same length. 

4.4.3 Power spectral density (PSD) 

Power Spectral Density (PSD), which describes how the power of a signal or time series is 

distributed with frequency [26] [74]. It shows at which frequencies variations the signal 

power are strong and at which frequencies variations the signal power are weak. Energy 

can be obtained within a specific frequency range by integrating PSD within that frequency 
4 range. Computation of PSD is done directly by the method called FFT or computing 

autocorrelation function and then transforming it. 

4.4.4 Cross-correlation coefficient 

If x(n) be the recorded or collected EGG signal and xm  (a) be the EGG signal generated by 

the mathematical model, then cross-correlation coefficient p between x(n) and Xm  (n) is 

given by [1]: 

([x(n) Px]km(n) Pm]) (4.18) 

Where (.) denotes the average calculated by summing over the observed time series, 

indexed by n. where j.t,, and a,, are the mean and standard deviation of x(n), and pand  o 

are the mean and standard deviation of Xm(fl).  A value of p 1 reflects a strong 

correlation, p --1 implies a strong anticorrelation, and p - 0 indicates that x(n) and x. (n) 

are uncorrelated. This means that a value of p = 1 suggests that model and real EGG are 

identical. 

4.4.5 Error Evaluation Parameters 

If x(n) be the recorded or collected EGG signal and x. (n) be the EGG signal generated by 

the mathematical model, then Mean Square Error (MSE) is defined as [27]: 
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MSE = [x(n) - x, (n)j (4.19) 

[x(n) - x m ( fl )1 2  
The normalized form of MSE is NMSE = 

N-I 
(4.20) 

Another measurement is Root Mean Square Error, which is 

i RMSE=.j[X(fl)_Xm(fl)] 2 (4.21) 

()]2 

The Normalized version of RMSE is NRMSE =F m 
(4.22) 

Percent Root Mean Difference (PRD) can be determined by Eq. (4.23). 

Fn= 

m
(fl)] 2  

PR!)- x100% (4.23) 

4.5 Evaluation of the model 

To evaluate the performance of our model we compared our ECG model with a healthy 

subject's ECG recorded by BIOPAC data acquisition system. The model parameters (Table 

S 4.1) were calculated by nonlinear least square technique using Gauss-Newton algorithm 

having 95% confidence level to fit the model with Real ECG signal these parameter were 

used. The comparison of generated and real ECG was shown in Fig. 4.3. 

Table 4.1: Coefficient to fit the model with BIOPAC recorded ECG 

Ai  B1  Ii c1  

P 0.182 24.5 237 -0.05607 

Q 
I J=i 
I— 

-1.6 278.6 27.02 
1.496 

J=2 -0.1157 12.58 78.44 

R 107.4 29.11 55.79 -1.278 

S -0.4705 9.622 14.43 -0.0682 

T 0.3232 41.98 179.5 -0.0479 
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Figure 4.3 : Comparison between real and model ECG. 

The frequency-domain evaluation of the model also represented in Fig.4.4, which showed 

the almost same analytical frequency spectrum generated by Discrete Fourier Transform 

(DFT) between real and model ECG. 

Frequency-domain Comparison between Real and Model ECG 

Model ECG 

(I 
-Real ECG 

I, 

II I  
i t  \ 

I I I -- 

Frequency (Hz) 

Figure 4.4: Frequency —domain comparison between real and simulated model. 

rl 

'II) 

35 

30 

25 

C 

20 

o 15 

10 

5 

C 



30 

This model not only simulates normal ECG but can generate beat abnormalities of heart like 

brachycardia and tachycardia. From Fig. 4.5, brachycardia is simulated for 5 sec possessing 

4 beat. So the beat per minute (BPM) is 48. Sinus rhythm and tachycardia were simulated in 

the same way. 

2 
ECG simulation by Model 

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 

1. 1 

nusRh 

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 

tachycardia 

Time (Sec) 

Figure 4.5: ECG simulation by model for 5 Sec. For brachycardia with BPM 48, sinus 

rhythm with BPM 72, tachycardia with BPM 108. 

In addition, morphologically different physiological or pathophysiological conditions can 

also be simulated by the model. For example, ECG waveform was selected from the MIT-

BII-I Intracardiac atrial fibrillation database (iafdb) for atrial fibrillation modeling [7]. By 

properly fitting the model with the selected waveform, it was clear that the model can 

satisfi the atrial fibrillation condition represented by Fig. 4.6. 

The proposed model was capable of replicating many important features of the human ECG 

wave. Moreover, many of the morphological changes such as atrial fibrillation and 

tachycardia, brachycardia can be fitted by selecting proper model parameter. Moreover, 

noisy ECG signal can be modeled by simply adding a noise parameter with the model. A 

realistic ECG database can be created by fitting the model with individual subject's ECG. 

This can be used for further analysis and for education and research purpose. 

Ei 
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2.5 
Comprislon between Real (MIT-BIH)and Model ECG 

Model ECG 
MIT  ECG 

2 

15 

E 

05 

C 
0 20 40 60 80 100 120 140 160 

Samples 

Figure 4.6 : Modeling of atrial fibrillation of MIT-BTH iafdb database, Record No: 

iafl_svcm(age 81, female). 

Base line drift factor in the model helps the model to fit the model effectively. It may be 

omitted if the real ECG's base line lies on the zero line. However, the model fits the normal 

ECG with MSE of 0.0023 and atrial fibrillation with MSE of 0.0291. In addition, higher 

cross-correlation coefficient of 0.9208 between model and real ECG indicates the 

outstanding performance of the model .The proposed model can be improved for better 

fitting, model-based denoising, compression and neural network based classification etc. 

which is currently under investigation. Finally, it hope that this simple model will provide 

an efficient tool for testing and processing of the ECG signals with different level of noise 

and/or motion artifact. 

4.6 Noisy ECG Generation 

As real ECG is contaminated by different noises, so noise should be taken into account for 

more realistic modeling. Various noises are modeled in the following session. 

Another feature of the model is that, it can generate realistic and simulated noisy ECG 

signal. Additional C, in Eq. (4.6) can be used as noise parameter in the model. Different 

noisy ECG signals were simulated for the input SNR of 3dB in Fig 4.7. 

'0 
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Figure 4.7: Different types of noisy ECG signal. 

The model was not only evaluated in the time domain but also in the frequency domain. 

Figure 4.8 and Fig.4.9 showed the power spectral density (PSD) and magnitude square 

coherence (MSC) respectively. 
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Figure 4.8: Power spectral Density of Real and model signal using Welch method. 
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Figure 4.9: Magnitude Square Coherence between real and model Signal. 

In Fig 4.8, the model and real ECG were reasonably similar and the MSC in Fig 4.9, was 

exists I in most of the frequencies which was a better indication of the proposed model. By 

using Eqns. (4.19)-.(4.23), MSE, NMSE, RMSE, NRMSE and PRD for normal and atrial 

fibrillated ECGs were shown in table 4.2. 

Table 4.2: Statistical analysis of the model 

Goodness of fitting Value 

(BIOPAC) 

Value (MIT-BIH) 

MSE 0.0023 0.0291 

NMSE 0.0584 0.0616 

RMSE 0.0485 0.1705 

NRMSE 0.0034 0.0038 

PRD 0.3412 0.3796 

•(_••J 



CHAPTER V 

ECG DENOISING TECHNIQUES 

10 

As mentioned earlier that different noises can be contaminated with ECG signal. So 

denoising is necessary. In this chapter different denoising techniques are discussed. 

5.1 Wiener filtering 

Wiener filter theory provides for optimal filtering by taking into account the statistical 

characteristics of the signal and noise processes. The filter parameters are optimized with 

reference to a performance criterion. The output is guaranteed to be the best achievable 

4 result under the conditions imposed and the information provided. The Wiener filter is a 

powerful conceptual tool that changed traditional approaches to signal processing. 

The noise n(t) is uncorrelated with the ECG signal d(t) . Then the corrupted ECG can be 

represented as: x(t) = d(r) + n(t) (5.1) 

where X(w) , D(w) , N(w) represent the Discrete Fourier Transform of x(t), s(t) , n(t) 

respectively. The frequency domain version of Eq. 5.1 is as follows: 

X(Co)=D(w)+N(ai) (5.2) 

= D(2 + IN(a)12 (5.3) 

Under the assumption of stationary noise uncorrelated with the target ECG signal, we have 

an alternative stochastic optimization method to suppress noise, based on minimizing the 

mean square error between estimated object signal value X(co) and the original signal 

value D(v). The formulation of the optimal Wiener filter is as follows. 

Sd(w) 

Sd ((0)+ S,7 (a) 
(5.4) 

Where Sd(co) , S(a) represent the estimated power spectra of the object signal and the 

background noise, which are assumed uncorrelated and stationary. In the pseudo stationary 

34 
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case of ECG, we again resort to the frame based analysis where for each frame, the 

transfer function of the Wiener filter is calculated and the ECG is recovered through: 

'1 15(w) = X(w)(w) (5.5) 

Obviously the Wiener filter requires prior knowledge of both ECG and noise statistics and 

they have to be estimated in real practice. By studying [1] we see that we either need a 

good model of the noise spectrum S,,, or a good model of the ECG itself, such as the ideal 

underlying source signal, S = Sd + S,,. The noise component in an ECG is highly 

unpredictable and often drive by exogenous impulses, such as electrode motion, that have 

little or no correlation with the current ECG source [1]. Therefore, in the application of the 

Wiener filter to ECG filtering, it is more practical to make an approximate model of the 

ECG and use this model to estimate the power spectrum of the signal shown in Fig 5.1. 

CD 
C 

Wiener Fiker 
2 
0 

.2 -2 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
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Figure 5.1: (a) Application of Wiener filter to a noisy ECG signal of SNR 5dB. (b) Power 

spectral density of different signal during wiener filtering process. 

Unfortunately, one of the Wiener filter assumptions is that both the signal and noise are 

statistical (not deterministic) or stationary signals. Since the coordinated ensemble cardiac 

activity that manifests as an ECG appears to have some deterministic or non-stationary 

component, the performance of the optimal Wiener filter is diminished. In addition, a 

Wiener filter is not an adaptive filter because the theory behind this filter assumes that the 

inputs are stationary i.e. its joint probability distribution does not change when shifted in 

time or space. Consequently, parameters such as the mean and variance, if they exist, also 

do not change over time or position. More details can be get in [28] 

5.2 Adaptive filter: LMS(Least Mean Square) filter 

An adaptive filter is one whose coefficients changes with time. The LMS Filter can be 

implemented by an adaptive FIR filter algorithm. It is a gradient descent algorithm; it 

adjusts the adaptive filter taps modifying them by an amount proportional to the 

36 
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instantaneous estimate of the gradient of the error surface. It estimates the filter weights, or 

coefficients w(n), needed to minimize the error, e(n), between the output signal y(n) and 

the desired signal, d(n) [29] [30] as shown in Fig 5.2 and the output denoised ECG is 

shown in Fig 5.3. 

Figure 5.2: Block diagram of LMS filter. 

This algorithm is defined by the following equations. 

- 
y(n) = wT(n 

- 1)x(n) (5.6) 

e(n) =d(n)—y(n) (5.7) 

w(n) = w(n —1) + f(x(n), e(n),p) (5.8) 

The weight update function for the LMS adaptive filter algorithm is defined as 

f(x(n),e(n),p) = pe(n)x(n) (59) 



The variables are as follows. 

Variable Description 

n The current time index 

x(n) The vector of buffered input samples at step n 

x*(n) The complex conjugate of the vector of buffered input samples at step n 

w(n) The vector of filter weight estimates at step n 

y(n) The filtered output at step n 

e(n) The estimation error at step n 

d(n) The desired response at step n 

p The adaptation step size 

OriginalSignal 
2 

I I I I I 

0 500 1000 1500 2000 2500 3000 3500 4000 
Noise + Signal 

2 

0 

-2 1 11 I I I 1 1 1 I 
0 500 1000 1500 2000 2500 3000 3500 4000 

Filtered Signal 
2 I1 1 - -  

0 500 1000 1500 2000 2500 3000 3500 4000 

Figure 5.3: Denoising using LMS algorithm of step size 0.005 . Here record are taken from 

MIT-BIT-I arrhythmia database (Record no 105). 

38 



39 

The LMS filter is a simple and efficient approach for adaptive noise cancellation; however 

it is not appropriate for fast-varying signals like ECG due to its slow varying convergence 

and due to the difficulty in selecting the correct value for the step size u [28]. 

5.3 Wavelet Transform 

Another method for isolating transient (nonstationary) changes in a time series involves 

combining the time-domain and frequency-domain analysis of a signal. Such an approach 

has the advantage of combining both these paradigms to facilitate filtering of both 

persistent signal sources within the observation, and short transient sources of noise. Joint 

time-frequency analysis (JTFA) is then essentially a transformation of an N-point M-

dimensional signal (usually where M = I for the ECG) into an M + 1-dimensional signal 

[I]. The short-time Fourier transform (STFT) is a classic example of this type of 

transformation which involves repeated FT calculations over small windows that are 

stacked up over time to construct a spectrogram(a plot of frequency against time) [I]. 

The wavelet transform (WT) is a popular technique for performing JTFA and belongs to a 

family of JTFA techniques that include the STFT, the Wigner Ville transform (WVT), the 

Zhao-Atlas-Marks distribution, and the Flilbert transform (All the JTFA techniques have 

been unified by Cohen [31]). 

Unfortunately, all except WT suffer from significant cross-terms which reduce their ability 

to locate events in the time-frequency plane. Reduced interference distribution techniques 

such as the exponential or Choi-Williams distribution, the pseudo WVT, and the 

Margenau-Hill distribution, have been developed to suppress the cross terms to some 

extent, but in general, they do not provide the same degree of (time or frequency) 

resolution as the WT [32].Moreover, unlike other fixed resolution JTFA techniques, the 

WT allows a variable resolution and facilitates better time resolution of high frequencies 

and better frequency resolution of lower frequencies. Although wavelet analysis has often 

been quoted as the panacea for analyzing non-stationary signals (and thereby overcoming 

the problem of the Fourier transform, which assumes stationary), it is sometimes important 

to segment data at non-stationary. An example of such a situation may be a sudden change 

in dynamics that requires a change in the chosen analysis technique. Of course, JTFA may 

aid in defining a point of segmentation. 

1 
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In the following section, brief overviews of some of the key concepts in wavelet denoising 

are presented from the beginning of Fourier transform. 

5.3.1 Fourier Transform 

The most well-known of these is Fourier analysis, which breaks down a signal into 

constituent sinusoids of different frequencies. Another way to think of Fourier analysis is 

as a mathematical technique for transforming our view of the signal from a time-based one 

to a frequency-based one like Fig 5.4. 

Time 

Figure 5.4 : Fourier transform of a signal. 

For many signals, Fourier analysis is extremely useful because the signal's frequency 

content is of great importance. Fourier analysis has a serious drawback while transforming 

to the frequency domain, time information is lost. When looking at a Fourier transform of a 

signal, it is impossible to tell when a particular event took place. If a signal doesn't change 

much over time - that is, if it is what is called a stationary signal - this drawback isn't 

very important [33]. However, most interesting signals contain numerous non-stationary or 

transitory characteristics: drift, trends, abrupt changes, and beginnings and ends of events 

like ECG . These characteristics are often the most important part of the signal and Fourier 

analysis is not suited to detecting them. 

5.3.2 Short -Time Fourier Transform 

In an effort to correct this deficiency, Dennis Gabor (1946) adapted the Fourier transform 

to analyze only a small section of the signal at a time - a technique called windowing the 

signal. Gabor's adaptation, called the Short-Time Fourier Transform (STFT), maps a signal 

into a two-dimensional function of time and frequency like Fig 5.5. 
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Figure 5.5: Short time Fourier transform of a signal. 

The STFT represents a sort of compromise between the time- and frequency-based views 

of a signal. It provides some information about both when and at what frequencies a signal 

event occurs. However, we can only obtain this information with limited precision, and 

that precision is determined by the size of the window [33]. 

While the STFT's compromise between time and frequency information can be useful, the 

drawback is that once we choose a particular size for the time window, that window is the 

same for all frequencies. Many signals require a more flexible approach - one where we 

can vary the window size to determine more accurately either in time or frequency. But it 

is desired that since the frequency of a signal is directly proportional to the length of its 

cycle, it follows that for high-frequency spectral information, the time-interval should be 

relatively small to give better accuracy and for low-frequency spectral information, the 

time-interval should be relatively wide to give complete information. In other words, it is 

important to have a flexible time-frequency window that automatically narrows at high 

"center-frequency" and widens at low "center-frequency". Fortunately, Wavelet analysis 

represents the next logical step: a windowing technique with variable-sized regions. 

Wavelet analysis allows the use of long time intervals where we want more precise low 

frequency information, and shorter regions where we want high frequency information. 

5.3.3 Continuous Wavelet Transform 

Literally "wavelet" means "a small wave". Mathematically it is a function that has finite 

energy and zero mean. It is derived from short window Fourier transforms (SIFT) whose 

main characteristics are the multiresolution, consisting an accepted way for the analysis of 

transient, nonstationary characteristics Such as drift, trends, abrupt changes, beginning and 
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end of events, breakdown points and discontinuities in higher derivatives and self 

similarity as bioelectrical signals are. 

Here's what this looks like in contrast with the time-based, frequency-based and time-

frequency based views of a signal as represented in Fig 5.6 [33] [34]: 

E 4.) 
I.. 

cJ 

Time Amplitude Time 
Time Domain (Shannon) Frequency Domain (Fourier) SIFT (Gabor) 

(a) (b) (c) 

 

f 

fo  
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to ti t 

Bionic Wavelet (BWT) 
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Figure 5.6: Different types of plane represented by (a) Time domain ,(b) Frequency 

domain,(c) Time-frequency (STFT) domain (d) time—frequency resolutions by WT (e) 

time—frequency resolutions by BWT. The window-widths along the time and frequency 

axis represent the time and frequency resolutions of TFR, respectively. The shadowed and 

blank windows represent the time—frequency resolutions of BWT and WT, respectively. 
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The wavelet analysis is one way to localize events in time (Or space) and frequency. The 

goal of wavelet analysis is to create a self-of basis functions (i.e, expansion function) so 

that transform will give an informative, efficient and useful description of the target signal. 

In a nutshell, the continuous wavelet (CWT) is nothing but a set of the inner product of the 

observed signal f(t) with the shifted and scaled mother wavelets Pa,t(t) p() where 

t and a >0 represent the time shift and scale variable respectively. 

<f(t), Oa,T>  WTf (a, r) = ff(t)ip (-) dt (5.10) 

It is noted that any function cannot be treated as a mother wavelet. Only those functions 

can be treated as mother wavelet function which can satisfy the admissible condition of 

wavelet [35]. 

Like STFT, a wavelet transform can represent the time frequency variation of the spectral 

components, but it has a different time frequency resolution which can correlate f with 

la,t by applying the Fourier Parseval formula, it can be written as integration of frequency 

[36]. 

Wf(a,'r) = f f(t)i,b(t)dt Lf f(CO)dü)  
21r - 

The wavelet coefficient Wf(a, t) thus depends on the values off(t) and f(co) in the time- 

frequency region where the energy of 1/'a T  and is concentrated. Time-varying 

harmonics are detected from the position and scale of the high amplitude wavelet 

coefficient. 

In time lPa,rlS  centered at t with spread proportional to a and its Fourier transform is 

calculated from [36]. 

e T(I (au) (5.12) 

Where i is the Fourier transform of ip. The time and frequency spread are respectively 

proportional to a and ! . That means lower scale represents the higher frequency (rapidly 

changing details) and higher scale represent the opposite phenomena. Easily it can be 

demonstrated that pseudo frequency of any scale easily determined by [a = -, where A is 
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the sampling period. In this way we can represent the time scale wavelet transform to time-

frequency representation. 

Then the ratio of the center-frequency to the width of the frequency band is (called Q- 

factor) given by = --- ,which is independent of the location of the center- 
2A/a 2A 

frequency. This is called "constant-Q" frequency analysis [37]. The importance of the time-

frequency window is that it narrows for large center-frequency w */a2  and widens for small 

center-frequency w */al  shown in Fig 5.7. 

Figure 5.7: Understanding constant—Q filtering of wavelet in the time-frequency plane. 

5.3.4 Discrete Wavelet Transform (DWT) 

As CWT is much redundant representation, it can be described by setting a = a and 

T = kx0awith i and k are integers and a0  is real valued greater or equal 1. A practical 

choice oft0  and a0  consists on setting a0  to 2 and -ro  to 1 that is a = 2' and r = k2' which 

is dyadic or octave wavelet transform [35]. 

i,k(t) = 2(21t - k) (5.13) 

So for a given signal f(t),the DWT decomposition can be represent by 

f(t) = _a,q(2_Nt 
- K) + 7 l _dj,k2lP(2Jt - K) (5.14) 



45 

Where aNK represents approximate coefficients of level N while d(j=1,2 ......... N) 

represent detailed coefficient or wavelet coefficient at levelj. i(t) is the wavelet while V(t) 

is a companion function, named scaling function. 

The DWT consists of applying the discrete signal to a bank of octave band filters based on 

low and high pass filters h(n) and g(n) respectively. More precisely, the functionf(t) would 

be expressed as signal expression point of view like 

f(t) =I aL(k) Lk(t) + d1(k) J ,k(t) (5.15) 
kEZ j=1 kZ 

Now if we relate the above equation with filter bank point of view then [38] 

d(n) =< f,yi > = g(2n - k) a(n) (5.16) 

aL(n) =< f,q',,, > = 
1 

_==h(2n —k)aLI (n) (5.17) 

Where ço(t) is called scaling function associated to the wavelet function i,u(t) goverened by 

the following condition $(t)d1 =1, h(n) and g(n) are the low pass and high pass filter of 

the filter bank. A 3-level decomposition of orthogonal wavelet basis is illustrated in 

Fig.5.8, that is, detail coefficients at all the three levels (D1, D2, and D3) and approximate at 

deepest decomposition level (A3). Approximate coefficients often resemble the signal 

itself. 

Now for calculating approximation and details, we need to know the coefficient of low 

pass h(n) and high pass g(n) .In the following section wavelet decomposition is performed 

using Daubechies wavelet of length 4 and 6. 
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Figure 5.8. Wavelet decomposition and reconstruction filter model. 

5.3.4.1 Daubechies wavelet 

The Daubechies wavelet are the family of orthogonal wavelet defining a discrete wavelet 

transform and characterized by a maximal number of vanishing moments for some given 

support. With each wavelet type of this class, there is a scaling function which generates an 

orthogonal multiresolution analysis [38]. It is one of the brightest wavelet on research 

which is compactly supported. 

D-4 means low pass and high pass filter coefficient has 4 coefficients each which obey 

orthogonality condition of the wavelet. 
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This two equations show that, the scaling and wavelet coefficients at different levels of 

scale can be obtained by convolving the expansion coefficient at scale j by the time-

reversed and down sampling ( shown in the matrix) [39]. For calculating h(n) and g(n) ,we 

use a complementary derivation of Daubechies wavelet using an orthogonal transformation 

matrix, W8  in block format 

h3  h2  h1  h0  0 0 0 0 

0 0 h3  h2  h1  h0  0 0 

0 0 0 0 h3  h2  h1  h0  

w = 
h1  h0  0 0 0 0 h3  h2  E Hi 

93  92  91  90  0 0 0 0 
= 

(5.18) [j 
0 0 93  92  91  90  0 0 

- 000 0 93929190 

91  g0  0 0 0 0 93  92  

Where H denotes upper matrix and G denotes the lower matrix. Now computing W8W8T 

and insisting that W8  is orthogonal gives that 

w8w8T 
IG 
z!j[HT 

 I
GT Ij''HT HGT i [14 104

J [GHTGGT][J7] (5.19) 

where 14  is 4 x 4 identity matrix and 04  is 4 x 4 zero matrix. Lets analyze and calculating 

HHT from above, we get 

edO d 1 000 

14 = HH7'= d c d 0 = 0 1 0 0 (5.20) 
0 d cd 001 0 
dOd c 0001 

where c= + h + + h and d=h0h2+h1h3  and by definition of orthogonality c=1 and 

'S 

Nowweget h+h+h+h=1 (5.21) 

h0h2+h1h3  =0 (5.22) 

If we analyze HGT  and GHT,  it becomes zero and GG7  is same as HH 
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As h(n) is low pass filter coefficient and we need four equation to get the four filter 

coefficient for D-4. By imposing on h(n) using Fourier series 

H(w) = h0+hje''+ h2e21w+ h3e31M and for low pass H(0)=1 and H(s'r) =0. 

We get H(0)=h0+h1+h2±h3=1 (5.23) 

and H(r) =h0-h1 -h2-h3=0 (5.24) 

But it can be proved that to maintain orthogonality H(0)I = 

i.e.IH(0) =h0  +h1  +h2  +h3 = -v . (5.25) 

An additional low pass condition H'(7r) = 0,where differentiation form of H(co) is H'(w) 

Soweget h1 -2h2 +3h3 =O (5.26) 

Finally the system equation of h(n) of D-4 is 

h 2 +h + + h 2  =1 

h0h2  +h1h3  = 0 
(5.27) 

h0  - - - =0 

h1 -2h2  +3h3  =0 

Solving this equation we can find 

h - 
(1+ 

h - 
(3+ 

h - 
(3 

h - 
(1— 

0 ' 4ñ '2 
4-' 

'3 

And it maintain the orthogonality condition . From high pass filter coefficient g(n) can 

easily be calculate from h(n) using the following equation. 

g(_J)k for k=0,1,2. ..... (L-1) (5.28) 

whereL is the length or order of the filter. So 90  =h3,g1  =—h2,g2  =h1,g3 =—k 

Using the above procedure and equating H(m)  (7r) =0, where m the number of 

differentiation, m=0,1,.. .,± ,we get the coefficient of D-6 and D-8 shown in table 5.1 
2 

[36]. 



Table 5.1: coefficient of Db-6 and Db-8. 

n Db-6 

coefficient of hn  

Db-8 

coefficient of h 

0 0.332671 

0.806 892 

0.459878 

-0.135011 

-0.085441 

0.2303778 

0.7148466 

0.6308808 

-0.0279838 

-0.1870348 

1 

2 

3 

4 

5 0.035226 0.03084138 

6 0.03288301 

7 -0.0105974 

Other wavelet coefficients are discussed in appendix I. In this research, Daubechies, 

Coiflet and symlet wavelet is used since its scaling and wavelet function is closely related 

to the shape of ECG [75](shown in Fig 5.9.) and suited for denoising for many 

applications. 
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Figure 5.9: Different types of mother wavelet (a) Daubachies (b) Coiflet (c) Symlet. 

5.4 Tunable-Q Wavelet Transform (TQWT) 

As demonstrated earlier that, the traditional wavelet transform has constant quality factor 

Q. But it is not so efficient for all types of signal. Q-factor should be tuned according to the 

oscillatory behavior of the signal to which it is applied. For example, when using wavelets 

for the analysis and processing of oscillatory signals (speech, ECG, EEG, etc), the wavelet 

transform should have a relatively high Q-factor. But the Q-factor of the conventional 

wavelet transform is constant and low. It needed higher Q for oscillatory signals (speech, 

ECG, EEG, etc). 

Recently Ivan W. Selesnick proposed Wavelet Transform With tunable Q-factor called the 

tunable-Q wavelet transform (TQWT) [40]. This is parameterized by its Q-factor and its 

oversampling rate (redundancy). The TQWT is developed using perfect reconstruction 

over-sampled filter banks with real-valued scaling factors. The TQWT is closely related to 

the rational-dilation wavelet transform (RADWT) [41]. Like the RADWT, the TQWT is 

ftilly discrete, has the perfect reconstruction property, is modestly over complete, is 

developed in terms of iterated two-channel filter banks and implemented using the DFT. In 

contrast to the RADWT, the TQWT is simpler conceptually, can be more efficiently 

implemented using radix-2 FFTs and its parameters are more easily related to the Q-factor 

of the transform. The user can directly specify the Q-factor and redundancy of the TQWT 
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[40]. The tunability of TQWT is achieved by low-pass scaling with scaling parameter a 

and high-pass scaling with scaling parameter /3. 

x(n) LPS a y(n) 

 

x(n) H 
HPS/3 y(n) 

 

VO(fl) 

y(n) I 

Figure 5.10: (a) Low-pass scaling block diagram , (b) High-pass scaling block diagram. 

Analysis and synthesis filter banks for the tunable-Q wavelet transform. The subband 

signal vo(n) has a sampling rate of aJ where f3 is the sampling rate of the input signal 

x(n). Likewise, the subband signal vj(n) has a sampling rate of ff,  LPS and HPS 

represent low-pass scaling and high-pass scaling respectively. 

Oversampling rate (redundancy): The two-channel filter bank illustrated in Fig. 5.10 is 

oversampled by a factor of a + /3. If the two-channel filter bank is iterated on its low-pass 

output at infinitum so as to implement a wavelet transform, then the wavelet transform is 

oversampled by a factor of 
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13 
(5.29) 

which we call the redundancy r of the wavelet transform [40]. This expression is obtained 

by noting that the sampling rate at subbandj (with] ~! 1) is given by fla-'J , where f is 

the sampling rate of the input signal. The sum of the sampling rates over all subbandsj ~: 1 

gives .f5 and hence the oversampling rate in (5.29). 
1—a 

Center frequency: The center frequency at level-] frequency response, in the interval ( 

(O1,(02 ) given by 

1 2—fl 
w =—(w1 +w,)_a 

2 2a 
(5.30) 

In terms of the input signal sampling rate f , the center frequency at level j is 

= a 
2— fl1 .The bandwidth is given by BW = --(w1 

- 
a 2 ) = --fla',r. The Q-factor 

4a 2 2 

can be given by Q = = 2 5 
.Note that the Q-factor does not depend on the level]. As 

BW fi 

expected, the wavelet transform is a constant-Q transform [40]. The filter bank parameters 

a,fl can be chosen to achieve a wavelet transform with the desired Q-factor and 

oversampling rate r by the following equation. 

fl=Q:1 
and a = 1 - 19  (5.31) 

This is brief description about TQWT. More information can be get at [42]. 

5.5 Proposed Discrete Bionic Wavelet Transform 

Due to different oscillating behavior of signal , constant Q of wavelet is not as effective as 

variable Q. The variable Q is changed with the instantaneous value of a signal and it will 

make Bionic wavelet more adaptive compared to TQWT. Because in TQWT, Q-factor is 

tuned to a fixed value, but in variable Q-wavelet transform like Discrete Bionic Wavelet 

transforms (DBWT) which is the discrete version of BWT, Q is changed with the 
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instantaneous value of a signal and its first order difference. This adaptive quality factor Q 

is derived from the active biological model of heart. 

Very few works were done in the past several years on BWT. To the best of our 

knowledge, only BWT based on the active auditory model of cochlea was introduced by 

[4] and used in the speech signal processing. This model is not appropriate for biomedical 

signal processing like ECG. Furthermore, it is very hard to know what entropy function is 

used in the bio-system. This is a problem of other transforms. But, the DBWT uses active 

control mechanism of heart-arterial system to adjust the wavelet function rather than 

entropy function as criterion. 

5.5.1 Derivation of T-function 

Since William Harvey established the concept of circulation of blood in 1628, numerous 

attempts have been made at gaining insight into the physical relationship between the 

forces involved in propelling blood in the complicated anatomical structure of the 

circulatory system. If we consider for a moment that the concept of the blood circulation 

in human body, we can imagine that we have a pump delivering blood to a complicated 

network of pipes, which has innumerable connections. To develop an adequate 

mathematical model of this system and its behavior is an almost impossible task. Thus in 

Oder to make progress, we call "heart-arterial interaction model" which is shown in 

Fig.5. 11 (a). Here A and B represents the proximal(very near to heart) and distal (away 

from the heart) location. The proximal and distal part can be modeled by lumped parameter 

model. In this model distal part can be modeled by three element windkessel model as 

shown in Fig. 5.11(b). This model mainly consists of six components. An AC power supply 

a diode D, two impedance components (z0, Rs) and a capacitance C(p). The diode D 

represents the unidirectional flow and Q (t) is the overall blood flow rate. In Physiological 

terms, P(t) is the time varying pressure source depending on time 1, ventricular volume 

V, outflow Q, , Aortic valve D. R= systolic ventricular resistance, z,= aortic characteristic 

impedance, R =total peripheral resistance , C(p)= pressure dependent dynamic arterial 

compliance. Pa(t) and Q(t) are aortic pressure and flow respectively. 
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This heart-arterial interaction model was used to derive the T-function where heart can be 

described as pressure source [43] [44]. The electrical analog of the system can be 

represented by lumped-parameter model and is shown in Fig 5.11. 

Açterr 
Tolungs . 

A 
acmake;> 

From body IV 

From lungs 

To body 

Right atrium Left atrium 

Left ventricle 

Right 

(a) 

&v 

Aortic 
B Valve A 

,(p) 

Left Ventricle Arterial System 

Figure 5.11: (a) A schematic figure of human heart and the arterial system. (b) Electrical 

Analog of modified heart-arterial system proposed by the present study. 
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In the true sense, the arterial wall are geometrically tapering, viscoelastic and follow the 

Womersley's oscillatory flow theory. And the pressure transfer function relates the distal 

pressure wave (Pdjstal)  to the proximal pressure wave (Pproxjmai), with reflection coefficient 

F and propagation coefficient j' with length L as [45] Here distal pressure means the 

pressure away from, farther from the heart and proximal pressure means the pressure Near, 

closer to the heart. 

T = thstal e + Fe 
- 

(1 + F)e 

pmximaI 1 + Fe 2 - 1 + Fe 2 
(5.32) 

Vi - 0 
The propagation coefficient is J' = 

a 
- 

2 

(5.33) 
c0  jl—F10  

Where a) is angular frequency= 2,zf ,f is the frequency of the heart, c0  is the wave velocity 

calculated by the Moens-Korteweg, or is the Poisson ration of the wall material, F10  is the 

Womersley's function describing the fluid flow in the tube and 9 is the wall viscosity as a 

function of frequency, 9 = 0(1 - e 2') [46] For details of this transfer function see 

Appendix II. 

But the T-function derived from tapering, Womersley's and viscoelastic tube is difficult. 

A single uniform lossless tube with three element windkessel load is sufficient to describe 

the model and easy also [47]. Three element windkessel model has been chosen in this 

study because the classical two-element model (the windkessel) accounts for the lowest 

frequency components, and the three-element model (the modified windkessel) accounts 

for both low- and high-frequency components of the spectrum of interest [48]. 

The incident (forward) pressure wave travel along the tube with time delay, but with no 

deformation until it reaches the end of the tube (Fig 5.12). At that point, the pressure wave 

reflect backward according to the reflection coefficient (F) which arises from the 

mismatch between the characteristic impedance of the tube and terminal impedance [49]. 
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C 

Figure 5.12: Schematic representation of the arterial model which consists of a pure 

elastic lossless tube terminated with a modified Windkessel model. 
-a 

The reflected backward wave, now travel with the same time delay At with no 

deformation, but towards the aortic root. The sum of this forward and backward pressure 

wave forms the actual pressures at the periphery to aorta [49] [50]. 

So the transfer function is T() = 
PA + PAF 

= 
Pe + PeF 

- 
(1+ F)e t  

P+AFA P+PeFe (1+Fe2') 
(5.34) 

If we express the impedance of the terminating arterial system as z, the reflection 

coefficient, F is expressed as (z - z)/(z - z) .Since the hydraulic pressure and flow rate 

are analogous to electrical voltage and current respectively, this can represent the electrical 

event of the heart as in [51]. 

5.5.2 Derivation of Proposed Discrete Bionic Wavelet Transform (DBWT) 

If the constant Q° is the quality factor of WT, then the quality factor Q7. of BWT is 

related to Q0  by [4]: 

QT =TQ0 . (5.35) 

Where T-function is the modified from the heart-arterial model for Discrete Bionic 

Wavelet as 



T= 
(1 + 

(1 + G1  x XDJIe
-2j i 

) 
(5.36) 
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Only negative damping is not enough to describe all the functions of heart. we 

introduce second term into the function of T as imposed in [52]. 

I (l+X)e 
x 

-2jw/iJ\ 
T 

= (1 + G1  x XDBTe 
[i + G2  x XDrn7ar  

(5.37) 

Where j the imaginary unit, and w is the angular frequency, i.e., 2.irf with f heart 

frequency.Gj  and G2  are the saturation factor. The value of G, and G2  are taken where the 

highest value of SNR improvement and heart frequency is normally 1.2 Hz. In our research 

they are 2 and 0.23 respectively. According to model-3 of [53] At can be set as 0.048. 

First DWT of the noisy ECG is taken then the time adaptive nature is captured by time 

varying factor T(a,r)), calculation for each scale (a = 2) and time (r = n 2) using eqn. 

5.37. This factor only affects the duration of amplitude envelope of wavelet, but not 

affects the frequency. Since, the primary adaptation mechanism involves variation of the 

wavelet time support, the impact of initial time support was done by turning off adaptation 

mechanism (T(a,r)=l) . The resulting time adaptive wavelet transform coefficients 

XDflJ (a,r) are calculated from the product of DWT, XD (a,r) with a time constant 

K(a,v) and the same is substituted in eqn. 5.37 for time adaptation mechanism. It can be 

write as [54]. 

XDBJVT=  K(a,r)xX0 (a,r) (5.38) 

K(a,r)= 
1 

(5.39) 
C1+T2(a,r) 

where Co  + C1  + C2  + ... + C7  =2 (normalizing constant). 

The normality is obtained by C(n) = JJ h(n) 



5.6 Thresholding Algorithm 

Denoising by wavelet is performed by thresholding algorithm, in which coefficients 

smaller than a specific value, or threshold, will be shrunk or scaled [55] [56]. In this 

section, we review some of the most used thresholding algorithms. In these algorithms, the 

variable x refers to wavelet coefficients indices and Th is the threshold value. 

5.6.1 Hard Thresholding Algorithm 

Hard thresholding is similar to setting the components of the noise subspace to zero. 

Donoho and Johnstone used it in [57] for wavelet thresholding as: 

8(x)— fx 
ixi~Th 

- lxi > Th (5.40) 

In this thresholding algorithm, the wavelet coefficients less than the threshold Th will be 

replaced with zero, as Fig 5.13(a) represents. 

5.6.2 Soft Thresholding Algorithm 

In which, thresholding algorithm is defined as follow [57] (see Fig 5.13(b)) 

Ixl:5Th 
fsign(x)(jxj - Th) lxi > Th (5.41) 

which can be viewed as setting the components of the noise subspace to zero, and 

performing a magnitude subtraction in the ECG plus noise subspace. 
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Figure 5.13: Hard thresholding and Soft thresholding. 
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5.7 Threshold Selection 

There are also many formulas for obtaining threshold values. In this section we review 

some of the most popular of them. In all these formulas Th is the threshold value. 

5.7.1 Universal Method 

Donoho and Johnstone derived a general optimal universal threshold for the white 

Gaussian noise under a mean square error criterion and its side condition [57]. In this 

method threshold is selected as: 

Th= df2Ioge(n) (5.42) 

In this formula n is number of samples in the noisy signal and r is the standard deviation of 

noise that is estimated by the relation [58]: 

[
median(lYij 1)l 

0.6745 .1 
(5.43) 

In which 
lyd is the first level detail coefficients of wavelet transform of noisy ECG. This 

selection for Th is based on a theorem that if Z1  = N(O, 1) then 

prob(IIz1II1  <f21ogn) - 1 (5.44) 

-41 
In this relation is the Norm operator and 1'9s the kh1  risk function. 

(.)/k
=E(.K) (5.45) 

Therefore, if Z1  = N(O,d) then a good estimate for Th is as (5.42) [56]. 

In practice the threshold obtained by this method is not ideal for ECG signals due the poor 

correlation between MSE and subjective quality and the more realistic presence of 

correlated noise [59]. 

5.7.2 Heuristic Method 

Heuristic variant of the rigorous sure method is called Heuristic Sure. It is the synthesis of 

two thresholds and the optimal selection of predictor variable threshold. If the SNR is 

small(estimated to be a great noise), we use this heuristic threshold in this case [33]. 



5.7.3 Minimax Method 

In this method, also proposed by Donoho and Johnstone, it supposed that X = N(9 , 1) is 

the observation value; then Th is selected in a way that minimizes the following relation: 

tn-'+min 
E(oj'p(X)-6)2)

A = inf sup 
(92,l)J (5.46) 

Here, 57 (X) is the shrink function or thresholding algorithm and n is number of signal 

samples. 

5.7.4 SURE Method 

SURE or stein unbiased risk is also introduced by Donoho and Johnstone as: 

,2 .2 
SURE(Th;w) = STh 

(dk) 
(5.47) 

In this formula n is number of signal samples, J is number of levels in wavelet 

decomposition, K is number of samples in the level and a is the standard deviation of 

noise. Sm(x)  ,which is determined with due attention to 8 (X), must be such that: 

E(STh(x)} = RTh(0) = E[6Th(X) - 0 }2 (5.48) 

Note that X=N(9,1). 

5.7.5 S-Median Threshold 

In the theory of nonparametric regression, the recovery of the unknown functionf(x) from 

the noisy observation on equi-spaced location XN is measured using MSE. The function 

after the addition of noise can be represented as 

y=f(x1 )+e1,i=l,2,...,n (5.49) 

where c is White Gaussian noise with i.i.d. N(O,) and f(x1  )samples of deterministic 

ftinctionf. The MSE of the function (henceforth called Risk) is determined as 

MSE(f, f) = E

f
f(x

A

)
_

f(X' )

j 2 

(5.50) 

-p 
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The primary aim of denoising model is to keep the risk as low as possible, that is, the 

recovered signal would be same as the original signal. A higher value for risk would 

invariably mean more deviation of the recovered signal from the original signal. This is not 

desirable. Keeping this into consideration, a level dependent threshold has been designed, 

which will harness the spatial adaptivity of the WT and at the same time preserve the noise 

free reconstruction property [60]. The proposed threshold minimizes the value of MSE and 

outperforms the universal threshold in the process. As the universal threshold and other 

thresholds have their effect on the noisy signal globally, there are deprived of the spatial 

property, which varies for sub bands. The universal threshold being globally adaptive is 

denied the flexibility of being local to subbands. As a result it over smoothens the signal. 

On the other hand, S-median is locally adaptive and hence flexible to the subband levels. 

The presence of a tuning factor, which tunes the threshold to each and every subband level, 

helps in achieving effective denoising of signal [60]. This enables to attain lower risk than 

the universal threshold. The subband level dependent median threshold (S-median) inherits 

optimality in MSE as well as spatial adaptivity along with subband level adaptivity. S-

median threshold is defined as 

k%J2log(n) 
Thik ,k=l,2,...,l (5.51) 

(Sik  +b) 

where S1,k  is sub band level dependent parameter, denied as 

KI 
l,k 

= (5.52) 

where L is deepest decomposition level to which signal is decomposed and K is level at 

which thresholding is done (for example at level 3, K = 3). Apart from spatial adaptation 

and optimality, S-median has tuning factor b, which tunes the threshold to obtain effective 

noise-free reconstruction unlike universal threshold, which over smoothens by killing 

significant coefficients. cF is noise variance of the noisy signal. If noise variance of the 

noisy signal is not known, one has to estimate via the median absolute deviation (MAD) 

estimator proposed by the Donoho on all thelevels, that is 

'p 

Uk 
 medianlx 
= ,k = 1,2,.. .,l 

0.6745 
(5.53) 
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5.7.6 Modified S-Median Threshold 

We proposed a level dependent adaptation factor 
J 

in equation 5.51. So that DBWT can 

perform better. In addition with the adaptation factor , optimum value of the tuning factor b 

can make the system more sophisticated. Finally our proposed modified S-median 

thresholding equation is: 

(

L) U \/2lOg(fl
Thik k+b) ,k=1,2, ... ,l 

k (Sl   
(5.54) 

The optimum value of b is achieved where the highest SNR improvement exist. For 

different types of noise, the characteristic curve of b is shown in Fig 5.14 and Fig 5.15. 
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Figure 5.15 The total reflection of b against different types of noise and SNP. 

improvement. 

5.8 Data Acquisition 

For the MIT-BM Arrhythmia Database, [61] attempted to obtain a representative sample 

of the variety of recordings which were observed in clinical practice. This database 

consists of 48 annotated records, obtained from 47 subjects studied by the Arrhythmia 

Laboratory of Beth Israel Hospital in Boston between 1975 and 1979. About 60% of the 

records were obtained from inpatients. The database contains 23 records (the '100 

series') chosen at random from a set of over 4000 24-hour Holter tapes, and 25 

records (the '200 series') selected from the same set to include a variety of rare but 

clinically important phenomena which would not be well-represented by a small 

random sample. Several records in the 200 series were chosen specifically because 

features of the rhythm, QRS morphology, or signal quality may be expected to present 

significant difficulty to arrhythmia detectors. These records have gained considerable 

notoriety among users of the database. In the MJT-B1}I Arrhythmia Database, there is 

considerable variation in signal quality, with significant portions of unreadable data in 

at least one lead. Among the above records we chose 20 records for our research purpose. 

Real data are collected by BIOPAC data acquisition system from the Biomedical signal 

processing laboratory , Khulna University of Engineering and Technology . More details 

about the data acquisition has been in discussed in section 4.2. 



5.9 Summarization and Evaluation of the proposed Transform 

5.9.1 Summarization 

Data were collected as described in section 4.2 . The ECG denoising using WT can be 

described as the following algorithm. 

5.9.1.1 Signal denoising algorithm 

Decompose 

Transform the signal into wavelet domain selecting the level of decomposition using 

commonly supported orthogonal wavelet bases (Daubechies, Coiflets and symmiets). 

Threshold detail coefficients 

For each level from 1 to N, select a threshold method (like SURE, Heuristic, Minimax, 

universal, s-median and our modified s-median). Then a soft and hard thresholding is 

applied to the detail coefficients and rescaling is done using a single estimation of level 

noise based on first level coefficients. 

Reconstruct 

Compute wavelet reconstruction based on the original approximation coefficients of level 

N and the modified detail coefficients of levels from 1 to N. 

The using DBWT (shown in Fig 5.16) and adaptive thresholding process the signal was 

denoised and performance were evaluated by MSE, NMSE, RMSE, NRMSE, PRD like 

section 3.4.5 and SNR improvement was calculated using following equation [62]: 

- x(n)]2 (554) 
impdB =101og 

[xR(n) - x(n)]2  

Where x,1 (n) is the noisy ECG data. 
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Figure 5.16: Block Diagram of the proposed DBWT technique. 

5.9.2 Evaluation of the proposed Transform 

rA 5.9.2.1 Performance Evaluation in Time Domain 

Wavelet transform represents a given function f in a very efficient way by using a set of 

basic functions. In this research, these basic functions are referred as wavelet families. 

Some of the most famous wavelet families are Daubechies, Coiflet and Symlet are like the 

shape of ECG signal. Here, we show them by dbN, coifN and symN, respectively, where N 

indicates the order. The DWT were performed by these wavelet family and theses DWT 

coefficients are used for our proposed DBWT. 

To find the suitable wavelet function (db3,db4,db5,coif3, coif4, coif5, sym 3, sym4, sym5) 

from the above wavelet family, we used different types of error measurement techniques. 

The performance was analyzed on our recorded ECG data with input SNR 5dB and 

decomposition level was 7. From Table 5.2, it was observed that most of the wavelet 

functions shows SNR improvement around 12 dB except coif4 which was 13.0192185 dB. 

So from this data it was clear that coif4 was the best suited wavelet function for our 

proposed DBWT. 

Table 5.2: Finding of best wavelet function for DBWT 

WT SNR 

function imp(dB) MSE NMSE RMSE NRMSE PRD(%) 

db3 12.4245477 0.00064228 0.01808536 0.025343215 0.00032708 0.032708016 

db4 12.8273353 0.00058539 0.01648346 0.024194816 0.000271704 0.027170441 
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III 

db5 12.6829876 0.00060517 0.01704053 0.024600261 0.00029038 0.029037969 

coif3 12.6218382 

13.0192185 

12.2389963 

0.00061375 

0.00056009 

0.00067031 

0.01728216 

0.01577103 

0.0188748 

0.02477406 

0.023666181 

0.025890431 

0.000298673 

0.000248725 

0.000356258 

0.029867311 

0.024872536 

0.03562579 

coif4 

coif5 

sym3 12.4095103 

12.579667 

12.8530417 

0.00064451 

0.00061974 

0.00058193 

0.01814809 

0.01745079 

0.01638618 

0.025387128 

0.024894634 

0.024123316 

0.000329353 

0.00030453 

0.000268507 

0.032935305 

0.030453019 

0.026850688 

sym4 

sym5 

When we performed wavelet, the number of level is also an important decisive factor. To 

solve this concern different level were calculated to find an optimum level. From table 5.3, 

it was clear that after level 7, the performance was almost saturated and the best result was 

found in level 8. 

Table 5.3: Different performance parameter for various level of coiflet wavelet transform 

for the proposed DBWT. 

No. of level SNR imp(dB) MSE NMSE RMSE 
J 
NRMSE I  PRD(%) 

12 13.05858851 0.000555 0.015629 0.023559 0.000244 0.024426 

Il 13.03240673 0.000558 0.0 15723 0.02363 0.000247 0.024722 

10 13.01713124 0.00056 0.015779 0.023672 0.000249 0.024896 

9 13.03340335 0.000558 0.01572 0.023628 0.000247 0.024711 

8 13.04864645 0.000556 0.015665 0.023586 0.000245 0.024538 

7 13.01921847 0.00056 0.015771 0.023666 0.000249 0.024873 

6 12.91837203 0.000573 0.016142 0.023943 0.000261 0.026055 

5 12.52024458 0.000628 0.017691 0.025066 0.0003 13 0.03 1298 

4 11.78618176 0.000744 0.020949 0.027276 0.000439 0.043886 

3 9.340271831 0.001307 0.036792 0.036147 0.001354 0.135366 

2 6.277643606 0.002645 0.074476 0.05 1429 0.005547 0.55467 

1 2.988445672 0.005641 0.158832 0.075105 0.025228 2.522752 

In order to test the S-median threshold [60] from a different perspective, SNR values were 

obtained by the simulation of the noisy signals. The comparison was made among SURE, 

1-leuristic ,Universal, Minimax, S-median and finally our proposed techniques. The results 

showed that our modified S-median performed good with wide range of noises as shown 



in table 5.4. This is due to its spatial adaptivity and subband dependency. In the case of 

white noise, the SNR values of universal threshold were low due to its over smoothening 

effect. But SURE method worked like our proposed method. Heuristic and Minimax 

showed moderate results. In the case of color noise our method was the best and 

Universal thresholding took second place. And other noises like real muscle artifact noise, 

real electrode movements noise and composite noise our method was the best. 

Table 5. 4: Performance of different thresholding techniques in various noises for MIT-

BIH Arrhythmia database of record no 101 with input SNR 5 dB. 

Thresholding 

method 

SNR improvement (dB) - 

White noise Color noise Real muscle Real electrode Composite 

13=1 Artifact noise movements noise 

noise 

SURE 9.450735621 0.754034254 0.007468091 0.004137153 0.004964368 

Heuristic 8.6011 19038 0.75690 1556 0.007468091 0.003748027 0.004964368 

Universal 3.849764406 1.951622539 0.169844849 0.034671279 0.101521614 

Minimax 6.180948816 1.854957389 0.116736434 0.026509489 0.07238152 

S-median 1.456083658 0.496454865 0.109088544 0.02736789 0.050137164 

Proposed 9.066188459 2.047015606 0.354128856 0.21632556 0.138465323 

In order to make a comparison among conventional wavelet based ECG denoising 

schemes WT, Multiadaptive Bionic Wavelet Transform (MABWT) [63] and our proposed 

DBWT were tested on database. The result of SNR improvement for the input SNR of 5dB 

are listed in Table 5.5. 

According to these result, our proposed hard thresholding was little bit smaller (0.03 dB) 

than MABWT hard thresholding which was negligible. However, our proposed DBWT 

soft thresholding performance is always better (average 9.508164 dB), than the 

corresponding techniques. Because [63] used T-function derived from the active auditory 

model of the cochlea. But in our case, we used 1-function derived from heart-arterial 

interaction model . As ECG is the electrical activity of heart, so our system is more 

appropriate for this particular problem. 
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Table 5.5: WT, MABWT [63] and Proposed DBWT denoising performance on the MIT-

BII-I arrhythmia database. 

MIT- SNR improvement (dB) 

BIH WT WT MABWT MABWT Proposed Proposed 

Record (hard) (soft) (hard) (soft) DBWT DBWT 

No. (hard) (soft) 

100 5.1 6.5 6.4 7.8 6.4236 9.4670 

101 4.2 5.5 5.3 6.9 7.0352 9.335 

103 5.0 6.1 5.8 7.7 5.7398 8.9308 

105 5.1 6.0 5.8 8.1 5.8051 9.6645 

112 5.2 6.4 6.1 8.2 6.7078 11.3956 

113 5.0 6.2 5.9 7.9 5.9202 9.2529 

115 5.1 6.6 6.3 7.8 6.0656 9.9985 

116 5.0 6.5 6.4 8.0 5.0921 9.5638 

117 4.8 6.0 5.8 7.9 5.2178 11.4554 

119 4.7 5.8 5.6 7.6 4.5820 10.1557 

122 4.4 5.6 5.2 6.9 4.6599 10.2348 

123 5.1 6.5 6.4 7.8 4.5002 10.5943 

200 4.2 5.4 5.3 6.9 6.0859 9.1397 

201 5.0 5.4 5.5 7.5 5.8562 9.2680 

202 4.9 5.8 5.7 7.8 6.3814 10.1448 

205 5.0 5.4 5.5 7.4 5.6521 9.2076 

209 5.2 6.0 5.9 8.1 5.4962 8.2447 

210 4.3 5.4 5.3 6.9 6.3475 9.5318 

212 4.0 5.0 4.8 6.7 5.6953 8.5329 

213 5.2 6.6 6.4 8.2 5.5305 8.5548 

219 5.2 6.5 6.3 8.0 5.7963 10.0070 

220 5.1 6.5 6.4 8.1 5.7718 9.5384 

221 4.9 6.0 5.9 7.9 6.0551 9.3020 

230 5.0 5.9 5.6 7.9 5.7265 8.8722 

233 4.8 5.8 5.5 7.8 6.0672 7.3119 

Average 4.86 5.98 5.80 7.67 5.768452 9.508164 
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We also made another comparison with TQWT. Q-factor in TQWT can be change to 2,3,4 

etc. which demonstrated that lower Q is not suitable for oscillatory signal like ECG. In 

contrast, our proposed model tuning is achieved by the signal's instantaneous value and it's 

first difference. To express this phenomena we compare TQWT with various Q value of 

2,3,4,5 with our proposed variable Q wavelet like DBWT in table 5.6. To run the TQWT 

program we used TQWT software which is available and free of cost in the MATLAB 

environment [42]. As can be observed from the table 6, Q2 of TQWT perform best 

among different Q. But our system is far much better than the TQWT of Q=2 with a SNR 

improvement of 9.411715849 dB. 

Table 5.6: Denoising performance comparision between TQWT and Proposed DBWT on 

the MIT-BIH arrhythmia database. 

MIT-BIB SNR improvement for input SNR 7dB 

Record Tunable Q Wavelet Transform Proposed 

No. Q=2 Q=3 Q=4 Q=5 Hard I Soft 

100 5.545270342 

5.554463579 

5.603835981 

6.08639478 

5.552894361 

2.978130748 

6.028420386 

4.572837733 

5.087043841 

2.931328044 

5.117555 

3.963627476 

2.347879956 

3.251555754 

2.533591787 

2.81029976 

4.350076619 

3.952637082 

4.050350608 

4.144304568 

4.329981108 

4.246907913 

2.799168 

4.281459717 

3.923694999 

2.870470843 

2.667410053 

4.249956251 

3.400923982 

2.19606694 

2.927055753 

2.358181846 

2.600125818 

3.871691956 

2.386310636 

2.478236207 

2.716462592 

3.05706826 

2.980817092 

2.386911552 

2.591005752 

2.90823931 

1.148959602 

2.19704942 

3.091593194 

2.633107799 

1.87513444 

2.381381137 

1.977967578 

2.151332937 

3.299157622 

1.348847271 

1.435116116 

1.87086842 

1.951020237 

2.183583309 

2.137531386 

1.485685461 

2.215287709 

0.020280995 

1.838214175 

2.383806289 

2.089203629 

1.63803271 

2.001973532 

1.696028126 

1.813920638 

2.746852401 

5.413129028 

5.306100576 

4.835908202 

5.998428297 

4.594580802 

5.670935428 

6.457281989 

5.818305634 

5.2933516 

6.278200689 

5.483397993 

6.070400401 

4.226886998 

6.628341431 

4.573396167 

6.263098283 

5.707212871 

8.958326806 

9.00766596 

8.479137735 

9.38433215 

8.191453107 

9.374657705 

10.23911025 

9.818249903 

8.550925499 

10.79492196 

8.42550176 

9.628817456 

8.997243191 

11.31534583 

9.757129429 

10.27372836 

8.802622341 

101 

103 

105 

106 

107 

108 

109 

111 

112 

113 

115 

116 

117 

119 

122 

223 

Average 4.371482715 3.462963967 2.485925596 1.815073671 5.565820964 9.411715849 
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5.9.2.2 Performance Evaluation in Frequency Domain 

The proposed method is evaluated not only in time domain but also frequency domain 

using DFT and MSC. In Fig. 5.17, original and reconstructed ECG signal are almost 

identical all over the frequency domain. An another important criteria shows in frequency 

domain is most of the information of the ECG signal lies between 0Hz to 50Hz. 
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1) 40 •0 
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10 

Figure 5.17 : Frequency domain analysis using DFT. (a) Noisy ECG with White noise of 

SNR 5 dB. (b) Comparison between original and reconstructed ECG by DBWT. The 

Original ECG was collected using BIOPAC system. 

MSC is used to examine the relation between two signals or data sets with values between 

0 to 1. 1 indicates identical two signals are identical in frequency domain whereas 0 

indicates the opposite. Here this concept was used to illustrate the frequency domain 

performance of DBWT and TQWT. In Fig. 5.18 , it can be observed that the MSC is 

almost unity over dominated frequency region whereas this statement was deviated. They 

had a downward spike in low frequencies which is marked as shaded box in the figure. 
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This means that TQWT eliminate some of low frequency component of ECG signal which 

carries important information. 
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Figure 5.18: (a) Noisy ECG signal, (b-f)Magnitude Squared Coherence (MSC) of different 
WT. 
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CONCLUSION AND FUTURE SCOPE 

6.1 Conclusion 

Cardiac conditions is determined by ECG. But different types of noise can lead 

misdiagnosis. So, denoising ECG signal is an active area of research worldwide. The 

method developed here are based on cardiac model so it is more suitable for denoising the 

ECG. In this research, model based ECG denoising techniques is developed using DBWT 

and application of this transform is also illustrated to classify the Cardiac conditions using 

SVM. 

The proposed model is capable of replicating many important features of the human ECG 

wave. A number of features and applications of the model are: (i) Instead of using too 

many parameters like other model do, the proposed one can generate ECG and in capable 

of simulating various kinds of practical phenomena such as brachycardia, tachycardia and 

so on using few parameters. (ii)It does not need three dimensional state spaces which are 

difficult for realization and simulation. (iii)Noisy ECG signal can be modeled simply by 

adding a noise parameter to the model. (iv) In frequency domain the real and modeled ECG 

showed almost same properties. (v)A realistic ECG database can be created by fitting the 

model with individual subject's ECG. This can be used for further analysis and also for 

education purposes. (vi)By saving the coefficient of the model alone ECG data 

compression can be possible. However, the lower value of error parameters like MSE 

0.0023 and 0.0291 for recorded and MIT-BIH database respectively indicates the 

effectiveness of this simplified model and the proposed model enables us to investigate 

wave morphology variation. It can be further improved for better fitting, model-based 

denoising, compression and support vector machine classification etc. Finally, it is hoped 

that this simple model will provide an efficient tool for testing and processing of the ECG 

signals with different level of noise and/or motion artifact. 
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In this research, a novel DBWT based adaptive thresholding techniques were presented for 

different types of realistic noise. The T-function stemming from active biological model of 

heart-arterial interaction model performs well when being applied to cardiac signal 

processing. With the improvement of the heart-arteial model, a better performance of 

DBWT was achieved. Generally, for different applications, different T-functions should be 

used. One possible choice of 1-function can be made according to the cardiac signal's 

instantaneous value and its first difference value. For example, in case of ECG signal, the 

I-function based on the heart-arteial model is a natural choice. The active mechanism of 

the cardiac model compared to the traditional WT, special properties of DBWT can be 

summarized as follows: 

• A new parameter T, controlled by the signal's instantaneous amplitude and its first-

order differential, is introduced with the WI. With this additional parameter, the 

adaptive adjustment of resolution has been implemented. 

• The constant Q of traditional WI and tunable in TQWT is replaced with variable 

Q. 

• DBWT is a nonlinear transform which has high sensitivity and frequency 

selectivity. 

• The inverse transform of DBWT exists, which makes the utilization of BWT 

possible in signal coding and decoding of signals. 

The effectiveness of the proposed method in ECG denoising was shown experimentally 

and also through simulations from standard database like MIT-BIH. Compared with other 

thresholding methods such as SURE, heuristic, minimax, universal and S-median our 

proposed thresholding method gives SNR improvement of 9.066188459 dB and 

2.0470 15606 dB respectively in the presence of Gaussian and colored noise which is better 

than mentioned techniques. The proposed transform gives outstanding performance with 

average SNR improvement of 9.508164 dB whereas in WI, MABWT and TQWT the 

values were 5.98dB, 7.67dB and 4.371482715 dB (Q=2) respectively. Moderate result was 

achieved in the presence of baseline wander, motion artifact, and electrode movement 

noise. 
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6.2 Future Scope 

A frequency domain pre-processing step before applying the thresholding, different 

wavelet filter bank and more efficient thresholding function may achieve a better result 

which is taken under consideration. In future, the model can be used for wide range of 

applications such as compression of signal, automatic diagnosis system and so on. The 

proposed techniques can be applied not only in ECG but also other bio-signal like EMG, 

EOO etc. 

-4' 
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APPENDIX 

APPENDIX I: Coefficient coiflet and symlet wavelet of order 3,4,5 used in the research. 

a) Lowpass coefficient h,, for Coiflet wavelet. Highpass coefficient gn  can be 
calculated from h using eq.5.28. 

h CoiO I Coif4 I Coif5 
0 0.003793513 -0.0008923 0.000212081 

0.007782596 -0.0016295 0.00035859 
2 -0.023452696 0.00734617 -0.002178236 
3 -0.065771911 0.01606894 -0.004159359 
4 0.06112339 -0.0266823 0.010131118 
5 0.405176902 -0.0812667 0.023408157 
6 -0.793777223 0.05607731 -0.028168029 
7 0.428483476 0.41530841 -0.091920011 
8 0.071799822 -0.7822389 0.052043163 
9 -0.082301927 0.43438606 0.421566207 
10 -0.034555028 0.06662747 -0.774289604 
Ii 0.015880545 -0.0962204 0.437991626 
12 0.009007976 -0.0393344 0.062035964 
13 -0.002574518 0.02508226 -0.105574209 
14 -0.001117519 0.01521173 -0.041289209 
15 0.000466217 -0.0056583 0.032683574 
16 7.10e-05 -0.0037514 0.019761779 
17 -3.46e-05 0.00126656 -0.009164231 
18 0.00058902 -0.006764185 
19 -0.00026 0.002433373 
20 -6.23e-05 0.001662864 
21 3.12c-05 -0.000638131 
22 3.26e-06 -0.00030226 
23 -1.78e-06 0.000140541 
24 4.13e-05 
25 -2.13e-05 
26 -3.73e-06 
27 2.06e-06 
28 1.67e-07 
29 -9.52e-08 



b) Lowpass coefficient h for Symlet wavelet. Highpass coefficient g can be 
calculated from h using eq.5.28. 

Sym3 I Sym4 I Sym5 
0 -0.3326706 -0.032223 -0.01953888 
1 0.8068915 -0.012604 -0.02110183 
2 -0.4598775 0.0992195 0.17532809 
3 -0.135011 0.2978578 0.01660211 
4 0.08544 13 -0.803739 -0.63397896 
5 0.0352263 0.4976187 0.72340769 
6 0.0296355 -0.19939753 
7 -0.075766 -0.03913425 
8 -0.0295 1949 
9 0.02733307 
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Appendix II: Derivation of the T-function for the heart-arterial interaction model. 

The basic computational unit is a segment of artery which is considered as a thin-walled 

uniform cylindrical tube having internal viscous, elastic and inertial properties with 

external coupling to the surrounding tissue producing a longitudinal constraint. This 

representation was previously used by [64], [65] to solve the Navier-Stokes 

equations for fluid flow in elastic tubes and apply the solution to pulsatile blood 

flow in arteries. 

The wave propagation in the fluid-filled elastic tube is described [66]by, 

Lq 
+ cZ0 

 ap  
 =0 

at 

at z0 ax 

where p and q are pressure and volumetric rate of flow in a tube respectively, and c is 

pulse wave velocity. 

In Eq. 1, Zo  is characteristic impedance defined as, 

z=L 
A 

(2) 

where p is fluid density in a tube, and A is the cross sectional area of the tube. 

Reflections are generated in a vascular system wherever there is a local change of 

impedance. Wave reflections in the tube have the effect of modif"ing the pressure and 

flow in the tube because the reflected waves combine with the forward traveling waves. 

For the applied pressure P0e' at the tube entrance, the solution of Eq. 1 is, 

p(x,t) = p(x,t) + Pb(x,t) 

= + FIe' 2  
(3) 

where p,,- is forward traveling pressure wave, Pb 15 backward traveling pressure wave and 

y is wave propagation constant defined as 



I 

j(0 
(4) 

The reflection constant F is given as 

rpb(z,o) (5) 
I,, (z.t) 

The solution for the flow of Eq. 1 is 

p(x,t) = q1(x,t) + q(x,f) 
I (6) 

= Z01,,pf(x,t) - pb(x,t)) 

The concept of vascular impedance was borrowed from electrical engineering, and it is 

defined as 

Z(x) = 
p(x,t) 

= z 
p(x, + p fr(x,t) 

q(x,t) 
° 

t) 

p1(x, - Pb(x,t) 
(7) 

t) 
 

From Eq. 3 and Eq. 7, the input impedance of tube (x =0) is 

Z!=Z(0)=Zo 
I + Fe 

1 _ Fe 2z (8) 

According to Eq. 8, if there is no wave reflection, the input impedance is the characteristic 

impedance. 

From Eq. 3 and Eq. 7, the terminal impedance of tube (x = z) is 

Z—Z(z)=Z0 (9) 

The reflection coefficient F, determined from Eq.9 is 

(10) 
ZT  +Z0  

The pressure transfer function [67] is the pressure at the termination (x = z, called distal 

pressure, Pd,s(al ) to pressure at the origin (x = 0, called proximal pressure, Pproxirni)  is 

b. 



T = 
p(zi) = 'distal e + Ic 

- 
(I + l)e 

p(O,t) proxmal l+Fe 2 - 1+l'e' 

The wave propagation constant y  and the characteristic impedance Z0  can be derived by 

pulsatile blood flow theory [681. 1-lere we discuss a brief description. 

Pulsatile Blood Flow in a Vascular Tube 

Womersley Model 

The blood vessels are fully constrained by adjacent muscles and other tissues. With 

this constraint in mind, [64] suggested the following model 

q= ox (i — I) (12) 
JO)f7 

y 
Where F - 

2.11(a1 2)  
'° 

qjkT0  (c) 
(13) 

where J0  and Jj  are Bessel functions of the first kind, and order zero and one, 

respectively, and Womersley number, a = R0 .v fr)P/ (14) 

Vascular Wall 

The arterial wall is known to behave as a viscoelastic material [69] which has the 

property of producing a phase difference between applied force and resulting 

displacement. This frequency dependent property is thus described by the dynamic 

Young's modulus Ed [69], expressed as 

Ed  =E+jan7 (15) 

where i, is the wall viscosity. 



With respect to pulse wave propagation, the viscoelastic properties of the arterial wall 

are characterized by the tangent of the angle representing the phase lead of pressure 

in relation to wall displacement. [70] , [71]. 

 
(Oil,- ) 

Reference [72] derived an expression for the variation of 0 with frequency as 

6 = 90 (1_e _k0)) 
 

where 0 is an asymptotic value and k was taken as 2. 

Pulse Wave Velocity 

The pulse wave velocity of inviscid fluid is defined by Moens-Korteweg equation as 

1 Eh 
 

Reference [64] modeled the coupling effect of fluid and wall on the wave propagation as 

C' - 
C0J1 

 - 
F;O  

- l—c2 
(19) 

By use of the viscoelastic property of vascular wall, the equation of wave velocity 
becomes 
c = cle (20) 

The equations for characteristic impedance and propagation constant of vascular tube is 

Zo  - __
PCO  0  - F10 ) 1' 2  x {cos(0/ 2) + jsin(0/ 2)} (21) 

a) J1cr2 
y=—x x{cos(9/2)—jsin(9/2)} 

Co  

e" (22) or,7=— 
Co 10 


