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Abstract 

Network processor is the key architecture of the recent communication technology. Most 
of the high performance network equipments especially routers, switches and traffic 
management systems are designed with network processor to processes their network 
packets. This research work introduces a design architecture for high-speed network 
packet processor and also analyzes its performance. There are two proposals in this thesis, 
first is the proposed hardware architecture of a high-speed network processor system and 
second is the proposed modified architecture of packet processing unit. A hierarchical 4 
level layered processing architecture is developed for efficiently process the packets. To 
capture all traffic from a high-speed I/O interface without any loss a load-balancer with 
an efficient load distribution algorithm is implemented. High throughput pipelined 
memory architecture is also developed to minimize the rate of memory access time. The 
processor units have four basic operational tasks - parse, search, resolve and modify. To 
design the processing unit, the thesis provides some modification of the Task Optimized 
Processing core (TOPcore) technology and proposed a modified processing core 
architecture. This is a super-pipelined parallel architecture. The performance of the 
proposed network processor is evaluated for some real applications and compared with 
reference NPs. Results shows that the proposed architecture is efficient and provides 
better performance. Finally, the design is modeled and simulated in RT level using 
VHDL and then synthesized to schematic. The synthesis is done for both Xilinx Spartan3 
and Actel ProASIC3 FPGA. Design requires very little FPGA logic while efficiently 
processing packet and implementation of green technology provides saving of power 
consumption at ideal condition. 
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CHAPTER I 

Introduction 

The bandwidth requirement of communication network is increasing with the increases of 
various network applications. This rapidly increasing consumption of bandwidth 
significantly shapes the development of the transport networks and the communication 
terminals. Running high-speed networking functionalities on today's communication 
systems requires that a lot of functions are to be implemented in a hardwired manner. The 
ultimate throughput of communication systems depend on its network processing 
equipments. In recent years, fiber optic link technologies throughputs have expanded at 
greater rates and it increases the burden on the routing technology. With greater 
bandwidth and greater network processing requirements to handle traffic, it has become 
apparent that previous methods of traffic processing are unable to meet the current market 
requirements and high performance. This has brought about the development of one of 
the most promising technologies in this area, namely Network Processor (NP). 

With the introducing of recent faster communication medium the total communication 
performance is not increased well with communication lines. The reason is the lagging of 
faster networking devices. In recent technology most often engineers are trying to use 
fiber-optic communication medium to speed up the network communication, but the 
conventional networking devices are not simultaneously speedy with the optical medium. 
As a result the total performance is depending on the processing element of the network 
devices. So, for getting high performance network operation it is needed to speed up the 
network processors, the main packet processing element of the networking device. 
Researchers are still trying to increase the speed of the network processor and for that 
they introduce many more methods and techniques regarding this. 

1.1 Background and Previous work 

During past 20 years, engineering of network systems has changed a lot. Their 
architectures can be divided into three main generations: [1] 

• The first generation goes back to 1980's when standard processors were used for 
network applications, e.g., like a minicomputer for routing. 

• The second generation runs by mid of 1990's, speed and complexity of systems 
had gone up, so designers added special hardware blocks to relieve the load from 
CPU. 

The third generation systems employed very specialized hardware in ASIC 
(application specific integrated circuit) and even attempted to use several of them 
for higher performance systems. Because the protocols were consolidating around 
Ethernet and IP at those days, not much flexibility was needed and fully hardware 
fixed solutions were satisfactory. 

As can be noted in the transition above, with each new generation the programmability of 
network devices were traded for higher speed through adding more hardwired 
components. Towards the end of 1990's, the Internet boom period, convergence of voice 
and data networks started to become more imminent. As a result, new and wider range of 



protocols and services, e.g., multimedia services, needed to be developed by the industry. 
The pace of introduction of new services and their further upgrades had become faster 
shortening the product cycle and requiring faster time-to-market. Furthermore, more 
complex services were expected to become the norm, for example moving the routers 
beyond just store and forward machines and increasing the required processing power 
several order of magnitudes of the exiting level. 

The best solution seemed to be bringing back programmability which was the hallmark of 
the first generation network but not at the cost of performance which was the hallmark of 
second generation network. The result was a new hardware known as network processor 
(NP) today. Network processors need to deliver the speed of silicon which is combined 
with the intelligence and flexibility of programmable microprocessors. The key to 
network processor success is an architecture that enables implementation of high-level 
applications in high-speed networking environments [3]. 

Owing to increasing network data rates and more sophisticated networking protocols, 
networking solutions continue to demand more powerful processing capabilities [7]. The 
processing of packets is the main job of the network systems [8]. Current packet 
processing device approaches designed for performance at multiple gigabit-per-second 
data rates and used network processors that are used in routers or switches. True Network 
Processors are usually large SoC (System-on-Chip) with multiple processing devices. 
These processing devices are usually very simple, specially designed generic processors 
[9]. True Network Processors can also be implemented using other techniques such as 
massive multithreading and usually include custom hardware for packet processing [10]. 

From the late 1999 the researches on network processing hardware for high speed 
communication is significantly growing up and still continue. Architecture for fast packet 
processing [14], slow response time, higher throughput, multithreading [9] on network 
processor, parallel processing [15], adaptive processing [11] approach, FPGAs [13] and 
ASIC implementations for high speed packet processing etc. is the major area of that 
research. 

In April 2002, researchers at the University of Southern California's Information Sciences 
Institute demonstrated a first-generation giga-bit rate packet processing system 
implemented in several FPGAs [12]. The researchers sought to address the performance 
bottleneck imposed by the Central Processing Unit (CPU) in single-processor gigabit 
networking systems. Packet processing functions including basic routing, encryption, and 
framing are performed in the reconfigurable components. Three separate Xilinx Virtex 
XCV 1000 FPGAs (XO, Xl and X2) are used to process data traffic [12]. 

In 2002, Gordon Brebner of the University of Endinburgh described a gigabit lP router 
[13] that fits on a single Xilinx Virtex-Il Pro XC2VP7 FPGA device. This router takes 
advantage of the configurability of the FPGA to maintain system performance as traffic 
migrates from IPv4 to IPv6. 

1.2 Motivation and Objectives 

Network systems, such as routers and switches, started as conventional central processing 
units. They have a CPU, RAM and ROM to store the operating system and interfaces to 
Connect to the network. At the beginning, their performance was sufficient. With the rapid 
growth of the Internet and applications, they became a bottleneck. They could not reach 



the required speed for packet throughput. To solve this bottleneck, ASIC was introduced. 
ASIC is an integrated circuit designed to perform the networking functions at wire speed. 
The networking functions are designed into silicon hardware permanently. 

Bandwidth is important and critical to network applications. Because emerging Internet 
applications increase the network traffic, it is pushing the limit of the capacity of 
communication lines and semiconductor technologies. Therefore, network equipment 
providers are searching for better technologies and methods to handle, support and 
manage the traffic. 

Currently, researchers are exploring several different approaches to high speed 
networking. Most of the work has concentrated in the areas of improving switching 
architectures [1]. Therefore, network equipment providers are searching for better 
technologies and methods to handle, support and manage the traffic [2]. Network 
processors present a solution, which can help maximize bandwidth utilization and traffic 
flow [3, 4]. And now it is the main component in the network systems to meet the new 
bandwidth, speed, and performance requirements. 

From the study of this related works, it is found that network devices that use network 
processor are not speedy well with the communication medium. Moreover, researchers 
are still trying to increase the speed of the network processor. So, research on this area is 
the important issue to increase the network performance and meet the current networking 
demands. 

Again due to higher bandwidth requirements and to support the real-time applications 
with high-speed communication medium (like: optical fiber), the main issue for 
improving the routing systems are to design such a network processor which considers 
the following: 

• Increase processing speed and reduce mean system wait time 
• Faster time scheduling and memory queuing architecture 
• Use adaptive methodology for support various packet processing 
• Parallel packet processing from multi queuing system 
• Multi protocol supporting and multi-threading capability 
• Parallel processing with multi-core processor unit 
• Programmable and scalable processing architecture 
• Synchronous processing capability with different communication medium 

The objective of this thesis work is to design such a network processor architecture that 
speeds up the packet processing power. 

1.3 Scope of the thesis 

Network processing is an active field both academically and commercially. Network 
researchers are always try to speed up the processing power of a network processor to 
reach its incoming traffic speeds. Different methods and techniques are introduced by the 
different academic researchers. On the other side, commercial network processors are 
viewed as the next step towards high-speed data traffic processing and are currently 
enjoying a third generation systems. At the same time, academic research continues with 
new methods of providing network services in reconfigurable hardware. 
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1.4 Approaches 

In the first step of this thesis work is to study on various network processors with their 
design architecture and functionality. Then study on the methods and algorithms that the 
existing processors used to achieve their specific purpose. From the study and analysis, 
this research finds some techniques and methodology for designing efficient network 
processor hardware. The Task Optimized Processing core (TOPcore) technology is 
chosen for designing the core processing unit. To processing in a parallel way pipelined 
architecture is developed with pipelined memory interface. An efficient load balancer is 
used for high performance parallel processing. The whole processes are followed by a 
hierarchical layered processing strategy. 

Finally, the design will be modeled and simulated in RTL level using VHDL and then 
synthesized to a schematic. The design is also simulated in ModelSim Simulator and 
generates simulation waveforms. 

1.5 Challenges 

The performance aspects of network processor design continue to be challenging. 
Additionally, there are now other concerns of growing importance that focus on software 
and new applications for network processors. The design and application spaces are very 
large. Programmability remains a substantial challenge due to the different types of NP 
architectures, the evolution of networking standards and applications, and the 
unavailability of a unified and widely accepted set of software development and 
performance prediction tools. 

On the other hand, with introduction of optical fibers in transport networks, the serial 
time-division multiplexing (TDM) synchronous optical network/synchronous digital 
hierarchy (SON ET/SDH) transmission speed grew exponentially and reached 40 Gb/s 
rate by 2000 [2]. Though the speed increase was not expected to go beyond 100 Gb/s 
because of the limits of transceivers, this had already put pressure on the network device 
designers. To make the situation more challenging, deployment of WDM transmission 
technology brought radical changes increasing transmission capacity of fiber links to 1.6 
Tb/s and beyond [2]. 

1.6 Organization of the thesis 

This section reviews the topics covered in sequence and remainders organization of the 
whole thesis work. 

Chapter 2 describes the overview of the Network Processor (NP) systems. The 
evaluation and generation, application and generic NP architecture are described 
there. 

In chapter 3, data processing models and details packet processing functions are 
described. 

The chapter 4 is for the architectural definition of NP and describes the 
methodologies that are used in this thesis. The proposed architectural design and 
the proposed modified design of processor unit are given in detail there. 
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• The architectural microcode simulation, VHDL modeling and synthesized results 
are given in detail in chapter 5. 

• The performance evaluation of the thesis is described in chapter 6. 

• Chapter 7 gives the conclusion and future work of the thesis. 



CHAPTER II 

Network Processor Review 

2.1 Overview 

Communication over the Internet is built on packet switching. The processing of packets 
is the main job of the network systems such as switches and routers [2]. These network 
systems examine each packet, and then decide what to do with them. Typically, this 
decision depends on the headers of the packets. They can be forwarded to interfaces of 
the system or returned to the sender as an error message. The functions and the services 
that the network system provides depend on the architecture of the network system 
processor. 

A network processor, unlike the conventional computer processor unit (CPU), combines 
hardware functional units with software, and is designed and highly optimized to perform 
network functions [2-4]. For high bandwidth and performance, parallelism and pipelining 
are used in the design of Network Processors. 

A Simple definition of a network processor is that it is a programmable device which is 
specially designed to process packet data at wire speed [7]. However, this definition 
doesn't really clarify what the Network Processor has to process. This is summarized in 
more detail below. 

Pattern Matching: Here the network processor compares packet fields with 
specific patterns, to classify the type of packet, for example to decide whether a 
packet is an IPv4 or an IPv6 packet. 

Lookup: Here the network processor takes a packet field and performs a lookup 
in a table to return the relevant table entry. This table may be either in internal 
memory or external memory. For small fields the table can be one-to-one and only 
require a single lookup. However, for larger fields, a tree search may be require to 
find the correct table entry, in this case multiple lookups may be require. A typical 
lookup may be to perform a lookup on the destination address to identify the IP 
address of the next hop. 

Data Manipulation: This is where the packet is modified in some way. This 
could be decrementing the Time-To-Leave (TTL) field in an IP packet, 
recalculating the CRC check, performing packet segmentation and reassembly, or 
encryption/decryption of a packet. 

Queue Management: This is where the scheduling and storage of the packets is 
handled to provide traffic shaping and quality of service priority queuing. 

Network processors vary in their level of: 

-programmabi I ity, 
-processing power, 
-extent and ease of configuration, 
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-flexibility, 
-adaptability and 
-inclusion of specialized hardware structures [20] 

Programmability is the ability of loading a program (set of instructions to perform a 
certain task) or a set of registers (setting the initial state of the processor), such as in 
Switch core NP. While the level of programmability may enable the support for a wider 
variety of applications, it also increases the level of complexity of product development 
(creating a program requires more work than setting a set of configuration registers). 

Processing power is a measure of the data processing capacity, usually measured in 
millions of instruction per second (MIPS), millions of floating-point operations per 
second (MFLOPS), millions of bits per second (Mbps, megabits per sec.), millions of 
bytes per sec. (MBps, megabytes per sec.), millions of clock cycles per sec. (MHz 
megahertz), millions of packets per second (MPps). The units used differ between 
manufacturers, but most use a measurement of the throughput of data on the 
communication medium. These are measured either in 1 Mbps' or in 'MPps'. 'Mbps' gives a 
good indication of the communication mediums that can be connected to the system, but 
does not give any indication of the amount processing that can be done on the packets. 
'MPps' is a better indication of the amount of processing, but is highly dependent on the 
protocols and traffic patterns on the network. It requires information on the protocols, 
types of processing, and types of traffic. In the network processor market, the 'MPps' is by 
far the most favored unit of processing power. There is no perfect type of processing 
power measurement. The processing power of the Network Processor depends not only 
on the number and the speed of the core processor(s), and the amount of threads on each 
core, but also on their efficiency and specialized hardware structures. For example, both 
the MMC NP7120 and the Agere (Lucent) FPP/RSP support a line bandwidth of 2 x OC-
48 (5 Gbps), but the Agere Network Processor has 1700 MIPS versus 440 MIPS for 
MMC's network processor. The Network Processor from Agere has 4 CPU cores versus 2 
for the MMC and the Agere also has hardware support for a total of 64 threads versus 8 
per CPU [21]. Multiprocessor and multithreaded systems increase the power of the 
Network Processor, but that requires the breaking of the algorithms into multiple parts. 
While networking naturally lends itself to parallelism, it can still be difficult to split the 
algorithms into the 64 threads that some of these Network Processors have and to balance 
the load over the 16 processors. 

Extent and Ease of Reconfiguration is related to the programmability, as it is partly 
measured by the ease of re-programmability or reconfiguration, whether it can be done in 
the field, on the fly or if it requires removal from the system. It is also related to whether 
the network processor has any FPGA-like structures to allow the designer to load custom 
hardware structures into the design, as in the Chameleon CS2000 Family, and to the type 
of programmability (on the fly, etc ... ). This feature can increase overall throughput of the 
system by allowing for time-division-multiplexing, but will increase the latency of the 
Network Processor. 

Flexibility is the ease with which the network processor can be configured or adapted to a 
given task, protocol or service. Flexibility is related to which functions can be 
implemented in sothvare, which functions can be implemented in custom hardware and 
whether the interconnect between chip components can be reconfigured. 
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Adaptability is the ability of a chip to support different types of protocols, services, 
communication links and bus standards (PCI, AMBA, etc ... ). It is the ease with which it 
can adapt to the environment in which it is placed. 

Inclusion of specialized hardware structures provides on-chip specialized packet 
processing structures that would normally be present in an ASIC design and usually 
delivering considerable performance enhancement for network specific tasks. Structures 
such as polynomial-based hashing hardware, SRAM read write queues, address lookup 
tables, parallel processing power and even integrated SRAM and SDRAM controllers are 
among the cores that can be included in a Network Processor. An example of such 
hardware structures integration is the IBM Power Network Processor. Such inclusion of 
specialized hardware structures provides performance enhancements and/or greater 
system integration. 

2.2 Evaluation 

Over the last 20 years, network systems especially router architectures, have evolved 
through three generations, each marked by improvements in packet processing 
mechanisms. 

2.2.1 First-Generation Systems 

Up to the mid 1990's, router architecture was similar to the conventional PC systems. 
Figure 2.1 illustrates a CPU that performs networking functions, controlled by the 
router's operating system. Like conventional PCs, the router's operating system resides in 
the system's volatile memory in RAM and controls all the system's functions and 
services. 

In such a system, all tasks are controlled and performed by software, and routers built in 
this system are called software-based routers. Because routing is software-based, adding 
new functions and services to the router can be done by simply changing or adding new 
instructions to the software [2-4]. 

It is good for the vendors because it does not take much time to change or upgrade the 
router's software. They could quickly develop new or special purpose products within a 
short time. The Cisco 2500 Router is an example of a software-based router (Figure 2.1). 
Cisco 2500 uses its Central Processor Unit to execute and conduct its routing instructions 
stored in nonvolatile RAM. 

As Networking technology and applications changed, the drawback of this system 
became apparent. Software-based architectures had a limited ability to scale to higher 
bandwidth demands and new routing services [4]. For example, the majority of software 
based routers can only support wire speed throughput for less than 155 Mbps [4]. For 
perform complex networking functions, like filtering, policy based routing, and 
examining traffic statistics, the throughput of software-based routers is reduced. This 
creates a bottleneck in the network [4]. 

Networking technology was constantly developing, but software-based architecture could 
not keep up with the bandwidth demand and started to suffer in performance. In addition, 
maintaining this architecture became very expensive. 



INTERFACES 

Figure 2.1: Software-Based Architecture. 

2.2.2 Second-Generation Systems 

After the mid 1990s,   companies started to find new solutions to support high bandwidth 
and fast processing networking systems. Vendors used Application Specific Integrated 
Circuits (ASIC) and combined them with embedded Reduced Instruction Set Computer 
(RISC) processors yielding greater speed and performance. Companies that built high-
speed network systems started to hire VLSI design engineers to design ASICs for their 
systems and products [2]. 

ASIC-based forwarding and switching have resulted in a new generation of very high-
speed routers and switches. ASIC is an integrated circuit manufactured with embedded 
instructions to perform specific functions. The functions are programmed in silicon 
hardware permanently. So, for ASIC, since there is no memory instruction fetch cycle, it 
is significantly faster than software-based systems. It works at wire speed. That is, in the 
software-based architecture, the CPU must make memory accesses to execute 
instructions, and memory accesses take too much time compared with the execution time 
of ASICs. 

- With ASICs, manufacturers improved the performance by creating special chips that 
could do packet forwarding directly in the hardware. These chips make decisions about 
packet forwarding and, when packets need special treatment, they are forwarded to the 
RISC processor for special treatment. With very high packet forwarding speeds 
(approximately tens of millions of packets/second), routers became very inexpensive. 
They became common in academic and industrial networks [2, 4]. Now, one can buy 
sophisticated routers for $100 or less. 

ASIC technology became very popular because it can process packets at wire speed. But, 
after several years, its drawbacks started to be understood. ASICs are created by 
designing and fabricating networking functions into silicon permanently. In the 
meantime, Internet applications are becoming more complex. Thus, they need still more 
functionality. Some of those applications, such as Firewall Capability (stateful firewalls), 
Virtual Private Networks (VPN), and Quality of Service (QoS) implementation demand 
new processing capability from the network hardware [6]. 

To add a new function to an ASIC, we have to design and produce it from the beginning. 
This procedure takes from several months to two years. ASIC can be designed for several 



different functions, but since those functions are embedded into silicon, adding new 
functions, or designing new ASICs are very expensive and time consuming [6]. 

To summarize, ASICs have numerous disadvantages: They are costly, require much time 
to market, and exhibit difficulties in simulation, design, and modification [2]. 

2.2.3 Third-Generation Systems 

Network systems vendors can no longer afford to wait as long as two years designing and 
developing ASICs for an application. The network requirements could change during the 
development of a special purpose ASIC, and a lot of effort and money could be wasted 
[7]. The solution is Network Processors. Network Processors were introduced in the 
market in the late 1990s. Network Processors combine two approaches, hardware 
structure (about as fast as ASIC) and software that makes the system flexible. 

Network processors are not for a special application. A vendor can produce different 
systems with different network functions with only one type of network processor. Today, 
designers can build a layer-3 unicast router; tomorrow designers can build a stateful 
firewall. Applications that are overwhelming for ASICs, because of the complex 
functionality, are implemented with network processors, such as Virtual Private 
Networks, firewalls, and Quality of Service mechanisms. These functions require more 
scalability, flexibility, and programmability. 

2.3 Applications 

The application of network processors is another area were abundant growth will take 
place. These processors will be targeted at "edge applications" and "backplane 
applications". Edge applications are where LAN and WAN protocol and packet 
translation frequently are required. Backplane applications are where a high 
concentration of source ports must each be forwarded to the appropriate destination port. 
Uses areas are Remote Access Servers, Web Switches, Internet Core Routers, Enterprise 
Routers and SOHO Intrusion Detection systems etc. 

Remote Access Servers 
These are servers that function as a large bank of modem to allow remote users to dial-in 
to access an enterprise network or the Internet. Recently, the access to the Internet 
through Internet Service Providers (ISP) has been as major focus of RAS. ISP's have 
customers wanting to do all kinds of different things. A RAS needs to be programmable 
to meet the needs but also faster and at a smaller cost per port. Current architectures have 
simplified line cards and a central switching point to route traffic. The line cards are 
inexpensive but this approach does not scale well. Traditional CPUs are designed based 
on locality of reference; they make the assumption that data recently referenced is likely 
to be referenced again in the near future. A cache helps make these systems run fast by 
keeping recently referenced information close to the processor. Thus the traditional CPU 
design bogs down in the face of constant streams of new data. A network processor takes 
a different approach. High-speed data movers collect data from network devices and 
move it directly to memory for queuing. While data is being moved to memory, it is 
selectively copied to special high speed engines that are able to parse the packet data, and 
make on the fly decisions about how to forward this data. However, as mentioned above 
in the [Table Lookup algorithms] section, network processors can benefit for specially 
designed memory cache to aid in the routing table computation to make decisions on how 
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to forward a given packet. Multiple high-speed engines allow the network processor to 
handle the many simultaneous threads of traffic flowing in a high-speed network. 
Sophisticated memory interfaces insure that the data can flow in and out of the processor's 
memory without creating a bottleneck. 

Web Switch 
Web Switches' are a new breed of network switch devices that help businesses and other 
content providers serve the needs of their clients. These switches delve deep into the 
network packets to determine not just what destination was intended, but also what 
application is being run, and what kind of transaction is being requested within the 
application. This information can then be used to make intelligent decisions about how to 
forward this traffic. The Web Switch needs to handle several different types of tasks. 
Packet handling from many connections must be processed at a fast rate. State 
information about each client connection is maintained so those subsequent packets for 
the session are forwarded to the appropriate server. Other network load and management 
processing is also done. This requires a device that is very flexible. Using network 
processors to build such a device because of their inherent nature of being programmable 
offers such flexibility. 

Internet Core Routers 
These routers serve as the backbone to the Internet. ATM technology dominates these 
routers now and is very fast and efficient for [Layer 2] switching. However, [Layer 3] 
and [4] forwarding is needed; this requires that the network packet must be investigated to 
make a more intelligent forwarding decision. A switch that can handle existing 
requirement, known new requirement and unknown future requirements is needed. A 
router built upon a network processor has the flexibility and performance necessary to 
succeed at such a task. 

Enterprise Routers 
In similar regards to the requirements of the Internet Core Routers, enterprises need 
[Layer 3] and [4] switching but also want a substantial reduction year to year in the cost 
per port of network devices. A system based on a network processor because of its 
programmability and low parts count can attempt to satisfy the needs of enterprises. 

SOHO Intrusion Detection systems 
Small Office Home Office (SOHO) network device could benefit from using a network 
processor in a device that not only connect the client to the Internet but also does 
intrusion detection. Most SOHO's can not afford high priced network equipment or 
technical staff to protect against intrusions. A system that was programmable and 
relatively inexpensive with a long life span would be ideal in this situation. Because 
intrusion techniques are constantly changing, a network processor and its inherent 
programmability point to an ideal match of problem and solution. 

Intelligent Processing 
Because the architecture incorporates flexibility by being programmable other areas of 
future direction will involve intelligent processing. This will take the form of system 
based on a network processor to be able to provide customers with features such as 
Quality of Service (QoS), IP billing, security and monitoring, and IPv6 to name a few. 



Quality of Service (QoS) 
This feature is to ensure that a defined level of service is provided for network traffic. 
Most prominently this is in terms of a constant data rate; so important in audio and video 
data transmissions. To accomplish this intelligent processing must be done in the 
network devices. Currently this would have to be defined is silicon (ASIC's) and 
therefore, not easily changed. With network processor doing the intelligent processing, 
the programming can be changed to meet specific needs. 

IP Billing 
Currently, all packets travel at "bulk rate" because routers cannot tell them apart. Routers 
that can analyze headers more thoroughly without compromising wire speeds will allow 
network operators to sort packets into digital equivalents of priority mail, first class, 
second class, etc... For example, in return for higher fees, the encrypted traffic on a 
corporation's virtual private network (VPN) could get a higher priority on an Internet 
backbone than the idle gossip in an AOL chat room. Such processing must be done 
without compromising wire speeds - and hence, the network processors. 

Security and Monitoring 
Another application of intelligent processing is to investigate packets in order to monitor 
their behavior and to detect security violations. This requires a delving into the packets to 
examine the contained information. By processing this information intelligent decisions 
related to security and monitoring can be made. This is made possible with the 
programmability and wire-speed performance of network processor based systems. 

IPv6 
The next revision of the Internet Packet (IP) protocol is called lPv6. This revision will 
incorporate many new features into the protocol; the most notable is the address range of 
IP addresses. The source and destination addresses will 64 bits instead of the current 32 
bits. Network devices that are not programmable will have to be replaced to take full 
advantage of the features in IPv6. With systems built upon a network processor the 
devices do not have to be replaced, only the software that controls them. 

2.4 Generic Architecture 

Network processor architectures make CPU architectures look staid and boring [31]. 
Figure 2.2 is a block diagram of a generic network processor. It does not represent a 
specific network processor, but includes traits common to most. These traits are: 

• Multiple RISC cores 
• Dedicated hardware for common networking operations 
• High-speed memory interface(s) 
• High-speed I/O interfaces 
• Interface to general purpose CPU 

Compared to general purpose processors, network processors do not need very 
sophisticated arithmetic and caching capabilities. Instead, they usually contain multiple 
execution threads running in parallel. Also specialized hardware units provide added 
functionality depending on the mainstream applications the network processor is targeted 
for. Packet processing is different from other applications intended for regular CPU in 
several ways [23]: 

12 



• It is I/O centric rather than process-centric. 
• It has to be handled in real-time fashion. 
• It consists of many simple tasks instead of few big tasks. 
• It keeps states per flow instead of per application. 
• It requires atomic access to shared data as it is more geared towards parallel 

processing than the usual CPU applications. 

I CPU Interface I I Memory Interface 

I
RISC Core 

RISC Core 

Processing 
& 

Control Unit 

Buffer Unit  

RISC Core 

RISC Core 
1 

I PCI Interface I I High-Speed Interface I 

Figure 2.2: Generic Network Processor 

Dedicated Hardware 
Network processors, particularly RISC based ones; provide specialized hardware or 
integrated co-processor to perform common networking tasks. Typical hardware 
functionality includes Lookup Engines, Queue management, CRC calculation and 
Encryption Functions. In some Instance this additional hardware functionality may be 
targeted specifically for a particular application and would be of no use in a different 
application. 

Network Interface 
A key feature of Network processors is their network interfaces. This is where the data 
packets enter and exit the network processor. These interfaces connect to the Framer or 
MAC device of the line interface. (Although some network processors have integrated 
framers and MACs, in which case the network processor connects directly to the PHY). 
Some of the early network processor manufacturers developed their own network 
interface, which means designing new framers with this interface or providing a bridge 
chip. Now, however most network processors implement standard interface to the 
Framers and MACs, such as UTOPIA level 2 and 3, SPI-3 and for 10Gbps traffic SPI4.2. 

Switch Fabric Interface 
Many of the high-end network processors are targeted towards routing applications and 
provide an interface to a switch fabric. In general the switch fabric interfaces comply with 
a standard switch interface such as CSIX or may be SPI4.2. 

Control Processing 
The main function of the network processor is to process packet data at wire-speed. 
Certain packets known as control and management packets do not need to be processed at 
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wire-speed. These include exception packets and table updates. These packets in general 
have more complex processing requirements than the data packets, which are processed 
by the PPEs, would slow down the packet throughput. These packets are therefore 
separated out of the main data path and passed onto a separate processor known as the 
control processor. This processor may also be responsible other functions such as 
statistics gathering. A general-purpose processor normally implements the functionality 
of the control processing. Many network processors contain an integrate core specifically 
for control processing. Alternatively the control processing functionality will need to be 
provided externally via a host interface, such as a PCI bus, to a general-purpose 
processor. 

Memory 
Network processors require memory to store program code, lookup tables, packet data 
and queue information. Where feasible this memory is provided internal to the network 
processor. However, inevitable external memory will be required for many applications. 

Most network processors will have at least two external memory interfaces, one to SRAM 
(Static Random Access Memory) and one to DRAM (Dynamic Random Access 
Memory). Accessing the external memory can cause a bottleneck; so many manufacturers 
are looking to the technologies to provide faster memory accesses, such as using DDR 
(Double Data Rate) or QDR (Quadruple Data Rate) SRAM, DDR SDRAM (Synchronous 
DRAM), FCRAM (Fast Cycle RAM) or RDRAM (Rambus DRAM). Packet data is 
typically requires large buffer storage, so in general it is stored in DRAM. Queuing 
information will usually be stored in SRAM. 

The location of lookup tables depends on the size of the lookup table. large tables will 
need to be stored in DRAM, whereas smaller tables can be stored in SRAM or internally. 
Some network processors provide interface to CAMs (Content Addressable Memory), 
which allow very fast lookups. However, CAMs are still fairly small and so will limit the 
number of entries in the lookup table. 
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CHAPTER III 

Data Networking and Packet Processing 

3.1 Data Networking Models 

Network modeling can be done in any one of the following two ways: either by modeling 
the data and the communications' protocols between the communicators, or by modeling 
the physical components of the network and their interconnections. Eventually, the two 
models converge into one representation of network modeling. 

As data communications and telecommunications programming, interfaces, and 
equipment grew more sophisticated, the International Standard Organization (ISO) 
suggested a structured, layered architecture of networking called Open System 
Interconnect (ISO/OS!). At about the same time, the U.S. Department of Defense (DoD) 
offered another layered model that concentrated on data-network modeling (often called 
the Internet model, or more commonly, the TCP/IP model). These two models provide 
fundamental concepts in communications, and most systems and definitions use their 
language. 

3.1.1 ISO/OS! Model 

According to the ISO/OS! model, which is also called the seven-layer model, any two 
peered layers interact logically, carrying the relevant data and parameters, and executing 
the functionality of that layer. These layers actually interface with the layers above or 
below them (i.e., they hand them the data and parameters). The seven layers are shown in 
Figure 3.1. 

cation I .- - - - - - - - - - - - - -  - I Application I L7 

Presentation - -.-I Presentation 

Session -H Session 

Transport H - - - - - - - - - -  - - - ranspo L4 

Network H - - - - - - - - - -  - - - -H Network L3 

Data Link H-------------- -iData Link L 2 

Physical — — — — — — — — — —  — — — --j Physical 

urn 

Figure 3.1: ISO/OSI seven layers model 

The physical layer handles bits and the physical transmission of bits across the 
communication channel through some sort of medium (whether it be a kind of wire, fiber, 
radio-waves or light). The second layer (referred to as L2) is the datalink layer, which 
takes care of framing bytes or a block of bytes, and handles the integrity and error 
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recovery of the data transmitted at this level between two nodes connected by a physical 
channel. The third layer (referred to as L3) is the network layer, which is responsible for 
carrying blocks of data between two or more nodes across a network that is composed of 
multiple nodes and data-links; L3 responsibilities include the required addressing, 
routing, and so on. The transport layer is the lowest application (or host) layer that carries 
data between applications (or hosts), independently and regardless of the networks used. 
It is responsible for the end-to-end data integrity and reliability, and it works through 
either connection or connectionless transport mechanisms. The session layer controls the 
session (e.g., determining whether the relationship between the nodes is peered or 
master/slave; establishing, maintaining, and terminating a session). The presentation layer 
determines such things as the format, encryption, compression, structure, and encoding of 
the application data. The application layer determines the way the application uses the 
communication facilities, that is, e-mail, file transfer, and so on. 

The upper four layers (the transport, session, presentation, and application) are considered 
the host layers, while the lower three (the physical, data-link, and network) are the 
network layers. The network layers are considered the most important in network 
processing; nevertheless, many networking decisions are made based on the upper four 
layers, such as priority, routing, addressing, and so on. 

3.1.2 TCP/IP Model 

The equivalent data-networking model of the DoD (often called the Internet model, or 
more commonly, the TCP/IP model), is simpler, and contains fewer layers. (It originally 
had only four layers, without the physical layer; see Figure 3.2) 

-lHost-to-Host I L4 

Internetwork H--------------'-1 Internetwork I L3 

Network J-.s -- — — — — — — — — — — — — — —I Network I L2 

Figure 3.2: TCP/IP model 

The ISO/OSI model layers are not mapped exactly onto the TCP/IP model layers; 
however, roughly speaking, the TCP/IP model shrinks all host layers into the host-to-host 
(transport) layer (1-4), and adds a new, internetworking layer that is composed mainly of 
the ISO/OSI network layer (L3). TCP/IP's network layer (L2) is composed mainly of the 
functionalities of ISO/OSI's data link layer and some of its network layer. Recently, this 
model has been amended by a "half' (or a "shim") layer as new technologies have been 
introduced, so this model can better fit systems more precisely. 

3.1.3 Data Networking 

The way the applications and other entities are multiplexed in one host and demultiplexed 
in the target hosts is by using headers in each layer, and data encapsulation. In ISO/OSI 
and TCP/IP models, each layer's entity interfaces with the entities in the layer underneath 
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it by adding a layer-header describing the parameters required for the entity in the layer 
underneath to function properly. This header also lets the peered entity in the same layer 
in the other host to have the required information about how to process the data 
(according to the protocol). These headers are added as the data travels downwards 
through the layers, and they are removed as the data travels upwards. Figure 3.3 depicts 
data encapsulation in the TCP/IP model, and names the data units (Protocol Data Units, 
PDUs) that result; that is, datagrams in the application layer, packets in the IP layer, and 
frames in the physical layer. 

Application Layer Application 
Tata 

 Datagrams 

Transport Payload 

Transport Layer Transport
Header Application Data 

I P Payload 

Internetworking, I P Transport Application Data I Packets P Layer LHeader Header i I 

Network Payload 

Network, 
Physical Layer I 

Physicall 
Header 

IP 
Header I Header 

ITransportlApplication Data 
Trailer 

Frames 
I 

Medium 

Figure 3.3: Data (payload) encapsulation 

The other network modeling emphasizes the physical components of the network, and is 
composed basically of nodes and links. Some of the nodes are hosts or end systems 
(clients and servers, or peer communicators), and some are network edge devices or 
network core devices, as shown in Figure 3.4. Edge and core devices are gateways, 
routers, switches, bridges, hubs, and repeaters. 

Node: Host PC, Server 
Edge/Core: gateways, routers, switches, bridges 

Figure 3.4: Network Model 

Network devices work up to the third layer (with the exception of gateways that work on 
all layers, and connect very different types of networks and applications). Generally 
speaking, repeaters and hubs work only on the first, physical layer, bridges, and switches 
work on the second layer, and routers work on the third layer. Thus, for example, routers 
interconnect networks and links by analyzing and forwarding packets based on the 
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headers of the third layer, as shown in Figure 3.5, where node A and router A are 
connected by one link (the left medium), and node B and router B are connected by 
another link (the right medium). The routers are connected by a third link (the middle 
medium). 

Node A Router A Router B Node B 
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Figure 3.5: Router layers 

Links can be replaced, or generalized, by networks, such that, for example, the routers are 
connected by networks in between them, as shown in the Internet model in Figure 3.6. 

Figure 3.6: Internet Model 

3.2 Packet Processing 

— Network processors are sometimes distinguished from packet processors by being 
programmable, whereas packet processors are just configurable. The programming 
paradigms, models, styles, and languages that are used for NPs are also very different 
from those used for applications running on general purpose processors. No interrupts are 
used in NPs, and the main principle is to use an event-driven control program, in which 
packets dictate how the software runs. Network processors perform several key functions, 
including: 

• Parsing the incoming frames in order to understand what they are, and where to 
find the relevant information that is required for processing. 

• Retrieving the relevant information from the frames, which may be complicated as 
encapsulation, variable fields length, and various levels of protocols may be 
involved. 

• Deep packet analysis when required, such as understanding HTTP names, 
identification of XML protocols, and so on. This may be required for priority 
assignments for various kinds of traffic flows. 

• Searching for related information in repositories; for example, routing tables, 
access lists, and so on. 
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• Classifying the frames according to the various forwarding and processing 
schemes that the frames should undergo. 

• Modifying the frame's contents or headers, possibly adding tags, changing 
addresses, or altering the contents. 

• Forwarding, which may potentially be coupled with various traffic management 
tasks such as metering, policing, shaping, queuing, scheduling, and statistics. 

Packet processing tasks (or functions) include: 
• Framing. 
• Parsing and classification. 
• Search, lookup, and forwarding. 
• Modification. 
• Compression and encryption. 
• Queuing and traffic management (measurement, policing and shaping). 

Packet processing can follow one of two paths: 
• Data path (fast path). 
• Control path (slow path). 

Packet processing can be discussed according to direction: 
• Ingress (entering the equipment or the network processor, from the network). 
• Egress (exiting the equipment or the network processor, to the network). 
• Combinations of Ingress and Egress. 

3.2.1 Packet Processing Flow 

Processing functions are separate tasks, each following the other. The process starts with 
the packet entering the network processor and immediately goes through framing, whose 
function is to make sure that the packet arrived correctly. (In the other direction, framing 
is the last task, and is targeted to ensure valid packet output.) The second phase is to parse 
and classify the packet, which simply means that the network processor must understand 
what the packet is, what type it is, and then must classify it according to the application 
requirements. Usually for this classification function, searching is required. The last 
function that the network processor carries is the required modification of the packet, 
which includes dropping the packet if required, multiplying it, or altering its content as 
required. Finally, transmitting the packet usually involves an extra function of queuing, 
prioritization, and traffic management of the packet to make sure that the receiver can 
receive the transmitted packet at traffic patterns that it expects. Queuing and traffic 
management sometimes happens inside the network processors and sometimes happens 
outside the network processors. Optionally, compression and encryption tasks are utilities 
that packets sometimes undergo and usually they are done outside of the network 
processor, although there are some network processors that contain an embedded security 
functional unit. 

The main processing functions are classification of the packet (at real time or at wire 
speed), and searching for various values (e.g., next hop address) that correspond with 
some fields in the packets (e.g., IP address). These two functions have received extensive 
treatment in the industry, to the extent of special purpose search engine coprocessors, and 
the development of parsing and classification languages. 
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ILI 

A general framework of the three primary aspects of packet processing is depicted in 
Figure 3.7. The packets enter from left, in the ingress direction, and take either the slow 
path (through some kind of upper level processing, for example, updating routing tables 

- of the network processor), or the fast path (going through the network processor functions 
of searching, modification, etc.). The packets are then forwarded either to a switch fabric 
or to the network (line interface) again, in the egress direction. 

Figure 3.7: A general framework of packet processing 

3.2.2 Ingress and Egress 

The packet processing flow is divided into three stages: ingress, switching and egress. 
The ingress stage is responsible of receiving packets arriving into the system. The 
switching stage is responsible for the transfer of packets from packet processing units on 
the ingress to packet processing units on the egress. The egress stage is responsible of 
transmitting packets exiting the system, See Figure 3.8. 

Ingress 
—T  

Egress 
Switchin 
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Receiving Packets E'ransmitti ng Packets 

Figure 3.8: Ingress and Egress Processing Configuration 

In the Ingress configuration, the processing performed in the ingress queue includes such 
operations as checksum calculation, TIL updating, destinations address swapping and 
address lookup. After all the required processing operations are performed, packets are 
transferred to the Packet Buffering Unit, through the switch matrix. The Packet Buffering 
Unit places the packet on the output queues. 
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In the Egress Processing Configuration, the only information extracted from the packet on 
the input queue is the destination address. The information is used to determine the 
destination port and the packet is transferred to a Protocol Processor on the output queue 
through the switch matrix. Any needed processing is then performed on the assigned 
Buffer Processor on the output queue. 

3.2.3 Framing 

Received or transmitted frames should receive "framing" treatment, in order to assure that 
the correct and full packets or datagrams can be extracted from these frames. This means 
that incoming frames should undergo correctness tests (to make sure that the entire 
frames' bits are received without error), correcting attempts if required and integrity 
checks (to make sure that all packets' content arrived). Outgoing packets should be 
fragmented or segmented as required and "framed" correctly, that is, adequate headers 
should be attached or altered, proper terminators (trailers) should be appended or 
modified, and error detection and correction information should be added. 

3.2.4 Parsing and Classification 

After a complete valid packet is received and verified, the next step of packet processing 
is to look at the incoming packets in order to classify them for various treatments, as the 
processing requirements dictate. This step involves two combined subtasks: parsing and 
classification. Packet processing has two basic architectures, or design philosophies, that 
are crucial for parsing and classification implementation; these architectures are store-
and-forward and cut-through. 

In store-and-forward architecture, packets are first received in their entirety, stored 
temporarily, examined, analyzed, processed, and then, after a decision is made regarding 
them, transmitted, and the memory is cleared. Store-and-fonvard allows a complete, even 
complex treatment of the packet, before the packet is injected back into the network. This 
comes, however, at the expense of having to deal with buffering issues and delaying the 
packet, that is, adding end-to-end delay to the packet flowing from the ingress of the 
processing unit to its egress, due to the increased latency incurred by the buffering time 
that is required before processing starts. 

The shortcomings of the store-and-forward are remedied by the cut-through architecture, 
where processing begins as packets flow into the processing units, and continues as bits 
continue to come in. The packet is transmitted after the required analysis, and the decision 
and processing is done "on-the-fly." This can be accomplished by examining specific bit 
patterns in various fields of the incoming packet, that is, parsing and classifying, as well 
as other decision and processing tasks that must be carried out in real-time. Although cut-
through saves buffering and latencies, it allows only simple analysis, decision and 
processing tasks, and might even cause network overhead (e.g., transmitting a packet that 
eventually turned out to be invalid, bad CRC, or, because a premature decision was made 
based on the first bits of the packet, the output-channels were loaded in vain, forcing 
packet retransmits). 

Examples of these two architectures are, on the one hand, in low-end routers that use 
store-and-forward architecture (no "wire-speed" constraints), and on the other, VLAN or 
MPLS switches that use cut-through architecture, based on a tag in the beginning of the 
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frame that allows forwarding decisions to be made instantly, while the packet is still 
inflowing. 

Parsing 

Each incoming packet must go through some sort of parsing to examine and understand 
what it is as well as its requirements, and then it must be classified, or handled according 
to its type and its required processing. Parsing therefore is the first analysis and action 
done on the packet content. Parsing is basically identifying the relevant fields in the 
incoming packets, according to their place and type, and picking the field's values for 
continuing the parsing process, or using these values for classification. Therefore, parsing 
and classification are tied together and sometimes are not separated. A simple parsing 
example in an IPv4 packet would be to detect its destination IP address. 

Classification 
Classification means categorizing packets into "flows," in which they are processed in a 
similar way by the network entities. These flows are defined by rules that the packets 
obey, and the collections of these rules are called classifiers. The rule database contains 
many entries, each of which is composed of a pair of a specific rule description and its 
appropriate action. These specific rules are matched with the incoming packets, and the 
best match determines the appropriate action to be taken on the incoming packet. Very 
often, the action is to mark the incoming packet with a notation, so that a subsequent 
process will take the appropriate action, based on this notation. 

A specific case of packet classification is packet forwarding, which deals with searching 
and packet lookups. In packet forwarding the rules are represented by the packet 
destination address fields, and the action is simply to forward the packet to its appropriate 
destination. In traffic management literature, classification is sometimes considered part 
of the traffic management process, when it classifies packets solely for traffic 
management purposes. 

3.2.5 IP Lookup and Forwarding 

The importance of rapid IP lookup cannot be exaggerated in the context of packet 
processing. The most common IP lookups are done for forwarding. IP packet forwarding 
is executed in any router or switch, where forwarding decisions have to be made in order 
to find the address of the next hop router and the egress port to be used to send the packet 
through. In most cases, IP forwarding is based on IP addresses. IP address lookups are 
obviously based on the IP address, that is 32-bit or 128-bit keys (IPv4 or IPv6, 
respectively), whereas other lookups can have much wider keys that can reach hundreds 
of bits, composed from multiple fields in the IP (or layer 2) packet. 

Almost every packet processing activity starts with an IP-lookup, and therefore, in high-
speed networks, the speed of IP-lookups is critical. Huge efforts are made to accelerate 
this specific task in any network processor or, as a matter of fact, in any networking 
device. In a 10 Gbps network, for example, the required time to forward a packet of 
minimal size is <50 ns; therefore, this is the maximum allowed time for looking for a 
match (or a longest match) of a specific IP address in a table of hundreds of thousands of 
entries (as well as doing some other things in this time frame). 
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3.2.6 Modification 

In all applications other than packet forwarding, modification of the packets is eventually 
the purpose of packet processing. Sometimes, some packet modification is required even 
for forwarding applications. For example, changing the IP header may be required in the 
time-to-live (TTL) field, as well in the IP addresses, hence recalculation of the checksum 
header is also required, and so on. 

Packet modification can include all of these operations: 

• Modification—Changing the contents of a packet (usually changes in its header, 
or changes both in the header and in the payload, as a result of some processing, 
e.g., compression or encryption described in the next section) 

• Deletion—Some of the packet contents or headers are deleted (e.g. de-
encapsulation of packets) 

• Adding—Additional information is added to the packet (e.g., encapsulation, 
authentication information) 

• Canceling the entire packet—Simply removing the packet from the system (e.g., 
exceeded traffic, wrong addressing) 

• Duplicating the packet—Copying the entire packet (e.g., multicasting, port-copy 
operations) 

Since checksum is often changed in packet processing, some network processors contain 
an internal checksum functional unit to assist with maintaining the right checksums. 

In addition, traffic analysis, some management tasks and other applications can be 
performed in the modification phase, although most of these operations are expected to be 
performed in the control path. Statistics collection, however, must be done in the fast 
path, at the modification phase, to accommodate the packet rate. 

- 3.2.7 Compression and Encryption 

Compression and encryption processing are optional phases in packet processing that are 
more typical to access network processors than to high-end network processors. The 
reason is that packets do not undergo any compression or encryption in the main trunks of 
the core and the metro networks, whereas these processes might happen at the edges of 
the network, at the access points. Usually, compression and encryption is executed by 
specific coprocessor, or in the mid-range and access network processor that contains an 
encryption functional unit. 

Compression is used mainly in places where bandwidth is critical (mainly wireless 
applications), and most of the compression efforts focus on TCP/IP header (many 
protocols run very small packets, while most of these packets are just predictable 
headers). 

Encryption is used for privacy, data integrity, and authentication to confirm the 
communicating parties' identities. There are many standards for security in the IP world; 
the main standard is Internet Protocol Security (IPsec) framework, operating at layer 3, 
and SSL/TSL operating above this layer. IPsec is used mainly in Virtual Private Networks 
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(VPN), whereas SSL/TSL is used typically in client server applications (mail, web 
browsing, telnet, and so on). 

The security protocols primarily use encryption for confidentiality, where encryption 
simply transforms unsecured information ("plaintext") to coded information 
("ciphertext"), using some key and a transformation algorithm. The other components of 
the security suit are to make both sides know what encryption algorithm to use, and what 
key to use, and some specific protocols are doing just that. 

3.2.8 Queuing and Traffic Management 

Finally, the processed packet ends its quick journey in the network processor, and is about 
to leave. The last small but very complicated task is to decide how to get rid of this 
packet, or, more precisely, how to pass it on to the receiving party (equipment or 
communication link) on its way to its final destination. 

As previous stages in the packet processor (classifiers, modifiers, and so on) determined 
the output path (port), priority, and some handling parameters, the traffic management 
process forward this packet to an appropriate queue, and schedule it for transmission 
according to the conditions of the lines, the receivers, and the parameters that this packet 
has. 

In many cases, incoming packets also have to go through traffic management (metering, 
queuing, prioritization, and so on, which are determined by incoming port or 
communication lines or other parameters) in order to be processed in the network 
processor according to predefined scheduling scheme. 

3.3 IP Addressing, Routing and Forwarding 

IPv4 addressing is based on a 32-bit address field. The 32 bits of the lPv4 address are 
usually represented by the decimal value of each of the bytes in this 32-bit address, 
separate by a dot, that is, 131.44.2.1 means: 1000001 1001011000000001000000001, or 
832CO201 (hex). The IP address is further broken down to network address (or net ID) 
part, sub-network (or subnet) part, and host address (or host ID, which is the physical 
machine connected to the network); routing and forwarding takes place among the 
networks and the sub-networks. 

The principal of routing and forwarding is quite simple: A routing table maintains all the 
addresses of the next hop and interfaces (ports) that should be used to forward an 
incoming packet. The chosen interface and next-hop address are functions of the 
incoming IP packet (its destination network address, as it appears in the IP destination 
address field of the header of that packet). 

The network address part in the IP header went through some changes over the last 
decades of Internet use. Up until 1993, in what was later called classful (or class-based) 
networks, the IPv4 address was categorized in four address classes (A to D), with one 
reserved class (E). Originally, the network address part of the IP address was defined by 
the IP class. Class A address always starts with a "0" bit in its MSB, that is, addresses 
0.0.0.012 to 127.255.255.255 and the network ID is defined by the remaining 7 bits of the 
first byte of the IP address (i.e., a total of 128 networks). Class B addresses start with a 
"10" bit pattern in the MSB bits, and the remaining 14 bits of the first two bytes are the 
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network ID, that is, class B contains addresses 128.0.0.0 to 19 1.255.255.255, and about 
16 thousands networks. Class C address starts with a "1 10" bit pattern, and the remaining 
21 bits of the first three bytes of the address define the network ID. Class C addresses 

- thus are in the range of 192.0.0.0 to 223.255.255.255, organized in roughly 2 millions 
networks. Class D is used for multicast addresses, and their IP addresses always start with 
an "1 110" bit pattern, followed by the remaining 28 bits for the multicast address. This 
class therefore is in the range of 224.0.0.0 to 239.255.255.255. The last class, E, is 
reserved, and its IP addresses start with an "11110" bit pattern. Some IP addresses 
(networks) are non-routable, and are reserved for specific use (as outlined in Table 3.2). 

The rapid use and growth of the Internet and the consumption of IP addresses resulted in 
a severe shortage of IP networks and addresses with unique IP network addresses. Two 
million networks, most of them containing about 250 hosts, were simply not enough. To 
cope with this unbearable situation, many solutions were suggested, starting from many 
intermediate solutions to extending the IP address to 128 bits (IPv6). These intermediate 
solutions turned out to be so efficient that lPv6 was no longer required so desperately. 
However, the use of these various mechanisms to expand the original IP address space 
makes things a bit more complex. These mechanisms may include Border Gateway 
Protocol (BGP), Classless Inter Domain Routing (CIDR), and Network Address 
Translation (NAT). The most influential mechanism in solving the shortage of IP 
networks is NAT, but it is not impacting addressing mechanism, routing or forwarding. 
The most influential change in addressing, routing and forwarding is due to CIDR, which 
is described in the following. 

Classless Inter-Domain Routing added hierarchy to the network addresses by defining 
subnets with a prefix length noted In (where n defines the number of initial bits in the IP 
address that should be considered as the network ID and sub-network), or using a network 
mask. This hierarchy also allows aggregation (also called summarization or supernetting) 
or defines a range of networks by a simple notation and thereby shrinks the routing tables, 
and reduces routing advertises throughout the Internet. It also created the potential of 
overlapping address ranges, or more importantly, inclusions of address ranges within 
broader address ranges, a situation we call exceptions. This makes it possible to specify a 
broad range of addresses in a routing table in one entry, and to define networks that are 
exceptions within this range by additional entries in the routing table (that are providing 
specific routing rules). 

An example will clarify this concept: IP address 192.168.16.0/20 (or 192.168.16/20 for 
short, or 192.168.16.0 with a network mask 255.255.240.0) means all IP addresses from 
192.168.16.0 to 192.168.31.255 (the first 20 bits of the address are masked, which leave 
the last 12 bits unspecified): 

Table 3.1: IP Address Example 

IP Address Network Mask 
Regular notation 192.168.16.0/20 255.255.240.0 

Hexadecimal presentation CO A8 IX XX FF FF FO 00 

Obviously, 192.168.16/20 also contains 192.168.24/21, 192.168.16/21 (which are two 
sub-networks having together the same span of 192.168.16/20), and 192.168.27/24. 
Actually, any IP address with network mask bigger than 255.255.240.0, or prefix length 
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bigger than 20, of the same initial IP address CO A8 lx xx, will be part of this network 
range. This means that in a routing table, a specification of a route (next-hop and 
interface) can be defined to a small range of IP addresses within the range of another 

- group, having another specification route (next-hop and interface). 

Table 3.2: Example of Routing Table 

Row IP Address Next hop Interface 
1 192.168.16/20 10.10.1.1 2 
2 192.168.27/24 10.16.54.2 3 
3 192.168.0/17 10.16.1.6 

4 0.0.0.0/0 10.1.1.0 7 

Assume, for example, a small routing table as shown in Table 3.2. IP destination address 
192.168.156.5, for example, matches only row 4, by definition, the default routing. IP 
destination address 192.168.1.3 matches only row 3 (and row 4, by definition). IP 
destination address 192.168.18.1 matches rows I and 3 (and row 4), and IP destination 
address 192.168.27.56 matches all rows. This overlapping, or network exception, raises 
the question of how to route packets of IP destination 192.168.27.56. 

Here comes the longest prefix match (LPM), or actually, the best matched prefix search. 
The longer the match is (with regards to the prefix length), the better the routing that will 
be chosen for this packet. In other words, a router needs to search more than just the right 
(matched) prefix; the router has to find the most specific match, which is the longest 
matching prefix in our case. The algorithm used to search for the best match is a bitwise 
comparison of the addresses, or more specifically: 

Algorithm: 
Assume the routing table like the one given in Table 3.2 (always, the last row [entry] 
should be the default route, that is entry 0.0.0.0/0), and an IP destination address, for 
which a next hop and interface is searched. Make sure the routing table is sorted by the 
network mask (the prefix length), from the most specific (the longest prefix) to the least 
specific network (the shortest prefix). 

For each row (entry) in the routing table do 
{ 

if (IP destination address AND entry's network mask = entry's IP address) 
{ 
Use the entry's next-hop and interface 
Exit 
} 

Please note that the above algorithm will always stop at the last row of 0.0.0.0/0. One of 
the biggest issues in maintaining such routing tables is the need to keep these tables 
sorted by the prefix lengths. In a large routing table, adding an entry of /3 I for example 
(close to the top of the table), might require a shift for large portions of the table. 

IPv6 addressing is based on an address field of 128 bits long, allowing 3.4.1038  IP 
addresses (compared to the 4.3-109  IP addresses of IPv4). An 1Pv6 address is presented by 
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8 groups of 4 hexadecimal digits (16 bits) each, the total 128 bits represents in a notation 
like 0123:4567:89AB:CDEF:0123:4567:89AB:CDEF. The first 64 bits usually refer to 
the network (or subnet) address, whereas the last 64 bits are the host ID (usually drawn 
from the MAC address of the machine). lPv6 addressing uses the CIDR concept, that is, a 
range of addresses can be written by an address with a prefix length (In, where n is the 
length of the network prefix). IPv4 addresses are recognized by an lPv6 addressing 
mechanism, for backwards compatibility, by attaching the IPv4 address to the ::I96 lPv6 
prefix (all zeros), for example, :: 192.168.0.1. Table 3.3 summarizes all unique and special 
addresses that usually are not routable, in lPv4 and lPv6. 

Table 3.3: IPv4 and lPv6 Non-routable Addresses 

Address CIDR Purpose 
0.0.0.0 - 0.255.255.255 0.0.0.0/8 Zero address 

10.0.0.0 -10.255.255,255 10.0.0.0/8 Private IP address 

127.0.0.0 - 127.255.255.255 127.0.0.0/8 LocalhostlLookback address 

169.254.0.0 - 169.254.255.255 169.254.0.0/16 ZeroconflAPlPA 

172.16.0.0 - 172.31.255.255 172.16.0.0/12 Private IP address 

192.0.2.0 - 192.0.2.255 192.0.2.0/24 Documentation and Example 

192.88.99.0— 192.88.99.255 192.88.99.0/24 lPv6 to 1Pv4 relay Anycast 
192.168.0.0 - 192.168.255.255 192.168.0.0/16 Private IP address 

198.18.0.0 - 198.19.255.255 198.18.0.0/15 Network Device Benchmark 

224.0.0.0 - 239.255.255.255 224.0.0.0/4 Multicast 

240.0.0.0 - 255.255.255.255 240.0.0.0/4 Reserved 

0000:0000:0000:0000:0000:0000:0000:0000 ::/128 Any address 

0000:0000:0000:0000:0000:0000:0000:0001 :: 1/128 LocalhostlLookback address 

FCOO::/7 Unique local unicast address 

FE80::/10 Local address (like zerocont) 

FFOO:/8 Multicast address 

3.4 Search Engines 

In order to cope with demanding search operations—the many search operations per 
packet in complex applications carried out in high speed communication trunks that can 
end up in billions of operations per second, and the necessity to search at wire speed. 
Search engines are software processes, hardware circuitry, or a combination of the two, 
sometimes designed as a functional unit on the network processor, and sometimes packed 
in a designated chip, search processor or coprocessor. The search engine functionality is 
simple: it returns a value (a result) when presented with a value (a key). 

The simplest search engine is plain memory, where it returns a value when presented with 
the address of that value. As a matter of fact, memory returns a value contained in an 
address when presented with that address. The opposite operation happens with a special 
type of memory, called associative memory, or Content Addressable Memory (CAM), 
which, when presented with a value, returns a value that is the address of the presented 
value. 
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More complex search engines, as mentioned above, are special hardware assists. These 
search engines are internally based either on CAM memories, or on search algorithms 
materialized by hardware circuitry that use regular memories inside these search engines, 
or are attached to them. 

These external search engines (sometimes called network search engines [NSE], or search 
accelerators) can support, as of 2008, billions of searches per second, with search keys of 
hundreds of bits wide among millions of entries. These search engines can interface with 
the network processor like a regular memory, and work transparently with the network 
processor, or by using the standard LA-I interface. 

There are many NSEs that look like hardware search engines to the network processor. 
These can be categorized into algorithmic NSE and those that indeed have hardware-
based schemes that carry the searches within a few clock cycles. Some of these hardware-
based schemes might also be used inside the network processor. Content Addressable 
Memory (CAM) is by far the most common way to execute searches by hardware. 

Before discussing CAMs, however, another word about search engine metrics: the 
hardware search engines (CAM included) have the same performance metrics that we 
used before (that is size of the data store and the number of searches per second that can 
be achieved). Nevertheless, hardware-based search engines should also be examined by 
their power consumption and the additional chip count required for their implementation. 
In CAM's case, for instance, power consumption is a real challenge. 

CAM is a hardware search component that enables searching in a single clock cycle. It is 
a memory composed of conventional semiconductor memory (usually like the Static 
random access memory). CAM simultaneously compares a key (the searched data) 
against all of the table's entries stored in the CAM, and is thus capable of returning the 
address of the entry that matches the key in one single clock cycle. Although CAMs are 
fast, efficient, and flexible in terms of lookup functionality, they are also big energy 
consumers due to the large amount of parallel active circuitry. They are also big 
physically due to the large silicon area required for the memory cells and logic; they are 
small in terms of capacity compared to other types of memories; and they are very 
expensive. 

A simplified scheme of a CAM having m words, each consists of n bits, is depicted in 
Figure 3.9. The CAM core cells are arranged into the horizontal words, where each bit is 
a CAM core cell that contains storage (the bit value) and the comparison circuitry. 
Typical implementations of CAMs have 36 to 144 bits per word, and as many as from 
128K rows (words) to 512K rows in recent CAMs. A key (a searched word) is 
broadcasted vertically on the CAM core cells, through the search lines. Each stored word 
has a horizontal match line that indicates whether the stored word is identical to the 
searched word (activated match line) or not (a mismatch status). This indication is the 
result of a logic "and" between all comparisons of the searched word bits with the CAM 
core cells of a row (stored word); any mismatch in any of the core cell of a row causes the 
match line of that row to be pulled down to indicate mismatch. All match lines are sensed 
and amplified separately, and fed into an encoder that produces the location (address) of 
the matched key (the searched word) in the table. 
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There are two kinds of CAMs, that is regular (or binary) and ternary. Binary CAMs 
(BCAMs) store and compare binary bits, that is zero or one. Ternary CAMs (TCAMs) 
support an additional don't care bit, which causes the match line to remain unaffected by 
the do not care CAM core cell, regardless of the searched bit. This ability of TCAM can 
be used for masked searches, and is perfectly useful for IP lookup applications, or 
complex string lookups, as described in the following. 
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Figure 3.9: Simplified CAM scheme 

It is possible in a BCAM to find more than one match between the search word and the 
stored words. In such a case, instead of using a simple encoder, as depicted in Figure 3.9, 
a priority encoder is used, which selects the highest priority location, usually defined by 
its address in the table (a lower position in the table grants higher priority). TCAM, on the 
other hand, works a bit differently. First of all, masking of bits usually creates more hits, 
as the chance of hits increases when fewer bits are compared. Second, multiple priority 
mechanisms can be used, emphasizing not only location, as in the BCAM case, but also 
the number of consecutive matched bits in each of the hits or the total number of matched 
bits along the entire word width. Figure 3.10 provides an example for clarification. 
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Figure 5.19: TCAM priority mechanism 
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The search operation begins with putting all the match lines temporarily in the match state 
(high). Then the search line drivers broadcast the key 01011 on the search lines to all 
CAM core cells, which then compare their stored bit with the bit on their corresponding 
search lines. Cells with a mismatch put the match line in the mismatch state (pulling it 
down). The match line sense amplifier gets the word match result, which is if the match 
line was pulled down by any bit, it has at least one mismatch. In Figure 3. 10, match lines 
2 and 3 remain activated (high), indicating a match, while the other match lines were 
pulled down (both because of bit 0), indicating a mismatch. The encoder receives two 
matches, and produces the search address location of the matching data. In the case that 
the encoder chooses the first match line, it will generate the match address 2. In the case 
that it chooses the longest prefix, it will also generate 2. But if it chooses based on the 
number of hits, then it will generate the address 3. In the two later cases, the encoder 
requires more circuitry to enable counting the hits and the places of the hits. 
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Figure 3.11: CAM/RAM system for IP address lookup 

In most implementations, the output of the CAM is used to drive a regular RAM for 
receiving a value attached to the key that was searched in the TCAM. A common 
example, shown in Figure 3.11 is IP address lookup, using an IP address as an input key 
to the TCAM, while the resulted TCAM address location of that IP address is used to 
look in a RAM for a forwarding port and next hop IP address, which match that IP 
address. The output data from the RAM (forwarding port and next hop address), 
addressed by the match location of the TCAM, is associated with the TCAM key (IP 
address in example). The combination is very powerful, enabling a single cycle searching, 
and two cycles updating of this dictionary lookup system. 

Using TCAMs for IP lookup is done by storing all routing prefixes in decreasing order of 
their prefix length, padded with "don't care" bits in the rightmost side of the stored 
words. For example, a routing prefix 132.72.0.0/16 will be stored in the TCAM after 
routing prefixes that are longer than 16 are stored, and it will store the first 16 bits of this 
routing prefix and another 16 "don't care" bits to their right. 
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3.4.1 Simple Switching and Forwarding 

When a simple decision is required for switching, forwarding, or queuing a packet, based 
on few numeric keys of a small range, then a small table residing in memory (RAM) is 
sufficient to make such decisions. This table can be direct addressable if the number of 
entries is about the same as the key-range, or hash table if the number of entries is small 
compared to the range of the keys. An example for using a direct addressable table for 
look-up is VLAN (Virtual Local Area Network) forwarding, for example, assigning an 
output port based on the VLAN. An example for using a hash-table for look-up is MAC 
addresses based-decisions, for example, assigning MAC addresses to specific VLANs, 
bridging devices operating in layer 2, and so on. 

3.4.2 IP Address Lookup 

This is the most common usage of searching in network processing. Generally speaking, 
there are several reasons for IP address searches. Searching in the routing table in the 
classful IP network environment was straightforward: In order to receive the next hop and 
the output interface, an exact match search of the fixed length network ID (according to 
the address class) should be performed. These tables were not very dynamic, that is they 
were not changed very often. Hash tables were very efficient in performing this task. The 
impact of CIDR on IP address lookup, however, was enormous; from fixed sized, hash 
table lookups, search took place in variable length prefixes of aggregated entries. The 
focus shifted to tree, tries, and LC-tries data structures, algorithms and their variants that 
best matched the IP address lookup in terms of data distribution and design, 
simultaneously with using TCAMs and other hardware search engines (coprocessors). 
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CHAPTER IV 

Architecture and Methodology 

4.1 Network Processing Trends 

There are several different architectural solutions for packet processing. Each having 
some advantages and disadvantages. General-purpose micro-processors are used for their 
flexibility to adapt to protocol changes in the field and short time to complete the 
software development, but do not have enough performance to process data at wire rates. 
On the other hand, hardwired (custom) chips are designed to process packets at wire rates, 
but are not flexible. They are difficult and expensive to modify, to add features, fix bugs 
or adapt to rapidly changing network processors. Network processors are proposed as a 
solution to both these problems. They are processors optimized to perform packet 
processing at wire rates and are programmable and therefore flexible. There is a trade-off 
between performance and flexibility in these three solutions (General-purpose micro-
processors, Network processors, dedicated ASIC). General-purpose n-i icro-processors are 
very flexible, but don't have enough performance, network processors are less flexible 
but have much better performance and finally, dedicated ASICs are not flexible but can 
perform at wire rates. 

In semiconductor technology, the philosophy of network system design has changed [21] 
(Figure 4.1). In 1995, networks employed traditional routing/switching devices, such as a 
general purpose CPU, a packet processing engine, and a forwarding engine. By 2000, 
hybridized architectures were common. Such systems consisted of a general purpose CPU 
and a custom ASIC or an off-the shelf application-specific standard product (ASSP), or a 
combination of these devices. After 2001, technology-driven systems consist of a 
dedicated control CPU and a full-fledged application-specific network processor. 
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Figure 4.1: Evolving the Network Design System Philosophy 

This migration of system architecture has also shifted Network Processing functionality 
from hardwired solutions to programmable solutions (Figure 4.2). Note the change from 
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fixed to programmable media, as well as the change from ASIC/ASSP technology to a 
single-chip (Network Processor) solution. 

The target of every network processor is to perform packet processing with the flexibility 
of a microprocessor, but with the performance of a dedicated ASIC. There are two issues 
that concern network processors' performance. The first one is packet (data) processing 
and alternative solutions that improve data processing performance [16]. Network 
processing requires transfer of packets and additional information to and from large 
memories with large access latency. Therefore, memory latency and the alternative ways 
[16] to "hide" it, is the second issue. 
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Figure 4.2: Graphical comparison between network processor-based systems and their 
hardwired counterparts 

4.1.1 Network Processing Functions 

Not all network devices have the same processing requirements. However, a lot of 
similarities exist. Roughly a network processor describes the packet processing duties of a 
router and a web switch. Routers are the workhorses of the Internet. A router accepts 
packets from one of several network interfaces, and either drops them or sends them out 
through one or more of its other interfaces. Packets may traverse a dozen or more routers 
as they make their way across the Internet. Here is a simplified version of the IP routing 
algorithm: 

• Remove the link layer header 
• Find the destination IP address in the IP header 
• Do a table lookup to determine the IP address of the next hop 
• Determine link layer address of the next hop 
• Add link layer header to packet 
• Queue packet for sending 
• Send or drop packet (if link is congested) 

Web switches, by contrast, are a new type of network device. They address the problem 
of trying to increase the responsiveness of a popular web site by using more than one web 
server. A web switch can direct incoming 1-ITIP requests to different servers based on a 
variety of networking parameters, including the URL itself. For instance, all secure HTTP 
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requests could be forwarded to a special web server with cryptographic hardware to 
accelerate those requests. Here is a simplified web switch algorithm: 

• Accept incoming TCP connection (three-way handshake) 
• Buffer incoming TCP data stream (TCP/IP protocol) 
• Parse the stream to find the URL being requested 
• Do a table lookup to determine where to forward the request 
• Open TCP connection with web server (three-way handshake) 
• Send buffered request (TCP/IP protocol) 

Note that, for a given bandwidth, the web switch processing requirements are much 
higher, and require much more state than the router processing requirements. The 
difference arises because a router processes packets, but a web switch processes 
connections. 

4.2 Architectures of Network Processor 

Network processors can be categorized according to their use and the way they have 
evolved. These categories can significantly impact the architecture of the network 
processors. The three main categories of network processors are: 

• Entry-level network processors, or access network processors, which process 
streams of up to 1 to 2 Gbps packets, and are sometimes used for enterprise 
equipment. Applications for such access network processors include telephony 
systems (e.g., voice gateways and soft switches), xDSL access, cable modems, 
wireless access networks such as cellular and WiMAX, other narrowband and 
broadband wireless networks, and optical networks. A few examples of such 
network processors are EZchip's NPA, Wintegra's WinPath, Agere, PMC sierra, 
and Intel's IXP2300. 

• Mid-level network processors (2-5 Gbps) contain two subgroups of network 
processors (NPs): legacy NPs and multiservice NPs, which usually are used for 

- service cards of communication equipment, data center equipment and Layer 7 
applications (security, storage, compression, etc.). In the legacy subgroup, one can 
include the classical, multipurpose NPs like AMCC, Intel's IXP 1200 and 
2400/2800 NPs, C-port, Agere, Vitesse, and IBM's NP. Examples of multiservice 
and application (Layer 7) network processors are Cavium, RMI, Broadcorn, 
Silverback, and Chelsio. 

• High-end network processors (10-1 00 Gbps) are used mainly for core networking 
and metro networking, usually on the line cards of the equipment. Examples of 
such network processors are EZchip's NPs, Xelerated, Sandburst (who was 
bought by Broadcom), and Bay Microsystems. 

Each of these categories was either designed for specific applications and thus has 
specific architecture patterns that support these applications or was designed using almost 
general-purpose processing elements in their cores. 

The architecture of network processors can be described in many ways, and the three 
ingredients common to computers (processing unit, memory, and I/O). An extended 
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general framework for classifying network processors includes the following five 
dimensions. 

- • Parallel processing approach 
- processing element level 
- instruction-set level 
- bit level 

• Hardware assistance 
- coprocessors 
- functional units 

• Memory architectures 
• Network processor interconnection mechanisms (i.e., on-chip communications) 
• Peripherals 

4.2.1 Basic Architectural Approaches 

Hardware engineers use three basic techniques to achieve high-speed processing: a single 
processor with a fast clock rate, parallel processors, and hardware pipelining. Figure 4.3 
illustrates packet flow through a single processor, which is known as an embedded 
processor architecture or a run-to-completion model. In the figure, three functions must 
be performed on each packet. 
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Figure 4.3: Embedded processor architecture in which a single processor handles all 
packets 

Figure 4.4 illustrates packet flow through an architecture that uses a parallel approach. A 
coordination mechanism on the ingress side chooses which packets are sent to which 
processor. Coordination hardware can use a simplistic round-robin approach in which a 
processor receives every Nth packet, or a sophisticated approach in which a processor 
receives a packet whenever the processor becomes idle. 
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Figure 4.4: Parallel architecture in which the incoming packet flow is divided among 
multiple processors 
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Figure 4.5 illustrates packet flow through a pipeline architecture. Each packet flows 
through the entire pipeline, and a given stage of the pipeline performs part of the required 
processing. 

fO gO  H h  
Figure 4.5: Pipeline Architecture in Which Each Incoming Packet Flows Through 

Multiple Stages of a Pipeline 

Pipelining and parallelism can be combined to produce hybrid designs. For example, it is 
possible to have a pipeline in which each individual stage is implemented by parallel 
processors or a parallel architecture in which each parallel unit is implemented with a 
pipeline. 

4.2.2 Parallel Pipelines of Homogeneous Processors 
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Figure 4.6: An example architecture that uses parallel pipelines of homogeneous 
processors (Cisco) 

One of the more interesting designs employs parallel pipelines of homogeneous 
processors. Figure 4.6 illustrates the architecture of the Cisco chip. When a packet enters, 
the hardware selects one of the pipelines, and the packet travels through the entire 
pipeline. 
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4.2.3 Pipeline of Parallel Heterogeneous Processors 

EZchip Corporation sells a network processor that combines pipelining and parallelism 
by using a four-stage pipeline in which each stage is implemented by parallel processors. 
However, instead of using the same processor type at each stage, the EZchip architecture 
employs heterogeneous processors, with the processor type at each stage optimized for a 
certain task (for example, the processor that runs forwarding code is optimized for table 
lookup). Figure 4.7 illustrates the architecture. 
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Figure 4.7: An example architecture that uses a pipeline of parallel stages with 
heterogeneous processors (EZchip) 

4.2.4 Superpipeline and Superscalar Architecture 

A single processor core containing multiple execution units is referred to as a Superscalar 
processor. Such a device is capable of issuing one instruction to each execution unit per 
clock cycle, greatly improving the performance of the core. The core is pipelined so each 
instruction executes over several clock cycles. Several instructions overlap; each being at 
a different stage of execution each clock cycle. This creates complications due to 
dependencies in the instruction flow. The packet processing tasks are pipelined, passing 
packets from TOPparse to TOPsearch to lOPresolve to TOPmodify [15]. The 
superpipelining and superscalarity of the core architecture provide the network-specific 
processor with massive processing power. 

Superscalar architecture 

I I 

Superpipeline 
Packet flow 

Figure 4.8: EZchip TOPcore superpipeline and superscalar processor architecture 

Benefits of TOPcore technology: 

The task of providing 7-layer packet processing at wire speeds for next-generation 
equipment presents huge challenges. EZchip's Task Optimized Processing Core 
(TOPcore) technology has the following advantages [15]: 
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• Ten-fold faster performance through modification of instruction sets and data 
paths. 

• Intelligent 7-layer packet processing at Gigabit and Terabit wire speed. 
• Scalable and expandable architecture. 
• Flexible and programmable processing. 

EZchip Technologies is designing a line of network-specific processors based on its 
TOPcore technology. The EZchip network-specific processor is a single chip IC that 
combines an array of numerous TOP processors optimized for 7-layer switching at 10 
Gigabit speeds [15]. EZchip's network-specific processors can be applied to high-speed 
switches and routers at both the backbone and the edge. 

4.3 Design Methodology 

The design philosophy that the thesis implement to design a High-speed network 
processing system are pointed bellow. 

• Maintain a 4 level Layered architecture 
• Used pipelined Memory architecture 
• Add a Load balancer with an efficient load distribution algorithm 
• Design a super-pipeline and parallel packet Processing unit 

4.3.1 Layered Processing Architecture 

From the analysis of various incoming traffic to network processor, it is found that all 
packets are not follow the same processing strategy. A basic processing step is enough for 
all packets and some traffic required more additional processing and few traffic needs 
more extra processing. So, all packets do not need to pass through all processing steps. 
This thesis implements the concept and developed a hierarchical 4 level layered 
processing architecture, shown in Figure 4.9. 

I Control Level I 

ç  Additional Processing Level Performed by 
I Processor Unit 

I Basic Processing Level I 

Packet Distribution Level 
Performed by
Load Balancer 

Figure 4.9: Layered processing architecture 

In this layered architecture the level of hierarchy is packet distribution level, basic 
processing level, additional processing level and control level. Packet distribution is 
performed on a dedicated level and therefore does not reduce or limit packet processing. 
Packet distribution is therefore limited only by the Packet Distribution Level. The Load 
Balancer unit is work in the packet distribution level with using load distribution 
algorithm. Packet processing is performed on the Basic Processing Level and the 
Additional Processing Level. Processing Control Unit controls the processing sub unit to 
perform these levels. As packets flow through the Packet Distribution Level, packets are 
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queued for processing in Packet Buffers. The destination of the packet on the Packet 
Distribution Level is determined by the lookup performed on the Basic Processing Level 
if available or the Additional Processing Level alternatively. The number of clock cycles 
available for packet processing is determined by the number of clock cycles each packet 
can be held for processing in the Packet Buffer without reducing the packet throughput. 

4.3.2 Pipelined Memory Architecture 

Internally, the processor contains several CPUs. The packet Stream is divided among 
CPUs, with each processor working on multiple separate packets (threads) at the same 
time. When the processing for one packet stalls because of a memory reference, a CPU 
resumes processing for the next thread. The main drawback of this design is that it is built 
around traditional memory, which is optimized for latency rather than throughput. To 
achieve high memory bandwidth, multiple processors and thread contexts are used to 
generate multiple pending accesses. The problem is that each processor does all of the 
forwarding for an assigned packet, and each independent processor needs independent 
access to a large amount of shared state (e.g., the global forwarding database). The only 
known way around this problem is to either replicate the state for each processor or to 
share the state in some fashion. Replication is prohibitively expensive for the large 
problem sizes that routers need to deal with memory. And another problem is the lack of 
memory bandwidth. 

Memory pipelining is a solution to overcome these problems. This Scheme avoid these 
problems as follows: First, make each memory access wide to increase the number of bits 
retrieved per access. Second, observe that a memory subsystem consists of memory banks 
and an interconnect that ferries data read from a bank to the output. Traditional memory 
maintains the invariant that two readers do not access the same block by ensuring that 
there is only one reader in the entire subsystem. 1-lowever, this is unnecessarily restrictive. 
In summary, this memory subsystem uses: 

Wide Words: The performance of many network algorithms can be increased 
significantly by the use of wide data words. Instead of having multiple independent 
readers of memory, one reader at a time through wide word access can provide aggressive 
memory bandwidth. 

Internally Pipelined Memory: By internally pipelining the memory to allow the memory 
system to work on multiple packets at once can greatly increase the throughput. 

4.3.3 High Throughput Pipelined Memory 

While rnultithreading and pipelining are very standard ideas in the network processor 
context, one of main contributions is showing how to get high worst case memory 
throughput by internally pipelining the memory. In the traditional memory layouts that 
prior network processors are designed around, only one or two (if multi-ported) memory 
lookups can be performed at the same time in the worst case. These designs use large 
memory tiles, trying to minimize the interconnect delay for latency, and rely on common 
case techniques such as locality and independent accesses to provide sufficient 
bandwidth. As such, the worst case throughput of such systems is limited to one or two 
transactions being processed by the memory at the same time, when, in the worst case, all 
the lookups fall into the same bank. 
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In contrast, the new memory design trades off latency for throughput. Here propose 
pipelining the memory design using smaller memory tiles to process many transactions at 
the same time (see Figure 4.10). This will result in a higher latency per transaction, but 
the number of transactions per unit time will be significantly higher than in a traditional 
memory design. To achieve this, design is start by breaking the memory into smaller tiles, 
each of which is capable of reading out a wide word each memory cycle [32]. The cycle 
times for these smaller banks are two to three times faster than monolithic memory banks, 
even assuming optimal internal partitioning. The design will have a larger interconnect 
delay, and hence a larger overall latency; however by pipelining the interconnect, it is 
possible to achieve better overall throughput because the delay of each stage is smaller 
than the overall latency of a traditional (non-pipelined) memory design. Therefore, the 
memory design can have N lookups in flight, where N is the number of pipeline stages 
(twice the height of the tree to go up and back down) of the memory layout. 

Memory Tile 
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Figure 4.10: Pipelined wide-word memory architecture 

- A high level diagram of the design is shown in Figure 4.10. It shows how the pipelined 
tree-based memory can have many accesses flowing through it at the same time. At any 
given time, there is only one wide word access going to a memory bank, and all the 
memory banks are at the leaves of the tree. At each level in the tree (for the single ported 
version) there are at most two words in flight, one going up to the memory arrays and one 
coming back down. 

In the Figure 4.10 the memory has been divided into many small banks. At the bottom of 
each small bank is a pipeline latch that grabs the data. Data read from a bank then needs 
to travel from the tile (which could be quite far away) back to the processor. This is done 
over a deeply pipelined tree interconnect. When an access is made, a lookup is performed 
in parallel at the leaves of the tree, and each cycle the correct data item marches its way 
down through the pipelined tree to the root where it is read out by the processor. Since the 
tree is balanced and full, and there is only one memory access actively accessing the 
banks at a time, so it is guaranteed that during the entire journey over the interconnect 
there will be no conflicts. This ensures that design will always be getting one wide word 
of data each cycle. The tree interconnect is not a trivial piece of real estate, because it 
needs to mux, demux, latch, and move large words of memory over a long distance [32]. 
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4.3.4 Load Balancing for High-Speed Links 

In Figure 4.11, two parts of the load balancer are distinguished: A receive (Rx) part, 
which distributes incoming packets from the high-speed link across the NPs, and a 
transmit (Tx) part, which re-joins the processed packets onto a single link to the switch. 

Figure 4.11: Load-balancer system 
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Figure 4.12: Diagram of Load-balancer 

Figure 4.12 shows the internal structure of the receive part. Upon entering the load 
balancer, a packet is first inspected by a header parser. Here, the fields in the packet 
header that uniquely identify a flow are extracted. In the case of TCP or UDP over IP for 
instance, this is the five-tuple consisting of source and destination addresses, both layer-4 
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ports, and transport protocol number. These fields are then compressed by a hash function 
to an index of fixed length. Even with an ideal hash function, there will be hash collisions 
as soon as the active flows outnumber the available hash indices. The index serves as an 
address into the lookup memory of the balancing unit, where the number of one of the 
output queues is stored. Compared with direct hashing to a queue number, this two stage 
approach allows dynamic revisions of the flow-queue assignments. 

The balancing unit decides to which NP a packet will be sent based on the information 
stored in the lookup memory and on the length of the individual queues towards the NPs. 
To be implementable in the high-speed domain with today's memory access latencies, the 
balancing algorithm has to be designed such that it does not require more than one read 
and update of a table entry per packet. For a packet size of 40 bytes (TCP 
acknowledgments) on a 10-Gb/s link that leaves a memory access time per packet of less 
than 

40Bytes 
'ki rn =30ns 

10Gb/s 

and at 40 Gb/s this is further reduced to 7.5 ns. 

The balancing unit controls the inverse multiplexer, through which packets are enqueued. 
During the decision making process, the corresponding packet is delayed in a pipeline 
until the queuing decision is available. The queues are implemented in a shared buffer to 
allow a certain tolerance of temporary queue imbalances [19]. 

The transmit part of the load balancer towards the switch in Figure 4.11 reunites the 
packet streams from the NPs. Implementation is straightforward because the NPs do not 
deliver more traffic than the switch link can carry and hence no congestion can occur. The 
NP traffic only has to be multiplexed. This can be realized with queues for speed 
adaptation, and a simple packet-scheduling algorithm such as deficit round robin. 

4.3.5 Load Distribution Algorithm 

If for a longer period of time no data arrives from a particular flow, it can be assumed that 
this flow has terminated. If that is true for all flows in a flow bundle, the association 
between the flow bundle and a queue can be changed safely without negative impact on 
the traffic. No packet reordering can occur after the last packet, and flow statistics in the 
NPs expire at the end of the flow. 

for each packet { 
flow E- lookup(packet.id) 
if (currentTime - flow.timeStamp > timeOut) 

flow.targetQ E- minQ() 

flow.timeStamp - currentTime 
packet.targetQ - flow.targetQ 

This fact is exploited by storing a time stamp for each flow bundle ID in the lookup 
memory, which is updated every time a packet arrives with that ID. When the next packet 
with the same ID comes in, the stored time stamp is compared with the actual system 
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time. If the difference is greater than a configured time-out value, the association with an 
NP has expired and is replaced by the NP with the currently shortest queue (minQ). In 
this way, newly initiated flows are assigned to the least-loaded NP, which smoothes out 
long-term imbalances in the load distribution. 

Although the flow time-out mechanism helps avoid overload situations for the NPs, it 
does not prevent them completely. Its effectiveness depends on the frequency of flow 
expirations, i.e. the fewer flows time out, the less smoothing takes place. Also, burstiness 
of traffic and sustained data-rate changes of flows over their lifetime can lead to short-
term load imbalances between queues, which cannot be handled well with flow time-outs 
only. 

The proposed solution is a variation of sender-initiated adaptive load sharing [5] with a 
global task queue. In our case not only single threads are migrated but entire flow bundles 
are redirected away from overloaded queues, because all packets of a flow share their 
complete context. A queue is considered to be overloaded if it occupies more than a 
configurable share of the shared buffer. This condition is tested for every incoming 
packet. If the output queue to which a packet should be sent exceeds the buffer share 
threshold, then the NP currently associated with that flow bundle in the lookup memory is 
substituted with the minQ. The packet and all following packets of that flow bundle are 
sent to the new queue. This is called flow reassignment. 

for each packet 
flow E lookup (packet. id) 
if (flow.targetQ.size > qThreshold) 

flow.targetQ - minQ() 

packet.targetQ - flow.targetQ 

Flow reassignments also help solve the problem of accommodating a flow that exceeds 
the free capacity of any individual NP, although it is less than the combined free capacity 
of all NPs (Figure 4.13). This can be a consequence of an even load distribution. Now, the 
large flow is assigned to one of the queues. Because the old flows in that queue combined 
with the new one exceed the capacity of one NP, the queue starts filling up until it reaches 
the buffer share threshold. Then, the reassignment mechanism redirects flows from that 
queue until the overload is relieved. In this way, all flows can be served. 
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Figure 4.13: Large flow accommodation through reassignments 
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Packets from excessive flow bundles could simply be dropped. But because the 
throughput of all NPs together should match the data rate of the link and thus be able to 
handle all packets, this seems to be an unnecessary degradation of service. An alternative 
is to send packets from an excessive flow bundle to the currently shortest queue. As the 
minQ will change over time, this leads to the packets being distributed across several 
NPs. We call this packet spraying. 

for each packet 
flow - lookup (packet. id) 
packet.targetQ - flow.targetQ 
if (currentTime - flow.resetTjme > tMeasure) 

if (flow.count > countThreshold) 
flow.count - flow.count * reduction 

else 
- flow.count - 0 

flow.resetTime - currentTirne 

if (flow.count > countThreshold) 
packet.targetQ E- minQ() 

flow.count - flow.count + packet.size 

Obviously, some packets might be reordered, but for receivers that are able to resequence 
packets this service is preferable to simply dropping packets. Moreover, statistics in the 
NPs for sprayed flows will not be consistent. If policing is an issue here, then the NPs 
should enforce policies earlier, well before a flow approaches the maximum throughput 
of an NP [19]. 

Packet spraying, on the other hand, provides a means to degrade service in a controlled 
manner for otherwise problematic flows. And most importantly, only these problematic 
flows will be affected, while all others are isolated and experience normal forwarding. 
Nevertheless, even problematic packets are forwarded. 

4.4 Proposed Architecture 

The total architectural design of the proposed Network processor is shown in Figure 4.14. 
In this design packets arrived at the high-speed media access control (MAC) interfaces 
and then goes to incoming memory queue. The flow of packets then scheduled for 
processing to the processor units through a load balancer. Load balancer actually 
distributes packet flow to all processor in a balanced load using load distribution 
algorithm. Here multi-processor approach is used and each processor has their individual 
pipeline fashion for processing a packet. Besides this, incoming packet flow goes to 
processor unit through another pipeline fashion for parallel processing. Every processor is 
directly connected to the pipelined memory interface for accessing the memory. External 
memory interface is also connected to all processor for especial purpose when needed. 
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After processing each processor transfer the packer to outgoing memory queue. Then the 
packet flow goes to its destination through high-speed MAC interfaces. 
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Figure 4.14: Block diagram of proposed Network Processor 

4.4.1 High-Speed Ethernet MAC 

The High-speed Ethernet MAC uses a single intellectual property (IP) core operating at 
10, 100, or 1,000 Mbps. The 10/100/1000 Ethernet MAC core operates in full duplex 
mode, and supports termination and generation for transparent (switching) and full 
Ethernet frame (NIC or line card) applications. 

Figure 4.15 shows the diagram of the Ethernet MAC interface. When an application data 
is come in the port it goes to a first in first out (FIFO) data structure then a control circuit 
controls the receiving and transmitting data separately through individual RXITX 
controller. A configuration circuit is used for configure the MAC to operate as 
10/100/1000 mbps rate. 

Figure 4.15: High-speed Ethernet MAC Interface 

4.4.2 Load Balancer 

Load Balancer scheme is already discuss earlier in section 4.3.3. The balancing unit 
decides to which NP a packet will be sent based on the information stored in the incoming 
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Figure 4.16: Load balancer diagram 

memory queue and on the length of the individual queues towards the NPs through a 
distribution algorithm described in section 4.3.4. The diagram of the Load Balancer is 
shown in Figure 4.16. 

4.4.3 Processor Unit 

Actually all packet processing involves four basic tasks - parse, search, resolve and 
modify. Network specific processors optimize each of these tasks to boost the processing 
performance. Figure 4.17 shows the design. In the design EZchip's TOPcore technology 
is used for getting high-speed (at giga rate) packet processing with some modification. 
Modification is made for further speedup of processing capacity. In EZchip's technology 
each processor have their own memory module but here in this design a single pipelined 
memory is used which is directly connect to all individual processor unit. The four task-
part of this processor unit are process packets through in a pipelined fashion. Parallel 
modules are connected with a synchronized manner in a superscalar architecture. The 
processing control unit controls the processing operation with generates some control 
signals to individual task part for the processing. 

Pipetined Memory Interface 
(Lookup table) 

TOPparse EH TOPsearch T()Presotvc TOPntodifv 

Processing 
Control Unit 

Figure 4.17: Proposed modified architecture of processor unit 
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TOPparse identifies and extracts the various headers and fields within the packet. It 
handles all seven layers including fields with dynamic offsets and length. TOPsearch 
performs the various table look-ups required for Layer 2 switching, Layer 3 routing. This 
TOPsearch uses a variety of search algorithms, optimized for various searched objects 
and properties. These algorithms feature innovative enhancements to hash tables, trees 
and CAMs. Multiple searches using different search methods can be applied 
simultaneously to yield wire speed throughput. TOPresolve assigns the packet to its 
appropriate output port and queue. It forwards the packet to multiple ports for multicast 
applications. TOPresolve also gathers traffic accounting information on a per flow basis, 
for network usage analysis and billing. TOPmodify modifies packet contents in 
accordance with the results of the previous stages. It modifies relevant fields, e.g. VLAN 
assignments, Network Address Translation (NAT), QoS priority setting and more. 

4.4.4 Increasing the Throughput of Common Operations 

There are several ways of increasing the throughput of common tasks or operations: using 
application specific components, pipelining and parallel processing. These enhancements 
can be applied on various structures to enhance performance. Application-specific 

- components can be introduced to perform operations such as caching, table lookups and 
queuing. Pipelining can be introduced in almost any application specific component, local 
interconnect and processor core to enhance its efficiency. Parallelism can be applied to 
structures and operations such as buses, instruction processing and caches among many 
others. 

In order to enhance the performance of common tasks, A Highly Adaptive methodology 
[3] is designed in a hierarchical structure. A three level hierarchy for packet processing 
has been devised. All packets are processed at Level I, while only a small number of 
packets require Level 2 processing and only rarely does a packet require Level 3 
processing. In the processing hierarchy, these Level processing is performed by processor 
unit and controlled by processing control unit shown in Figure 4.17. 

4.5 Overall Power Model 

The principal components considered in the power calculations are: 

• Processor ALUs 
• Processor clock 
• Processor instruction and data caches (level 1, on-chip) 
• Off-chip memory and I/O bus 

ALU Power Model: 

ALU power depends on the voltage, Vdd; processor clock frequency, f ; the ALU 
utilization, a 41(J , and capacitance, C1111  

PAUI = CAW  V ddaALU f (4.1) 

Using Wattch, the capacitance for .35-jim technology (the process specification of an 
Alpha 21264 [7] simulated by Wattch) can be obtained as 310 pF. Vdd for this case is 2.5 
volts. 
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The value for aA,(,,  (that corresponds to the ALU utilization, PAL/I) used by Wattch is I. 
As discussed later, this value is used to verify the analytic power model by comparing 
model results with the results obtained from Wattch. 1-lowever, by using a value of 1, the 
Wattch simulator assumes that the ALU is busy on every cycle. This is not true during 
stalls due to cache misses. Thus, the value used in the optimization studies (as contrasted 
with the power model verification work) is obtained from Equation (aA,/ = p) and 
reflects the effects of cache misses on component utilization. 

Clock Power Model: 

In a similar fashion, clock power consumption can be obtained: 

Pc/k = C /k  V 2dd -f (4.2) 

Since the clock is changing state in every cycle, ac/k = 1. From Wattch, we obtain 
CC/k = 3.33 nF. With differing cache configurations, the clock power consumption can 
vary by up to ±8%; however, the model does not consider this effect. 

Caches Power Model: 

The expression for cache power consumption is: 

Pci = C 1  v 2 
a, f (4.3) 

The dynamic power consumption of caches is due to memory accesses. For the 
instruction cache, the i-cache is accessed for each instruction. Additionally, the i-cache is 
accessed after each pipeline stall due to i-cache misses or branch miss-prediction. Adding 
in the effects of cache usage occurring after amiss, one obtains: 

aci = p . (1 + rni,) (4.4) 

Where nzi1  is the instruction cache miss probability associated with application a and 
instruction cache size ci. 

The data cache is accessed for each read/write (load-store) instruction and for each d-
cache miss, thus: 

= Pp ((.f// + fi0r ) (1 + ind 1 )) (4.5) 

The cache capacitance, C and Ccl, is  shown in Table 4.1. These numbers are given by 
the Cacti tool [12] for .35-jtm technology. The cache line size is 32 bytes and 
associativity level is 2. For instruction caches, one read/write port and one read port are 
assumed. For data caches, two read/write ports are assumed. 

Memory and I/O Bus: The same approach taken in Wattch is used to calculate the power 
consumption of the memory and I/O busses. The memory channel is characterized by its 
width, width,,,,,, ; physical length on the chip, lengzhmc,j, ; clock frequency, J.?lc/,l ; and 
utilization, = P,nch/ 
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Table 4.1: Cache capacitance for 0.35-jim technology. 

Cache size (KB) i-cache capacitance (nF) d-cache capacitance (nF) 

0.369 0.378 
2 0.397 0.406 
4 0.440 0.450 
8 0.541 0.570 
16 0.708 0.739 
32 0.957 1.030 
64 1.368 1.412 

The capacitance, C is based on the width and length parameters and is given by: 

= 2 . C.35 ,,1  width7i2, length,,,;, (4.6) 

The factor of 2 is due to the coupling capacitance between wires. The length of the 
memory channel is taken to be length?,,C// = 5mm, which is the expected distance to a 
processor from the edge of a chip. Here also explored a larger channel length, of 20mm. 
This, however, only affects the overall results by about 1%. The width is set to 32 bits. 
The capacitance parameter associated with using .35-gm technology is obtained from 
scaling the capacitance associated with Wattch's "result bus," yielding 
C.35pm0.275 fFlgm. 
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CHAPTER V 

Modeling and Simulation 

This chapter describes the modeling of the design, simulation, analysis and 
implementation. The processor unit is designed and verified in EZchip microcode 
development environment (a demo system for Network Processors: Architecture, 
Programming, and Implementation). The Network Processor is also simulate in NepSim 
simulator (a network processor simulator in Linux environment based on Intel IXE NP 
architecture) for process execution, power and other parameter observation. Then the 
high-speed MAC and the NP design is modeled in VHDL using Xilinx ISE Design suit 
and Microsemi Libero IDE design tools. All simulation is performed in ModelSim and 
synthesized by Synplify Pro synthesis tools. 

5.1 EZdesign Microcode Development Tools 

EZdesign is part of a comprehensive set of design and testing tools for developers, 
enabling rapid delivery of new designs based on the NP network processor family to 
production. The EZdesign development kit allows designers to create, verify, and 
implement NP applications to meet specific functionality and performance targets. 
Designers can quickly create new code for the NP network processor using the simulation 
and debugging tools. An additional EZdriver toolset facilitates the development of host 
software for NP-based systems. Together EZdesign and EZdriver help designers create a 
comprehensive NP-based system while reducing overall system development time. 
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Figure 5.1: EZchip microcode development environment 

The processor unit of the proposed design is simulate in the EZchip microcode 
development tools. These tools support C++ programming language for developing all 
designs. Figure 5.1 shows the EZchip microcode development environment. All codes are 
compiled and build by EZDesing compiler. Then run the simulator script and connect 
with host PC for debugging. Then debug and analyze the code in run time environment 
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with respect to corresponding registers and memory values. Then generate frames and 

structures for simulation. Figure 5.2 shows the EZchip NP simulation status and Figure 

5.3 shows the Frame structure. The source code of this design is given in Appendix A. 

nj 

Figure 5.2: EZchip NP simulation status 
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Figure 5.3: Generating Frame structure 
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5.2 Network Processor Simulator: NepSim 

NePSim is the first open source integrated infrastructure for analyzing and optimizing NP 
design and power dissipation at architecture-level. NePSim contains a cycle-accurate 
simulator for a typical NP architecture, an automatic verification framework for testing 
and validation, and a power estimation model for measuring the power consumption of 
the simulated NP. NePSim achieves satisfactory accuracy in both performance and power 
modeling. NePSim2 is an updated version that simulates more advanced network 
processor architecture. Figure 5.4 shows the NePSirn hardware model's software 
architecture. NePSim's inputs are network packet streams. 

Microcode (assembly) 

Microengine Stats 
simulation core  

SDRAM1 
1~___ 

D lite Device 

Host platform 

Traffic 

loen Tor  

Figure 5.4: NePSim software structure 

The NePSim body (the microengine simulation core) is the module that simulates the 
following five stages of the Micro-Engine (ME) pipeline: 

1. instruction lookup; 
- 2. initial instruction decoding and formation of the source register address; 

reading of operands from the source registers; 
ALU operations, shift or compare operations, and generation of condition codes; 
writing of result to destination register. 

An ME's threads share the pipeline and functional units such as the ALU. Thread 
execution is not preemptive, which means a thread cannot gain control of the pipeline 
unless the running thread yields control. 

At the end of simulation, NePSim2 produces a large set of statistics data. Some important 
output data is given in the following. 

Simulation state - 1: ** simulation statistics ** 

sim cycle 101 If total number of simulated cycles 
sim time 0.1683 If simulated absolute time in microseconds 
simnuminsn 83 If total number of instructions committed 
sram reads words 134755872 If total number of words read from SRAM 
aim elapsed time 1 If total simulation time in seconds 
sim inst rate 83.0000 If simulation speed (in insts/sec) 
proc_speed 600.0000 If processor speed in MHz 
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throughput factor 4800.0000 41 * 8 bit * proc_speed 

<..more lines follow..> 

Simulation state - 

sim cycle 
sim time 
simnuminsn 
sram reads words 
sim elapsed time 
sim inst rate 
proc_speed 
throughput_factor 

2: ** simulation statistics ** 

1001 41 total number of simulated cycles 
1.6683 41 simulated absolute time in microseconds 

843 41 total number of instructions committed 
134755872 41 total number of words read from SRAM 

1 41 total simulation time in seconds 
843.0000 44 simulation speed (in insts/sec) 
600.0000 44 processor speed in MHz 

4800.0000 44 * 8 bit * proc_speed 

<..more lines follow..> 

5.3 VHDL Modeling, Synthesis and Schematic Diagram 

The designe is modeled and simulated in hardware description language VHDL and 
synthesized for Xilinx Spartan3 and generate schematic diagram for the designed module. 
Then Actel Libero IDE is used to follow the structural design flow for Actel ProASIC3. 
Synthesis was done in both Xilinx XST synthesized and Synplicity Synplify Pro. Finally, 
all simulations are done in Modelsim Simularot v6.6d and generates waveform. 

5.3.1 Working on Xilinx ISE Design Suite 

datail<7:0> dataol<7:0> 

data 12<7:0> 

d ata 13 <7 :0> 

clock 

datao2<7:0> 

rst 

Val 

r2 

w3 datao3<7:0> 

Figure 5.5: I/O pin layout of the top module 

In the design phase of VHDL hardware modeling each block of the architecture is 
designed in different individual models such as FIFO module, control module, memory 
module, register module, processing module etc. Modules are connected through a 
hierarchical module interface. The top level module is the main module of the design. 
Figure 5.5 shows the I/O pin layout of the top module. After compilation with VHDL 
Xilinx compiler the design is synthesized and generates Register Transfer Logic (RTL) 
schematic. The total schematic diagram of the top module is shown in Figure 5.6. The 
Schematic diagram of control module, scheduler module and memory module are shown 
in Figure 5.7, Figure 5.8 and Figure 5.9 respectively. 
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Figure 5.6: Total schematic diagram of the top module 
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Figure 5.7: Schematic circuit of control module 
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Figure 5.8: Schematic circuit of scheduler module 
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Figure 5.9: Schematic circuit of memory module 

The synthesis analysis report generated from Xilinx XST synthesizer for spartan3 is given 
below: 

* Final Synthesis Report * 

Final Results: 
Output Format : NGC 
Optimization Goal : Speed 

Design Statistics: 
if lOs : 53 

57 



Macro Statistics 
it Registers : 168 

1-bit register : 45 
it 3-bit register : 9 
it 4-bit register : 27 
it 8-bit register : 87 
it Multipiexers : 27 
it 2-to-i multiplexer : 18 
it 8-bit 8-to-i multiplexer : 9 

Cell Usage 
it BELS : 997 
it BUF :1 
it GND :1 
it LUT1 : 18 
it LUT2 : 36 
it LUT2D : 9 
it LUT2L : 18 
it LUT3 : 340 
it LUT3L : 18 
it LUT4 : 220 
it LUT4D : 32 
it LUT4L : 106 
it MUXF5 : 132 
it MUXF6 : 66 
# FlipFlops/Latches : 790 
# FD :34 
it FDC : 36 
it FDCE : 711 
it FDPE : 9 
it Clock Buffers : 1 
it BUFGP : 1 
it 10 Buffers : 52 
it IBUF : 28 

OBUF : 24 

Device utilization summary: 
--------------------------- 
Selected Device : 3s50pq208-5 

Number of Slices: 627 out of 768 81% 
Number of Slice Flip Flops: 790 out of 1536 51% 
Number of 4 input LUTs: 797 out of 1536 51% 
Number of bonded lOBs: 52 out of 124 41% 
Number of GCLKs: 1 out of 8 12% 

Timing Summary: 
--------------- 
Speed Grade: -5 

Minimum period: 4.369ns (Maximum Frequency: 228.885MHz) 
Minimum input arrival time before clock: 6.171ns 
Maximum output required time after clock: 5.106ns 
Maximum combinational path delay: No path found 
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Timing Detail: 
-------------- 
All values displayed in nanoseconds (ns) 
----------------------------------------------------------------- 

Timing constraint: Default period analysis for Clock 'clock' 
Delay: 4.369ns (Levels of Logic = 3) 
Source: regdemux3datal (FF) 
Destination: fifo 33 control unit full signal (FF) 
Source Clock: clock rising 
Destination Clock: clock rising 

Data Path: regdemux3data1 to fifo 33 control unit full signal 
Gate Net 

Cell:in->out 
---------------------------------------- 

fanout Delay Delay 

FDCE:C->Q 3 0.626 0.577 
LUT4D:Il->O 12 0.479 0.865 
LUT4L:I2->LO 1 0.479 0.100 

- LUT4:Il->O 1 0.479 0.240 
FDCE:CE 0.524 

Total 
------------------------------------------------------------- 

4.369ns (2.587ns logic, 1.782ns route) 

----------------------------------------------------------------- 
(59.2% logic, 40.8% route) 

Timing constraint: Default OFFSET IN BEFORE for Clock 'clock' 
Offset: 6.171ns (Levels of Logic = 4) 
Source: wr3 (PAD) 
Destination: fifo 33 control unit full signal (FF) 
Destination Clock: clock rising 

Data Path: wr3 to fifo 33 control unit full signal 
Gate Net 

Cell:in->out 
---------------------------------------- 

fanout Delay Delay 

IBUF:I->O 37 1.679 1.326 
LUT4 D:I2->O 12 0.479 0.865 
LUT4L:I2->Lo 1 0.479 0.100 
LUT4:I1->O 1 0.479 0.240 
FDCE:CE 0.524 

Total 

------------------------------------------------------------- 
6.171ns (3.640ns logic, 2.531ns route) 

----------------------------------------------------------------- 
(59.0% logic, 41.0% route) 

Timing constraint: Default OFFSET OUT AFTER for Clock 'clock' 
Offset: 5.106ns (Levels of Logic = 1) 
Source: schedulerl dout 7 (FF) 
Destination: dataol<7> (PAD) 
Source Clock: clock rising 

Data Path: schedulerldout7 to dataol<7> 
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6 Simulalion 

M 
ModetSirn 

Post-Layout Files 

6Progiamming 

FIahPio 

0Programrning 
'U' 
L!J 

Sicon Sculpto 

Gate Net 
Cell:in->out fanout Delay Delay 
---------------------------------------- 
FD:C->Q 1 0.626 0.240 
OBUF:I->O 4.240 

------------------------------------------------------------- 
Total 5.106ns (4.866ns logic, 0.240ns route) 

(95.3% logic, 4.7% route) 

CPU: 12.13 / 17.55 s I Elapsed: 12.00 / 17.00 S 
Total memory usage is 79084 kilobytes 

5.3.2 Working on Actel Libero IDE Design Flow 

Actel Libero IDE Design package is a famous design tool for FPGA and ASIC designer. 
HDL Editor, Synplifi Pro Synthesis tool, ModelSim for HDL compiles & wave form 
simulation etc are built-in in Libero IDE Design. The Design Flow is shown in Figure 
5.10. This is a step-wise design flow that guide designer to follow in a sequence manner. 
First add source code then pre-synthesize and perform pre-simulation then post-synthesis 
and post-simulation and finally implementation. After synthesis the VHDL by Synplify a 
performance report and synthesized schematic are generate. Summary of perfontance 
analysis is given at the end of this section and the synthesized schematics are shown in 
following Figures. 

Design Entry Tools Root : TOP  
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Post-Synthesis 
Files 

P1ace&Route 
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Figure 5.10: Actel Libero IDE Design Flow 
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Figure 5.11: RTL Synthesis block diagram 
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Figure 5.12: Full synthesized schematic circuit 
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Figure 5.14: Schematic circuit of control unit 

Figure 5.15: Schematic circuit of memory unit 

The total RTL synthesis block diagram is shown in Figure 5.1 land the full synthesized 
schematic is shown in Figure 5.12. The Synthesized diagram of control unit and memory 
unit is shown in Figure 5.13 and schematic circuits of these units are shown in Figure 
5.14 and Figure 5.15 respectively. 

fifo_corirol memory 

clock 

rre rrq WtL cno d 'Ci 

- .2% 
1r7. 

70 
rr1I 

I atalr17E 
memory unit 

Figure 5.13: synthesized diagram of memory and control unit 

In the control unit module all decision and processing operation is done in single unit. It 
generates all control signals and distributes incoming packets data to processing and this 
is also implement in this control unit. This control unit is interface with memory unit for 
search lookup data from memory and store routing/switching information in a table form. 
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Figure 5.16: Schematic of memory register 

Figure 5.17: Data path diagram of control operation 
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Data Path: Network Processors are characterized by their data and instruction paths. 
Among the most important parts of any Network Processor is the data path. Since 
Network Processors are designed to process large amounts of data, the data paths are 
often independent of the instruction paths to avoid creating unnecessary bottlenecks. The 
data paths are also necessarily fast and wide, often requiring the use of switch matrices 
and point-to-point links. Figure 5.17 shows the data path of control operation and Figure 
5.18 shows the critical-data path of the design. 

Figure 5.18: Critical data path 

The performance analysis report from Synplicity Sinplify Pro. is given below: 

* Performance Summary * 

@P: Total Area : 2199.0 
@P: CPU Time : 0h:00m:05s 

@P: Worst Slack : 1.139 
@P: routericlock - Estimated Frequency : 112.9 MHz 
@P: routericlock - Requested Frequency : 100.0 MHz 
@P: routericlock - Estimated Period : 8.861 
@P: routericlock - Requested Period : 10.000 
@P: routericlock - Slack : 1.139 

@P: Worst Slack(min analysis) : NA 
@P: routericlock - Estimated Frequency(min analysis) : 112.9 MHz 
@P: routericlock - Requested Frequency(min analysis) : 100.0 MHz 
@P: routericlock - Estimated Period(min analysis) : 8.861 
@P: routericlock - Requested Period(min analysis) : 10.000 
@P: routericlock - Slack(min analysis) 1.139 

Starting Points with Worst Slack 

Starting Arrival 
Instance Reference Type Pin Net Time Slack 

Clock 
--------------------------------------------------------------------------------------------------------- 
reg_demux_3.data[0] routericlock DFN1ElCl Q data[O] 0.550 1.139 
reg_demuxj .data[ 1] routerc1ock DFN 1 El CI Q data[ 1] 0.550 1.139 
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reg_demux_1 .data[0] routericlock DFN I El CI Q data[0] 0.550 1.269 
reg_demux_2.data[1] routericlock DFNlElCl Q data[1J 0.550 1.269 
reg_demux3.data[1] routericlock 
-------------------------------------------------------------------------------------------------------- 

DFN1E1C1 Q data[I] 0.550 1.269 

Starting Points with Worst Slack 

Starting Arrival 
Instance Reference Type Pin Net Time Slack 

Clock 
------------------------------------ 
control_unit.empty_signal 
control_unit.full_signal 
control unit.address out[ 1] 
control_unit.fe_ptr[0] 
control unit.address out 0[0 ] 

fifojclock DFN IEOPI Q 
fifoiclock DFN I EOC I Q 
fifoiclock DFN I EOC I Q 
fifoiclock DFNICI Q 
fifoiclock DFNIEOCI Q 

empty_c 0.627 1.250 
full_c 0.494 1.717 
addrs[I] 0.494 1.788 
fe_ptr[0] 0.627 1.802 
addrs0[0} 0.494 1.811 

Ending Points with Worst Slack 

Starting 
Instance Reference Type Pin 

Clock 

control_unit.ful I_signal 
---------------------------------------------------------------------- 

fifoiclock DFN I EOC I E 
control_unit.empty_signal fifoiclock DFN IEOPI E 
memory_unit.d_out[0] fifoiclock DFNIEICI D 
memory_unit.d_out[ 11 fifolclock DFN I El Cl D 
memory_unit.d_out[2] fifoiclock DFN I El Cl D 

Required 
Net Time Slack 

------------------------------------------------------ 
full_signal_1_sqmuxa 9.482 1.250 
empty_signal_I _sqmuxa 9.482 1.378 
mem[0] 9.542 1.788 
mem[l] 9.542 1.788 
mem[2] 9.542 1.788 

Ending Points with Worst Slack 

Starting Required 
Instance Reference Type Pin Net Time Slack 

Clock 

control_unit.full_signal routerjclock 
-------------------------------------------------------------------------------------------------------------------------------- 

DFN I EOC I E full_signal_I_sqmuxa 9.546 1.139 
control_unit.full_signal routericlock DFN I EOC I E full_signal_I_sqmuxa 9.546 1.139 
control_unit.empty_signal routericlock DFN I EOP I E empty_signal_ 1_sqmuxa 9.546 1.252 
control_unilempty_signal routcrlclock DFN lE0Pl E empty_signal_1_sqmuxa 9.546 1.252 
control_unit.full_signal routericlock DFN I EOC I E full_signal_1_sqmuxa 9.546 1.269 

Worst Path Information 
----------------------- 

Path information for path number 1: 
Requested Period: 

- Setup time: 

+ Clock delay at ending point: 
= Required time: 

- Propagation time: 
- Clock delay at starting point: 
= Slack (critical) 

Number of logic level(s): 

Starting point: 

10.000 
0.454 
0.000 (ideal) 
9.546 

8.407 
0.000 (ideal) 
1.139 
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1.0 37.0 
1.0 126.0 
1.0 63.0 
1.0 9.0 
1.0 528.0 
1.0 126.0 

2199.0 

Ending point: 

The start point is clocked by 
The end point is clocked by  

Core Cell usage: 
cell count 
AOlB 9 
AOIlB 89 
AX1C 18 
AX1D 5 
AXlE 18 
GND 34 
INV 9 
MX2 533 

I'4X2C 4 
NOR2 80 

NOR2A 58 
NOR2B 130 
NOR3 11 

NOR3A 13 
NOR3B 9 
NOR3C 21 
OA1B 4 
0AIl 9 
0R2 91 
OR2A 23 
OR2B 39 
OR3A 8 
OR3B 19 
OR3C 25 
VCC 34 

XNOR2 8 
XOR2 77 

control_unit.full signal / E 

routericlock [rising] on pin CLK 
routericlock [rising] on pin CLK 

area count*area 
1.0 9.0 
1.0 89.0 
1.0 18.0 
1.0 5.0 
1.0 18.0 
0.0 0.0 
1.0 9.0 
1.0 533.0 
1.0 4.0 
1.0 80.0 
1.0 58.0 
1.0 130.0 
1.0 11.0 
1.0 13.0 
1.0 9.0 
1.0 21.0 
1.0 4.0 
1.0 9.0 
1.0 91.0 
1.0 23.0 
1.0 39.0 
1.0 8.0 
1.0 19.0 
1.0 25.0 
0.0 0.0 
1.0 8.0 
1.0 77.0 

DFN1 37 
DFN1C1 126 

DFN1E0C1 63 
DFN1E0P1 9 
DFN1E1 528 

DFN1E1C1 126 

TOTAL 2267 

10 Cell usage: 
cell count 

CLKBUF 2 
INBUF 27 

OUTBUF 24 

TOTAL 53 

Core Cells 2199 of 24576 (9%) 
10 Cells 53 

lqftb 

RYA 



Mapper successfull 
Process took 0h:00m:05s realtime, 0h:00m:05s cputime 
# Mon Aug 15 11:59:17 2011 

5.4 Simulation Waveform 

All Simulation is done in Mentor Graphics ModelSirn Simulator v6.6d. The simulation 
waveforms of I OG Ethernet MAC interface are generated from a test vector. The 
waveform of packet receive interface is shown in Figure 5.19 and the waveform of packet 
transmit interface is shown in Figure 5.20. 
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Figure 5.19: Simulation waveforms of packet receive interface 
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Figure 5.20: Simulation waveforms of packet transmit interface 

The core design model is simulated for both routing and switching operation, i.e. two 
stimulus of test-bench one for router and another for switch. The results of simulation 
waveforms of routing and switching application are shown in Figure 5.21 and Figure 5.22 
respectively. Switching operation is faster than router, because in switch there are less 
processing requirements. The load scheduler is performing the same task both in switch 
and router. The simulation waveform of load scheduler is shown in Figure 5.23. 
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Figure 5.22: Simulation waveform of switching application 

Figure 5.23: Simulation waveform of Load scheduler 
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Figure 5.21: Simulation waveform of routing application 
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5.5 Synthesized Power Report 

----------------------------------------------------------------- 
I Xilinx XPower Analyzer 
----------------------------------------------------------------- 

On-Chip Power Summary 

On-Chip Power Summary 
------------------------------------------------------------ 
On-Chip I Power (mW) I Used I Available I Utilization (%) 

I Clocks I 0.49 I 1 I --- I --- I 
I Logic I 0.00 I 808 I 2400 I 34 I 
I Signals I 0.00 I 1014 I --- I --- I 
I lOs I 0.00 I 53 I 102 I 52 I 
I Quiescent I 13.69 I I I I 
I Total I 14.18 
----------------------------------------------------------------- 

I I I I 

Power Supply Summary 
------------------------------------------------------ 
I Power Supply Summary I 
------------------------------------------------------ 
I I Total I Dynamic I Quiescent I 
------------------------------------------------------ 

I Supply Power (mW) I 14.18 I 0.49 I 13.69 I 
------------------------------------------------------ 

I 

----------------------------------------------------------------- 
Power Supply Currents 

I Supply I Supply  

----------------------------------------------------------------- 
I Total I Dynamic I Quiescent 

I Source I Voltage  I Current (mA) I  Current (mA) I Current (mA) I 

I Vccint I 1.200 
----------------------------------------------------------------- 

I 4.48 I 0.41 I 4.07 I 
I Vccaux 1 2.500 I 2.52 I 0.00 I 2.52 I 
I Vcco25 I 2.500 
----------------------------------------------------------------- 

I 1.00 I 0.00 I 1.00 I 
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CHAPTER VI 

Performance Evaluation 

This chapter covers the general performance analysis of the designed system and 
compares its architecture to other well known Network Processor architectures. The 
evaluation of the system performance for Network Processors is mainly packet 
Forwarding. The analysis shows that the proposed architecture can provide adequate 
performance for real world applications and can even exceed the performance of common 
architectures. 

6.1 General NP Performance 

Performance of network processors is determined by the average amount of processing 
cycles per packet available for network space applications. Network space applications 
are the ensemble of all packet processing operations performed on a per packet basis. To 
evaluate the performance of a network processor, it is necessary to take into account only 
the cycles spent on packet processing operations, discounting any clock cycles spend on 
overhead operations, such as packet forwarding, lookup table maintenance and system 
control. 

6.2 Architecture Analysis and Comparison 

Studies of network processor performance have analyzed and compared with several 
architectures. In recent growing technology the most two network processor architectures 
are the Intel IXE architecture (analyzed in NepSim) and EZchip TOPcore architecture 
(analyzed in EZdesign). The thesis revised their technology and provides some new 
techniques to increase the total processing performance and reduce complexity. The 
following section describes the architectural performance improvement and comparison 
with existing. 

(i) Processing strategy and Layered Architecture: 

Generally networking system performance degraded when packet delivery reached the 
system maximum and became the bottleneck. To avoid this limitation, a four level 
layered architecture was developed and increase the buffer memory such that no packet 
losses are occurred. In addition external memory interface is designed for very high speed 
packet delivery systems. From the analysis of various incoming traffic to network 
processor, it is found that all packets are not follow the same processing strategy. A basic 
processing step is enough for all packets and some traffic required more additional 
processing and few traffic needs more extra processing. So, all packets do not need to 
pass through all processing steps. This thesis implements the concept and developed a 
hierarchical processing level architecture. In the processing hierarchy, these Level 
processing is performed by processor unit and controlled by processing control unit. 
Figure 6.1 shows the proposed Network Processor architecture and Figure 6.2 shows the 
Proposed modified architecture of processor unit. These two figures are already described 
in chapter 4. 

In this layered architecture the level of hierarchy is packet distribution level, basic 
processing level, additional processing level and control level. Packet distribution is 
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performed on a dedicated level and therefore does not reduce or limit packet processing. 
Packet distribution is therefore limited only by the Packet Distribution Level. The Load 
Balancer unit is work in the packet distribution level with using load distribution 
algorithm. Packet processing is performed on the Basic Processing Level and the 
Additional Processing Level. Processing Control Unit controls the processing sub unit to 
perform these levels. As packets flow through the Packet Distribution Level, packets are 
queued for processing in Packet Buffers. The destination of the packet on the Packet 
Distribution Level is determined by the lookup performed on the Basic Processing Level 
if available or the Additional Processing Level alternatively. The number of clock cycles 
available for packet processing is determined by the number of clock cycles each packet 
can be held for processing in the Packet Buffer without reducing the packet throughput. 

I System I I I External Memory Interface 
Clock

___________________ 

h-spd 

MAC  - . 

Wsp-d 

nterfacJ 

Incoming Load Outgoing 
Memory 4 Balancer Memory 
Queue : Queue 

: 
speei1 High-speed  

MAC fSS0 MAC I. 
face 

_ _U
iac J 

Configuration I I 
& Control Pipelined Memory Interface 

Figure 6. 1: Block diagram of proposed Network Processor architecture 

Pipcliiied Memory Interface 
(Lookup table) 

TOPparse TOPsearch ft TOPresolve TOPmod 

Processing 
Control Unit 

Figure 6.2: Proposed modified architecture of processor unit 

(ii) Super-pipeline Parallel Architecture: 

In the design of network processor this thesis combines pipelining and parallelism by 
using a four-stage pipeline in which each stage is implemented by parallel processors. 
Again in the processor core there are four basic processing units namely parse, search, 
resolve and modify. These units are also placed in parallel. Each unit process data through 
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in a parallel pipeline and the whole processor unit takes data over a pipeline, so it follows 
super-pipeline architecture. As a result packet processing is much faster than existing 
processor. Figure 6.1 illustrates the architecture. 

Pipelined Memory Architecture: 

Every network processor maintains a lookup database stored in memory and the 
processing performance directly depends on the access of memory or the speed of search 
engine. To achieve high memory bandwidth, multiple processors and thread contexts are 
used to generate multiple pending accesses. The problem is that each processor does all of 
the forwarding for an assigned packet, and each independent processor needs independent 
access to a large amount of shared state (e.g., the global forwarding database). The 
existing known way around this problem is to replicate the state for each processor or to 
share the state in some fashion. The thesis implements memory pipelining to overcome 
these problems and ensure high bandwidth for memory access. For a packet size of 40 
bytes (TCP acknowledgments) on a 10-Gb/s link that leaves a memory access time per 
packet of less than 

= 
40Bytes 

'pkt 10Gb/s =30ns  

and at 40 Gb/s this is further reduced to 7.5 ns. 

Green technology for saving power consumption: 

Green technology is a field of new, innovative ways to make changes in daily life. 
Basically, green technology is that in which the technology is environmentally friendly 
and is created and used in a way that conserves natural resources and the environment. In 
electronics area this green technology conserves the unnecessary power consumption at 
the time of inactive periods. The thesis implements this green concept to save power. 

In networking communication the incoming of packet flow are not occur all time. Some 
times it ideal and some times it is in heavy packet load. Whatever it is, the network device 
are run in 24 hours and consume power for all interface. But it is possible to change a 
interface to sleep mode when there are no packet flow. The interfaces that are in sleep 
mode saves some power. This thesis work implements this and saves power consumption 
when the I/O interfaces and the processor are in ideal. 

Implement as FPGA soft-core: 

In today's design world soft processor core are available for used in FPGA. As this thesis 
modeled and design the proposed system in VHDL and synthesized for FPGA (Xilinx 
Spartan3 and Actel ProASIC3), this model program can be used for any other FPGAs 
vender and if necessary implement with modification. 

6.3 Evaluation Methodology 

Performance evaluation was performed by generating the VHDL model described 
previously and mapping them to a Xilinx Spartan3 FPGA, using Xilinx ISE Design Suit 
v13.1 and to Actel ProASIC3 FPGA, using Actel Libero TED v9.1. The design was 
synthesized using both Xilinx Synthesis Technology (XST) and Synplicity Sinpllfy Pro 
Actel Edition. The design was simulated using Model Technology ModelSim v6.6d. 
Performance was evaluated in three stages. 
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In the first stage, performance of the Packet Distribution Level was evaluated using a 
VHDL testbench which simulated packet distribution by sending data streams to the input 
ports of the 10-Buffers and monitoring packet distribution. Packet data was generated 
using Ezchip microcode development tools. In the simulation, design was able to reach 
the packet throughput required for handling wire speed on all MAC interfaces. The MAC 
interface was not inc luded in the simulation to reduce the simulation time and to simplify 
the interpretation of the results. 

In the second stage, performance of the Processor unit was evaluated by giving 8 bit data 
to processor unit and observes the time to leave this data to output. This was also done by 
a VHDL testbanch. 

In the third stage, the overall performance was evaluated by experiment with some real 
packet processing examples for IPv4 Forwarding execution, given in next section. 

6.3.1 Real Packet Processing Operation 

The following examples compare the typical number of clock cycles (where each 
instruction takes a clock cycle) required for the identical packet-processing task using 
proposed modified processor core, Ezchip T0Pcore technology [15] and a general RISC 
processor [15]. The comparisons are shown in Table 6.1 below. 

Table 6.1: Comparison of packet processing tasks 

Task Packet Processing Task 

Clock Cycles 

Proposed 
Modified 

Processing Core 

EZchip 
TOPcore 

NP 

General 
RISC 

NP 

1 Parsing a IPv4 packet 53 60 400 

2 Searching lookup tables for 
switching 8 6 200 

3 Resolving a routing decision 10 8 80 

The task I represents to parsing a typical IPv4 packet for determining its destination. The 
task 2 represents the searching of a 32 bit lPv4 IP address in a typical IPv4 packet from 
the lookup database. Finally the task 3 represents the resolving a routing decision. 

From the table it is clear that EZchip T0Pcore technology takes very less clock cycles 
compared to general RISC NP core. And the proposed modified architecture improves the 
EZchip T0Pcore technology. Figure 6.3 shows a graph of this comparison tasks. 

Parsing and searching is common operation mostly for all types of packets and for routing 
decision it takes extra resolve operation. In general, to process a packet the no. of clock 
cycles required for proposed modified core is (53 + 8) = 61cc whereas for the EZchip 
T0Pcore technology it takes (60 + 6) = 66cc. For the routing resolve operation the 
required clock cycles is (53 + 8 + 10) = 71cc in proposed modified core and (60 + 6 + 8) 
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= 74cc in EZchip TOPcore technology. Therefore, the proposed modified architecture 
gives better performance. 
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Figure 6.3: Performance comparison graph 

6.4 Summary 

Results show that the proposed designed architecture is efficient and provides better 
performance compared to common architectures. It also shows that for some specific 
tasks of interest to Network Processor system designers, the FPGA adaptability can 
provide the flexibility to process packet at wire speed. The performance summary of the 
system is - 

• This processing technology provides more processing power per clock than other 
network processor designs. 

• Super-pipeline and parallel architecture of the processor array boosts the 
performance. 

• Pipelined memory architecture speeds the memory access time. 
• Load balancer with an efficient load distribution algorithm provide higher 

processing throughput. 
• Green technology provides saving of power consumption at ideal condition. 
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CHAPTER VII 

'4 Conclusion and Future Work 

7.1 Conclusion 

This thesis developed a high speed network processing system for efficient FPGA 
implementation. For this purpose, a 4 level layered processing architecture was developed 
which was scalable and allowed efficient packet processing. The layered architecture 
allowed for packet processing was independent of the packet distribution and for 
exceptions was processed outside the standard processing flow. The thesis also developed 
high throughput pipelined memory architecture to reduce the rate of memory access time. 
This design architecture was enabled by the development of a fast and effective load 
distribution algorithm for efficiently balanced the distributed load. For the design of high-
speed packet processing core, EZchip's TOPcore technology was used with some 
modification. The modification was made for further speedup of processing capacity. The 
processor unit was designed and verified in EZchip microcode.development environment. 
It was also simulated in NepSim simulator for process execution, power and other 
parameter observation. Then the design was modeled and simulated in RT level using 
VHDL and was synthesized to schematic. The synthesis was done for both Xilinx 
Spartan3 and Actel ProASIC3 FPGA. 

The performance of the proposed network processor was evaluated for some real 
applications and compared with reference architectures. Results show that the proposed 
designed architecture is efficient and provides better performance. Design requires very 
little FPGA logic while efficiently processing packet. Implementation of super-pipelined 
parallel processing increases the performance and the FPGA adaptability can provide the 
flexibility to process packet at line speed. And implementation of green technology 
provide saving of power consumption at an ideal condition. 

7.2 Future Work 

The recent concentration of the researchers of this field are not only point to processing 
speed and performances, they are always try to make the network processor 
reconfigurable and supports all types of network protocols in a single processing unit. In 
this research work the thesis boosts the processing performance and prevents packet 
losses at the time of traffic overflow by providing load balancer and increasing buffer 
memory size. The techniques that used for load distribution in a load balancer in this 
thesis may be replaced by another way to further increase the performance. In this work, 
pipelined memory architecture is used for increase the rate of memory access time. For 
future work other memory access method may be reconsidered for enhancing the 
bandwidth of memory access. The core processing unit in this research work is based on 
Task Optimized Processing (TOP) core technology, other methods may also be 
considered to design the processing core faster and efficient. 
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