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Carbon nanotube (CNT) is considered as an ideal candidate for next generation nanoelectronics 

owing to unusual thermal, electrical, optical and other physical properties. It provides the 

opportunity to understand one dimensional (ID) physics. Due to strong electron phonon coupling 

in carbon-based nanomaterials, lattice vibrations have a significant effect on the electron 

transport properties in CNT. From a realistic point of view, defects such as atomic vacancies, 

adatoms, isotopes and impurities are very common during the synthesis of CNTs. Even small 

concentration of vacancy changes the phonon properties of CNT significantly. Many studies on 

the vibrational properties of CNT have been performed. However, these works are limited on 

pristine CNT only. Here I have performed an in-depth theoretical analysis of the effect of 

vacancy defects and curvature on phonon properties of (10,0) zigzag scmiconducting carbon 

nanotube (ZCNT) and (10,10) armchair metallic carbon nanotube (ACNT). 

In the first part of this work, a simple model to calculate the vibrational eigcnfrcqucncies 

and cigcnvectors for I D disordered systems is developed using the forced vibrational method, 

which is based on the mechanical resonance to extract the pure vibrational eigcnmodcs and 

suitable to treat very large and complex disorder physical system. This model is then used to 

study (10,0) ZCNT and (10,10) ACNT with different concentrations of atomic vacancies. 

This dissertation reports some unique and interesting lindings based on computational 

simulations on (10,0) and (10,10) CNTs both in low and high-frequency region. The correction 

of force constant parameters due to the curvature effect of CNTs lead to the Raman active E29 

mode phonon peaks are at 1576 cn11  and 1581 cm' for (10,0) and (10,10) CNTs, respectively. A 

softening and shifting of the E2g  mode towards the low-frequency region are observed with the 

increasing of vacancies and curvature of CNTs. For vacancy concentrations of 10% or higher, the 

E2g peak has been reduced into a shoulder or it has been completely disappeared. The other high 

symmetry point's peaks in the h igh- frequency region are also broadened and softened for both 

CNTs with the increase of defect density. Vacancy induces some new peaks at low-frequency 

region of phonon density of states. 

Due to scattering by atomic vacancies, the phonon wave function becomes localized in the 

real space. To investigate phonon localization effect with vacancy type defects and curvature of 
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CNTs, the mode pattern and localization length for K point in-plane TO mode at Raman D-band 

frequency is calculated. Strong localization is observed with variation of vacancy concentration 

and curvature of CNTs. With increasing defect densities localization effect shows stronger 

confinement. The localization effect is stronger in (100) CNT than (10,10) CNT due to curvature 

effect. 

These findings show the significant impact of vacancy defects on the phonon properties 

that strongly affect the electron transport properties of CNT-based nanodevices. These findings 

will also open a route towards better understanding the thermal conductivity, specific heat 

capacity, electron phonon interaction, resistivity and superconductivity in disordered CNT. 

Li 
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CHAPTER 1 

Introduction 

1.1 Introduction 

Carbon nanotube (CNT), an allotrope of carbon, is a unique one dimensional (ID) 

cylindrical nanomaterial with fascinating and attractive physical properties. CNT shows 

outstanding thermal, electronic and optical properties because of their nanosize which may 

vary with their length, diameter and chirality. According to measurements, an individual CNT 

has a room temperature thermal conductivity of about 3500 WmHKl  with temperature 

stability up to 2800°C in vacuum and about 750°C in air [1]. The carrier mobility is found 

approximately 10,000 cm2Vs and electric current density is about 4x109  A/cm2  [2]. The 

optical absorption coefficient of CNT is determined to be equal to -24 x 10 cm' [3]. The 

tensile strength is of range 30-45 GPa [4] and Young's modulus of 1.8 TPa [5], resulting from 

the sp2  hybridized covalent bonds formed between the individual carbon atoms. It is highly 

flexible and has a large length to diameter ratio [6] with the value of order i05-10'°. CNT can 

be scmiconducting or metallic depending on their chirality. Generally zigzag CNTs arc 

semiconductor type and armchair CNTs are metal type. These intriguing physical properties 

proof CNT as one of the most promising multifunctional nanomaterials for numerous 

technological applications. 

CNT provides exciting possibilities in implementing nanodevices for high-performance, 

high-power, and flexible nanoelectronics. CNT-based field effect transistors (FETs) operate 

much faster because of ballistic quantum transport of carrier originated from one dimensional 

(ID) quantum confinement [7]. The tunability of bandgap of semiconducting CNT is 

potentially useful in optics and photonics. With the narrow selectivity in the wavelength of 

emission and the ability of detection of light, as well as the possibility of fine tuning through 

the nanotube structure have made CNT a perfect material for light emitting diodes (LEDs) 

and photo detectors. CNTs possess a wide range of direct bandgaps matching with the solar 

spectrum as well as strong photo absorption capability ranges from infrared to ultraviolet, 

which make themselves an ideal photovoltaic material. Photovoltaic effect can be achieved 
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with ideal single CNT diodes and individual CNTs can form an ideal p-n junction diode [8]. 

Another benefit is that CNT-bascd transparent conductive films (TCFs) exhibit a high optical 

transparency in a broad spectral range [1 and can be used as conducting as well as 

transparent electrodes for hole collection in organic photovoltaic devices [101. CNT is also a 

potential option for large scale interconnects (LSIs) [11]. CNTs are widely used in lithium ion 

batteries as electrodes [1 2]. CNT biosensors exhibit large changes in electrical impedance and 

optical properties in response to the surrounding environment [13]. CNTs can be used as 

electron guns due to its natural tunneling effect in miniature cathode ray tubes in high-

brightness, low-energy, and low-weight field emission displays (FEDs) [14]. In Figure 1.1 

some major applications of CNT are shown. Global CNT market estimates and forecast by 

application is demonstrated in Figure 1.2 and the annual number of published papers on CNT 

since their discovery until the end of 2010 is presented in Figure 1.3. Due to tl1ese versatile 

potentialities, CNTs have become an attractive and interesting research area in the field of 

nanotechnology and other emerging application fields. 

Figure 1.1: Some major applications of CNT in nanotechno logy. 
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CNTs have cnicrgcd in the field of nanotechnology because of their nanosizc and unique 

physical properties. The fundamental characteristics of CNT comprise its vibrational 

properties and phonon spectrum, from which one can derive several physical properties. 

Phenomena such as charge [17-19], spin [20], heat transport [21-24], specific heat capacity 

[25], infrared and Raman spectra [26-28], electron phonon scattering [29-36] and its related 

effects such as resistivity 137] and superconductivity [381 can be understood, in most 

situations, only with a detailed knowledge of the phonon spectrum. Especially, many of these 

properties are determined by the low-energy phonon excitations. Furthermore, phonons play 

an important role in quasiparticle dynamics and electrical transport properties. Optical or 

electronic excitations can decay into vibrational excitations or can be scattered by phonons 

into different states. It has been suggested that the scattering between electrons and the optical 

phonon modes greatly affects the high-field ballistic transport properties in CNTs. In CNT, the 

electron phonon coupling strongly affects the phonon frequencies, giving rise to Kohn 

anomalies and possible soft modes or Peierls distortions [31,39.40]. Moreover, there is 

currently a debate on the vibrational origins of superconductivity in CNT [32] and it is the 

subtle interplay between phonons and electrons that gives rise to this phenomena. In 

technological applications such as CNT-bascd electronic devices, thermal properties are of 

central importance for understanding and controlling heat dissipation and self-beating effects. 

Efficient thermal management is required for ensuring the performance and stability of these 

devices. The quantitative understanding and characterization of this effect and other related 

phenomena require a detailed knowledge of the vibration and phonon properties of CNT. 

A realistic CNT is not defect-free, and it unavoidably contains many kinds of structural 

defects and disorders, which can be generated during the growth. CNT obviously cannot 

contain higher dimensional defects like line and screw dislocations. The common structural 

defects existing in CNT are atomic vacancies. There can be also impurities and adatoms 

present in CNT. The vacancy defects found in graphene are more complicated in CNTs 

because of circumferential and curvature induced strain. For a given CNT containing atomic 

vacancies, the atomic structure around the defect is quite different from that of the perfect 

portion. When vacancy disorders occur in CNT, the dangling bonds are created at the vacancy 

sites and destroy the original local n-like hybridization around the vacancy by breaking the 

local symmetric structure of a perfect CNT [41]. it is natural to expect that even small 
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concentrations of vacancy defects in CNT nanostructures may lead to specific shifts, 

broadcnings and additional characteristic singularities in the phonon and electron densities of 

states. The loss of thermal conductivity, the increase in electrical resistance and the change in 

optical activity can be attributed to atomic vacancy defects. Such phenomena are certainly 

crucial to the newly emerging field of nanotcchnology, in which low dimensional nanoscaled 

materials are synthesized, characterized, and integrated into applications. Therefore, studying 

the vacancy defects effect on the vibrational properties of CNT is one of the fundamental 

issues for its potential applications. 

1.2 Motivation 

The synthesis of single wall carbon nanotube (S\VcNT) has opened a new era in the 

field of nanoelectronics. Due to a strong electron phonon coupling in carbon based low 

dimensional materials, lattice vibrations have a significant effect on the electron transport 

properties of CNT-based nanoelectronic devices. From a realistic point of view, during the 

synthesis of CNT, random atomic vacancies, adatoms, isotopes and impurities are created. 

Among intrinsic defects, atomic vacancies are the most common, existing even in nearly 

defect free CNT. This type of inherent vacancy induced atomic disorder undoubtedly would 

influence vibrational properties of CNT, because in sp2  bonded carbon materials, the behavior 

of the phonons, just like the electrons, depends on the atomic structure. Even a small amount 

of vacancy type defects in CNT like quasi ID structure, may alter the vibrational properties 

significantly and thus change their electrical transport properties. 

In sp2  hybridized carbon-carbon bonded family materials the phonon wave function is 

considered as delocalized in the crystal system. An atomic vacancy disorder in a crystalline 

system may shift the vibrational modes outside of the allowed frequency range of the perfect 

crystal [42,43 J. These are called localized vibrational modes because the mode energy is 

spatially concentrated at the defect Sites. When the vibrational modes become localized, the 

mean free path of the phonon becomes finite and proportional to the square of the localization 

length. These phonons with finite lifetime and finite localization length are the main 

contributors to the natural line width of the Raman spectra for a particular crystalline system. 

Phonons confined in a ID system should follow a single trajectory and cannot avoid a 

scattering center nor scatter into nearby momentum states due to vacancy defects. These 
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localized phonons should have significant effects on electron transport of CNT. Especially the 

high-frequency optic phonons are more strongly coupled with electrons than to [ow-frequency 

acoustic phonons. CNTs, with their uniquely simple crystal structures and chirality dependent 

vibrational and electronic states, provide a ID playground for studying the dynamics and 

interactions of phonons and electrons. Thus the investigation of the defect induced phonon 

properties of CNT is of fundamental importance for understanding the electron transport in 

CNT-based molecular electronics. 

The crystalline disorder shows some special phonon properties in sp2  hybridized 

carbon systems. For example, strong D-band feature is observed in the Raman spectra which 

is generally inactive in perfect CNT and phonons are the main source of Raman spectra in the 

literature 1441. The defect induced resonant Raman scattering occurs due to the breakdown of 

the crystalline symmetry in CNT by introducing vacancy disorder into the crystal lattice 

system through the activation of phonons at interior K points on the Brillouin zone boundary. 

To understand these phenomena, the detail knowledge of phonon properties of disordered 

CNTs is indispensable. 

Many significant contributions have been devoted to the phonon properties of CNT 

based on theoretical approaches, including tight binding method [45], first-principle 

calculations 130,46,471 and force constant model (FCM) 11 in the previous few decades. Yu 

et al. [4 ] applied tight binding method to investigate phonon properties of CNT with 

different chiralities. They were able to capture part of the curvature induced strain effect of 

CNT on its phonon density of states (PDOSs) through the geometry dependence of its matrix 

elements, even though their absolute value depend on the intrinsic structure of graphite. In 

their pioneering work, Sanchez-Portal et al. [46] used ab initio density functional theory based 

first principle calculation, which combined pseudopotential with the representation of wave 

functions by linear combination of atomic orbitals to calculate the force constants of CNT. 

Because of the incompleteness of their basis set, the general accuracy of the phonon property 

was not quite good. The second group of work using first principle calculation was done by 

Dubay et al. 1301 on armchair (ACNT) and zigzag carbon nanotube (ZCNT). The calculations 

arc performed using a plane wave basis set and density functional theory. The improvement 

on the high-energy phonon property was obvious. But clear error happened on the low-energy 

region where as some inconsistency is found for the intermediate frequency region. Ye et al. 
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1471 made a systematic first principle ab initio study on the phonon dispersions for a series of 

achiral CNT's by the superccll approach. The calculations were extended to some very small 

CNTs to reflect more clearly the curvature effect. They obtained good accuracy on the fill 

frequency range of PDOS of CNT. First principle calculations are superior in terms of their 

predictive capabilities on PDOS of CNT, although sometimes the calculated results give 

imaginary frequencies for the acoustic modes of CNTs. The FCM by Saito et al. [4$] provided 

PDOS with force constants corrected considering curvature effect of CNT by applying 

periodic boundary condition (PBC) to the circumferential direction of the CNT. MI of the 

theoretical experiment discussed above focused mainly on the pristine CNTs only. However, 

as far as it is known, the phonon properties of vacancy induced CNTs have been remained 

unexplored. A detailed analysis of this problem in realistic systems at the atomic scale is still 

lacking. Again, if atomic vacancies are present in a crystal system, the symmetry of elemental 

topological arrangements of the crystal system breaks down, which generate more complex 

lattice structure. Therefore, the dynamical matrix method requires huge computational 

resources. This long computational time and convergence problems with the dynamical 

matrix calculations, limit the systems of interest into few number of atoms. Moreover, an in-

depth understanding of the phonon properties of CNT is hindered by an inability to deal with 

a large number of carbon atoms. That is why, a larger scale model is essential for complete 

understanding of vibrational properties of vacancy defective atomic structures of CNT. It is 

thus crucial to build a realistic model to have an intense observation on the phonon properties 

of the vacancy disordered CNT. 

1.3 Objectives 

The purpose of this dissertation is to go through systematically the details of the various 

vacancy concentration effects on the vibrational properties of (10,0) semiconductor ZCNT 

and (10,10) metallic ACNT. The forced vibrational method (FVM) introduced by Williams 

and Marris [4] has been employed for developing a well defined quantitative model to 

estimate the vibrational properties of disordered (10,0) and (10,10) SWCNT systems. This 

method is based on the principle that a linear and large disordered mechanical system when 

driven by a periodic external force of certain frequency will respond with large amplitudes in 

those eigenmodes close to this frequency. This technique has the following advantages: 
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I. One can apply this algorithm to a very large, complex as well as disordered system. 

This algorithm requires a memory space of order N. 

I II. It is possible to calculate quite accurately the density of states (DOSs) in both low- 

frequency and high-frequency regime. 

III. The magnitude of the DOS at any frequency can be obtained by sweeping the 

resonant frequency 

in the course of this dissertation, the following objectives were achieved: 

I. Develop a reliable model based on the FVM technique to determine the vibrational 

properties of vacancy disordered (10,0) and (10,10) SWCNTs. 

Report the effects of vacancy-type defects on the phonon properties of SWCNTs for 

the iirst time. 

Report the effects of curvature on the phonon properties of SWCNTs. 

To quantify the localization properties due to vacancy type defects and curvature is 

another important objective. 

1.4 Synopsis of Dissertation 

CHAPTER II gives an overview of the basic concepts for SWCNT in order to establish a 

basis for discussing the obtained results in the later chapters. After introducing the different 

types of carbon nanostructures, emphasis is laid on the fundamentals of SWCNT, vibrational 

properties of SWCNT and their influences on the Raman spectra. 

CHAPTER 111 introduces the used computational technique, which allows calculating the 

very large and complex disordered systems. 

CHAPTER LV presents the vibrational properties of vacancy disordered (10,0) ZCNT and 

(10.10) ACNT with the aid of the forced vibrational method in detail. This is complemented 

by the phonon density of states, typical mode patterns and phonon localization length of 

vacancy type disordered SWCNT. 

CHAPTER V provides a summary of the most relevant results, combined with an outlook on 

possible future research directions. 
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CHAPTER II 

Fundamentals of Single Wall Carbon Nanotube 

2.1 Introduction 

This chapter is intended to provide an introduction and overview of the fundamental 

concepts of SWCNT. The fundamentals and classitication of SWCNT, vibrational properties 

and Raman spectra of SWCNT have been discussed that will be useful to understand the 

results in the later chapters. 

2.2 The sp2-hybridized Carbon Nanomaterials 

Carbon is the 15th  most abundant element in the earth's crust, and the fourth most abundant 

element in the universe by mass. Carbon is a group IV element with symbol C and atomic 

number 6. It is nonmetallic and tetravalent making four electrons available to form covalent 

chemical bonds. Carbon is the sixth element, with a ground state electron configuration of 

1s22s22p2, of which the four outer electrons are valence electrons. Its first four ionization 

energies, 1086.5, 2352.6, 4620.5 and 6222.7 kJ/mol is much higher than those of the heavier 

group 14 elements. The electro negativity of carbon is 2.5, significantly higher than the 

heavier group 14 elements (1.8-1.9), but close to most of the nearby nonmetals as well as 

some of the second and third row transition metals. Carbon's covalent radii are normally taken 

as 77.2 pm (C—C), 66.7 pm (C=C) and 60.3 pm (CC), although these may vary depending on 

coordination number and what the carbon is bonded to. In general, covalent radius decreases 

with lower coordination number and higher bond order [501. Three isotopes occur naturally, 

12C and 13C being stable, while 14C  is a radioactive isotope, decaying with a half-life of about 

5,730 years [5 I]. The atoms of carbon can bond together in different ways, termed allotropes 

of carbon. The best known are graphite, diamond and amorphous carbon. Carbon is capable of 

forming many more allotropes due to its valence electron configuration such as 

buckminsterfiullcrcnc, graphenc, CNTs, nanobuds and nanoribbons. The physical properties of 

carbon vary widely with the allotropic form. For example, graphite is opaque and black while 

diamond is highly transparent. Graphite is soft enough to form a streak on while diamond is 
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the hardest naturally occurring material known. Graphite is a good electrical conductor while 

diamond has a low electrical conductivity. Under normal conditions diamond, CNT and 

graphene have the highest thermal conductivities of all known materials. All carbon allotropes 

are solids under normal conditions, with graphite being the most thermodynamically stable 

form. They are chemically resistant and require high temperature to react even with oxygen. 

Generally, four valence electrons in carbon tend to interact with each other to produce the 

various types of allotrope. When carbon atoms come together to form a crystal, one of the 2s 

electrons is excited to the 2p7  orbital gaining energy from the neighboring nuclei, which has 

net effect of lowering the overall energy of the system. Interactions or bonding subsequently 

follow between the 2s and 2p orbitals of neighboring carbon atoms. These interactions or 

mixing of atomic orbitals is commonly called the hybridization, and the new orbitals that are 

formed are referred to as hybrid orbitals. Figures 2.1 and 2.2 illustrate the formation of the 

covalent bond through the hybridization between the carbon atoms in carbon honeycomb 

lattice. The sp2  hybridization of the singly occupied 2s orbital and two 2p orbitals (e.g. Px  and 

py) leads to a trigonal planar structure, with an in-plane bond between two neighboring carbon 

atoms. Additionally, the singly occupied Pz  orbital of a carbon atom which is perpendicular to 

the planar structure bonds with the Pz  orbitals of neighboring carbon atoms leading to the 

formation of a dclocalizcd band, which is half-filled [52]. The existence of multiple flavors of 

hybridization in carbon is what leads to the different allotropes shown in Table 2.1. Graphene, 

a layer of carbon atoms arranged into a 2D hexagonal lattice, is a single layer of graphite (see 

Figures 2.3(a) and 2.3(b)) [53]. CNTs represent rolled-up cylinders of graphene (see Figure 

2.3(c)) [54-56]. Fullerene [57] molecules (e.g. C60) are obtained by wrapping graphene, 

combined with the introduction of pentagons into the hexagonal lattice (see Figure 2.3(d)). 

Table 2.1: Allotropes of sp2  bonded carbon [58]. 

Dimension OD ID 2D 3D 
Allotrope C 0  bucky ball CNT Graphene Graphite 
Structure Spherical Cylindrical Planar Stacked planar 
Hybridization sp2  sp2  sp2  sp2  
Electronic Semiconductor Metal or Semi- Metal 
properties Semiconductor metal 
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Electronic stnlctwe of a carbon atom in ground state *7 X 
 

(2 electrons) (2 electrons) (I electron) (I electron) 

Promotion of one electron from the 2s to 2p orbital 

----4- Is 2s 2p. 2p), 2p, 
(2 electrons) (2 electrons) (I electron) (I electron) (1 electron) 

Mixing of the 2s, 2p and 2p orbitals forming three hybridized sp2  orbitaLs 

* -)<O  ~t Is sp- 2p, 
(2 electrons) (3 electwn.$) (I electron) * 

Sigma and P1 bond between two carbon atoms 

Figure 2.1: The formation of sigma and pi bonds thorough the hybridization between two 
carbon atoms [58]. 

Figure 2.2: Honey comb lattice structure of carbon atoms [58]. 

II 



12 

V 

FuU 

Figure 2.3: (a) Mono-layer 2D graphene. (b) Three layer graphene or graphite. (c) CNTs are 
rolled up cylinders of graphene. (d) Fullerenes (e.g. C60) are molecules consisting of wrapped 

graphene [59]. 

2.3 Overview of SWCNT 

The CNTs are synthesized in a large variety of structures. Some of them consist of a single 

cylindrical graphene layer, so called SWCNT as shown in Figure. 2.4. Others comprise a 

number of coaxial layers, so called multiwall carbon nanotubes. An interesting and essential 

fact about the structure of a CNT is the orientation of the six-membered carbon ring (hereafter 

called a hexagon) in the honeycomb lattice relative to the axis of the nanotube as shown in 

Figure 2.4. From this figure, it can be seen that the direction of the six-membered ring in the 

honeycomb lattice can be taken almost arbitrarily, without any distortion of the hexagons 

except for the distortion due to the curvature of the carbon nanotube. This fact provides many 

possible structures for carbon nanotubes, even though the basic shape of the CNT wall is a 

cylinder. 

Figure 2.4: Rolling up of graphene sheet to form CNTs [601. 
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Figure 2.5: A graphic displaying a Chirality Map which shows the various types of SWCNTs 
that can be formed. The properties are governed by the way in which they are rolled as shown 

in the insets 161. 

The primary symmetry classification of a carbon nanotube is as either being achiral 

(symmorphic) or chiral (non-symmorphic). An achiral carbon nanotube is defined by a CNT 

whose mirror image has an identical structure to the original one. There are only two cases of 

achiral nanotubes: ACNTs (n,n) and ZCNTs (n,O) as are shown from the Chirality Map of 

CNTs in Figure 2.5. The names of armchair and zigzag arise from the shape of the cross-

sectional ring at the edge of the nanotubes. Chiral nanotubes exhibit a spiral symmetry whose 

mirror image cannot be superposed on to the original one. We have thus a variety of 

geometries in CNTs which can change diameter and chirality 1621. 

2.4 Structure of SWCNT 

It is convenient to specify a general CNT in terms of the tube diameter d,, and 

the chiral angle 0, which are shown in Figure 2.6. The chiral vector Ch is defined in 

terms of the integers (iz,rn) and the basis vectors a and (2  of the honeycomb lattice, 
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zigzag armchair 
CNT CNT 

Figure 2.6: The unfolded SWCNT is shown along with the chiral and translational vector. 
The chiral vector OA or Ch = na1  + ma2  is defined on the honeycomb lattice by unit 

vector-, a1  and a2, and the chiral angle B is defined with respect to the zigzag axis. 
Along the zigzag axis 0 = 0• Also there are shown the lattice vector OB = T of the I D 

tube unit cell, and the rotation angle ii and the translation v which constitute the basic 
symmetry operation R = (wi v). By rolling up a graphene sheet (a single layer of 

carbon atoms from a 3D graphite crystal) as a cylinder is formed. Shown here is a 
schematic theoretical model for a SWCNT with the tube axis OB normal to: The 0 = 

300 direction (an "armchair" tube) and the 0 = 00 direction (a "zigzag" tube). 

which are also defined in terms of rectangular coordinates. The integers (n,rn) uniquely 

determine d1  and 0. The length L of the chiral vector Gh (see table 2.2) is directly 

related to the tube diameter d1. The chiral angle 0 between the C1, direction and the 

zigzag direction of the honeycomb lattice (n,0) (see Figure 2.6) is related to the integers 

(n.m) in Table 2.2. 

The unit cell of the CNT is shown in Figure 2.6 with the rectangle bounded by the 

vectors Ch and T, where T is the I D translation vector of the nanotube. The vector T 

is normal to C1, and extends from the origin to the first lattice point B in the 

honeycomb lattice. It is convenient to express T in terms of the integers (tt, 12), where 

it is seen that the length of T is v'L/dR  and dR is either equal to the highest 

common divisor of (n, m), denoted by d, or to 3d, depending on whether n-rn = 3d, r 

being an integer, or not (see Table 2.2). The number of carbon atoms per unit cell 

n, of the ID tube is 2N, as given in Table 2.2, each hexagon (or unit cell) of the 

honeycomb lattice containing two carbon atoms [63]. The chiral vector C,, can be derived 

as follows: 
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Ch = na1  + ma2  

=na(x+y)+ina(~x_y)= a(n+rn)x+a(n—ni)y 2.1 

L = jChI = aj (ii + rn)2  + ! (ii - rn)2  = aVn2  + nm + in2 2.2 

The translation vector can be dcrivcd as T can be derived as follows: 

T = ta1  - t2a2  

(zrn+n) (2n+rn) 
a2  

= dR 
a1— 

dR 
 

= 
(2m+n) 

(~ + a - 
(2n+m) 

(x 
- y) a = (m - n)x + 

- 

(ii + rn)y 2.3 

ITI=J(rn _ n)2+3(n + nl )2 = Vn2+ nm + rn2 = L 2.4 
dR 

Since there are 2N carbon atoms in this unit cell, we will have N pairs of bonding it and 

anti-bonding 7t'1' electronic energy bands. Similarly the phonon dispersion relations will 

consist of 6N branches resulting from a vector displacement of each carbon atom in the unit 

cell. 

Expressions for the reciprocal lattice vectors K2  along the nanotube axis and K1  in the 

circumferential direction are obtained from the relation R1 . KJ  270jj, where R1  and K are, 

respectively, the lattice vectors in real and reciprocal space. Since nanotubes are 1D material, 

only K2  is a reciprocal lattice vector. K1  gives discrete k values in the direction of Cl,. Then we 

get: 

Ch.Kl=2m 2.5 

Ch.Kz = 0 2.6 

T.K1 =0 2.7 

T.K2 =2ir 2.8 

We get expressions for K1  and K2: 

K1  = (—t2b1  + t1b2) 2.9 

K 2  = (mb1  —nb2 ) 2.10 

where b1  and b2  are the reciprocal basis vectors of two dimensional graphene plane. In Figure 

2.7, we show the reciprocal lattice vectors, K1  and K2. The first Brillouin zone of this quasi 1D 

unique material is the line segment WW. Since NK1=-t2b1+tib2  corresponds to a reciprocal 

lattice vector of 21) graphene plane, two wave vectors which differ by NK1 are equivalent. 
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Table 2.2 : Parameters of SWCNT [63] 

Symbol Name Formula Value 

carbon-carbon 1.42 A (graphite) 

distance  

a length of unit vector 'I3 a,, 2.46 A 

unit vectors ,.J 1\ (J  in (x,v) cordinates 

(3

-
a, 

- 

a 

b,,b2  reciprocal lattice 27i (1 21t in (x,y) cordinates 

vectors (~3 I a ' I a  

Ch  chiral vector Ch = na1  + ma2 (n, m) n,rn : integers 

L circumference of 
L = lChI = aJn2 + nm + in2  0 ~ lmni ~ n 

nanotube 

d, diameter of L Vn2  + nni + ni 2  

nanotubc d = a 

8 chiral angle /rn 0 15; 161 < 300 

stn8 = __________ 

2Vn2  + m2  + nm 

2ii + in 
cosO = ______ 

2Vn2 + nm + in2  

tanO = 
2n + m  

d the highest common 

divisor of (n,m)  

the highest common dfi = d if n - m not a multiple of 3d 

divisor of = 3d if n - m a multiple of 3d 

(2n+,n,2m-l-n)  

T translational vector T = t1a1 + t2a2 (t1 , t2) 11,tj integer 

oflD unit cell 2m4-n 
tl= 

(LR 

2mi + fli 
t2=— 

LL
-I 

R  

T length ofT IL 
, - 1T1 

dk  

N number of hexagon 2(n2  + 7712  + nm) 2N 
per ID unit ccli N 

= dR unit cell 

R symmetry vectoi1  R = pa1  + qa2 (p, q) p,q: intcgerst 

d = mnp = nq,0_!~ p_:5_/d ,0_<q_< mid  

M number of 2t M = [(2n + m)p + (2rn + n)q]/d M: integer 

revolutions NR = MCh  + dT  

R basic symmetry IRI = (i7blr) 
operations  

rotation operation 
- 2 

M ( - 
W 

w: radians 

N' 27T)  

t translation operation dT 
- 

t, x : length 

t(p.q) are uniquely deteimined by d inp-nq. subject to conditions sOled in cable, except tbr zigzag cubes tbr which C,. (i3O), and 

we dcfincpl. g -1. which gives M= I. 
R and IRI refer to the same symmetiy operation. 
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Figure 2.7: The Brillouin zone of a SWCNT is represented by the line segment WW which is 
parallel to K2. The vectors K1  and K2  are reciprocal lattice vectors corresponding to C'h  and T, 

respectively. 

Since ti and t2  do not have a common divisor except for unity, none of the N-i vectors pR 

(where, t = 1, .... , N - 1) are reciprocal lattice vectors of two dimensional graphcnc plane. 

Thus the N wave vectors jiK1  (p = 0, . . . , N- 1) give rise to N discrete k vectors, as indicated 

by the N parallel line segments in Figure 2.7, which arise from the quantized wave vectors 

associated with the PBC On C. The length of all the parallel lines in Figure 2.7 is 2it/T which 

is the length of the ID first Brillouin zone. For the N discrete values of the k vectors, N I D 

energy bands will appear. Because of the translational symmetry of T, we have continuous 

wave vectors in the direction of K2  for a CNT of infinite length. However, for a nanotube of 

finite length L1, the spacing between wave vectors is 27tIL, [631. 

2.5 Phonon Dispersion Relation and Phonon Density States 

The phonon dispersion relations of carbon nanotubes can be understood by zone folding 

the phonon dispersion curves for a single 2D graphene sheet. The vibrational properties of 

CNT can be calculated within a by tight binding method [4 ], first principle calculations 130. 

46, 47] or force constant model [4]. In this work we concentrate on the well established 

fourth nearest neighbors force constant model by Jishi et al. [64]. It was developed and 

optimized for graphene and subsequently also adapted to CNT by Saito et al. [4I. 

2.5.1 Force Constant Model 

In the FCM, interactions including as many nearest neighbors in the graphenc sheet can be 

considered in order to improve the agreement with experiment. In general, the equations of 

10, 
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motion for the displacement of the t1  atom measured from the equivalent position, u= 

(Xt,yi,Zi) for N atoms in the unit cell is given by: 

M1ii1  = EK'(u —u1), (i  

Where Mi  is the mass of the i'1  atom and K<"j1  represents the 3x3  force constant tensor 

between the ith  and the 14h  atoms. The sum overj in Equation 2.11 is normally taken over only 

a few neighbor distances relative to its site, which for a 2D graphene sheet has been carried 

out up to fourth nearest neighbor interactions. In a periodic system we can perform a Fourier 

transform of the displacement of the 1th  atom with the wave number k' to obtain the normal 

mode displacement u

Ui  

. 

_i(q'.R j _wt),(i) 2.12 

or 

u = 2.13 

in which the sum is taken over all (No) wave vectors q' in the first Brillouin zone and R 

denotes the atomic position of the th  atom in the crystal. When we assume the same 

cigenfrequencics co for all u, that is ü —w2u, then Equation 2.11 can formally written by 

defining a 3Nx3N dynamical matrix D(q). 

D(q)uq =O 2.14 

To obtain the eigcnvalues w2(q) for D(q) and nontrivial cigcnvectors uOO, we solve the 

secular equation det D(q) = 0 for a given q vector. It is convenient to divide the dynamical 

matrix D(q) into small 3x3  matrices D"(q), (i, J = 1.......N), where we denote D(q) by 

Dt"(q)}, and from Eq. 2.14 it follows that D(q) is expressed as: 

D"(q) = K(ii") - M1w2  (q)J)5j 
- ., 

(ijF)i.tRij l 
2.15 

in which I is a 3x3  unit matrix and AR1  R-R1  is the relative coordinates of the i atom with 

respect to the 1th  atom. The vibration of the 1th  atom is coupled to that of thejth  atom through 

the K-' force constant tensor. 

In planar graphene sheet, since there are two distinct carbon atoms A and B in the unit cell, 

we must consider six coordinates Uk (or 6 degrees of freedom) in Equation 2.1 S. The secular 

equation to be solved is thus a 6x6 dynamical matrix D. The dynamical matrix D for planar 

graphene sheet is written in terms of the 3x3  matrices: (1) DAA,  (2) D, (3) DnA  and (4) DBB 



rA 

ia 

19 

for the coupling between (1) A and A, (2) A and B, (3) B and A and (4) B and B atoms in the 

various unit cells. 

AA AD 

- D8A DBB 
2.16 

When we consider an A atom, the thrce nearest neighbor atoms (as shown in Figures 2.8(a) 
AB and 2.8(b)) are 131 , B2  and B3  whose contributions to D are contained in D, while the six 

nearest neighbor atoms contributions to D that are contained in D  AA  and so on. The remaining 

problem is how to construct the force constant tensor K1 . First the force constant between an 

A atom and a nearest neighbor 131  atom on the x-axis as shown in Figure 2.8(b) has been 

considered. The force constant tensor is given by: 

K(A1) 
= ( o 

0 0 
(1) 

n 
to ) • 

2.17 

where, 1)  and represent the force constant parameters in the radial (bond 

stretching), in plane and out of plane tangential (bond bending direction) of the nearest 

neighbors, respectively. The force constant matrices for the two other nearest neighbor atoms, 

B2  and B3  are obtained by rotating the matrix in Equation 2.17. 

= UK'Um (in = 2,3) 2.18 

B .' I 

B BWB 
B. 

(a) (b) 

Figure 2.8 : (a) Neighbor atoms of graphcnc up to 46' nearest neighbors for A atom (similar 
results can be obtained for B atom). From the l to the 4th  neighbor atoms, we plot solid 

circles. (b) Force constants between the A and B1  atom on a planar graphene sheet. Here 0, 

Øt, and 0,, represent forces for the nearest neighbor atoms in the radial (bond stretching), in 
plane and out of plane tangential (bond bending) directions respectively. B2  and B3  are nearest 
neighbor equivalent to B1 , whose force constant tensors are obtained by appropriately rotating 

the tensor for A and B1. 
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where the unitary matrix U,,, is here defined by a rotating matrix around the z-axis in Figure 

2.8(b), taking the B1  atom into the B, atom. 

/ COSOm SLflOm 0\ 

= ( —sin0, cosOm  0 J 219 
\ 0 0 11 

To make the method explicit, the force constant matrix for the 82 atom at 

Fa/(2Vi, a/2, o], and U2  is evaluated assuming 02  

+ 3t' v(t - 
K'2) 

= 
31)  + 4 ) 2.20 

0 0 to ) 

and the corresponding phase factor is given by exp[—iqx  a/(2v) + i qy  a/21. 

Figure 2.9 shows the calculated phonon dispersion curves along with the DOSs for planar 

graphene sheet using the FCM [62]. 

The zone folding technique is the same as that used in treating the electronic structure of 

carbon nanotubes. By superimposing the N cutting lines in the K1  extended representation on 

the six phonon frequency surfaces in the reciprocal space of the graphene layer (see Figure 

2.7). The corresponding ID phonon energy dispersion relation alD  for the nanotubes is given 

by: 

(a) 1600 

1200 

800 
a 

400 

0 
F MK 

(b) 

state/i C-atom/cm' 

Figure 2.9 : (a) The phonon dispersion curves, plotted along high symmetry directions, for a 
2D SWCNT sheet. (b) The corresponding DOSs vs phonon energy for phonon modes in units 

of states/i CatomIcm x10 2  163!. 
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m,u in ---+ fl K
l
)

,
( mlP76 P q~ 2.21 ( = O,...,N_l,and< 0 1D - W2D q 

T T) 

where a (q) denotes the 2D phonon dispersion relations for a monolayer graphene sheet, q 

is a ID wave vector, T is the magnitude of the ID translation vector T, and p is a cutting line 

index. 

According to the zone folding scheme, this procedure yields 6N phonon modes for each 

carbon nanotube. The 6(W/2-1) pairs of the phonon modes arising from the cutting lines of the 

indices p and -p, where ,u=I,...,(N/2-l), are expected to be doubly degenerate, similar to the 

case of the electronic sub-bands, while the phonon modes arising from the cutting lines for the 

indices p=O and p=N/2 are non-degenerate. The total number of distinct phonon branches is 

3 (N+2). 

Spikes appear in the PDOSs of the CNT, similar to the spikes Van-Hove singularities 

(VHSs) appearing in the electronic DOS (see Figure 2.1 0(b)), except for the presence of a 

much larger number of spikes in the phonon DOS than in the electronic DOS, due to the 

larger number of phonon modes relative to the number of electronic bands, and the more 

complex structure of the dispersion relations for phonons than for electrons in the graphcnc 

layer. 

Figure 2.10 shows the calculated phonon dispersion curves along with the density of 

states for (10,10) ACNT using the FCM [63]. 

(a) 1600 

1200 

800 
3 

400 

n 

(b) 

0.0 0.2 0.4 0.6 0.8 1.0 0.0 1.0x10' 

kT / it states/i C-atom/cm 1  

Figure 2.10 (a) The calculated phonon dispersion relations of( 10,10) ACNT. (h) PDOSs of 
(10, 10) cNT [63). 
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2.6. Raman Spectroscopy 

Raman spectroscopy has proven to be a powcrfiul technique for probing selected phonons 

in SWCNT. Figure 2.11 shows Raman spectra of SWCNT. The Raman G peak measurement 

is a three step process (see Figure 2.12). (i) photon absorption leads to the excitation of an 

electron hole pair, (ii) relaxation of the electron (or the hole) via emission of a G phonon, and 

(iii) electron-hole recombination emits a red shifted photon. double resonance (DR) Rarnan 

scattering is a four step process (Figure 2.12), comprising (i) photon absorption, (ii) elastic 

defect scattering, (iii) inelastic electron phonon scattering, and (iv) electron hole 

recoinbination plus photon emission. The DR condition is reached when the energy is 

conserved in all these steps. Thus DR links the phonon wave vector to the electronic band 

structure [65]. 

Ho 
+ 

RBM 
D 

IL 
300 600 900 1200 1500 1800 2100 2400 2700 

Raman shift (cm 1) 

Figure 2.11 : Raman spectrum of SWCNT [65]. 

(a) G mode (b) D mode (c) D mode 

Defect 

XjI K 

to phonon Defect 

iTO phonon 
K 

LO phonon 

Figure 2.12 : Raman scattering process for (a) the G peak (in plane transverse optic (iTO) plus 
in plane longitudinal optic (iLO) mode). (b) Plionon double resonance process for the I) peak 

(intervalley scattering) and (c) the D' peak (intravalley scattering) 1 58]. 
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2.7 Vibrational Modes of SWCNT 

Ar 
Carbon nanotubes have many vibrational degrees of freedom because of the large number 

of atoms in their unit cells. Achiral tubes of dlnm diameter have 100-150 phonon branches; 

in chiral nanotubes this number can be higher by one or two orders of magnitude. Only a very 

small fraction of these phonons is Raman active. The Raman active modes fall into a low-

energy range where radial vibrations are observed, a high-energy range with in plane carbon-

carbon vibrations, and an intermediate-frequency range. The low and high-energy phonons 

have received most attention; their Raman signal is very strong and they can be used for 

characterizing and studying CNTs as they give information about the tube diameter and 

chirality, phonon confinement, the sem iconducting or metallic character, optical transit ion 

energies and more. 

Carbon nanotubes are structures with particularly high symmetry. This comes from the 

underlying hexagonal lattice. The translations of graphenc turn into rotational and helical 

symmetry operations for nanotubcs, because we build the tube by rolling up graphenc. The 

symmetry of carbon nanotubes was rigorously derived within the framework of line groups 

[66,67]. Line groups deal with systems that are periodic in one ID. They are the equivalent of 

crystal space groups for ID solids. The linegroup treatment is very powerful [681 for an 

introduction and for applications of the method to carbon nanotubes. From the point group 

and the positions of the carbon atoms, we thus obtain a total of 8 Raman active phonons in 

achiral and 15 in chiral nanotubes 

armchair 2Alg  2Elg  4E2g 2.17 

zigzag 2Alg  3Elg  3E2g 2.18 

chiral3A1 6E1 6E2 2.19 

Here A and B modes are nondegenerate, E modes have a twofold degeneracy. The Al 5, El5  

and E25  representations are Raman active (the subscript g represents achiral tubes). The 

totally symmetric modes in achiral tubes are the radial breathing vibration and a high-energy 

phonon. In armchair tubes the circumferential cigenvector is Raman active and in zigzag 

tubes the axial vibration is Raman active. In chiral nanotubes, the three totally symmetric 

modes are the radial breathing mode (RBM) and two high-frequency vibrations. They 

resemble the circumferential and axial vibrations, but are, in general, of mixed character. This 
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is typical for low-dimensional systems; it originates from the mechanical boundary conditions 

(around the circumference in the case of nanotubes) 169-711. 

2.7.1 Radial Breathing Mode 

The RBM is an important mode for the characterization and identification of specific 

nanotubes, in particular of their chirality. Its eigenvector is purely radial by symmetry for 

armchair tubes only; these have mirror planes perpendicular to the nanotube axis, and the 

RBM is fully symmetric. For all other chiralities ,zi7~n, the eigenvector has a small axial 

component, which is largest for zigzag tubes [72-741. For most practical purposes, however, 

the RBM may be considered purely radial. RBM is Raman activc mode in low-frequency 

region (see Figure 2.13). 

2.7.2 Tangential Mode 

Tangential modes refer to all phonon bands of a nanotube originating fiom the optical 

phonons of graphite. Their eigenvectors are characterized by an out of phase displacement of 

two neighboring carbon atoms. The displacement is directed parallel to the nanotube wall, 
S. 

along the circumfcrcncc, the axis, or a direction in between. The tangential modes involve 

predominantly the sp2  in plane carbon-carbon bonds, which are extremely strong, even 

stronger than in the sp3  diamond bond. Therefore, these modes have very high frequencies 

lying between 1100 cmand 1600 cm' (see Figure 2.13). The Raman active vibrations of the 

tangential modes fall into two groups, the high-energy modes (HEM) just below 1600 cmH 

and the D mode1350 cmH.  The HEM is also called the G line in the nanotube literature; the 

"G" originally stood for graphite and was taken over from the graphite Raman spectrum to 

CNTs. Another interesting optical phonon mode is D mode, which originate from defect 

induced SWCNT [ô]. The name of G' mode is misleading: it is given because in graphite, 

this mode is usually the second strongest after the G mode. However, it is actually the second 

overtone of the defect induced D mode (and thus should logically be named D'). Its intensity 

is stronger than that of the D mode due to different selection rules [75]. In particular, D mode 

is forbidden in the ideal nanotube and requires a structural defect, providing a phonon of 

certain angular momentum, to be induced. In contrast, G' mode involves a "self-annihilating" 

pair of phonons and thus does not require defects. The spectral 
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Figure 2. 1 3 : Raman-active normal mode eigenvectors and frequencies for a (10,10) CNT. 
The red arrows indicate the magnitude and direction of the appropriate carbon atom 

displacements, and the eigenvectors shown correspond to the seven most intense modes. The 
* unit cell (blue atoms) is shown schematically in the upper right-hand corner [281. 

position of G' mode depends on diameter, so it can be used roughly to estimate the SWCNT 
diameter 1 771. In particular. G' mode is a doublet in doublewall CNTs, but the doublet is often 
unresolved due to line broadening. Other overtones, such as a combination ofRBM±G mode 
at 1750 cm', are frequently seen in CNT Rarnan spectra. However, they are less important 
and are not considered here. 
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CHAPTER III 

Computational Details 

3.1 Introduction 

This chapter outlines the numerical algorithm based on forced vibrational method used in 

the calculation of the later chapters. 

3.2 Normal Modes of Vibration 

Let us consider that a set of N atoms are coupled together by linear springs. The equation 

of motion of the systems with the scalar displacement of the 1th  mass, u1(t) is: 

M1ü1 +z'4Lj'Uj'(t) = 0 3.1 

where M1  is the mass of l atom and 011, is the strength of the spring between the 1th  and jth 

atoms. The displacement can be decomposed as: 

u1(t)=>Q(t) 3.2 

where QA  is the amplitude of the normal mode A and e1(A) is the displacement pattern or the 

polarization vector of the mode A. By putting this value into Equation 3.1 

MI 
d2 
 (ZA QA (t)e(;L)  + 

e,,(A) 
0 3.3 dt7 vVI ) 1/—M11  

M, (ZA A(t) + L' QA(t) = 0 3.4 1M 

Dividing this equation by JM , we have: 

QA(t)el(.) + ' /: > Q(t) 
e11(.t) 

= 0 3.5 

If the amplitude of the normal mode varies as Q(t) = Aexp(iwAt) + Bexp(—i(Ot), after 

two times differentiation the equation of motion becomes: 

— w, >. A(Aexp(iwAt) + BAexp( —iwAt))el(A) + L' 'IIL' (AAexp(i(OAt) + 

BAexp( —iwAt)) = 0 3.6 
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Dividing the Equation 3.6 by YAAexp(iwt) + Bexp(—i&t) e1(.t), we obtain: 

L' c/11i 
e,,(2) 

= 3.7 
\IMlMF 

Thus, to find the frequencies and displacement patterns of the normal modes one has to find 

the eigenvalues and eigenvectors of an ATxN  matrix. However, the conventional dynamical 

matrix techniques require a large amount of computational time and huge memory space. 

These techniques are also limited for perfect system only. Thus, one has to find out another 

approach. 

3.3 Forced Vibrational Method 

The theoretical experiment we have done is based on the work by Williams and Mans 

[4j. The methodology they introduced is called FVM. This method is very efficient to find 

out the cigcnvalucs and cigenvectors of a large and complex harmonic physical system with 

mass disorder. The fundamental concept is based on the mechanical resonant effect of a 

physical system. When a system vibrating with random frequencies is continuously excited 

with an external periodic force of a particular frequency, .12 for sufficient time, the system will 

respond only with frequencies near D. Because this algorithm requires a memory space of the 

order of N, one can calculate eigenfrequencies and eigenmodes of a very large system. 

If the desired lattice dynamical system consists of N number of atoms which are assumed 

to be coupled with linear springs with each other and the external force is applied to the 

system randomly, the resultant equation of motion will be as follows: 

M1ü1  (t) + El  ço11• u1'(t) = F1cos(9t) 3.8 

where M1  and u, arc the mass and scalar displacement of 1th  atom respectively. represents 

the force constant between atoms I and 1'. The periodic external force F1  is expressed as: 

F1  = F0,.JMcos(co j) 3.9 

where F0  is time independent constant amplitude and the phase, coi is a random number 

distributed uniformly from 0 to 2it. The scalar displacement is composed of a set of normal 

modes according to the following expression: 

u (t) = la QA (t)  e, 3.10 
Mj 

where QA(t)  and e1(A) are the amplitude and the displacement of the normal modes (A), 

ba 
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respectively. To obtain the resonance condition, we have to establish time development 

algorithm of equation of motion as follows: 

ü1(n + 1) = 711(n) + M'[ 1 q 11.u1'(n) + F1cos(c2nr)]r 3.11 

u,(n + 1) = u1(n) + ü1(n)'r 3.12 

where the integer n is the number of time steps and total time, = nt . If we take T sufficiently 

small, then we will get sharp resolution to extract the eigenmodcs of the system. The value of 

r must be satisfied the condition r < , where Wm  is the maximum frequency of the 

system. From the above relation we can also find out the maximum frequency of the given 

sample system. 

The total energy of the system can be written as the summation of kinetic and potential 

energy as follows: 

E(t) = K + U 

= L M, ü1 2 (t) + 3.13 

at first, at time t = 0, all atoms are considered at rest with zero displacement. For t > 0, the 

external periodic force, F1  is applied to the each atom 1. After completion of excitation time t, 
A 

it is desirable that the system is in its resonance condition. Thus to obtain the DOSs around 

the frequency of the applied periodic force, we have to count the number of the excited 

eigenmodcs, as the number of excited modes is directly related to the average energy of the 

sample system. When we average all possible values of 01  and use the orthononnality of the 

eigenvectors e1(), the average value of energy (E(fl)) becomes as follows: 

(E(ci)) = 1rtINg(fl) 
3.14 

8 

where y(fl) is the PDOSs. Therefore: 

y(l) - 
8(E(fl)) 

3.15 
- irtFN 

In order to obtain the DOS, our task is to compute the average total energy (E). Thus the 

DOS is independent of the frequency £1 of the applied force, but depends on the number of 

vibrational modes corresponding to the band of frequencies near the resonant frequency. 

To obtain mode pattern of the given sample system, we have to apply the external force, 

F1  repeatedly to each atom 1 over an appropriate time interval T, until the amplitudes of 
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several eigenmodes belonging to frequencies close to 11 are enhanced enough. After one 

repetition of external force to each atom the displacement amplitude will be: 

4, 
U1 3.16 

(1) 1 

where COA  is an eigenfrequency of mode A. Thus the new value of the force will be: 

(I) = uM1 3.17 

The system is again applied with a new force value F1 ' to each atom considering each 

atom at rest. This process is repeated again and again until all the modes amplitudes died 

except the eigenmodes within the band of resonant frequency for appropriate values of time, 

T. After p times repetition the displacement amplitude will be as: 

(1) = F 1  e1 (A)h(P(fl,a,T) 3.18 
MI  

2s1n 
where h(ITI, (jjA,  T) 2 

2 3.19 

If we choose the value of p sufficiently large, the absolute value of the function It, 

expressed by Equation 3.19, will be maximized. Therefore, we will get maximum value of the 

displacements of the eigenmodes of the system. The above situation is determined by the 

frequency of the modes and is independent of the details of the driving forces, F. Thus, for 

sufficiently large p, we can rewrite the displacement amplitude Eq. 3.18 as: 

(p) Ce1(Aj) 
3.20 

where C is a constant factor independent of A. Thus, we can determine the mode pattern for 

the mode A1. 

Now for obtaining the localization length we have to calculate inverse participation ratio 

IPR [77]. IPR can be mathematically expressed as: 

IPR = 
( 1I u1.A  12)2 

3.21 

where UIA is the displacement of the 1
0' atom for the eigenmodes, A. There are two particular 

types of phonon modes with special value of IPR. When a mode is localized, only a small 

number of atoms vibrate in that localized mode. If the number of atoms is ,n, that arc vibrating 

with the localized mode, the vibrational amplitude of each atom is it = - taking the 
\?fl 

-01 normalization of the cigcnvector. Thus we can obtain inverse participation ratio from this 
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relationship and it is IPR . For the case in= 1, we get the absolute localization mode 

condition, that is IPI? = 1 and only one atom vibrates in that mode. For ,n=N we get IPR = 

and in this situation all the atoms are in extended eigenrnodc with the same amplitude, 

u = . Therefore, by obtaining the value of IPR we can get the localization property of an 

eigenmode. The range of IPR is between to 1. 

Now the relation between localization length and inverse participation ratio is 

LA oc IPR [78]. We can then estimate the localization length of state, A as: 

L0 'JPR) 

LA 
= 

(IPRo'\2 
3.22 

Where L0  is the size of the system and 1PR0  is the average value of IPR, for the special case 

of pristine CNT sample. 

3.4 Application of Force Vibrational Method to SWCNT 

As an example of the application of the FVM to evaluate the vibrational states of the 

(10,0) and (10,10) SWCNTs honeycomb lattice has been demonstrated. The system treated 

here consists of N atoms which are connected to their nearest neighbors by the linear springs 

with force constant strength 0. As SWCNT honeycomb structure consists of two atoms 

(denoted by A and B) per unit cell, the different force directions can be observe for these two 

atoms. The force directions and the force constant tensors up to the fourth nearest neighbor 

atoms for the A type atoms for both (10,0) and (10,10) SWCNTs are illustrated in the Figure 

3.1. In the same way, the force directions for the B type atoms can be determined. The angles 

(in degrees) between the central A atom and the different neighbor atoms up to the fourth 

nearest neighbor interactions for both (10,0) and (10,10) SWCNTs have been shown in the 

Table 3.1. In the same way, the angles for the B type atoms can be determined. The equations 

of motion for the (10,0) and (10,10) SWCNTs planar honeycomb lattices using the parameters 

listed in Table 3.1 are also demonstrated. Here the equations of motion of (10,0) and (10,10) 

CNTs for only first nearest neighbor atoms are derived. The equations can be derived for 

second, third and fourth nearest neighbor atoms by the similar way. In the same way, the 

equations can be derived for the B type atoms for both (10,0) and (10,10) CNTs. 
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Figure 3.1 : A planar graphenc sheet. The three shells of the nearest neighbors of the ccntral A 
atom is shown by red circle. The directions of radial and tangential in plane force constant 

tensors are labeled by 0, and qii  respectively. The central A atom and the three B atoms from 
the first shell are labeled by 1, 2 and 3. In the similar way, second and third shells are labeled 

I 
by the consecutive numbers. For (10,0) ZNT and (10,10) ACNT only the x and y-axis will 

be interchanged [58]. 
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Table 3.1: The angles (in degrees) between the central A type atom and different neighbors 
for (10,0) ZCNT and (10,10) ACNT (only x and y-axis will be interchanged). 

A type atom for (10,0) ZNT 
Atom I A  B  

number Angle Nearest Angle Nearest 
neighbor neighbor Radial Tangential Radial Tangential 

1 0 150 -120 
2 0 30 -60 
3 0 90 0 
4 -60 30 2 0 
5 -120 150 2 0 
6 0 90 2 0 
7 0 90 2 0 
8 -120 150 2 0 
9 -60 30 2 0 
10 0 90 0 3 
II 0 30 -60 3 
12 0 150 -120 3 
13 0 131 41 4 
14 0 49 -41 4 
15 0 169 79 4 
16 0 Il -79 4 
17 0 -109 -19 4 
18  0 -71 19 4 

A type atom for (10,10 ACNT  

Atom A  B  

number Angle Nearest Angle Nearest 
neighbor neighbor Radial Tangential Radial Tangential 

1 0 60 -30 1 
2 0 120 -150 I 
3 0 0 90 1 
4 -150 120 2 0 
5 -30 60 2 0 
6 90 0 2 0 
7 90 0 2 0 
8 -30 60 2 0 
9 -ISO 120 2 0 
10 0 0 90 3 
11 0 120 -150 3 
12 0 60 -30 3 
13 0 41 131 4 
14 0 139 -131 4 
15 0 79 169 4 
16 0 101 -169 4 
17 0 -19 -109 4 
is   0 -161 109 4 
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The equations of motion for the SWCNT planar honeycomb lattices: 

For A type atom in (10,0) CNT (first nearest neighbours): 

v1,(n + 1) = v1(n) + Mi1[4(u,,i - u1)cos(150)°  + (u11  - u1)cos(-120)°  + 

- u1)cos(30)0  + - ui)cos(-60)°  + 4(u1,3  - u,)cos(90)°  + 

- u j)cos(0)0  + F1 cos(flnr)}r 3.23 

v1(n + 1) = v1(n) + Mr'[(u1i - u1)sin(150)0  + - u1)sin(-120)° + 

4(u1,2  - u,)sin(30)1  + ip'(u1,2  - ui)sin(-60)0  + - u1)sin(90)°  + 

- u1 )sin(0)0  + F1 cos(fZnT)]T 3.24 

v1,(n + 1) = v1(n) + M 1  [4 (u1,1  - u1) + (u1,1  - u1) + - u1) + i(u1,2  - 

Ui) + Orl  (u13  - u1) + t/ (u13  - u1) + F17cos(f!nT)}T 3.25 

For A type atom in (10,10) CNT (first nearest neighbours): 

v1,(n + 1) = v1 (n) + M1l[ct (u1,1  - ut )cos(60)° + (u1,1  - u j)cos(-30)1  + 

- u1)cos(120)°  + - u1)cos(-150)°  + 4(uj 3  - u1)cos(0)°  + 

- ui)cos(90)0  + F,,cos(flnt)j'r 3.26 

v1Y (n + 1) = v1 (n) + M'[çb(u11  - u1)sin(60)°  + - ui)sin(30)°  + 

- u1)sin(120)0  + Otli (u1,2  - u1)sin(-150)0  + Orl  (u1,3  - u1)sin(0)°  + 

Ot'i(UI,3 - u1)sin(90)0  + F1 cos(fln'r)]r 3.27 

v1(n + 1) = v1(n) + Mr1[(Uzl - u1) + (u11  - u,) + t'(u12  - u1) + (u12  - 

U,) + tI(U, 3  - u,) + (u, 
- 

+ F, 7 c0s(flni)]r 3.28 

3.5 Correction of Force Constants 

The CNT can be assumed as rolled version of planar graphene sheet. To determine the 

phonon dispersion relation and ultimately the PDOs of SWCNT, we have used the force 

constants up to fourth nearest neighbors given by Jishi et al. [64]. These values for force 

constants are obtained by fitting the 2D plionon dispersion relation over the Brillouin zonc as 
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(a) 

 

Figure 3.2 : (a) Brilluin zone of CNT with high symmetry points (b) Obtaining two 
dimensional graphenc sheet from cylindrical CNT, chiral vector is along x-axis and 

translational vector along y-axis (c) (Top view of CNT) projection of B (filled circle) atom on 
xy-plane denoted as B' (unfilled circle) (d) (Side view of CNT) projection of B' (unfilled 

circle) on zx-plane denoted as B" (unfilled circle). 

determined experimentally, as for example for from inelastic neutron scattering or electron 

energy loss spcctroscopy measurements along the I'M direction. In Figure 3.2(a) the Brillouin 

zone of CNT with high symmetry points such as I', K and Mpoints are shown. 

As CNT is cylindrical in shape, we have to consider the curvature effect on these force 

constants. First, we have determined the circumferential length for both CNT from their 

absolute value of chiral vectors as follows: 

L = ICh I = aVn2  + nm + in2 3.29 
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where a is the lattice constant and a = 1.42j = 2.46 A. n, in are integers, 0 in n. We 

also have calculated the translation vectors for both CNTs as follows: 

T=ITI= 3.30 
dR 

where d R  is the greatest common divisor of(2n + m) and (2m + n). 

The product of chiral vector and translational vector is the unit cell of the CNT [62]. 

After sufticicnt repetitions of translational vector, the required length of CNT is obtained. 

Here we have repeated the translational vector 250 times and got 10,000 carbon atoms for 

both (10,0) and (10,10) CNTs. 

Now from Figure 3.2(b), it is shown that chiral vector is in the direction of circumference 

of CNT and translational vector is in the direction of the axis of the CNT (here it is in the y-

axis direction). After unfolding the CNT we get 2D planar graphene sheet. Its width is same 

as the circumferential length of the chiral vector (here it is now in the x-axis direction) and 

length is same as the length of repeated translational vector (here it is in the y-axis direction) 

of the corresponding CNT. 

The change in atomic positions in the flat graphenc plane with respect to the curved CNT 

wall has been incorporated by explicitly including the change in bond angle on the planar 

graphcnc sheet. To obtain the curvature effect, we have followed the following procedure as 

shown in Figures. 3.2(c) and 3.2(d). Let consider, two atoms A and B. The force constant 

between them is K as shown in Figure 3.2(c). At first we take projection of B (filled circle) on 

xy-planc denoted by B' (unfilled circle). The new value of force constant tensor K is K'. The 

rotation angle between K and K' around y-axis is 4il2. Where 4 is the angle between A and B 

atoms at the center. Then we have taken projection of B' (unfilled circle) on zx-plane denoted 

by B"(unfulled circle) according to Figure 3.2(d). The new component of K is K". Where K" is 

parallel to the direction of the x-axis. 

To determine 0, the angle between A and B at the center, we have to consider the 

following equation: 

= cos 
{2r 2 _Vi_PJ12 } 

3.31 

where r is the radious of the SWCNT, Pi  is the i1h  atom which we consider and Pj  is the  ph  

nearest neighbor atom. If we consider carbon-carbon bond length 1.42 A, the radious r of 

4 (10,0) ZCNT is found r(10,0)  = 3.91 A and (10,10) ACNT is found r(10,10)  = 6.78 A. 
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Table 3.2 shows the distances between I st2nd3rd41" nearest neighbours carbon-carbon atoms 

in SWCNT without considering curvature effect. Table 3.3 shows the value of angles 4) 

between nearest neighbor atoms of(10,0) and (10,10) CNT. 

Table 3.2 : The obtained nearest neighbor distances without curvature effect. 

Nearest neighbors (P1) Distances IP1 - PJI 
1(P1) 1.42 A 
2nd (P2) 2.46 A 
3ft (P3) 2.84 A 
4Lh (p4)  3.69 A 

Table 3.3 The obtained angles between A and B atoms. 

Nearest neighbors 4) (10,0) CNT 4) (10,10) CNT 
I 11 (p1) 20.90°  12.02°  

2m1 (P2) 36.62°  20.90°  
3rd (P) 42.540  24.18°  
4" (P4) 56.230  31.570  

Table 3.4 : The obtained force constants values taking into account the curvature effect. 

Force 
constants 

Jishi et al.[64] Our calculated force 
 constants for (10,0) CNT 

Our calculated force 
constants for (10,10) CNT 

KrW 365.00 358.95 363.00 
Kr 2  88.00 83.54 86.54 
K( 3)  30.00 27.96 29.33 

-19.20 -16.93 -18.48 
245.00 240.94 243.65 
-32.30 -30.66 -31.76 
-52.50 -48.92 -51.34 

Ktj  22.90 20.20 22.04 
K 0t1  98.20 96.57 97.66 
KO 2  -4.00 -3.80 -3.93 

1.50 1.40 1.47 
K 0* 4) -5.80 -5.12 -5.58 

The force constants between two carbon atoms are taken from the report by Jishi et al. 

[64] and the only interactions up to the fourth nearest neighbor atoms are considerd in this 

work. Our calculated force constants considering curvature effect are shown in Table 3.4 for 

both (10,0) and (10,10) CNTs. The calculated force constants are found multiplying with 

factor cos((/2). 
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3.6 Periodic Boundary Condition 

As CNT is cylindrical in shape, we have to apply PBC along the chiral vector direction. 

To apply PBC to a matrix, we assume that the last point is connected back to the first point SO 

that there are no ends (see Figure 3.3). The justification for this assumption is that if we are 

interested in the properties in the interior of a structure in a cylindrical crystal system, then 

what we have to assume at the boundaries should make no real difference and we could 

assume anything to make our calculations simpler. 

In Figure 3.4, an unfold zigzag (here we take it for describing (10,0) CNT) (TNT with 

vacancy defects is shown. After unfolding there are N numbers of lines are found depending 

0 C—~  W 9 --- * -V 

Figure 3.3 : PBC assume that there are no "ends." Point N is connected back to point 1 as if 
the structure were in the form of a ring making (N+l) equivalent to I 1791. 

-1' 

(a) (b) 

Figure 3.4 : (a) Unfolded (10,0) SWCNT (b) Application of PBC. 
.fr 
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of chirality. These lines are numbered in the chiral direction. To obtain PBC along the chiral 

vector we have taken first three line (1,2,3) at the end of the line numbered as N. We also 

have taken last three lines (N-2,N-1,N) before the line numbered as I as illustrated in Figure 

4.2. The repeated lines are shown within red rectangle. We repeated first and last three lines 

because in applying FVM we have considered force constants up to fourth nearest neighbors. 

So that it is sufficient to take three lines at each side. In Table 3.5 A sample matrix is shown 

to apply PBC. This matrix represent the atoms of unfolded (10.0) SWCNT of Figure 3.4. 

Table 3.5 Sample matrix element of(10,0) SWCNT of Figure 3.4. Here I and 0 represent the 
presence of atoms and absence of atoms respectively. 

2 3 4 5 6 7 8 9 10 
1101101010101101 
21 11111111111111 
3010010101010010 
4101 101010101 101 
5111111111111111 
6010010101010010 
7101 101010101 101 
811 1 I I I I I I I I 11 1 I 
9010010101010010 

3.7 Creation of Atomic Vacancies 

The atomic vacancy defects are created randomly using percolation theory. Percolation 

theory discuss the formation of long range connectivity in random systems. It generally refers 

to simplified lattice models of random systems or networks and the nature of the connectivity 

in them [80]. The percolation model is used here is a lattice, like honeycomb lattice, and 

make it into a random network by randomly "occupying' sites (vertices) or bonds (edges) 

with a statistically independent probability p (see Figure 3.5). At a critical threshold Pc,  large 

clusters and long range connectivity first appears, and this is called the percolation threshold. 

Depending on the method for obtaining the random network, one distinguishes between the 

site percolation threshold and the bond percolation threshold. We have considered vacancy 

concentrations up to 30%, because the percolation threshold of a site percolation network of 
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Figure 3.5 Example of disorder percolation network of honeycomb lattice [SI]. 

honeycomb lattice is about 70% [821. The total number of carbon atoms we have taken for 

both (10,0) ZCNT and (10,10) ACNT is 10,000. As both (10,0) and (10,10) CNTs have 40 

carbon atoms per unit cell, the total number of unit cells are taken 250 for both CNTs. The 

length of (10,0) and (10.10) CNTs, we have taken here are 61.50 nm and 106.50 nm 

respectively, because in modern scaled nanoelectronic devices, ballistic transport of carrier 

can be achieved over length typically less than 100 rim [83]. The diameters of (10,0) and 

(10,10) CNTs arc 0.78 nm and 1.36 nm respectively. Our simulations have been performed 

considering PBC along chiral direction. 
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CHAPTER IV 

V 

Results and Discussion 

4.1 Introduction 

In this chapter, the results of the computer experiment on the phonon properties of(10,0) 

ZCNT and (10,10) ACNT considering the effects of vacancy type defects and curvature for a 

large iiumber of lattices has been presented. The FVM has been applied to describe the 

change in the PDOSs due to the vacancy type defects and curvature. To study the nature of 

phonon states, the typical mode pattern in the presence of vacancy type defects has been 

calculated. This work focuses particularly on the K point iTO mode phonons because of their 

importance in the Raman D-band, the dominant feature in the Raman spectra for a defective 

crystal system. Moreover, the localization length as a ffinction of vacancy type defect density 

has also been computed to study the localization effects caused by vacancy type of disorder. 

41 
Figure 4.1 shows vacancy induced SWCNTs considered in this work. 

(a) (b) 

Figure 4.1 : Vacancy (about 30%) induced defective CNTs. (a) (10,0) semiconducting ZCNT 
and (b) (10,10) ACNT. 
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(a) (b) 

Figure 4.2 Raman active E2g  phonon mode direction at 1" point of Brillouin zone of (a) (10,0) 
CNT (b) (10,10) CNT (red arrows). 

4.2 Phonon Density of States of SWCNT 

In this work I have calculated PDOSs of (10,0) ZCNT and (10,10) ACNT using FVM, 

considering force constants up to fourth nearest neighbor atoms. It is well known that both 

(10,0) and (10,10) CNTs have 2N=40 carbon atoms per unit cell, where N is the number of 

hexagons per unit cell. Thus both the CNTs should have 6N vibrational degree of freedom and 

6N distinct phonon branches. In case of low dimensional material like CNT due to mode 

degeneracy, 67V distinct phonon branches do not always exist. For example, in (10,10) CNT 

there are only 66 distinct phonon branches with respect to the phonon eigenvectors at the 

Rrillouin zone center r point, of which 12 modes are non-degenerate and 54 modes are 

degenerate 1841. The iLO and iTO modes, which are the main focus of this work, involve 
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predominantly the sp2  in-plane carbon-carbon bonds and these bonds are extremely strong, 

even stronger than the sp3  diamond bonds. Therefore, these vibrational modes have very high 

Ir frequencies lying between 1100 cm1  and 1600 cm'. Among these high frequency in-plane 

tangential vibrational modes, the Raman active modes fall into two groups, the G modes just 

below 1600 cmH  and the D modes around 1350 cm. In CNT the TO phonon mode is the 

highest G band phonon modes just opposite to graphene. For (10,0) semiconducting ZCNT 

L0 phonon mode and (10,10) metallic ACNT iTO phonon mode are Raman active and they 

are responsible for E29  mode at the Brillouin zone center as shown in Figures 4.2(a) and 4.2(b) 

(red arrows) [28.65.85]. 

The simulated PDOSs of perfect CNTs exhibit ID VHSs because of confinement effect 

originated from the i-educed dimensionality and all the characteristic peaks that correspond to 

the sp2  bonded carbon honeycomb lattice as shown in Figures 4.3(a) and 4.3(b). In this 

simulation I have found the E29  mode at 1576 cm' and 1581 cm' for (10,0) and (10,10) 

CNTs respectively. Generally the E29  mode gives a large softening due to curvature effect 

[63]. Again the LO phonon mode wl1ose atomic displacement direction is along the axial 

direction of CNT is less Sensitive to curvature effect and the TO phonon mode whose atomic 

displacement direction is along the circumferential direction of CNT is more sensitive to 

curvature effect (40]. As the diameter of (10,0) ZCNT is much less than (10,10) ACNT, the 

curvature effect is more severe in (10,0) ZCNT compared to (10,10) ACNT. Thus, it is 

reasonable to find the E2g  mode at lower frequency for (10,0) ZCNT than (10,10) ACNT. It is 

worth to mention here that some previous works found E25  mode for graphene and graphene 

nanoribbon at 1590 cm using FVM [687]. Moreover, graphene and graphene nanoribbon 

have no curvature effect. From the PDOSs of pristine CNTs, it is found that the average high 

energy PDOS is less for (10,10) CNT than (10,0) CNT. Due to Khon anomaly in the (10,10) 

metallic CNT, the LO phonon modes soften towards the lower frequency range [39,40]. 

I also have simulated the PDOS of (10,0) and (10,10) CNTs for a broad range of vacancy 

concentrations changes. It is found that vacancy type defects have significant effects on 

PDOSs of both CNTs. These results show that the broadening and softening of the PDOSs 

peaks as the defect density increases for both CNTs. It is found that E2g mode softening effect 

is stronger in (10,0) than (10,10) CNT due to curvature effect as illustrated in Figure 4.4. The 

reason behind the shifting of the PDOSs peaks towards the low-frequency region for both 
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cases can be explained as, with increasing defect densities the numbers of the unsaturated 

carbon atoms with some dangling bonds increase. As the bonding strength is weak for the 

unsaturated carbon atoms, the PDOSs of CNTs shift down towards low-frequency region fro.m 
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high-frequency region. Another significant outcome of this simulation is that the E29  peak has 

been reduced into a shoulder, or it has completely disappeared for vacancy concentrations of 

10% and higher in both cases. This result interprets that when atomic vacancies are present in 

a crystal system, after increasing certain value of defect densities the long range periodic 

order of that crystalline system is totally perturbed. Moreover, the momentum conservation is 

broken down because of breaking the translational symmetry of the crystalline arrangement of 

CNTs. That is why it is found that some fine structures are disappeared in high-frequency 

region of PDOSs for both CNTs. 

Another interesting property that have found in PDOSs of both CNTs is the appearance of 

some fine peaks in the low-frequency region with the increase in defect density. Mingo et al. 

[88] explained that the presence of defects efficiently scatters longer wavelength phonons. 

Recently Sevik Ct al. [89] found that in spite of increasing vacancy defects, low-frequency 

phonons are transmitted quasi ballistically in CNTs. So the fine peaks may be the result of 

these facts. Although some fine peaks appear in the low-frequency region with the increase in 

defect densities, the average PDOSs in the low-frequency region has been reduced for both 

types of CNTs with increasing defect densities. Mahan Ct al. [90] have reported that there 

-ç 159 —- (10,10)CNT 
0 ---0--- (100) CNT 

---- - 
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Figure 4.4: Comparison of softening of Raman active E2g  mode of (10,0) and (10,10) CNTs 

with increasing defect densities. 
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(a) (b) 

Figure 4.5 Vibrational direction of D-band mode at K point of Brillouin zone ofdctèctive 
(a) (10,0) CNT (b) (10,1 0) CNT (red arrows). 

exists flexural phonon modes in low frequency acoustic PDOS region of the CNT, which 

shows the quadratic phonon dispersion relation and recently Ochoa et at. 1911 have showed 

that a reduction in the value of PDOS of graphcnc due to stiffening of the flexural phonon 

modes with inducing defects in the sample system. It is predicted that these are the factors 

behind the reduction of average PDOSs in the low-frequency region. 

4.3 Mode Pattern of SWCNT 

In this work, I also have analyzed vacancy defects effect on phonon localization. The 

phonon wave function is considered delocalized in carbon-based low dimensional materials. 
A 
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Figure 4.7 : Typical mode pattern of (a) pristine (b) 10% vacancy (c) 20% vacancy and (d) 
30% vacancy induced (10,10) CNT. Each circle denotes an atom and the colors denote the 
displacement, which is linearly normalized. The vertical and horizontal axis are scaled in 

angstrom unit. 

If vacancies are present in those crystal system phonons are confined to a particular region. 

Due to breakdown of momentum conservation of a periodic arrangement of atoms, phonons 

are scattered into other phonon states. In this case phonon wave vectors are no longer good 

quantum numbers that means they are localized in real space. To observe localization property 

in defective CNT, particularly, emphasis on D-band of phonon modes has given. D mode is 

originated from iTO phonon at the K points on the Brillouin zone boundary. Generally U 

mode appears if there is any breakdown of the in-plane translational symmetry because of 

vacancies or finite size effects, D-band frequency is a strong feature in defective CNT, 

because double-resonance scattering process requires defects for momentum conservation. D-

band frequency is also curvature sensitive. It decreases with increasing curvature [92- I 4J. In 
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Figures 4.5(a) and 4.5(b), it is shown the vibrational direction of D-band mode for defective 

(10,0) and (10,10) CNTs. Here we sec a strong localization effect and very few atoms are 

vibrating (red arrows) near defects. It is also observed that less number of atoms are vibrating 

in (10,0) CNT than (10,10) CNT and this implies that the localization effect is stronger in 

(10,0) CNT than (10,10) CNT. This also indicates that the localization effect depends on 

curvature effect. As curvature softens carbon-carbon bond strength and it can be predicted that 

this fact influences on phonon localization in defective (10,0) ZCNT. 

To visualize more elaborately the localization effect in defective CNTs, I represent the 

typical mode pattern of the perfect unfolded CNTs associated with different types of 

disordered unfolded CNTs at 1350 cmH.  I use a total of 1000 lattice spaces because the 

vibrational modes show strong localization within this range of lattice spaces. Therefore, it is 

not necessary to have a large number of lattice spaces. In Figure 4.6 each circle denotes an 

atom and the color denotes the displacement. In Figure 4.6(a) mode pattern of perfect (10,0) 

ZCNT is shown. Here we see that all modes are almost perfectly distributed all over the lattice 

spaces Figure 4.6(b) shows a mode pattern for 10% atomic vacancy. This figure depicts that 

Jl 
when vacancies are induced in the perfect crystal system, all modes are no longer well 

distributed. Some modes become localized. Figure 4.6(c) shows the more strong localization 

effect with 20% atomic vacancies. In Figure 4.6(d), it is observed very strong localization 

with only two or three atoms arc vibrating with the largest amplitude in a particular region for 

30% defect density. This strong localization is the resultant of the resonant vibration of the 

randomly distributed atoms in the percolation network of defective (10,0) CNT. As the centers 

of the localized modes change its position with different time development, I have applied a 

random force to each atorn of the crystal system to extract the eigenmodes. Although the 

localization center moves with the time development, in all time development it stays 

asymmetrically around the atomic vacancies. Here it is observed that localization effect 

increases with increasing defect densities and this effect is stronger specially near the 

vacancies. I have also calculated mode patterns of (10, 10) ACNT, which are shown in Figure 

4.7. In Figure 4.7(a), it is observed extended mode pattern for pristine (10,10) CNT sample. 

Figures 4.7(b), 4.7(c) and 4.7(d) illustrate a mode pattern for 10%, 20% and 30% defect 

densities of (10,10) CNT respectively. Here it is also Ibund that with increasing defect 

densities localization effect becomes severe. Simulated values of References 95 and 96 show 
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Figure 4.8 Localization length as a function of defect density for both (10,0) and (10,10) 

CNTs. 

that thermal conductivity of CNT decreases with increasing vacancy type defects. Their 

findings are completely agreed with these findings. As phonons are the carrier of thermal 

energy, it is seen that with increasing defect densities phonons are become strongly localized 

near vacancy sites, which reduces thermal conductivity. Furthermore, it does not observe any 

edge phonon localization as found in some previous works [87] for graphene nanoribbon, 

because 1 have used PBC along the chiral vector direction of CNT. Thus no edge phonon 

localization efièct is found. 

4.4 Localization Length of SWCNT 

Finally, I have calculated phonon localization length for (10,0) and (10,10) as a function 
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of defect density as shown in Figure 4.8. The simulation performed for K point iTO phonon 

mode at w=1350 cm 1  for 10,000 atoms. The Defect density is varied from 10% to 30%. The 

filled circles are obtained by averaging over 10 eigcnmodcs, because the localization length 

shows large fluctuations in values. To determine the localization length I first obtain an 

inverse participation ratio (IPRA). It is previously stated that value of JP& varies from 1 to 

1/N. As the localization length is inversely proportional to the square root ofJPR,, it should be 

obtained lowest localization length for strong localization. From Figure 4.8, it is clearly 

shown that the localization length decreases for both (10,0) and (10,10) CNTs with increasing 

defect densities. I have found localization lengths are larger in value for same defect density 

in (10,0) CNT than (10,10) CNT, which is expected due to curvature effect. This simulation 

results for localization length are well agreed with the results of the previous works on 

graphenc, because the characteristics of graphene are transferable to the carbon nanotube [86]. 

As we know that localized states are obtained mainly when mode energy is spatially 

concentrated at the defect sites. There may other factors behind this effect. in optical high-

frequency region, defect induced backscattering effect become significant to create localized 

states. The localized states are also comparable to the formation of the island that vibrates at a 

different frequency from the rest of the crystal lattice. 
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CHAPTER V 

-if  

Summary and Outlook 

5.1 Conclusion 

It is carried out an in-depth and systematic numerical experiment on phonon property of 

pristine and vacancy induced SWCNTs. This experiment consists of two types of CNTs, 

semiconducting (10,0) ZCNT and metallic (10,10) ACNT. The forced vibrational method 

which is very suitable to treat large and disordered crystal system has been attributed to 

inspect vibrational eigenmodes of defective CNTs. We have examined the effect of vacancies 

and curvature on PDOS as well as on localization effect of CNT. 

The simulated PDOS also shows some extraordinary character about PDOSs with respect 

to pristine sample in defective situation. We have found strong dependency of Raman active 

E2  mode on vacancy type defects and curvature for both types of CNTs. The E2g  mode found 

from our simulation at 1576 cm 1  and 1581 cm for (10,0) and (10,10) CNTs respectively. 

The E2.  mode shows linear reduction towards lower frequency region with increasing defect 

densities and curvature of CNTs. It is found that E g  mode softening effect is stronger in 

(10,0) than (10,10) CNT due to curvature effect. Our experimental values shows that for 

vacancy concentrations of 10% or higher, the E2  peak has been reduced into a shoulder or it 

has been completely disappeared. Some fine structures have been vanished, although some 

sharp peaks have appeared with increasing vacancy concentrations. We have found some fine 

peaks in the low-frequency region with the increase in defect density in PDOS of both CNTs. 

The dependency of the phonon localization effect on vacancy-type defects and 

curvature has elaborately interpreted with visualizing mode pattern and determining the 

localization length at D-band high optical frequency for in-plane transverse optical phonon 

mode at the K points of Brillouin zone. We have found reduction of localization length with 

increasing defect densities. We have observed a stronger localization effect in (10,0) CNT 

than (10,10) CNT due to curvature effect. 
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Finally from latticc vibrational view point, these findings are not only important in 

fundamental science of CNT, but also in advanced nanocicctronics, where the non-ideal 

vacancy induced CNTs affect the electron transport properties significantly. 

5.2 Future Outlooks 

The model developed in this dissertation has proven to accurately describe the 

vibrational properties of disordered ID SWCNT. At the same time, there have been several 

important issues in the field that remain to be addressed. These include further investigation 

of many body interactions and electron phonon scattering effects, quantitative analysis of 

isotopic, doping, hydrogen passivation defects and specific structural defects such as Stone-

Walse defects in SWCNT samples, and anharnionic effects responsible for the thermal 

conductivity in the SWCNT. The effect of phonon localization on the electron localization 

can be investigated elaborately. From these calculations it was shown that localized 

vibrational modes are moving in nature with different time development. A more detailed 

study can be performed to detern-uine the exact relationship of localized eigenvectors for 

various types of defects with different concentrations. 
r. 



53 

REFERENCES 

1 E. Pop, D. Mann, Q. Wang, K. Goodson and H. Dai, 2006, "Thermal conductance of an 
individual single-wall carbon nanotube above room temperature", Nano Letters, Vol. 6, pp. 
96-100. 

2 S. Flong and S. Myung, 2007, "Nanotube electronics: A flexibic approach to mobility", 
Nature Nanotechno logy. Vol. 2. pp.  207-208. 

3 M. Haque, C. Marinelli, F. Udrea, and W. Mime, 2006, "Absorption characteristics of single 
wall carbon nanotubes", NSTI-Nanotech, Vol. 1, pp.  134-137. 

4 Y. I. Jhon, C. Kim, M. Seo, W. J. Cho, S. Lee and Y. M. Jhon, 2016, "Tensile characterization 
of single-walled carbon nanotubes with helical structural defects", Scientic Reports, Vol. 6, 
pp. 20324. 

5 Z. Spitaisky, D. Tasis, K. Papagclis and C. Galiotis, 2010, "Carbon nanotubc-polyrner 
composites: chemistry, processing, mechanical and electrical properties", Progress in 
Polymer Science, Vol. 35, pp. 357-401. 

6 X. Wang, Q. Li, J. Xic, Z. Jin, J. Wang, Y. Li, K. Jiang and S. Fan, "Fabrication of ultralong 
and electrically uniform single-walled carbon nanotubes on clean substrates", Nano Letters, 
Vol.9, pp.  3137-3141. 

7 R. Martel, T. Schmidt, H. Shea, T. Hertel and P. Avouris, 1998, "Single- and multi-wall 
carbon nanotube field-effect transistors", Applied Physics Letters, Vol. 73, pp.  2447-2449. 

8 J. U. Lee, 2005, "Photovoltaic effect in ideal carbon nanotube diodes", Applied Physics 
Letters, Vol. 87,pp. 073101. 

9 Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. 
B. Tanner and A. F. Hebard et al., 2004, "Transparent, conductive carbon nanotube films", 
Science, Vol. 305, pp. 1273-1276. 

10 M. W. Rowell, M. A. Topinka, M. D. McGehee, H.-J. Prall, G. Dennler, N. S. Saricifici, L. 
Hu and G. Gru.ner, 2006, "Organic solar cells with carbon nanotube network electrodes", 
Applied Physics Letters, Vol. 88 pp.  233506. 

11 H. Li and K. Banerjee, 2009, "H igh- frequency analysis of carbon nanotube interconnects and 
implications for on-chip inductor design", IEEE Transactions on Electron Devices, Vol. 56, 
pp. 2202-22 14. 

12 S. Ng, J. Wang, Z. Guo, J. Chen, G. Wang and H. K. Liu. 2005, "Single wall carbon nanotube 
paper as anode for lithium-ion battery", Electrochimica Acta, Vol. 51, pp. 23-28. 

13 B. L. Allen, P. D. Kichambare and A. Star, 2007, "Carbon nanotube field-effect transistor-
based biosensors", Advanced Materials, Vol. 19, pp.  1439-1451. 



54 

14 W. Choi, D. Chung, J. Kang, H. Kim, Y. Jin, I. Han, Y. Lee, J. Jung, N. Lee and G. Park, Ct at., 
1999, "Fully sealed, high-brightness carbon-nanotube field emission display, Applied Physics 
Letters, Vol. 75, pp. 3129-3 131. 

IS www.grandviewrcscarch.com. 

16 P. Zarabadi-Poor and A. Badiei, 2011, "Synthesis of carbon nanotubes using metal modified 
nanoporous silicas", Carbon Nanotubes-Growth and Applications, M. Naraghi (Ed.), Chap 3, 
pp. 59, InTcch, 1st Ed. 

17 N. Nemec, D. Tomanek and G. Cuniberti, 2006, "Contact dependence of carrier injection in 
carbon nanotubes: an ab initio study", Physical Review Letters, Vol. 96, pp.  076802. 

18 N. Nemec, D. Tomanek and G. Cuniberti, 2008, "Modeling extended contacts for nanotube 
and graphene devices", Physical Review B, Vol. 77, pp. 125420. 

19 N. Nemec, K. Richter and G. Cuniberti, 2008, "Diffusion and localization in carbon 
nanotubes and graphene nanoribbons", New Journal of Physics, Vol. 10, pp.  065014. 

20 S. Krompicwski, R. Gutierrcz and G. Cuniberti, 2004, "Giant rnagncto resistance of 
multiwall carbon nanotubes: Modeling the tube/ferromagnetic-electro deburying contact", 
Physical Review B. Vol. 69, pp. 155423. 

21 A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. leweldebrhan, F. Miao and C. N. Lau, 2008, 
"Superior thermal conductivity of single-layer graphene", Nano Letters, Vol. 8, pp. 902-907. 

22 M. Gheorghe, R. Gutierrez, N. Ranjan. A. Pecchia, A. Di Carlo and G. Cuniberti, 2005, 
"Vibrational effects in the linear conductance of carbon nanotubes", Europhysics Letters,Vol. 
7, pp.  438. 

23 S. Berher, Y.-K. Kwon and D. Tomanek, 2000, "Unusually high thermal conductivity of 
carbon nanotubes", Physical Review Letters, Vol. 84, pp.  4613. 

24 K. Saito, J. Nakamura and A. Natori, 2007, "Ballistic thermal conductance of a graphene 
sheet", Physical Review B, Vol. 76, pp. II 5409. 

25 L. X. Benedict, S. G. Louic and M. L. Cohen, 1996, "Heat capacity of carbon nanotubes", 
Solid State Communications, Vol. 100, pp.  177-1 80. 

26 U. Kim, X. Liu, C. Furtado, G. Chen, R. Saito, J. Jiang, M. Drcssclhaus and P. Eklund, 2005, 
"Infrared-active vibrational modes of single-walled carbon nanotubes", Physical Review 
Letters, Vol. 95, pp.  157402. 

27 A. C. Fcrrani, J. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, 
K. Novoselov and S. Roth, et al., 2006, "Raman spectrum of graphene and graphene layers", 
Physical Review Letters, Vol. 97, pp.  187401. 



55 

28 A. Rao, E. Richtcr, S. Bandow, B. Chase, P. Eklund, K. Williams, S. Fang, K. Subbaswamy, 
M. Menon and A. Tliess, et al., 1997, "Diameter-selective Raman scattering from vibrational 
modes in carbon nanotubes", Science, Vol. 275, pp. 187-191. 

29 L. Woods and G. Mahan, 2000, "Electron-phonon effects in graphene and armchair (10, 10) 
single-wall carbon nanotubes", Physical Review B, Vol. 61, pp.  10651. 

30 0. Dubay and G. Krcssc, 2003, "Accurate density functional calculations for the phonon 
dispersion relations of graphite layer and carbon nanotubes", Physical Review B, Vol. 67, pp. 
035401. 

31 S. Piscanec, M. Lazzeri, F. Mauri, A. Ferrari and J. Robertson. 2004, "Kohn anomalies and 
electron-phonon interactions in graphite", Physical Review Letters, Vol. 93, pp.  185503. 

32 K.-P. Bohnen, R. Heid, H. Liu and C. Chan, 2004, "Lattice dynamics and electron phonon 
interaction in (3, 3) carbon nanotubes", Physical Review Letters, Vol. 93, pp.  245501. 

33 M. Lazzeri, S. Piscanec, F. Mauri, A. Ferrari and J. Robertson, 2005, "Electron transport and 
hot phonons in carbon nanotubes", Physical Review Letters, Vol. 95, pp.  236802. 

34 R. Gutierrcz, S. Mohapatra, H. Cohen, D. Porath and G. Cuniberti, 2006. "In elastic quantum 
transport in a ladder model: Implications for dna conduction and comparison to experiments 
on suspended dna oligomers", Physical Review B, Vol. 74, pp.  235105. 

35 N. Bonini, M. Lazzeri, N. Marzari and F. Mauri, 2007, "Phonon anharmonicitics in graphite 
and graphene", Physical Review Letters, Vol. 99, pp.  176802. 

36 H. Suzuura and T. Ando, 2002, "Phonons and cicctron-phonon scattering in carbon 
nanotubes", Physical Review B, Vol. 65, pp.  235412. 

37 E. Mariani and F. von Oppen, 2008, "Flexural phonons in free-standing graphene", Physical 
Review Letters, Vol. 100. pp.  076801. 

38 Z. Tang, L. Zhang, N. Wang, X. Zhang, G. Wen, G. Li, J. Wang, C. Chan and P. Sheng, 2001, 
"Superconductivity in 4 angstrom single-walled carbon nanotubes", Science, Vol. 292, pp. 
2462-2465. 

39 K.-i. Sasaki, H. Farhat, R. Saito and M. S. Dresselhaus, 2010, "Kohn anomaly in Raman 
spectroscopy of single wall carbon nanotubes", Physica E, Vol. 42, pp.  2005-2015. 

40 S. Piscanec, M. Lazzeri, J. Robertson, A. C. Ferrari and F. Mauri. 2007, "Optical phonons in 
carbon nanotubes: Kohn anomalies, peierls distortions, and dynamic effects", Physical 
Review B, Vol. 75, pp.  035427 

41 P. G. Collins, 2010. "Defects and disorder in carbon nanotubes", Oxford Handbook of 
Nanoscience and Technology: Materials: Structures, Properties and Characterization 

151 



56 

Techniques, Vol. 2, pp. 31. 

42 A. Maradudin, 1966, "Theoretical and experimental aspects of the effects of point defects 
- and disorder on the vibrations of crystals 1", Solid State Physics, Vol. 18, pp.  273-420. 

43 A. Maradudin, 1967, "Theoretical and experimental aspects of the effects of point defects 
and disorder on the vibrations of crystals 2", Solid State Physics, Vol. 19, pp. 1-134. 

44 J. Kurti, V. Zolyorni, A. Gruneis and H. Kuzniany, 2002, "Double resonant Raman 
phenomena enhanced by van hove singularities in single-wall carbon nanotubes", Physical 
Review B, Vol. 65, pp. 165433. 

45 J. Yu, R. Kalia and P. Vashishta, 1995, "Phonons in graphitic tubules", Europhysics Letters, 
Vol. 32, pp.  43. 

46 D. Sanchez-Portal, E. Artacho, J. M. Soler, A. Rubio and P. Ordejon, 1999, "Ab initio 
structural, elastic, and vibrational properties of carbon nanotubes", Physical Review B, Vol. 
59, pp.  12678. 

47 L.-H. Ye, B.-G. Liu, D.-S. Wang and R. Han, 2004, "Ab initio phonon dispersions of single-
wall carbon nanotubes", Physical Review B, Vol. 69, pp.  235409. 

48 R. Saito, T. Takeya, T. Kimura, G. Dresseihaus and M. Dresselhaus, 1998, "Raman intensity 
of single-wall carbon nanotubes", Physical Review B, Vol. 57, pp. 4145. 

49 M. L. Williams and H. J. Mans, 1985, "Numerical study of phonon localization in disordered 
systems", Physical Review B, Vol. 34, pp.  4508. 

50 N. N. Greenwood and A. Earnshaw, 1997, "Chemistry of the Elements", Elsevier, 2nd. Ed. 

51 www.webelernents.com. 

52 T. W. Odom, J.-L. Huang, P. Kim and C. M. Lieber, 1998, "Atomic structure and electronic 
properties of single-walled carbon nanotubes", Nature, Vol. 391, pp.  62-64. 

53 K. S. Novoselov, A. K. Geirn, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. 
Grigorieva and A. A. Firsov, 2004, "Electric field effect in atomically thin carbon films", 
Science, Vol. 306, pp.  666-669. 

54 S. lijima, 1991, "Helical microtubules of graphitic carbon", Nature, Vol. 354, pp. 56-58. 

55 S. lijima and T. Ichihashi, "Single-shell carbon nanotubes of 1-nm diameter", 1993, Vol. 
363, pp.  603. 



57 

56 D. Bethune, C. Klang, M. Dc Vries, G. Gorman, R. Savoy, J. Vazqucz and R. Bcyers, 1993, 
"Cobalt-catalysed growth of carbon nanotubes with single atomic-layer walls", Nature, Vol. 
363, pp. 605-607. 

57 H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl and R. E. Smalley, "C60: 
Buckminstcrftillerene", Nature, Vol. 318, pp.  162-163. 

58 M. S. Islam, 2014, "Vibrational properties of disordered graphene and related 2d materials", 
University of Fukui. 

59 A. Jorio, M. Dresselhaus, R. Saito and G. Dresselhaus, 2011, "Raman spectroscopy in 
graphenc related systcms", WJLEY-VCH Verlag GmbH & Co. KGaA. 

60 J. Lee and B. Lee, 2012, "Modal analysis of carbon nanotubes and flflOCOflCS using fern", 
Computational Materials Science, Vol. 51, pp. 30-42. 

61 C. -H. Liu, Y.-Y. Liu, Y.-H. Zhang, R. -R. Wei, H. -L. Zharig, 2009, "Tandem extraction 
strategy for separation of metallic and semiconducting SWCNTs using condensed benzenoid 
molecules: Effects of molecular morphology and solvent", Physical Chemistry Chemical 
Physics, Vol. 11, pp.  7257-67. 

62 M. Dresselhaus, G. Dresselhaus and R. Saito, 1995, "Physics of carbon nanotubes", Carbon, 
Vol. 33, pp.  883-891. 

63 R. Saito, G. Dresselhaus and M. S. Dresselhaus, 1998, "Physical properties of carbon 
nanotubes", World Scientific. 

64 R. Jishi, L. Venkatararnan, M. Dresselhaus and G. Dresselhaus, 1993, "Phonon modes in 
carbon nanotubules", Chemical Physics Letters, Vol. 209, pp.  77-82. 

65 M. Dresselhaus, G. Dresselhaus, A. Jorio, A. Souza Filho and R. Saito, 2002, "Raman 
spectroscopy on isolated single wall carbon nanotubes", Carbon, Vol. 40, pp.  2043-2061. 

66 M. Darnnjanovic, 1. Milosevic, T. Vukovic and R. Sredanovic, 1999, "Full symmetry, optical 
activity, and potentials of single-wall and multi-wall nanotubes", Physical Review B, Vol. 
60, pp. 2728. 

67 M. Damnjanovic, I. Milosevic, T. Vukovic and R. Sredanovic, 1999, "Symmetry and lattices 
of single-wall nanotubes", Journal of Physics A, Vol. 32, pp.  4097. 

68 S. Reich, C. Thomsen and J. Maultzsch, 2008, "Carbon nanotubes: basic concepts and 
physical properties", John Wiley & Sons. 

69 S. Reich, C. Thomsen and P. Ordejon, 2001, "Phonon eigenvectors of chiral nanotubes", 
I Physical Review B, Vol. 64, pp. 195416. 



58 

70 A. Fainstcin, P. Etchcgoin, M. Chamberlain, M. Cardona, K. T. Otemeyer and K. Eberl, 
1995, "Selection rules and dispersion of gaas/alas mu ltiple-quantumwell optical phonons 
studied by Raman scattering in right-angle, forward and backscattering in-plane geometries", 
Physical Review B, Vol. 51, pp. 14448. 

71 B. Jusserand and M. Cardona, 1989, "Raman spectroscopy of vibrations in super lattices, in: 
Light Scattering in Solids V", pp. 49-152, Springer. 

72 J. Kurti, V. Zolyomi, M. Kertesz and G. Sun, 2003, "The geometry and the radial breathing 
mode of carbon nanotubes: beyond the ideal behavior", New Journal of Physics, Vol. 5, pp. 
125. 

73 E. Dobardzic, 1. Milosevic, B. Nikolic, T. Vukovic and M. Damnjanovic, 2003, "Single-wall 
carbon nanotubes phonon spectra: Symmetry-based calculations", Physical Review B, Vol. 
68, pp. 045408. 

74 M. Darnnjanovic, E. Dobardzic and I. Miloscvic, 2004, "Chirality dependence of the radial 
breathing mode: a simple model", Journal of Physics: Condensed Matter, Vol. 16, pp. L505. 

75 P. Eklund, J. Holden and R. Jishi, 1995, "Vibrational modes of carbon nanotubes; 
spectroscopy and theory", Carbon, Vol. 33, pp.  959-972. 

76 K. !akoubovskii, N. Minami, T. Ueno, S. Ka?aoui and H. Kataura, 2008, "Optical 
characterization of double-wall carbon nanotubes: evidence for inner tube shielding", The 
Journal of Physical Chemistry C, Vol. 112, pp. 11194-11198. 

77 F. Wegner, 1980, "Tnverse participation ratio in 2+g dimensions", Zeitschrift fir Physik B, 
Vol. 36, pp. 209-2 14. 

78 B. Kramer and A. MacKinnon, 1993, "Localization: theory and experiment", Reports on 
Progress in Physics, Vol. 56, pp. 1469. 

79 S. Datta, 2005, "Quantum transport: atom to transistor", Cambridge University Press. 

80 V. K. S. Shante and S. Kirkpatrick, 2006, "An introduction to percolation theory", 
Advanches in Physics, Vol. 20, pp. 325-357. 

81 www.scienceforeveryone.com  

82 Z. V. Djordjevic, H. E. Stanley and A. Margolina, 1982, "Site percolation threshold for 
honeycomb and square lattices", Journal of Physics A, Vol. 15, pp. L405—L412. 

83 P. Avouris, Z. Chen and V. Perebeinos, 2007, "Carbon-based electronics", Nature 
Nano techno logy, Vol. 2, pp. 605-6 15. 



59 

84 M. Dresselhaus and P. Eklund, 2000, "Phonons in carbon nanotubcs", Advances in Physics, 
Vol. 49, pp. 705-8 14. 

1 85 R. Saito, M. 1-lofinann, G. Dresselhaus, A. Jorio and M. Dresselhaus, 2011, "Ranian 
spectroscopy of graphene and carbon nanotubes", Advances in Physics, Vol. 60, pp. 4 13-550. 

86 M. S. Islam, K. Ushida, S. Tanaka and A. Hashimoto, 2013, "Numerical experiments on 
phonon properties of isotope and vacancy-type disordered graphenc", Diamond and Related 
Materials, Vol. 40, pp.  115-122. 

87 M. S. Islam, K. Ushida, S. Tanaka and A. Hashimoto, 2013, "Numerical analysis on vacancy 
induced vibrational properties of graphene nanoribbons", Computational Materials Science, 
Vol. 79, pp.  356-361. 

88 N. Mingo and D. Broido, 2005, "Length dependence of carbon nanotube thermal 
conductivity and the problem of long waves", Nano Letters, Vol. 5, pp.  122 1-1225. 

89 C. Sevik, H. Scvincli, G. Cuniberti and T. Cagn, 2011, 'Phonon engineering in carbon 
nanotubes by controlling defect concentration", Nano letters, Vol. 11, pp.  4971-4977. 

90 G. Mahan and G. S. Jeon, 2004, "Flexure modes in carbon nanotubes", Physical Review B, 
Vol. 70, pp.  075405. 

91 H. Ochoa, E. V. Castro, M. Katsnelson and F. Guinea, 2012, "Scattering by flexural phonons 
in suspended graphene under back gate induced strain", Physica E, Vol. 44, pp.  963-966. 

92 M. A. Pimenta, A. Jorio, S. D. Brown, A. G. Souza Filho, G. Dresselhaus, J. Hafner, C. 
Lieber, R. Saito and M. Dresselhaus, 2001, 'Diameter dependence of the raman 1)-band in, 

isolated single-wall carbon nanotubes", Physical Review B, Vol. 64, pp.  041401. 

93 A. Souza Filbo, A. Jorio. G. G. Samsonidze, G. Dresselhaus, M. Pirnenta, M. Dresselhaus. A. 
K. Swan, M.Unlu, B. Goldberg and R. Saito, 2003, "Competing spring constant versus 
double resonance effects on the properties of dispersive modes in isolated single-wall carbon 
nanotubes", Physical review B, Vol. 67, pp.  035427. 

94 A. Jorio et al., 2004, "Advances in single nanotube spectroscopy: Ranian spectra from cross-
polarized light and chirality dependence of raman frequencies", Carbon, Vol. 42, pp.  1067-
1069. 

95 J. Che, 1'. Cagin and W. A. Goddard III, 2000, "Thermal conductivity of carbon nanotubes", 
Nanotechnology, Vol. 11, pp.  65. 

96 F. Dai-Li, F. Yan-Hui, C. Yang, L. Wei and Z. Xin-Xin, 2013, "Effects of doping, 
stonewales and vacancy defects on thermal conductivity of single-wall carbon nanotubes", 
Chinese Physics B, Vol. 22, p. 016501. 



60 

List of Publications 

I. Ashraful Hossain Howlader, Md. Sherajul Islam, Satoru Tanaka, Takayuki Makino and 
Akihiro Hashimoto, 2018, "Vacancy and Curvature Effects on the Phonon Properties of 
Single Wall Carbon Nanotube", Jpn. J. ApI. Phy. Vol. 57. pp. 02CB08. 

2. Ashraful Hossain Howlader, Md. Sherajul Islam, Md, Rafiqul Islam and Ashraful Ghani 
Bhuiyan, Juime 18-21, 2017, "Vacancy induced Phonon Properties of Single Wall Carbon 
Nanotube", The 6th International Symposium on Organic and Inorganic Electronic 
Materials and Related Nanotechnologies (EM-NANO 2017), Fukui, Japan. 

p 


