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ABSTRACT 

This thesis studies extensively the Principal n-ideals of a lattice. 

The idea of n-ideals in a lattice was first introduced by Cornish and Noor 

in studying the kernels around a particular element n, of a skeletal 

congruence on a distributive lattice. Then Latif and Ayub Ali in their 

thesis studied thoroughly on the n-ideals and established many valuable 

results. For a fixed element n of a lattice L, a convex sublattice of L 

containing n is called an n-ideal. If L has a "0", then replacing n by 0, an 

n-ideal becomes an ideal and if L has a "1" then it becomes a filter by 

replacing n by I. Thus, the idea of n-ideals is a kind of generalization of 

both ideals and filters of lattices. The n-ideal generated by a finite number 

of elements of a lattice is called a finitely generated n-ideal, while the 

n-ideal generated by a single element is known as a principal n-ideal. 

Latif in his thesis has given a neat description on finitely generated 

n-ideals of a lattice and has provided a number of important results on 

them. For a lattice L, the lattice of all n-ideals of L and the lattice of all 

finitely generated n-ideals of L are denoted by I (L) and F,, (L) 

respectively, while P11  (L) represents the set of principal n-ideals of L. In 

this thesis, we devote ourselves in studying several properties on P,, (L) 

and F,1  (L) which will certainly enrich many branches of lattice theory. 

Our results in this thesis generalize many results on normal, relatively 

normal, m-normal and relatively m-normal lattices. We also introduce the 

concept of n-annulets and a -n-ideal in studying P (L) 

-1 k(, \- 
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In this connection it should be mentioned that if L has a 0, then 

putting ii = 0 we find that E (L) is the set of all principal ideals of L 

which is isomorphic to L. Thus, for every result on F,, (L) in this thesis, 

we can obtain a result for the lattice L with 0 by substituting n = 0. Hence 

the result in each chapter of the thesis regarding F (L) are 

generalizations of the corresponding results in lattice theory. 

In chapter 2, we discuss some fundamental properties of n-ideals, 

which are basic to this thesis. Here we give an explicit description of 

F, (L) and P (L) which are essential for the development of the thesis. 

Though F, (L) is always a lattice, P,, (L) is not even a semilattice. But 

when n is a neutral element, P,, (L) becomes a meet semilattice. 

Moreover, we show that P,7  (L) is a lattice if and only if n is a central 
Od 

element, and then in fact, P, (L) = ['77  (L). We also show that, for a 

neutral element n, the lattice L is complemented if and only if P,, (L) is 

so. In this chapter we also discuss on prime n-ideals. We give several 

properties and characterizations of prime n-ideals. We include a proof of 

the generalization of Stone's separation theorem. We also include a new 

proof of the result that for a distributive lattice L, En  (L) is generalized 

Boolean if and only if prime n-ideals are unorderd. 

Chapter 3 discusses on minimal prime n-ideals of a lattice. We give 

some characterizations on minimal prime n-ideals which are essential for 

the further development of this chapter. Here we provide a number of 

results which are generalizations of the results on normal lattices. 



We prove that for a distributive lattice L, E (L) is normal if and 

only if each prime n-ideal of L contains a unique minimal prime n-ideal. 

We also show that if n is central in L, then P, (L) is a normal lattice if 

and only if any two minimal prime n-ideal are cornaximal which is also 

equivalentto < x >,,  n<y>,7  = {n } implies <x>, v<y> =L. 

In chapter 4 we introduce the notion of relative n-annihilators 

<a, b >17. We characterize distributive and modular lattices in terms of 

relative n-annihilators. Then we generalize several results of Mandelker 

on annihiltors. We use these to characterize those F (L) which are 

relatively normal lattices. Among many results we have shown that for a 

central element n, P,7  (L) is a relatively normal lattice, if and only if any 

two incomparable prime n-ideal are comaximal . What is more , this is 

also equivalent to the condition <<a >,,< b >17> v <<b >,,< a >,> = L 

for all a,b EL. 

Pseudocomplemented distributive lattices satisfying Lee's 

identities form equational subclasses denoted by B171  , - I in < w. 

Cornish have studied distributive lattices analogues to B177-lattices and 

relatively B11-Iattices .He referred then as n-i-normal lattices.Moreover, 

Beazer and Deavy have each independently obtained several 

characterizations of (sectionally) B 1—lattices and relatively 

B111—lattices. 

In chapter 5 we generalize their results by studying finitely 

generated n-ideals which form a rn-normal and a relatively rn-normal 

lattice .We show that for a central element n c L, P71(L) is rn-normal if 



and only if for any rn+l distinct minimal prime n-ideals P ............., P,. 

I 
of L, P0  v ................v P, = L. In this chapter we also show that for a 

central element n (=- L, P1 (L) is relatively rn-normal if and only if any 

rn+1 pairwise incomparable prime n-ideals are cornaxirnal. 

Chapter 6 introduces the concept of n-annulets and a -n-ideals of a 

lattice. Here we include several result on the set of n-annulets A,1(L) 

when n is a central element of L. We proved 47 (L) is relatively 

complemented if and only if P11(L) is sectionally quasi-complemented. 

In section 2 we studied a -n-ideals. We have shown that n-ideal 

11 (P) where P is a prime n-ideal is an a -n-ideals. Moreover, all the 

minimal prime n-ideals are a -n-ideals. Then we generalize all the results 

of Cornish [11] in terms of a -n-ideals. We also show that for a central 

element n, P,1  (L) is disjunctive if and only if each n-ideal is an 

a -n-ideals. We conclude the thesis by characterizing P,1(L) to be 

generalized Stone in terms of a -n-ideals. 
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Chapter-i 

INTRODUCTION 

In this thesis we have studied the Principal n-ideals of a lattice. For 

a fixed element n of a lattice L, a convex sublattice of L containing n is 

called an n-ideal. If L has a '0', then replacing ii by 0, an n-ideal becomes 

an ideal and if L has a '1' then it becomes a filter by replacing n by 1. 

Thus, the idea of n-ideals is a kind of generalization of both ideals and 

filters of lattices. The n-ideal generated by a finite number of elements of 

a lattice is called a finitely generated n-ideal, while the n-ideal generated 

by a single element is known as a principal n-ideal. Latif [30] in his thesis 

has given a neat description on finitely generated n-ideals of a lattice and 

has provided a number of important results on them. Balbes and 1-lorn [1], 

Chen and Gratzer [7] and many others have studied the minimal prime 

ideals in a distributive lattice. The n-ideals of a lattice have been studied 

extensively by Noor and Latif [32], [35], [49], [53] etc. For a lattice L, 

the lattice of all n-ideals of L and the lattice of all finitely generated n-

ideals of L are denoted by 1,, (L) and F1  (L) respectively, while P,, (L) 

represents the set of principal n-ideals of L. 

Many authors including Mandelker [38] and Varlet [60] have 

studied relative annihilators in lattices and semilattices. Also Noor and 

Ali [45] have introduced the notion of relative annihilators around a fixed 

element. 

Cornish [9] have studied distributive lattice analogues to B11-

lattices and relatively B11-Iattices. He referred them as rn-normal lattices. 

Moreover, Beazer [3] and Deavy [13] have each independently obtained 
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several characterizations of (sectionally) B111—lattices and relatively B— 

A- lattices. 

Normal lattice have been studied by several authors including 

Cornish [9] and Monteiro [39]. Cignoli [8] and Cornish [9] introduced the 

notion of k-normal and k-completely normal lattice. 

Subrarnanian [57] studied h-ideals with respect to the space of 

maximal 1-ideals in f-ring. Bigard [4] has studied a-ideals in the context 

of lattice ordered groups. Noor and Islam [54] has studied the annulets 

and a-ideals in a distributive near lattice. 

Here we devote ourselves in studying several properties on P (L) 

and F,1  (L) which will certainly enrich many branches of lattice theory. 

The results in this thesis generalize many results on normal, relatively 

normal, rn-normal and relatively rn-normal lattices. We also introduce the 

concept of n-annulets and a -n-ideals in studying P, (L). 

In this connection it should be mentioned that if L has a 0, then 

putting n = 0, we find that P,, (L) is the set of all principal ideals of L 

which is isomorphic to L. Thus, from every result on F, (L) in this 

thesis, we can obtain a result for the lattice L with 0 by substituting n = 0. 

1-lence the results in this thesis regarding F, (L) are generalizations of the 

corresponding results in lattice theory. 

Here we also have given explicit descriptions of P (L) and P, (L) 

which are essential for the development of the thesis. Since E,, (L) is 

always a lattice and P, (L) is not even a semilattice, but when n is a 

neutral element, P, (L) becomes a meet semilattice. We have shown that 

P, (L) is a lattice if and only if when n is a central element, and then in 



fact, F (L) = F (L). We also have shown that, for a neutral element 11, 

the lattice L is complemented if and only if I (L) is also complemented. 

We also have discussed on prime n-ideals and given several properties 

and characterizations of prime n-ideals. We included a proof of the 

generalization of Stone's separation theorem and included new results 

that can be established from the generalization, especially we have shown 

that for a distributive lattice L, F (L) is generalized Boolean if and only 

if prime n-ideals are unordered. 

We have proved here that for a distributive lattice L, E (L) is 

normal if and only if each prime n-ideal of L contains a unique minimal 

prime n-ideal. If n is central in L, then J (L) is a normal lattice if and 

only if any two minimal prime n-ideal are comaximal which is also 

equivalent to <x >11  n < y >,, { n } implies <x >, v <y = L. 

We introduce the notion of relative n-annihilators <a, b >" and 

characterize distributive and modular lattices in terms of relative 

n-annihilators. Many results have been introduced that shown - for a 

central element n, P (L) is a relatively normal lattice. 

For a central element n E L, P11(L) is m-normal if and only if for 

any m+I distinct minimal prime n-ideals P() , ............, P,, of L, 

P0 v ................ vF,,=L. 

We introduces the concept of n-annulets and a -n-ideals of a 

lattice. 1-lere we include several result on the set of n-annulets A(L) 

when n is a central element of L. We proved 47 (L) is relatively 

complemented if and only if P11 (L) is sectionally quasi-complemented. 
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We have shown that n-ideal n (P), where P is a prime n-ideal, is an 

a -n-ideals. Moreover, all the minimal prime n-ideals are a -n-ideals. 

Then we have generalized all the results of Cornish [11] in terms of a -n-

ideals. We conclude by characterizing P (L) to be generalized Stone in 

terms of a -n-ideals. 

-w 
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Chapter-2 
MA 

n-ideals of a lattice. 

Introduction: 

The intention of this chapter is to outline and fix the notation for 

some of the concepts of n-ideals of a lattice which are basic to this thesis. 

The idea of n-ideals was first introduced by Cornish and Noor in several 

papers including [12] . The n-ideals have also been used in proving some 

results in [42]. 

A non empty subset I of a lattice L is called an ideal of L if 

for x ,y el, xv y el 

xEI and y:~x,(yEL)implyyEl. 

An ideal P of L is called aprirne ideal if for 

x,y E L, x A y E P implies either x E p or y e P 

Similarly a non-empty subset F of L is called a dual ideal ( filter) if 

(i)for x, y E F, x A F and(ii) xEF andy ~: x,y E L, 

implyy E F .A filter F is called aprimefilter if for 

x , y E L , x v y E F implies either x E F or y E F 

The n-ideals of a lattice have been studied extensively by Noor and 

Latif in [30], [32], [33], [34], [31], [491, [50], [51], [52] and [53]. For a 

fixed element n of a lattice L, a convex sublattice containing n is called 

an n-ideal . If L has 0 then replacing n by 0 an n-ideal becomes an ideal. 

Moreover if L has I, and n-ideal becomes a filter by replacing n by 1. 

Thus the idea of n-ideals is a kind of generalization of both ideals and 

filters of lattices. So any result involving 
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n-ideals of a lattice L will give a generalization of the results on ideals if 

OE L and filters if 1E L. 

The set of all n-ideals of a lattice L is denoted by I,7 (L), which is 

an algebraic lattice under set inclusion. Moreover, {n} and L are 

respectively the smallest and the largest elements of I,1(L), while the set 

theoretic intersection is the infimum. 

For any two n-ideals 1 and J of a lattice L, it is easy to check that 

I n J = { x x = rn (i, n, j) for some I I j E J where 

m (x, y, z)= (x A y)v (y A z)v (z A x) and 

I v I = {x :/1  A j1 :!~ X :!~ 17 V J2 ,forsorne 

11 11 2 E I and Ii f2 E I } 

The n-ideal generated by a1 , a2  .......... .......... ., a,, is 

denoted by <a1, a2.................................., a,, >,. 

Clearly< a1, a7. .......... .......... ... a,, > 

=<a1>,7v<a2>,7V .......... .... v<a,fl>fl. 

The n-ideal generated by a finite number of elements is called a 

finitely generated n-ideal. The set of all finitely generated n-ideals is 

denoted by F (L). Of course, F (L) is a lattice. The n-ideal generated 

by a single element is called aprincipal n-ideal .The set of all principal 

n-ideals of a lattice L is denoted by P,  (L). We have 

<a>,={xE L : a A nx:!~av n}. 
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The median operation m (x, y, z)= (x A y)v (y A z)v (z A x) is 

very well known in lattice theory . This has been used by several authors 

including Birkhoff and Kiss [6] for bounded distributive lattices, Jakubik 

and Kalibiar [22] for distributive lattices and Sholander [56] for median 

algebras. 

An n-ideal P of a lattice L is called a prime n-ideal if 

In (x, n, y ) E=  P (x, y E L) implies x P or y P 

rA 

Standard and neutral elements in a lattice were studied extensively 

in [16] and [20] . An element s of a lattice L is called standard if for all x, 

yeL, 

X A (y V s) (x A y)v (x A s). 

An element n e L is called neutral if it is standard and for all 

x, y e L, 

fl A (x V y ) = (n A x ) v (n A y ). By [17], we know 

that n E L is neutral if and only if for all x , y E  L, 

in (x, ii, y) = (x A y ) v (x A n ) v (y A n) = 

= (x v y ) A (x v n ) A (y v n). Of course 0 and I of a lattice 

are always neutral. In a distributive lattice clearly every element is 
Aib 

standard and neutral. 

Let L be a lattice with 0 and 1. For an element a E L , a' is 

called the complement of a if a A a' = 0 and a v a' = I. A bounded 

lattice in which every element has a complement is called a 

complemented lattice. In a distributive lattice it is easy to see that every 

element has at most one complement. 



An element n E L is called central if it is neutral and complemented in 

each interval containing it. 

A lattice L with 0 is called sectionally complemented if [0, x] is 

complemented for all x E L . A complemented distributive lattice is 

called a Boolean lattice, while a distributive lattice with 0, which is 

sectionally complemented is called a generalized Boolean lattice. For the 

background material on lattices we refer the reader to the texts of 

G. Gratzer [15], Birkhoff [5], Rutherford [55], Khanna [27] and Maeda 

and Maeda [37]. 

In this thesis we have studied the lattice F,, (14 in different 

situations. If L has a 0, then putting n = 0, we find that 

<a1 ................................ oil,  >fl  = (a 1  v ........................v a,,,] 

Hence for n = 0, F,1  (L) is the set of all principal ideals of L which is 

isomorphic to L. Thus for every result on F,, (L) in this thesis, we can 

obtain a result for the lattice L by substituting n = 0. Hence the result in 

each chapter of the thesis regarding F,, (L) are generalizations of several 

results on Boolean, generalized Boolean, normal, and relatively normal 

lattices. Chapter 4 gives generalizations of several results on those lattices 

which are in rn-normal and relative rn-normal respectively. 

In section 1 we have given an explicit description of F,, (L) and 

F,, (L) which will be needed for the development of the thesis. We have 

shown that P,, (L) = F,, (L) if and only if n is central. We have proved 

that a lattice L is (modular) distributive if and only if F,, (L) is so. We 

have also shown that for a neutral element n, lattice L is 



complemented if and only if P (L) is complemented. Moreover, if a' is 

the complement of a in L, then <a' >, is the complement of <a >, in 

r,, (L) 

In section 2 we have discussed on prime n-ideals. We have given 

several properties of prime n-ideals. We have included a proof of 

generalization of Stone's seperation theorem. Finally we include a new 

proof of the result that for a distributive lattice L, F (L) is generalized 

Boolean if and only if prime n-ideals of L are unordered. 

Alk 
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1. Finitely generated n-ideals. 

We start this section with the following proposition which is due to 

[30], also see [33] and [49]. This gives some simpler description of 

F,7 (L). 

Proposition 2.1.1. Let F 7  (L) be a lattice and n € L 

For a1 , a2............................, a, E L, 

(i) <a1  ,a2  ............... a,,7  >, c{yEL:(a1 Jn.......n(a, 7 Jn(n] 

(y}c(a]v ........ 

<a1 , a7,..,a,,,>,7 ={yEL:a,Aa2A ...... Aa,,,An 

y:!~a1va2V ....... va,vn }: 

<a1 , a2. ............ ,a, >, ={yEL:a1  Aa2 A ...... Aa1,7  Afl:!~y 

= (y A a 1  )v ......v (y A a, )v (y  A n)}, 

where L is distributive; 

For any a E L, 

= {y e L : a A n y= (yA a ) v (y A n)}= 

{y E L : y = (y A a)v (y  A n)v (a A n)}, 

where n is standard; 

Each finitely generated n-ideal is two generated. 

Indeed 

<a1 , a2 ......., a 7  > =<a1  Aa2 A ..... A a,,, An, 

a1va7V .......... ..va,vn>,, 



(vi) F,., (L ) is a lattice and its members are simply the intervals 

[a, b] such that a :!~ n b and for each intervals 

[a, b] and [a,, b1 ], 

[a, b]v[a1 , b,]=[aAa,, bvb1 ]and 

[a, b]n[a1 , b,]=[ava,, bAb,] . 

For n E L suppose (n] d  denotes the dual of the lattice (nj. Then for 

anyX, yE(n], xvdyxAyandxAdyxvy. 

Theorem 2.1.2. Let L be a lattice and n e L . The maps 

:IjL)—(n]" x[n)  and  Y : (n]d x[n)—F,,(L) is given by 

([a, b ] )= (a, b) and P ((x, y)) = [x, y] where 

[a, b ] F 
, 

(L ) and (x, y) E (n]" x n , are mutually inverse 

lattice isomorphism 's. In other words, F,, (L) (] " x rn). 

Proof: Let [a, b] [a,, b 1 ] .Then 

a a :!~ n :!~-  b b1 ,  and soa :!~ daiin(n]d and 

b b, in [n) . Thus, (a , b ) :!~ (a , b, ) in (n]" x [) 

Hence cL is order preserving. If (a , b (a , b ) in 

(n] "x [n ), then a ~ 
d a in (n] d 

and b :!~- b in [n) . Thus, 

a 1 :~:,a:!~n b b 1 inLand 

so [a, b] c [a 1 , b, J 

\ 4" 1 desj, 3, 
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That is Y is also order preserving. But zD and P are mutually 

inverse and so the theorem is established. U 

When n is a neutral element of a lattice L, then it is very easy to 

check that P,1  (L ) is a meet semilattice. In fact, for any 

a,b E L, <a > 77  n < b >17= in(a,n,b)>,7. 

But P,7  (L ) is not necessary a lattice. The case is different when n is a 

central element. The following theorem also gives characterization of 

central elements of a lattice L. 

Theorem 2.1.3. Let n be neutral element of a lattice L. Then 

P,7  (L ) is a lattice if and only ifn is central. Then of course 

-r 
P17  (L) = F 17  (L ) (n] "x 

Moreover, for a central element n E L , L is bounded if and only if 

P,7  (L ) is bounded. 

Also if L is bounded and n is a central element of L, then for any 

x, v e L <x >, V < Y > = < m(x, n', y )>,, where n' is the 

complement of n in L. 

Proof: Suppose n is central. Since for all a, b E L 

< a > n < b > 11 = < in (a , n , b )> 17  , we need 

only to check that < a > , v < b > , E P,7  (L ). Now, 

< a > 7.7  v < b >= [a A b A n, a v b v n].Sinceniscentral, 

thereexists C E L such that CA n = a A b A n and 

4' 
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c v n = a v b v n which implies that 

< a > v < b > = < c >,, and so p,, (L ) is a lattice. 

Conversely, suppose that P,7  (L ) is a lattice and 

a:!~n:!~b . Then [a,b]=<a>,7 v<b>,,. Since 

p (L )is a lattice , < a >,., v < b > , = < C > n for some 

c e L . This implies that C A fl = a and 

c v n = b . This implies c is the relative complement of n in 

[a, b ]. Therefore n is central. 

For the second part, if L = [0, 1], then {n} and < n' >,, are the 

smallest and the largest elements of P,7  (L ), where ii '  is the 

complement of n in L. 

Also if P,, (L ) is bounded, then there exists n' E L such that <n' >, 

is the largest element of P,, (L ). Therefore for any x E L 

< x >,c < n > .Thatis 

nAn'<xAn x:!~xvn:!~nvn. This implies 

n A ii '  and 11 v ii '  are the smallest and the largest elements of L and so 

L is bounded . Last part is easily verifiable. U 

Thus the following results are obvious from the Theorem 2.1.2. 

Theorem 2.1.4. Let L be a lattice. Then i 7  (L) /s sectionally 

complemented if and only if for each a, b E L with a :!~ ii b, the 

interval 

[a, b] and [n, b] are complemented. 
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Corollary 2.1.5. For a distributive lattice L, F,, (L) is 

generalized Boolean if and only if the interval [a, n] and [n, b] are 

complemented for each a, b e L with a :!~ n b 

Corollary 2.1.6. For a distributive lattice L, F,1  (L) is 

generalized Boolean if and only if both (]" and [) are generalized 

Boolean . U 

It is clear from the Corollary 2.1.4. that if L is relatively 

complemented, then F (L) is sectionally complemented and in fact 

F 11  (L ) = p,, (L ). If L has 0 and 1, the largest element L of i (L ) 

is finitely generated . Then in fact, L = [0, 1] 

A lattice L with 0 is said to be sectionlly-semi-complemented 

lattice (disjunctive) if 0 :!~ a < b (a, b E L ) implies that there is an 

element x E L such that X A a = 0 and 0 < x :!~ h , while a 

lattice satisfying the definition which is dual to that of a sectionally semi-

complemented lattice is called a dual sectionally semi-complemented 

lattice (dual disjunctive). 

A lattice L is called implicative (relatively pseudocomp/emented) if 

for any given elements a and b, the set of all x E L such that 

a A X :!~ b contains a largest element which is denoted by a -+ b. A 

dual implicative lattice is defined dually. 

i. 

The following corollary holds because of theorem 2.1.2. 
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Corollary 2.1.7. Let L be a lattice and x E L . Then 

F,, (L ) is sectionally-semi-complemented if and only if (n] 

is dual sectionally-semi-complemented and [11) is 

sectionally-semi-complemented 

F,, (L ) is implicative if and only if (n] is dual implicative 

and [n) is implicative. • 

Theorem 2.1.8. Let n be a neutral element of a bounded lattice 

L. Then L is complemented if and only f P,, (L ) is a complemented 

lattice. 

Moreover, a' is the complemented of a in L if and only if < a' >,, is the 

complemented of < a >,, in P,, (L ) 

Proof: Suppose L is complemented. Then by Theorem 2.1.3, 

P,, (L ) is a lattice with {n} and <n' >77  as the smallest and the largest 

elements. Moreover, P,, (L ) = F,, (L). Now let < a > ,, e P,, (L). 

Suppose a' is the complement of a in L. Then 

<a>,, n <a'>=[aAn,avn]n[a'An,a'vn] 

=[(ava')An,(aAa')vn] = [(ava')An,(aAa')vn] 

= [1A n,Ov n ] = { n}. Also < a > , v<a'> 

= [a A a' A n, a v a' v n] = [o, 1]= < n' >,, . This implies 

P,, (L ) is complemented, and < a' >,, is the complement of 

< a >,,foreach a E L 

Conversely, suppose P,, (L ) is complemented . Let a E L and 

let <b >,, be the complement of < a >,, in P (L ). 
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Then < a > 
17 

n < b > = { n } and 

<a>,7 v<b>,[O,l]. 

Thus, [(a v b)A n, (a A b)v nj= {n} and 

[(a A b)A n, a v b v n ] = [0,1].Now 

[(a v h)A n, (a A b)v n]= {n implies a A b :!~ n :!~ a v b 

Hence[O,l] =[aAbAn,avbvn][aAb, avb ]and so 

a A b = 0 and a v b = I . This implies b is the complement of a in 

L. Therefore L is complemented. I 

Thus we have the following corollary: 

Corollary 2.1.9. For a bounded distributive lattice L with 

n E L , L is Boolean if and only if P,1  (L ) is a Boolean lattice. . 
In lattice theory, it is well known that a lattice L is modular 

(distributive) if and only if the lattice of ideals 1 (L) is modular 

(distributive). Our following theorems are nice generalizations of those 

results in terms of n-ideals when n is a neutral element which is due to 

[30] . Also see [49] 

Theorem 2.1.10. For a neutral element n of a lattice L, the 

following conditions are equivalent: 

(i) L is modular 

00 1,, (L) is modular 

(iii) F,, (L ) is modular 

Following result is also due to [30]. I 
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Theorem 2.1.11. Let L be a lattice with a neutral element n Then the 

following conditions are equivalent: 

(1) L is distributive; 

I,  (L) is distributive 

F,1  (L ) is distributive; 

For any two n-ideals I and J of a lattice we have already defined 

I v J in the introduction . Now we include the following result , which 

will be used to prove several theorems in different chapters of the thesis. 

Theorem 2.1.12. Let I andJ be two n-ideals of a distributive 

lattice . Then for anyx e I v J ,xv n=11  v j 1 and 

X A n = 1 2 A .12 for some 

j , E J with i 1 , li ~!! n and 

'V 12 

Proof: Let x e I v J . Then 

IA j x :!~ i'v j' for some i,j'E I,j,j'E I 

Now x :E~ i' v f implies x v n I' v v n . Thus 

x v n = (x v n)A (i' v v n). 

= [(x v n ) A (' v ii )] v [(x v n ) A  (J' v n)] 

But n :!~ (x v n ) A  (i v n ):!~ i v n implies by convexity that 

(x v n)A (i' v n ) = 11 (say )E I .Similarly, 

(x v n)A (j' v n)= j (say )E J . Thus, 

x v n = i v j I  ;i1  c= I, j1 E J and 

i i  ~! n, j, n . Similarly we can show that x A fl = 1, A 12 for 

Ir some 1, E I, 12 E I with ½ ' 12 < n 
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We conclude this section with the following useful result which is 

due to [31]. This result will also be used in proving several results in 

different chapters of the thesis. 

Theorem 2.1.13. For a neutral element n of a lattice L, any 

finitely generated n-ideal of 1 which is contained in a principal n-ideal is 

a principal 

n-ideal. U 

17,  

ral 
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2. Prime n-ideals. 

Recall that an n-ideal P of a lattice L is prime if 

in (x, n, y)E P, x, y E L implies either x E P or y E P 

Since for any two n-ideals I and J of L, 

I n J = { in (i. n 
, 

j ): i E I 
, 

j c J }, so it is very easy to 

-r see that for any prime n-ideal P. I n J c P implies either 

Ic PorJ c P. 

Theorem 2.2.1. If P is a prime n-ideal of a lattice, then for any 

X E L , at least one of X A fl and x v n is a member of P. 

Proof: Observe that m (x A 11, n, x v n ) = n E P 

Thus either x A n E P or X V fl E P . 

Theorem 2.2.2. If P is a prime n-ideal of a lattice, then P 

contains either I or in), but not both. 

Proof: Suppose P is prime and. P p (n] Then there exists 

r < n such that r P . Now let s E In ). Then 

m (r,n,$)= (r A n ) v (nA s)v (sA r ) = ry nv r = n E P 

implies that s c= P . That is, P D [n) . Similarly, if P then we 

can show P D (11] 

Finally suppose that P contains both (n] and [n) Let t E L . Then 

t A n E P and t v n E P . Then by convexity of n-ideals t E P 

This implies P = L , which is contradiction to the primness of P. 
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Thus we have the following corollary: 

V 

Corollary 2.2.3. If P is a prime n-ideal of a lattice L, then there 

exists at least one X E L such that both x A n and x v n does not 

belongtoP. U 

Theorem 2.2.4. Let n be a neutral element of a lattice L. Then 

an 

n-ideal P is prime if and only if it is a prime ideal or a prime dual ideal 

(fliter). 

Proof: Suppose the n-ideal P is prime . Then by Theorem 2.2.2, 

either P D (n] or P D En). Suppose P Let x E P and 

t x, tEL .Then IA liE (n]c P . Thus, byconvexityofP, 

t A n :!~ t x implies that i P . This implies that P is an ideal. Also 

leta AbE P, a,b c= L . Then (a A b ) v n Pand 

in (a, n, b)= (a A n)v (b A n ) v (a A b):!~ (a A b)v n 

implies that m (a, n, b ) E P . Thus, either a E P or b E P 

and so P is a prime ideal. 

On the other hand if P we can similarly prove that P is a 

prime dual ideal. U 

Following lemma is due to [30, Lemma 2.2.8] 
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Lemma 2.2.5. In a distributive lattice L, a prime ideal containing n is 

also a prime n-ideal. U 

Dually we have the following result. 

Lemma 2.2.6. in a distributive lattice L, a prime dual ideal (filter) 

containing n is also a prime n-ideal. U 

The set of all prime n-ideals of L is denoted by P (L) . The 

following separation property for distributive lattices was given by M. H. 

Stone [15, Theorem-IS, Page-741], which is known as Stone' separation 

theorem. 

Theorem 2.2.7. Let L be a distributive lattice, let I be an ideal, 

let D be a dual ideal of L, and let 1 n D = 0 , then there exists a prime 
EA 

ideal P of L such that P D I and P n D = 0 . U 

Following result is an improvement of above theorem which is due 

to [31, Theorem 2.2.3] 

Theorem 2.2.8. Let L be a distributive lattice , let I be an ideal, 

.01 let D be a convex sublattice of L and let I n D = , then there exists 

a prime ideal P of L such that P D land P n D = . U 

Now we give a separation property for distributive lattices in terms 

of prime n-ideals which is of course an extension of Stone's separation 

theorem. It should be mentioned that this result has also been obtained by 

Latif and Noor in [53] . Here we include a separate proof of it is much 

more simpler than that of [53]. 



Theorem 2.2.9. In a distributive lattice L, suppose I is an n- 

ideal and D is a convex sub/attice of L with I n D = . Then there 

exists aprime idea/P of L such that P D I and P n D = 

Proof : Since I n D = , so either (I] n D = D or 

[i) n D = t. if (i] n D = I, then by Theorem 2.2.8 , there exists a 

prime ideal P D I such that P n D = c1 . Similarly if [ i) n D = 

then there exists a prime filter Q Q  [/) such that Q n D = 1 . But 

by Lemma 2.2.5 and Lemma 2.2.6 both P and Q are prime n-ideals. 

Corollary 2.2.10. Every n-ideal I of a distributive lattice L is the 

intersection of all prime n-ideals containing it. 

Proof: Let I = n { P : P D I, P is a prime n-ideal of L }. 

if I # I I , then there is an element a E I I 
 
- I . Then by above 

corollary , there is a prime n-ideal P with P I , a 0 P . But 

a o P D I , gives a contradiction. 

For an n-ideal I of a distributive lattice L, the congruence ® (i) 

has been studied in [61] and [30]. By [61], xy®(I) if and only if 

X A = y A il and X V 2 = Y V 12 for some 

E I . Moreover ®(i) is the smallest congruence of L 

containing I as a class . In chapter 2 of [30], Latif has proved the 

following result: 

Theorem 2.2.11.: Let L be a distributive lattice. Then for any two 

n-ideals I and J of L 

®(i (Th i)= ®(I)n 

®(i v j)= 0(I)v ®(i) 
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Moreover the correspondence I —f 0 (i) is an embedding from 

I 7  (L ) to C (L) 

Theorem 2.2.12. For a neutral element n of a lattice L, 

I 17  (L ) C (L) if and only if F,7  (L ) is generalized Boolean. 

For an n-ideal I of a distributive lattice L, Latif has also studied the 

congruence R (I) in [61] . By [61], the relation R (I) defined by 

y R (I) if and only if for any t L, in (x, n, t) E I is 

equivalent to in (y, n, t) E I " is the largest congruence of L 

containing I as a class . With the help of this congruence we will provide 

the following characterization of prime n-ideals of a distributive lattice 

This result is due to [ Ayub's Thesis]. We prefer to include its proof for 

the convenience of the readers. 

Ir- 

Theorem 2.2.13. Let L be a distributive lattice and n E L . An 

n-ideal P is prime of and only if the quotient lattice L / R (P) is a two 

element chain. 

Proof: Suppose P is prime . Let x, y E L - P . Then for any 

t E L, in (x, n, t)E P implies t e P. Since 

t A n :!~ in (y, n, t):!~ tv n, so by convexity of P, 

in (y, n, r)E P . Therefore x y R (P). Moreover, let 

r x R () for some x E L - P . Then in (r, n, x ) o P as 

in (x, n, x = x o P .Thisimplies r 0 P. For otherwise, 

r A n m (r, n x) :!~ r v n would imply that 

in (r, ii. x ) e P by convexity of P and that is a contradiction . Thus L 

Ir 
/ R (P) is a two element chain {P, L-P} 
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Conversely, suppose L / R (P) is a two-element chain. Then L-P is 

a congruence class of the congruence R (P) . If P is not prime, then there 

exists x, y E L - P such that in (x. n.y )E P .SinceL-Pisa 

congruence class, so x y R (P ). Thus 

in (x, n, y ) P implies m (y, n, y ) = y E P which is a 

contradiction . Therefore P must be prime. U 

For any n-ideal J of a distributive lattice L, we define 
-71 

J + = { x c L : in (x, n, j) = n for all j E J }. Obviously, 

.1 is an n-ideal and I n I + = { n }. We call J as the annihilator 

n-ideal of J. 

It is well known from [15, Theorem 22, Page 76] that a 

distributive lattice with 0 is generalized Boolean if and only if the set of 

prime ideals is unordered. We conclude the chapter with a nice 

generalization of that result which is due to [30, Theorem 2.2.9]; also see 

[49] . Hence we prefer to include a new proof of (i) = (iii), as it is much 

easier than that of [30] 

Theorem 2.2.14. Let L be a distributive lattice and n E L 

Then the fbi/owing conditions are equivalent 

- (i) F , (L) is generalized Boo/can, 

For each principal n-ideal 

<x > , < x > v < x > 17 = L, where 

<x>17 ={yEL in (x, n,y)=n 

The set ofprime n-ideals P (L) is unordered by set inclusion. 
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Proof : (i) (ii) and (iii) (i) follows from [30, Theorem 

2.2.9]. 

(i) (iii). Suppose (i) holds. Then by Theorem 2.1.5, the intervals [x, n] 

and [n, y] are complemented for each x, y e L with x :5 n :~ y 

Let P and Q be any two prime n-ideals of L . Then by Theorem 2.2.4, P 

and Q are either prime ideals or prime filters of L . If one of them is a 

prime ideal and the other is a prime filter, then of course they are 

unordered. If both P and Q are prime ideals, then p .] and 

Q n [n, y] are prime ideals of [n, y] 

Since [n, y] is a complemented lattice, so by [15, Theorem 22, Page 76], 

p 
, ] and Q r- y J are unordered. Therefore P and Q are 

unordered. If P, Q are filters , then using the same argument we find that 

p n 117 ,  y] and Q n [n, y] are unordered . Thus P and Q are unordered 

and this establishes (iii). 

Bangwfth 



-p- 

Ir 



Chapter-3 

Principal n-ideals which form normal Lattices 

Introduction 

Normal lattice have been studied by several author including 

Cornish [9] and Monteiro [39] ,[31],while n-normal lattices have been 

studied by Cornish [11] and Devey [13]. On the other hand Cignoli in [8] 

and [91 introduced the notion of k-normal and k-completely normal 

lattice. Again Chan and Gratzer in [7] and [8] studied the constructions 

and the structures of Stone lattices. 

A distributive lattice L with 0 is called normal if each prime ideal 

of L contains a unique minimal prime ideal. Equivalently, L is called 

normal if each prime filter of L is contained in a unique ultrafilter 

(maximal and proper) of L. 

Minimal prime ideals in distributive lattice have been studied 

extensively by many authors including [1], [7], [8], [9], [21], [28], [58], 

and [59]. 

Recently, [6] , [8] introduced the concept of minimal prime n-ideal 

in lattices and generalized several results of minimal prime ideals. 
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In this chapter we study the minimal prime n-ideals and generalized some 

of the results on minimal prime ideals. Then we used these results to 

generalized several important results on normal lattices in terms of n-

ideals. 

A Prime n-ideal P is said to be a minimal Prime n-ideal belonging 

to n-ideal I if, 

JçP, and 

There exists no prime n-ideal Q such that Q # P and 

IcOcP. 

A prime n-ideal P of L is called a minimal prime n-ideal if there 

exists no prime n-ideal Q such that Q # P and Q c P. Then a minimal 

prime n-ideal is a minimal prime n-ideal belonging to {n}. 

For any n-ideal J of L, we have already defined in chapter 1 that 

* = {x e I, : in (x, ii, j) = n for all j E 

Observe that J 
* 

is an n-ideal and J n J * = {n} 

In fact, this is the largest n-ideal which annihilates J. Latif in [30] 

called this an annihilator n-ideal of J. We prefer to call this as the 

pseudocomplement of J in P, (L) . Moreover, for a distributive lattice L, 

F, (L) . is a distributive algebraic lattice and so it is 

pseudocomplemented. Observe that I, (L) . has always the smallest 

element viz. {n}. 

We shall call two prime n-ideals P and Q of L comaximal if 

PvQ=L. 
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In section 1. we have studied minimal prime n-ideals of L. There 

Ir we have given some characterizations of minimal prime n-ideals. Also 

see [43]. These results give nice generalizations of several results on 

minimal prime ideals which will be used to prove some important results 

in section 2. 

In section 2, we have given several characterizations of those 

P (L) which are normal lattices in terms of n-ideals. Then we have 

proved that P, (L) is normal if and only if each prime n-ideal contains, a 

unique minimal prime n-ideal. 
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1.Minimal prime n-ideals 

Recall that a prime n-ideal P is a minimal prime n-ideal belonging to an 

n-ideal 

I if 

I c Pand 

There exists no prime n-ideal Q such that Q P and 

IQP. 

Following theorem is a generalization of [15, Lemma 4, Page 169]. 

Lemma 3.1.1 Let L be a lattice with an element n. Then 

eveiy prime n-ideal contains a minimal prime n-ideal. 

Proof: Let P be a prime n-ideal of L and let 
,' 

denotes the set 

of all prime n-ideals Q contained in P. Then 
, 

is not void, since 

P E X . If C is a chain in 
,' 

and Q - n (x : X E C) , then Q is 

nonvoid because n E Q and  Q is an n-ideal, in fact, Q is prime. 

Indeed, if in (a, n, b ) E X for some a, b E L 

then in (a, n, b ) E X for all X E C . Since X is prime, either 

a E X or b e X Thus, either Q = n (x : a E x) or 

Q = n (x : b e X ), proving that a E Q or b E Q . Therefore, 

we can apply to 
,' 

the dual form of Zorn's lemma to conclude the 

existence of a minimal member of 
,. 

F,  
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Now we give a characterization of minimal prime n-ideals of a 

distributive lattice L, when P (L) is sectionally pseudocomplemented. 

In order to do this, we need the following lemmas: 

Lemma 3.1.2 Let L be a distributive lattice and ii E L. Then for 

any [a, b ] E F,7  (L ) and for any n-ideal I. 

(I n [a, b] ) 
* n [a, b] = I * n [a, hj 

Proof:Since [a, b]n I I soR.H.S c L.H.S. Toprove 

the reverse inclusion , let X E L. H. S. Then a :!~ x b and 

m (x, n, I) = n for all I E [a, b] n I. Since x E [a, b], so 

in (x, n, i) E [a, b] n I for all I E I . Thus 

in (x, n, in (x, n, i)) = n. But it can be easily seen that 

in (x, n, in (x , n, i))= m (x , n, 

This implies in (x , n, i) = n for all I e I . Hence. X e R.H.S. 

Lemma 3.1.3 Suppose L is a distributive lattice, and 

c, d c a, b in F1 (L) 

then, (i) [c, d] + = [c d] * n [a, b] and 

r 
dj = [c, d] 

** 
n [a, b] 

Proof: (i) is trivial . For (ii) using (i) we have 

[c, dj ++ = (c, dj +) 
* 
n [a, b] = (c, d] 

* 

n [a, h]) 
* 

n [a, h] 
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1 r 
Thus, by Lemma 3.1.2, [c, d] ++ 1 = ,c, dj 

** 
n [a, b] . 

Sf 

Now we give the following characterization of minimal prime 

n-ideals. (Also see [43]). 

Theorem 3.1.4 Let P (L) be a sectionally pseudocomplemented 

distributive lattice, and P be a prime n-ideal of L Then the fbi/owing 

condition are equivalent. 

P is minimal 

X € P implies < x > P 

x € P implies <x> ç  P 

P n D (<t>,7 = 0)forallt L—P; 

Where D (<t>)= {<> ,1 :<x> ={n} 

Which is due to [43]. 

Proof : (i) = (ii) Suppose P is minimal . If (ii) fails, then there 

exists x E P such that <x > c P. Since P is a prime n-ideal . So by 

theorem 3.2.4, 

it P is a prime ideal or a prime dual ideal. Suppose P is a prime ideal . Let 

D = (L - P ) v [x) We claim that n 0 D . If n € D 

then 11 = q A x for some q € L - P 
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Then<q>n<x>,7 =<(qAx)v(qAn)v(xAn)>={n} 

I 
implies < q > , c < x > c P . Thus q E P , which is a 

contradiction. 

Hence n o D . Then by Stones separation theorem for n-ideals 

[53, Lemma 1.3], there exists a prime n-ideal Q with  Q n D = cIi. Then 

Q c P as Q n (L - P ) = ct and Q # P since x 0 Q . But 

this contradicts the minimality of P. Hence, < x > c P 

Similarly, we can prove that < x > c P if P is prime dual ideal 

= (iii). Suppose (ii) holds and x E P . Then < x > , * P 

Since < x > f7 
* 

n 
** 

< x > = { n } g  P, P is prime, so 

P 

= (iv). Suppose (iii) holds and t E L - P. Let 

x E P n D (< t > , ). Then x E P , x E D (< i > , ) . Thus 

< x > = { n } and so < x > + + = < t > By (iii), 
17 

x e \ 
n 

** 
P implies. 'x c P . Also by \ I -  

Lemma3.1.3Jx\ \ In ' In

** f-.'  

** 
Hence < x > n < t > n  = < t > , , and 
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so < t > 
,, c < x > 

, 

** 

c P . That is, t E P 
1• 

which is a contradiction. Therefore, P n D (< t > , ) = D for 

alltEL — P. 

(iv) = (i), Suppose P is not minimal . Then there exists a prime 

Since < x > n n < x > 
= { n } c Q , so 17 

<x> 7 cQcP,Thus,<X>,7  v <x>ç P. 

Choose any t L - P . Then 

< t > n (< x >, v < x >)c p  .Now 

<t >tl n(<X>n 
v<x>*)=(<t>,, n<x>17)v(<t>, n<x>,i*) 

=<m(t, n,  x > , v ((< t > , r) < X > 17 r) < t > 17 

(by Lemma 3.1.2) 

= < m (t, n, v (< m (t, n, x Y,  n < t >,) 

= < in (t, n, v < rn (t, n, 17 

[by Lemma 3.1.3] where < in (t, n, x )> n  is the relative 

pseudocomplement of < rn (t, n, x )> , in (t) 

Since P,, (L) is sectionally pseudocomplemented, so 

< in (t, n, x)> is a principal n-ideal and so by [33, Lemma 

3.41, < ni (t, n, X > v < in (t, n, x)> isaprincipal 



n-ideal contained < t > , . Therefore, 

n, x)>v <m(t, n, x)>=<r> 

for some r E < t > , Moreover, 

<r > = < m (t, n, n <m (t, n, = { n 

Thus r E P r D ( < t > n which is a contradiction. 

Therefore P must be minimal. 

7 
KUE-r 

Ban 
* 

* 

34 
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2. Lattices whose principal n-ideals form normal 

Lattices 

Recall that a distributive lattice L with 0 is called a normal lattice if 

its every prime ideal contains a unique minimal prime ideal. Following 

result is due to [9. Theorem, 2.4,] which gives a characterization of 

normal lattices. 

Theorem 3.2.1. For a distributive lattice L with 0, the 

following conditions are equivalent. 

Any two distinct minimal prime ideals are comaxiinal. 

L is normal. 

For any x,y E L,(xAy]*(x]*v(yl*. 

For any x, y E L with x A y =0 implies (x] 
* 

v (y] '= L. 

Moreover, when L has a largest element 1, then each of the above 

conditions is equivalent to for any x, y e L, x A y = 0 implies x 1  , y1  E L 

such that xAx1 =O=yAy1 andx 1  vy1  =1 U 

By theorem 2.1.2, We know that (n]" A [it) , so we have the 

following result 

Theorem 3. 2. 2 For a distributive lattice L with 

n EL, F,7 (L) is normal if and only if (n] t and [n) are normal. U 

A distributive lattice L with 0 is called a generalized Stone lattice if for 

Ir 1 1* 1 1** 
each xEL, xj vxj =  L. 
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By katrinak [16, Lemma 8, P-134,] we know that L is generalized Stone 

if and only if [0, x] is a Stone sub lattice for each x E L. 

Moreover by [9, Theorem 5.6] we know that a distributive lattice L with 

0 is generalized Stone if and only if it is normal and. 

pseudocomplemented The following result is trival by 2.1.2 

Corollary 3.2.3. Suppose F, (L) is a sectionally 

seudocomplementeci distributive lattice, then F, (L) is generalized stone if 

and only if (n] is dual generalized stone and [n) is generalized stone. • 
Following results are needed to prove the main results of this section. 

These are due to [9, Theorem 2.4,] 

Lemma 3.2.4. If L 1  is a sublattice of a lattice L and P,  is a 

prime ideal in L1 , then there exist a prime ideal P in L such that 

P1 =L1 nP. . 
Lemma 3.2.5 Let L1  be a sublattice of a lattice L . For every 

(ininimal)Prime ideal I- of L, there exist a (minimaD prime ideal P of L 

such that P,  = P n L and conversely. 

Lemma 3.2.6. Suppose L is a distributive lattice and n E L. 

Let x, y E L with (x) , n (y) n = {n}. Then the JIiowing conditions are 

equivalent 

i) (x)v(y)L 

\' + ForanytEL, (m(x,n, t) v(m(y,n,t)) =(t) ,, I fl 17 

where (m (x, n, t)) denotes the relatively psuedocomplement 

Ir (m(x,n,t)) , in [{n}, (t) j 
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Proof:- (i) =(ii) 

Suppose (i)holds. Then for any teL, using Lemma 3.1.3, 

(m(x,n,t)) v 

= ( (t)) + ((Y)n n (t)) + 

= (( (x) n(t))*n(t) flv (((y) fl n(t) fl  )* fl(t)) 

= ((( X)  n (t) ) (y) n (t) j by (Lemma 3.1.2) 

= ((x)*n ) 
=Ln(t) 

=(t) 

(ii) = (i), Suppose (ii) holds and t e L. By (ii), 

(m(x,n,t)) v (m(y,n,t = (t), , then by 
'I n 

Calculation of (i) = (ii), we have 

((X)*n V (): )n (t) = (t) 

This implies , c v (y)  and so (t)  

te Kx)*  v 

I ' 

Therefore, (x \
* 

\ v 
I 

= L. 
\ In n 
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Theorem 3.2.7 Let L be a distributive lattice and n e L. The 

If following conditions are equivalent. 

1,) F , (L ) is normal. 

iij) Every prime n-ideal of L contains a unique minimal prime 

n-ideal. 

iii) For any two minimal prime n-ideals P and Q of L, 

PvQ=L. 

Proof: (i) =(ii) 

Let F,,(L) be normal since F,7  (L) (n] d 
A [n) so both (nj d and 

[n) are normal. 

Suppose P is any prime n-ideal of L. Then by theorem 2.2.2, either 

P D (n] or, P D [n). without loss of generality suppose P D (,zj Then by 

Theorem 2.2.4, 

P is Prime ideal of L. Hence by Lemma 3.2.4 Pj = P n [) is a prime 

ideal of 

Since [) is normal, so by [Theorem 3.2.1 1 1 contains a unique minimal 

Prime ideal R1  of [) . Therefore P contains a unique minimal prime ideal 

R of L where R1  = R n Since n E R1  so n E R and hence R is a 

minimal prime n-ideal of L. 

Thus (ii) holds 

(ii) =(i) Suppose (ii) holds 

Let F be a prime ideal in [n). Then by [Lemma3.2.4 I P = P n {n) 

for some prime ideal P of L. Since n E P 1  c P , so P is prime 

n-ideal. 

Therefore P contains a unique minimal prime n-ideal R of L. Thus by 
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[Lemma 3.2.4 ] J contains the unique minimal prime ideal R1  = R n {,) 
I 

of Hence by [2 1 [) is normal. Similarly, we can prove that (,] " is 

also normal. Since F,, (L) (ii] x {,) , so F,,(L) is normal 

(ii) = (iii) is trival. 

By 2.1.3, we have the following interesting result when n is a central 

element of L. 

Theorem 3.2.8 Let L be a distributive Lattice and n E L be 

central in it . Then the fbi/owing conditions are equivalent. 

P,,(L) is a normal lattice 

I,, (L) is a normal lattice 

En (L) is a normal lattice 

Thus we have the following result. 

Theorem 3.2.9 Let L be a distributive lattice and n E L be 

central in it. The following condition are equivalent. 

ri) En (L) is a normal lattice 

Eveiy prime n-ideals of L contains a minimal prime n-ideal. 

For any two minimal prime n-ideals P and Q of L 

PvQ=L. • 
For a prime ideal P of a distributive lattice L with 0, Cornish in [7] has 

defined 0 (P)= { XE L : X A y = 0 for some y E L -  p}. Clearly 

0 (P) is an ideal and 0 (P)c P . Cornish in [7] has shown that 0 (P) is 

the intersection of all the minimal prime ideals of L which are contained 

in P. 
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For a prime n-ideal P of a distributive lattice L, we write 

n(P)= y EL : in (y, n, n for some xe L - }. Clearly, n(P)is 

an n-ideal and n(P)cP 

Lemma 3. 2. 10. Let P be a prime n-ideal in a distributive 

lattice L. 

Then each minimal prime n-ideal belonging to n(P) is contained in P. 

Proof: Let Q be a minimal prime n-ideal belonging to ii(P). 

If Q T P, then choose y E Q - P. By Theorem 2.2.4, we know that Q is 

either an ideal or a filter. Without less of generality suppose Q is an ideal. 

Now let S = { s € L: in (y, n, s) E n () }. We shall show that s Q. 

If not, let D = (L 
- Q) v  y).  Then n(P) n D = & For otherwise, 

y A r E n(P) for some r E L 
- Q. Then by convexity, 

y Ar m(y,n,r):5 (y A r)v n implies m(y,n,r)E n(P) 

Hence E S Q. which is a contradiction. Thus, by Stone's separation 

theorem for n-ideals, there exists a prime n-ideal R Containing n(P) 

disjoint to D. Then R Q. 

Moreover, R # Q as y o R, this shows that Q is not a minimal 

prime n-ideal belonging to n () which is a contradiction. 

Therefore, S Q. Hence there exists z 0 Q such that 

m(y,n,z)e n(P) 

Thus in (n (y, n, z), n, x ) = n for some x E L - P. It is easy to see 

that 
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m(m(y, n, z),n, x)= m(m(y, n, x), n, z) 

Hence, m (m (y, n, n, z ) = ii . Since P is Prime and y, x P, 

so in (y, n, x ) o P. Therefore, z E n (P ) c Q, which is a 

contradiction. 

Hence Qc:P. 

Proposition 3.2.11. If P is a prime n-ideal in a distributive 

lattice L, then n(P) is the intersection of all-minimal prime n-ideals 

contained in P. 

Proof: Clearly n (P) is contained in any prime n-ideal which is 

contained in P. Hence n (P) is contained in the intersection of all minimal 

prime n-ideal contained in P. 

Since L is distributive so by Corollary 2.2.10, n(P) is the 

intersection of all minimal prime n-ideals belonging to it. 

By Lemma 3.1.1, as each prime n-ideal contained a minimal prime 

n-ideal, above remarks and Lemma 3.2.10 establish the proposition. U 

Theorem 3.2.12, Let L be a distributive lattice and n e L. Then 

the fbi/owing condition are equivalent, 

i,) F (L) is normal. 

iij) Every prime n-ideal contains a unique minimal prime 

n-ideal 

For each prime n-ideal P, n(P) is a prime n-ideal 

For all x. y E L. (x),1  fl (y) = {n} implies that 



* * 

v = L. \ In 

1 
v) For all x, y e L, (/ ) 

* * 

x (m/y\ (x)*n 
 V(Y). \ )n in   

Proof:- (i) (ii) holds by Theorem 3.2.7. 

=> (iii) is a direct consequence of proposition 3.2.10. 

= (iv). Suppose (iii) holds. Consider x,y E L. with 

(x) , n (y) , = {n}. If (x) v (y) # L, 

Then by theorem 2.2.9, there exists a prime n-ideal P such that 

(x) v (y) , 
p , then Kx) c P , and (y)  ç P, imply 

x n (P) and y o n (P). 

But n(P) is prime and so m (x, n, n E n(P) in contradictory. 

Therefore, (x) v (y) = L 

= (v) obviously (x) 
n*  v (y) n* , 

ç ((x) n  n (y) n 
)* 

Conversely, let w E (x) , n (y)  j 
* 

Then (w) 
, 

r (x) n y) 
, 

= {n}. 

That is, Km  (w, n, x)) n y) n = {n} 

Thus (iv), (m (w, n, x)) v (y) = L 

\ * / * 

So, w Km(w, n, x)' v (y\ 
In \ In 

Therefore, w v n E (m (w, n, x)) v (y) 

Then by theorem 2.1 .12 
\' * 

ly w v n = r v s for some r E (m (w, n, x 
'In 

42 
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and S E (Y)II 
 * with 

Now r E (m (w, n, x))*  implies 

A [(WA n)v (WA x) v (x A n)]v (r A n)v 

[(wAn)v(xAn)v(wAX)]An=n. 

That is, (rAwAn)v(rAwAx)v(rAxAn)v(rAn)v(wAn)v(xAn)=n 

lir 

or, (wAn)v(rAwAx)v(xAn)vnv(wAn)v(xAn)n. 

or, (r A W A x) v n = n. 

or,(rvn)A(wvn)A(xvn) = n. 

or, (rvn)A(xvn)n.as rvn:!~Wvfl. 

or,(r A x)v n = n. 

or, (r Ax)v(xAn)v(r A n)=n. 

or, m(r,n,x)=n. 

Which implies r (x) 
*n  

Therefore w v n € /
\* v çy) 

* 

A dual proof of above, shows that W A fl E (x) v (v) 

So by Convexity, w E (x) v (y) 

Therefore, ((X) n  n () J 
* 

(x) V y) , and so 
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((x) n  n(y) ,, (x)  11  v  (y) n ,which is (v). 

(v) =(iv) Let Kx) , n (y) , 
= {n}, for some x, y E L. 

by (v), L ={n}*  =((x) n(y) ,)* =(x) v(y) . 

fri 

Thus (iv) holds. (iv) =(i) Consider [n). Let x, y E {n) with X A V = ii. 

Then (x) n  n (y) = {n}. Thus, by (iv), (x)*  v = L. 

This implies [n )=< x>; v < y >*)fl[n) 

(<> 
 17  ,

* [n  ))v<y>*  n [ n )=<x>,7  v<y> 

Notice that both (x) and (y) n  are ideal in [) and !\ + 
, y) \/ ' + are 

annihilator ideals of and (y),  respectively in This implies by 

[Cornish, Theorem 2.4] that [n) is a normal lattice. A dual proof of above 

shows that [n) d  is also a normal lattice. Therefore F 1(L) is also normal 

as F,, (L) (n] A [n) . 

We conclude this chapter with the following result, when n is a central 

element which follows immediately from the above result and 

theorem 2.1,3 

Theorem 3.2.13. Let n be a central element of a distributive 

lattice L. 

Then following conditions are equivalent 

P(L) isa normal 

For all x, y E L, (X) fl (y) = { n} implies that 

-r 
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x *v(y)*=L. 

/ 

f , \ 

/ 

(iii) For all x,y eL, ((X),,ry I = 
)

*

n 
v(y)

*
. • 

\ I  

ir 

hill 

KUT 

14 



vp 

'If 
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Chapter-4 

Finitely generated n-ideals, which form 

relatively normal lattices. 

Introduction 

Relative annihilators in lattices and semilattices have been studied 

by many authors including Mandelker [38 ] and Varlet [60 ]. Cornish 

in [9] has used the annihilators in studying relative normal lattices. 

Recently Noor & Ayub in [ 45  ] have introduced the notion of relative 

annihilators around a fixed element n e L known as relative 

n-annihilators. In this chapter we intend to generalize several results on 

relatively normal lattices by using the relations n-annihilators. 

Fora,beL, <a, b>={xEL :xAa:!~b}isknown 

as annihilator of a relative to b, or simply a relative annihilator. It is 

very easy to see that in presence of distributivity, <a, b> is an ideal of 

L. 

Again for a, b EL we define <a, b >j= {x : xv a ~! b}, which we 

call a dual annihilator of a relative to b, or simply a relative 

dual annihilator. In presence of distributivity of L, <a, b > is a dual 

ideal (filter). 
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For a, b E L and a fixed element n E L, we define 

ii 

<a, b >"= {x EL: 117 (a, n, x)E <b >,}= {x EL: b A fl :!~ m(a, n, x):!~ h v n} 

We call <a, b> " the annihilator of a relative to b around the element 

n or simply a relative n- annihilator. It is easy to see that for all 

a, h E L, <a, b> ' is always a convex subset containing n. In 

presence of distributivity, it can be easily seen that <a, h >' is an 

n-ideal. For two n-ideals A and B of a lattice L, <A, B>  denotes 

{x E L : in (a, n, x) E B} for all a e Al. In presence of distributivity, 

clearly <A, B>  is an n-ideal. Moreover, we can easily show that 

Imp 
<a, b>"= <<a>175  <b>,7 >. 

<a, b>'1 =<<a>,7 , <b>,7 >. 

Recall that a distributive lattice with 0 is a normal lattice if its 

every prime ideal contains a unique minimal prime ideal. A distributive 

lattice L is called a relatively normal lattice if its every interval [a, b] is 

normal. 

In section 1 of this chapter we have included several 

characterizations of <a, b> '. If 0 E L, then putting n = 0 the n-ideals 

become ideals and <a, b> 11= 
< a, b>. So the results of this section 

generalize several results on annihilators in [38]. 
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In section 2 we characterize those F (L) which are relatively 

normal in terms of n-ideals and relative n- annihilators. These results are 

certainly generalizations of several results on relatively normal lattices. 

At the end we show that for a central element n, P (L) is relatively 

normal if and only if any two incomparable prime n-ideals of L are 

comaximal. 

1r 
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1. Relative annihilators around a neutral 
I 

element of a lattice. 

We start the following result due to [45], which gives a characterization 

of<a, b>'1  

Theorem 4.1.1. Let L be a lattice with a neutral element n in 

it. Then Jbr all a, b E L, the following conditions are equivalent.• 

(i) <a, b>" is an n-ideal , 

(i i) <a A n, b A n> d  is filter and 

(iii) <aAn, bvn> is an ideal. 

The following result is also due to [45 ] 

Theorem 4.1.2 Let L be a lattice with a neutral element n 

For all a, b E L the fbi/owing hold.• 

(i) <a A n, b V n >d  is an ideal if and only if [i') is a 

distributive sub lattice of L: 

- (i i) <a A n, b A n >j is a filter if and only if (n] is a 

distributive sub lattice of L . 

By theorem 2.1.3, we know that for a central element n E L, 

P (L) ( n} d  x [n), where (n] d  denotes the dual of the lattice (n] 

Thus by Theorem 4.1.1, and above result we have the following result. 

1 
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Theorem 4.1.3. Let be a lattice and n E L be neutral. Then 

for all a, h L, <a, b >11  is an n-ideal if and only if P,. (L) is 

distributive. 

Now by [30], we know that L is distributive if and only if P, (L) 

is distributive. Therefore, we have the following corollary which is a 

generalization of[38, Theorem 11 

Corollary 4.1.4. For all a, b E L and for a central element 

n E L, <a, b>' is an n-ideal if and only ifL is distributive. U 

Following result also generalizes [38, Theorem 1] which is due to [45] 

Theorem 4.1.5. Let n be a neutral element a lattice L. Then 

the following conditions are equivalent: 

L is distributive; 

<avn, b v n > is an ideal and <at.n, bAn> 1  isa 

filter whenever < a > n  D < b > 

Theorem 4.1.6. Let n be a central element of a lattice L. Then 

the f011owing conditions are equivalent: 

(i) P,. (L) is modular; 

Fora, bELwith <b> c<a>, xe<b>,7 and 

yE<a, h>'1  imply xy, xvy <a, b>" 

Proof: (i) = (i i). Suppose P,, (L) is modular. Then by theorem 

2.1.3, (n] and [n) are modular. Here <b >, c <a >. 

SoaAn:~bAn!~n:!~bvn:!~avn.SincexE< b>,7, 
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So, b A 11 :~ x :5 b v n. Hence, 

aAn:!~bAn:~-'-xAn:5xvnbvn:5avn. Now, 

y e<a, b >11  implies in (y,  n, a)E <b > 7  Then by the 

neutrality of n, (y v a )A (y v n ) A (a v n ) :!~ b v n, and so 

((y v a ) A (y v n ) A (a v n))v n = (y v n ) A (a v n):!~ b v n. 

Thus, using the modularity of [n), 

in(xvyvn, n,a)=(xvyvn)A(avn) 

= [(a v n ) A (y v n)]v (x v n),as x v n :~ b v n :!~ a v n 

This implies m(xvyvn,n,a):~:,bvn, and so x v y v n 

Since n is neutral, so a A ii :!!~ b A ii :~ x A n implies that 

b A fl :!~ (x A n)v (y A n)v (a A n)= ((x v y)A n)v (a An) 

= rn((xv y)A n,n,a) b v n. 

Therefore, (x v y) A ii E< a, b >'. Hence by the convexity of 

<a, b > ', x v y E< a, b > '. Again using the modularity of (nj, 

a dual proof of above shows that x A y E< a, b > 

Conversely, suppose (ii) holds. Let x, y. z E [n ) with x :!~ z. 

Then x v (y A z ) :!~ z . This implies <xv (y A z)> c< z 

Now x :!~ x v (y A Z) implies x E< x v (y A Z ) > , 

,0 
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Again y A Z x v (y A z) implies 

m(y,n,z)=yAzE< XV(yAZ)> Hence 

y E< z, x V (y A . Thus by (ii), xvyE<z,xv(yA:)>' 

That is, (x V y ) A Z :!~ x v (y A Z) and so 

(x v y)A z = x v (y A z). 

I 
Therefore, [n) is modular. 

Similarly, using the condition (ii) we can easily show that (n] is 

also modular. Hence by theorem 2.1.3, P, (L) is modular. 

By [49, Theorem 3.2] , we know that a lattice L is modular if and only if 

the lattice of all n-ideals In  (L  ) is modular. Following their proof if can be 

easily seen that L is modular if and only if P, (L) is modular. Hence we 

have the following result which generalizes [38, Theorem 2]. 

Corollary 4.1.7 Let n be a central element of a lattice L. Then 

the following conditions are equivalent: 

(1) L is modular; 

-41 (ii) For a, b E L with <b > < a > ,, x < b > and 

ye<a,b>" implies xy, xvyE<a, b>'1 U 

We conclude the section with the following characterization of 

minimal prime n-ideals belonging to an n-ideal. Since the proof of this is 

almost similar to Theorem 3.1.4, we omit the proof. 
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Theorem 4.1.8. Let L be a distributive lattice and P be a prime 

1' n-ideal of L. belonging to an n-ideal J. Then the following conditions are 

equivalent.' 

P is minimal belonging to J; 

xEP implies <<x>,, J >P 

-1 

'30- 
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2. Some characterizations of those F (L) 

which are relatively normal lattices. 

We start this section with the following result which is a 

generalization of [9, lemma 3.6]. This plays an important role in proving 

our main result in this section. 

Theorem 4.2.1. Let L he a distributive lattice. Then the fbi/owing 

hold 

(i) \\ In  
v Ky) ,(x),7 ) =  ((Y) n'W n ); 

V  

((X) n ,i) = yEJ ((X)n'(YQ' the suprernum 

of n-ideals (Kx ) n , (y ),) in the lattice of n-ideals of L, for any x E L 

and any n-ideals J. 

Proof: (i) L. H. S. c R. H. S. is obvious. Let t R. H. S, then 

t e ((Y)II 
,(x),7 ).This implies m (y , n t) c / J1

. That is 

(m (y, i, t)) c (\ 
n 

and so ((y),,  n (A 
n ) v n (t)) c (x) 

' I - \ I 

That is, (t) n [(x) v (y) n  I C--  \ In 
which implies 

t 
n n\ I E((X) vKv) , n!

. Thus t R. H.S.andso(i)holds.(ii)R.H.S. 

c L. H. S. is obvious. Let t E L. H. 5, then in (x,n,t)E J that is 

in (x,n,t) = j for somej €fThis 
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implies t ((x  ),? (I ), ). Thus t c= R. H. S and so (ii) holds x e P 
-r 

implies <<x>, J >P U 

Following lemma will be needed for further development of this 

chapter. This is in fact, the dual of [9, Lemma 3.6] and is very easy to 

prove. So we prefer to omit the proof. 

Lemma 4.2.2. Let L be a distributive lattice. Then the 
-1 

fbllowing hold. 

(i) (x A y, X)d = (y, x)d; 

ix). F) 
/ 

= 
V 

(x, y),. where F is a filter of L 
y E F 

{(x,a) j  v (y.a), }n [a.h] 

= kX'a)d n [a,b] Iv t (y,a), n [a,b] 

Lemma 4.2.3 and Lemma 4.2.4 are essential for the proof of our main 

result of this section. There lemmas are due to [45]. We include only the 

proofs of Lemma 4.2.3 for the convenience of the reader. 

Lemma 4.2.3, Let L be a distributive lattice with n 1, Suppose 

a, b, c E L. 

If a, b, c ~! n, then ((m (a, n, b)) n  , (c) ,') 

= ((a) n' K) n) v ((b) , (c) ,) is equivalent to 

(a A b, c) = (a, c) v (b, C); 

If a, b, c:!~n then KUO 



((M (a,n,b)), /c In! \ 
= 1(a) 

1? 
, (c) 

fl 
> v ((< b),) (c),) \  

is equivalent to (a v b,c > d  = (a, c)d  V (b, C)). 

Proof: (i) Suppose a, b, c ~: n and 

((a) 17  n (b), (c))= ((a), (c))v ((b), )- 

-11 Let x Cz (a A b, c). Then xAaAb 

(x)n(aAb),7  =(x)n[n, aAb]=[n,(xvn)A(aAb)] 

= [n,(x A a A b)v n]c [n,c] 

Hence XE ((a A b)11  , (c))= ((m (a,n,b)),(c)) 

= ((a%, (c))v ((b), (c)). Thus xpvq, 

where p E ((a) , (c) ), q E ((b ) , (c) \ 
fl / 

Then (p ), n ( a ) c (c ). That is 

[p A n,P V n] [n,a]c [n,c],Thus, 

if 
[n ' (p v n )A a ] c {n, c] which implies 

A a :!~ candso p E (a, c) Similarly, qE(b,c) andso 

x (a,c)v (b,C) .Hence(a A b,c)c (a,c)v (b,C) 

But (a, c) V (b, c) c (a A b, c) is obvious. Therefore, 

WIR 
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(a A b , C) = (a, c ) v (b, c) . Conversely, suppose 

(a A b,c)= (a,c)v (b, c) 

Letxc  On (a,n,b)%,~c% 

Then(x)n(m(a,n,b)),7  =[xAn, xvn]n[n,aAb]c[n,c]. 

That is (x v n ) A (a A b )] c In, c I 

Thus In, (x A a A b )v n I In, c] which implies 

A a A b :!~ c, and so x EE (a A b, c) = (a, c) v (b, c) 

This implies x = r v s, where r E (a, c) and s E (b, c). 

Then r A a :!~c and s A b :!~ c. 

Now (r),, n (a) = [r A n, r v n]n [n,a]= [n,(r v n)A a] 

= [n, (r A a)v n]c [n,c]= (c). 

Hencer E< < a > 17 , < C > 17 
 > .Similarly, 

S E K(b) ,(c) ). Thus XE ((a) , (c),,  ) v ((b),, (C), / and so 

(~M (a, n, b ))11 . ~~a )n ' (On ) V ((b%, (c), ) - fl / - 

Since ((a) 
 n '(On ) v ((b)n'(On  ) g K(m(a,n,b)%'(On ) is 

obvious, so K(M (a, n,  b ))n'(C)n ) = ((a)n'(On ) V ((b )n '(On ) 

Dual calculation of above proof proves (ii) 0 

57 
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XE P implies <<x >,, J > P 

Lemma 4.2.4. Let L be a distributive lattice with n E L , Suppose 

a, b, c, E L. 

Fora,b,c ~: n, 

<<c>17,<a> v<b>>=<<c>,<a>>v<<c>,,, <b>> 

is equivalent to <c , a v b > = <c , a > v <c , b > 

Fora,b,c ~ n , (<c  >n , <a  >n  v <b>,,) 

= <<C  > . <a > > 
v <<c  > , <b > > 

is equivalent to 

<c,a A b>d = <c,a)d v <c,b)d . 

Following result on Stone lattice is well known due to [15, 

Theorem 3, Page-161] and [9, Theorem 2.4] 

A distributive lattice L with 1 is called a dual normal lattice of LCI 

is a normal lattice. In otherwords a distributive lattice L with I is called 

dual normal if every prime filter of L is contained in a unique ultrafilter 

(maximal and proper) of L. 

In fact, this condition in a lattice is self-dual. Thus for a bounded 

distributive lattice, the concept of normality and dual normality coincides. 

Following the technique of the proof of [9, Theorem 2.4], we can 

similarly prove the following result, which gives some characterization of 

dual normal lattices. These results are in fact the dual result of Theorem 

3.2.1. 

Theorem 4.2.5. Let L be a distributive lattice with 1. Then the 

Jbilowing conditions are equivalent. 
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L is normal; 

Each prime filter of L is contained in a uniq lie ultraflirer 

('maximal and proper) ; 

For each x, y e L, [x v y) 
* '' 

= [x) d  v [y) 
* 

\ \ 
If xvy=1, x,yEL, Then Ix)*d 

 VI
I 
 Y)

*j 
=L 

Corollary 4.2.6. L be a bounded distributive lattice. Then the 

following conditions are equivalent. 

L is normal 

For each x,yEL, (xAy]*= (x ]* v (yj* 

IfxAy=O, Then (x]*v(y]*=L 

r 

Ar 
(iv) For  each x,yEL,[xvy)*d=[x)*dv[y) 

r 
(v) If x v y = 1, then [x) v

r
y) =L. 

Recall that a distributive lattice L is relatively normal if each 

interval [x, y] with x <y (x, y e L) is a normal lattice. 

Since for a bounded distributive lattice the concept of normality 

and dual normality coincides, so the concept of relative normality is self-

dual in any distributive lattice. 

Now we prove the following result whose technique of proof is 

dual to 

[9, Theorem 3.7] . This will be used to prove our main result of this 

chapter. 
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Theorem 4.2.7. Let L be a distributive lattice. Let a, b, c E L be 

arbitraiy elements and A, B arbitrary filters. Then the following are 

equivalent: 

"i) L is relatively normal 

Ka,b)d  v (b,a) 1  = L; 

(c,a A b)d = (c,a) 1  V (c,b)d; 

<[c), AvB>d =<[c) , A>d v<[c), B>d 

(a v b,c)d = (a, c), v (b,c),. 

Proof: (i) = (ii). Let z E L be arbitrary. Consider the interval 

ii = [z, a v b v z] . Then a v b v z is the largest element of I. Since by (i), 

1 is a distributive lattice, so by Theorem 4.2.6 (v), there exist 

r, S (=- I such that a v s = a v b v z = b v z v r and 

z = S A r. Now, a v s ~! b implies s E (a , b and 

b v r = b v z v r = a v b v z ~! a implies r E Kb, a)d. Hence (ii) 

holds. (ii) =(iii). In (iii), R. H. S c L. H. S. is obvious; Let 

E (c, a A b), , then z v c ~! a A b. Since (ii) holds, so 

z = x A y, where x E (a,b)d and y E (b,a)d. Then x v a ~! b and 

y v b ~! a.Thus, xvcxvzvc~!xv(aAb) (xva)A(xvb)~!h, 

which implies x E (c.b)d. 
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Similarly, y E (c, a)d  .Hence z = x A y E (C, a), v (c, b)d, 
If 

andso (c,aAb)d g (c,d \ (c,b)d. 

Since the reverse inclusion is obvious, so (iii) holds. 

=> (iv) follows from Lemma 4.2.2 (ii), 

= (iii) is trivial 

(iii) = (ii) follows from Lemma 4.2.2 (i) by putting c = a A b. 

(ii) = (v) Let z E (a v b, c )d•  Then by (ii) z = X A y, 

where x v a ~: b and y v b ~! a . Also 

xv a = xv a v b ~! z v a v b ~! c. This implies x E (a,c)(/ . 

Similarly, y E <b , c Id . It follows that 

(a v b,c)d D (a,c)d v (b,c)d. Since the reverse inequality is 

obvious, so (v) holds. 

(v)(i).LetxE[a,b]1 a<b.Let{x)={tE[a,b],tvxh, 

then largest element of [a, b] }. It is easy to see that 

Fx) +'/ =(x,b\(I  n[a,b]. /  

Now,suppose x, y E [a,b] with x v y = b, thenby(v), 

[x)" v)' = ((x, b  )d  n [a,b])v ((y,b), n [a, b] ) 

= (xb)d v (y,b)d)n  [a,b] (by Lemma 4.2.2 (iii)) 

=(xvy,b)1n[a,b] 
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= (b,b)d n [a,b]= L n [a,b]= [a,bj 

Hence by Theorem 4.2.6, [a,b] is normal and so L is a relatively normal 

lattice. 

Now we prove our main results of this chapter, which are 

generalizations, of[9, Theorem 3.7] and [38, Theorem 5] . These give 

characterizations of those F (L) and P,, (L)which are relatively normal 

in terms of n-ideals. 

Theorem 4.2.8. Let F (L) be distributive lattice and A and B 

he two n-ideals of L, Then for all a, b, c E L, the following conditions are 

equivalent. F,, (L) is relatively normal. 

~\a In \ 
 ,/b In / \\v '

\In \
b , 1a 

In / 
\= L; 

((On
,(a)

n 
 v Kb),7 )= ((On

,(a%)V  ((On
, (b )n ) ; 

((c  )n . A v B) = ((C %, A)v ((e ),, , B) 

((M (a , n, b ))n  4)  n ) 
((a)

n4% )  V  ((b ),4)n ) 

Proof: (i) = (ii). Let z L, consider the interval 

I = { (a) n (b) n (z) ,(z),7 J in F,7  (L). Then (a) n(b),7  n(z),7  is the 

smallest element of the interval I. 

By (i), I is normal, then by Theorem 3.2.1, there exists finitely generated 

n-ideals [p, q] , [r, s] I such that. (a )n c (z ),, n [p. q ] 

=(a) n(b) n (z) 
n n n 



= Kb),, nKz) [I.s] and <>=[p, q]v[r,s] 
l.A 

Now, <a> n[p,q]=<a>n[p,qJn<z> 

=<a> n<b>,7  n<z> c<b>, implies 

[p,q] <<a> ,<b>,7 >. Also 

< b >n  n[r,s]=<b>,7  n<z> n[r,s] 

=<a> n<b>,7  n<z> < a  >n  implies 

[r,s}<<b>,7  ,<a>,7>.Thus /z /n ~(a),,(b)n )v \ 

andso z ~(ax ,(b),)v (Kb),Ka),1) In 

Hence ~~a%  1b In ! 
~~b)nv '\ I "a \n/ = L. 

'\  

(ii) = (iii). Suppose (ii) holds. For (iii), R. H. S. c L. H. S. is obvious. 

Now, let z E ((C)n ,  (a  ) V (b)) 

Then z v n E ((C  ) , (a) v (b )), and so 

m(zvn, n,c)E[aAbAn,avbvn]. 

That is, (z v n)A(c v a v b v n. 

Nowby (ii), z v n E ((a ) 
 n  (b )n ) V K(b  )n , (a )) 

So z v n :!~ (p v n ) v (q v n) for some 

pv n G ((a )n  , (b )
n 

) and qVnE<<b>,<a>,7> 
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Hence,z v n = ((z v n)A (P v n))v ((z v n)A (q v n))= r v s (say) 

Now, in (p v n , n , a )=(p v n )A (a vn ):!~ b v n. So 

(b A r A (a v n):!~ b v n. 

Hence, rA(cvn)_— rA(zvn)A(cvn):!~rA(avbvn) 

= (r A (a v n))v (r A (b v n)) b v n. 

If This implies r e ((C > n , <b > n ), similarly, 

s E c) ,(a)) \\ 

Hence z v n E ~(C  ) , (a) ) v ((c % , (b) ). 

Again z E ((C  ), , (a) V (b )) implies 

Z A fl E ~(C ) , (a )n v (b ) ) Then a dual calculation 

of above shows that z A fl E ((C ) , (a) ) v K(c) , (b Q 

Thus by convexity, z E ((On
, (a) ) v ((On,  (b) ) and so (iii) holds. 

(iii) =(iv). Suppose (iii) holds. In (iv), R. H. S. c L. H. S is obvious. 

Now let x E A v B) . Then x v n E ((C  ) fl , A v B) 

Thusrn(xv n, n,c)E A v B. 

Now in (x v n, n,c)= (x v n)A (n v n implies 

Ir 
in (x v n, n , c ) E (A v B ) n [n) Hence by 



Theorem 4.2.1 (ii), x V n t((c), (A n [,i )) v (B n [, ))) 

=r 

v 

E= (A n [n ) v (B n [n )))<<C  > <1> >. 

But by Theorem 2.1.12, r e (A m [n )) v (B ) En)) implies 

r = s v t for some s E A, t B and s, t ~: n. 

Theyby(iii),(c),(r)) = K(C )n ' (S v t )n ) 

= \\ /n ,Ks) v /t \ in / 

= K(c) ,(s),)v K(C  )n ' Q )n ) 

c K~C  >n 
, A ) v (<C  >n 

, B ) - 

Hence xv n E /(c) ,  A ) v  ( KC  % , B ) -  \ 

Also x E ((C ) n 1 A v B ) implies x A n E ((C ),, A v B). 

Sincem(xA n, n,c)= (xA n ) v (nA c):!~ n, 

SoxAnE<< c>,7 ,(AvB)n(n]> 

Then by Theorem 4.2.1 (ii), 

xA 11 C >,,, (A (Th (] )v (B n (n] 

V 

(A (n] )v(Bn(n] 
)<<C> n 9 <t > n> 
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Using Theorem 2.1.12 again, we se that t = p A q where 

p E A, q E B, p,q :!~ n. Then by (iii), 

((c  ) , I \ n / 
\ 

= ((C ) , (p A q  ),, ) \ I  

= ((c  )n ' (P ) V (q)) 

= ~~c \I n (p) )v ((c) ,(q)) 

(Kc ). , A ) v ((c  )n  , B ) 

Hence x A n E ((c % ') A ) v ((c )n ' B). Thereforeby 

Convexity, x E ((c ), A ) v ((c )n , B ). and so (iv) holds. 

(iv) = (iii) trivial. (ii) = (v). In (v) R. H. S. c L. H. S. is obvious. Let 

Z E L.H. S. Then z E (KM (a , n , b ))17  , (c ), ), whichimplies 

z V fl E ((M (a , n , b )), , (C ) ). By (ii), 

z V n E \ ~(b ,(a \\ /'\ In! \ in \ In/
. 

 

Then by Theorem 2.1.12, z v n = x v y for some 

x E ((a)n , (b),, ) and y c ((b )n,(a)n ) and x, y 

Thus, (x) n (a) c (b), and so 

n (a) = (x),1  n (a), n (z v n),7  n (a),,  n (b),, 

= (z v n) n (in (a , n, b )) c (C)n . This implies 
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x c K(a ), , c ), ) Similarly y (=- \\ In  /b \ , <c > ), 

and so z v n E ((a) ,(c) )v ((b )
n ' (C )n ) 

Similarly, a dual calculation of above shows that 

Z A n (=- In , c) ) v K(b) , (c ) ). \\  

Thus byconvexity, z E ((a )n '(C )n )  V  ((b )n'(C ), ) 

and so (v) holds. (v) = (i). 

Suppose (v) holds, Let a, b, c ~! n. By (v), 

KKM (a,n,b)),7 , Kc )) 

= ((a )
n ' (C  ) n ) V ((b),/c\ n / 

\ 
\ I  

But by Lemma 4.2.3 (i), this is equivalent to 

(a A b,c) = (a,c)v (b, c) 

Then by [9, Theorem 3.7], this shows that [n) is a relatively normal 

lattice. 

Similarly, for a, b, c :!~ n, using the Lemma 4.2.3 (ii) 

and Theorem 4.2.7, we find that (n] is relatively normal. 

Therefore F (L) is relatively normal by Theorem 2.1.2. 

Finally we need to prove (iii) = (i). Suppose (iii) holds. Let a, b, c E 

By (iii), K(c) n , (a),? v \ I  17 ! ~(C)n'(0)n = ) v ((c) n  (h),1) 
\ 
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But by Lemma 4.2.4(i), this is equivalent to (c, a v b) = (c, a) v Kc, b) 

which says by [9, Theorem 3.7] [n) is relatively normal. 

Similarly for a, b, c :!~ n, using the Lemma 4.2.4 (ii) and Theorem 4.2.7, 

we find that (ii] is relatively normal. Hence by 2.1.2, F(L) is relatively 

normal. 

Following result is due to [9, Lemma 3.4]. 

Theorem 4.2.9 A lattice is relatively normal if and only if any 

two incomparable prime ideals are comaximal. U 

Now we generalized the above result. 

Theorem 4.2.10 Let F (L) be a distributive lattice. Then the 

following conditions are equivalent: 

F (L) is relatively normal. 

Any two incomparable prime n-ideals P and Q are 

comaximal, that is P v Q = L. 

Proof :- Suppose (i) holds. Let P, Q be two incomparable prime 

n-ideals of L. Then there exist a, b e L such that a E P 
- 

Q and 

bEQ_P.Then(a),7 P—Q, (b)cQ — P. 

Since F,(L) is relatively normal, so by Theorem 4.2.8. 

((a) , (b) ) v (b ), , (a ), > = L. But as P, Q are prime, so it is 

easy to see that, ((a),, ,  (b)
,1/ - \ Q and ((b) 

,1 
, (a) 

fl ) - 

Therefore L c P v Q and so P v Q = L. That is, (ii) holds. 
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Conversely, suppose (ii) holds. Let P1  and Q be two incomparable 

prime ideals of [ii). Then by Lemma 3.2.4 there exist incomparable prime 

ideals P and Q of L such that p = p i-  {) and Q = () r [n). Since 

n € P1  and n E Qi' so by Lemma 2.2.5, P, Q are in fact two incomparable 

prime n-ideals of L. Then by (ii), P v Q = L. Therefore, 

v Q1 =(P v Q)n[n)= {n). Thus by [9, Theorem 3.5], [) is relatively 

normal. 
1' 

Similarly, considering two prime filters of (nj and proceeding as 

above and using the dual result of [9, Theorem 3.51 we find that (] is 

relatively normal. Therefore by Theorem 2.1.2, F(L) is relatively 

normal. 

We already mentioned that P (L) = F (L) when n is a central 

element of L. So we conclude the chapter with the following nice and 

interesting result. 

Corollary 4.2.11 Let n be a central element of a distributive 

lattice L. Then the following conditions are equivalent. 

P, (L) is a relatively normal lattice 

Forail a,b,cEL 

<<a>17  ,<b>17 >v<<b> ,<a>,,>=L 

For all a, b, c E L 

<<c>,7 9 <a>,7  v<b>,,><<c>,7  ,<a>,,> 

v<<c>,,,<b>,,>. 
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(iv) Any two incomparable prime n-ideals P and Q are 

comaxirnal; that is P v Q = L 

-r 



Q 

-Y,  

®r 

'-W 

-r 



Chapter- 5 
If 

Characterization of finitely generated n-ideals 

which form sectionally and relatively rn-normal 

lattice. 

Introduction 
1' 

Lee in [36] also see Lakser [29] has determined the lattice of all 

equational subclasses of the class of all pseudocomplemented distributive 

lattices. They are given by B_1  c BO  c: - - - c: B, c - - - c: B 0 , where 

all the inclusions are proper and B 0  is the class of all 

pseudocomplemented distributive lattices, B_1  consists of all one element 

algebra, B0  is the variety of Boolean algebras while B,17 , for - I :!~ in <w 

consists of all algebras satisfying the equation 

II 

(x1  AX7  A ---- AX,) vv AX7  A --- AX 1  AX 

A -----A X,,7) = I where x 
* denotes the pseudocomplemented of 

x. Thus B1  consists of all Stone algebras. 

He also generalized Gratzer and Schmidt's theorem by proving that 

for - 1 :!~ m <w the mth variety consists of all lattices such that each 

prime ideal contains at most m minimal prime ideals. 
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Beazer [3] and Davey [13] have each independently obtained 

several characterizations of (sectionally) B111  and relatively B11  lattices. 

Moreover, Gratzer and Lakser in [18] and [19] have obtained some 

results on this topic. 

On the other hand Cornish [9] have studied the lattices analogues 

to B111  and relatively B111  lattices known as rn-normal and relatively rn-

normal lattices. 

A distributive lattice L with 0 is called rn-normal, if each prime 

ideal of L contains at most rn-minimal prime ideals A distributive lattice 

L is called relatively rn-normal if each interval [0, x] is rn-normal. 

Recall that a family of ideals of a lattice L is comaximal if their 

join is L. Similarly a family of n-ideals of a lattice L is comaximal if their 

join is L. 

In section 1 we will study finitely generated n-ideals which form a 

(sectionally) rn-normal lattice. We will include several characterizations 

which generalize several results of[10], [13], [3] and [18]. We shall show 

that F (L) is rn-normal if and only if for any x,.  x2,---- 11  E 11., with 

in , n, x1 ) = n implies <X0  > v - - - - v <x,,1  > = L, 

which is also equivalent to the condition that for any m + I distinct 

minimal prime n-ideals P0  ,------- Pm  

of L, P0  v — — — — — — — — — vP, =L. 
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In section 2 we will study those F,, (L) which are relatively m-

normal . Here we will include a number of characterizations of those 

F,, (L) which give generalizations of results on relatively rn-normal 

lattices given in [10], and [13], We show that F,, (L) is relatively m-

normal if and only if any m + 1 pairwise incomparable prime n-ideals are 

comaximal. 

-r 

FA- 
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1. Lattices whose J (L) form rn-normal lattices 

The following result is due to [13, Lemma 2.2]. This follows from the 

corresponding result for commutative semigroups due to Kist [28]. 

Lemma 5.1.1. Let M be a prime ideal containing an ideal J. 

Then M is a minimal prime ideal belonging to J if and only if fbr all 

x E M, there exists x' 0 Iv! such that x A x' E I . U 

Now we generalize this result for n-ideals. 

Lemma 5.1.2. Let M be a prime n-ideal containing an n-ideal 

J. Then M is a minimal prime n-ideal belonging to J if and only i/jbr all 

x E M there exists x' M such that m (x, n, x') € I. 

Proof: Let M be a minimal prime n-ideal belonging to J and 

x E M. Then by Theorem 4.1.8, <<a >, I > M. So there exists x' 

with in(x, ii, x') E J. such that x'M. 

Conversely, suppose x M, then there exists x'o M such that 

m(x,n,x')EJ. This implies x'M, but x'E<<x>,7 , I>, that is 

n j > z. M. Hence by Theorem 4.1.8. M is a minimal prime 

n-ideals belonging to J. 

WA 
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1 Davey in [13, Corollary 2.3] used the following result in proving 

several equivalent conditions on B1  lattices. On the other hand, Cornish 

in [10] has used this result in studying n-normal lattice. 

Proposition 5.1.3. Let M0  , ------------- , M1  

be n + I distinct minimal prime ideals. Then there ex/st 

a0 ,-----, a, E L such that ai  A a1 E J (i  and 

a1 M1 j 0,-----n . 

The following result is a generalization of above result in terms of 

n-ideals. 

Proposition 5.1.4. Let M0 , -------------------------------- , M11 

be m + I distinct minimal prime n-ideals. Then there exist 

a0 ,— - --, a, E L such that ma1, n, a1)E J(i .1) and 

a 1 M(j=0,-----,n). 

Proof: For n = 1. Let x0  c= M1  —M0  and 

x1 E M0  - M 1  . Then by Lemma 5.1.1, there exists xc o M0  such 

that m(x1 , n, x) E J. Hence a1  = x1 , a0  = m (x0, n, xc) 

are the required elements. 

Observe that in (a0 , n, a1 )=m(m(x0 , n, xi), n, x1 ) 

=(x0  A x1 A xc)v(xo A n)v(x1  An)v(xl An) 

=(x0 Arn(x1 , n, x))v(x0 An)v(m(x1 , ii, x)An) 

= in (x0, n, m (x1 , n, xi')) 

Now m(x1 , n, xc)A n~m(x0, n, m(x1 , n. xc)) 

~ m (x1, ii, xc ) v n and in (xi, n, xl ) e J, so by convexity 
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Ir (ii) For any ideals J1  ,- - --, J, in L such that J, n J c I. fr any 

i # j, there exists k such that k 

J is the intersection of at most n - 1 distinct Prime ideals. 

Our next result is a generalization of above result. This result will 

be needed in proving the next theorem which is the main result of this 

section. In fact, the following lemma is very useful in s studying those 

Ir i (L) which are m-normal. 

Lemma 5.1.6. Let J be an n-ideal in a lattice L . For a given 

positive integer m ~! 2, the following conditions are equivalent.• 

For any x1 , x2  ,- - --, x, c= L with 

m n, x j ) E J (that is, they are pairwise in J) Jhr 

any i#j, there exists k such that xk EJ; 

For an n-ideals J1 ,- - - - - - -, J, in L such that 

n c J for any i # j, there exists k such that 

k 1; 

('iii) J is the intersection of at most m - 1 distinct prime n-ideals. 

Proof: (i) and (ii) are easily seen to be equivalent. (iii) => (i) 

• Suppose P1 , P2  ,- - 
-- k are k (i :!~ k rn - 1) distinct prime —n- 

ideals such that J = P1  n - - - - n Let 

x1 , x2 ,-----, xrn  E L be such that m n, x1) E I jbr all 

i # j. Suppose no element x 
1' 
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is a member of J. Then for each r (i r < k) there is at most one 

i (1 :!~ i m) such that x, E P,. . Since k < m, there is some i such 

thatx1  E P1  (Th P2  n----fl p 

(i) = (iii). Suppose (i) holds for n = 2, then it implies that J is a 

prime n-ideal. Then (iii) is trivially true. Thus we may assume that there 

is a largest integer t < m such that the condition (i) does not hold for J 

(consequently condition (i) holds for t + 1, t + 2, -------m). For some 

t < rn, we may suppose that there exist elements 

a1 , a2,— - --,a, E L such that m (ai , 11, aJ )E J for 

2,---,t yet a1 , a2,----,a, J. 

As L is a distributive lattice, <<a, >,, J> is an n-ideal for any 

I E {i, 2, -----,t}. Each <<a1  >,, J> is in fact a prime n-ideal. Firstly 

<<a >,, I> # L, since a1  o J . Secondly, suppose that band care 

in L and m(b, n, c) <<a, >,, J> . Consider the set of t+l 

elements 

a7 ,— - -, a1_1 , m (b, n, a1 ), rn (c, n, as ), a 1  ,- - -, a1 
 
I. 

This set is pairwise in J and so, either ni (b, n, a1 ) e J or 

in (c, n, a1 ) E J since condition (i) holds for t + 1 
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That is, b E <<a1  >,, J> or c E <<a1  >,, J> and so 

<<a1  >,, J> is prime. 

Clearly, J c n <<a1  >,, J> . If WE fl <<a1  >,, J> 
15 i5 t I:~i:5i 

Then w, a1 , a2........., a, are pairwise in J and so w e J. Hence 

J= fl <<c >, J> is the intersection oft < m prime n-ideals. 
/i~1 

An ideal J # L satisfying the equivalent conditions of Lemma 

5.1.5 is called an m-prime ideal. 

Similarly, an n-ideal J :t- L satisfying the equivalent conditions of 

Lemma 5.1.6 is called an rn-prime n-ideal. 

Now we generalize a result of Davey in [13, Proposition 3.1 ]. 

Theorem 5.1.7. Let J be an n-ideal of a distributive lattice L 

Then the following conditions are equivalent: 

(i) For an rn + I distinct prime n-ideals P0 , P1  ........., 

belonging to I, P0  v P v ........v P,, = L; 

(ii) Every prime n-ideal containing J contains at most in distinct 

minimal prime n-ideals belonging to J; 

If a0, a1 .................., a 1  E L with Irl 

in (ai, n, a) E I j) then 
KUET 

V <<a> J > = L. 

Proof: (i) => (ii) is obvious. (ii) => (iii) 

Assume a0 , a1  ........, a, = L with m (ai , n, a1 ) E I 
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and v <<ai >,, J > # L. It follows that a1  0 J, for allj . Then 

by theorem 2.2.9 there exists a prime n-ideal P such that 

v <<a1 J > c P. But by theorem 2.2.4, we know that P is either a 

prime ideal or a prime filter. Suppose P is a prime ideal 

For eachj, let F1  = Ix A y : x ~!a1, x, y ~! ii, y 0 P 

'V 
Let x1  Ay1, x2  Ay2 E F.I.  

(x1  A y1)A(x2 A Y2) = (x1  A x2 ) A(y1 A Y2) - 

Now x1  A x2  ~! a1  and Yi A  Y2 = rn (Yi'  n,  Y2) 

So t~!xAy implies t=(tvx)A(tvy). 

Since yP ,so tvyP. Hence teE1, and so F.I. isadual ideal. We 

now show that F1  n J = 0, for all j = 0 , 1. ........ rn . If not, let 

beF1  nJ,then b=xAy, x~a1, x, y n, yP. 

Hence rn a1, n, y) =(a1  A n) v n v A y) = a1  A y) v n = a1  v n) A (y v 

But (aj  v n)A (y v n)e F1  and n :!~ (a j  A n :!~ b implies 

m(a1,n,y)ei. 

Therefore, m (a., , n, F1  n J. Again m (a j  , n, J with y 0 P 

implies <<a'  >,, J > T=  P, which is a contradiction. 

'V 
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V 
Hence F1  n J = 0 for allj. For each j, let P1  be a minimal prime n- 

ideals belonging toi and F1  nP1 =0 .Let yeP1  . If yP1, then 

yvnP.Then m(a1,n,yvn) =(a j  vn)A (yvn)EF1. 

But rn(a,,n, yvn) E<yvn>,1  <y>,7  P1,whichisa 

if 
contradiction. So y E P. 

Therefore P1  P, and a1  P1  . For if a1  EP1  ,then a1  vnEP1. 

Now, a1  v n = (a j  v n)A (aj v n v y)e F1  for any y o P. This implies 

F nF1 #0 ,whichisacontradiction.So a1  0 P1  

But in n, a1 )E J c P1  (i:# J) which implies ai  E P1  (i ~ 

as P1  is prime. It follows that P1  form a set of m + I distinct minimal 

prime n-ideals belonging to J and contained in P. 

This contradicts (ii) . Therefore v <<a1  >,, J > = L. 

Similarly, if P is filter, then a dual proof of above also shows that a 

v <<a1  >,, J > = L,and hence (iii) holds. 
.1 

(iii) = (i) Let P0 , P1  ............ rn  be m + 1 distinct minimal 

prime n-ideals belonging to J. Then by proposition 5.1.4. there exist 
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1 
(i :# , j = 0, l  ............. m, j = 0, 1  ...................... m 

(x0] * V (x1] * v . v (x,,,] 
* 
= L 

For each prime ideal P. 0 (P) is m + 1 prime; 

L is rn-normal lattice. I 

Recall that for a prime n-ideal P of a distributive lattice L, we write 

n (p)= { y E LI m (y, n, x) = n for some x E L - P}. Clearly n (p) is an 

n-ideal and n (P) c: P. 

Our next result is a nice extension of above result in terms of 

n-ideals. 
-91 

Theorem 5.1.9. Let L be a distributive lattice. Then the 

following Conditions are equivalent.• 

For any m + 1 distinct minimal prime n-ideals 

P0  P1  ........ P 7 ;P0 vP1 v .......VPm  =L; 

Every prime n-ideal contains at most rn-minimal prime n- 

ideals; 

For any a0  a1  ........ a, eLwith m(a j  n,a1)=n,(i#j) 

1=0. ..........  in.j=O ........... rn 

+ * 

<a0 >+  v<a1 >,7  v ................ v<a,,,>,7  =L; 

(iv) For each prime n-ideal P. n (P) is an m + 1 prime n-ideal. 
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Proof: (i) = (ii), (ii) = (iii), and (iii) = (i), easily hold by 

theorem 5.1.7 replacing J by {n}. To complete the proof we need to show 

that (iv) = (iii) and (ii) = (iv). 

(iv) = (iii). Suppose (iv) holds and x0  x1  ........x,,7  are in + I elements 

of L such that m (x1  n, x1  n for (i # 

Suppose that <x0  > v > v ..........v <x, > # L. Then by 

Theorem 2.2.9 there is a prime n-ideal P such that 

<0> v<x1> V ..........V<x,,, > c:P 

Hence x0  x...........x,,, cz L - n (P). This contradicts (iv) by Lemma 

5.1.6, since m(x1 ,n,x 1 )=n EE n (P) for all i#j. 

Thus (iii) holds. (ii) = (iv). 

This follows immediately from Proposition 3.2.10 and Lemma 5.1.6 

above. U Following result is due to [8]. 

Proposition 5.1.10. Let L be a distributive lattice with 0. if 

the equivalent conditions of Theorem 5.1.8 hold, then for any in + 1 

elements 

1* / 1* 
X0,X1 ..... (XO AX1 A ... ,] = V IXj AX1 AX, 1  A .... AX,,,] 

O:~/ :5n 

U 

Proposition 5.1.11. Let L be a distributive lattice and n E L. 

If the equivalent conditions of Theorem 5.1.9 hold then Jbr any m + 1 

elements 

x0 ,x1  .............. X111  ; (<x0  >,, n <x1  >, ....n<x,,, >) * = v 
O!~-i!~- 17 

'p1  

Ip 
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(<x0  > fl. fl <x_1  > n  fl <x1+1  >, fl.... (Th < x,,7  >) * 

r 
Proof: Let 

<bi  > = <Xo > fl ......  fl < X1_1 > fl < X1 > fl ..... fl < X > n  for each 

O:!~i:!~m. 

Suppose x (-= (< x0  >? n ...... n < x,, >,) 
* 

. Then 

< X > n  fl<x0  > fl ......  fl<X > ={n}. Forall i#j; 

(<x> <b1 >17 )n(<x> n<b >,, ={n}. 

So (<x> n<b0  >) + v ................ v<x> n <b,?, >) =L. 

Thus xE(<x>n<b0 >)v ................. 

Hence by theorem 2.1.2, x v n = a0  v .....................v a, where 

a1 E(<x>,1 n<b>,1)anda1 ~!n,foriO, I ........................ rn. 

Then xvn=(a0 A(xvn))v ....................... v (a n, A(xvn)). 

Now a E (< x >, n <b1  >) + implies 

Then by a routine calculation we find that (cii  A X A b1 ) v n = n. 

Thus, <a1  A (x v n) > n <b > = (a A X A b1 ) v n} = {n} implies 

that a• A(x vn)E<b1 > and so xvnE<b0 >v......v<b,,,>.11  

-r By a dual proof of above, we can easily show that 
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xAne<b0 > v . v<b,,,> . Thus by convexity, 

x <<b0 > v .......v <b,,, > . This proves that 

L.H.S.ç R.H.S. 

The reverse inclusion is trivia! . U 

'V 

Theorem 5.1.12. For a distributive lattice L, if F,1  (L) is 

distributive then the following conditions are equivalent. 

F,1  (L) is rn-normal lattice. 

Every prime n-ideal contains at most m minimal prime n-

ideals. 

For any rn+1 distinct minimal prime n-ideals P0 , P i  

Pm ; 

P0 vP,v .......... VFL. 

Proof: (i) = (ii). Let F,, (L) be rn-normal. 

Since F,, (L) (n] 'x [n) , so both (d] d  and [) are rn-norma! 

Suppose P is any prime n-ideal of L .Then by Theorem 2.2.3, 

either 

p (n] or P [n) .Without loss of generality suppose P (n] 

Then by Theorem 2.2.4 , P is a prime ideal of L .Hence by Lemma 

3.2.4, 

= P n {n) is a prime idea! of [n) . Since [n) is rn-norma! , so 

by Theorem 3.2 .1, P i  contains at most m minimal prime ideals R1 , 

,R,,, of [n). 
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Therefore P contains m minimal prime ideals Q .............,Q1  of L 

where R. = Q1 n [,i) .Since n E R, so n Q1 and hence Qi,... 

,Qm are minimal prime n-ideals of L .Thus (ii) holds . (ii) (i) 

Suppose (ii) holds . Let P1  be a prime ideal in [) . Then by Lemma 3.2.4 

= P n [,) for some prime ideal P of L. Since n E P g P. so P is a 

prime n-ideal. Therefore by (ii) P contains at most m minimal prime 

ideals Q1 .........., Q,. Thus by Lemma 3.2.4, P1  contains at most m 

minimal prime ideals R ........, R,,1  of [n) such that . R1 = Q1 n {n). 

Hence by theorem 5. 1 .8 [n) is rn-normal 

Similarly we can prove that (] d  is also rn-normal. Since 

F, (L) (n] ' x so F,, (L) is rn-normal. 

(ii) (iii) has already been prime in Theorem 5.1.9 

We already know that when n is a central element in L, then 

P,, (L) = F,, (L) .Thus we have the following interesting characterization 

of them P,, (L) which are rn-normal. 

Theorem 5.1.13 : Let n be a central element of distributive lattice 

L. Then the following conditions have equivalent. 

P,, (L) is rn-normal 

For any rn + I distinct minimal prime n-ideals 

P)  . ....... P,,,;P0 vP1 v ...... 

Every prime n-ideal contains at most m minimal prime 

n-ideals, 



(iv) For any a0  , a1 ., a, E Lwith 

m(a 1 n,a)=n,(i#j) i=0,1.............  I M 

j=O,1....... 

(v) For each prime n-ideal P. n (F) is an m +1 prime n-ideal. 

88 
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2. Generalizations of some results on 

relatively rn-normal lattice 

Several characterization on relative B,,  lattices have been given by 

Davey in [13]. Also Cornish have studied these lattices in [10] under the 

name of relatively n-normal lattices. 

Recall that a lattice L is relatively rn-normal lattice if its every interval 

[a, b] (a, b E L a <b) is a rn-normal lattice. 

Following result gives some characterizations of F (L), which are 

relatively rn-normal lattices which is a generalization of [13, Theorem 

3.4]. 

Theorem 5.2.1. Let L be a distributive lattice with n E L. Then 

the following conditions are equivalent: 

F (L) is relatively in-normal 

For all x0 ......................, E L 

<<X1>11 fl<X2> 7 fl ..........  fl<Xm>n, > 17  

v<<xo >n n<x2 >n n ..........  fl<X m >n, <X1>,1 > 

v.......v <<x0  >, n <x1  >, n ....... n < x,, 1  >,, <x, >, > = L; 

Forall x0 , x1  ...................  ,x, z L, 

<<xo > fl n<xI > n n ........  n<xln > fl , <z>fl > 

= <<xI  >n  (Th ........ fl<Xrn >, <Z>> 
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V <<X0 >11   <X7 >17  fl .......... (Th<X m >n <Z>,,> 
r 

V .V <<X0  >, fl <x1  >, fl........ fl<X 1  >,,, <Z>11  

(iv) For any m + 1 pairwise incomparable prime n-ideals 

P0 , P1 ................ rn, P0 v ........... vP,=L 

(v) Any prime n-ideal contains at most m mutually 

incomparable prime n-ideals. 

Proof: (i) = (ii) . Let z E L , consider the interval 

i=[<x0 >n<x1 >n ................. 

in F,7 (L) . Then<x0  >, n<x1  > J7  ñ .............  fl<x,,, >, n<z>,1  

is the smallest element of the interval I .For 0 :!~ i -< in , the set of 

element <t, > =<x0  >, fl<x1  >,., (- ...............  fl<x, >, fl<x, 1  >, 

n <X,,, >, n <z >, are obviously pairwise disjoint in the 

interval I . Since I is rn-normal . Then by Theorem 5.1.8, 

<t0 >0  v ................. v <t, >0 = < z > . So by Theorem 2.1.12, 

z v n = Po v ............................v P. where p ~! n . Thus, 

<P0 >17 fl<tO  >fl =<PO  > /7  fl<t1  > = .........  =<p,fl >12  fl<tfll  >11 

= The smallest element of I 

= <x0  >, (Th<X1  >, fl ...................fl<X,, >, fl<z>,7 



Now, 

>fl<t0  > = <X0  > fl<X1 > fl. fl<X>n  fl<Z> 

which implies < PO >, n < to >, c <x0 > . Again 

> (Th<t >, =< PO  >, fl<X1 >, fl .............  fl<x, >, fl<z>fl  

> r)  < XI > fl .................... < Xm >, ,as 

<Po >n 9 <z> . This implies 

,<PO>fl fl<XI>n fl •••••••••••••••• n<x,>c<x0 >andso 

<PU > p  E<<X1  >fl<X2 >n  fl .............fl<X m  > ,<X 0  >> 

<PI>n E<<X0  >fl<X2 >n  fl .............  fl<X m  > 9 <X1 >> 

<Pm >, E<<C0  >, fl<x j  >, fl ..............(Th<X,_1  > ,<X >n > 

Therefor, zvnc<<x1 >n<x2  >,n ..........  n<x, > ,<x0 >> 

v<<xo  >n  fl<X7  > fl ............... (Th<X, >,, ,<X1  > 

V .............. V<<X0 >fl<X1>fl ......... 

By a dual proof of above we can easily show that 

zvnç<<x1 > fl<X2  > fl ...............  fl<X m  > ,<X 0  >> 

91 
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V<<X0 >fl<X2>(Th • fl<X m >n ,<XI> n > 

V  ..............  V<<X0>fl<X1>fl  ......... (Th<Xm_I>n,<Xm>n>. 

Hence by convexity, 

ZE<<X1>fl<X2>(Th ......................... fl<x,7,>,7  ,<x0 >, > 

V<<X0>fl<X2>fl .........................  (Th<X rn >n  ,<X 1 > > 

If V .............. V<<XØ>fl<X1>fl ......... 

This implies (ii) holds. 

(ii) (iii). Suppose 

bE <<X0>fl <X1 >fl........(Th<Xm>n, <Z>>. 

Then by 

(ii) and Theorem 2.1.12, b v n = so v s1  v .........v s,,, for some 

SO<<XI>n fl<X2>n fl .......... fl<X m >n, <X0>> 

S1 E <<XØ > <X2 > fl ..........  fl<Xrn >j , <X1 >> 

S m  E<X0  > (Th <X1  > (Th ........  fl<Xm_1 >' <Xm  >>. 

and s~!n,i=O,1 ........... ,m. 

Thus <x1  >, n <x2  > n.......... fl<Xm > (Th <S0 > 9<X0 >, 

<X0>fl<X2>1' .......... fl<Xm>nfl<SI>nc<X1>,i 

•1' 
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1 

<x0>,fl<X1>,fl ................. (Th<Xm_i>nfl<Snz>nc<X,n>n 

This implies <x1  >, fl <x2 > fl . fl <X>n  (Th < S0  >, 

<X0 > (Th<X1 > fl ................ (Th<X, >, (Th<S0  >, 

<x0  > (Th<X1 > fl ............. fl<X 1 > n<bvn>,7 <z>,7  

FA 

Hence S0E<<X1>fl<X2>fl .......... fl<X m >,i ,<Z>,i  >. 

Similarly t = X0  V x,  V .......................V X_ 

Therefore, b v n C=  <x1  >, n <x2  >, n..........n < X m  >, <Z >> 

V <<x0 >, <x>,fl ..........  fl<X,?z>fl, <z>n> 

V .......V <<X0 >fl <X1>fl ........  fl<X rn _1>n , <Z>> 

The dual proof of above gives 

b v n E <x1 >n <x7>n .......... n<xrn >,i, <z>,,> 

V <<X>,fl<X2>1fl .......... fl<Xm >n , <Z>,1 >V ...... 

V <<X0 >fl <X1>,lfl ........ fl<X,,_1 >, <Z>,7 > 

Thus by convexity, 

b E <<X1  >,, fl <X 2  >, fl ..........fl <X,7, >, <z >
17 

 

V<<X0>fl<X2>fl ..........  fl<X m >n , <Z>> 

V .......V <<X0>n  fl <X1 >n  fl ........  (Th<Xm_I >,, <Z>> 



Therefore, <<x0  >, n <x1  >, n. fl<Xm  >p  fl <Z>11 > 

<X1>fl<X2>fl .......... fl<Xm >n,<Z>n> 

V<<X0>fl<X2>fl ..........  (Th<Xm>n, <Z>,> 

V ....... V<<XO>(Th<XI>nfl ........  fl<Xm_I>n, <Z>>. 

Since the reverse inequality always holds, so (iii) holds. 

(iii) = (i). Suppose, n :!~ b :!~ d. 

Let x0 , x1 ..................., Xm E [b, d] such that x1  A X J  = b, for all 

i#j. 

Let to = X1 V X2 V .......................V Xm 

t1X0VX2V .......................  V Xm 

tm  = xo V X1 V .......................V Xm_I 

Clearly, n ::~ b :5 t, :!~ d and 

X0t1At2A ....................... A tm  

X1 = to A t2A .......................  A tm  

94 

Xm = to A t1  A .......................A tm_I. 
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Then [b, d]n {<<xo>, <b>>v.......... V<X m >n, <h>,1 >} 

=[b, d]n {<<t1  >, n <t 2  >,>n .n<<t, >,, <b>,7 > 

V <<t0  >, < t7  >n  fl .fl <tin  >fl > 

V....... v<<t0  >fl < t1> V....................... V<tm_1>,i  .<b> 
 17 

> 

= [b, d]n {<<t0 >n <tl >,l n .......... n<<t,>,7 , <b>,7 >} 

= [b, d] n <<b >,,, <b >,> =[b, d] n L = [b, d] , so by 

theorem 5.1.8, [b, d] is rn-normal. Hence, [) is relatively rn-normal 

A dual proof of above shows that (] is also relatively rn-normal. 

Since F (L)  =— (n] 1  x [,i) so, F (L) is relatively rn-normal 

(ii) = (iv) . Suppose (ii) holds. Let P0, P ............  Pm  bern + 1 

pairwise incomparable prime n-ideals. Then, there exist 

x0 , x1  ............ x,,, Lsuch that xi  E P1 
 - 

. Then by (ii), 

<<X1  >, fl <X2  >, (Th ..........fl < x,, >,, <x0  >,,> 

V <<X0  > (\ <X2  >, (Th ..........fl < Xrn >,i , <X1  > pj > 

v .......v <<x0 >n <x1>n ........ n<x,,1 _J >fl , <x 7 >,7 >=L 

Let to E <<x1  > n <x2  >, n ..........  fl < X,, >fl  <X 0  >,> 

then<t0 > fl<X1>fl<X2>,7fl ..........  n<x,>c<x0>,7cP0. 

Now, x1  o P0 , for i=1,2 ........................ m implies that 
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<x, >, T=  P0  for I = 1,2  ........................ m. Thus 

<xl  > n <x2  >, fl ..........fl<x,fl P0  as P0  is prime. 

This implies < to  >, ,andso to  EP0 . 

Therefore, <<x1  >n <x2  >, n .......... n<x 7  >,<x0  >77  >P0 • 

Similarly, <<x0  > n <x2  >, n ..........  n <Xm >j , <X1 > > C P1 . 

<<X0>fl<X1>fl .......... fl<X m >n ,<X2>n >cP2. 

<<XO  > fl <X1  >, fl .........fl < X,,,_1  >,i, <X >77  > c P171 

Hence P0. v P1  v ...............v P,,  = L. 

(iv) (v) is trivial by Stone's separation theorem. 

(iv) (i). Let any m + 1 pairwise incomparable prime n-ideals of L are 

comaximal. Cosider the interval [b, d] in L with b, d ~! n, let 

P6........P, be m + I distinct minimal prime ideals of [b, d]. Then 

by Lemma 4.2.9 there exist prime ideals P0  ........  Pm  of L such that 

P6 = Po  n [I,, d] ..... i;, = P;,, n [b, ci]. 

Since each P1  is an ideal, so b E P,., Moreover, n :!~ b implies that n E  Pi  

Therefore each P is a prime n-ideal by Lemma 2.2.5. i = 0, 1........., in. 

Since P6  ....... .P,, are incomparable, so P0  .......  m  are also incomparable, 

Now by (iv), P0  v.......v P,,, = L Hence 

[ v .... vJ 7  =(P0  v .... vP;,)n[b, d] =Ln[b, ci] =[b, ci]. Therefore by 

theorem 5.1.8 [b, d] is in iii —normal . Hence [n) is relatively in 
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rn-normal 

A dual proof of above shows that (n] is relatively in dual rn-normal 

Since F, (L)= (n] ' x [n) . So F (L) is relatively in rn-normal 

Following result is also a generalization of[13, Theorem 3.4] 

Theorem 5.2.2. Let L be a distributive lattice with ii E L. 

Suppose F (L) is relatively rn-normal 

Then the following conditions are equivalent.• 

(1) F (L) is relatively rn-normal. 

(ii) Ifa0, a1 .....................Pm ELwith 

m(a,n,a j )E<b>,7  (i:#j)then 

<<a0  >,, < b  >n  >v .....  v<am  >,<b> >=L. 

Proof: (i) => (ii). 

By theorem 5.2.1. (v), any prime n-ideal containing b contains at most rn 

minimal prime n-ideals belonging to <b >,. Hence by theorem 5.1.7 

with J =< b >, we have <<a0  >,, <b>,7  >v. .... v<a,,, >,,, <b>,7  >=L. 

Thus (ii) holds. (ii) = (i). Consider b, c E [,) with b :!~ c 

Let a0 ........., am  E [b, C] with a1  A a1 (i # j) then by 

m(a j, n, a1)=bE<b>,1 .menby(ii), 

<<a0  >,, <b>,7  >v ..... v<am  >n ,<b>n  >=L. 

So, [b, c]= (<<a0 >,7 , <h>n[b, c]) v .....  v(<a,>,<b>,,>n[h, c]) 
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=<a0, b>[b, dy . v<a,, b>[b, c] 
-r 

Hence by theorem 5.1.8 [b, c] is rn-normal Therefore {n) is relatively 

rn-normal. A dual proof of above shows that (n] is relatively in dual 

rn-normal . Therefore by Theorem 2.1.2 F (L) is relatively rn-normal. 

We conclude this chapter with the following result. 

Let n be a central element of a distributive lattice L. 

P, (L) is relatively rn-normal. 

Forail x0 , x1  .................... x,, e L 

<<XI>nfl<X2>nfl ..........  fl<X rn > n , <xo> fl > 

V <<X0 >11  fl <X2 > fl .......... (Th<Xm > pj , <X1  >> 

v .......  .v <<x0 > n <x1  > n .......  n<xm_1 >, X171  >, >= L; 

Forail x0 , x1  ................... ,x,, z E L, 

<<X0>fl<X1>1(Th ........  fl<X m > n , <Z>> 

=<<X1>,1 fl ........ fl<X,>, <Z>,7 > 

V <<X0  > <X2  >, fl ..........  fl<Xm  >,,, <Z>,7  > 

V.......V <<X0  >,, fl <X1  >, fl ....... (Th < X,,. 1  >,, <Z>,? > 

For any m + 1 pairwise incomparable prime n-ideals 

P0 , P1  ...............' Pm , P0 v ...........  vP,=L 

Any prime n-ideal contains at most m mutually 

-r 
incomparable 

(v) prime n-ideals. 



'4 



Chapter- 6 
If 

Annulets and a -n-ideals of a distributive lattice 

Introduction 

Annulets and a - ideals in a distributive lattice with 0 have been 

Ir studied by W. H. Cornish in [11] . In a distributive lattice L with 0, the set of 

ideals of the form (xj 
* can be made into a lattice A 0  (L), called the lattice 

of annulets of L. A (L) is a sublattice of the Boolean algebra of all 

annihilator ideals in L, while the lattice of annulets is no more than the dual 

of the so - 
called lattice of filets (carriers) as studied in I-groups and 

abstractly for distributive lattices in 

[2]. From the basic theorem of [ 9] it follows that A 0  (L) is a sublattice of 

the lattice of all ideals of L if and only if each prime ideal in L contains a 

unique minimal prime ideal. 

Subramanian [57] studied h-ideals with respect to the space of 

maximal 1-ideals in an f-ring. Of course Cornish's a - ideals and his h-ideals 

were both suggested by the z-ideals of Gillman and Jerison [7]. On the other 

hand Bigard [ 4  ] has studied a -ideals in the context of lattice ordered 

groups. 

Recently [ 54  ] has studied the annulets and a -ideals in a distributive 

near lattice. 

By [11] for an ideal J in L we define a (i) = {(xl 
* 

x E I 

Also for a filter F in A0  (L), a(F)={xE L (x] 
* 

E F. It is easy to see that 
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a (i) is a filter in A0  (L) and a< (F) is an ideal in L. An ideal J in L is 

called ana -ideal if a a (i)=J. 

In this chapter we have generalized these concepts around a central 

element n of L. We have introduced the notion of n-annulets and a -n-ideals 

in L. As mentioned earlier, for a distributive lattice with n E L , the lattice of 

n-ideals 1,1  (L) is a distributive algebraic lattice, and so it is 

pseudocomplemented. We denote the set of annihilator n-ideals (the n-ideals 

J such that J = J * *) by s(L). 

By [15] (S,1  (L); n , v , 
* , {n} , L ) is a Boolean algebra which is not 

necessarily a sublattice of I, (L). 

We denote the set of all n-ideals of the form < x > by A, (L) . This 

is a join subsemilattice of S,, (L) , but it becomes a sublattice if n is a central 

element of L. We call A,7  (L) by lattice of n-annulets. 

In section 1 We have studied n-annulets when n is central and 

generalized several results of[l 1]. We have proved that A,7  (L) is a sublattice 

of z,7 (ii) If and only if / 7  (L) is normal. We have also shown that 4,(L) is 

relatively complemented if and only if f (L) is sectionally quasi-

complemented. Finally we have given a characterization for z, (L) to be 

generalized Stone in terms of A,7 (L). 

In section 2 we have introduced the notion of a -n-ideals. We have 

shown that the n-ideal n (P) where P is a prime n-ideal is an a -n-ideal. 

Moreover, all the minimal prime n-ideal are a -n-ideals. Then we have 



101 

generalized all the results of Cornish in [11] in terms of a -n-ideals. We have 

It shown that p, (L) is disjunctive if and only if each n-ideal is an a -n-ideal. 

Also i (L) is sectionally quasi-complemented if and only if each prime 

a -n-ideal is a minimal prime n-ideal. We conclude the thesis by 

characterizing P, (L) to be generalized Stone in terms of a -n-ideals. 

-r 
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1. n-Annulets of a distributive lattice 

For a distributive lattice L with 0, I (L), the lattice of ideals of L is 

pseudocomplernented . Recall that an ideal J of L is an annihilator ideal if 

J = J 
* * 

. The pseudocomplement of an ideal J is the annihilator ideal 

* 

= { x E L Ix A j = 0 for all j  E i} . It is well known by 

[ 8 ] that the set of annihilator ideals A (L) is a Boolean algebra, where the 

supremurnofJ and Kin A(L) isgivenby Iv K=(J 
* 
nK  *) *. 

Ideals of the form (xj 
* 

(x E L ) are called the annuletes of L .Then for two 

annuletes (xj 
* 

and (y] 
* 

1 (x] * (]*((]** A (yj)=((XAy})=(XAy1 

Moreover, (x] * * 

= (x v y] * Hence the set of all annulets of L denoted 

by A0  (L) is a sublattice of A (L). In general, A (L) and so A (L) are not 

sublattice of I (L). 

For a distributive lattice L with ii EL, the lattice of n-ideals J, (L)is a 

distributive algebraic Lattice with {n} and L as the smallest and largest 

elements respectively. Thus J, (L) is pseudo complemented. For an n-ideal J 

of L, the pseudo complement of J is the annihilator n-ideal 

* 

= { x E L I ni ( x, n j ) = n for all f c= i}. We denote the set of 

annihilator n-ideals by S,1  (L), where the suprernum of J and K in S,, (L) is 

given by j v K = (i K 
* ) * 

. Recall that the n-ideals of the form 

< x > 
* 

( x E L) are the n-annuiets of L. We denote the set of 
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n-annulets of L by An  (L). 
1 * 

Thus for two annulets <x >, and <y >,,, 

<x>,,* v <y>;
,=

(<x>  ,,** n  <y>**)*=(<X> fl <y>) 

=< 

Moreover, < x > , n < y> = (< x >,, v < y >,, ) which is 

9 
not necessarily a member of A,, (L). Thus A,1  (L) is only a join subsemilattice 

of S,, (L). S,, (L) is a Boolean algebra with {}* =Las the largest element and 

L* = { n} as the smallest element. Of course, S,, (L) is not necessarily a 

sublattice of i, (L) . We start this section with the following result: 

Proposition 6.1.1 Let L be a distributive lattice with n as a central 

element. Then the set of n-annulets A,, (L) qf L is a lattice (A,, (L). m, v) 

and a sub/attice of the Boolean algebra (s,7  (L); n , v, * { ii }, L) of 

annihilator n -ideals of L. A ,, (L), has the same largest element L = {n}* as 

S,, (L) while A,, (L) has a smallest element if and only if L possesses an 

element dsuch that < d > ={n}12  

Proof: We already know that A,, (L) is a join subsemilattice of 

S,, (L).Now for < x >: I < y >, E A,, (L), 

< X >, (Th < y > = (< X >, V < y 

=([xAn. xvn]v[yAn, yvn])* 
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= [x A Y A n, x v y v n J 
* 

. Since n is central so 

X A y A n :!~ n :!~ x v y v n implies there exists t E L such 

that tAn=xAyAnandtVn=XVyVfl. 

Therefore, <x >, n <y >, = <t >, c A,, (L), and so A,, (L) is a 

sublattice of S,, (L). Since L =< n > ,, 
* 

A,, (L ) so it has the same 

largest element as S,, (L). For the last part if there exists d E L with 

< d > { n}, then {n} is the smallest element in A,, (L). Finally suppose 

there in an element d E L such that <d > is the smallest element in 

A,, (L). Then for any XE L, 

< x > =<x>, v < d >, = < m (x,n,d)>.Thus m(x,n,d)= n 

14 implies <x > = { n} = L so that x = fl, and hence <d > = { n}. • 

Now we generalize [11, Proposition 2.2]. 

Proposition 6.1.2 . Let L be a distributive lattice with a central 

element n . Then 1, (L) is normal if and only if A,, (L) is sublartice of 

i,, (L). 

Proof : Let <x >, , <y E A,, (L). By 3.2.13, 1, (L) is 

normal if and only if <x >,, v <y >, = (<x >,, n <y >,,) 
* 

** \ * 

= (<x> <y>,7)*,of'  =((<x> n<y>)
.o. 

) = 
I x >,,n <y >,, 

 **) * 

<X>, Y<y>,1 . That is v in A,, (L) is same as v in I,, (L). This 

proves the proposition. 0 



A distributive lattice L with 0 is called disjunctive if for 

ir 0 :!~ a <b (a,b E L) there is an element x E L such that a AX = 0 where 

0 < x b . This is also known as sectionally semi-complemented 

distributive lattice. it is easy to check that L is disjunctive if and only if 

(a]* =(b] 
* 

impliesab for any a, b EL. 

Similarly a distributive lattice L with 1 is called dual disjunctive if for 

c < d :!~ I (c, d E L) there is an element y E L such that d V y = I 

where c :!~ y < 1. Since F,7  (L) (ii] 
d x [n), so F, (L) is disjunctive if 

and only if (n] is dual disjunctive and [) is disjunctive . By [10] we also 

know that F (L) is disjunctive if and only if <a >, = < a >, for each 

aEL. 

Following result is a generalization of [11 , Proposition 3.3 ] 

Proposition 6. 1. 3 For a distributive lattice L with a central element 

n, if f, (L) is disjunctive and normal then P (L) is dual isomorphic to 

A,?  (L). Hence 0. 1 E L f and only if there is an element d E L such that 

< d >,?* ={n}. 

Proof: Since n is central, so F (L) = P, (L). Define 

i (L) —> A (L) by (<a >,)=< a >,. Then for <a >,, , <b > E P (L), 

(<a>,7v<b>,)=([aAbAn, avbvn])=(<t>,,)=<t>,;*, 

where t is the relative complement of n in [aAbAi avbvn. 

On the other hand 

7 (<a >,,)n (<b >,,)= <a >,,* <h >,,* = (<a >,, v <b >,,) * 
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=[aAhAn, avbvn]*=<t>,,*. 

ii 

Therefore, ç (<a > v <b >11) = q (<a >,, )n ço (<b >j. Again as P, (L) 

is normal, so by Theorem 3.2.13 

q (<a> n<b>,i)=(<rn(a,n,b)>n)=<m(a,n,h)>,i* 

=(<a> n<b >)* =<a > v<b>* =(<a>,,)v(<b >,,) Therefore, 

p is a dual homomorphism from P,, (14 onto A7, (L) . Now let 

a >)= ço(< b >,4. Then <a >,, = < b >,,* and so 

** ** 
<a > = <b > . Thus by [10], <a > <b > fl  as P,  (L) is 

disjunctive . Hence P,, (L) is dual isomorphic to A,, (L) 

Finally if 0, 1 E L, Then [o, 1] is the largest element of P,, (L), and so from 

the dual isomorphism A,, (L) has a smallest element. Then by proposition 

6.1.1, there is an element dEL such that <d >,, = {n}. Conversely if for 

some d E L, <d >,, = {n}, Then A,, (L) has a smallest element and so J, (L) 

has a largest element, which implies 0, 1 E L. • 

Following result is due to [11, Proposition 2.5] 

Proposition 6. 1.4 The lattice of annulets of a generalized Stone 

lattice L is a relatively complemented sublattice of the lattice of ideals of L. 

We generalize the above result for n- annulets. 
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Theorem 6. 1.5. Let n be a central elements of a distributive lattice L 

If P,, (L) is generalized Stone, then A,, (L) is a relatively complemented 

sublattice of 1 (L) 

Proof: Since every generalized Stone lattice is normal, so by 

Proposition 6. 1.2, A,, (L) is a sublattice of I,, (L). We therefore write v for 

V . Since A,, (L) is a distributive lattice with largest element L, so A,, (L) 

will be relatively complemented if and only if each interval of the form 

[I, L ]' I A,, (L) is complemented. Thus let J = [< x >, L] be an interval 

in A,, (L) and let <y >,,* E J. As P, (L) is generalized Stone, so by 

<y>,, v<y>,, =L and <y >,,* n 
** 

< y >,, = {n} always holds. Hence 

(<x>,, n<y>*)v(<x> 
n n < Y>,,**)= <X>,,. and 

(<x>,, 

[15, Theorem 3.5 ] both <x >,, n <y >,,* and <x >,, n <y >,,** are 

principal. Let <x >,, n <y >,,* 
= < a >,, . Then <a >,, g <x >,, and so 

<x >,,* <a >,,*. Thus <a >,,* El. Also, <a>,, Q  <y >* implies 

<y>fl
**  c<a>,,*,  and so  <a>,,* v<y>n* =L.Now 

<a>,,* n<y>,,* n<x>,,<a>,i* n<a>,, {n}implies  

<a>,,*<y>,,*<x>,,*.But<x>,,*c<y>,,*, <a>,, 
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Hence <a >, n <y >,,* = < x >,, and so <a >,?* is the required 

relative complement of < y in J 

Consider the interval I = [n, x], n < x in a distributive lattice. For 

any a E Iwe define (a] = { SE I I S A a = n }. This is of course an ideal 

in I and is the annihilator of a with respect to I. Dually for h E J = [y,  n] , we 

define [b)+d 
= { t E J I  t v b = n . It is easy to check that this is a filter in J and 

is the dual annihilator of b with respect to J. Clearly both I and J are also n- 

ideals. Similarly we define (i) For any x E [x) +d 
{ t :!~ 

n 1 
t v x = n} 

and (ii) Forany xE(n], (x] = {t ~! n It A X = 

Following lemmas are needed for the proof of next two results. 

Lemma 6. 1.6 Let L be a distributive lattice and x E (,] . Let 

a <n<b. Thenfor any XE L 

(i) < x > n * m [a, n] = [a v (X A )) 
+ d 

, dual annihilator with 

respect to [ a, n] 

< x > 
* 

n [ n, b] = ((X v n) A b] + , annihilator with 

respect to [n, b]. 

Proof: (i) Let pE<X>ji*  n[a,b]. Then a:!~p:!~n and 

rn(p,n,x)=n.Thus 
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n =(p V x)A(p v n)A (x V V x)An 

\\ + d 
=pv(av(xAn)), andso  p E [a v (xA n)) 

Conversely, let p e [a v (x A n)) +d 
• Then p v av ( X A n)= n and so 

pv (xAn)=n as a:!~p:!~n.Thus, 

n=(pvx)A(pvn)=(pvx)An=(pvx)AnA(xvn) 

= (p v x)A (p v n)A (x v v)= in (p, n, x), which implies p E <x >, and so 

p E < n [a, n]. This proves (i). A dual proof of(i) proves (ii). 

Similarly we have the following result. 

Lemma 6.1.7. Let L be a distributive lattice and n E L Then for 

any xEL, 

(i) < x > 
* m (n I = [x A /1 ) + d in [n) 

and (ii) <x >, m [n)= (x v ] + in [n ). 

Lemma 6. 1.8. Let L be a distributive lattice and n L. 

Suppose I=n,x];nczx. Then for any 

a, b E I, (a] + b] + implies <a c <b >,,. 

Supposej=[y,n];y<n.Thenforanya,b€J, 

[a) + d C  [b) +d  implies <a > c <b 
* 
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Proof: (i) Let p E< a>,,. Then m (p, n, a) = n which implies 

(a A b ) V 11 = fl Now (p v n)A x El, and 

a A [(pvn)Ax]= (aA pAx)v(aAxAn)=(aA p)vn = n 

This implies (p v n) A X E (a J + (] + , and so 

( X A b = n .Thus,(pvn)Ab=n. 

Therefore, n=(pvn)Ab(pvn)A(bvfl)A(pvb)=rn(p,n,b), 

and so, pE<b>,,*. Hence <a >
j7

* <b >,,*. A dual proof of above proves 

(ii) • 

A lattice L with 0 is called quasi-complemented if for each x E L there exists 

x'E L such that XAX'=O and (x v x'] 
* 

= (0], that is 

(x] * n (x'] * = (o]. This is also equivalent to the condition that for each 

XE L, there exists x' eL such that (x] 
** = (x'] 

Dually we can define a dual quasi-complemented lattice L with 1. 

Since F,, (L) (n]" x [) , so we have 

Corollary 6. 1. 9. If L is a lattice with n c L, then 

F,, (L) is quasi-complemented if and only if (n] is dual 

quasi-complemented and [n) is quasi-complemented. 

F,,  (L) is sectionally quasi —complemented if and only if (n] is 

sectionally dual quasi-complemented and [n) is sectionally 

quasi-complemented. 



The following theorem is a generalization of [11, Proposition 2.7 ]. 

Theorem 6. 1. 10 Let L be a distributive lattice with n as a central 

elements. Then A,, (L) is relatively complemented f and only if J, (L) is 

sectionally quasi-complemented. 

Proof: Suppose A,, (L) is relatively complemented . Let I = [n, x] 

1' 
.Consider a I .Then (x) ,, c (a) , ç {n} * = L. 

Since [(x) ,,, L] is complemented in A , (L), 

there exists w L such that (a),,* fl (w) ,, = (x) ,, and 

K a) 
* 

V w 

* ** 

\ Now, L = (a) v (w)'1 
= ((a),,

**  fl (w ) 
*= 'a fl  

= ((a) ,,  fl (w) , )* This implies (a) fl (w) , = {n }, and so 

(a ),, fl ( w ), fl (x ), = { n }. 

But(w),1fl(x),,=((wAx)v (wAn)v(xAn))=((wAx)vn),, 

Thus,n= (aAn)v(aA((wAx)vn))v(((wAx)vn)An) 

= a A ((w A X) v n), where (w A X ) v n E I. On the other hand 

< a > fl < w >,, = < x implies 

<a >,,* n < w > n < x >,,* = {n} and soby 

1' 
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Lemma 6.1.6, (aJ n((wAx)vn ] = {n}. This implies I is 

quasi-complemented and so [n) is sectionally quasi-complemented. 

A dual proof of above shows that (ii] is sectionally dual quasi-

complemented, and so by Corollary 6. 1.9 , P (L) is sectionally quasi-

complemented. 

Conversely suppose F, (L) = i (L) is sectionally quasi-

complemented. Since An  (L) is distributive, if suffices to prove that the 

interval I < L] is complemented for each x EL . Let < y > E < 

y>fl* E[<X>,L] 

Then < y >,, = <x >/7*  V< y >,,* = < m (x, n, 

Now Consider J=[n,xvn] in [n) . Then (xvn)A(yvn)EI. Since by 

Corollary 6.1.9. I is quasi-complemented, so there exists WE I such that 

wA(xVfl)A(yVfl)X=fl and 

(11'] + n ((x V A (y v ,)] + = { n } = (x V 11] + 

Thus by lemma 6.1.8, (w v((xvn)A(yvn))) = (xvn) ,,, 

and so (w) , fl((xv ii )A(yv n)) fl

* 

= (xv n) 

Dually considering the interval [x A n, n] in (n] and using same argument 

there exist v E [x A 11, n] such that v v (x A v (y A = n and 

<v >17*  n <(xA n)v(yA n)>* 
= <X An>. 
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Then [v,w]* n  <>* 
=[v,wln<rn (x,n,y) 

>n 

[v, w]  n [in (x, n, y)A n, m (x, n, y)v n]* 

= <v>,,* n<w>,7 t  n <in (x,n,y) An>,1* n<m(x,n,y) vn>,i* 

=<v> <(xAn)v (yAn)>
,1

*  n<(xvn) A (yvn)
>,,

* 

* * 1 1* * 
=<XAfl> (Th<XVfl>, XAfl,XVfl j =<X>,7  

Also, [v. w v< y > = [v, w v< rn (x. n. i' )>, 

= ([v,w] n [ (xAn)v(yAn), 
(xvn)A(yvn)])* 

= [vv(xAn)v(yAn),wA(xvn)A(yvn)]*= 
{}*= 

L. 

Since n is central , so [v, w]= <t >,, where <t >, E [< x >,, L , which is the 

required relative complement of <y >,* 
. 

In [11] Cornish has proved that if L is a distributive lattice with 0 then 

L is quasi-complemented if and only if A,,  (L) is a Boolean subalgebra of 

A (L). But we are unable to get such a result for A, (L) when F (L) is quasi-

complemented. We could not prove that there exists d E L with <d >; = { n} 

when P, (L) is quasi-complemented . We leave it to the reader as an open 

question. "Does A,?  (L) possess a smallest element when p, (L) is a quasi-

complemented lattice with n as a central element?" 

But following the same technique of proof of theorem 6.1.10, we can 

establish the following result. 
ir 

ra 
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Theorem 6. 1. 11 Let L be a distributive lattice with ii as a central 

element. Then 

If 47  (L) is Boolean then P (L) is quasi-complemented. 

If P, (L) is quasi-complemented and A, (L) has a smallest 

element, then A,7  (L) is Boolean. • 

By [ 9 ] we know that a distributive lattice with 0 is a generalized 

Stone lattice if and only if it is both normal and sectionally quasi-

complemented. 

So we conclude this section with the following result. This also gives nice 

characterization of P,, (L) which are generalized Stone. 

Theorem 6.1.12. Let L be a distributive lattice with n as a central 

element. Then P,, (L) is generalized Stone if and only if A,, (L) is a relatively 

complemented sublattice of i,, (L). 

Proof Suppose F, (L) is generalized Stone. Then it is normal and 

sectionally quasi- complemented. Thus by Proposition 6.1.2 and Theorem 

6.1 .10 A,, (L) is a relatively complemented sublattice of j,, (L). 

Conversely if A,, (L) is a relatively complemented sublattice of I,, (L), then 

again by proposition 6.1.2 and Theorem 6.1.10 f, (L) is normal and 

sectionally quasi-complemented . Therefore, by [9, Theorem 5.7] L is 

generalized Boolean. 
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2. a-n-ideals in a distributive lattice 
rd 

Recall that for an ideal J in a distributive lattice L with 0, 

a (.1 ) = {(x] 
* 
Ix E .1 }, which is filter in A0  (L) and conversely 

a (F)= k E L I (x] * F is an ideal in L when F is any filter in A0  (L). 

Clearly for any ideal I, I c aa (i) . An ideal I is called and a-ideal if 

I = a a (i) . Now for any n-ideal J in a distributive lattice with a 

central element n, we define a (i) = t < x >,, I  X E J and conversely 

a (F)={xEL <x>,, EF where F is any filter in A,1  (L). Westartthis 

section with the following result. 

Proposition 6. 2. 1. Let L be a distributive lattice and n E L is 

central. Then. 

For any n-ideal J, a (i) is afilter in A (L) 

a (F) is an n-ideal in L where F is any filter of A,7  (L) 

If 11  12  are n-ideals then I c 12 implies that a (I,) g; a (/2); 

and if F1 , F7  are filters in A,7  (L), then F1  c F, implies 

a (F)a(F7 ). 

For any filter F of A (L), a a (F)= F 

The map I a (i)= [aa (I)) is a closure operation on the 

lattice of n-ideals. That is 
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(I) aa(aa(i))aa(J) 

(ii) Ic:aa(I) 

Ic: J implies a a (J)ca a(J);for any n-ideals I and J in L. 

Proof: (a) Let < x > ,, 

* 

€ a (i) with x, y E J 

Then< x fl <y >* =(< X >,, V <y  >,,) — 

[x A y A n, x v y v n] 
* 

= < t > as n is central . Then 

XA y A fl =tAfl :!~- t :!~ tv n = x v y v n implies teJ by 

convexity. Hence <x >,, 
* fl <y> a (i). 

Now suppose <x >,, € a (i), x E J and (s)* D (x) * for some 

(s) E A,, (L). Then <s>* =<s> v<x>, =<m(s,n,x)> 
\ '7 

and x A ii :!~- in (s, n, x) :!~ x v n implies by conversely that 

in (s, n, x) E J. Hence <s >,,* Ea(J).Therefore a(J) isafilter. 

(b) Since L is the largest element of A,, (L), so L E F. Then L = { n}' 

implies n E a (F). Now Let x < t < with x. y E a (F). Then 

.< x > <y > 
* 

E F.Thus, <x>  n<y> =[xAyAn, xvyvnj* 

e F as F is a filter. 

implies 

1' 
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<t>,1 c{xAyAn, xvyvn] and so 

<t>fl  D{xAyAn, xvyvn]*.Thus<t>EFasFisfi1te1. 

Therefore, x E a (F) and so a' (F) is convex. Now let x E a(F). 

Then x A n :!~ x implies <X Afl >, <x >,*. Thus <x A fl >,,* e F as F 

is a filter, and so x A n E a (s). Similarly x v n c a (F). Then for any 

I 
X,yE a(F),< x >,i* fl < y 

= [xAyAn,xvyvn]* e F and 

{xAyAn, xvyvnj =< s >,as n is central. Thus s e a (F) and so 

S A n, s v n E a (F). Therefore by convexity 

SAflXAYAfl:!~XAY:!~XVYVYV5 implies xAy. xvv €a(F). 

Hence a (F) is an n-ideal of L. 

This is trivial 

Suppose <x >,* € F. Then x E a 4  (F) and so 

<x >,, e a (a< (F)).Therefore, F c a (a(F)). Conversely, let 

>,, a (a-(F)). Then <x >?7
*  = <y >,* for some y E a (s). Thus 

> E F, and so <x > E F. That IS a ( (F)J' and so F = a (a (F))c F. 

(i) Since a (i) is a filter in A,, (L), so by (d) a a (a (i)) = a (I). 

Therefore a (a a (a(I)))= a a (i). That is, 

a (a a(J))=a <  a (I). 

(ii) is obvious and (iii) follows from (c) U 
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An n-ideal I is called an a-n-ideal if a a (I)= I . Thus a-n-ideals are 

simply the closed elements with respect to the closure operation of 

proposition 6. 2.1. 

Following result is a generalization of [ 6, Proposition 2.3 ] in terms of n-

ideals. 

Proposition 6. 2. 2. Let L be a distributive lattice with n as a central 

element. Then a -n-ideals of L form a complete distributive lattice 

isomorphic to the lattice of filters, ordered by set inclusion, of A,, (L). 

Proof: Let {i} be any class of a-n-ideal of L. Then a< a (i1 ) =  Ii 

for all I . By proposition 6.2.1, fl I ç a a ( fl i) . Again 

a (fl i)c aa (I) = I for each i. Thus a a (fl I,)c: fl I,, and so 

a (fl i)= flI t . Hence fl Ir is an a-n-ideal . Therefore, by [15, Lemma 

14, P-14], the set of a-n-ideals is a complete lattice, and it is distributive as 

L is so. Now a is onto and both a, a are isotones by proposition 6.2.1 (c). 

Moreover, for a-n-ideal I, a a ( i)= land by proposition 6.2.1 (d) 

a a < (F) = F for any filter F of A,, (L). Therefore the map a is an 

isomorphism from the lattice of a -n-ideal to the lattice of filters of A (L). 

Following theorem gives a nice characterization of a-n-ideals which also 

generalizes [11, Proposition 3.3 . 

Theorem 6. 2. 3. For a central element n of a distributive lattice L, the 

following conditions are equivalent. 

Iisan a-n-ideal 

For x, yE L,< x >,,* =< y >,,* and x E I implies El. 

u <x >** where U is set theoretic union. 
xel 
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Proof: (i) = (ii) . Suppose I is an a-n-ideal. Then a<a (i)= I. 

Let x, y E L with < x > = < Y > 
* 

and x c I. Then <x > E a (I) 

and so <y >, Ea(J). This implies yEa<  (a(i))= I 

(ii) = (i). Suppose (ii) holds and I is any n-ideal. I c a a (/) always 

holds. Thus suppose x E a a (I). Then <x > c= a (/). This implies 

< x >,, = < y for some yEI. Then by (ii), x El. Therefore, 

aa (I)c I and so aa ()= i; in otherwordslis an a-n-ideal. 

= (iii).Clearly I U <x >fr,**.Now let xEI and 

y e < x >,** . Then < x >,,* Thus 

* 

< y > 11 
* 

= < x > 17 
* < y > 

* 
= < rn (x, n, F? 

Since xEl so by convexity xAn:!~,m(x,n,y)<xvn implies 

in (x, n, y)E I .Henceby(ii)yEl which implies <x>,1  c1 and 

so U <x > 
** 

c I. Therefore, (iii) holds. 
x € I 

= (ii). Suppose (iii) holds and < x > <y > with x E I. 

** 

Then < X > 
**

= < y > n  . This implies 

** ** ** 

y E < y >,, = < x > . Hence by (iii), y E U <x > = I and 
x€ I 

so (ii) holds. U 
-0 
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Proposition 6. 2. 4. For a central element n of a distributive lattice eveiy 

minimal prime n-ideal is an a -n-ideal. 

Proof : Let P be a minimal prime n-ideal. Suppose x E a a (P). 

Then <x >, a (p). So < x >,,* = < y > ,,  for some E P. Since P 

is minimal, so by 3.1.4 < y >,, ** P . Thus, < x >,, ** P , this implies 

-q 

x E< x >,,** c P . Therefore, a a (P)c P. Since the reverse inclusion 

is trivial, so a <  a () = P. Hence P is a -n-ideal . U 

Recall that for a prime n-ideal P of a distributive lattice L 

n (P)__{y E Lm(y,n,X)_flf0r some xEL—P. 

Clearly n (P) is an n-ideal and n (P ) c P. 

Proposition 6. 2. 5. For a prime n-ideal P, n (p) is an a -n-ideal. 

Proof:Let x E aa (n(P) ) .Then <x>fl* Ea (n(P)).Thus 

< x > = < y > , for some y E n (p). Then m (y, n, t) = n for some 

t E L - P. This implies <y >, n < t >, = {n} and so 

<t >, c < y >n = <x >, . Therefore, <x >** <t > . Thus, 

x E <x <t > which implies m (x, n, t)= n and SO XE fl (P) 
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Hence a a ( n ((P))c P . Since the reverse inclusion is trivial , so 

a a(n((P))n(P).Therefore n(P) isan a -n-ideal. 

Following Lemma is needed to prove our next theorem. Latif in [ 30 ] have 

given a characterization for Pn  (L) to be disjunctive. Here is a slight 

improvement of that result. 
I 

Lemma 6. 2. 6. For a central element n of a distributive lattice L, 

J (L) is disjunctive if and only if < x > , 
* 

= < y > 
* 

implies 

<x > = < y >, for x, y EL. 

Proof: Suppose < x >,, 
* 
 = < y > implies 

< x > = < y >,, . Since for x E L, < x > c < y > , 
** 

always 

** 
holds,sosupposeyE<x>fr, .Then<y> <X> 

Thus,<x>,z* =<x> fl <Y>,1 [XAYAfl, xvyvn]*=< t
>,,; 

 

as n is central . Then by the given condition, < x > = < t > . Thus 

<x >,, = [x A y A n, x v y v n] and so by convexity, y E < x >, 

Therefore <x >,** <x >,, and so <x >= <x >,,**. Hence by [30], 

P, (L) is disjunctive. 

lot 



122 

Conversely ,  , Let I (L) be disjunctive. Then for each x E 

<x >77 =  < x >,,**. Therefore, for x, y E L, <x >, = <y >77  implies 

** ** 

<X>,1 =<y>,7  and so<x>,,=<y>. 

Following result is a generalization of [ 11, Proposition 3.4] 

Theorem 6. 2. 7. Let L be a distributive lattice with n as a central 
-q 

element. Then the following condition are equivalent. 

Each prime n-ideal is an a -n-ideal 

Each n-ideal is an a -n-ideal 

P, (L) is disjunctive. 

> Proof: (i) = (ii). Suppose I is any n-ideal . Then by [30, Corollary 

2.2.6 ]' / = fl { p P I, P prime n-ideal } .Then 

aa(J)=aa [fl{PPDJ] 

n {aa () p i}= n I P I p z}= i (by (i). 

Therefore (ii) holds. 

(ii) => (i) is trivial 

(ii) = (iii). Suppose <x >= < for x, y E L. Since by (ii) 

<X > is an a -n-ideal and x e < x >,,, so by theorem 6.2.3. 

E <X >. Thus <y> <x> Similarly <x> , c <y> 

Therefore < x > it = < y> ,, and so by lemma 6.2.6, f (L) is 

It 
disjunctive. 
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(iii) = (ii) . Let I be an n-ideal . Suppose x E a<  a (I) . Then 

<x>, Ea(I) and so <x >,= <y > forsome y E J.Thus by (iii), 

= < y> ,,, which implies x E I. Therefore, a 4  a (I)c I. Since the 

reverse inclusion is trivial, so a<  a (I) = I and hence I is an a -n-ideal. 

Proposition 6.2.2. implies that there is an order isomorphism between 

the prime a -n-ideals of L and the prime filter of A (L) . It is not hard to 

show that each a -n-ideal is an intersection of prime a -n-ideals. 

Following result is well known in Lattice theory, It was proved for 

bounded lattices in [ 40 ] and announced in general in [ 39  ] ; an explicit 

proof is given in [22, P-76]. 

Lemma 6. 2.8. A distributive lattice with 0 is relatively complemented 

if and only (fits every prime filter is an ultra filter (proper and maximal). 

Theorem 6. 2. 9. Let L be a distributive lattice with n as a central 

element. Then the following conditions are equivalent. 

P, (L) is sectionally quasi-complemented 

Each prime a -n-ideals is minimal prime n-ideal. 

Each a -n-ideal is an intersection of minimal prime n-ideals. 

Moreover, the above conditions are equivalent to P, (L) being 

quasi-complemented if and only Of there is an element d E L such that 

<d >, = { n}. 
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Proof: (i) = (ii) . Suppose 1, (L) is sectionally quasi-complemented. 

Then by theorem 6.1.10, A,7  (L) is relatively complemented. Hence its every 

prime filter is an ultra filter. Then by proposition 6. 2.2 each prime a -n-

ideals is a minimal prime n-ideal. 

(iii). From the isomorphism between the prime a-n-ideal of L and the 

prime filters of A,, (L), we see that each a -n-ideal is an intersection of prime 

a -n-ideals. This shows (ii) = (iii). 

=' (ii) is obvious. 

(ii) = (i). Suppose (ii) holds. Then by proposition 6. 2. 2, each prime filter 

of A,, (L) is maximal. Then by Lemma 6.2.7, A,, (L) is relatively 

complemented, and so by Theorem 6.1.10, J, (L) is sectionally quasi-

complemented. Last part follows from [Cornish, 1 1 ]. 

We conclude the thesis with the following result which is a generalization of 

[11 , Theorem 3.7 ]. 

Theorem 6. 2. 10. Let L be a distributive lattice and n E L is central 

Then I, (L) is generalized Stone if and only if each prime n-ideal contains 

a unique prime a-n-ideal. 

Proof: Since minimal prime n-ideals are a-n-ideals so by the given 

condition, every prime n-ideal contains a unique minimal prime n-ideal. 

Hence by [4 ] I, (L) is normal . Also by the given condition each prime a - 

n-ideal contains a unique prime a -n-ideal. Since each minimal prime n-ideal 

is a prime 

[1 



125 

a -n-ideal, so each prime a -n-ideal is itself a minimal prime n-ideal. Hence 

by Theorem 6.2.8, P,, (L) is sectionally quasi-complemented. Therefore, by 

[9, Theorem 6.6] P (L) is generalized Stone. 

Coversely, if P, (L) is generalized Stone, Then by [47] , each prime n-ideal 

contains a unique minimal prime n-ideal. Thus the result follows as each 

minimal prime n-ideal is a prime a -n-ideals. • 



11  Recommendations and Application 

Conclusion and Future recommendations: From the 
discussions of all previous chapters it can be concluded and recommended 
that the concept of n-ideals can be introduced injoin-sernilattices. Then using 
these results we can study those P,, (L) which are normal, relatively normal, 
rn-normal, and relatively rn-normal, where L is a join-semilattice with 0. In 
other words all the works of this thesis can be extended for join semilattices. 

Application: Lattice theory has a lot of applications in different 
fields. Boolean lattice has applications in the field of hardware and software 
development of computer science. Also it has wide applications in 
networking. It can be applied to develop theories in other branches of algebra, 
such as group theory, Ring and Modules etc. 

One of the major applications of Boolean lattices is in the switching 
systems, which are network of switches that involve two state devices 0 and I 
for off and on respectively. 
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