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Abstract 

In this study, Quantum Evolutionary Algorithm (QEA) based high performance control of 
induction motor is proposed, whose rotor flux is estimated by chaotic learning based 
Artificial Neural Network (ANN). The control principle is based on Direct Torque Control 
(DTC) with Space Vector Modulation (SVM) technique. The SVM reduces the torque and 
flux ripples and improves steady state performance. Fast dynamic speed response is 
obtained through maintaining the rotor flux constant as in the case of field orientation 
control. Main flux saturation effect is also considered throughout the study for more 
realistic representation in the analysis. QEA based proportional-integral (P1) controller 
tuning is used for getting optimized gain coefficients of P1 controller which also help us to 
get fast speed response induction motor drive. The performance of the drive system with 
QEA based P1 controller is compared with Conventional Genetic Algorithm (CGA) based 
P1 controller. There is no speed fluctuation in the speed response of QEA based induction 
motor drive under steady state condition whereas a little bit speed fluctuation is present in 
the CGA based induction motor drive. 

4 

In this work, chaotic learning based Artificial Neural Networks (ANNs) such as 
Backpropagation (BP), Real Time Recurrent Learning (RTRL). and Correlated Real Time 
Recurrent Learning (CRTRL) are proposed for improved rotor flux estimation of induction 
motor drive which makes the control system position sensorless. Chaotic variations of 
learning rate are included with the learning rate of BP, RTRL, and CRTRL algorithms 
based ANNs which generates a chaotic time series and a rescaled version of the series is 
used as Learning Rate (LR) during the training process. We have shown the improvement 
of BP and CRTRL algorithm based ANNs in rotor flux estimation of induction motor drive 
due to the use of chaotic variations in learning rate. 

A high performance simple speed estimator is also presented in this work. It is confirmed 
that the proposed speed estimator is capable to estimate the speed accurately even at very 
low speed. Effectiveness of the proposed controller is tested by simulation for different set 
speed. This simple speed estimator for the induction motor drive makes the controller cost 
effective and sensorless. Robustness of the control system is tested by using the parameter 
perturbation and applying sudden load torque disturbance within very short time interval. 
The control system is also computationally efficient and tested by introducing 10% 
instrumental error to reference voltage vectors. 

vi 
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CHAPTER I 

Introduction 

1.1 Introduction 

AC motors, especially induction motors are suitable for industrial drives, because of their 
simple and robust structure, high torque to weight ratio, higher reliability and ability to 
operate in hazardous environments. However, the control of induction motor is a 
challenging task as the rotor quantities are not accessible which are responsible for torque 
production. DC machines are decoupled in terms of flux and torque. Hence control is easy. 
If it is possible in case of induction motor to control the amplitude and space angle 
(between rotating stator and rotor fields), in other words to supply power from a controlled 
source so that the flux producing and torque producing components of stator current can be 
controlled independently, the motor dynamics can be compared to that of DC motor with 
fast transient response. Presently, introduction of micro-controllers, high switching 
frequency semiconductor devices, and VLSI technology has led to cost effective 
sophisticated control strategies. 

A new area of ac motor drive has been highly developed by power electronics technology. 
In particular, squirrel cage induction motor drive "under the vector control of induction 
motor drive" is considered as one of the best ac variables controlled drives when quick 
response is required. The stator current is splitted into two orthogonal components, one in 
the direction of flux linkage, representing magnetizing current or flux component of 
current and other perpendicular to the flux linkage, representing the torque component of 
current. By varying both components independently, the induction motor can be treated as 
a separately excited DC motor. This concept was invented in the beginning of I970s. The 
implementation of vector control requires information regarding the magnitude and 
position of the flux vector. Depending upon the method of acquisition of flux information, 
the vector control or field oriented control method can be termed as: direct or indirect. In 
the direct method the position of the flux is strictly measured with the help of sensors, or 
estimated from the machine terminal variables such as speed and stator currentivoltage 
signals. The measured or estimated flux is used in the feedback loop, thus the machine 
parameters have minimal effect on the overall drive performance. But the measurement of 
flux using flux sensors necessitates special manufacturing process or modifications in the 
existing machines. In addition, the direct field orientation method has its inherent problem 
at low speed where the voltage drops due to resistances are dominant, and pure integration 
is difficult to achieve. 

Recently, advanced control strategies for Pulse Width Modulation (PWM) inverter fed 
induction motor drive has been presented. Particularly, the vector control, which 
guarantees high dynamic and static performances like DC motor drives, has become very 
popular and has been developed and improved. Recent developments in the theory of 
vector control, fast digital processor and power devices provide the possibility of achieving 
high performance induction motor drive control. 

Space Vector Modulation (SVM) technique is widely used in control of induction motor 
drive. This technique reduces the torque and flux ripple in induction motor drive and high 
performance is achieved. It contains space vectors to be applied according to the region 



where the output voltage vector is located. It has two excellent features such as maximum 
output voltage is greater and the number of switching is less at the same carrier frequency. 

High performance drive of an induction motor requires the rotor position information to 
control the motor which is generally detected by mechanical position sensors such as an 
encoder or a resolver. The additional components such as resolver and position sensors not 
only increase the cost but also affect reliability of the system. Flux estimation can be 
applied to find the rotor position and is considered as an important task in implementing 
high performance motor drives. 

Unfortunately observer or flux estimator has some inherent disadvantages, such as the 
influence of noise, the computational burden. This has led to a renewed interest to the field 
of flux estimation. Recently, Al (artificial intelligent) techniques such as expert system, 
fuzzy logic, and artificial neural networks (ANN) are showing much promise for intelligent 
adaptive control and estimation of parameters and variables of motor drives. The machine 
terminal voltages and currents can be sensed and processed to calculate speed, position, 
flux, torque, power and other feedback signals with the help of a microprocessor. The 
inaccuracy of estimated signals due to machine parameter variation alwa s remains a 
problem. Accurate identification of machine parameters to compensate the estimation error 
is a challenging task. In addition, direct integration of machine voltages near zero speed to 
calculate the flux is another problem because of offset problem of the integrator. The flux 
of a machine can be conveniently estimated from the stator voltage model at higher speed 
range and rotor current model at low speed range. The stator flux can be estimated using 
ANNs for better accuracy. 

Recent trend in the field of induction motor control mainly try,  to incorporate the features 
of ANNs, Fuzzy logic, Genetic and Evolutionary Algorithms. These components of 
Artificial Intelligence (Al) provides accurate, robust and show insensitivity to parameter 
deviations. These computational methods are generally applied to estimate the rotor flux of 
induction motor drive and to tune or upgrade controller constants. 

1.2 Literature Review 

At present induction motors are widely used for variable speed energy converting devices 
in industrial and domestic appliances. They are simple, rugged, inexpensive and available 
at all power ratings. Progress in the field of power electronics and microelectronics enables 
the application of induction motors for high performance drives, where traditionally only 
DC motors were applied [1]. Speed and torque control mechanisms are very much essential 
in recent electrical motor drives [2-3]. 

High Performance Control (HPC) of induction motors is an interesting area for research 
and has wide applications in lathe machines, robotics etc. The main objective of high 
performance controller is to obtain fast dynamic response of the drive system. It is so 
designed that it becomes less sensitive to motor and controller parameter perturbations and 
require minimum hardware for its practical implementation. 

The field-oriented control (FOC) technique is widely used in high performance motion 
control of induction motors. Because of torque/flux decoupling, FOC achieved good 
dynamic response and accurate motion control as separately excited dc motors. Two types 
of field orientation control schemes are used for induction motor control; first one is direct 
and the other is indirect control methods. In the indirect control method, the major problem 
is the rotor time constant, which is sensitive to both the temperature and flux level 
variations. When the estimation of this parameter is incorrect, the slip frequency is also 
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incorrect and flux angle is no longer appropriate for field-orientation [4]. Direct field-
orientation control is sensitive to stator resistance and total leakage inductance. In direct 
field-orientation, if a flux regulator is employed, the parameter sensitivity is less than the 
indirect field-orientation control. In an induction motor under field-orientation control, the 
flux can be adjusted to meet control requirement than that of permanent magnet motor 
field-orientation [5]. 

The control objective requires the rotor position and/or speed of the motor to follow a 
preselected time tagged trajectory, regardless of unknown load variation and other 
parameter uncertainties. The additional components such as resolver and position sensors 
not only increase the cost but also affect reliability of system. Flux estimation can be 
applied to find the rotor position and is considered as an important task in implementing 
high performance motor drives. 

The Engineering community has shown a significant interest in optimization for many 
years [6-8]; in particular, there has been a focus on global optimization of numerical, real-
valued problems for which exact and analytical methods do not function suitably. During 
the last few decades, a number of general-purpose optimization algorithms have been 
proposed for finding optimal solutions, some of which are; Evolution Strategies [9], 
Evolutionary programming [10], Genetic Algorithm (GA) [11], Particle Swarm 
Optimization (PSO) [12] and Differential Evolution (DE) [13]. These algorithms are also 
known as Evolutionary Algorithms (EAs) or Nature Inspired Algorithms because they 
follow simple rules of nature. These algorithms have also become popular because of their 
advantages over the traditional optimization techniques. The optimization performance of 
all the algorithms mentioned above degrades with a small population and cannot optimize 
the solution within a very short time. 

Quantum Evolutionary Algorithm (QEA) is a novel probability optimization algorithm 
based on the concept and principles of quantum computing [14]. Compared with 
Conventional Genetic Algorithm (CGA), QEA has a better characteristic of diversity in the 
population and can keep the balance of exploration and exploitation more easily- even with 
a small population. So QEA has become a research hotpot in recent years. 

The application of ANN attracts the attention of many scientists from all over the world 
[15]. The reason for this trend is the many advantages which the architectures of NN have 
over traditional algorithmic methods. Among the advantages of ANN, the ease of training 
and generalization, simple architecture, possibility of approximating nonlinear functions, 
insensitivity to the distortion of the network, and inexact input data are worth mentioning. 
The main problem of ANNs such as BP and RTR.L algorithms is that the optimal 
procedure is easily trapped into local minimum value and the speed of convergence is very 
slow. To avoid this problem, non-uniform periodicitv property of chaos is used in [16-17] 
and starts its improvement from the learning rate. In [16], the authors show that the 
improved algorithm is not only efficient in internet traffic prediction with higher precision 
and faster speed of convergence, but also somewhat escapes the network from the problem 
of local minima. In [17], the authors show that, if the chaotic variation learning rate (LR) is 
included during training, the weight update may be accelerated in the local minimum zone. 

The neural networks have become well established in induction motor drive for different 
tasks especially for flux estimation. Since the 1990s, several investigations into the 
applications of neural networks in the field of electrical machines and power electronics 
have appeared [18]. A new form of implementation of filter is proposed for stator flux 



vector synthesis that uses a combination of recurrent neural network trained by Kalman 
filter and a polynomial neural network in [19]. Correlated real time recurrent learning 
(CRTRL) neural networks has been introduced in [201 that uses a- and fl-axis flux 
components coupling for the flux estimation rather decoupling them. 

Incorporation of chaos in induction motor is recently a hot topic in research area. 
Researchers consider chaotic properties for different aspects to induction motor in [2 1-23]. 
A new chaotic pulse width modulation (PWM) scheme is proposed and implemented for 
AC motors, which functions to suppress significantly the harmonic peaks and hence the 
acoustic noise in [2 1-22]. In [23], the authors propose a new application of a chaos particle 
swarm optimization (PSO) algorithm for loss model-based energy efficient control of an 
induction machine (IM) using an optimal rotor flux reference. The flux observers based on 
recurrent neural network (RNN) methods are implemented in [24] in which mean square 
error (MSE) values of the rotor flux estimation are between 0.000087 and 0.000264. But 
yet now, no literature is available to the authors for chaotic learning based ANN for flux 
estimation of induction motor drive. 

To exploit the benefits of sensorless control, the speed estimation methods must achieve 
robustness against model and parameter uncertainties. Parameters of particular concern in 
the sensorless control literature are frequency-dependent Rr and temperature-dependent R 
and the load torque, all of which are very effective on the accurate estimation of flux and 
speed. To address the parameter sensitivity problem in induction motor speed sensorless 
control, avarietv of approaches have been proposed [25-27]. But low speed estimation is a 
problem there. A lyapunov-function based flux and speed observer was developed [28] 
which can estimate R but not Rr. Duran et al. [29] performed a thermal-state estimation to 
compensate for the parameter and hence speed deviations due to heating. All researchers 
mentioned above proposed sensorless controller for induction motor drive and they didn't 
consider the saturation effects in induction motor drive. But it is well known that 
consideration of saturation effect improves the dynamic characteristics of induction motor 
drive. 

13 Motivation and Scope of the Present Study 

High performance induction motor drives are very much popular at the present day 
industries. There are various control laws to implement these high performance drives. The 
drive technologies are now in matured state. However, a good number of researchers have 

I been working in this field to improve the control methodologies. The control laws related 
to high performance drives are very interesting and the author felt encouraged to work in 
this area. Induction motors are still the most used industrial motor and need to be studied 
for high performance applications. 

The three main features of high performance control are the field orientation control, direct 
torque control and the space vector modulated inverter feeding the motor. Normally, three 
techniques are used independently in high performance control of induction motors. Each 
has great advantages along with some disadvantages. These advantages may be combined 
to have a very prospective high performance control. There is huge scope to work in this 
field. 

Many control laws are available to control the induction motor. The schemes are Direct 
Torque Control (DTC), Space Vector Modulation (SVM), voltage and current based angle 
control, load angle estimated based control. Field-Orientation (FO) based Control, etc. The 
transient response of DTC controller is better but it creates some ripple in the steady state, 



whereas SVM is suitable for not only minimize the ripple but also number of switching 
states. This thesis implements SVM technology,  with applying DTC principle for fast speed 
response and applying field orientation technique to process the error through P1 controller 
of the induction motor drive. For implementing the SVM technique, the exact stator flux 
and the electromagnetic torque information of an induction motor is needed. To estimate 
the flux and torque, some algorithm is used for eliminating the sensors. Different tv pes of 
observers, artificial intelligent based estimator may be used. These observers have some 
limitations to estimate the rotor flux under miss-match parameter condition of the 
controller. Some adaptation technique is used to overcome the limitations. This adaptation 
arises some complexity in controller. It is possible to design a simple controller using 
artificial neural network (ANN). ANN has different computational method to obtain 
gradient for estimating purpose. It may be trained on-line or off-line. For learning this 
various computing techniques are used like back-propagation, real time recurrent learning 
(RTRL) etc. For the existence of hidden layers back-propagation arise computational 
burden. RTRL has no hidden layer and it reduce the computation burden. Again it 
estimates the rotor flux accurately even any parameter miss-match condition and filter any 
disturbance noise. 

In this thesis. P1 controller based voltage vector controlled SVM controller is proposed. 
The gain coefficients of P1 controller are optimized by quantum evolutionary algorithm. A 
new stable method of estimating rotor flux and torque has been proposed. The proposed 
scheme is chaotic learning based real time recurrent learning (RTRL) algorithm to estimate 
rotor flux. RTRL networks are basically dynamic systems where the states evolve 
according to certain nonlinear state equation. Several training methods have been 
developed. These are basically different in computation to obtain gradient. Some of these 
methods compute the gradient very efficiently. 1-lowever, the main shortcoming of these 
methods is the excessive number of iteration needed to reach the minima. RTRL has no 
hidden neuron, less computational burden and can be easily implemented practically. The 
goal of this thesis work is to overcome the limitation and develop a new recurrent network 
algorithm to estimate the induction motor rotor flux accurately even under parameter 
mismatch condition between motor and controller. 

This thesis describes a high performance induction motor drive combining the principle of 
DTC, FO and SVM for fast transient response and also operates in vector control mode. 
Improved chaotic learning based correlated RTRL based flux and torque estimators are 
used. The saturation characteristics in the magnetic circuit of induction motor drive also 
provides better dynamic performance. Hence main flux saturation effect is considered as a 
variable magnetizing inductance throughout the work. Simulation and experimental results 
justified the excellent operating characteristics of the drive as a high performance induction 
motor drive. 

1.4 Thesis Overview 

The present thesis is organized in the following way. 

Chapter-I begins with a preliminary discussion on drive systems, inverters, field oriented 
control pertaining to induction motor and related controller law. This is followed by an 
overview of a few selected contributions to indicate, in brief, the various studies that have 
been made over the past three decades in the area of vector controlled induction motor. It 
also includes the scope of the present study. The chapter concludes the contents of the 
study of other chapters in brief. 



Chapter-Il commences with the two-axis model of the induction machine in both stationary 
and synchronous reference frames with their phase relationship. The mathematical models 
are written in different formats to represent the induction motor under different operating 
conditions. The magnetic nonlinearity has been modeled by polynomial fit curve and 
polynomial fitted mutual inductance is included to consider saturation effects are also 
included in this chapter. 

Chapter-Ill presents quantum evolutionary algorithm (QEA) and conventional genetic 
algorithm (CGA), discussing their performance in the control system for induction motor 
drive. In the view of the different conditions, QEA based proportional-integral (P1) 
controller is chosen and used for the remain of the research work. 

Chapter-IV discusses on flux estimators for induction motors. Preliminary idea of ANN 
and its learning techniques especially back propagation. RTRL and proposed chaotic 
learning based CRTRL algorithms for the ANN are discussed in this chapter. It also 
contains the performances of all above the flux estimators as a comparison and chaotic 
learning based CRTRL is used for the remain of the research work. 

Chapter-V covers the formulation of the proposed control system. The performances of the 
control method with different operating conditions including the abnormalities are 
included. Simulation model of the machine is deduced and results of simulation under 
different operating conditions are shown. An endeavor is also made in this chapter to make 
the control system speed sensorless and effectiveness of the controller is also tested for 
different conditions. 

Finally chapter-VI includes the overall conclusions of this research work and highlights the 
direction of further research. 

4. 



CHAPTER II 

Mathematical Models of Induction Motor Drives 

2.1 Introduction 

A poly-phase induction motor has a complex structure comprising of mutually coupled 
magnetic and electric circuits. When the stator coils are excited by balanced electrical 
source, flux produced in the stator core sweeps past to the rotor core. The rotor coils are 
shorted together at both ends with the rotor bars in a squirrel cage induction motor. The 
mutual flux system is common to coils both in stator and rotor and is responsible for the 
effective operation of the motor. The leakage flux is responsible for causing voltage drop 
in the coils. Due to mutual coupling between stator and rotor coils, rotor receives power by 
induction. There are three systems of flux that may be considered in an induction motor, 
viz, the stator flux, the air gap flux and the rotor flux. In a dc motor, torque is viewed as the 
product of field flux and armature mmf, which are mutually perpendicular to each other. 
Similarly, in an induction motor it can be assumed that the flux of rotor and perpendicular 
mmf in the stator or vice versa generates the electromagnetic torque. Other viewpoint 
assumes power in the rotor resistance as a measure of torque expressed in synchronous 
watts. 

To study the performance of different control systems and drives, the motor requires to be 
represented by a set of differential equations in time domain. Complexity arises due to 
variable coupling between the physical coils of the stator and the rotor. The complexity is 
further enhanced due to the effect of back emf in the rotor circuit. So it is not wise to 
model an induction motor using the physical coils. 

Based on operating conditions, there are a number of mathematical models for induction 
motors. Mutually perpendicular stationary and synchronously rotating fictitious coils are 
considered to study the transient and dynamic conditions of induction motor drives. 

2.2 Induction Motor Model 

In an induction motor the stampings form the core which is slotted to receive the three 
phase windings of the stator. The windings are fed from a three phase supply. The rotor 
also consists of core for carrying three phase winding bars. Mathematically, a winding can 
be modeled as seif-inductanceLand some internal resistanceR. Suffices s and r are 
introduced to indicate stator and rotor circuits respectively. The transfer of energy from 
stator to rotor of an induction motor takes place entirely inductively with the help of a flux 
mutually linking the two. That is why mutual inductance Lm  exists between the two. 

It is well documented in the literature that an induction motor can adequately be modeled 
using a two-axis reference frame. Under the usual assumptions of sinusoidal distribution of 
MMFs, ignoring the effect of iron loss and saturation, etc, the induction motor can be 
modeled in stationaw reference frame and synchronously rotating reference frame. 

2.2.1 Stationary Two-Axis Model 

A 3-phase induction motor has three coils in the rotor and three coils in the stator. The 
rotor coils are rotating with an electrical angular velocity co, . The three-phase winding and 
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their orientation are shown in Fig. 2.1. It appears that the coupling between the stator and 
rotor coils is a function of position of the rotor and is continuously variable. So it is not 
wise to model an induction motor using its physical windings. The variables of an 
induction motor are phases and it can be modeled by equivalent two windings in lieu of 
three. In this consideration, three stationary stator windings may easily be represented by 
two equivalent stationary windings. To avoid the complexity of variable coupling, two 
equivalent stationary windings are considered for rotor circuit. Fig. 2.2 shows the mutually 
perpendicular fictitious coils of the three-phase equivalent of induction motor. In this 
connection, voltages due to rotor speed are duly considered. In the mutually perpendicular 
frame, there is no coupling between the axes quantities, which results in a simple system. 
Considering the voltage drops in the stator due to resistance, self and mutual inductances, 
the stator circuit equations are written. In addition to these the speed voltage terms are 
considered for rotor circuit only. The stator and rotor circuit voltage equations of an 
induction motor are given in (2.1). Well judged assumptions of no saturation, sinusoidal 
distribution of flux and minf and ignoring the effect of iron loss results this set of 
equations. The stationary axes are indicated as a and fi [30, 31]: 

[v1 [R+Lp 0 Lm P 0 ics  
vmH 0 R+Lp 0 Lm P H'm  
0 Lm P Lmti)r Rr  + Lr P Lr (J.) r  

[o j [_Lm ür Lm P Lyá)r Rr+Lrp]LIp] 

lbs 

Figure 2.1 Physical Coil system of the stator and the rotor of a 3-phase induction motor. 



p 

Rotor Vas 

equivalent 

Figure 2.2 Mutually perpendicular fictitious coils of the 3-phase equivalent of induction 
motor. 

The developed electro-magnetic torque of an induction motor of Ps,, -pole pairs is: 

= Pp cELn i +Lr I fr ]_I fr Lrn! +Lrlôj) (2.2) 

In terms of stator current and stator flux the equation (2.2) can be expressed as: 

Te = p('i'm -f ç) 
(2.3) 

where, 

= Li + Lm!r (2.4a) 

7r =Lr +Lm 1s (2.4b) 

7 
IT  = [1= 11T  and 1, = [ç are the stator flux, the rotor flux, the stator current and 

the rotor current vectors respectively. 
And the torque balance equation is 

7, =J 
da

•+J3(Om +TL (2.5) 
dt 

Where o = , nl 
(0.

Pp 

2.2.2 Synchronously Rotating Two-Axis Model 

It is well known that the flux and mmf of an induction motor are synchronously rotating. 
To visualize the phenomenon of torque production and performance of the induction motor 
the synchronously rotating mutually perpendicular axes system is considered. This model 
is also suitable for current fed inverter-coupled system. According to two-axis machine 



theory, when a symmetrical induction motor is described in a reference frame that rotates 
in synchronism with the stator mmf, all the ac phase-variable sets get transformed into 
equivalent dc variables. Under the usual assumptions of no hysteresis, eddy currents, space 
harmonics, etc., the basic system of equations of an induction motor in terms of a 2-phase 
model (d-q variables) in an arbitrary synchronous reference frame is given by [30]: 

V
dT 

 rR+PL5 —vL Lm(1) 
l[:thl 

V qs  = 
w eLs Rç  + pL Lmwe PLm  'qs (2.6) 

I 0 I J9Lm - LrnO) ci Rr  + P1'r - Lr (V si  id, 

- 0 j [ Lm(O ci PLm Lr )si Rr  +PLr j[lqr j 

Fig. 2.3 shows the spatial relationship between the axes of different frames of reference 
viz. stator-fixed, rotor-fixed, and synchronously rotating d-q reference frames. 
The developed electromagnetic torque is: 

= _I dc1qr ) 
2

1 Pp Lm (Iqsdr  (2.7) 

Equation (2.6) and equation (2.7) can be rearranged as follows: 

—s d —s - v =Ri +.yj5 + J (i)e l/Is5  (2.8a) 
dt 

0 = Rrir5 + 
+ 

dt 
(2.8b) 

Te  =Pp (i/JdS I qs  _ qs1as ) (2.9) 

Where. 
= + Lmi i.5  (2. 10a) 

Fp—,s Li +Lmi.5  (2.1ob) 

and t = [v is the stator voltage vector, 1 [i tqs 
I and l r  = [dr 

I
qr

]T are 

the stator and rotor current vectors, co,  is the speed of the synchronous reference frame, 

ô. is the slip speed. R, Rr  are the stator and rotor resistances, and 7 = [yi Wqs 1T  

and = [Wdr Wqr 
IT are the stator and rotor flux linkage vectors respectively. The 

superscript s in the above equations denotes that the quantity is referred to the 
synchronous reference frame. Here, the variables [Ujç Wqs] and [qJ Wqr] imply the 

flux linkages with the stator and rotor circuits along the synchronously rotating d- and q- 
axis respectively. 

With reference to Fig. 2.4 if i is the magnitude of the vector current I, the corresponding 

d- and q-axis currents in the synchronous reference frame are: 

ids =z5g 
 

1qs =  lsgqs 

Where 

g=cosO 
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gqs = sinO 

tanO — — (2.12) 

z

iqs 

1 ds 

 

a5  

41 

a5  - Actual stator a phase axis 

(Z r  - Actual rotor a phase axis 
a 
- 

/.?- Stator fixed reference frame 

x 
- 

y - Rotor fixed reference frame 
d - q - Synchronously rotating reference frame 

i- Stator mmf vector 

Figure 2.3 Relation between various co-ordinate systems and principle of field orientation. 

2.3 Phase Relationship 

1) The physical phasors and the fictitious two-axis phasors are shown in Fig. 2.4. 
Considering the voltages in the axes systems, the relationship among them is 
established as: 

I I 
V = V Vb — — V,  

- 

(2.13) -  

V.85  = 

Similar relationship exists between the currents. 

1, 

b 

Figure 2.4 Physical 3-phase variables and their equivalent fictitious two-axis phasors. 



2.4 Induction Motor Model in terms of Stator Current and Rotor Flux 

In a speed controlled induction motor drive the motor is fed from a three-phase inverter. 
The inverter output voltage and current are controlled in a number of ways. The PWM 
method uses a number of positive and negative pulses per half cycle to control the 
magnitude and frequency of fundamental component of ac voltage. The simplest inverter 
generates square voltages at the output. From equation (2.1) and equation (2.2), the basic 
circuit equations in the stationary reference frame of induction machine can be written as: 

(R7 +pL5 )I PLm I is1 (2.14) 
LO PL' -cOr Lm J (Rr  + -LrOir 

][7 

1  i 

- . - 

and = 
3 
— P(çw + i i) (2.b) 

where, Y1r = + Lrir (2.16) 

where, p .-. is the time derivative. 
di 

The state and output equations are easily derived from equations (2J4) and (2.16) as: 

1= H" A,71[ +

10 1 

B, (2.17) 
di' r] L2, A22]Li7r ] 

I
s  =[i oi[ (2.18) 

LWr 

Where, 

A,, = - 
Rç 

+ R, (i 
- 

o- L 

A,2 
= L  s  L  r L 

A 21 

= L m  R  r j 
L 

R. 
A27  

B =—I 
c-La  

1 
 r 01 ro —i 

(2.19) 
i 

=1 I .1 =1 
L° 1] [1 0] 

= 1 leakage coefficient (2.20) 
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The state variables are the primary current i = [i 1, 
jT and the rotor 

[,i The input is the primary voltage5 = IV. v, }T .  

2.5 Induction Motor Model under Field Orientation Principle 

From (2.6) and (2.5) the fifth order non-linear state space model of induction motor is 
represented in the synchronous reference frame (d-q) as follows: 

v = (R3  + pL )d, - eLsI qs  + P1m1dr  - (Lie  Lml qe (2.21) 

v = ieLsl ds  +(R +PL5)lqs + eLm! J, + P"mr (2.22) 

o = PLml dc ã)siLml s  +(Rr  +PLr)ljr  — siLrcr  (2.23) 

O=O.iSl Lmld +PLmIqS  +(Rr  +PLr)lqr +O),Li (2.24) 

= Jpa + B(Om  + TL  (2.25) 

Where , (),.and °'s(=  0e  —( r )3re the synchronous, rotor and slip angular speeds 

respectively and L. is the mutual inductance. 

From (2.7) the developed electromagnetic torque in terms of d- and q- axes components is 
given by: 

Te  = j P p Lm (f qs !ar 
 - 'ds'qr) (2.26) 

Where, P is the number of pole pairs. 

Components of rotor flux are: 

Y1dr = Lr!dr  + Lmldc  (2.27) 

= Lrl qr  + Lmlqs  (2.28) 

From (2.27) and (2.28), d- and q- axes rotor currents are: 

'dr = ('/'d - L,i) (2.29) 
Lr  

1qr = (V'qr Lml qs ) j (2.30)  

Substituting (2.27)-(2.30) into (2.23) and (2.24) yields: 

d Yldr +
Rr

- 
- -LR,.ids   - á)cj Ylqr  =0 (2.31) 

1I'qr 
+L Wqr __' r1qs s1'dr =0 j (2.32) 

F-i 
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If the field orientation is established such that q-axis rotor flux is set zero, and d-axis rotor 
flux is maintained constant then equations (2.31), (2.32), (2.29), (2.30) and (2.26) 
becomes: 

= ds 
(2.33) 

qS (2.34) 
Tr  1th 

i.=0 (2.35) 

iqr ' qs (2.36) 

= 
7 l/I J,.lqç (2.37) 

Where T r (= Lr  IRr ) is the time constant of the rotor. Hence, only q-axis stator current 

controls the developed electromagnetic torque. 

2.6 Analysis of Magnetization Characteristics 

The stator and rotor of polyphase induction motors are built with high grade laminated 
sheets and constitute the magnetic circuit of the polyphase induction motor. A small 
uniform air gap separates the stator and rotor cores. The magnetic cores exhibit almost 
linear characteristic at the beginning of the magnetization curve and after the knee point 
saturation influences the characteristics to be nonlinear drastically. A proper magnetic 
model of the machine is required to have an exact idea about the performance of the IM 
drives. From the experimental data the true magnetization characteristic can be evaluated 
[32]. If V be the applied rms voltage to an IM, the mutual flux linkage can be written as: 

VIM = 
 -52  

(2.38) 
CUe  

To obtain information on (2.38) for the motors, whose nominal parameters are furnished in 
Appendix I and the test were performed in the laboratory. The machine under test was 
driven at synchronous speed by an auxiliary motor and the stator was supplied from a 
constant frequency variable voltage source. From the recorded ammeter, voltmeter and 
wattmeter data after subtracting the stator resistance and leakage-reactance drops, the 
deduced true saturation characteristic and its magnetizing inductance are shown in Fig. 
2.5(a) and 2.5(b) respectively. The leakage flux of the induction motor is only a small 
percentage of the mutual flux and does not vary too much due to saturation effect [33]. 
From the fitted curve the equations of mutual flux linkage and mutual inductance are: 

V"nzag = a0  + a j!mag  + 02 + Ci 3 1 mag  + + 0 5! mag (2.44) 

= h0  + b! 0  + b~I, a&  + + b4I,üg  + b5 z 08 (2.45) 

The coefficients a s and b s of the above equations are indicated in the corresponding 
figures in 2.5(a) and 2.5(b). respectively. Segmentwise linear characteristics are sometimes 
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promising for easier analysis of the induction machine and it is imposed for Fig. 2.5(a) as 

indicated. Here two segment linear characteristic is considered and the approximate 
characteristic is used to find out the knee point of the magnetization characteristic. This 

/ point is used to find out v',, and I, as the parameters of the knee point. Up to the knee 

point starting from the origin the mutual inductance Lm  is assumed to have constant value. 
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Figure 2.5 Magnetization characteristics (a) true saturation characteristic and (b) 
magnetizing inductance 
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2.7 Conclusion 

In this chapter the induction motor model in arbitrary reference frame is discussed in 
detail. A dynamic model of the machine subjected to control must be known in order to 
understand and design high performance controlled drives. The condition to achieve field 
orientation control is derived. Magnetic saturation in induction motor drive is considered 
for more realistic representation in the analysis. The magnetic saturation is incorporated in 
the machine model as a variable magnetizing inductance. 
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CHAPTER III 

01  
QEA and Fast Speed Response IM Drive 

3.1 Introduction 

Selection of controller parameters is a challenge for researchers in high performance 
drives. Specially, to produce required variable dynamics from the drive system 
Proportional-Integral (P1) controller constants may be obtained using on line tuning 
through genetic or evolutionary algorithms. There are different evolutionary algorithms 
such as Evolution Strategies. Evolutionary programming, Genetic Algorithm (GA), 
Particle Swarm Optimization (PSO), Differential Evolution (DE) etc. and these are called 
Conventional Genetic Algorithm (CGA). 

Quantum Evolutionary Algorithm (QEA) is a novel probability optimization algorithm 
based on the concept and principles of quantum computing [14]. Instead of binary, numeric 
or symbolic representation, QEA uses quantum bit or Q-bit. Compared with Conventional 
Genetic Algorithm (CGA), QEA has a better characteristic of diversity in the population 
and can keep the balance of exploration and exploitation more easily- even with a small 
population. So QEA has become a research hotpot in recent years. 

In this chapter. QEA is used to select the gain coefficients of PT controllers in the proposed 
control system. A comparative analysis between QEA and CGA based control system has 
been done here. 

3.2 Conventional Genetic Algorithm (CGA) 

Producing initial populations is the first step of CGA. The population is composed of the 
chromosomes that are binary bit stream or real codes. The corresponding evaluation of a 
population is called the fitness function . It is the performance index of a population. In 
this project the fitness function is defined as 

F=((Orref '°r) (3.1) 

The evolution procedure of CGA is shown in Fig. 3.1. The overshoot and settling time of 
the controlled system is used as the performance index of fitness function. Then fitness 

function [34] can be defined as F = f j  x f2.  The definitions of f1 and  .12  are f,  = 

"2 = where OT is the overshoot time quantity and is the settling time quantity 

K, and K are weight factors that control the value of overshoot and settling time. 

After the fitness function is calculated, the fitness value and the number of the generation 

determine whether the evolution procedure is stopped or not. In the following, the new 

populations are generated through reproduction, crossover, and mutation. 

Reproduction is a process to decide how many copies of individuals strings should be 

produced in the mating pool according to their fitness value. The reproduction operation 

allows strings with higher fitness value to have larger number of population while the 

strings with lower fitness values have a relatively smaller number of copies or even none at 
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all. The selection operation decides which parents take part in reproducing offspring for the 

next generation. 

Crossover is a recombined operator for two high-fitness strings (parents) to produce two 
off springs by matching their desirable quantities through a random process. The crossover 
operation is applied to generate new chromosomes. The equations of the new populations 
generated from crossover are [34] 

x0  = (1— x)x 1  + ax. (3.2) 

x02  =(1—c)x2 pI (3.3) 

Where X and X,2  are the old chromosomes, a is the random value from 0 to 1. X01  

and X02  are the new chromosomes. 

 

Figure 31 Evolution Procedure of CGA. 

Mutation is a method to find the global optimum value. It is a process to provide an 
occasional random alternation of the value at a particular string position. In the project, 
Time Variant Mutation (TVM) operator is used to mutate all variables of offspring [34]. It 
is ought to be taken care that initially this type of mutation might violate the domain of the 
object variables. In case of domain violations for any offspring, that offspring is left 
without mutation. 
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In this thesis work, CGA is used to optimize the gains of P1 controller in the speed loop of 
the control system for comparing with the performance of the proposed QEA based control 

14- system. Parameters used in CGA are given below: 

Population size=20; Crossover Probabilit= [0 to 11 Selected from united random number; 
Mutation Probabilitv=0.4; No. of Generation= 100. 

3.3 Quantum Evolutionary Algorithm (QEA) 

The QEA is a stochastic search and optimization method based on the principles of natural 
biological evolution such as the quantum bit and the superposition of states [14]. The QEA 
can treat the balance between exploration and exploitation more easily when compared 
with CGA. Producing initial populations is the first step of QEA. The population is 
composed of the chromosomes that are represented by quantum bit or Q-bit which is the 
smallest unit of information in QEA. The corresponding evaluation of a population is 
called the fitness function . It is the performance index of a population. In this project, the 
fitness function is defined as: 

Fitness = (3.4) 
ç+I 

p Where. ç = Jlspeed errordr is the objective function and speed_error  

3.3.1 Representation of QEA 

A number of different representations can be used to encode the solutions onto individuals 
in evolutionary computation. The representations can be classified broadly as: binary. 
numeric, and symbolic. QEA uses a new representation, called a Q-bit, for the probabilistic 
representation that is based on the concept of qubits, and a Q-bit individual as a string of 
Q-bits. 

A Q-bit may be in the 1 state, in the 0 state, or in any superposition of the two. 

Superposition of logical state can be expressed as alo)+  ,8i) . Another way of writing 

superposition as a vector is shown below: 

a 0) + f31)(aJ (3.5) 

The complex numbers a and fi are called the amplitudes of the superposition. a 2gives 
the probability that the Q-bit will be found in 0 state and II2gives the probability that the 
qubit will be found in 1 and they satisfy the normalization condition Jail  +L8I2 = I. A Q-
bit is also defined with a pair of numbers (a, fi) and a Q-bit individual as a string of m Q-
bits is defined as [141: 

[a1  a, ... am  
q=I - (3.6) 

Where a1 2 I = 1,2, 3 ..m. A Q-gate defined as a mutation operator is applied 
on the Q-bit to update their probability amplitudes as follows: 

(1%; [cos(A8, )  _sin(0)1(a, 
44 1J6) [sin( e )  cos(8)  jfl3  

(3.7) 
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Where A0, 1=1. 2, 3 .. in. is the rotation angle of a Q-bit towards the 0 state or 1 state 

1 isy i itiondepending on its sign. al f  

al2  +192 
= I. The crossover operator is employed after a given interval of generations. 

Along with Q-bit population, a binary population is also maintained for evaluation process. 

3.3.2 Procedure of QEA 

begin 

t-0 

initialize Q(t) 

make P(t) by observing Q(t) states 

evaluate p(t) 

store the best solution among P(t) 

while (not termination-condition) do 

begin 

make P(r) by observing Q(t-1) states 

evaluate p(t) 

update Q(t) using quantum gates (1(t) 

store the best solution among P(t) 

end 

end 

Where Q(t) is a population of qubit chromosomes at generationt, and P(t) is aset of binary 
solutions at generation 1. 

In the step of initialize Q), all qubit chromosomes are initialized with the same constant. 
It means that one qubit chromosome represents the linear superposition of all possible 
states with the same probability. The next step makes a set of binary solutions. P(t), b 
observing Q states. One binary solution is formed by selecting each bit using the 
probability of qubit. And then each solution is evaluated to give some measure of its 
fitness. The initial best solution is then selected and stored among the binary solutions, 
P(t). 

In the while loop, one more step, update Q(t), is included to have fitter states of the qubit 
chromosomes. A set of binary solutions, P(t), is formed by observing Q('t-l) states as with 
the procedure described before, and each binary solution is evaluated to give the fitness 
value. In the next step, update Q(), a set of qubit chromosomes Q('t) is updated b 
applying some appropriate quantum gates U('t), which is formed by. using the binan' 
solutions F(t) and the stored best solution. The appropriate quantum gates can be designed 
in compliance with practical problems. Rotation gate is used as a basic gate of QEA. This 
step makes the qubit chromosomes converge to the fitter states. The best solution among 
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P(t) is selected in the next step, and if the solution is fitter than the stored best solution, the 
stored solution is replaced by the new one. The binaiy solutions P(i) are discarded at the 
end of the loop. In the project, QEA is used to optimize the value of two gains k and k1. 

The overall structure of QEA is shown in Fig. 3.2. 
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Figure 3.2 Overall structure of QEA [141. 
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reference value (125 rad/s) faster than that of CGA controller. Similar characteristic was 
shown when the reference speed was changed from 125 rad/s (1193.5 rpm) to 75 rad/s (716 
rpm). The faster speed response would be clear from Fig. 3.5 which is the small scale 
representation of Fig. 3.4 into two parts, one is transient condition and the other is steady 
state condition. From Fig. 3.5(a), it can be seen that settling time for CGA based P1 
controller is 0.49 sec. whereas that of QEA based Pt controller is 0.41 sec. when reference 
speed was chosen 125 rad/s. Fig. 3.5(b) shows the speed response fluctuation at steady 
state condition in case of CGA controller whereas that of QEA controller is almost 
constant. 

01 . iiac I 
0.0 0.2 0.4 0.6 0.8 1.0 1.0 1.5 2.0 2.5 3.0 

lime in sec Time in sec 

(a) (b) 

Figure 3.5 Zoomed Speed response of QEA and CGA based P1 controller at (a) Transient 
condition for the time 0 to lsec. (b) Steady state condition for the time 1 sec. to 3 sec. of 

Fig. 3.4. 

3.4.2 Fast Speed Response IM Drive 

Fast speed response of another induction motor with different rating is further achieved 
using QEA based Pt controller tuning compared with CGA based Pt controller tuning and 
shown in Fig. 3.6. Effectiveness of the controller is also tested by different set speed. It is 
observed that QEA based system needs 0.24 sec. to speed up the motor at reference speed 
1500 rpm whereas CGA based system needs 0.27 sec. 

Figure 3.6 Speed response of IM drive using conventional Pt controller and QEA based P1 
controller with different set speed. 
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3.5 Conclusion 

In this chapter, a quantum evolutionary algorithm (QEA) based P1 controller has been used 
to replace the conventional genetic algorithm (CGA) based P1 controller in the control 
system of induction motor drive. As the representation style of QEA is Q-bit, it can store 
more state as well as the searching area is more compared to CGA with same number of 
register and better solution is obtained. Besides this, in CGA the parents are always 
replaced by offspring whereas in QEA the parents are not always replaced by offspring. 
The offspring is tested first whether it is better than the parents or not to replace the 
parents. This is why there are less probability of fluctuation the gain coefficients of P1 
controller. So, the motor runs smoothly at steady state condition than CGA based control 
system. It is observed that the proposed QEA based P1 controller need less time to speed 
up the motor at transient condition and generate negligible speed fluctuation at rated speed 
under steady state condition. The proposed QEA based controller is capable to drive the 
load smoothly and shows better performance in load disturbance condition. The 
performance of the controller remarkable and future research industrial applications will 
find optimization through QEA. 
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CHAPTER IV 

Chaotic Learning Based ANN 

4.1 Introduction 

Chaos theory is a mathematical sub-discipline that studies complex systems that contain so 
much motion and computers are required to calculate all the various possibilities. The 
seemingly random events of nonlinear dynamics are actually predictable from simple 
deterministic equations using chaos. So, the flux of induction motor can be predicted more 
accurately under steady state and transient conditions using chaos. 

The neural networks have become well established in induction motor drive for different 
tasks especially for estimation of rotor flux. Since the 1990s, several investigations into 
the applications of neural networks in the field of electrical machines and power 
electronics have appeared. Using artificial neural networks (ANNs) the rotor flux 
components of IM can easily be estimated which is insensitive to motor parameter 
variations. But local minimum is an integrated problem in training of ANNs and the speed 
of convergence is very slow due to this effect. To avoid this problem, the chaotic 
variations of learning rate (LR) are included with the conventional learning rate. In this 
chapter, chaotic variations of LR have been included with the learning rate of three 
algorithms such as backpropagation (BP), Real Time Recurrent Learning (RTRL) and 
Correlated Real Time Recurrent Learning (CRTRL) algorithms to estimate the rotor flux 
components of induction motor drive accurately. All the algorithms mentioned above 
generate a chaotic time series with logistic map. 

4.2 Chaos Variables 

The name "chaos theory" comes from the fact that the systems are apparently disordered. It 
is reall' about finding the underlying order in apparently random data. Chaos variables are 
usually generated by the well-known logistic map. The logistic map is a one-dimensional 
quadratic map defined by: 

)'(k+l)1y(k)(l- y(k)) (4.1) 
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Figure 4.1 The logistic mapping. 
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Where 0 1 is a control parameter, k denotes a discrete time step and (7c) denotes a 
data at k. Despite the apparent simplicity of the equation, the solution exhibits a rich 
variety of behavior. For .t = 3.584.0. it generates chaotic evolutions 1171. Its output is like 
a stochastic output, no value of y is repeated and the deterministic equation is sensitive to 
initial conditions as shown in Fig. 4.1. Just a small change in the initial conditions can 
drastically change the long-term behavior of a system. Such a small amount of difference 
in a measurement might be considered experimental noise, background noise, or an 
inaccuracy of the equipment. 

4.3 Chaotic Learning Based Back-Propagation Algorithm 

The most dominant algorithm for pattern recognition is, so far proved, the back-
propagation algorithm. It should be mentioned here, for multilayer perceptron (MLP) 
back-propagation algorithm is widely used [36]. Here, the basic of the back-propagation 
algorithm with chaotic learning rate is briefly discussed. 
The error signal at the output of neuronj at iteration n is defined by: 

e3(n) = d(n) — y(n) (4.2) 

Here, neuronj is an output node. 

The instantaneous value of total error energy can be written as per definition: 

e(n)=ie(n) (4.3) 

\Vhere, the set C includes all the neurons in the output layer of the network. Let N denotes 
the total number of patterns contained in the training set. The average squared error 
energv, is obtained by summing e(n) over all n and then normalizing with respect to the 

set size N as represented by: 

9 all 
= 

g (n ) (4.4) 

For a given training set, e, represents the cost function as a measure of learning 

performance. The objective of learning process is to adjust the free parameters of the 
network to minimize 

Again, the induced local field v(n) produced at the input of the activation function 
associated with neuronj is therefore: 

v(n) 
= 

(4.5) 

Where, m is the total number of inputs (excluding bias) applied to the neuronj. 
The functional signal appearing at the output of neuronj at iteration n is: 

y1(n) = p(v(n)) (4.6) 

The back-propagation algorithm applies a correction Jw (n) to the synaptic weight w,('n), 

which is proportional to the partial derivative ce(n)/t9w,,(n). According to the chain rule 

of calculus we may express the gradient as: 
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i3E(n) 
= 

(n) ae(n) ay(n) ãv(n) (47) 
?iw 1(n) Eie(n) Ey(n) &.i(n) àw(n) 

The left term represents a sensitivity factor. 
Differentiating both side of(4.3) with respect to e/n,, it becomes: 

ae(n) =e (n) (4.8) 
ae(n) 

Differentiating both sides of(4.2) with respect toy/n), it becomes: 

ae(n) 
=_ 

(49) 
y1(n) 

Next, Differentiating both side of(4.6) with respect to y'n), it becomes: 

aY 3 (n) 
(n)) (4.10) 

äv(n) 

Finally, differentiating (4.5) with respect to w,('n) yields: 

81(n) =y(n)  
ôw,(n) 

The use of(4.8) to (4.11) in (4.7) yields: 

= —e, (n), (v (n))y, (n) (4.12) 

The correction is defined by the delta rule: 

(4.13) 
c9wji (n) 

Where, q is the learning rate parameter of the back-propagation algorithm and y is the 
chaos variables. Now it can be said chaotic learning based back-propagation algorithm 

t371. The minus sign indicates gradient descent in weight space. Accordingly, the use of 
(4.12) in (4.13) yields: 

LtW13 (fl) = -() + y) (n)y, (n) (4.14) 

Where the local gradient 4(n) is defined by: 

S (n) = - 

s3e(n) 

Cv,(n) 

&(n) ae(n) v(n) 

ae(n) 'v3 (n) a,,(n) 

=e(n)t'p(v3(n)) (4.15) 

The local gradient points to required changes in synaptic weights. According to (4.15) the 
local gradient 4(n) for output neuron j is equal to the product of the corresponding error 
signal c/n) for that neuron and derivative of the associated activation function. 
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4.4 RTRL and CRTRL Algorithm for ANN 

The RTRL algorithm derives its name from the fact that adjustments are made to the 
synaptic weights of a fully connected recurrent network in real time. Fig. 4.2 shows the 
layout of such a recurrent network [36]. 

State 
vector 
x(k) 

Output 
vector 

y(k+1) 

Figure 4.2 Fully connected real time recurrent network 

In Mathematical terms, the dynamical behavior of any noise free system can be described 
by the following pair of nonlinear equations: 

x(k + 1) = qQV 0 x(k) + V bu(k)) (4.16) 

Y(k)=Cx(k) (4.17) 

Where, x(k)i5  the q-by-I nonlinear state matrix, u(k) is the (m+1)-bv-1 input matrix, 

y is the p-by-i corresponding output matrix, w is the q-bv-q matrix, u7 is the q-bv- 

(m+1) matrix and C is the p-by-q matrix. 

The process equation (4.16) is reproduced here in the following expanded form: 
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p(WT z( k)) 

x(k + I) = q(J' T  z(k)) 
(4.18) 

(P(W qT Z(k)) 

It is assumed that all the neurons have a common activation fiinction'p(.). The (q+m+l)-

by-I vector w is the synaptic weight vector of neuronj in the recurrent network, that is: 

= I1I ,j=1,2  ...q  
L "t'b.j  

Where w and w are the ph columns of the transposed weight matrices j and irT  

respectively. The (q+m+ 1)-by-i vector: 

Z(k)= x(k) (4.20) 
lu (k) ] 

To simplify the presentation of the RTRL, we define matrices as follows [38]: 

The derivative matrix of the q-by- 1 nonlinear state matrix x() with respect to the weight 
vector W,: 

c(k) (4.21) 
(w,(k-1) 

Z,(lç) is a q-by-(q + m + 1) matrix whose rows are all zero, except for the ith row that is 
equal to the transpose of vector z(k) 

or 

Z,(k)= zT(k) <— iihrow i=1,2 ............ .q (4.22) 
or 

q(k) is a q-by-q diagonal matrix: 

(Ak + I) = diag [rp' (1I f (k)z(k)),i(JJ T (k)z(k)) (4.23) 
co(WqT(k)z(k))] 

With these definitions, the following recursive equation A, for the neuron 1 can be 

obtained by differentiating Eq. (4.21) with respect to W, and using the chain rule of 
calculus: 

A,(k+1)=ço(k+i)[1V0 (k)A,(k)+Z(k)] (4.24) 

The objective of the learning process is to minimize a cost function obtained by the 
instantaneous sum of squared errors at time k, which is defined in terms of e(k) by 

.1(k) = 
1 eT (k)e(k) (4.25) 

! 
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I,uc  
1711 

Where the p-by-i error vector e(k) is defined by using the following measurement 
equation: 

e(k) = (k) - v(k) 

Where i(k) denotes the desired output vector. 

The adjustment for the weight vector of the ith neuron Aw, is: 

lJ(k) = ( + y) = + y)C; 4 (k)e(k), I = 1,2,3.......q 
rc(k) 

Hence, the new weight vector of the ith neuron is: 

W,(k + 1) = W,(k)+ A W,(k) 

Rotor Flux Synthesis by CRTRL Algorithms is shown Fig. 
RTRL and CRTRL is outputs of CRTRL are correlated 
uncorrelated to each other. 

(4.26) 

(4.27) 

(4.28) 

4.3. The difference between 
whereas RTRL output is 

Figure 4.3 Stationary a- and /3- axes rotor flux synthesis by CRTRL algorithm. 

The same machine input data are used to train the Back propagation. RTRL, CRTRL. and 
proposed chaotic learning based CRTRL networks. Both RTRL and CRTRL have no 
hidden layer whereas the back propagation algorithm required two hidden layers for 
estimation of rotor flux and the structure of learned back propagation algorithm is 5-8-8-2. 
Fig. 4.4 shows the comparisons of mean square errors for backpropagation and different 
RTRL algorithms. From the error data and curves in Fig. 4.4(a), it is clear that the mean 
square error (MSE) is smaller in the proposed Chaotic Learning based CRTRL algorithm 
than that of other RTRL algorithms. Hence, proposed chaotic learning based CRTRL 
estimator is superior to that of Back propagation, RTRL, and CRTRL estimators without 
chaotic learning rate. To visualize the improvement of chaotic learning based CRTRL by 
MSE, a small scale representation of mean square error for chaotic learning rate based 
CRTRL has been shown in Fig. 4.4(b). It is observed that proposed chaotic learning based 
CRTRL accelerates the weight update into the local minimum zone whereas the constant 
learning rate based CRTRL is unable to reach. Hence the proposed flux estimator 
overcomes the problem in training of ANNs. It is also apparent that the rate of convergence 
of MSE starts after the ending point of conventional constant learning based CRTRL. 
Numeric improvement of chaotic learning based ANNs have also been shown in Table 4.1. 
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Figure 4.4 (a) Mean square error comparisons between Back-propagation. RTRL and 
CRTRL algorithms using chaotic learning based ANN (b) Small scale representation of 

MSE for chaotic learning based CRTRL. 

Table 4.1 Mean square error comparison 

Back-propa- Back-propagation RTRL CRTRL CRTRL 
gation algorithm with chaotic algorithm algorithm algorithm with 

algorithm learning chaotic learning 

0.00052 0.0004 0.00016 0.00009 0.0000725 
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4.5 Simulation Results 

Simulation studies have been conducted in order to establish the functionality of the 
proposed estimation scheme. Simulation results for transient and steady state conditions of 
the field orientation controlled induction motor concerning the proposed chaotic learning 
based ANN estimators have been presented in this section. In the simulated tests, for 
comparison purpose, the real or actual flux has been obtained by the voltage flux model 
descried in equations (2.1). 
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Figure 4.5 a-axis rotor flux estimation using backpropagation algorithm (a) transient and 
(b) steady state. 

Figs. 4.5 and 4.6 show the actual and estimated a-, and fl-axes rotor flux respectively at 
both of transient and steady state conditions using backpropagation algorithm. Without 
chaotic learning rate, the estimated flux components cannot follow the reference flux 
precisely. It is found that chaotic learning based backpropagation algorithm is capable to 
estimate the flux more accurately especially the phase of the reference flux at both of 
transient and steady state conditions. The amplitude of estimated flux components 
decreases at transient conditions but it overcome at steady state conditions and shown in 
the next section. Hence, chaotic learning based backpropagation algorithm shows better 
performance than without chaotic learning. 

32 



Actual o 50 
- Estimated 

0.25 

1 j3p.5 
-0.50 I - 

0.0 0.1 0.2 0.3 0.4 0.5 

Time in sec 

0.50 _____ 
- Actual 
- kstim ated 

0.25 

0.00 

0.25 

0 50 
B PA with chaotic learning 

0.0 0.1 0.2 0.3 0.4 0.5 

Time in sec 

(a) 

0.50 

0.25 

. 0.00 

-0.25 

--,. . 

0.5 0.6 0.7 0.8 0.9 1.0 
Time in see 

Actual
m   I Estiated 

I  It  I\/\j'\ 
\/ \; \! 

RP A with  1iati larnino 
-0.50 l' "' """ I 

0.5 0.6 0.7 0.8 0.9 1.0 

Time in sec 

0.50 

0.25 

0.00 
x 

-0.25 

(b) 

Figure 4.6 fl-axis rotor flux estimation using BP algorithm (a) transient and, (b) steady 
state. 

Figs. 4.7 and 4.8 show the estimated a-. and fl-axes rotor flux respectively with its trained 
value under both of transient and steady state conditions. The training is performed for 
CRTRL algorithms. The phase tracking of reference signal is more accurate in both flux 
components and it is obvious from Fig. 4.8(a). Though the amplitude of estimated flux 
decreases at transient condition, it overcome at steady state condition and follow the 
reference flux accurately. This phenomenon has  been shown by small scale representation 
in Figs. 4.7(b) & 4.8(b). Hence, from these simulated curves, it can be said that the 
proposed chaotic learning based CRTRL algorithm based rotor flux estimation is more 
accurate than  without chaotic learning based CRTRL. 
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Figure 4.7 a-axis rotor flux estimation using CRTRL algorithm (a) transient and, (b) steady 
slate. 
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Figure 4.8 fl-axis rotor flux estimation using CRTRL algorithm (a) transient and, (b) steady 
state. 

4.6 Conclusion 

In this chapter chaotic learning based ANNs training has been introduced to estimate the 
rotor flux components of induction motor drive. Due to the injection of chaos with the 
learning rates of BP and RTRL, the weight update is accelerated in the local minimum 
zone. The mean square error of flux estimation improves by 0.00012 and 0.0000 175 in the 
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case of BP and CRTRL algorithms respectively. The rotor flux estimation is also found 
more accurate at both of transient and steady state conditions due to the use of chaotic 

10- learning rate in training of ANNs. As the main condition of high performance induction 
motor is accurate flux estimation, this proposed work can be used in many industrial 
applications. 
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CHAPTER V 

Proposed Control Methodology and Simulation Study 

5.1 Introduction 

The efficient and fast control of electric power requires modern technology. It is done by 
using electronic power converters. The converters transfer energy from a source to a 
controlled process in a quantized fashion, using semiconductor switches that are turned on 
and off at fast repetition rates. It is generally preferred to take the power from a DC source 
and convert it to three-phase AC using DC-to-AC converters. Many technologies are 
available for this purpose. Space vector modulation (SVM) is one of the technologies. In 
this research work, a six switch three phase (6S3P) inverter is used with space vector 
modulation. Simulation studies for proposed high performance induction motor control are 
presented in this chapter. The gain coefficients of P1 controller are optimized using 
proposed QEA algorithm. The flux is estimated through proposed chaotic learning based 
CRTRL based ANN. Improvements of the performance of the drive systems are given at 
the finishing part of the chapter. 

5.2 Space Vector Modulation 

In voltage controlled drives the reference voltage magnitude and phase angle are generated 
by the controller. The reference voltage vector u can be resolved into the machine 

command a - and /3 - axes voltages v, , and v as: 

. 1.2 .2 
U =jv, +vrn (5.1) 

Fig. 5.1 shows the implementation of the SVM principle. The reference vector u is 
sampled at the clock frequency 2f.  The sampled reference voltage vector u(T) at 

sampling time T is used to solve the equations to obtain the switching intervals as follows 
[38]: 

u•(tc) 

(5.8) I 

to I 
2/,. (5.10) Vd 

U
. ===øl _/_ I Select 

3-phase 

motor 

Figure 5.1 Space vector modulation signal flow diagram. 
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2 
(t0 U0 +tbub)=  u(T) (5.2) 

to  = t7  = —to  1b) (5.3) 

where Ua and ub are the two switching state vectors adjacent in space to the reference 
vector u as shown in Fig. 5.2. After solving the above equations the durations t, tb and to 

of the switching state vectors become: 

* 3 
la = Tu (T )— (cos arrsina) (5.4) 

J3 

* 
= Tu (T ) 

2 
 —sina (5.5) 

= = (Ts  1a 'b 
(5.6) 

iim 

S3(O10) I 
10) 

ifm /s0(000) 
S1(100) 

S4(011) S(111)
VI 

U7 

IV 

Re S001)U5 . 

(a) (b) 

Figure 5.2 (a) Switching-state vectors, shown in the first 600  sector, (b) All voltage vectors 
in space. 

The angle a in these equations is the phase angle between the reference vector u and u0. It 
is assumed in figure 5.2(a) that the reference vector is located in the first 600  sector of the 
complex plane. The switching vectors adjacent to the reference vector are UaU/ and ub=u2. 
When reference vector enters the next sector, Ua=U2 and Ub=U3.  Similar sequences are to be 
maintained for rest of the sectors. The zero vectors are redundant. It can be either formed 
as U (---), or U7 (+++). The vector Uo is preferred when the previous switching-state vector 

p 
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is uj, U3 or U5. Similarly U7 will be chosen when the previous switching vector is U2, 114 or 
uo. Hence, the minimum number of commutations is obtained by the switching sequence 

uo<to/2> u1<t1/2>  u2<t2/2>  u7<t7/2> (5.7.a) 

in any first, or generally in all odd subcycles, and 

u7<t7/2> u2<t2/2>  u1 <t1 /2> uo<to/2> (5.8.b) 

for the next or all even subcycles. The notation in equations (5.7.a) & (5.7.b) associate to 
each switching-state vector indicates its on-duration in brackets. Figure 5.2(b) shows all 
the voltage vectors in space. 

5.3 Proposed Voltage Vector Based Space Vector Modulation 

The dc voltage fed to the inverter is normally constant for voltage source inverters. Voltage 
magnitude is controlled by modulation in PWM inverters. In this technique there is no 
scope for adjusting the angular position of the input voltage vector. The forward and 
backward switching technique for DTC creates chaotic movement of the voltage vector. 
HPC drives require adjustment of voltage vector magnitude and position for minimum 
torque pulsation and smooth speed change. Space vector modulation is selected in the 
present study for better performance of the drive system. 

In the proposed control method the torque control aspect of DTC is implemented through 
the torque control loop that enhances robustness of the control system. On the other hand, 
fast dynamic speed response is obtained through maintaining the rotor flux constant as in 
the case of a field orientation control. In DTC both the torque and flux control functions 
are implemented through inverter switching mechanism. In the proposed methods the 
control voltages along the rotor flux (d-) axis and perpendicular to its torque (q-) axis are 
generated and finally SVM principle is used to produce the motor input voltage. 

5.3.1 Proposed control scheme 

In the proposed scheme shown in Fig. 5.3, the reference torque Te*  is generated from 
torque and speed relation of induction motor. The torque error t is processed through P1 

controller to generate the q-axis reference currenti;.  The d-axis reference current idv is 

generated from the machine model directly. The two errors in i and iq,  are also 

processed through P1 controllers to generate reference voltages v andv,  respectively. 

The P1 controllers are tuned using QEA to get further fast speed response of IM drive. The 
rotor flux and torque are estimated using chaotic learning based ANN for accurate rotor 
position and position sensorless induction motor drive as well. 
The reference torque from torque and speed relation of an induction motor is computed by 
[40-4 1]: 

= ° +&q, (5.9) 
pp T 

Where, 

J motor inertia; 
B biscous coefficient; 
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PAr, number of pole pairs 
T sampling period 

101 The stator command currents are generated as follows: 

(5.10) 

i, =k,,r+k,1 Jth (5.11) 

Where, r = T - T 

The symbol A  represents the estimated value. 

The two command voltages are generated utilizing the two current errors processing 
through another two P1 control loops as: 

v,, = k p2(1q' - ig,) + k,2  J(i;. - 1q )d! (5.12) 

vj = k 30 -i,)+k,3  J(i -i fr)d1 (5.13) 

Maintaining proper field orientation condition, slip speed is calculated from equation 
(2.34) as: 

Iqs (5.14) 
1dc 

Here, the estimated slip frequency is optimized by estimating rotor flux accurately using 
chaotic learning based ANN. 

The voltage vector angle o,  combined with the reference rotor flux angle o, estimated from 

flux components gives the angle of the input stator voltage needed with respect to the 
reference stator a- axis in stationary reference frame (a-fl) of the induction motor model 
as: 

= 0" +9, (5.15) 

- Where, 0,,  =tari'(v;,/v,) and 6. =an (t'. 

The three phase motor currents Ii,, 4, and I are transformed into a-, and fl-axes 

components through Clarke transformation. Finally, the stationary a, 8 - axis is converted 

into synchronous d, q-axis to estimate the torque from estimated rotor flux using eq. (2.37). 

5.3.2 Simulation Model 

The two-axes(a - 13) differential equations (2.14 to 2.16) along with torque balance 

equation (2.5) can be written in discrete form for simulation the model of induction motor 
as: 

+ 1) = [Rç  IciL, + R,(1 - ci)/crLs ]Iac (k) + [(Lm Rr )/((YLs L,)]Wa, (k) 
(516) 

+[O)L/ciLL]I/p (k)+V(k)/C•Lc  
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I flc (k+l)=[Rc /OLc +Rr (IC•)/OLs ]1/Js  +[COrLn,/O•LxLr]W(k) 
(517) 

+ 1) = (Lni Rr  /L)Iç(k) - Rr  /Ll// y (k)O)l/J jq (k) (5.18) 

qí(k + 1) = (Lm Rr  /Lr )irn  (k)  + co, W(k) - Rr  '1Lrfr (k) (5.19) 

i'd (k + 1) = [Td  (k) - T1  - B * w (k)J / J (5.20) 

Where, 

T(k) = 1.5*P,,{ (k)*[yi(k) _ L(k)*i(k)]/ L  _ (k)*[yi,.(k)_ L(k)*j
pç
(k)]ILj 

and Q=1•0L/Lc Lr  
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The reference control voltages v and v are generated from (5.12) and (5.13). These 

voltages and the estimated voltage vector angle 0, are applied to generate the three phase 

voltages v0 , V, and v by SVM principle. The control input to the motor v and v are 

generated from Va,Vb  and v  by the following transformation: 

v = v0  cos0°  +V, cos120°  + v cos240° (5.21) 

vrn = Va  sin 0°  + Vb sin 1200  + v sin 2400 (5.22) 
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Figure 5.3 Proposed control scheme. 
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5.3.3 The Speed Estimator 

A speed estimator is also proposed in this thesis work to make the control system speed 
Ir sensorless [42-43]. First, the synchronous frequency can be found by noticing the angle of 

the rotor flux as: 

(5.23) 

Taking its derivative: 

- arW fir 
- cu p,c1' Cr, (5.24) O r  = (0, 

- 

The rotor speed: 

00, =O),W ç1 (5.25) 

The rotor slip speed a, can be expressed as follows: 

= R =•6s - cu 
, 
i= (5.26) 

$1 , 2 2 
- 

Substituting (5.24) and (5.26) in (5.25) the rotor speed can be estimated as: 

(0, =--[çu' 2.yi. —R,(uç,i, — cu1fr1CXS)I 
(5.27) 

cu; 
Where, yi, = + 

5.4 Simulation Study 

The proposed control structure is implemented in the environment software C-H-, and 
tested with various operating conditions and compared with a recent control system in the 
dissertation M. A. Rafiq [44], to illustrate the performance of the proposed control scheme. 
The performance of the proposed control system is justified on the basis of starting time, 
torque ripple, flux ripple, load disturbance, parameter deviation conditions etc. The flux 
estimator is trained off-line so that it estimates the flux components accurately. The 
numerical method for solving the equations is Runge -Kutta method (order 4). Main flux 
saturation effect has also been considered for more realistic representation in the analysis. 
The parameters of the induction motor used are given in the appendix. 

5.4.1 Effects of Magnetic Saturation on Induction Motor Drive 

Simulation is carried out considering the saturation model of the induction motor using the 
proposed controller. The significance of considering magnetic saturation are shown in Fig. 
5.4. It is observed that the speed responses are almost same, the ripple in stator three phase 
currents reduced drastically and the fluctuation of developed electromagnetic torque also 
reduced significantly. It is also observed that the proposed controller draw less current 
from the supply than that of unsaturated model. Hence, Consideration of magnetic 
saturation is very much important to achieve actual performance of the drive system as 
well as high performance controller for induction motor drive. 
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5.4.2 Starting Performance of the Induction Motor Drive 

The motor is started with a command speed of 1432 rpm (150 rad/sec) with 0.5 N-rn load 
from standstill condition. At t=0.24 second the motor reaches to the command speed 
whereas it takes 0.7 second in the conventional controller and shown in Fig. 5.5(a). The 
motor follows the command speed accurately without steady-state error and oscillations. It 
can also be seen from Fig. 5.5(b) that, the developed electromagnetic torque is 
comparatively more and almost ripple free in the proposed control system. The torque 
ripples reduced by 50% than the conventional control system. In Fig. 5.5(c), it is observed 
that the rotor flux also follows the reference flux accurately than the conventional control 
system. So the drive operates perfectly with negligible torque, and flux ripples. 
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Figure 5.5 Simulated (a) speed response, (b) developed electromagnetic torque, and (c) 
rotor flux under transient and steady-state condition. 

5.4.3 Performance under Different Operating Conditions 

The performance of the induction motor drive under different operating conditions is also 
investigated in order to verify the robustness of the proposed control scheme. The 
performances of the drive system for different types of change in speed are shown in Figs 
5.6(a), 5.6(b). 5.6(c), and 5.6(d). From Fig. 5.6(a) it is observed that the proposed control 
scheme follows both the forward and reverse direction reference track quickly with 
negligible torque and flux ripple than the conventional control system. The conventional 
control system realizes enormous torque pulsation due to the speed reversal condition. 
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Figure 5.6(a) Performances of the induction motor drive under speed reversal condition at 
transient and steady state condition. 

The proposed control scheme also follows the step change in speed reference track 
accurately with negligible torque and flux ripple and illustrated in Fig. 5.6(b). In Fig. 
5.6(c), the proposed control system maintains the reference ramp change in speed track 
more accurately than the conventional control system. 
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Figure 5.6(b) Performances of the induction motor drive with step change in speed at 
transient and steady state condition. 
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transient and steady state condition. 

Effectiveness of the proposed control scheme is also tested by applying and reducing load 
torque in step and shown in Fig. 5.6(d). The load torque of the motor is suddenly increased 
from 0.5 N-m to 4.0 N-m at t4.0 seconds, then decreased to 2.0 N-m at t=6.0 seconds. No 
fall and oscillation in speed is noticed due to this load torque disturbance whereas the 
speed falls in the conventional control system due to the sudden application of load. Also 
the developed electromagnetic torque and the rotor flu.x are found almost ripple free in the 

'I 
proposed control system. 
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Figure 5.6(d) Performances of the induction motor drive with step change of load at 
transient and steady state condition. 

5.4.4 Performance under Parameter Deviation Conditions 

In order to obtain a high performance induction motor drive, its controller should be 
insensitive with the machine parameter deviation. The insensitivity of the proposed 
controller due to increase of both stator and rotor resistance of the machine up to 100% 
from its nominal value at t=1.0 second can be visualized from Fig. 5.7(a) and 5.7(b) 
respectively. 
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Figure 5.7 Performances of the induction motor drive for change in stator and rotor 
resistances with (a)R, = 21?:, and (b) R = 2R at t=l second. 

As chaotic learning based ANN is used to estimate the rotor flux directly, the proposed 
control system is insensitive to rotor resistance deviation condition. But the proposed 
control system is dependent on the stator resistance deviation condition shown in Fig. 
5.7(a). 

5.4.5 Robustness against Computational Error 

There is some instrumental error always present in physical system. For the robustness test 
10% instrumental error is introduced to reference voltage vectors. The performance of the 
motor speed, developed electromagnetic torque, and the rotor flux are shown in Fig. 5.8. It 
can be observed that the performances are similar to the motor starting performance. So 
depending on the performance, it can be concluded that the proposed control scheme is 
computationallv efficient. 
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Figure 5.8 Performances of the induction motor drive under computational errors present 
in the physical system. 

5.4.6 Speed Estimation and Dynamic Behavior 

Fig. 5.9 shows the estimated speed, torque and flux responses under transient and steady-
state conditions with load torque 0.5 N-m. It is found that the proposed control scheme is 
capable to estimate the speed accurately at both in transient and steady-state conditions and 
shown by small scale representation in Fig. 5.9(a). It is confirmed that the proposed speed 
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estimator is capable to estimate the speed even at very low speed accurately. From Figs 
5.9(b) and 5.9(c), it can be seen that the proposed control system generates negligible 
torque and flux ripple due to the consideration of main flux saturation effect. Effectiveness 
of the proposed controller is tested by simulation for different set speed and shown in Fig. 
5.10. Negligible overshoot and undershoot is present in the speed estimation and shown by 
small scale representation in Fig. 5.10. One important matter is noticeable here that if there 
is no change of speed, there is no overshoot and undershoot in the estimated speed. 
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Figure 5.9 Simulated (a) actual and estimated speed responses (b) estimated 
electromagnetic torque, and (c) estimated rotor flux under transient and steady-state 

conditions. 
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Figure 5. 10 Simulated (a) actual and estimated speed responses (b) estimated 
electromagnetic torque, and (c) estimated rotor flux under transient and steady state 

conditions. 

5.5 Conclusion 

This chapter present a QEA based high performance control methodology for position 
sensorless induction motor drive. The proposed DTC-SVM based IM drive with QEA 
based P1 controller and chaotic learning based ANN flux estimator is compared with a 
conventional control system with classical P1 controller and constant learning based 
CRTRL flux estimator. The results obtained and presented in this work indicate that the 
proposed control strategy produces fast speed response of the induction motor drive and 
realizes almost ripple free operation in torque and rotor flux under different situations. The 
proposed control system provides faster speed response IM drive by 0.46 second and 
reduced torque ripples by 50% than the conventional control system. The designed control 
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system is also capable to follow the step change in speed and ramp change in speed 
accurately whereas the conventional control system cannot track the reference speed 
accurately. The drive is also robust to load disturbances condition and insensitive to 
parameter deviation conditions. Chaotic learning based CRTRL algorithm turned the 
control system position sensorless by estimating the rotor flux components accurately at 
both of transient and steady state conditions. Finally, an endeavor is made to make the 
proposed control system speed sensorless, more cost effective and practical by estimating 
the motor speed from very low to rated speed accurately. Due to its simple structure it can 
be easily implemented on available embedded DSP s, thus it will find many practical 
applications. 
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CHAPTER VI 

Conclusions 

6.1 Conclusion 

The objective of this Master's thesis was quantum evolutionary algorithm (QEA) based 
high performance control of induction motor drive in which an effort was made to 
accommodate the robust and insensitive features of artificial neural network estimator, the 
fast speed response aspect of DTC processing the speed, torque and flux error and the 
switching of SVM. The total control law was designed on the consideration of field 
orientation control with magnetic saturation in IM drive. Step by step development, 
analysis and study of the proposed methodology have been done in different chapters. The 
simulation results demonstrate the acceptability of the proposed control methodology for 
high performance applications. 

In this research work, P1 controller based voltage vector controlled drive with SVM was 
used. QEA based P1 controller has been used to replace the conventional genetic algorithm 
based P1 controller of induction motor drive system. It was demonstrated that the proposed 
QEA based P1 controller need less time to speed up the motor at transient condition and 
generate negligible speed fluctuation at rated speed under steady state condition. The gain 
coefficients of every P1 controller in the proposed control system have been tuned by QEA. 

The work presented in this dissertation used artificial neural network based flux estimation 
and suitable control law for high performance control of induction motor drive. For these 
purposes mathematical models of the three phase induction motor are written in different 
reference frames under different operating conditions. P1 controller based field orientation 
model and control laws have been designed for the high performance controller. A 
saturation model of the polyphase induction motor was developed in the study to have 
more realistic study of the motor drive performance. 

The artificial neural network based rotor flux estimator presented in this dissertation has 
been shown is very accurate and robust to parameter changes. It uses chaotic learning 
based correlated a - and /3 - axes flux estimation and found to work satisfactorily under 

transient and steady state conditions. Estimated flux components utilized to estimate the 
position of the rotor flux axis also produce accurate results under steady state and transient 
conditions. It has been demonstrated that the chaotic learning based backpropagation and 
CRTRL can estimate the rotor flux more accurately than the same without chaotic teaming 
rate. It can be visualized that the deviation of motor parameters in the machine model has 
minor significance in the estimated values with a chaotic learning based CRTRL. The 
chaotic teaming based CRTRL estimator has been accepted for flux and angle estimation 
in designing the high performance drive in this dissertation for its better performance. 

The proposed control methodology originates from the speed and torque error processing 
through controllers instead of instantaneous switching of DTC. The proposed method 
generates the required voltage components which are used to find out the required voltage 
magnitude and its position from the inverter. The results of this proposed control system 
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are compared with the control system having CGA based P1 controller and without chaotic 
learning based CRTRL. Very fast speed response, less torque pulsations and capability to 
work under different operating conditions indicate the efficacy of the proposed control 
method. It has been observed that the proposed control method is robust against parameter 
changes and load disturbances. The proposed QEA based P1 controller and chaotic learning 
based ANN flux estimator can be viewed as a part of an effective high performance 
controller. It is evident from the various simulation results carried out under varying 
operating conditions. The methodology is inherently designed on the basis of field 
orientation and accommodates the aspects of SVM based DTC. 

Based on the results from the previous chapters and the above discussion it can be 
concluded that the proposed control scheme provides high performance control for 
induction motor drives. 

6.2 Proposal for Further Research 

The dissertation presents a methodology to utilize the artificial intelligence in induction 
motor control. Different types of flux estimators may be proposed and studied by the 
researchers working in this area. Future researchers may try with fuzzy-neuro estimators 
with composite chaotic learning based ANNs. Newly introduced training methods, such as 
particle swarm optimization or bacterial foraging technique may be tested for training the 
ANN-Fuzzy estimators. These flux estimators are expected to work effectively under all 
operating conditions with perturbed parameters. Controller based on ANN-based induction 
motor model can be used to develop model reference control of the induction motor. On 
line tuning of the motor model parameters using measurable variables is expected to 
produce designed results for which the control law is designed. 
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APPENDIX 

Table App. 1 Induction Motor Parameters and Nameplate Data I Rating 

Nameplate data: 3-phase, 50Hz, 415V, 1.8A, 0.75KW, 0.8 p.f.. 4- pole. Y-connected 

Parameters: 

SI. 
No 

Nominal Parameters 
(referred to stator)  

Values in SI units 

1 Stator resistance, R 13.259 

2 Rotor resistance. Rr  16.8 18) 

3 Mutual inductance, L. 0.71 14H 

4 Stator self inductance, L 0.73 59H 

5 Rotor self inductance, L r 0.7359H 

6 Moment of inertia. J 0.0075 kg-rn2  

7 Damping coefficient, B 0.00 107Nm-sec/rad 

FM 

58 



List of Publications 

- International Journals: 

Md. Habibullah. and B. C. Ghosh, "Quantum-Inspired Evolutionary Algorithm 
Based P1 Controller Tuning for High Performance Induction Motor Drive with 
Improved Flux Estimator", International Journal of Computing and Applications 
(IJcA). Vol. 6, No. 1. pp.  55-60, January-June 2011, ISSN: 0973-5704. 

Md. Habibullah, Md. Jahirul Islam, Md. Abdur Rafiq, Kalyan Kumar Halder, and B. 
C. Ghosh, "A New DTC-SVM Based Control of Field Oriented Position Sensorless 
Induction Motor Drive with Reduced Torque and Flux Ripple', International Journal 
of Computer and Electrical Engineering (IJCEE,), Vol. 3. No. 3, pp.  327-334, June 
2011, ISSN: 1793-8163. 

International Conference Papers: 

Md. Habibullah, Md. Amjad Hossain, Md. Abdur Rafiq. and B. C. Ghosh, "Quantum 
Evolutionary Algorithm based Fast Speed Controlled Induction Motor Drive with 

Ap CRTRL Flux Estimator", proc. of IEEE International Conference  on Electrical and 
Computer Engineering (JCECE-2010), pp.  478-481,18-20 Dec. 2010, Dhaka, 
Bangladesh. 

Md. Habibullah, Md. Abdur Rafiq, and B. C. Ghosh, "A New QEA Based High 
Performance Sensorless Control of IM Drive". Proc. of mt. Conf on Advances in 
Electrical & Electronics 2011, pp.  55-59, 20-21 Dec., 2011, New Delhi, India. 

Md. Habibullah, Kalyan Kumar Halder, Md. Abdur Rafiq, and B. C. Ghosh, "High 
Performance Sensorless Control of Induction Motor Drive with Space Vector 
Modulation", Proc. of liv. Conf on Advances in Electrical Engineering 2011, pp.  154-
159, 19-20 Dec., 2011, Dhaka, Bangladesh. 

Md. Habibullah, Md. Abdur Rafiq, Md. Shahjahan. and B. C. Ghosh, "Chaotic 
Learning Based ANN for Improved Rotor Flux Estimation of Induction Motor Drive", 
accepted by International Conference on h2formatics, Electronics & Vision 
(IC'IEV12), May 18-19, 2012, Dhaka, Bangladesh. 

59 


