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ABSTRACT

This thesis studies extensively the Principal n-ideals of a lattice.
The idea of n-ideals in a lattice was first introduced by Cornish and Noor
in studying the kernels around a particular element n, of a skeletal
congruence on a distributive lattice. Then Latif and Ayub Ali in their
thesis studied thoroughly on the n-ideals and established many valuable
results. For a fixed element n of a lattice L, a convex sublattice of L
containing n is called an n-ideal. If L has a “0”, then replacing n by 0, an
n-ideal becomes an ideal and if L has a “1” then it becomes a filter by
replacing n by 1. Thus, the idea of n-ideals is a kind of generalization of
both ideals and filters of lattices. The n-ideal generated by a finite number
of elements of a lattice is called a finitely generated n-ideal, while the
n-ideal generated by a single element is known as a principal n-ideal.
Latif in his thesis has given a neat description on finitely generated
n-ideals of a lattice and has provided a number of important results on
them. For a lattice L, the lattice of all n-ideals of L and the lattice of all
finitely generated n-ideals of L are denoted by I, (L) and F, (L)
respectively, while P, (L) represents the set of principal n-ideals of L. In
this thesis, we devote ourselves in studying several properties on P, (L)
and F, (L) which will certainly enrich many branches of lattice theory.
Our results in this thesis generalize many results on normal, relatively
normal, m-normal and relatively m-normal lattices. We also introduce the

concept of n-annulets and « -n-ideal in studying P, (L) .




In this connection it should be mentioned that if L has a 0, then

putting n = 0 we find that F, (L) is the set of all principal ideals of L
which is isomorphic to L. Thus, for every result on F, (L) in this thesis,

we can obtain a result for the lattice L with 0 by substituting n = 0. Hence

the result in each chapter of the thesis regarding F, (L) are

generalizations of the corresponding results in lattice theory.

In chapter 2, we discuss some fundamental properties of n-ideals,
which are basic to this thesis. Here we give an explicit description of

F, (L) and P, (L) which are essential for the development of the thesis.
Though F, (L) is always a lattice, B, (L) is not even a semilattice. But
when n is a neutral element, P, (L) becomes a meet semilattice.
Moreover, we show that P, (L) is a lattice if and only if n is a central
element, and then in fact, P, (L) = F, (L). We also show that, for a

neutral element n, the lattice L is complemented if and only if P, (L) is

so. In this chapter we also discuss on prime n-ideals. We give several
properties and characterizations of prime n-ideals. We include a proof of
the generalization of Stone’s separation theorem. We also include a new

proof of the result that for a distributive lattice L, F), (L) is generalized

Boolean if and only if prime n-ideals are unorderd.

Chapter 3 discusses on minimal prime n-ideals of a lattice. We give
some characterizations on minimal prime n-ideals which are essential for
the further development of this chapter. Here we provide a number of

results which are generalizations of the results on normal lattices.



We prove that for a distributive lattice L, F, (L) is normal if and

only if each prime n-ideal of L contains a unique minimal prime n-ideal.

We also show that if n is central in L, then P, (L) is a normal lattice if

and only if any two minimal prime n-ideal are comaximal which is also

= . . *
equivalentto <x>, N<y>, = {n} implies <x>, s = L.

In chapter 4 we introduce the notion of relative n-annihilators
<a,b>". We characterize distributive and modular lattices in terms of

relative n-annihilators. Then we generalize several results of Mandelker

on annihiltors. We use these to characterize those F, (L) which are

relatively normal lattices. Among many results we have shown that for a

central element n, P, (L) is a relatively normal lattice, if and only if any

n
two incomparable prime n-ideal are comaximal . What is more , this is

also equivalent to the condition <<a>,,<b>,>v <<b>,,<a>,>=L

forallab el .

Pseudocomplemented  distributive  lattices satisfying Lee’s

identities form equational subclasses denoted by By , —lsm <.

Cornish have studied distributive lattices analogues to By-lattices and
relatively B, -lattices .He referred then as m-normal lattices.Moreover,
Beazer and Deavy have each independently obtained several
characterizations of (sectionally) B,—lattices and relatively

B,—lattices.

In chapter 5 we generalize their results by studying finitely
generated n-ideals which form a m-normal and a relatively m-normal

lattice .We show that for a central element n € L, Py(L) is m-normal if



and only if for any m+1 distinct minimal prime n-ideals F, ............, P,

(o] i PRS- NV — v P, =L. In this chapter we also show that for a
central element ne L, Py(L) is relatively m-normal if and only if any

m+1 pairwise incomparable prime n-ideals are comaximal.

Chapter 6 introduces the concept of n-annulets and « -n-ideals of a

lattice. Here we include several result on the set of n-annulets 4,(L)
when n is a central element of L. We proved A4,(L) is relatively

complemented if and only if P,(L) is sectionally quasi-complemented.

In section 2 we studied « -n-ideals. We have shown that n-ideal

n(P) where P is a prime n-ideal is an «-n-ideals. Moreover, all the

minimal prime n-ideals are & -n-ideals. Then we generalize all the results
of Cornish [11] in terms of « -n-ideals. We also show that for a central
element n, P, (L) is disjunctive if and only if each n-ideal is an
a -n-ideals. We conclude the thesis by characterizing P,(L) to be

generalized Stone in terms of « -n-ideals.
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Chapter-1

INTRODUCTION

In this thesis we have studied the Principal n-ideals of a lattice. For
a fixed element n of a lattice L, a convex sublattice of L containing n is
called an n-ideal. If L has a ‘0’, then replacing n by 0, an n-ideal becomes
an ideal and if L has a ‘1’ then it becomes a filter by replacing n by 1.
Thus, the idea of n-ideals is a kind of generalization of both ideals and
filters of lattices. The n-ideal generated by a finite number of elements of
a lattice is called a finitely generated n-ideal, while the n-ideal generated
by a single element is known as a principal n-ideal. Latif [30] in his thesis
has given a neat description on finitely generated n-ideals of a lattice and
has provided a number of important results on them. Balbes and Horn [1],
Chen and Gratzer [7] and many others have studied the minimal prime
ideals in a distributive lattice. The n-ideals of a lattice have been studied
extensively by Noor and Latif [32], [35], [49], [53] etc. For a lattice L,
the lattice of all n-ideals of L and the lattice of all finitely generated n-
ideals of L are denoted by I, (L) and F, (L) respectively, while P, (L)
represents the set of principal n-ideals of L.

Many authors including Mandelker [38] and Varlet [60] have
studied relative annihilators in lattices and semilattices. Also Noor and
Ali [45] have introduced the notion of relative annihilators around a fixed
element.

Cornish [9] have studied distributive lattice analogues to By-
lattices and relatively B,-lattices. He referred them as m-normal lattices.

Moreover, Beazer [3] and Deavy [13] have each independently obtained
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several characterizations of (sectionally) B,—lattices and relatively B,—
lattices.

Normal lattice have been studied by several authors including
Cornish [9] and Monteiro [39]. Cignoli [8] and Cornish [9] introduced the
notion of k-normal and k-completely normal lattice.

Subramanian [57] studied h-ideals with respect to the space of
maximal l-ideals in f-ring. Bigard [4] has studied o-ideals in the context
of lattice ordered groups. Noor and Islam [54] has studied the annulets
and a-ideals in a distributive near lattice.

Here we devote ourselves in studying several properties on P, (L)
and F, (L) which will certainly enrich many branches of lattice theory.
The results in this thesis generalize many results on normal, relatively
normal, m-normal and relatively m-normal lattices. We also introduce the

concept of n-annulets and ¢ -n-ideals in studying P, (L).

In this connection it should be mentioned that if L has a 0, then

putting n = 0, we find that P, (L) is the set of all principal ideals of L

which is isomorphic to L. Thus, from every result on F, (L) in this

thesis, we can obtain a result for the lattice L with 0 by substituting n = 0.

Hence the results in this thesis regarding F, (L) are generalizations of the

corresponding results in lattice theory.

Here we also have given explicit descriptions of F, (L) and P, (L)
which are essential for the development of the thesis. Since F, (L) is
always a lattice and P, (L) is not even a semilattice, but when n is a
neutral element, P, (L) becomes a meet semilattice. We have shown that

P, (L) is a lattice if and only if when n is a central element, and then in
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fact, P, (L) = F, (L). We also have shown that, for a neutral element n,

the lattice L is complemented if and only if P, (L) is also complemented.

We also have discussed on prime n-ideals and given several properties
and characterizations of prime n-ideals. We included a proof of the
generalization of Stone’s separation theorem and included new results
that can be established from the generalization, especially we have shown
that for a distributive lattice L, F, (L) is generalized Boolean if and only
if prime n-ideals are unordered.

We have proved here that for a distributive lattice L, F), (L) is
normal if and only if each prime n-ideal of L contains a unique minimal

prime n-ideal. If n is central in L, then B, (L) is a normal lattice if and

only if any two minimal prime n-ideal are comaximal which is also
equivalentto <x>, N<y>,= {n} implies <x>,"v<y> =L.

We introduce the notion of relative n-annihilators <a,b>" and
characterize distributive and modular lattices in terms of relative
n-annihilators. Many results have been introduced that shown - for a
central element n, P, (L) is a relatively normal lattice.

For a central element n € L, P,(L) is m-normal if and only if for
any m+1 distinct minimal prime n-ideals Fy,............, P, of L,

By Vigsssusnssswonses ., =1L
We introduces the concept of n-annulets and « -n-ideals of a
lattice. Here we include several result on the set of n-annulets 4,(L)

when n is a central element of L. We proved 4,(L) is relatively

complemented if and only if P, (L) is sectionally quasi-complemented.



We have shown that n-ideal »n(P), where P is a prime n-ideal, is an

? a -n-ideals. Moreover, all the minimal prime n-ideals are « -n-ideals.
Then we have generalized all the results of Cornish [11] in terms of & -n-

ideals. We conclude by characterizing P, (L) to be generalized Stone in

terms of « -n-ideals.
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Chapter-2

n-ideals of a lattice.

Introduction:

The intention of this chapter is to outline and fix the notation for
some of the concepts of n-ideals of a lattice which are basic to this thesis.
The idea of n-ideals was first introduced by Cornish and Noor in several
papers including [12] . The n-ideals have also been used in proving some
results in [42].

A non empty subset I of a lattice L is called an ideal of L if
G forx,yel,xvyel
(i) xe [/ and y<x,(yel)imply yel.

An ideal P of L is called a prime ideal if for
x,ye L, x A ye P implieseither x € p or ye P .

Similarly a non-empty subset F of L is called a dual ideal ( filter) if
()forx, ye F, xAye€ Fand(i)xeFandy 2 x,y € L,
imply y € F'.A filter F is called a prime filter if for

x, yeL,xv ye F implieseither x€ For y € F .

The n-ideals of a lattice have been studied extensively by Noor and
Latif in [30], [32], [33], [34], [31], [49], [50], [51], [52] and [53]. For a
fixed element n of a lattice L, a convex sublattice containing n is called
an n-ideal . 1f L has 0 then replacing n by 0 an n-ideal becomes an ideal.
Moreover if L has 1, and n-ideal becomes a filter by replacing n by 1.
Thus the idea of n-ideals is a kind of generalization of both ideals and

filters of lattices. So any result involving



n-ideals of a lattice L will give a generalization of the results on ideals if

0e Land filtersif 1 € L.

The set of all n-ideals of a lattice L is denoted by 7,(L), which is
an algebraic lattice under set inclusion. Moreover, {n{ and L are

respectively the smallest and the largest elements of 7, (L), while the set

theoretic intersection is the infimum.

For any two n-ideals 1 and J of a lattice L, it is easy to check that
Iﬂjz{x:x:m(i, n,j)forsome iel jeJ where
m(x,y,z)=(xnA y)v (yAz)v(zax)and
IvJ=A{x:i{ A jSx=iV jy,forsome

iy,ip, € I and j, jo € J}.

The n-ideal generated by @y, @, ,ceeveer vrnnneees e 18

denoted by < @, @5, ceeraseree seneressensossanssin san 5y e
Cleatly'< @y; Gy, vossusasnncsmvesson e y Q. S0

=< ay >,V <dy >,V ... o N e P

The n-ideal generated by a finite number of elements is called a
finitely generated n-ideal. The set of all finitely generated n-ideals is
denoted by F, (L). Of course, F,, (L) is a lattice. The n-ideal generated

by a single element is called a principal n-ideal .The set of all principal
n-ideals of a lattice L is denoted by P, (L). We have

<a>”={xeL:a/\n_<_x$avn}.



The median operation m (x, ¥, z)= (x A YV (y Az)V(z A x) is
very well known in lattice theory . This has been used by several authors
including Birkhoff and Kiss [6] for bounded distributive lattices, Jakubik
and Kalibiar [22] for distributive lattices and Sholander [56] for median
algebras.

An n-ideal P of a lattice L is called a prime n-ideal if

m (x,n,y)e P(x,y € L)implies x € P or y € P

Standard and neutral elements in a lattice were studied extensively
in [16] and [20] . An element s of a lattice L is called standard if for all x,
yel,

xa(pvs)=(xay)v(xnas).

An element ne L is called neutral if it is standard and for all
x,yel,

naAn(xvy)=(nnx v (n Ay ). By [17], we know
that n € L is neutral if and only if forall x,yeL,
mG, n, y)=@@ary)vExan)v(yan)=.
= (xv y)a (xv n)ar (y v n). Ofcourse 0 and 1 of a lattice

are always neutral. In a distributive lattice clearly every element is

standard and neutral.

Let L be a lattice with 0 and 1. For an element a € L,a’is

called the complement of aif a A a’ = 0 and a v a’" = 1. A bounded
lattice in which every element has a complement is called a
complemented lattice. In a distributive lattice it is easy to see that every

element has at most one complement.



An element n € L is called central if it is neutral and complemented in

each interval containing it.

A lattice L with 0 is called sectionally complemented if [0, x] is
complemented for all x € L . A complemented distributive lattice is
called a Boolean lattice, while a distributive lattice with 0, which is
sectionally complemented is called a generalized Boolean lattice. For the
background material on lattices we refer the reader to the texts of
G. Gratzer [15], Birkhoff [5], Rutherford [55], Khanna [27] and Maeda
and Maeda [37].

In this thesis we have studied the lattice F,(L) in different
situations. If L has a 0, then putting n = 0, we find that
25 WL ARSI SOOI G 2 =] Monnsnsssanssasorsanssss va,
Hence for n =0, F, (L) is the set of all principal ideals of L which is

isomorphic to L. Thus for every result on F, (L) in this thesis, we can

obtain a result for the lattice L by substituting n = 0. Hence the result in

each chapter of the thesis regarding F, (L) are generalizations of several

results on Boolean, generalized Boolean, normal, and relatively normal
lattices. Chapter 4 gives generalizations of several results on those lattices

which are in m-normal and relative m-normal respectively.

In section I we have given an explicit description of F, (L) and
P, (L) which will be needed for the development of the thesis. We have
shown that P, (L) = F, (L) if and only if n is central. We have proved
that a lattice L is (modular) distributive if and only if F, (L) is so. We

have also shown that for a neutral element n, lattice L is



complemented if and only if P, (L) is complemented. Moreover, if a is

the complement of a in L, then <a’'>, is the complement of <a >, in
p n p n

P,(L) -

In section 2 we have discussed on prime n-ideals. We have given
several properties of prime n-ideals. We have included a proof of
generalization of Stone’s seperation theorem. Finally we include a new

proof of the result that for a distributive lattice L, F, (L) is generalized

Boolean if and only if prime n-ideals of L are unordered.



1. Finitely generated n-ideals.

We start this section with the following proposition which is due to

[30], also see [33] and [49]. This gives some simpler description of
F,(L).

Proposition 2.1.1.

Let F,(L) bealatticeand n e L .

Fori@ys  Qgyessvvevessssvanmssisssvaes yilye &
(i) b T a,> clyel:(a]n...n(a,]n(n]
g(y]r;(al]v ........ v(am]v(n]},
(ii) < @iy Q508 >y =AVE LAy AGy A .ccnr Ad, AR
< PS5 Gy M ity Ve va,vn}
(iii) Lo Whncivvass Ay >y ={yel:ay nag Awconay, ARSY
=(Aa)V. vy aa,)vyan)l
where L is distributive;
(iv) Forany a € L,
<a>,
={yelL:ann<y=(nra)v(yan)=
peL:y=@Gnra)v(an)vilanan).
where n is standard,
(v) Each finitely generated n-ideal is two generated.

Indeed

<a], az, ...... , a >



~vi) F, (L) isalattice and its members are simply the intervals
[a, b] such that a < n < b and for each intervals
[a, b] and [a,, b,],
[a, b]v [a,, b|]= [a Aa, bv bl] and
[a, bl la,, b |=[av ay babl. |

For n € L suppose (n] “ denotes the dual of the lattice (n]. Then for

any X, yE(ﬂ], xv®y=xAyand x A g y=xVvy.

Theorem 2.1.2.  Let L be a lattice and n € L . The maps
®:F, (L) (n]* x[n) and ¥ :(n] ¢ x[n) > F, (L) is given by
®([a, b])=(a,b)and ¥ ((x, »))=[x,y] where
[a, ble F, (L)and (x, y)e(n]? x n,are mutually inverse

lattice isomorphism’s. In other words, F, (L)= (n] “ x [n).

Proof: Let [a, b]c [a,, b,] Then
a;,<as<n<b<s<b ,andsoa = dalin(n]dand
b < b,in[n).Thus, (a, b )< (a,, by )in(]xn) .
Hence @ is order preserving. If (a , b )< (a,, b, ) in
(n]%x [n),thena < 9a, in(n] “ and b < b, in[n). Thus,
a, < a<n<b < b inLand

SO [a, b] c [a,, bl].




That is ¥ is also order preserving. But @ and ¥ are mutually

inverse and so the theorem is established. ]

When n is a neutral element of a lattice L, then it is very easy to

check that P, (L ) is a meet semilattice. In fact, for any
abely<as., M <bhs,=ml@;nb)s; .
But P, (L ) is not necessary a lattice. The case is different when n is a

central element. The following theorem also gives characterization of

central elements of a lattice L.

Theorem 2.1.3. Let n be neutral element of a lattice L. Then

E. (L ) is a lattice if and only if n is central. Then of course

P,(L)=F,(L)=~(n]"x[n).

Moreover, for a central element n € L , L is bounded if and only if
P, (L) is bounded.

Also if L is bounded and n is a central element of L, then for any

X, pel SXE>,V<Yy>,=< m(x, n,y )>” where n'is  the

complement of n in L .

Proof :  Suppose n is central. Since foralla, b € L ,

<a>,n <b> =<m((,n,b)>, weneed

n n

only to checkthat < @ >, v < b >,6,€ P, (L ). Now,

<a>,v<b>,= [arnbAn,avbv n |. Since n is central,

n

there exists ¢ € L suchthat c A n=a A b A n and
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cv n =av bv n whichimplies that

<a>,v <b>,=<c>, andso P, (L) isalattice.

Conversely, suppose that P, (L ) is a lattice and
a £ nsb . Then [a,b]=<a>,v <b>,. Since
P, (L)is a lattice, <a >, v <b >,=<c¢ >, for some
ce L . This implies that c N n = a and

¢ v n = b . This implies c is the relative complement of n in

[a, b ] . Therefore n is central.

For the second part, if L = [0, 1], then {n} and < »n' >, are the
smallest and the largest elements of P, (L ), where n' is the

complement of n in L.

Also if P, (L ) is bounded, then there exists n' € L suchthat <n' >,
is the largest element of P, (L ) Therefore forany x € L ,

<x>,c <n'>,. Thatis

nAn <xaAn<x<xvn<nv n . Thsimplies
n A n'and n v n' are the smallest and the largest elements of L and so

L is bounded . Last part is easily verifiable. H

Thus the following results are obvious from the Theorem 2.1.2.

Theorem 2.1.4.  Let L be a lattice. Then F, (L) is sectionally

complemented if and only if for each a, b € L with a <n <b, the
interval

[a, b] and [n, b] are complemented.



Corollary 2.1.5. For a distributive lattice L, F, (L) is

generalized Boolean if and only if the interval [a, n] and [n, D] are

complemented foreacha, b € L witha < n < b .

Corollary 2.1.6. For a distributive lattice L, F,(L) is

generalized Boolean if and only if both (n] ¢ and [N) are generalized

Boolean. 1

It is clear from the Corollary 2.1.4. that if L is relatively

complemented, then F, (L) is sectionally complemented and in fact

F,(L)=pr,(L).IfL has 0 and 1, the largest element L of 7, (L)

is finitely generated . Then in fact, L =[0, 1].

A lattice L with 0 is said to be sectionlly-semi-complemented
lattice (disjunctive) if 0 < a < b (a, b e L) implies that there is an
element x € L suchthat x A a = 0and 0 < x < b , while a
lattice satisfying the definition which is dual to that of a sectionally semi-
complemented lattice is called a dual sectionally semi-complemented

lattice (dual disjunctive).

A lattice L is called implicative (relatively pseudocomplemented) if
for any given elements a and b, the set of all xelL such that
a A x < b contains a largest element which is denoted by a >b. A

dual implicative lattice is defined dually.

The following corollary holds because of theorem 2.1.2.



Corollary 2.1.7. Let L be a lattice and x € L .Then
@i F,(L ) is sectionally-semi-complemented if and only if (]
is dual sectionally-semi-complemented and [n) is
sectionally-semi-complemented
Gy F,(L ) is implicative if and only if (n) is dual implicative

and [n) is implicative. ~ W

Theorem 2.1.8.  Let n be a neutral element of a bounded lattice

L. Then L is complemented if and only if P, (L ) is a complemented

lattice.

Moreover, a is the complemented of a in L if and only if <a' >, is the

complemented of <a >, in P, (L) .

Proof : Suppose L is complemented. Then by Theorem 2.1.3,

P, (L) is a lattice with {n} and <n'>, as the smallest and the largest
elements. Moreover, P, (L ) = F, (L).Now let < a >,e P, (£ ).
Suppose a' is the complement of a in L. Then
L gz e >n=[a/\n,avn]m[a'/\n,a’vn]
=[(ava)an(ana)v n)= [(ava)anlana)v n)
=[lAan,0v nl={n}. Also <a>,v<ad>,
=[lana' An,ava'yv n] =1[0, 1]=<n'>,.Thisimplies
P, (L ) is complemented, and < a' >, is the complement of
< a >,foreach a € L

Conversely, suppose P, (L ) is complemented . Let a€ L and

let < b >, be the complement of <a>, in P, LE )



Then< a >, N < b >,= {n}and
<@y v wb>,.=[0,1]

Thus, [(a v b)a n, (anb)vn]={n} and

[(@a A b)an, avbvn]=[0,1] Now

[(@avb)rn, (@anb)vn]={n impliesanb<n<avh.
Hence [0, 1] =[anbAan,avbvn]=[anb, avblandso
anb=0anda v b = 1.Thisimplies b is the complement of a in

L. Therefore L is complemented. W

Thus we have the following corollary :

Corollary 2.1.9. For a bounded distributive lattice L with
n e L ,L is Boolean if and only if P, (L) is a Boolean lattice.
n

In lattice theory, it is well known that a lattice L is modular
(distributive) if and only if the lattice of ideals I (L) is modular
(distributive). Our following theorems are nice generalizations of those
results in terms of n-ideals when n is a neutral element which is due to

[30] . Also see [49] .

Theorem 2.1.10. For a neutral element n of a lattice L, the
following conditions are equivalent :

(i) L is modular

(i) 1, (L) is modular

(iii)  F, (L) is modular

Following result is also due to [30]. |



Theorem 2.1.11.  Let L be a lattice with a neutral element n . Then the

following conditions are equivalent :
(i) L is distributive ;
(i) 1, (L) is distributive ;
(i) F, (L )is distributive ; w

For any two n-ideals I and J of a lattice we have already defined

I v J in the introduction . Now we include the following result , which

will be used to prove several theorems in different chapters of the thesis.

Theorem 2.1.12.  Let 1 and ] be two n-ideals of a distributive

lattice . Then forany x € I v J ,x v n =1 v j and
X A n =iy A J, forsome
1;1 5 1'2 e [ 3 j} 5 ‘].2 e J with ll ) jl > n and

i 4 Jon = N

FA

Proof: Let x € I v J .Then
in j< x < i'v j'forsomei, j'e I, j,j' e J.
Now x < i'v j' implies xv n <i'v j'v n.Thus
xvn=(xvn)a('vj'vn).
=[cvn)a@va)lvIvnr)a(G'vn)
Butn < (x v n)a (i'v n)< i' v n implies by convexity that
(xvu)a(@'vn)=i(say )e I Similarly,
(xvn)a(j'vn)=j(say)e J.Thus,
¥ M B = Vo ithye gy gy e J and
i; > n, j; 2 n.Similarly we can show that x A n = iy A j, for

some i, € I, j, € Jwithiy, j, < n



We conclude this section with the following useful result which is
due to [31]. This result will also be used in proving several results in

different chapters of the thesis.

Theorem 2.1.13. For a neutral element n of a lattice L, any
finitely generated n-ideal of | which is contained in a principal n-ideal is
a principal

n-ideal . [ |



2.Prime n-ideals.

Recall that an n-ideal P of a lattice L is prime if
m (x,n, y)e P, x, y e L implies either xe Por y € P .

Since for any two n-ideals I and J of L,
In J=4{m(@,n, j)iie I, je J }, soitisveryeasyto
see that for any prime n-ideal P. I N J < P implies either

I © PorJie P .

Theorem 2.2.1. If P is a prime n-ideal of a lattice, then for any

x € L ,atleastone of x A n and x v n is a member of P.

Proof : Observethat m (x A n, n, xvn)=neP.

Thuseither x A e Porx v n € P . [ |

Theorem 2.2.2. If P is a prime n-ideal of a lattice, then P

contains either (n] or [n), but not both .

Proof : Suppose P is prime and. P 2 (n] Then there exists
7 < nsuchthat » ¢ P .Nowlet s € [ ). Then
m (r,n,s):(r/\rz)v(n/\s)v(sz\r)zrvn\/r:ne P
implies that s € P .Thatis, P >|[n) . Similarly, if P 2 [#), then we
can show P o (] .
Finally suppose that P contains both (] and [n) Let t € L . Then

tAnne P andt v n € P .Then by convexity of n-ideals 1 € P .

This implies P =L , which is contradiction to the primness of P. W



Thus we have the following corollary :

Corollary 2.2.3. I P is a prime n-ideal of a lattice L, then there
exists at least one x € L such that both x A n and x v n does not

belong to P.

Theorem 2.2.4. Let n be a neutral element of a lattice L.. Then
an

n-ideal P is prime if and only if it is a prime ideal or a prime dual ideal

(filter) .

Proof :  Suppose the n-ideal P is prime . Then by Theorem 2.2.2,
either » o (n] or P o [#). Suppose P o (n].Let x € P and
t<x, teL.Thent A ne (n]c P .Thus, by convexity of P,

t A n <t < ximpliesthat + € P . This implies that P is an ideal. Also

leta nbe P, a,be L .Then(aAnb)vne P and
m (a, n, b):(a/\n)v(b/\n)v(a/\b)s(a/\b)\/n

implies that m (a, n, b)e P . Thus, either a € Porb e P,

and so P is a prime ideal.

On the other hand if P o [»), we can similarly prove that P is a

prime dual ideal. |

Following lemma is due to [30, Lemma 2.2.8] .
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Lemma 2.2.5. In a distributive lattice L, a prime ideal containing n is

also a prime n-ideal . ¥

Dually we have the following result .

Lemma 2.2.6. [n a distributive lattice L, a prime dual ideal (filter)

containing n is also a prime n-ideal . [

The set of all prime n-ideals of L is denoted by P (L) . The
following separation property for distributive lattices was given by M. H.
Stone [15, Theorem-15, Page-741], which is known as Stone’ separation

theorem .

Theorem 2.2.7. Let L be a distributive lattice, let 1 be an ideal,
let D be a dual ideal of L, and let 1 n D = @ , then there exists a prime

ideal P of L suchthat P o> I and P n D = Q . [

Following result is an improvement of above theorem which is due

to [31, Theorem 2.2.3]

Theorem 2.2.8. Let L be a distributive lattice , let | be an ideal,
let D be a convex sublattice of L and let I m D = @ |, then there exists

a prime ideal P of L suchthat P o I and P N D = © . L]

Now we give a separation property for distributive lattices in terms
of prime n-ideals which is of course an extension of Stone’s separation
theorem . It should be mentioned that this result has also been obtained by
Latif and Noor in [53] . Here we include a separate proof of it is much

more simpler than that of [53] .



Theorem 2.2.9.  [n a distributive lattice L, suppose 1 is an n-
ideal and D is a convex sublattice of L with I N D = ® . Then there

exists a prime ideal P of L suchthat P o I and P " D = @ .

Proof : Since / N D = ® , so either (I/|[nD=® or
[)nD=®. If (I]n D=®, then by Theorem 2.2.8 , there exists a
prime ideal P o I suchthat P N D = @ . Similarly if [ /)" D=,
then there exists a prime filter © o [/) such that 0 N D = ® . But

by Lemma 2.2.5 and Lemma 2.2.6 both P and Q are prime n-ideals . [
Corollary 2.2.10. Every n-ideal 1 of a distributive lattice L is the

intersection of all prime n-ideals containing it .

Proof: Let /I, =nN{P :P o I,P isaprime n-ideal of L }.
If I # I,, then there is an element a € [, — [ . Then by above

corollary , there is a prime n-ideal P with P o 7, a ¢ P . But

a ¢ P o I,givesa contradiction . 1]

For an n-ideal 1 of a distributive lattice L, the congruence © (1 )
has been studied in [61] and [30]. By [61], x=y©® (I) if and only if
XA L= pAL and XV iy, = Yy Vi, for some
iy, i, € I . Moreover ©®(7) is the smallest congruence of L
containing I as a class . In chapter 2 of [30], Latif has proved the
following result :

Theorem 2.2.11.: Let L be a distributive lattice. Then for any two
n-ideals | and J of L

i e(nJ)=0@l)neV);

) e(vJs)=0@)ve()



[39]
(%]

Moreover , the correspondence 1 — © (1) is an embedding from
I,(L)to C(L).
Theorem 2.2.12. For a neutral element n of a lattice L,

I1,(L)= C(L)ifandonlyif F, (L )is generalized Boolean. W

For an n-ideal I of a distributive lattice L, Latif has also studied the
congruence R (I) in [61] . By [61], the relation R (I) defined by
“x =y R(I) if and only if for any 7€ L, m(x, n, t)elis
equivalent to m (y, n,t) € I ” is the largest congruence of L

containing I as a class . With the help of this congruence we will provide
the following characterization of prime n-ideals of a distributive lattice .
This result is due to [ Ayub’s Thesis]. We prefer to include its proof for

the convenience of the readers .

Theorem 2.2.13. Let L be a distributive lattice and n € L . An
n-ideal P is prime of and only if the quotient lattice L / R (P) is a two

element chain .

Proof : Suppose P isprime.Let x, y € L — P . Then for any
te L, m (x, n, s‘)e P implies ¢ € P . Since
tAn<m (y, n, c‘)stv n , so by convexity of P,
m (y, n, f)e P . Therefore x = y R (P) Moreover, let
r=xR(P) forsome x € L — P .Then m (r,n,x)e P as
m (x, n,x )= x ¢ P .Thisimplies » ¢ P . For otherwise,
rAn<m (r, n x)s r v n would imply that
m (r.n.x)e P by convexity of P and that is a contradiction . Thus L

/ R (P) is a two element chain {P, L-P} .



Conversely, suppose L / R (P) is a two-element chain. Then L-P is
a congruence class of the congruence R (P) . If P is not prime, then there

exists x, ye L — P suchthat m (x.n,y )e P .SinceL-Pisa
congruence class,so x = y R (P ). Thus
m (x,n,y)e P implies m (y,n,y)z y € P whichisa
contradiction . Therefore P must be prime . |

For any n-ideal J of a distributive lattice L, we define

JYt ={xeL:m (x,n, j)=nforall j e J }. Obviously,

J*isann-idealand J n J* = {n}. Wecall J* as the annihilator

n-ideal of J .

It is well known from [15, Theorem 22, Page 76] that a
distributive lattice with 0 is generalized Boolean if and only if the set of
prime ideals is unordered. We conclude the chapter with a nice
generalization of that result which is due to [30, Theorem 2.2.9]; also see
[49] . Hence we prefer to include a new proof of (i) = (iii), as it is much

easier than that of [30] .

Theorem 2.2.14. Let L be a distributive lattice and n € L .
Then the following conditions are equivalent :

(i) F, (L) is generalized Boolean ;

(ii)  For each principal n-ideal
< XSy, < x>, V< x>, = L,where
<x>t'={pyel :m(x, n,y)=n ;

(iii)  The set of prime n-ideals P (L) is unordered by set inclusion.



Proof : (i) < (ii) and (iii) < (i) follows from [30, Theorem
2.2.9].;
(i) < (iii) . Suppose (i) holds. Then by Theorem 2.1.5, the intervals [x, n]
and [n, y] are complemented for each x, ye L with x < n < y.
Let P and Q be any two prime n-ideals of L . Then by Theorem 2.2.4 , P
and Q are either prime ideals or prime filters of L . If one of them is a
prime ideal and the other is a prime filter, then of course they are
unordered. If both P and Q are prime ideals, then p ~ [»,y] and
O ~ [n, y] are prime ideals of [n, y] .
Since [n, y] is a complemented lattice, so by [15, Theorem 22, Page 76],
P~ [r,y] and Q A [n,y] are unordered. Therefore P and Q are

unordered . If P, Q are filters , then using the same argument we find that

Pn[n,y]land O N [n_, y] are unordered . Thus P and Q are unordered

and this establishes (iii) . [
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Chapter-3

Principal n-ideals which form normal Lattices

Introduction

Normal lattice have been studied by several author including
Cornish [9] and Monteiro [39] ,[31],while n-normal lattices have been
studied by Cornish [11] and Devey [13]. On the other hand Cignoli in [8]
and [9] introduced the notion of k-normal and k-completely normal
lattice. Again Chan and Gratzer in [7] and [8] studied the constructions

and the structures of Stone lattices.

A distributive lattice L with 0 is called normal if each prime ideal
of L contains a unique minimal prime ideal. Equivalently, L is called
normal if each prime filter of L is contained in a unique ultrafilter

(maximal and proper) of L.

Minimal prime ideals in distributive lattice have been studied
extensively by many authors including [1], [7], [8], [9], [21], [28], [58],
and [59].

Recently, [6] , [8] introduced the concept of minimal prime n-ideal

in lattices and generalized several results of minimal prime ideals .



In this chapter we study the minimal prime n-ideals and generalized some
of the results on minimal prime ideals. Then we used these results to
generalized several important results on normal lattices in terms of n-

ideals.

A Prime n-ideal P is said to be a minimal Prime n-ideal belonging
to n-ideal I if,
(1) [ c P, and
(i)  There exists no prime n-ideal Q such that O # P and

le@ePl.

A prime n-ideal P of L is called a minimal prime n-ideal if there

exists no prime n-ideal Q such that Q# P and Q c P. Then a minimal

prime n-ideal is a minimal prime n-ideal belonging to {n}.

For any n-ideal J of L, we have already defined in chapter 1 that
J*=lxel, :m(x, n, j)=n forall jel}

Observe that J * is an n-ideal and J " J * = {n] .

In fact, this is the largest n-ideal which annihilates J. Latif in [30]
called this an annihilator n-ideal of J. We prefer to call this as the
pseudocomplement of J in F,, (L) . Moreover, for a distributive lattice L,
F, (L) . is a distributive algebraic lattice and so it s
pseudocomplemented. Observe that 7, (L) . has always the smallest
element viz. {n}.

We shall call two prime n-ideals P and Q of L comaximal if
PpO=1L.



In section 1. we have studied minimal prime n-ideals of L. There
we have given some characterizations of minimal prime n-ideals. Also
see [43]. These results give nice generalizations of several results on
minimal prime ideals which will be used to prove some important results

in section 2.

In section 2, we have given several characterizations of those

P, (L) which are normal lattices in terms of n-ideals. Then we have
proved that P, (L) is normal if and only if each prime n-ideal contains. a

unique minimal prime n-ideal .



1.Minimal prime n-ideals

Recall that a prime n-ideal P is a minimal prime n-ideal belonging to an
n-ideal

[if

i) I < P and

(ii)  There exists no prime n-ideal Q such that 0 # P and

I =0 c P
Following theorem is a generalization of [15, Lemma 4, Page 169].

Lemma 3.1.1 Let L be a lattice with an element n. Then

every prime n-ideal contains a minimal prime n-ideal .

Proof : Let P be a prime n-ideal of L and let y denotes the set
of all prime n-ideals Q contained in P. Then y is not void, since
Pe y IfCisachainin yand 9 -n (X : X e€C), thenQis
nonvoid because n € O and Q is an n-ideal, in fact, Q is prime.
Indeed, if m (a, n, b ) € X forsomea, b € L
then m (a, n, b ) e X forall X e C . Since X is prime, either
ae X or beX Thus, either Q=n(X:ae X) or
O0=n (X :be X ), proving that a € O or b € Q . Therefore,
we can apply to y the dual form of Zorn’s lemma to conclude the

existence of a minimal member of 7. B



Now we give a characterization of minimal prime n-ideals of a
distributive lattice L, when P, (L) is sectionally pseudocomplemented.

In order to do this, we need the following lemmas:

Lemma 3.1.2 Let L be a distributive lattice and n € L . Then for
any [a, ble F, (L) andforanyn-ideal 1.

(I Ja, b])*r‘\[a, b]zl*m[a, b

Proof : Since [a, b]ﬂ I < I soR. H.ScL.H.S. Toprove
the reverse inclusion , let X € L.H.S. Then a<x<b and
m (x, n, I)= n forall Ie[a, b]N1I. Since xela, b], so
m (x,n,i)ea, b|n T forall i€l Thus
m (x, n, m (x,n, i))z n.But it can be easily seen that
m(x, n, m (x,n, f)):m (x,n, 1').
This implies m (x , n, i)= n foralli € [ .Hence.Xxc RHS. ®W

Lemma 3.1.3 Suppose L is a distributive lattice, and
[c, d]; [a, b] in F,(L)
then, (i) [ec. d]*=[c. d]"n[a. b]and

Gii) [e, d]*™ =[e, d]™ n[a ?]
Proof : (i) is trivial . For (ii) using (i) we have

e, d*=(c d*)*nla 8l=lc Al &) Al ]



Thus, by Lemma 3.1.2, [c, d] A :[c, d] ** ﬂ[a, b] : [ |

Now we give the following characterization of minimal prime

n-ideals. (Also see [43] ).

Theorem 3.1.4 Let P, (L) be a sectionally pseudocomplemented
distributive lattice, and P be a prime n-ideal of L Then the following
condition are equivalent :

(i) P is minimal

(i) x € P implies<x>, ¢ P ;

*
= 2 ;

(ili) x € P implies < x >

Gv) PN D (<t>,= ¢)forallt L-P;
Where D (<t >,)= {xe<r>”:<x>;:{n} ,

Which is due to [43].

Proof : (i) = (ii) . Suppose P is minimal . If (ii) fails, then there
exists x € P such that < x >; < P. Since P is a prime n-ideal . So by

theorem 3.2.4,

P is a prime ideal or a prime dual ideal. Suppose P is a prime ideal . Let

D=(@-P)v[x). Weclaimthat ¢ D .Ifn € D,

then m = ¢ N X forsome g € L — P .



Then<q>nr\<x>”:<(qx\x)v(q/\n)v(x/\n)>ﬂ={n}
implies < ¢ >, c < x>5 < P.Thus ¢ € P , which is a

contradiction.

Hence n ¢ D . Then by Stones separation theorem for n-ideals
[ 53, Lemma 1.3], there exists a prime n-ideal Q with Q9 N D = ®. Then
QgPast(L—P):(I)andQ # P since x ¢ O .But

this contradicts the minimality of P. Hence, < x > | < P

n

Similarly, we can prove that < x >, < P if P is prime dual ideal

(ii) = (iii). Suppose (ii)holdsand x € P .Then< x >," g P .

*

. * %* . .
Since< x>,  n<x>, ={n} c P, Pisprime, so

(iii) = (iv) . Suppose (iii) holds and t € L — P . Let
xePnD(<t>,)ThenxeP, xe D (<t >,).Thus
<x>t={n}tandso< x >,"" = <t >, Byfil,

x € P implies. (x) ™ < P . Alsoby

LemmaB.l.S.(x)n W= <x>n**ﬂ (t),

Hence:x & > M <t >, = <t >, and



o By e &KX >>" ¢ P .Thatis,te P,
which is a contradiction. Therefore, P n D (< t >, )= ® for
allte L — P,

(iv) = (i), Suppose P is not minimal . Then there exists a prime
Sincex x 5y M < %5, ={Hrc @ ,s0

*
castic e P s, < % >, ¥v<E >, P

n

Chooseany t € L — P .Then

2 ¥ 3, 0 <x>”v<x>';)gP.Now

* %
<t>, r\(<x>n <o o T ):(<t>n m<x>n)v(<t>” M<X>, )

=<m(t, n, x)>”v((<r>nm<x>ﬂ)*m<f>”
(by Lemma 3.1.2)
=< m (t, /)R x)>nv(<m (1‘, n, x): M <t>ﬂ)

=<m @, n, x)>,v <m ({t, n, x)>;

[by Lemma 3.1.3] where < m (t, n, x )> »is the relative
pseudocomplementof < m (¢, n, x)>, in (f) .

Since P,(L) is sectionally pseudocomplemented, so

<m (t, n, x)>; is a principal n-ideal and so by [33, Lemma

34,<m (t, n, x)>, v <m(t, n, x)>} isaprincipal
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n-ideal contained < f > , . Therefore,

<m (t, n, X)>, Vv <m(t, H, T)>T =4 F >,

forsome r € < t > , Moreover,

cr>otisam i )sl cvem (o0, 2)st =An

Thus » € P n D (< t >, ),which isa contradiction .

Therefore P must be minimal .




2. Lattices whose principal n-ideals form normal

Lattices

Recall that a distributive lattice L with 0 is called a normal lattice if
its every prime ideal contains a unique minimal prime ideal. Following
result is due to [9, Theorem, 2.4,] which gives a characterization of

normal lattices.

Theorem 3.2.1. For a distributive lattice L with 0, the
following conditions are equivalent.

1) Any two distinct minimal prime ideals are comaximal.

ii) L is normal.

iii) Foranyx,yeL,(xay]l ' =(x]"v(yl .

iv)  Forany X,y €L with x A y =0implies (x] v (y]* =
Moreover, when L has a largest element 1, then each of the above
conditions is equivalent to for any x,y € L, x Ay =0 implies x;,y, € L

such that xAnx;=0=y A yjand x; v y; =1 m

By theorem 2.1.2, We know that FH(L) = (n] % A [n) , so we have the

following result :

Theorem 3. 2. 2 For a distributive lattice L with
nelL, F,(L)isnormalifand only if (n] and [n) are normal. W

A distributive lattice L with 0 is called a generalized Stone lattice if for

ek

each xe L, (x] *V(I] = L.
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By katrinak [16, Lemma 8, P-134,] we know that L is generalized Stone
if and only if [0, x] is a Stone sub lattice for each xe€ L.

Moreover by [9, Theorem 5.6] we know that a distributive lattice L with
0 is generalized Stone if and only if it is normal and.

pseudocomplemented The following result is trival by 2.1.2

Corollary 3.2.3. Suppose F, (L) is a sectionally
seudocomplemented distributive lattice, then F, (L) is generalized stone if
and only if (n] is dual generalized stone and [n) is generalized stone. W

Following results are needed to prove the main results of this section.

These are due to [9, Theorem 2.4,] .

Lemma 3.2.4. If L, is a sublattice of a lattice L and P, is a
prime ideal in L, then there exist a prime ideal P in L such that

P=LnP. 1

Lemma 3.2.5 Let L, be a sublattice of a lattice L . For every

(minimal) Prime ideal P,of L, there exist a (minimal) prime ideal P of L
such that P, = P N L and conversely. e
Lemma 3.2.6. Suppose L is a distributive lattice and n€ L.

Let x,ye Lwith (x), " {(y) ,= {n}. Then the following conditions are

equivalent

ii) ForanytelL, (m (x, n, e‘))Z v (m (y, n, t)> = ( r> -

where (m (x,n,1)) , denotes the relatively psuedocomplement

(m(x,n,t)) , in {n}, (1) 25
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Proof:- (i) = (ii)
Suppose (i) holds. Then for any ¢ € L, using Lemma 3.1.3,

(m Gy, Oy v (m (om0,

= (=), ) v (), 0 (),)

(& an ) @ V(G ) A, )
()5 @ W) 2o () 4) by Qemmasi2)

= (0 v o0 )n o,

=Lt}

(ii) = (i), Suppose (ii) holds and ¢ € L. By (ii),

<m (x,n,r»; % (m (y,n,r»: = <r>n, then by

Calculation of (i) = (ii), we have
(G0 v o) o), = 0,

This implies (t) < (x) v (y), andso
te (x), v {»),

Therefore, <x>: v <y>: = L.
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Theorem 3.2.7 Let L be a distributive lattice and ne L. The
following conditions are equivalent.
i) E. (L ) is normal.
ii)  Every prime n-ideal of L contains a unique minimal prime
n-ideal.
iiiy For any two minimal prime n-ideals P and Q of L,

PvO=L.

Proof : (i) = (i1)

Let F,(L) be normal since F, (L)=(n] 4 A[n) soboth (n] “and
[) are normal.
Suppose P is any prime n-ideal of L. Then by theorem 2.2.2, either
P>(n] or, P2 [n). without loss of generality suppose P 2 (n] Then by
Theorem 2.2.4,
P is Prime ideal of L. Hence by Lemma 3.2.4 B =PnN [#) is a prime
ideal of [)
Since [n) is normal, so by [Theorem 3.2.1 ] P, contains a unique minimal
Prime ideal R, of [1) . Therefore P contains a unique minimal prime ideal
R of L where R, =RnN[n) Since neR, so neRand hence R is a
minimal prime n-ideal of L.
Thus (ii) holds
(ii) = (i) Suppose (ii) holds
Let P, be a prime ideal in [#). Then by [ Lemma3.2.4] P =PnN [n)
for some prime ideal P of L. Since n € P, < P, soP is prime
n-ideal.

Therefore P contains a unique minimal prime n-ideal R of L. Thus by
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[Lemma 3.2.4 ] P,contains the unique minimal prime ideal R, =R N [n)
of [1). Hence by [ 2] [n) is normal. Similarly, we can prove that (n] ¢ is

also normal. Since F, (L)= (n] ¢ x [n) , so F, (L) is normal

(i) = (iii) is trival. &

By 2.1.3, we have the following interesting result when n is a central

element of L.

Theorem 3.2.8 Let L be a distributive Lattice and n€ L be
central in it . Then the following conditions are equivalent.
() P,(L) is a normal lattice
(ii) 1,(L) is a normal lattice

(iii) F,(L) is a normal lattice [

Thus we have the following result.

Theorem 3.2.9 Let L be a distributive lattice and ne L be

central in it. The following condition are equivalent.

(i) P, (L) is a normal lattice

(ii)  Every prime n-ideals of L contains a minimal prime n-ideal.
(iii)  For any two minimal prime n-ideals P and Q of L
PvO=L. m
For a prime ideal P of a distributive lattice L with 0, Cornish in [7] has
defined 0(P)={xeL : xAy=0 for some yeL—-P}. Clearly

0 (P) is an ideal and 0(P)c P . Cornish in [7] has shown that 0 (P) is

the intersection of all the minimal prime ideals of L which are contained

in P.
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For a prime n-ideal P of a distributive lattice L, we write
n(P)= {y el : mp x)= n for some x € L — P}. Clearly, n(P)is

an n-ideal and n (P)g P

Lemma 3. 2. 10. Let P be a prime n-ideal in a distributive
lattice L.

Then each minimal prime n-ideal belonging to n(P) is contained in P.

Proof: Let Q be a minimal prime n-ideal belonging to n(P).
If O ¢ P, then choose y € Q— P. By Theorem 2.2.4, we know that Q is

either an ideal or a filter. Without less of generality suppose Q is an ideal.

Now let S = { seL:m(y, n,s)en(P) 1. We shall show that s ¢ Q.

If not, let D=(L-Q)v [y) Then n(P)nD=®. For otherwise,
yaren(P) for some reL-Q. Then by convexity,
yar<m(y,n,r)<(y Ar)vn implies m(y,n,r)e n(P)
Hence reSc Q. which is a contradiction. Thus, by Stone's separation
theorem for n-ideals, there exists a prime n-ideal R Containing n(P)

disjoint to D. Then R c Q.

Moreover, R=Q as y & R, this shows that Q is not a minimal
prime n-ideal belonging to » (P) which is a contradiction.
Therefore, S Q. Hence there exists z¢Q such that
m (y,n, z)e n(P )
Thus m (m (v, n, z), n,x)=n for some xeL—P. It is easy to see

that
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m(m(y,n,z),n,x)z m(m(y,n,x),n,z)
Hence, m(m (y,n,x),n,z)= n . Since P is Prime and y,x ¢ P,
SO m(y,n,x)@ P. Therefore, z € n(P)c; Q, whichisa

contradiction.

Hence Q< P, ]

Proposition 3.2.11. If P is a prime n-ideal in a distributive
lattice L, then n(P) is the intersection of all-minimal prime n-ideals

contained in P.

Proof: Clearly #n(P) is contained in any prime n-ideal which is
contained in P. Hence 7 (P) is contained in the intersection of all minimal

prime n-ideal contained in P.

Since L is distributive so by Corollary 2.2.10, n(P) is the
intersection of all minimal prime n-ideals belonging to it.

By Lemma 3.1.1, as each prime n-ideal contained a minimal prime
n-ideal, above remarks and Lemma 3.2.10 establish the proposition. H

Theorem 3.2.12, Let L be a distributive lattice and n€ L. Then
the following condition are equivalent,

i) F, (L) is normal.

ii)  Every prime n-ideal contains a unique minimal prime

n-ideal
iiiy  For each prime n-ideal P, n(P) is a prime n-ideal

iv) Forall x,yelL. <x>n N{y) = {n} implies that



(x), v (¥), =L.
V) For al/ X,V € L’ (<x>n M <y>ﬁ ) "= <x>; v <y>,:
Proof:- (i) < (ii) holds by Theorem 3.2.7.

(ii) = (iii) is a direct consequence of proposition 3.2.10.

(iii) = (iv). Suppose (iii) holds. Consider x,y € L. with

Gy wy )=t} I (), vy, 2L,
Then by theorem 2.2.9, there exists a prime n-ideal P such that
(x)% v {y)sc P ,then(x), c P ,and(y), c P,imply
x ¢ n(P)and yen(P).
But n(P) is prime and so m (x, n, y) = n € n(P) in contradictory.

Therefore, (x) , v(y) , =L .

(iv)= (v) obviously (x) ," v () ," < ((x) , A (¥) ]
Conversely, let we ((x) , A () ,)°

Then (W) w (%) i (D) = 1} -

Thatis, (m(w,n,x)), N (y) .= {n}.

Thus (iv), (m(w,n,x))} v(y),=L.
So,we  (m(w, n, x)),

Therefore, wv n € <m (w, n, x)> T <y> o

Then by theorem 2.1.12

wvn= rvs forsome re(m (w,n,x»;



and s € <y>n*, with r,s > n.

Now r & (m(w,n, x)) * implies
ralwan)v(wax)v(xan)v(ran)v

(6w An)v (cAn)v (wAx)]an=n.

That is, (r AwAR)V(r AWAX)V(F Ax ARV (r AR)V(WAR)V (x AR)=n.
or, WAn)V (rAwAx)v(xan)vav(wan)v(xan)=n.

or )‘/\W/\JC)VV!:n.

1
A

r rvn)/\(wvn)/\(xvn) = n.

Q

or, (rvn)/\(xvn)zn.as rvnswvn,
(PR At

o (FAZ) VG n Bl v e A=,

ot et

Which implies 7 € (x) |

*

Therefore wv n e <x> : Vv <JV> n
A dual proof of above, shows that w A n e <x> v ( y)

*

So by Convexity, we (x) » v (y) ;

Therefore, (<x> 5 M <y> n) 2 (x) Y <y> "> and so
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(<x> " ﬁ(y) ”) = <x> : Vv (y) : , which is (V).

(v) =(iv) Let (x) . f"\-<y> . =1{n}, forsome x,yeL.

by ), L ={n}"=((x) () ,) =), v(»),"

Thus (iv) holds. (iv) =(i) Consider [1). Let x, y € [1) with x A y = n.
Then (x) , N (¥) , = {1} . Thus, by (iv), (x) * v (») * =L.

This implies [ n )= (<x>”* v<y >n*)m [n)

(ex>, Aln)v<ys, Aln)=<xs, veys,

Notice that both <X>n and <y>n are ideal in[#) and <x>”+, <y>n+ are
annihilator ideals of <x>n and (y)n respectively in [n) This implies by

[Cornish, Theorem 2.4] that [7) is a normal lattice. A dual proof of above

d

shows that [n) ¢ is also a normal lattice. Therefore F},(L) is also normal

as F, (L)=(n]* A [n) . =
We conclude this chapter with the following result, when n is a central
element which follows immediately from the above result and

theorem 2.1,3

Theorem 3.2.13.  Let n be a central element of a distributive
lattice L.
Then following conditions are equivalent

() £ (L) is a normal

(ii) Forall x,y e L, <x>ﬂ N (y)n = { n} implies that



(% v (), = L.

= x>: vV <y>:
(i) Forall x,ye L, ((x) n(y) ) ={

45
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CHAPTER -4




Chapter-4

Finitely generated n-ideals, which form

relatively normal lattices.

Introduction

Relative annihilators in lattices and semilattices have been studied
by many authors including Mandelker [ 38 ] and Varlet [ 60 ]. Cornish
in [9] has used the annihilators in studying relative normal lattices.
Recently Noor & Ayub in [ 45 ] have introduced the notion of relative
annihilators around a fixed element ne L known as relative
n-annihilators. In this chapter we intend to generalize several results on
relatively normal lattices by using the relations n-annihilators .

Fora, be L, <a, b>={xeL :x/\aéb} is known
as annihilator of a relative to b, or simply a relative annihilator. 1t is
very easy to see that in presence of distributivity, <a, b > is an ideal of
L.

Again for a, be L we define <a, b>;={x : xva>b}, which we
call a dual annihilator of a relative to b, or simply a relative

dual annihilator. In presence of distributivity of L, <a, b >, is a dual

ideal (filter).
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For a, b € L and a fixed element n € L, we define

<a,b>”={xeL:m(a,n,x)e<b>n}={xeL:b/\nSm(a,n,x)Sbvn}

.Wecall <a, b>" the annihilator of a relative to b around the element
n or simply a relative n- annihilator. It is easy to see that for all

a,bel, <a, b>"1isalwaysa convex subsetcontainingn . In

presence of distributivity, it can be easily seen that <a, b5>" isan
n-ideal. For two n-ideals A and B of a lattice L, <A, B> denotes
{xeL :m(a,n,x)e B} forall ae 4}.In presence of distributivity,
clearly <A, B> is an n-ideal. Moreover, we can easily show that

<y b= <wany, <bas.

n
g, b= < azy, <hxys,

Recall that a distributive lattice with 0 is a normal lattice if its
every prime ideal contains a unique minimal prime ideal. A distributive
lattice L is called a relatively normal lattice if its every interval [a, b] is
normal.

In section 1 of this chapter we have included several

characterizations of <a, b>".If 0 € L, then putting n = 0 the n-ideals

become ideals and <a, b>"=<a,b>. So the results of this section

generalize several results on annihilators in [38].
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In section 2 we characterize those F, (L) which are relatively

normal in terms of n-ideals and relative n- annihilators. These results are
certainly generalizations of several results on relatively normal lattices.

At the end we show that for a central element n, P, (L) is relatively

normal if and only if any two incomparable prime n-ideals of L are

comaximal.
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1. Relative annihilators around a neutral

element of a lattice.

We start the following result due to [45], which gives a characterization
of <a, b>"

Theorem 4.1.1. Let L be a lattice with a neutral element n in

it. Then for all a, b € L, the following conditions are equivalent :

(i) <a, b>" isann-ideal;

(i) <anan, ban> ,isfilter and

(ili) <aAn, bvn> isanideal.
The following result is also due to [ 45 ].

Theorem 4.1.2 Let L be a lattice with a neutral element n .
For all a, b € L the following hold :
(i) <aan, bvn>, is an ideal if and only if [n) is a
distributive sub lattice of L :
(i) <aan, ban>, is a filter if and only if (n] is a
distributive sub lattice of L . 5
By theorem 2.1.3, we know that for a central element nelL,
P, (L)=(n] ¥ x[n), where (n] ¢ denotes the dual of the lattice (r] .

Thus by Theorem 4.1.1, and above result we have the following result.
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Theorem 4.1.3. Let be a lattice and ne L be neutral. Then

for all a,belL, <a, b>" is an n-ideal if and only if P, (L) is
distributive . |
Now by [30], we know that L is distributive if and only if P, (L)

is distributive. Therefore, we have the following corollary which is a

generalization of [38, Theorem 1] .
Corollary 4.1.4. For all a, be L and for a central element
n € L,<a, b>"isann-ideal if and only if L is distributive. [
Following result also generalizes [38, Theorem 1] which is due to [45]

Theorem 4.1.5. Let n be a neutral element a lattice L. Then
the following conditions are equivalent :
(i) L is distributive ;
(ii) <avn, bvn>isanideal and <ann, ban>, is a
filter whenever <a> , > <b> ,.
Theorem 4.1.6. Let n be a central element of a lattice L. Then

the following conditions are equivalent :

() P, (L) is modular ;

n

(iii) Fora, be L with<b>,c<a>,, xe<b>, and
ye<a, b>"imply xAny, xvy €<a, b>".
Proof : (i) = (ii). Suppose P, (L) is modular. Then by theorem

2.1.3, (n] and [n) are modular. Here <b>, c<a>,.

Socann<ban<n<<bvn<avn.Sincexe< b>,,



a v n. Now,

ye<a, b>" implies m (v, n, a)e<b>, . Thenby the

neutrality of n, (y v a)A (y v n)a (@v n)< b v n, and so
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((y\/a)/\(yvn)/\(avn))vnz(yvn)/\(avn)sbvn.

Thus, using the modularity of [#),
mxvyvn, na)=(xvyvna)alavn)

:[(avn)/\(yvn)]v(xvn),asxvnﬁbvnéavn

. . . 1
This implies m(xvyvn,n,a)sbvn, and so XVyvmne <a,b>
. Since n is neutral, so a An<b A n<xAn implies that

b/\né(x/\n)v(y/\n)v(a/\n)z((xvy)/\n)v(a/\n)

=m((xv y)a n,n,a)< b v n.

Therefore, (xv y)ane<a, b>".Hence by the convexity of
<a, b>", xvye<a, b>".Again usingthe modularity of (n],
a dual proof of above shows that x A y €< a, b >".
Conversely, suppose (ii) holds. Let x, y.z e [n ) with x < z.

Then x v (¥ A z )< z .Thisimplies <xv(yaz)>,c<z>,

Now x < x v (¥ A z) implies x e< xv(yaz)s,.



Again y A z < x v (y A z) implies

m(y,n,z)=y A ze< xv (y A z)>, Hence

ye<z, xv(yaz)>". Thus by (ii), xv ye<z,xv(yaz)>"

Thatis, (x v ¥y )A z £ x v (y A z) and so

(xvy)/\z:xv(y/\z).

Therefore, [r) is modular .

Similarly, using the condition (ii) we can easily show that (n] is
also modular. Hence by theorem 2.1.3 , P, (L) is modular. ]

By [49, Theorem 3.2] , we know that a lattice L is modular if and only if
the lattice of all n-ideals I, (L ) is modular. Following their proof if can be

easily seen that L is modular if and only if P, (L) is modular. Hence we

have the following result which generalizes [38, Theorem 2].

Corollary 4.1.7 Let n be a central element of a lattice L. Then

the following conditions are equivalent :

(i) L is modular,

(ii) Fora, b e Lwith <b>,c<a>,, xe<b>,and

ye<a, b>" implies xAy, xvye<a, b>" |

We conclude the section with the following characterization of
minimal prime n-ideals belonging to an n-ideal. Since the proof of this is

almost similar to Theorem 3.1.4, we omit the proof.
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Theorem 4.1.8. Let L be a distributive lattice and P be a prime
n-ideal of L. belonging to an n-ideal J. Then the following conditions are
equivalent :

(1) P is minimal belonging to J,

(i) xeP implies <<x>,, J >¢P ]
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2. Some characterizations of those F,(L)
which are relatively normal lattices.

We start this section with the following result which is a
generalization of [9, lemma 3.6]. This plays an important role in proving

our main result in this section.

Theorem 4.2.1. Let L be a distributive lattice. Then the following
hold

@ (&), V) ) = ()2, );

Vv

(1) <<x>ﬂ ,J> = - <<x>”,<y>n >, the supremum

of n-ideals <<x >n ; < y )n > in the lattice of n-ideals of L, for any xe€ L

and any n-ideals J.

Proof: (i) L.H.S. < R.H.S.isobvious. Let € R. H. S, then
re<<y>”,<x>n>. This implies m (y.n.t) < {x ) .Thatis
(m (3, n, 1), <(x),andso (), ~ (),) v (3, @) = @,
Thatis, (t) ~ [(x) v (»),]c (x), which implies
te((x), v(»),(x),) Thus ¢ € R.H.S.andso (i) holds. (i) R. H.S.
— L.H.S.is obvious. Let t e L. H. S, then m (x,n,t)e J that is

m (x,n,f): J for some j eJ This
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implies ¢ € <<x >” ; <j>n > Thus e R. H. Sand so (ii) holds xe P

implies <<x>,, J >¢P |

Following lemma will be needed for further development of this
chapter. This is in fact, the dual of [9, Lemma 3.6] and is very easy to

prove. So we prefer to omit the proof.

Lemma 4.2.2. Let 1. be a distributive lattice. Then the

following hold.

1) on g, =)
i) ( [x) F)d=y:F (x.y),. where F is afilter of L .

Qi) {(x.a), v (roa), tn [a.b]
= {<x,a>d N [a,b]}v { <y’a>d A [a,b]

Lemma 4.2.3 and Lemma 4.2.4 are essential for the proof of our main
result of this section. There lemmas are due to [45]. We include only the
proofs of Lemma 4.2.3 for the convenience of the reader.

Lemma 4.2.3, Let L be a distributive lattice with n e l, Suppose
a,b,c eL.
i) If a,b,c 2n, then <<m (a, n, b)> - <c> ”>

= <<a> ) M> v <<b> s (@) n> is equivalent to
<a A b, c>z<a,c> v (b, c>;

ii) If a, b, c<n then




((m (a.n,b)),,{e), )= <<a>n, (e), > v {{<b),.) <c>n>

is equivalent to <a v b,e>,= <a,c>d Vv <b,c>>d.

Proof: (i) Supposea,b,c 2n and
(O EONOREXONOBIA OO

Let x € (a A Db, c). Then xAanb=c,

n

(x), N(anb) =(x) N|n, anbl=[n(xvn)a(anb)]

— [, (x A anb)vn]c [n.c] .

Hence x € {(a A b),, (), ) = ((m (a,n,b)),.(c), )
= (@), €Y, ) v (b, e), )- Thus x<pva.

where 7 € ((a), . () s g€ (), 4ed,)

Then <P>” a (a >n c <C >n.Thatis
[p An.pv n]ln [n,alc [n.,c],Thus,
[7,(p v n)a alc [#, ¢ ] which implies

pAa<candso p € <a, c) Similarly, g E(b,C) and so

X € (a,c)v <b,c> . Hence <a A b,c}c; (a,c)v <b,c> .

But (a ; c) Vv (b ; c> = <a ANDb, c> is obvious. Therefore,
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(anb,cy={a,c)v (b,c) .Conversely, suppose

(@A bie)y= (ae) v i(b,c) .

Let x & ({m (asn, b)Y, 24e), ) -

Then (x) n(m(a.,n.b)), =[xrn, xvn]nlnan blc [n.c].
Thatis [n, (x v n)A (a A b)]c [n,c] .

Thus [n,(x A a A b)v n]c [n,c] which implies
xAnanb £ c, andsoxe(a/\b,(:):(a,c)v(b,C).
This implies x=rv's, where » € (a, c) and s € (b, c).
Then *rAa<c and s A b < c.

Now () n(a) =[ran rvnlalnal=ln@vn)aal

= [n.G A a)vnlc [n.cl= (),

SRl o s T e
S e ((b),+(e), ) Thus x & ((a),.(e), ) v ((b),(c), ) ands0
(m(a,n,b), (e}, )y ((a),+(ed, )V ((b),-{e),)-

Since ((a), (¢}, )V ((),(e), ) € ((m(a,n.b)),.(e), ) is
obvious, so ((m(a,mb),.(e), ) = (@), (),) v {(8),-(e),) -

Dual calculation of above proof proves (i) W
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x € P implies <<x>,, J >¢P
Lemma 4.2.4. Let L be a distributive lattice with n € L , Suppose
a, b, c; el.

(1) Fora;b,e = n,

LS A, VabE Se<de,, KaS >V KL S, <b 3>

is equivalent to{c , a v b y=HKe,ayv Le,b ¥y

i) Fora,b,c < n,{{c), .{a)y, v Y, )

= <<c ¥ ada >n>v <<c D o Kb >n>fseqm'vafenrfo
<c,a/\b>d:<c,a>dv<c,b>d. [ ]

Following result on Stone lattice is well known due to [15,

Theorem 3, Page-161] and [9, Theorem 2.4]

A distributive lattice L with 1 is called a dual normal lattice of ¢
is a normal lattice. In otherwords a distributive lattice L with 1 is called
dual normal if every prime filter of L is contained in a unique ultrafilter
(maximal and proper) of L.

In fact, this condition in a lattice is self-dual. Thus for a bounded

distributive lattice, the concept of normality and dual normality coincides.

Following the technique of the proof of [9, Theorem 2.4], we can
similarly prove the following result, which gives some characterization of
dual normal lattices. These results are in fact the dual result of Theorem
3.2.1.

Theorem 4.2.5.  Let L be a distributive lattice with 1. Then the

following conditions are equivalent.
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(i) L is normal ;
(ii)  Each prime filter of L is contained in a unique ultrafilter
(maximal and proper) |
(i) Foreach % ye Lilx v ») ¥=x)"v [3)* ;
If xvy=1, x,yel, Then[x)*dv[y)*d=L L ]

Corollary 4.2.6. L be a bounded distributive lattice. Then the

following conditions are equivalent.

(i)

(i1)
(iii)
(iv)

(V)

L is normal

*

Foreach x,yelL, (x/\y] = (x]* V(y]
Ifxny=0, Then (x| v(y]" =L
Foreach x,yelL, [xvy)*d=[x)*dv[.}’)*d

Ifx v y =1, then [x)*dv[y)*d:L.

Recall that a distributive lattice L is relatively normal if each

interval [x, y] with x <y (x, y € L) is a normal lattice.

Since for a bounded distributive lattice the concept of normality

and dual normality coincides, so the concept of relative normality is self-

dual in any distributive lattice.

Now we prove the following result whose technique of proof is

dual to

[9, Theorem 3.7] . This will be used to prove our main result of this

chapter.
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Theorem 4.2.7. Let L be a distributive lattice. Let a,b,c € L be
arbitrary elements and A, B arbitrary filters. Then the following are

equivalent:

(i) L is relatively normal

() (a,b), v (b,a), =L;

(i) {(c,anb), =(c,a), v{c,b),;

(iv) <[e),4vB>, =<[c), 4> 4v<[c),B>,;
M Lawvib,e), = {a,6), v (bye)..

Proof: (i) = (ii). Let z € L be arbitrary. Consider the interval
P [z,a vbv z] . Then a v bV zis the largest element of 1. Since by (i),

I is a distributive lattice, so by Theorem 4.2.6 (v), there exist

r,se€ Isuchthatavs=avbvz=bvzvrand
z=8Ar.Now,av s 2 b implies s € <a,b>d and
bvr=bvzyvr=aVvbvzza impliesre<b,a>d.Hence(ii)
holds. (ii) = (iii). In (iii), R. H. S < L. H. S. is obvious; Let

Z € <c,a A b>d , then z v ¢ 2 a A b. Since (ii) holds, so
Z=2XA Y, Wherexe<a,b>dandye<b,a>d.Then xva>b and
yvb>aThs, xve=xvzve2xv(anb)= (xva)a(xvb)2b,

which implies x € (c,b) .
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Similarly, y € <C,a>d.Hence Z=XAJYE (c,a)d v <C’b>d’

and so <c,a/\b>d _c_(c,a)d v(c,b)d.

Since the reverse inclusion is obvious, so (iii) holds.
(iii) = (iv) follows from Lemma 4.2.2 (ii),
(iv) = (iii) is trivial .
(iii) = (ii) follows from Lemma 4.2.2 (i) by putting c=anb.

(i) = (vletze (av b,c),. Thenby(ii) z=xA y.
where x v a 2 b and y v b 2 a. Also
xva=xvavhb2>2zvavb2c. Thisimplies x € <a,c>d.
Similarly, y € (b, c ), . Itfollows that
(a v b,c>d =) (a,c)d v <b,c)d. Since the reverse inequality is
obvious, so (v) holds.

(V) =().Let x € [2,b], a<b.Let|x")={re[abl,evx=b,
then largest element of [a,b] }. It is easy to see that
() =(x.8), N la.t]
Now, suppose x, ¥y € [a,b ] with x v y = b, thenby (v),
) vlp) ™ = (x.6), A [a,8])v ((.8), " [a.6] )
= ((x,5), v (»,b), ) [a.b] (by Lemma 4.2.2 (iii))

= (xv y’b>d A a,b]



= (b,b), n[a,b]=Ln[a,b]= [a.b] .

Hence by Theorem 4.2.6, [a, b] is normal and so L is a relatively normal

lattice. m

Now we prove our main results of this chapter, which are
generalizations, of [9, Theorem 3.7] and [38, Theorem 5] . These give

characterizations of those F, (L) and P,(L)which are relatively normal

in terms of n-ideals.

Theorem 4.2.8. Let F, (L) be distributive lattice and A and B
be two n-ideals of L, Then for all a,b,c € L, the following conditions are

equivalent. F, (L) is relatively normal.
O (@), B )V ()5 (a), ) = Ls
Gi) {(), (@), v (B), ) = (e}, @), )v (e}, 8D, ) 5
i) ((e),.4v BY)={(c),. 4)v (), B)
@) ((ml@n.),,(e), )= (@), () )V (Bhsledn)
Proof: (i) = (ii). Let z e L, consider the interval

1=[(a), 2(b), N (2),(2), ] in F,(L). Then (a), (8}, A (2), is the

smallest element of the interval 1.

By (i), I is normal, then by Theorem 3.2.1, there exists finitely generated

n-ideals [p, q] , [r,s] €/ suchthat. (a) n (z), N [p.q]

=(a), N (), 0 (2),
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=), n{z) nlsland <z>,=[p, q]v[rs]

Now, <a>,n[p.ql=<a>,n[p.q]ln<z>,

=<a>, N<b>, N<z>, c<b>, implies
[p.qlc<<a>,,<b>,>.Also
<b>,N[rs]=<b>,n<z>,N][r,s]

=<ay, N<bh>, NMcz>, c<a>, implies

I, s]c<<b>,,<a>,>.Thus (z), < ((a),.(6), ) v ((B),:(a),):

andso z € <<a>”,<b>”>v <<b>n’<a>n>
Hence <<a>”,<b>n>\/ <<b>n’<a>n>: Los

(i) = (iii). Suppose (ii) holds. For (iii), R. H. S. cL. H. 8. is obvious.

Now, let zZ € <<c>n,<a>n v <b>n>
Then z v n € <<c >n ,<a >n Vv <b >>, and so

m(zv n, n,c)e[a/\b/\n,avb\/n].

That is, (zvn)/\(cvn)Savbvn.

Now by (ii), z v n € <<a>n,<b>n>v <<b)n,<a>n> .
Sozvn<(pvan)v (g v n) for some

pVvone <<a>n,<b>n> and gvne<<b>, 6 ,<a>,>



Hence,zv n=((zvn)a(pvn))v (zvn)a(gvn))=rvs (say)
Now,m(pvn,n,a)z(pvn)/\(avn)sbvn.SO
(b/\n)Sr/\(avn)Sbvn.

Hence, r/\(cvn)=r/\(zvn)/\(cvn)SrA(avbvn)

i e e e A e BT b e
This implies r e {{c), ., <b ), ). similarly,
se {{e),oCad,) -
Hence z v n € {{c),,(a), }v ((e), (&), )
Again z € {{c), .{a), v (b), ) implies
zanne {{c)y, Ca)y, v (b}, ) Thenadual calculation

of above shows that z A n e <<c Joaka > v <(c >, (b)), > :

Thus by convexity, z € <(c>n ,(a)ﬂ > v <<C>n , (b)n > and so (iii) holds.
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(iii) = (iv). Suppose (iii) holds. In (iv), R. H.S. < L.H. S is obvious.

Nowletxe«c)”, AvB>. Then x v n € <<c>”, A v B>.

Thusm(xv n, n,c)e 4z B
Now m (x v n,n,c)= (x v n)a (nv c)= n implies

m(xv n, n,c)e (4 v B ) [n ) Hence by



Theorem 4.2.1 (i), X V n € <<c >n,(A N [n Dv (B n [n ))>

B rve 4 n [DD)v B n [n )))<<C 2un <F 24 >
But by Theorem 2.1.12, r € (4 n [n))v (B n [n)) implies

r = sV tforsomese A,te B ands,t2n.
They by (iii), ({e ), {r ), )= {{e),-Cs v 1))

= (e, sy, v <))

R COIROMIE(CO RO

c {edpr ) (LoD, B )
Hence x v n e ((c), 4 )v ({c),.B).

Also x € <<C>n’A v B>impliesxx\ n e <<c>n,A v B>.

Sincem (x A n, n,c)=(xarn)v(@narc)<n,
Sox Ane< ¢>,,(4dv B)n (n]>

Then by Theorem 4.2.1  (i1),

XA nESL c>”,(Ar\(n] )v (B (n] )>

SreliaGlvERRl s T
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Using Theorem 2.1.12 again, we se that f = p A g where

pe A, qge B, p,q<n Thenby (i),

(OMOBER(ONRCIT PR
= ()2 v )
= ({2, (P2 )Y (e0nKa)n)
c (), 4)v () B)
Hence x A e {(c), . 4)v {(e),. B ). Therefore by

Convexity, x € <<c >n , A >v <<c >n , B > and so (iv) holds.

(iv) = (iii) trivial. (ii) = (v). In(v)R.H.S. ¢ L. H. S. is obvious. Let

Z€ L.H.S. Then z € <<m (a,n,b )>n ,{c >n >, which implies
ZV ne <<m (a;n.b )y s{c), > By (ib),
ZV K E <<a>n,<b>n>v <<b>n,<a>n>.

Then by Theorem 2.1.12, z v n = x v y forsome

% € <<a>n,<b>n>andye <<b>n,<a>n>and X,y = n.

Thus , <x>n A (a}n = <b>n, and so

(x), N (a), =(x), N {a), N (b), = (zvn), " {a), N (b),

= <z v n)n N <m (a,n,b)}n = <C>n‘ This implies
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x € <<a >n . (c >H > Similarly y € <<b >n " <c >” >,
andso z v n € <<a>n,<c>n>v <<b>n,<c>n >

Similarly, a dual calculation of above shows that

Z AN N € <<a>n,<c>n>v <<b>n,<c>n>.

Thus by convexity, z € <<a )n ) <c>n >v <<b }n (e )n >
and so (v) holds. (v) = (i).

Suppose (v) holds, Let a, b, ¢ =2 1. By (v),

<<m (a,nab)>n=<c>n>
RCNOBIE(OMOM)

But by Lemma 4.2.3 (i), this is equivalent to
<a A b,c> = (a,c)v <b,c>

Then by [9, Theorem 3.7], this shows that [n) is a relatively normal
lattice.

Similarly, for a, b, ¢ <n, using the Lemma 4.2.3 (ii)

and Theorem 4.2.7, we find that (n] is relatively normal.

Therefore F, (L) is relatively normal by Theorem 2.1.2.

Finally we need to prove (iii) = (i). Suppose (iii) holds. Leta, b, ¢ € (n].

By (i) ((c),.(a), v (8),)={(c),-(a), ) v {(c),- (B}, )
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But by Lemma 4.2.4(i), this is equivalent to (¢,a v by ={c,a)v(c,b)
which says by [9, Theorem 3.7] [n) is relatively normal.

Similarly for a, b, ¢ <n, using the Lemma 4.2.4 (ii) and Theorem 4.2.7,
we find that (n] is relatively normal. Hence by 2.1.2, F, (L) is relatively

normal.

Following result is due to [9, Lemma 3.4].

Theorem 4.2.9 A lattice is relatively normal if and only if any
two incomparable prime ideals are comaximal. [

Now we generalized the above result.

Theorem 4.2.10 Let F), (L) be a distributive lattice. Then the

following conditions are equivalent.

(i) F, (L) is relatively normal.
(i) Any two incomparable prime n-ideals P and Q are

comaximal, that is Pv Q=L.

Proof :- Suppose (i) holds. Let P, Q be two incomparable prime
n-ideals of L. Then there exist a, b €Lsuch that ae P-Q and

be Q- P.Then <a>n c P-0, <b>n c O-P.
Since F,(L) is relatively normal, so by Theorem 4.2.8.

<<a>n,<b>n>v <b>”,<a>n > = L. ButasP, Q are prime, so it is

easy to see that, <<a>”,<b>”> c O and <<b>n,<a>n>g P,

Therefore L < Pv Q andso P v Q = L. Thatis, (ii) holds.



69

Conversely, suppose (ii) holds. Let P and O be two incomparable
prime ideals of [#). Then by Lemma 3.2.4 there exist incomparable prime
ideals P and Q of L such that P =Pn[z) and Q,=Qn][n) Since
ne Pand neQ;, so by Lemma 2.2.5, P, Q are in fact two incomparable
prime n-ideals of L. Then by (ii), PvQ=L. Therefore,
P v 0, =(PvQ)n[n)=[n) Thus by [9, Theorem 3.5], [n) is relatively

normal.

Similarly, considering two prime filters of (n] and proceeding as
above and using the dual result of [9, Theorem 3.5] we find that (n] is
relatively normal. Therefore by Theorem 2.1.2, F (L) is relatively

normal. [ |

We already mentioned that 7, (L)=F, (L) when n is a central

element of L. So we conclude the chapter with the following nice and

interesting result.

Corollary 4.2.11 Let n be a central element of a distributive

lattice L. Then the following conditions are equivalent.

Gy P, (L) is a relatively normal lattice
(i) Forall a,b,c€L

e S L e
(ili) Forall a,b,c€eL

<«<c>,,<a>,Vv<b>>=<<c>,,<a>,>

n >’

vl g ,<hE, >,

n?
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(iv) Any two incomparable prime n-ideals P and Q are

comaximal; thatis Pv Q=L
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Chapter-5

Characterization of finitely generated n-ideals
which form sectionally and relatively m-normal

lattice.

Introduction

Lee in [36] also see Lakser [29] has determined the lattice of all
equational subclasses of the class of all pseudocomplemented distributive

lattices. They are givenby B_, c By c —--c B,, c——-c B,,, where
all the inclusions are proper and B, is the class of all

pseudocomplemented distributive lattices, B_; consists of all one element
algebra, B, is the variety of Boolean algebras while B, , for —1<m<®

consists of all algebras satisfying the equation

1
* *
(x, AXy A————nx, ) vV (x, ARy INT= IR By NX Ny

i=l
Iy = Ax,) =1 where x " denotes the pseudocomplemented of

x. Thus B, consists of all Stone algebras.

He also generalized Gratzer and Schmidt's theorem by proving that

for —1<m <o the mth variety consists of all lattices such that each

prime ideal contains at most m minimal prime ideals.



Beazer [3] and Davey [13] have each independently obtained
several characterizations of (sectionally) B,, and relatively B, lattices.
Moreover, Gratzer and Lakser in [18] and [19] have obtained some

results on this topic.

On the other hand Cornish [9] have studied the lattices analogues
to B,, and relatively B,, lattices known as m-normal and relatively m-

normal lattices.

A distributive lattice L with 0 is called m-normal, if each prime
ideal of L contains at most m-minimal prime ideals A distributive lattice

L is called relatively m-normal if each interval [0, x] is m-normal.

Recall that a family of ideals of a lattice L is comaximal if their
join is L. Similarly a family of n-ideals of a lattice L is comaximal if their
joinis L.

In section 1 we will study finitely generated n-ideals which form a
(sectionally) m-normal lattice. We will include several characterizations

which generalize several results of [10], [13], [3] and [18]. We shall show

that F, (L) is m-normal if and only if for any x x,,————x, € L, with

m
m ( & L0 xj.)= n implies < x,, >: e >: = L,
which is also equivalent to the condition that for any m + 1 distinct

minimal prime n-ideals Py,————— B
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In section 2 we will study those F, (L) which are relatively m-

normal . Here we will include a number of characterizations of those

F, (L) which give generalizations of results on relatively m-normal
lattices given in [10], and [13], We show that F, (L) is relatively m-
normal if and only if any m + | pairwise incomparable prime n-ideals are

comaximal.
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1. Lattices whose 7, (L) form m-normal lattices

The following result is due to [13, Lemma 2.2]. This follows from the

corresponding result for commutative semigroups due to Kist [28].

Lemma 5.1.1. Let M be a prime ideal containing an ideal J.
Then M is a minimal prime ideal belonging to ) if and only if for all

x € M, there exists x' ¢ M such that x Ax' € J . [

Now we generalize this result for n-ideals.

Lemma 5.1.2. Let M be a prime n-ideal containing an n-ideal
J. Then M is a minimal prime n-ideal belonging to ] if and only if for all
x € M there exists x' ¢ M such that m (x, n, x')e J.

Proof: Let M be a minimal prime n-ideal belonging to J and

x € M . Then by Theorem 4.1.8, <<a>,, J>gM. So there exists x'

with m (x, n, x') € J.suchthat x' ¢ M.

Conversely, suppose x € M, then there exists x'¢ M such that
m(x,n,x')e J. This implies x'& M, but x'e<<x>,, J>, that is
<<x>, ,j>&.M.Hence by Theorem 4.1.8. M is a minimal prime

n-ideals belonging to J. [
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Davey in [13, Corollary 2.3] used the following result in proving
several equivalent conditions on By, lattices. On the other hand, Cornish

in [10] has used this result in studying n-normal lattice.

Proposition 5.1.3. Let M, , e , M,
be n +1 distinct minimal prime ideals. Then there exist
Ags————m ,a, €L such that aina;eJ (i # j) and
aJ,- & Mj j = 0, ————— n . i~

The following result is a generalization of above result in terms of

n-ideals.

Proposition 5.1.4. Let My , , M,
be m +1 distinct minimal prime n-ideals. Then there exist
aps—~——wly €l such that m(a;,n, aj)e J(i#j) and
aJ,-GEMJ,-(j=0, ————— ).

Proof: Forn=1.Let x, € M;—-M,and

x; € Mgy —M, .ThenbyLemma 5.1.1, there exists x; ¢ M, such
that m(x,, n, x]) € J.Hence aj =x;, ag=m (xg, 7, xi)
are the required elements.

Observe that m (ag, n, a;)=m(m(xy, n, x{), n x)

=(xg A Xy A X])V(xg A B)VIX;AR)VI(X] AR
0 1 1 1

(xo Am(x;, n, x])v (xg An)v (m(x;, n, x| )An)

m(xo, n, m(x], n, x{])

Il

Now mix;, n, x| ) A n<m(xy, n, m(x,, n x1))

<m(x,, n, x|)vnand m(x,, n, xj)e J,soby convexity
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(ii)  For any ideals J,,————,J, in L such that J; "J; < J, for any
i# j,there exists k such that J, < J;

(i)  J is the intersection of at most n — 1 distinct Prime ideals. [
Our next result is a generalization of above result. This result will

be needed in proving the next theorem which is the main result of this

section. In fact, the following lemma is very useful in s studying those

P

> (L) which are m-normal .

Lemma 5.1.6. Let ] be an n-ideal in a lattice L . For a given

positive integer m 2 2, the following conditions are equivalent :

(i) For any Xjs Xp————%Xpy € L with
m(x,—, n; X j) e J(that is, they are pairwise inl) for
any i # j, there exists k such that x; € J;

(ii) For any n-ideals J|,——————-— ,J,, in L such that
JinJjcJ for any i#j, there exists k such that

JpcJ;

(iii) 1 is the intersection of at most m — 1 distinct prime n-ideals.

Proof: (i) and (ii) are easily seen to be equivalent. (iii) = (i)
. Suppose P, Py,———,P arek (1 <k <m —1) distinct prime —n-
ideals such that J = B mi==aam P, Let
Xiy T,y o——immey ,X, € L be such that m(x,-, n, xJ,-) e J for all

i # j. Suppose no element x;
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is a member of J. Then for each r (I < r < k) there is at most one
i (1 <i < m)suchthat x; € P, .Since k <m, there is some i such
thatx; € B P n—=~——n Fp

(i) = (iii) . Suppose (i) holds for n =2, then it implies that J is a
prime n-ideal. Then (iii) is trivially true. Thus we may assume that there

is a largest integer ¢ < m such that the condition (i) does not hold for J

(consequently condition (i) holds for t+1, t+2,------ m) . For some
t < m, we may suppose that there exist elements

ay, a,,————a; € L suchthat m(a,-, n, a}-)e J for

i#j, i=l, 20—t j=1, 2;———tyet @&, Q0 €& I
As L is a distributive lattice, <<a; >,, J > is an n-ideal for any
ie{l,2,————,t}. Each <<a; >,,J> is in fact a prime n-ideal. Firstly
<<a;>,, J># L,sincea;¢ J .Secondly, suppose thatb and c are
in L and m(b, n, ¢) € <<a;>,, J> . Consider the set of +]
elements
@, ay-——ai, mb, n a), mle, n a), ap.-—-a
This set is pairwise in J and so, either m(b, n, a;)e J or

m(c, n, a;)e J since condition (i) holds fort+ 1.
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That is, b € <<a;>,, J> or c € <<a;>,, J> and so
<<a; >,, J>I1sprime.

Clearly, Jc n <<a;>,, J>.If we n <<a;>,, J>.

I<i<t I<i<t
Then w, ay, ay,........ ,a,are pairwise in J and so w € J. Hence
J= N <<a>, J>Iistheintersection of t <m prime n-ideals . K

I<i<t
An ideal J # L satisfying the equivalent conditions of Lemma

5.1.5 is called an m-prime ideal .

Similarly, an n-ideal J # L satisfying the equivalent conditions of

Lemma 5.1.6 is called an m-prime n-ideal .

Now we generalize a result of Davey in [13, Proposition 3.1 ] .

Theorem 5.1.7. Let J be an n-ideal of a distributive lattice L .
Then the following conditions are equivalent :
(i) For an m + 1 distinct prime n-ideals Py, P,........ o
belonging to J, Py v P, v ........ vP =
(i1) Every prime n-ideal containing J contains at most m distinct
minimal prime n-ideals belonging to ] ,
Gy Af gy Gjgessssssvassaves ,a,, € L with

m(af, n, aj-)e J (i#]) then

\;_'<<aj>n, J>= L.

Proof: (i) = (ii) is obvious. (ii) = (iii) .

Assume agp, Qjse...... ,a,, = L with m(a;, n, aj)e J
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and Vv <<a: >

ji>p J2#F LIt follows that a; ¢ J, for all j . Then
J

by theorem 2.2.9 there exists a  prime n-ideal P such that

v <<a; >,, J >c P. But by theorem 2.2.4, we know that P is either a
J '

prime ideal or a prime filter . Suppose P is a prime ideal .

For each j, let Fj:{x ANY L ox Za;, X, yzn yEP
Let x) Ay, XAy, € F;

(1 A p)alxz A y2) = (0 A x) Al A »2).

Now x; Ax;2a;and Ay, =m(y;, n, y3)

Sot>x Ay implies t=(tvx)a(tvy).
Since yg P ,so tv y¢P. Hence tEFj,and SO F_}- is a dual ideal. We
now show that FJ- =8, for.all.j =0 ; L s m . If not, let
beFJ,—r‘\J,thenb:xAy, xza;, X, yzn, yeP.
Hence m(aj,n,y) :( i /\n)\/nv(aj,/\y):(aj /\y)vn:(aj vn)/\(yvn).
But (a_j vn)/\(yvn)e F; and ns(aj- /\y)vnSb implies
m(aj,n,y)e.].

Therefore, m (a_}- < y]e F; nJ . Again m(aj- By y)e J withy ¢P

implies <<a; >,, J>gP, whichisa contradiction.
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Hence F; nJ =0 for all j. For each j, let P; be a minimal prime n-
ideals belonging to J and F; N P; =0 .Let yeP; . If yegP;, then
yvngP.Then m(aj,n,yvn) =(aJ,- vn)/\ Lyvn)eFj.

But m( jo 1 y\fn) EKYVHN>,C<Yy>, ng,whichisa
contradiction. So ye P.

Therefore R’,-gP,and aj&Pj.Forif a; e P; , then ajvner-.

Now, a; vn :(aj vn)/\(aj vnvy)eFj for any y¢ P. This implies

Pl # O , which is a contradiction. So a; & P; .
But m (a,-, n, aj)e JcP; (i# j) which implies q; € P; (i # )
as P; is prime. It follows that P; form a set of m + 1 distinct minimal

prime n-ideals belonging to J and contained in P.
This contradicts (ii) . Therefore v <<a; >,, J>=L.
J ‘

Similarly, if P is filter, then a dual proof of above also shows that a

v<<a;>,, J>=L,andhence (iii) holds.
]

(i) = () . Let Py B aivei P, be m + 1 distinct minimal

prime n-ideals belonging to J. Then by proposition 5.1.4. there exist



(iv) For each prime ideal P. 0 (P) ism+ 1 prime;

(v) L is m-normal lattice : [ ]

Recall that for a prime n-ideal P of a distributive lattice L, we write

n(P)= {yeL‘ m (y,n, x)=n for some x € L — P}. Clearly n (P) is an
n-ideal and n (P)c P .

Our next result is a nice extension of above result in terms of
n-ideals.
Theorem 5.1.9. Let L be a distributive lattice. Then the

following Conditions are equivalent :

(1) For any m + 1 distinct minimal prime n-ideals
Py P s Py By B Ve vP, =L;

(i) Every prime n-ideal contains at most m-minimal prime n-
ideals ;

(i11) For any ag. @y« a,, € Lwith m (ar- n, aj-): n, (i % ])

+ + *
<y > N9A Py ¥ eresransasneive v<ap,>, =L;

(iv) For each prime n-ideal P, n (P) is an m+ 1 prime n-ideal .
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Proof: (i) = (ii), (i) = (iii), and (iii) = (i), easily hold by
theorem 5.1.7 replacing J by {n}. To complete the proof we need to show
that (iv) = (iii) and (ii) = (iv).

(iv) = (iii). Suppose (iv) holds and x; xj ........ x,, are m + 1 elements
of L such that m(x,- n, xj):nfor (i#j).

Suppose that <Xy > V<X > § Veoerveene V <X, > #L.Thenby
Theorem 2.2.9 there is a prime n-ideal P such that

Lkl ST R P L Vs Vil 5 o i€ P,

Hence Xy  Xjrressracss x, € L—n(P). This contradicts (iv) by Lemma

5.1.6, since m (xf., n, X )= nen (P) forall i#j.

Thus (iii) holds. (ii) = (iv).

This follows immediately from Proposition 3.2.10 and Lemma 5.1.6

above. M Following result is due to [8].

Proposition 5.1.10. Let L be a distributive lattice with 0. If
the equivalent conditions of Theorem 5.1.8 hold, then for any m + 1

elements

* *
xo,x],....,xm,(xo A X /\....xm] :0{\;’{ (x(} ANXp AN X /\xf_'_] A ..../\x_,n]
=I=n

|
Proposition 5.1.11. Let L be a distributive lattice and ne L.

If the equivalent conditions of Theorem 5.1.9 hold then for any m + 1

elements

*

X{),X], ----------- ax_m; (<x0 >f? £ <x1 >.,.;‘I ﬁ....(‘\<xm >”) :0{\./<
sSI= R
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Proof : Let

<by >, =X Py Mt V< Xjg > OE X5y Zp M V< X, >, foreach

0<i<m.
Suppose xe(<xg >, NN <X, >,) . Then
<xX>, N<Xg>p Mo <X,y >, ={n} . Forall i j;

(x>, < 3N (<x>, n<b; >, =l .

8o (x>, M<bys,) " W Vg 5 1Y LB ) "= L
Thus FE(Lx>, M <h 3,) T Vs Nk, 01 &b, 5) T s
Hence by theorem 2.1.2, X V=G V cceeeeneiirnnnenne v a,, where
a!-e(<x>nﬁ<b,->,,)+andaf2n,fori=0, | E———- ,m
Thenxvn:(ao x\(xvn))v ....................... va, /\(xvn)).

Now a; € (< x>, N<b; >,) " implies

Sty >, CYExm, NLby >, =ln).

Then by a routine calculation we find that (a; AxAb;)vn=n.
Thus, <a; A(x vn)>, N"<b; >, = [n,(a; Ax Ab;)v n]= {n} implies
that a; A (x vn)e<b; >, and so xvrne<by >, Vv...v<b, > .

By a dual proof of above, we can easily show that
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+ B .
XAneE<by>, v.... v <b,, >, . Thus by convexity,

xe<<by > 5 Viu..v<b, >, . This proves that

L. H.8. ¢ R.H.S.

The reverse inclusion is trivial . MW

Theorem 5.1.12. For a distributive lattice L, if F, (L) is

distributive then the following conditions are equivalent.
()  F, (L) is m-normal lattice.

(ii) Every prime n-ideal contains at most m minimal prime n-

ideals .

(ili) For any m+1 distinct minimal prime n-ideals Py, Py ,... ... ;
P
Py N BN oo vP =1L

Proof: (i) = (ii). Let F, (L) be m-normal .
Since F. (L)= (n] ¢ x [n) ,s0 both (d] ¢ and [n) are m-normal .
Suppose P is any prime n-ideal of L .Then by Theorem 2.2.3,

either
P = (n] or P 2[n) .Without loss of generality suppose P o (n] -
Then by Theorem 2.2.4 , P is a prime ideal of L .Hence by Lemma
3.24,
P =Pn [n) is a prime ideal of [n) . Since [n) is m-normal , so

by Theorem 3.2 .1, P, contains at most m minimal prime ideals Ry,



87

Therefore P contains m minimal prime ideals Q; ,............, Q, of L

where R, =0, N [n) Since ne R, so ne @, and hence Q...

.....Qm are minimal prime n-ideals of L .Thus (ii) holds . (ii) = (i)
Suppose (ii) holds . Let P, be a prime ideal in [n) . Then by Lemma 3.2.4
5 B = P [n) for some prime ideal P of L. Since ne P, € P,soPisa

prime n-ideal. Therefore by (ii) P contains at most m minimal prime

ideals: () ;. coiseia , 0, . Thus by Lemma 3.2.4, P contains at most m
minimal prime ideals R, ....... , R of [n) suchthat . R, =0, N[n).
Hence by theorem 5.1.8 [n) is m-normal .

Similarly we can prove that (n] ¢ is also m-normal. Since

F (L)= (n] [n) so F, (L) is m-normal.

(ii) < (iii) has already been prime in Theorem 5.1.9 [

We already know that when n is a central element in L, then

P (L) =F, (L) .Thus we have the following interesting characterization

n

of them P, (L) which are m-normal.
Theorem 5.1.13 : Let n be a central element of distributive lattice
L. Then the following conditions have equivalent.
(1) P, (L) is m-normal
(ii)  For any m + 1 distinct minimal prime n-ideals

By sovsisas By 5185 VBNV covns v iP.=Lj

m ’
(iii) Every prime n-ideal contains at most m minimal prime

n-ideals ;
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(iv) Forany a, , a, ,....... ,a, € Lwith
m(ai,n,aj)=n,(i¢j) | ) , m
J=0i 1l , m,

+ + 4
L@ > VK@ B, M v<a, >, =L;

(v) For each prime n-ideal P, » (P) is an m +1 prime n-ideal.
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2. Generalizations of some results on

relatively m-normal lattice

Several characterization on relative B, lattices have been given by

Davey in [13]. Also Cornish have studied these lattices in [10] under the

name of relatively n-normal lattices.

Recall that a lattice L is relatively m-normal lattice if its every interval

[a,b] (a, b € L a <b)isa m-normal lattice.

Following result gives some characterizations of F, (L), which are
relatively m-normal lattices which is a generalization of [13, Theorem
3.4].

Theorem 5.2.1. Let L be a distributive lattice with n € L. Then

the following conditions are equivalent :

(i) F, (L) is relatively m-normal .

(i) Forall Xy Xjyesscssonveooens v -
SRR B T XS B P sdpsnenss Lk Do LHG 29>
vV <<XO >nﬂ <.X2 >nﬁ .......... ﬁ<xm >”, (.X| >”>

Vreon AR 5 N X B D henenrs € T By § By iy 2y, =5

()  ‘Forall Xgs | Riseeeraisunas X 2 e L,
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(iv) For any m + 1 pairwise incomparable prime n-ideals

(v) Any prime n-ideal contains at most m mutually

incomparable prime n-ideals .

Proof : (/)= (if) . Let ze L , consider the interval
T=[<a5> < 55 Dlsemnmss N<X, >, N<Z>, ,<2>, ]
inJ0 (L) . THen< £5 2 0% % 35 s FYC®y, TR B,

is the smallest element of the interval I .For 0<i<m , the set of
element <t; >, =<xp5 >, N<X] >, Neceeevrincnee N<X; >, V<X >, N
.......... N<x, >, N<z>, are obviously pairwise disjoint in the

interval 1. Since I is m-normal . Then by Theorem 5.1.8,

i Mimmatneniiesensos v<t, >, =<z>,.S0by Theorem 2.1.12,
LRV i T T e e v p,, Where p; 2n . Thus,
<P > Oy 2 =L P =y YLK >y, =i =& P SRl S

= The smallest element of I .

= R Sy FEEGR) B3 T wcmswsoiioravmantas AL, >, PACE S,
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Now ,

£ pp F Rl =SHg Py YKy asrasgannsis N, », (<85,
which implies < p, >, N <ty >, = <x5 > . Again

X Po Pty g =RPa P CVEH P (N YRR, BN B,
=< P 2y VK] Sy Mistssmsissnivaseosss LR B 08

< po >, S<z>, . Thisimplies

R i i s e e i i N<x, >, <x, >, and so

& Poi BRlE SN BTSN By Mhrsremmvmsen T S e -

& Py Ty EXEXG S OVEED Zhp (ewnvsraonsens YE Xy, s S Xfjf 2>

< Py P €S <K 2 OV X i evsecwsisnines VR o B v Sy, By B
Therefor, zvnrc <<x; >, N<Xy >, Nuceures PV B 0y By B
W By By (5K By Phassswosssusves Ny By 5 S By B

Vi sepuiietonns VLK Sy DY Xy S Dsensassns X By Wy 2, 2
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VL € W, TN Ry DT Viswassnsnnovs AEX 5y pBX 55 3
S s ansraribornni V<X > OV X] Dy M ssavnas N B e, B
Hence by convexity ,
2R X TPV D M vasmunssimvicenverninvon NEXL,y B, XG>, 2
AR e e R G N R PG, 55, RSXy B,
Wgssiasunaasny VL Xy By VXY S Mhssssnons TN e ]| g e By B8
This implies (ii) holds .
(ii) = (ii1). Suppose
bl <€ X5 25 T SX] 25 Clissperss N< Xy >py <Z>,>.
Then by
(ii) and Theorem 2.1.12, bvn=s3 Vv $| V.o v s,,, for some
St SRy Dy ) ek By v VS By iy Sy
S| € <€ Xy >, € Xo >y Nicinie INE Ry By Ky P>
LSy o e R o T G S VX 2, Sy 2y &
and s;2n,i=0,1,..... ,m
Thus x> DK X5 > Mo N<X, >, N <S5y >, <Xy >,
X Dy 1Y KXp iy Masssasons VLR oy TN 87 TEX] F
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.....................................................................................

.....................................................................................

< M e o e S R M i <y e, CYRS, B XX, By
Thisamplies <%, >4 L X B Manaviavsnws Y& Xy B, NSy >,
=< Rgi2 N Xy Do Dhenisss, ML, 3, N<8y >y
CC X2 (VE X Dy ) eismnsomainns N<x, 2>, NLbVR>, C<Z5;,
Hence Sg ES <X >, N <Xy >, N, (YR X, Fp " >, 25
Similaely: L5 = Xp Vx| Wirvseitersusssanrnsss e
Therefore;, b v 1 € <Xy 3,0V €% 35 P Vusrenonees YL Xy By S 2, B
W kg B €% B e Xy iy Ty,
W sisass VR B 1)) S BT e (X g Dy KL, B

The dual proof of above gives

b N M E K Xf 20 KXo 2 M savsainins LXK, >.; €25, >
Vi< S R T T e, (PR X, 5 <255V
....... VX iy 1) XY > N ernsonss (VL By . P S Py 2

Thus by convexity,

bi € << Xy 3, M Xy p Mivvceosenns N By Doy ST,

LR T TN X5 D T asviusonss N Loy Py CET >
0“n Py m R n
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Therefore, <<xg§ >, A <X >y Naseciceas N Xy D5 O 255>
E <X SpllY SXg Py Olecrssnans LR, B0, €55, 5

Ve SEXg 2 Yy 2 Ploomandens N Hy B ST, B

R R e B ¢l ey g TR OV Ky iy KTy

Since the reverse inequality always holds, so (iii) holds.

(iii) = (i). Suppose, n < b < d.

L&t Xph' Fscmisaisnin , X, € [b, d]suchthatx; Ax; =b, forall
i #j

Let Ly S X[ M Xg W issiassuiosonessssnsis Wiy,
1 =X0 VX9 Vicieeninienn VX,
Ly = X0V X] Vociininsesnnnennans V %]

xO—tlAle\ ....................... /\fm
x1=t0/\1‘2/\ ....................... /\fm
X =T A B Aevvrcninncinniinnnnns A Ep
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Then [b, d]rm {<<xg > <O >,V i ME R By DS B
=[b; ] A =Lt 25 PEls 26,2 T vrreemss N<<ty, >,, <b>,>
VKly S5 & lg 0n Mhsssmsivsissmmaioresd ML L, 55>
Ve, V. Bty P B B N pruievscinassssssvick iy s LD
= [b;, ] 0y 4Rty s 1) €8 P M YRR, Sy b, 2

=[b, d]n <<b>,, <b>,>=[b, d] N"L=1[b, d],soby

theorem 5.1.8, [b, d] is m-normal. Hence, [n) is relatively m-normal .

A dual proof of above shows that (n] is also relatively m-normal.
Since F, (L)E(n] 4 x[n) so, F, (L) is relatively m-normal .
(i) = (iv) . Suppose (ii) holds. Let £y, £ ,........... P _bem+ 1

pairwise incomparable prime n-ideals. Then, there exist

n
Koy - Kiplevsaaiins x, Lsuchthat x;eP; -] P; . Then by (ii),
=
<<x1 >nr‘\1 <x2>n("l .......... (“\<xm >H’ <x0>n>
N L Xy SN L X S Missesvssens M EX e, <X 555
Winenars W LK P KX P Miissasses g R B O R Sy
Let. #; € << >0 <Xy > Oheensiinss YL X iy P s
then €1y >, DL 2y O 2% 25 Clcenenenss X B EX By Py

Now, x; 2 Fy, for i=12,...coev0mursnnsencas ,m implies that
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This implies <ty >, < P, ,and so tj € F.

Therefore, <<x; 2 <Xy Z5 M PRy By Xy e Py
Similarly; < xg >0 <& By M LMy DXy DB H
LM 20 LRy B Viwsvwsisss 7 By By S, By B E
NG = Y X P P ravnsans N< Xy | >y <X, >,>CP, .
Hence By, V. Pi M sassenarsasares vP,=1L.

(iv) < (v) is trivial by Stone’s separation theorem.
(iv) ©(i). Letany m + 1 pairwise incomparable prime n-ideals of L are
comaximal. Cosider the interval [b, d] in L with b, d>n, let

Py, Py,.......P,, be m + 1 distinct minimal prime ideals of [b, d]. Then

by Lemma 4.2.9 there exist prime ideals F,......P, of L such that
By = By 0|b,dli s By =By [bs )

Since each P, is an ideal, so b € P;, Moreover, n<b implies that ne P,
Therefore each P; is a prime n-ideal by Lemma 2.2.5. i=0, L....... ,m.
Since Py,......P,, are incomparable, so F,......P, are also incomparable,
Now by (iv), Py V....... v P, =L Hence

Rv..VE, =(Bv...vB,)Nn[b,d|=LN[b, d]=[b, d]. Therefore by

theorem 5.1.8 [b, d] is in m —normal . Hence [rz) is relatively in
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m-normal .

A dual proof of above shows that (n] is relatively in dual m-normal .
Since F, (L)=(n]* x[n) . So F, (L) is relatively in m-normal .

Following result is also a generalization of [13, Theorem 3.4]

Theorem 5.2.2. Let L be a distributive lattice with nelL.
Suppose F,, (L) is relatively m-normal

Then the following conditions are equivalent :

(i)  F, (L) is relatively m-normal .

61 I TR T a,, €L with

m(a,—,n,aj)e<b>n (i # j) then

LRty Sy R MV Sy Say by >e b,
Proof : (i) = (ii).
By theorem 5.2.1. (v), any prime n-ideal containing b contains at most m

minimal prime n-ideals belonging to < b >,. Hence by theorem 5.1.7

with J =<b >, we have <<ag >,, <b>,>Vv...v<a,, >,,<b>,>=L .

n*

Thus (i) holds. (ii) = (i). Consider b, ¢ e[n) with b<c

Lt O yrmnaiens ,ay €[b, c]witha; na; (i # j) then by
m(ai, n, aj):be<b>n . Then by (ii),

<K by i bV R ay Dy <oy >= L.

Soi b €)= (g€ay >y <b3, i [B 6]) V. N(K8y 55,503, b i«])
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=< Gy D= D] ¥ s Vigdes b>lb, €]

Hence by theorem 5.1.8 [b, c] is m-normal Therefore 1) is relatively
m-normal. A dual proof of above shows that (»] is relatively in dual
m-normal . Therefore by Theorem 2.1.2 F,, (L) is relatively m-normal .
We conclude this chapter with the following result.

Let n be a central element of a distributive lattice L.

(i) P, (L) is relatively m-normal.

(1) -Forall Xg; Xyjcsisevssiverenns X &L
<<y B KX By Thssersesss VW gy Ty T By =
Vi XNy P TN X5 P P hesveininss NS Ly Sy S T 5y >

VisonslV S% 54 OV Y P Mhconandl Ny | Dy Sy B >=L;

(i) Forall Xy, Xissssspsvvesisvnss -z e Ly
L X >, 002X 2y Ol Yl Sy LT Py B
= ZZ oy > Ve ENE R s By K S B
A << R T ALk, B, <25 %

WVeeana N Gy oY S X D s dlNEH 20 SE22

m=l " n? n

(iv) For any m + 1 pairwise incomparable prime n-ideals
Pys B snasnans sPos By Wisaayie VBa= L
(v) Any prime n-ideal contains at most m mutually

incomparable

(v)  prime n-ideals .



CHAPTER -6




Chapter-6

Annulets and «-n-ideals of a distributive lattice

Introduction

Annulets and «- ideals in a distributive lattice with 0 have been
studied by W. H. Cornish in [11] . In a distributive lattice L with 0, the set of
ideals of the form (x] " can be made into a lattice 4 (L), called the lattice
of annulets of L. 4 (L) is a sublattice of the Boolean algebra of all
annihilator ideals in L, while the lattice of annulets is no more than the dual
of the so - called lattice of filets (carriers) as studied in l-groups and
abstractly for distributive lattices in
[2 ]. From the basic theorem of [ 9] it follows that 4 (L) is a sublattice of
the lattice of all ideals of L if and only if each prime ideal in L contains a

unique minimal prime ideal.

Subramanian [57] studied h-ideals with respect to the space of
maximal l-ideals in an f-ring. Of course Cornish’s « - ideals and his h-ideals
were both suggested by the z-ideals of Gillman and Jerison [ 7 ]. On the other
hand Bigard [ 4 ] has studied «-ideals in the context of lattice ordered
groups.

Recently [ 54 ] has studied the annulets and a -ideals in a distributive

near lattice .

By [ 11] for an ideal J in L we define o (/) = {(x]* |xeJ .

Also for a filter F in 4, (L), a* (F)= {x S L‘ (x] " e F. It is easy to see that
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a (J) is a filter in 4, (L) and @ (F) is an ideal in L. An ideal J in L is

called an o -ideal if o a (J)=J.

In this chapter we have generalized these concepts around a central
element n of L. We have introduced the notion of n-annulets and o -n-ideals

in L. As mentioned earlier, for a distributive lattice with n € L , the lattice of
n-ideals 7, (L) is a distributive algebraic lattice, and so it is
pseudocomplemented . We denote the set of annihilator n-ideals ( the n-ideals
Jsuchthat J=J **)by S, (L) .

By [15] (S, (L);n, v ,* , {n} ,L ) is a Boolean algebra which is not

necessarily a sublattice of 7, (L).

We denote the set of all n-ideals of the form < x > by 4, (L) . This
is a join subsemilattice of S, (L) , but it becomes a sublattice if n is a central

element of L. We call 4, (L) by lattice of n-annulets.

In section 1 We have studied n-annulets when n is central and

generalized several results of [11]. We have proved that 4, (L) is a sublattice
of 7 (z) If and only if P, (L) is normal. We have also shown that A”(L) is
relatively complemented if and only if P, (L) is sectionally quasi-
complemented. Finally we have given a characterization for p, (L) to be

generalized Stone in terms of 4 (L) .

In section 2 we have introduced the notion of & -n-ideals. We have
shown that the n-ideal n (P) where P is a prime n-ideal is an « -n-ideal.

Moreover, all the minimal prime n-ideal are @ -n-ideals. Then we have
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generalized all the results of Cornish in [11] in terms of & -n-ideals. We have

shown that P, (L) is disjunctive if and only if each n-ideal is an @ -n-ideal.
Also P, (L) is sectionally quasi-complemented if and only if each prime
a -n-ideal is a minimal prime n-ideal. We conclude the thesis by

characterizing P, (L) to be generalized Stone in terms of & -n-ideals.
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1. n-Annulets of a distributive lattice

For a distributive lattice L with 0, I (L), the lattice of ideals of L is

pseudocomplemented . Recall that an ideal J of L is an annihilator ideal if

J=1J"". The pseudocomplement of an ideal J is the annihilator ideal
= {x e L |x A j= 0forall jeJ}.Itiswell known by

[ 8 ] that the set of annihilator ideals A (L) is a Boolean algebra, where the

supremum of J and K in 4 (L) is given by J v K=(J dieY *)*

Ideals of the form (x]*  (x e L ) are called the annuletes of L .Then for two

annuletes (x]"= and (y] e

(1" v 617 =(]" AGLT) =(aay]T) = (xay]”

Moreover, (x] * A (y] * = (x v y] *Hence the set of all annulets of L denoted
by 4, (L) is a sublattice of 4 (L).In general, 4 (L) and so 4 , (L) are not

sublattice of [/ (L)

For a distributive lattice L with n L, the lattice of n-ideals 7, (L)is a
distributive algebraic Lattice with {n} and L as the smallest and largest
elements respectively. Thus /, (L) is pseudo complemented. For an n-ideal J
of L, the pseudo complement of J is the annihilator n-ideal

= {x S L| m( x,n j)= n for all je.]}. We denote the set of
annihilator n-ideals by S, (L), where the supremum of J and K in S, (L) is
givenby J v K = (J i K " ) . Recall that the n-ideals of the form

< x>, ( xe L) arethe n-annulets of L. We denote the set of

n



n-annulets of Lby 4_(L).

* *
Thus for two annulets < x >, and <y > ,

%

* t_( *H **)*_
X, ¥ <ys.=lkass A <psy | S(kx> N <y>,)

=< m(x,n,y)>;

Moreover, < x> » "<y > »=(<x>,v<y>,)", which is
not necessarily a member of 4, (L). Thus A4 (L) is only a join subsemilattice
of S, (L). S, (L) is a Boolean algebra with {}" = Las the largest element and
L' = { n} as the smallest element. Of course, S, (L) is not necessarily a

sublattice of I, (L) . We start this section with the following result :

Proposition 6.1.1 Let L be a distributive lattice with n as a central

element. Then the set of n-annulets A (L) of L is a lattice (A, (L).,v)

n

and a sublattice of the Boolean algebra (S,(L);n ,v ,*,{n}, L) of

annihilator n -ideals of L. 4 , (L), has the same largest element L = {n}" as
S (L) while A, (L) has a smallest element if and only if L possesses an
element d such that <d >" ={n}.

Proof : We already know that 4, (L) is a join subsemilattice of
S (L).Nowfor< x>: ,<y>" e4, (L),

* * *
<cgsinmncypsi={crs, vLy>,)

=([xarn, xvalvlyan, yvnl])®
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=[x A y A n, x v y v n]"*. Sincenis central so
x A yAn <n<xv yvVv nimpliesthereexists t € L such

that t An=xAyAnandtvVn=xVvVyVvn.

Therefore, <x>' N<y>, = <t>. e 4,(L),andso 4, (L)isa
sublattice of S, (L).Since L =< n >," € A, (L) so it has the same
largest element as S, (L) For the last part if there exists d € L with

el 3 o= { n}, then {n} is the smallest element in A, (L) Finally suppose
there in an element d € L such that < d >, is the smallest element in

A (L). Then for any x € L,
<x>'=<x>'v<d>,=<m(x,nd)>,. Thus m(x,n,d)=n
implies < x>% ={n}" =L sothat x =n,and hence <d >, ={n}. ™

Now we generalize [ 11, Proposition 2.2].

Proposition 6.1.2 . Let L be a distributive lattice with a central

element n . Then P, (L) is normal if and only if A, (L) is sublattice of
In (L)

*

€A (L). By 3213, P, (L) is

r

Proof : Let <x>, ,<y>

n
normal ifand only if <x> " v<y> "= (<x>, N <y>,)"

- (<x>” I <y>”)m :((<x>ﬂ m<y>n)ﬂ) = (< o >n** m <y 3“.»1“)*

:<x>; v<y >n*. That is v in 4, (L) is same as v in 7, (L). This

proves the proposition. M
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A distributive lattice L with 0 is called disjunctive if for

0<a<b (a,bel) there is an element x € L such that aAx =0 where

0 < x <b. This is also known as sectionally semi-complemented

distributive lattice. It is easy to check that L is disjunctive if and only if
(a]* =(b]* impliesa=b foranya,b e L.

Similarly a distributive lattice L with 1 is called dual disjunctive if for
e<d 51 (c,d = L) there is an element y € L suchthat dv y =1
where ¢ < y <1. Since F, (L)= (n] ¥ x [), so F, (L) is disjunctive if
and only if (r] is dual disjunctive and [r) is disjunctive . By [ 10] we also
know that F, (L) is disjunctive if and only if <a>, =<a>," for each
ael.

Following result is a generalization of [ 11 , Proposition 3.3 ]

Proposition 6. 1. 3 For a distributive lattice L with a central element
n, ifF, (L) is disjunctive and normal then P, (L) is dual isomorphic to
A, (L). Hence 0.1¢ L if and only if there is an element d € L such that
<d>," ={n}.

Proof : Since n is central, so F, (L) = P, (L) Define

@:P (L)—> 4, (L) by ¢(<a>,)=<a>,". Thenfor <a>, ,<b>,6eP, (L),

go(<a>”v<b>n):qo([a/\b/\n, avbvn]):g0(<t>n) =S

where t is the relative complement of n in [aAbAn, avbv.
On the other hand

qo(<a>n)mgo(<b>”):<a>”‘m<b>n*:(<a>”v<b>”)*
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=lanban, avbvn]'=<t>.

Therefore, ¢ (<a>, v<b>, )=¢p(<a>,)np(<b>, ). Againas P, (L)
is normal, so by Theorem 3.2.13

0 (<a>,n<b>)=p(m(anb)>,)=<mlan,b)>,

=(<a>, n<b>) =<a> v<b> =¢(<a>,)ve(<b>,) Therefore,
¢ is a dual homomorphism from P, (L) onto 4, (L) . Now let

p(<a>,)=¢(<b>,). Then<a>, =<b>, andso

<a>"=<b>".Thusby [10], <a>,=<b>,as P, (L) is

disjunctive . Hence P, (L) is dual isomorphic to 4, (L) .

Finally if 0,1e L, Then [0, 1] is the largest element of P, (L), and so from
the dual isomorphism A4, (L) has a smallest element. Then by proposition
6.1.1, there is an element d € L such that <d >," = {n}. Conversely if for

some d € L, <d>," ={n}, Then 4, (L) has a smallest element and so P, (L)

has a largest element, which implies 0,1 € L. (]
Following result is due to [ 11, Proposition 2.5 ]

Proposition 6. 1.4 The lattice of annulets of a generalized Stone

lattice L is a relatively complemented sublattice of the lattice of ideals of L.
]

We generalize the above result for n- annulets.
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Theorem 6. 1.5. Let n be a central elements of a distributive lattice L .

If P (L) is generalized Stone, then A, (L) is a relatively complemented
sublattice of 1, (L)

Proof : Since every generalized Stone lattice is normal, so by

Proposition 6. 1.2, 4, (L) is a sublattice of 7, (L). We therefore write v for
v .Since 4, (L) is a distributive lattice with largest element L, so 4, (L)

will be relatively complemented if and only if each interval of the form

[[,L], I <A, (L) iscomplemented. Thus let J = [< wd o L ] be an interval
in 4, (L) andlet <y> "eJ.As P, (L) is generalized Stone, so by
<y>"v<y>" =Land <y> n<y>" ={n}alwaysholds. Hence
(x>, m<y>”')v(<x>n ﬁ<y>;*):<x>n.and

(<x>, N<y>")n(<x>, n<y>"")={n}.Thenby

[ 15, Theorem3.5] both <x>, Nn<y> "and <x> Nn<y> " are
principal. Let <x>, N<y >"=<a>, .Then<a>, c<x>, andso
x5 Exas hus 2gs, el A< e, e<y > "implies
<y>"c<a>,andso a3y v<y>"=L.Now

<a> N<y>'N<x> =<a>, N<a>,= {n} implies

*

* * * * *
<a>;, n<pr, c<¥>, But<x> c<y>, , <@z,
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* * % L. .
Hence <a>, Nn<y>, =<x>, andso <a>, istherequired

relative complement of < y > " in J. "

Consider the interval / =[n,x], » < x in a distributive lattice. For

any a € I we define (a] +={S el | SA a=n } This is of course an ideal
in I and is the annihilator of a with respect to L. Dually for b e J = [y, n] , we
define [b)“ = {r. eJ|tvb=n .Itis easy to check that this is a filter in J and
is the dual annihilator of b with respect to J. Clearly both I and J are also n-
ideals. Similarly we define (i) Forany x € (n], [x) = { t<n|tvx= :1}
and (ii) Forany xe(n], (<] ={tr2n|t A x=n}.

Following lemmas are needed for the proof of next two results.

Lemma 6. 1.6 Let L be a distributive lattice and x < (n] . Let

a<n<b.Thenforany xe L

i <=x>, nla,n] = [aVv (x A n))+d , dual annihilator with
respect to [ a, n] .

G) <x>,"n[n,b]l=(xvn)ab]*, annihilator with
respect to [ n, b].

Proof: (i) Let pe<x> m[a,b]. Then a < p<n and

m (p, n, x) =n.Thus
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n=(pvx)a(pvn)alxvn)=(pvx)an

=pv(av(xan)), andso p € [a v (x A n))*?

Conversely, let pelav (x An))*® . Then pvav(xan)=n and so
pv (xan)=nas a< p<n.Thus,
n=(pvx)a(pvn)=(pvx)an=(pvx)anna(xvn)
~(pvx)A(pvn)a(xvv)=m(p,n, x), which implies pe<x>," and so

pe<x>. [a, n]. This proves (i) . A dual proof of (i) proves (i) .

Similarly we have the following result.

Lemma 6. 1.7. Let L be a distributive lattice and n € L Then for

any x€ L,
D<x>,"n@]l=[xArn)*?in[n)
and (i1) <x>,"n[n)=(vna]* in [»). [ |

Lemma 6.1.8. Let L be a distributive lattice and ne L.
(i)  Suppose I=[n x|;n<x . Then for any
a,bel, (@]t c (] implies<a> c<b>,.
(ii) Suppose J=|[y.n|;y <n. Then for any a,be J,

[a) ¥4 < [p) " implies <a>," c<b>
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Proof: (i) Let pe<a>,". Then m (p, n, a)=n which implies
(anb)vin=n Now(pvn)axel,and

a/\[(pvn)/\x]:(a/\px\x)v(a/\x/\n)z(a/\p)vn=rz

This implies (pv n)A x e (a] = (b] " and so

(pv n)AxAb=n.Ths, (pvn)rb=n.

Therefore, n=(pvn)Ab= (pvn)a(bvn)A(pvb)=m(p,nb),

and so, pe<b>, .Hence <a>," = <b>, . Adual proof of above proves
(i) =

A lattice L with 0 is called quasi-complemented if for each x € L there exists
x'eL suchthat xAx'=0and (x v x'] " = (0], that is

(x]* » (x']* = (0]. This is also equivalent to the condition that for each

x € L, there exists x' € L such that (x]*" = (x']"

Dually we can define a dual quasi-complemented lattice L with 1.
Since F, (L) = (n] ¢ x[#), sowe have
Corollary 6.1.9. IfL is a lattice with ne L, then
(i) F, (L) is quasi-complemented if and only if (n] is dual
quasi-complemented and [n) is quasi-complemented.
(ii) F, (L) is sectionally quasi—complemented if and only if (n] is
sectionally dual quasi-complemented and [n) is sectionally

quasi-complemented . [
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The following theorem is a generalization of [ 11, Proposition 2.7 ].

Theorem 6. 1. 10 Let L be a distributive lattice with n as a central
elements. Then A, (L) is relatively complemented if and only if P, (L) is

sectionally quasi-complemented.

Proof : Suppose A, (L) is relatively complemented . Let I = [n, x]
Considerae I .Then (x) ,"  {a),” < {n} " =L.
Since [(x) S 2 ] is complemented in 4 , (L),

there exists w € L such that (a)n* N <w> = <x> ”* and

(ay, v (w), = L.

= (@) , N (w) ) Thisimpies (@) , N (w) , = {n}, andso
(a), N (w), N {x), = in}

But (), N(x) ,={wAax)v wan)v(xan)),=(wrx)vn),
Thus, n= (a xn)v (@ allen x Jvn ) ((w s = I n)an)

—a A ((wA x)v n), where (w A x )v ne I. Onthe other hand

<a>,"nNn<w>"~=<x>," implies

n

<a>,nNn<w>,"n<x>,"={n}andsoby
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Lemma 6.1.6, (@] " n((wAx)vn]* ={n}. This implies I is

quasi-complemented and so [r) is sectionally quasi-complemented.

A dual proof of above shows that (1] is sectionally dual quasi-
complemented, and so by Corollary 6. 1.9 , P, (L) is sectionally  quasi-

complemented.

Conversely suppose F, (L) = P, (L) is sectionally quasi-

complemented. Since 4, (L) is distributive, if suffices to prove that the

*
n

interval [< x> L] is complemented foreach xe L . Let < y >, €<
you & [Rxzs 1

Then<y>," =<x>,"v <y>"=<m(x,ny)>, .

Now Consider / =[n, x v n] in [2) . Then (xvn)A (yvn)el. Since by
Corollary 6.1.9. I is quasi-complemented, so there exists we€ / such that
wx\(xvn)/\(yvn)xzn and

Wl (Gvm)ava)l® ={nt=(vn]".

Thus by lemma 6.1.8, (wv((xva)a(yvn)), =(xvn),,

andso (w),"N((xvn)a(yvn)), =(xvn), .

Dually considering the interval [xAn,n] in (n] and using same argument

there exist ve [x A n,n] such that vv (x An)v (y A n)=n and

<v>"n<xan)v(yan)>,"=<xan>";

n
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Then [y, w ]| n<y>" =, wl n<m (x,ny) >,
=[v, wl n[m(x,n,y)An, m (x,n,y)v n]’
=<v>," n<w>," N <m (nn,y)an>" n<m(xn y)vn>
=<v>"n<w>," N <(xan)v(yan)>, n<(xvn)a(yvn)>,
—<xan>,"n<xvn> =[xanxvn]| =<x>
Also,[v.w ]*v<y>, " =[vew ] "v<m (x.n.y)>,
= (oWl A T (xan)v(yan) (eva)a(yvm)l)
= [pv(xan)v(yan),wa(xva)a(yva)] = {n} = L.
Since n is central , so [v, w]=<t>, where <¢>, e[<x>n*, L , which is the

required relative complement of <y =l |

In [11] Cornish has proved that if L is a distributive lattice with 0 then

L is quasi-complemented if and only if 4, (z) is a Boolean subalgebra of
4 (L)- But we are unable to get such a result for 4, (L) when P, (L) is quasi-
complemented. We could not prove that there exists d € L with <d >, ={n},
when P, (L) is quasi-complemented . We leave it to the reader as an open
question. “Does 4, (L) possess a smallest element when P, (L) is a quasi-

complemented lattice with n as a central element?”
But following the same technique of proof of theorem 6.1.10, we can

establish the following result.
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Theorem 6. 1. 11 Let L be a distributive lattice with n as a central
element. Then

(i)  If A, (L) is Boolean then P, (L) is quasi-complemented.
(i) If P,(L) is quasi-complemented and A, (L) has a smallest

element, then A, (L) is Boolean. ~ W

By [ 9] we know that a distributive lattice with 0 is a generalized
Stone lattice if and only if it is both normal and sectionally quasi-
complemented.

So we conclude this section with the following result. This also gives nice

characterization of P, (L) which are generalized Stone.

Theorem 6.1.12. Let L. be a distributive lattice with n as a central

element. Then P, (L) is generalized Stone if and only if A, (L) is a relatively

complemented sublattice of I, (L)-

Proof : Suppose P, (L) is generalized Stone. Then it is normal and

sectionally quasi- complemented. Thus by Proposition 6.1.2 and Theorem

6.1.10 A4, (L) is a relatively complemented sublattice of 7, (L).
Conversely if A, (L) is a relatively complemented sublattice of /, (L), then
again by proposition 6.1.2 and Theorem 6.1.10 £, (L) is normal and

sectionally quasi-complemented . Therefore, by [9, Theorem 5.7] L is

generalized Boolean. [
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2. o-n-ideals in a distributive lattice

Recall that for an ideal J in a distributive lattice L with 0,
a (J)= {x] i

g *{F)= {x,eL‘ (x]* eF isanideal in L when F is any filter in A4, (L).

xeJ }, which is filter in 4, (L) and conversely

Clearly for any ideal I, I < a“a (I) . Anideal Iis called and a-ideal if
I = a < a (I).Now for any n-ideal J in a distributive lattice with a

central element n, we define « (J)= {< x>," | xeJ and conversely
a” (F) = {x eLl <x>"eF whereF is any filter in 4, (L). We start this

section with the following result.

Proposition 6. 2. 1.  Let L be a distributive lattice and n € L is

central. Then.

(a) For any n-ideal J, o (J) is afilter in A, (L)

(b) a* (F) is an n-ideal in L where F is any filter of A, (L)

(c) If I, ,1, are n-ideals then 1, I, implies that (F; Jeai(ls);
and if F,, F, arefiltersin A, (L), then F, < F,implies
a* (F)ca ()

(d) Forany filter Fof 4, (L), « a* (F)=F.

(e) The map I »>a* a(I)= [a“_(a' (1)) is a closure operation on the

lattice of n-ideals. That is
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(i) a“a (o:*" a (1)): a a(l)
(i) Ica® all)
Gii) I < J implies a~ a (I)ca* a(J); for any n-ideals 1 and J in L.

Proof: (a) Let< x>, ,<y>,"ea (J)withx, y e J.

* * *__

Then<x>” m<y>n :(<x>nv<y>n) il

* * .
[x/\y/\n,xvyvn] = < t >, asnis central . Then

XA Yy An=tAan<t<tvn=xvyVvn implesteJ by

convexity. Hence <x>, “ N<y>, e a(J).
Now suppose < x >”* ca(/), xeJand (s) " o (x) ~ forsome

<S>n‘ & An (L) Then <s >n* =k >n* V<X >n* =<m (Sa A, x) >n‘l

and xAn< m (S, n, x) < x v n implies by conversely that

m (s, n, x) e J.Hence<s>"ea/(J). Therefore & (J) is a filter.

(b) Since L is the largest element of 4, (L), so L € F. Then L={n{
implies nea*“ (F).NowLet x <7<y with x, yea (F). Then

EXD, Y, e F.Thus, <x> " n<y>"=[xAryan, xvyvn]®

n

e F as F is a filter.

Moreover,x/\yz\nsr/\nﬁtvnéxvyvn implies
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<t>”g[x/\y/\n, xvyvn]andso
<£>”* ) [x/\y/\n, xvyvn]*.Thus <t> e€F asF is filter.
Therefore, x € a* (F) and so o (F) is convex. Now let x e (F)-
Then x A 1 < x implies <xAn>," 2 <x>,".Thus <xan>, eF asF
is a filter, and so x An € a* (F). Similarly xv nea“ (F). Then for any
x,ye a“(F),<x>, Nn<y S =[xAyAm xvyvn|" eF and
[x/\y/\n,xvyvrz] =< s >,asn is central. Thus s ea” (F) and so
san, svn ea® (F). Therefore by convexity
SAN=XAYARSXAYSXVYSXVYyvVn=svnimplies xAy, xvyea“(F).
Hence o (F) is an n-ideal of L.

(c) This is trivial .

(d) Suppose < x>, € F. Then x e & (F) and so

<x>"eala” (F)) Therefore, F c a (@ (F)). Conversely, let

<x>, ea (o:‘_(F)). Then <x>, =<y >," forsome yea* (F). Thus
<y>'eF,andso<x>,  €F.Thatis a(E(F)]’ and so F=a (o (F))c F-
(e) (i) Since a (7)isafilterin 4, (L),s0by (d) @ a (& (1))=a (7).

Therefore a* (0: a* (all )))= a a(l). Thatis,

a® «a (a'F a(]))za:*‘ a (1).

(ii) is obvious and (iii) follows from (c) ]
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An n-ideal 1 is called an a-n-ideal if «~ a (I)=1 .Thus «@-n-ideals are

simply the closed elements with respect to the closure operation of
proposition 6. 2.1.
Following result is a generalization of [ 6, Proposition 2.3 ] in terms of n-

ideals.

Proposition 6. 2. 2. Let L be a distributive lattice with n as a central
clement. Then o -n-ideals of L form a complete distributive lattice

isomorphic to the lattice of filters, ordered by set inclusion, of 4, (L) -

Proof : Let {/,} be any class of @ -n-ideal of L. Then a* « (1.)=1,
for all I . By proposition 6.2.1, N [, ca* a (N 1) . Again
a“ o (ﬂ [;.) ca o (L) = [, foreachi. Thus ¢ « (N 7,)c N /,, and so
a“ a(N1,)=N1,.Hence () /;is an a-n-ideal . Therefore, by [ 15, Lemma
14, P-14 ], the set of @ -n-ideals is a complete lattice, and it is distributive as
L is so. Now « is onto and both &, « are isotones by proposition 6.2.1 (c) .
Moreover, for a-n-ideal I, < a ( I)= I and by proposition 6.2.1 (d)
a a*“ ( F)= Ffor any filter F of 4, (L). Therefore the map « is an
isomorphism from the lattice of & -n-ideal to the lattice of filters of 4, (L)
Following theorem gives a nice characterization of a-n-ideals which also

generalizes [ 11, Proposition 3.3 ].

Theorem 6. 2. 3. For a central element n of a distributive lattice L, the
following condlitions are equivalent .

(i) 1 is an a -n-ideal

(ii) Forx,yelL,<x>, =<y>,jand xelimplies yel.

(i) 7=u <x>, =~ wherel is set theoretic union.

xel
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Proof: (i) = (ii) . Suppose I is an ¢ -n-ideal. Then a“a (7)=1.
Let x,yeL with <x>, “=<y>, and xel. Then <x>, ea(l)
and so < y>," €a (/). This implies yea® (a (1))=1
(i) = (i). Suppose (i) holds and I is any n-ideal. 7 c a“ « (1) always

holds. Thus suppose x € @ < a (/). Then <x > ea (/). This implies

x> =< P >n* for some yel. Then by (ii), x € [I. Therefore,

n

a“a (I)c I andso a@ “a (I)= I ;inother words L is an & -n-ideal.
(i) = (iii).Clearly 7 c U < x>, .Nowlet xe/ and

ye<x> 6 .Then<x>, €c<py>, .Thus

* * *

<y>n =< X > V—<y>ﬂ :<m(x’n9y)>n*'

n
Since x € I so by convexity x An<m (x, n, y)< xvn implies

m (x, n, y)e I . Hence by (ii) y € I which implies < x >" < I and

so U <x>, < I.Therefore, (iii) holds.

xel

(iii) = (ii). Suppose (i) holdsand < x >," = < y >, with xe.

*

Then < x >, =<y >, .Thisimplies
yeLys, =% > " . Hence by (iii), y € U <x>," =1 and
xel

so(ii)holds. W
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Proposition 6. 2. 4. For a central element n of a distributive lattice every
minimal prime n-ideal is an o -n-ideal .

Proof : Let P be a minimal prime n-ideal. Suppose x € a“ a (P)
Then <x> '€ a(P).So < x>, =< y>, forsome yeP.SinceP
is minimal, soby 3.14 < y >, < P .Thus, < x > " < P, this implies
xe< x>, < P.Therefore,a” a (P)g P . Since the reverse inclusion
is trivial, so @< a (P)= P.HencePis a-n-ideal. i
Recall that for a prime n-ideal P of a distributive lattice L
n(P): {yeL\ m(y,n,x):nfor some xelL—-P .

Clearly n (P) is an n-ideal and n (P)cP.

Proposition 6. 2. 5. For a prime n-ideal P, n (P) is an o -n-ideal .

Proof: Let xe a“a (n(P)).Then <x>," ea (n(P)). Thus

<x>*=<y>, forsome yen(P).Then m (y,n, t )= n for some

n

t e L — P. This implies < y >, n<t>, = {n} and so
* * * % *
<t>,c<y>, =<x>, .Therefore,<x>, < <1>, . Thus ,

xe<x>,""c <t>, whichimplies m (x,n,t)=nandso xen(P).
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<«
Hence @ « ( n ((P))c_: P . Since the reverse inclusion is trivial , so

a* a(n((P))cn(P). Therefore n (P) is an a-n-ideal . |

Following Lemma is needed to prove our next theorem. Latif in [ 30 ] have

given a characterization for P, (L) to be disjunctive. Here is a slight

improvement of that result.

Lemma 6. 2. 6. For a central element n of a distributive lattice L,
£ (L) is disjunctive ifand only if < x > " =< y >, " implies

Z2xs =< s, forx pel.

Proof : Suppose < x >, =< y >, implies
Sinceforxe L, <x>, c <y>, always
holds, so suppose ye<x> "~ .Then<y > D<x >,

*® * %* ® *
Thus, <x>, =<x>, [1<y>, =[xAyan, xvyvn|'=<t>";
as n is central . Then by the given condition, < x >, = < >, .Thus
“x = [x/\y/\n, xvyvn]' and so by convexity , y e < x >, .

Therefore < x >, < <x>,,andso < x >,=<x >, . Hence by[30],

P, (L) is disjunctive.
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Conversely , Let P, (L) be disjunctive. Then for each xe L,
<x>=<x>, . Therefore, for x,ye L, < x>, =<y >, implies

<x> =<y>, andso<x>=<Yy>a. |

Following result is a generalization of [ 11, Proposition 3.4 ] .

Theorem 6. 2. 7. Let L be a distributive lattice with n as a central

element. Then the following condition are equivalent .

(i)  Each prime n-ideal is an o -n-ideal
(ii)  Each n-ideal is an o -n-ideal

(iii) P, (L) is disjunctive.

n

Proof : (i) = (ii) . Suppose I is any n-ideal . Then by  [30, Corollary
2.2.6], I=N{P| P21,P prime n-ideal } .Then
a“a()=a“a [N{P|P2I]
= 4 {a‘_a (P)] PQ!}zﬂ{P‘ PQ]}:] (by (1).
Therefore (ii) holds.
(ii) = (i) is trivial .
(ii) = (iii) . Suppose < x > =< y > for x, y € L. Since by (ii)
< x>, isan « -n-ideal and x € < x >, so by theorem 6.2.3.
ye<x> . Thus<y>,c<x>nSimilarly <x>,c<y>n.

Therefore < x > » =< y > x, and so by lemma 6.2.6, P, (L) is

disjunctive.



(iii) = (ii) . Let I be an n-ideal . Suppose x € & « (/) . Then
<x>"ea(l)andso < x >"=<y>" forsome y € I.Thus by (iii),
<X >4 =<y > u,which implies x € /. Therefore, a* « (I) = 1. Since the

reverse inclusion is trivial, so @~ a (1 ) = [ and hencel is an « -n-ideal.

Proposition 6.2.2. implies that there is an order isomorphism between

the prime « -n-ideals of L and the prime filter of A4, (L) . It is not hard to

show that each « -n-ideal is an intersection of prime ¢ -n-ideals.

Following result is well known in Lattice theory, It was proved for
bounded lattices in [ 40 ] and announced in general in [ 39 ] ; an explicit
proof'is given in [ 22, P-76].

Lemma 6. 2.8. 4 distributive lattice with 0 is relatively complemented

if and only if its every prime filter is an ultra filter (proper and maximal).

Theorem 6. 2. 9. Let L be a distributive lattice with n as a central
element. Then the following conditions are equivalent.

(i) P, (L) is sectionally quasi-complemented

(ii)  Each prime «-n-ideals is minimal prime n-ideal.

(iii)  Each a-n-ideal is an intersection of minimal prime n-ideals.

Moreover, the above conditions are equivalent to P, (L) being

quasi-complemented if and only if there is an element d € L such that

<d>; :{n}.



124

Proof : (i) = (ii) . Suppose P, (L) is sectionally quasi-complemented.
Then by theorem 6.1.10 , A, (L) is relatively complemented. Hence its every
prime filter is an ultra filter. Then by proposition 6. 2.2 each prime & -n-
ideals is a minimal prime n-ideal .
(ii) = (iii). From the isomorphism between the prime & -n-ideal of L and the
prime filters of 4, (L), we see that each & -n-ideal is an intersection of prime
a -n-ideals. This shows (ii) = (iii).
(iii) = (ii) is obvious.
(ii) = (i). Suppose (ii) holds. Then by proposition 6. 2. 2, each prime filter
of A, (L) is maximal. Then by Lemma 6.2.7, 4, (L) is relatively
complemented, and so by Theorem 6.1.10, P, (L) is sectionally quasi-

complemented. Last part follows from [ Cornish, 11 ]. |

We conclude the thesis with the following result which is a generalization of

[ 11, Theorem 3.7 ].

Theorem 6. 2. 10. Let L be a distributive lattice and n € L is central
. Then P, (L) is generalized Stone if and only if each prime n-ideal contains

a unique prime o -n-ideal.

Proof: Since minimal prime n-ideals are « -n-ideals so by the given
condition, every prime n-ideal contains a unique minimal prime n-ideal.
Hence by [ 4] P, (L) is normal . Also by the given condition each prime « -
n-ideal contains a unique prime & -n-ideal. Since each minimal prime n-ideal

is a prime



125

Q -n-ideal, so each prime  -n-ideal is itself a minimal prime n-ideal. Hence

by Theorem 6.2.8, P, (L) is sectionally quasi-complemented. Therefore, by
[ 9, Theorem 6.6 ] P, (L) is generalized Stone.

Coversely, if P, (L) is generalized Stone, Then by [47] , each prime n-ideal

contains a unique minimal prime n-ideal. Thus the result follows as each

minimal prime n-ideal is a prime & -n-ideals. W



Recommendations and Application

Conclusion and Future recommendations: From the
discussions of all previous chapters it can be concluded and recommended
that the concept of n-ideals can be introduced in join-semilattices. Then using
these results we can study those P, (L) which are normal, relatively normal,

m-normal, and relatively m-normal, where L is a join-semilattice with 0. In
other words all the works of this thesis can be extended for join semilattices.

Application: Lattice theory has a lot of applications in different
fields. Boolean lattice has applications in the field of hardware and software
development of computer science. Also it has wide applications in
networking. It can be applied to develop theories in other branches of algebra,
such as group theory, Ring and Modules etc.

One of the major applications of Boolean lattices is in the switching
systems, which are network of switches that involve two state devices 0 and 1
for off and on respectively.
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