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SUMMARY

This thesis studies’ the nature of distributive
nearlattices. By a nearlattice S we will always mean a
(lower) semilattice which has the property th;t any two
elements possessing a common upper bound, have a
supremum, Cornish and Hickman in their paper [14],
referred this property as_the upper bound property, and
a semilattice of this nature as a semilattice with the
upper bound property. Cornish and Noor in [15] preferred
to call these semilattices as nearlattices as the
behaviour of such a semil;ttice is closer to that of a
lattice than an ordiary semilattice. In this thesis we

give several results on nearlattices which certainly

extend and generalize many results in lattice theory.

In chapter 1 we discuss ideals, congruences and
other results which are basic to this thesis. We include
some characterizations of distributive and modular
nearlattices. We generalize the separation properties
given by M.H.Stone for distributive lattices. We also
show that the set of prime ideals of a nearlattice S is

unordered if and only if S is semiboolean.
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Chapter 2 discusses the skeletal congruences of a
distributive nearlattice. Skeletal congruences on

distributive lattices have been studied extensively by

Cornish in ([11]. Here we extend several results of

Cornish for nearlattices.'We also introduce the notion of
disjunctive nearlattices. A distributive nearlattice 8
with 0 is called disjunctive if for 0 < a < b there is an
element x € S such that x Aa = 0 and 0 < x £ b, Then we
give several characterizations of disjunctive
nearlattices and semiboo%ean algebras using skeletal
congruences. Finally we show that a distributive
naerlattice is semiboolean if and only if

0 ----- > ker® is lattice isomorphism of Sc(S) onto KSc(S)

whose inverse is the map | S 8(J).

In chapter 3, we discuss on normal and n-normal
nearlattices. .Normal lattices have been studied by
several authors including Cornish [8] and Monteiro [34];
while n-normal lattices have been studied by Cornish [9]
and Davey [16]. In proving some of the results we have
used Principle of Localization, which is an extension of
lecture note of Dr. Noor on localization. This technique

is very interesting and quite different from those of the

previous authors.
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Chapter 4 studies the multiplier extension (meet
translation) of a distributive nearlattice, Previously
multipliers on semilattices and lattices have been
studied by several authors e.g, Szasgz and Szendrie
[564,55,56)] Kolibiar [29],*Cornish [10) and Niemenen [37]
on a l=Ltice, In a more recent paper, Noor and Cornish in
[39] studied them on nearlattices. Here we exteﬁd some of
their work. We also give a categorical result, where we
see that the multiplier extension has a functorial
character which is entirely different from that of the
Lattice Theory, c.f. Cornish [10, theorem 2.4], 1In
section 2 of this chapter we discuss multipliers on
sectionally pseudocomplemented distributive nearlattices
which are sectionally in B;, =1 = n £ ¢ and generalige a
number of results of [10]. We show that S is sectionally
in Bn if and only if M(S), the lattice of multipliers is
in B . Finally we show that for 1 < n < @, above
conditions are.also equivalent to the condition that S isg
sectionally pseudocomplemented and for any n+l1 minimal

prime ideals

P]’ngqato.-naon,pn*]|
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CHAPTER — 1

IDEALS AND CONGRUENCES OF A DISTRIBUTIVE NEARLATTICE.
1. Preliminaries.

1.1. In this section it is intended only to out}ine and
fix the notation for some of the concepts of nearlattices
which are basic to this thesis. We also formulate some
results on arbitrary nearlattices for latter use. For the
background material in Lattice Theory we refer the reader
to the texts of G. Gratzer [19], [18]) and D.E. Rutherford
[48].

By a nearlattice S we will always mean a (lower)
semilattice which has the property that any two elements
possessing a common upper bound, have a supremum. Cornish
and Hickman, in their paper [14], referred this property
as the upper bound property,and a semilattice of this
nature as a semilattice with the upper bound property. We
shall see latter, the behaviour of such a semilattice is
closer to that of a lattice than an ordinary semilattice.
For the sake of brevity, we prefer to use the term
nearlattice in place of semiléttice with the upper bound
property.

Of course, a nearlattice with a largest element is

a lattice. Since any semilattice satisfying the



descending chain condition has the upper bound property,

all finite semilattices are nearlattices.

Now we give an example of a meet semilattice which

is not a nearlallice

Example. 1In Rz consider the set

S = ((0,0)) v ((1,0)) v {(0,1) v {(1,y)} ¥y > 1)

shown by the following figure 1.1

[0'1} (

L ]

Figure 1.1

Define the partial ordering £ on S by (x, y) % (xl, yl)

iff x < X| and y 2 Y| Observe that (S ; <) is a meet



semilattice. Both (1,0) and (0,1) have common upper
bounds. In fact {(1, y) | y > 1} are common upper bounds
of them. But the supremum of (1,0) and (0,1) does not

exist. Therefore (S : <) is not a nearlattice,

The upper bound property, appears in Gratzer and
Lasker [20],while Rozen [49,pp.17-20] shows that it is
the result of placing certain associativity conditions on
the partial join operation.® Moreover, Evans in a more
recent paper [17] referred nearlattices as conditional
lattices. By a conditional lattice he means a (lower)
semilattice S wilh tLhe cond%tion that for each
x €5, { y eS: y <£x } is a lattice; and it is very
easy to check that this condition is equivalent to the
upper bound property of §. Also, Nieminen refers to

nearlattices as "partial lattices" in his paper [38].

Whenever a nearlattice has a least element we will

denote it by 0. If Xis Xy,

«+++yX, are elements of a
nearlattice then by X VissonoV X,» we mean that the
supremum of X[p+++0.,X% exists and X| Vi v aoimn ¥ x, is the

symbol denoting this supremum.

A non empty subset K of a nearlattice S is called a

subnearlattice of S if for any a,b € K, both a A b and




a Vb (whenever it exists in § ) belong to K ( A and V

taken in S ), and the A and 'V of K are Lhe restrictions

of the A and V of S to K. Moreover, a subnearlattice K of

a nearlattice S is called a sublattice of S if a Vb € K

for all a, b € K.

A nearlatblice § is called modular il for any

a, b, ¢ € 8 wilh ¢ =a, aA (bVec)= (aAob) V ¢

whenever b V ¢ exisls. § is called distribulive if for

any X , X| ye..., Xy o

x N {xl Vi...V xn) = (x A xr} Vi....V(x A xn) whenever

X Miiiee V X, exists.Notice Lhat the right hand expression

always exists by the upper bound property of §.

Lemma 1.2, A nearlattice S isg distributive (modular)

if and only if (x] = { vy cs Y £ x } is a distributive
(modular) lattice for each x € §. 0

Consider the following lattices.

Ng

.d d
Figure 1.2 Figure 1.3




Hickman in [23] has given the following extension of

a very fundamental result of Lattice Theory.

Theory 1.3. A nearlattice S is distributive if and

.

only if S does not contain a sublattice isomorphic to N5

or M. ad

Now we give another extension of a fundamental

result of Lattice Theory.

Theory 1.4, A nearlattice S is modular if and only if

S does not contain a sublattice isomorphic to NV

Proof: Suppose S does not contain any sublattice
isomorphic to N5. Then, (x] does not contain any
sublattice isomorphic to N5 for each x € S. Thus, a
fundamental result of Lattice Theory says that (x] is

modular for each x € S as (x] is a sublattice of S,

Hence, S is modular by lemma 1.2.

Conversly, let S be modular. If § contains a
sublattice isomorphic to NP then letting e as the
largest element of the sublattice we see that (e]

is not

modular [by Lattice Theory]. Thus by lemma 1.2 above, S

is not modular and this gives a contradiction.
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This completes the proof. a

In this context it should be mentioned that many
Lattice theorist €.g. R.Balbes [5], J.Verlet [58],
R.C.Hickman [22] and K.P.Shum [53] have worked with a

class of semilattices § which has the property that for

each x, Bryeenn. s8, € 8y Af ap Veeewa V a, exists then
(x A a]) Wiense W (e A ar) exists and equals
x A [al V....V a ). [5] called them as prime semilattices

while [63] referred them as weakly distributive

semilattices.

Hickman in [23] has defined a ternary operation J by
J(x v, 2) = (xAy) Ve(y A z), on a nearlattice S
(which exists by the upper bound property of 8). In fact
he has shown that (also see lyndon [30] Theorem 4) the
resulting algebras of the type (S ; j) form a variety,
which he referred to as the variety of Join-algebras and

following are its defining identities.

(i) Jd &y, % %] =%

(ii) J {%s 5 =) J Gy % %)

(iii) J (J L, ¥y %), z, J (x, Yy X))

J (xy § (yy 2, ¥), x)

(iv) J (xy ¥y 2) = § (2, v, x).



(v) J G (xy vy, 2),0 (x, v, x)y § (x, v, 2))
= J (x ¥ x)s

(vi)  § (3 (x, ¥, x)y ¥, 2) = § (x, ¥, 2).

(vii) § (x, v, J (x, 2, x)) = j (x, vy, x).

(viii) § (J (x, vy, 3" (w, v, 2)),j (x, v, z),

J v.dlx, v, g))) = 3 Wy Yy & )a

We do not want to elaborate it further as it is

beyond the scope of this thesis.

We call a nearlattice S a medial nearlattice if for
all x, vy, 2z € S, m (x, y, z) = (x Ay) V (y Az) V (z A
x) exists. For a (lower) semilattice S, if m (x, v, 2)
exists for all x, y, 2z € S,'then it is not hard to see
that S has the upper bound properlty and hence is a medial
nearlattice. Distributive medial nearlattices were first
studied by Sholander in [51] and [(52], and recently by
Evans in [17]. Sholander preferred to call these as
median semilattices. There he showed that every medial
nearlattice S can be characterized by means of an algebra
(S ; m) of type <3>, known as median algebra, satisfying
the following two identities

(i) m (a, a, b) = a,
(ii) m (m (a, b, ¢c), m (a, b, d), e)

=m (m (c, d, e), a, b).




Evans in [17) has studied nearlaﬁfices with the
property that for any a , b , ¢ € S, a Vb V c exists
whenever a Vb, b Vc and ¢ V a exists. He referred them
as strong conditional lattices. It is not hard to see

that these strong conditional lattices are precisely the

medial nearlattices.

A family A of a subsets of a set A is called a
closure system on A if

(i) A € A and .

(ii) A is closed under arbitrary intersections.

Suppose B is a sub family of A. B is called a

directed system if for any X, Y € B there exists Z in B

such that X, Yo z. Ifu { X : X ¢ B }) € A for directed
system B contained in the closure system A, then A is
called algebraic. When ordered by set inclusion, an

algebraic closure system forms an algebraic lattice.

A non empty subset H of a nearlattice S is called
hereditary if, for any x € S and Yy €EH, x £y implies
X € H. When S does not have a smallest element we also
regard the empty set {®} as hereditary. Thus, the set
H(S) of all hereditary subsets of S is a complete

distributive lattice when partially ordered by
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set-inclusion, where the meet and Join in H(S) are given

by set-theoretic intersection and union, respectively,

The largest element of H(S) is S, while the smallest

element is {0)},if 0 ¢ S,.and the empty set ,otherwise.



10

2. Ideals of Nearlattices.

A non empty subset I of a nearlattice S is called an
ideal if it is hereditary and closed under existent
finite suprema. We denote the set of all ideals of S by
I(S). If S has a smallest element O then I(S) is an
algebraic closure system on S, and is consequéntly an
algebraic lattice, However, if S does not possess
smallest element then we can only assert that I(S) u {®)
is an algebraic closure system.

For any subset K of a nearlattice S, (K] denotes the

ideal generated by K.

Infimum of two ideals of a nearlattice is their set
theoretic intersection. Supremum of two ideals I and J in
a lattice L is given by I VJ = {x € L : x < i V j for
some i € I, j € J}. Cornish and Hickman in [14] showed
that in a distributive nearlattice S for two ideals I and
Jy, IVJ={iVj:ie€1I, j€J where i V J exists)}. But
in a general nearlattice the formula for the supremum of
two ideals is not very easy. We start this section with
the following lemma which gives the formula for the
supremum of two ideals. It is in fact exercise 22 of

Gratzer [19, p-54] for partial lattice.




11

Lemma 2.1. Let T and J be ideals of a nearlattice §S.
Let Ap=I v JyA, ={ x € S:x £y Vz; y Vz exists and

Yy 2 € An-l },

[14]
o Wl Zssivovens and K = w A, . Then K =I V J.
 n=0
Proof. Since AD - Al c Az Eiwss % 8 i
RN e An Evevvvvne.y K is an ideal containing I and J.

Suppose H is any ideal containing I and J. Of course,
AO = H. We proceed by induction. Suppose Ami C H for some
n 2 1 and let x € A,-Then X €y V z with Y » 2z €A,
Since A | = H and H is an ideal, y V z € H and x € H.
That is A, € H for every n., Thus, K = I V J,. 0

The following result is due to Cornish and Hickman

in [14 ,Theorem 1.1].

Theorem 2.2. The following conditions on a nearlattice
S are equivalent.
(i) S is distributive.
(ii) For any H € H(S), (H] = { h, V ...Vh : h”.
.,,hn € H}
(iii) For any I,J € I(s),
IVJ ={ a Vo....V a 8, 0000y, 8 €1 U J).

n

(iv) I(S) is a distributive lattice.
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(v) The map H ---> (H] is a lattice homomorphism

of H(S) onto I(8) ( which preserves arbitrary

supremum) . a
Observe here that (iii) of above could easily be
improved to (iii)’; for any 1, J € 1(8),

IVI={iVj:ierl y J € J}).,

Let II(S) from henceforth denote the set of all

finitely generated ideals ofs a nearlattice S. Of course,

%(S) is an upper subsemilattice of I(S). Also for any

IR c S, (x],.......,xl] is clearly the
supmremum (xI] Vi s 0 v o \ (x‘}. When S is distributive,
CITRRREE S I I

= ((x] V....Vv (x,1) n ((yy] V...V (y,1)

=V {x_i A v;l for any Xy e ooy X, Yjreeresy, €8
1,J

(by 1. 2.2) and so I{(S} is a distributive sublattice of

I{8), ¢.f. Cornish and Hickman [14],

A nearlattice S is said to finitely smooth if the
intersection of two finitely generated ideals is itself
finitely generated. For example, (i) distributive
nearlattices, (ii) finite nearlattices, (iii) lattices,
are finitely smooth. Hickman in [23] exhibited a

nearlattice which is not finitely smooth.
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By Cornish and Hickman [14]), we know that g

nearlattice § jg distributive if and only if I(S) isg BO.

Our next result shows tLhat the case jg not the gsame with

the modularity,

Theorem 2.3, Let S be a nearlattice, ¢ I(S) ig modular

then s g also modular bul  tLhe converse ‘'is  pot

hecessarily trye,

Proof: Suppose 1(S) is modular. Let 8, b, ¢ € S with c

£ a and b V c exists. Then (c] (a).Since I(S) is

modular. So (a A (b Ve)l=(a] A ((b] V (cl=((a) A (b]) Vv

(cl=((a A b) Viel. Thisg implies a A (b V cl={a Ab) V C

and so S ijg modular.

Nearlattice S of [igure 1.4 shows that the converse

of this result is not true.

° 0
Figure 1.4
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Notice that there (r] is modular for each r ¢ §. But

in I(S), clearly {(0], (a], (aj, vl, (a, b], S} is a

pentagonal sublattice, =

We now give an extension of a well known result of

Lattice Theory in presence of distributivity.

Theorem 2.4. Let I and J be two ideals in a distributive

nearlattice S. If I A J and I V J are principal, then

both I and J are principal.

Proof: Suppose I A J = (xf and T V J = (y].Then by
[14],Theoreml.1] y = i V j for some i € I and J € J.Since
X £yand i £y, x Vi exists by the upper bound property
of S. Moreover x V j € J. Now (y] = 1 V J 2 (x Vi] V J
2 (i] VJ 2 (y]. This implies I V J = (x Vi] VJ. Again,
(x] =T AJ2(xVil AJ 2 (x] implies

IAJ=(xVi]l] AJ. Then from the distributivity of I(S)
two equalities imply that I = (x V i]. That is, I is
principal. Similarly, we can show that that J is also

principal. a

A filter F in a nearlattice S is a non-empty subset

of S such that if fl i fz € F and x € S with fl < x,then

both f, A fy and x are in F. A filter G is called a prime



o
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filter if G + S and atleast one of TR Ca X, is in G

whenever X, Vi s ¢ e X, exists and is in G. An ideal P in
a nearlattice S is called a prime ideal if P + S and
x Ay € P implies x € P or Yy € P.It is not hard to see

that a filter F of a nearlattice S is prime if and only

if S-F is a prime ideal.

The set of filters of a nearlattice is an upper
semilattice; yet it is not a lattice in general, as there
is no guarantee that the intersection of two filters is
non-empty.The join F| \% onf two filters is given by F|
VF,={ses: s> fi A f, for some f, € F, and f, € Fy}.
The smallest filter containing a subsemilattice H of S is
{ s €S : s 2 h for some h € H} and is denoted by [H).
Moreover, the description of the Join of filters shows

that for all a, b € S, [a) V [b) = [a A b).

Now we will give an extension of a well known

Theorem of Lattice Theory due to M.H.Stone; c.f [41].

Theorem 2.5. Let S be a nearlattice. The following

conditions are equivalent:
(i) S is distributive.
(ii) For any ideal I and any filter F of S, such that

I NF =¢@, there exists a prime ideal P 2 I and
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disjoint from F.

Proof: (i) implies (ii). Let T be the set of all ideals
containing I, but disjoint from F. T is non-empty, since

I €T,

Let C be a chain in T and let M = yu { X : X ec }.

Let x, y € M, then x € X, Yy €Y for some x , y € C. Since

C is a chain either X £ Y or Y c X.

Suppose X £ Y. Then both x v ¥ €Y. So if x V y exists,
then x Vy € Y £ M, as Y is an ideal. Now for p < x,

P € X as X is an ideal and p € M. Thus M is an ideal.
Moreover M contains I and F N M = &. So M is maximum

element of C.

Hence by Zorn’s Lemma T has a maximum element P, We
claim that P is prime. If not, there exist a , b ¢ P, but
aAb € P. Because of maximality of P, (P V (a]) N F + 0.
(PV(bl)nNF + ®. Then by [14, theorem 1.1], there exist
elements p V a; € F and q V b, € F for some a; < a and
bj £ b. Then by x = (p V al) A (g Vbl} € F and
P, Q@ €P. Also x = (p A q) V (p A b)) V (al Aq) V

(31 A bl} implies F n P + ®, which is a contradiction.

Hence P is a prime ideal.
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(ii) implies (i). Let x , ¥ , z € S, such that
y V z exists., Then (x A y) V (x A z) £ x A (y V z2).If
(x Ay) VIixAz) <xA(yVaz).
Consider I = ({(x Ay) V(x Az)) and F =[x A (y V z)).
Then I N F = &, so by (ii) there exists a prime ideal

P 2 I such that P n F = &,

Now (x A y) V(x Az) €6 P implies x A y € P and
x ANz € P. Since P is prime, this implies either x € P or
vy V2 € P and so x A (; V z) € P, which is a
contradiction to PN F = ®.Therefore (x A y) V (x A z) =

x A (y Vz) and so S is distributive. 0O

The following corollaries follow immediately from

above theorem.

Corollary 2.6. A nearlattice S is distributive if and
only if for any ideal I and a € S such that a ¢ I, there

exists a prime ideal P 21 and a ¢ P. a

Corollary 2.7. A nearlattice S is distributive if and

only if for a, b € S with a + b there exists a prime

ideal P containing exactly one of a and b. a
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A nearlattice S distributive if and only

is the intersection of all prime ideals

a
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3. Congruences.

An equivalence relation 8 of a nearlattice S is a
congruence relation of the algebra (S; A) such that if
Xi= Y (8),for i=1,2, and both X \% X, and y, vV ¥, exist,

then x, vV Xy =y \% v, (8).

The set c¢(S) of all congruences on S is an algebraic
closure system on S x S and hence, when ordered by set

inclusion, is an algebraic lattice.

Cornish and Hickman [14] showed that for an ideal I
of a distributive nearlattice S, the relation 8(1),
defined by x = y (8(I)) if and only if (x] VI = (y] VI

is the smallest conngruece having I as a congruence

class. Moreover, the equivalence relation R(I), defined

by x = y (R(1)) if and only if, for any s €S, x As €I

is equivalent to y A s € I, is the largest congruence

having I as a congruence class.

Suppose S is distributive nearlattice and x € S. We
will use (% as an abbreviation for 8((x]). Moreover.!x

denoles the congruence, defined by a = b (T” if and only

if a Ax = b A x.
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Cornish and Hickman [14] also showed that for any
two elements a,b of a distributive nearlattice S with a
< b, the smallest congruence identifying a and b is equal
to Ta n Qw and we denote it by ®(a, b). Also, in a

distributive nearlattice S, "they observed that if S has

a smallest element 0, then clearly 91 = 8(0, x) for any
X E S.
(1) Ba \ ﬂ = 1, the largest congruence of S
(ii1) B&FlTa = o, the smallest congruence of S and
(1ii) 8(a, b)) = Ga Vv Tb where a £ b and '

denotes the complement.

Now suppose S is an arbitrary nearlattice and E(S)
denotes its lattice of equivalence relations. For ¢],

®, € E(8), ) Vv ®, denotes their supremum; x = y (¢, V o, )

if and only if there exists x = Z 4 SEREERRTE N such

that zi = z; (ﬂb] or G)z) for i = 1;2y+%;5n;

The following result was stated by Grazter and
Lakser in [20] without proof and a proof, different than
given below, appears in Cornish and Hickman [14] ; but

also see Hickman [22] and [23].
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Theorem. 3.1. For any nearlattice S, c¢(S) 1is a
distributive (complete) sublattice of E(S).
Proof: Suppose 8, ® € c(S). Define b 4 to be the

supremum of ® and ® in ‘the lattice of equivalence

relations E(S) on S. Let x = y (T). Then Lhere exists
X = 2y y2Z)y++y2, = y such that z, | = 2,(8 or ®). Thus, for

any t € 8, 1z, At s z; At (8 or &) as 0, ® € c(8).

Hence, x A t = y A t(¥) and consequently ¥ is a
semilattice congruence. Then, in particular x Ay = x (¥)

and x Ay = y(¥). To show that ¥ 1is a congruence, let
x = y(¥), with x £ y, and choose any t € S such that both

x Vt and y V t exist. Then, there exists Zpy -

ceaZy
such that x = zgy 2, = y and zi.| £ 2 (8 or o).

Put w, = z; Ay for all i = 0,....,n. Then

X = wWyy W Ty, W oW, (8 or ). Hence, by the upper
bound property, Ww; V t exists for all i = 0,....,n

(as wi, t Sy V t) and Wiy Vit= W, Vt (8 or ) for all

i=1,....yn (as B, & € c(S)), i.e., x Vt = y V t(¥).
Then by [15; lemma 2.3] T is a congruence on S.
The;efore. c(8) is a sublattice of the lattice E(S).

To show the distributivity of c(S}, let

X =y (8 n (91 \' 62}). Then x Ay = y (8) and (Eﬁ Vv 82}.

Also, x Ay = x (8) and (8, V 8,). A Engma
7 A il L Ve R
S8 N\
f&( 1S
| = Han | 2
5\ /S
L T, .'-;\;J /
AN
N4
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Since x A y = y {Eﬁ V 92], there exist tD"""‘tn such

that (as we have seen in the proof of the first part),

x ANy = tgy t, =y, ti =t (GI or 92) and

x Ay = ty = t, £y for each i=0,....,n. Hence,
ti = t; (8) for all i=1,.~...,n, and

so t, | =t (8 n 9}} or (8 n QZJ. Thus,

x Ay = y((8n 9]) V (8 n 92)). By symmetry,

x Ay x ((8 n 9]) V(8 n 92)) and the proof completes

by transitivity of the congruences. g

In lattice theory it is well known that a lattice is
distributive if and only if every ideal is a class of

some congruence. Following theorem gives a generalization

of this result in case of nearlattices.,

This also characterizes the distributivity of a

nearlattice, which is an extension of [14, Theorem 3.1],

Theorem 3.2. S is distributive if and only if every
ideal is a class of some congruence.
Proof: Suppose S is distributive. Then by [14,Theorem

3.1] for each ideal I of S, B(I) is the smallest

congruence containing I as a class.
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To prove the converse, let each ideal of S be a
congruence class with respect to some congruence on S.
Suppose S is not distributive. Then by Th.1.1.3 we have
either N5 ( figure 1.2 ) or }k [ figure 1.3 ] as a

sublaltice of S. In both cases consider I = (a] and

suppose I is a congruence class with respect to 8.Since
del. d=a (B). Nowb=bAc=bA (aVec)s=
bA(dVe) =bAc=4d (8), i,e. b = d (8) and this

implies b € I, i.e., b £ a which is a contradiction.

Thus S is distributive, a

To prove (ii) of the next theorem, the following

lemma is needed. This lemma is also an extension of [14

Theorem 1.1]. d

Lemma 3.3. If [Ji} 1 1 € A an indexed set, are ideals of

a distributive nearlattice S, then V Ji = {ji Ny s v Ji
1 n
where the supremum exists for some

il,o---a,i GAaIld JlCJl }-

k k

n

Proof: Let x , y € R.H.S., if x V y exists then obviously

it is also of the same form. That is x Vy € R.H.S. Now

let x € R.H.S and y £ x. Then x = j; Visviw V J; for some
' 1 n
ji € Ji' k =1,2,....,n., So by the distributivity,
k k
vyv=yvy ANx = (y A J; ) Vewass i g Viiy A g ).




24

Since y A ﬁKG Ji» this implies y € R.H.S. Thus R.H.S is
K
an ideal of S. This clearly contains each Ji' Finally,

let H be an ideal containing each Ji' Then for each

il""’i € Aand j. € J., j, V.....V j. € H if it exists
n i i i i
k k 1 n
and so R.H.S £ H.

Therefore R.H.S. = V JP a

We omit the proof of (i) of the following theorem as
it is due to Cornish and Hickman in [14, theorem 3.6],

while (ii) is an extension of a part of their result.

Theorem 3.4. Let S be a distributive nearlattice then,

(i) for ideals I and J, 8 (I nJ)=8(1)n 8(J).

r

(ii) for ideals Ji» 1 € A an indexed set,

8 (V Ji)=V 8 (J; ).

Proof: (ii) since for each i € A, J, e VJ so

i!

e (Ji} - 8 (VJi}' Hence V 8 (J;) 28 (V Ji). To prove the

reverse inequality, let X £yand x =y 6 (V Ji]. Then

(x]1 V (V Ji) = (y] V {VJi), and so y € (x] V (Mﬁ). Then
by the above lemma, y = x V ji Vs s o N ji
1 n
for some il,..,in € A. Then x = x V ji e (J-l )
1 1
sx'VjiVji 8(J, )
1 2 2
= . = X V ‘jl V....V Jl = Y B (Ji)o
] n n
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1

Thus X v

k

<2

2] {Ji} cV e (Ji]' This proves (ii). 0O
1 k
Following corollary is an immediate consequence of

above theorem which is also a part of [14, Th.3.6].

-

Corollary 3.5. The mapping I--->8(1) is a homorphism
from the lattice of ideals to the lattice of

congruences. U

We now turn our attention to the permutability of
the congruences in a distributive nearlattices. Two

congruences 8 and ¢ in a nearlattice S is called

permutable if for any x, y, z € § with x = vy (8) and
y = z(®), there exists t € S such that x = t(@®) and
t = 2(8). It is well known that in distributive lattices

the congruences of the form 8(I) and 8(J) always permutes
for any ideals I and J. Unfortunately we are unable to
establish such a result in distributive nearlattices. But
the exislence of medians plays a fundamental role in
establishing such a result which is given in next
theorem. Recall that a nearlattice S is medial if

m(x, ¥y, 2) = (x Ay) V(iyAz)VI(zAx) exists for all
X, ¥,2 € S. It is already mentioned in section 1. This is

equivalent to the fact that for all x , ¥y , z € S,
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x Vy V 2z exists whenever x V Y, y V z and z V x
exist.
Theorem 3.6, For any ideals I and J of a distributive

medial nearlattice S, 8(F) and 8(J) permute if i V j

exists for all i ¢ 1,j ¢ J.

Proof: Suppose x = y 8(1) and y = 2 8(J). Then

(x] VI = (yl VI and (y] VJ = (z] V J, and so

n

x (x Ay) V(x Ai) and z = (y A z) V(z A j) for some

ie€el, j €J. Consider

P=(xAyAz)VI(xAi)V (zAj). This element exists
as i V j exists and S is medial. Now,
zANJj=xAyAjeJ) and'y = 2 8(J).

Imply p =(x A y) V(xAi) VIxAyAj) 8(J)

=(x Ay) V(x A i)= x. Again
x A i

y Az Ai®8(I) and x = y 8(1) imply that

ol

=y Az) VyAzAi)V(zAj) 8(1)

(y Az) V(z A j) = 2.
Therefore, 8(I) and 8(J) permute. [J
Thus we have the following corollary.

Corollary 3.7. Let S be a distributive medial

nearlattice. Then for a, b € S, 9; and Bb are permutable

if and only if a V b exists. ad
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We conclude this section with ‘the following

corollary which is an immediate consequence of above

corollary

Corollary 3.8. The following conditions on a

distributive medial nearlattice S are equivalent.

(i) S is a distributive lattice.

{ii). For any two ideals J and K, 8(J) and 8(K)

are permutable.
(iii) For any s,L c S, 95 and Bt are permutable. [
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4. Semiboolean algebras.

An interesting class of distributive nearlattices is

provided by those semilattices in which each principal

ideal is a boolean algebré. These semilattices have been

studied by Abbott (1], [2], [3] under the name of

semiboolean algebras and mainly from the view of Abbott’s

implication algebras ( an implication algebra is g

groupoid (I;-) satisfying:

(i) (ab) a = a,
(i1) (ab) b = (ba) a,
(iii) a (be) = b (&e).

Abbott shows in (1, PP. 227-236] that each
implication algebra determines a semiboolean algebra and
conversely each semiboolean algebra

determines an

implication algebra,

Following result gives a characterization of
semiboolean algebras which is due to Cornish and Hickman
in their paper of weakly distributive semilattices [14]
( such semilattices were first studied by Balbes [5]

under the name of pPrime semilattices),
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Theorem 4.1, [ Cornish and Hickman [14, theorem 2.2]. A
semilattice S is a semiboolean algebra if and only if the

following conditions are satisfied.

(i) S has the ubper bound property.

(ii) S is distributive.

§ (iii) S has a 0 and for any x € S,

(x]t ={y€esS: yAx=01) is an ideal

and (x] V (x]‘ = B 0

ﬁ A nearlattice S is relatively complemented if each

interval [x , y¥] in S is complemented. That is, for

i X £t =y there exists t° in [x,y] such that t A t’ = X

| and t V t =y,

A nearlattice S is called sectionally complemented

if [0 , x] is complemented for each x € S. Of course

B ey

every relatively complemented nearlattice § with 0 is
sectionally complemented, It is not hard to see that S is
semiboolean if and only if it is sectionally complemented

| and distributive. We denote P(S) by the set of all pPrime

ideals of S.
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There is a well known result in Lattice Theory due
to Nachbin in 1937. c¢.f. [19, Theorem. 22] that a
distributive lattice is boolean if and only if its prime
ideals are unordered, Following theorem is a
generalization to this result which is due to Cornish

and Hickman in [14].

Theorem 4.2. For a distributive nearlattice S with 0,

the following conditions are equivalent.

(1) S is semiboolean.
(ii) .%(S] is a generalized boolean algebra,
(iii) P(S), the set of all prime ideals is

unordered by sef inclusion. d

Now we extend the above result. For this we need a

lemma which depends on theorem 1.2.5, the separation
properties of nearlattices. This lemma was proved by
Cornish in [8] for lattices. But in case of nearlattices
the proof is bit Lricky.In Cornish's proof, he has used
the ideal that if T is a sublattice of a distributive

lattice, then the ideal generated by T is exactly same as

the hereditary subset generated by T. But this is not

true in case of nearlattices.
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Figure 1.5

In Figure 1.5, observe that for the subnearlattice

T = { dyb,f ) of distributive nearlatiice §, hereditary

Bubset generated by T is { 0, a,b,c,d,l ) but (T] = 8,

v

Lemma 4.3. If S] is a subnearlattice of a distributive

nearlallice S and P, is a prime ideal in S;» then there

exists a prime ideal P in S such that m = SI n p.

Proof. Let I be the ideal generated by Piin S. Then

I = (H]) where H is the hereditary subset of § generated
by P,. Suppose x € 1 n (Sl - PI}' Then x € 1 and
X € Sl - P]. Then by Th.1.2.2,

x = hI V...V hn for some hP""hn c . Agnin, hi c H

implies h, € t. for some t. € P, i=1,2,...,n. Then
i i i ]

x = (x A h) Vi...V (x A h ) < (x A L) V..o Viix A t)
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(this exists by the upper bound property) < x. Thus,

X = (x A tb) VooV (x A tn) € P; which gives a
contradiction. Therefore, I 0 (Sl_ Pl) = ® . Then as SI_P]
is a filter in Sl’ InN [S]:PI) = ¢® where [SI_PI} is the

filter generated by SFP] in S.Then by Theorem 12055
there is a prime ideal P in § such that I © P and

Hence P] = Pn Sl' a

Theorem 4.4, Let S be a distributive nearlattice, S is

relatively complemented if and only if P(S) is unordered.,

Proof: Let S be relatively, complemented and P,Q € P(S)
with P € Q. Then there exists qQ € Q such that q ¢ P, Also
there exists r € S such that r ¢ Q, as @ is prime.
Consider the interval [p A q Ar ,r] for some P € P, Then
P AN dad ANr £ q A r < r, Since S 1is relatively
complemented, there exists t ¢ [P Aa Ar, r] such that
aATrAt=pAqATr €P and t V(aAr) =r, As P is
prime and q A r ¢ P, so t e P. This implies
tV(aAr) =r € Q, which is a contradiction. Hence P(S)
must be unordered.

Conversely, Suppose P(S) is unordered. Consider
[a,b]. Let P, Q, be two prime ideals of (a,b]. Then by

above lemma there exist prime ideals P and Q of § such
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that P] = PN [a,b] and Ql = QDN [a,b]. Since P1 and Ql
are prime, b ¢ P ,b ¢ Q. Also P, Q are unordered. Then
Pland Qiare also unordered. If not let ﬂ c QP Then for
any x € P, (x Ab) Va exists by the upper bound property
as X A b, a £band (x Ab) Vace P,. Then

(x Ab) V ac€ Q and so x A b € Q. Since b ¢ Q and Q is
prime, this implies x € Q. This shows that P c Q which is
a contradiction. Thus, P, and Q must be unordered. Then

by [19,Theorem 22] [a, b] is complemented. Therefore S is

relatively complemented. h

We conclude this chapter with the following result
which is due to [14, Theorem 3.6]. This generalizes a

well known result of Hashimoto in Lattice Theory [19,

Theorem 9.8].

Theorem 4.5. For a nearlattice S with 0, S is semiboolean

if and only if I(S) is isomorphic to c(S). a

Corollary 4.6. For a distributive nearlattice S with 0,

following conditions are equivalent

(1) S is semiboolean,

(ii) For all ideals I, ®(I) = R(1). 0O
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CHAPTER —2

SKELETAL CONGRUENCES ON A DISTRIBUTRIBUTIVE NEARLATTICE

1. Introduction
Throughout this chapter we will be concerned with a
distributive nearlattice S, with -0 as its shallest
element. Skeletal congruences on distributive lattices
have been studied extensively by Cornish in [11]. For any
congruence 8 of c(S), B‘denotes the pseudocomplement of
8. The existence of 8* is gJaranteed by the fact that
c(S) is a distributive algebraic lattice.The skeleton

Sc(S) = {B € c(8): B = ¢* for some
d € c(S)} = (B € c(S): B = 9”}. For a distributive
nearlattice S with 0, I(S) is pseudocomplemented. The
pseudocomplement J* of an ideal J is the annililator
ideal J' = {x € S: x A j = 0 for all j € J}. We also

denote KSc (S) = {Ker® : 8 € Sc(S)}.

The kernel of congruence 8 is

=
o
|-1

@
I

{x €6 8: x

m

0(®)}. Of course, ker®(J) = J. For
a, b €8, <a,b> denotes the relative annihilator

{x € S: x Aa < b}, In presence of distributivity, it is
easy to show that each relative annihilator is an ideal.

Also note that <a, b> = <a, a A b>. For relative
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annihilator ideals of a distributive lattice we refer the

reader to see [33].

A distributive lattice L  with 0 is called
disjunctive (weakly cdhplemented and sectionally
semicomplemented are alternative Lerms) if for 0 < a < b

there is an element x € L such that x A a= 0 and

0 < x £ b. For details on these lattices we refer the

reader to consult [11],[26] and [50].

-

In section 1 we have studied skeletal congruences
for distributive nearlattices. We have shown that for any

BEC{S)p X

m

y(B”{x, y € §) if and only if for each

a, b € S with a <band a = b(B8) , (x A b) Va =
(vy Ab) Va. We have also shown that for any ideal J both

2] {J}t and 8 (J‘) have J‘ as their kernel. Moreover an

ideal J is the kernel of skeletal congruence if and only
if it is the intersection of relative annihilator ideals.

In section 2, we introduce the notion of disjunctive
nearlattices. Then we give several characterizations of
disjunctive nearlattices and semiboolean algebras using
skeletal congruences. Finally we show that a distributive
nearlattice is semiboolean if and only if 8&——>ker®

is a lattice isomorphism of Sc(S) onto KSc(S) whose

inverse is the map J — > 8(J).
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2. Skeletal congruences of a distributive nearlattice.

Following theorems give a description of skeletal
congruences of a distirbutive nearlattice which also
extend several results *due to Cornish [11] for

distributive lattices.

Theorem 2.1. For a distributive nearlattice S with 0,

the following conditions hold.

(i) For a £ b (a, b €8S),x =y (B (a ,b)’") if and
only if (x Ab ) Va= (y Ab) Va, where 8(a ,b)’ is the

complement of 8(a, b).

(ii) For any 8 € C(S),'x y (8‘) (x,y € 8) if and

only if for each a,b € S with a £ b and a

b(8),
(x Ab) Va=(y Ab) V a,

Proof: (i) Define a relation 8 on S by x = y(8,) if and
only if (x Ab)Va=(yAb)Va

(since a < b,(x Ab) V a and (y A b) V a exist by the
upper bound property of S). Here, 8, is obviously an
equivalence relation. Now, let x = y (8) and t € S.
Then,(x A b) Va = (y Ab) Vaandso [(xAt)Ab]Va
= [(x Ab) Val A L(t Ab)Val

= [y Ab) Val] A[(t Ab) Val = [(y At) AblV a.
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This implies x A t = y At (81}. Again, if x Vt, y V t

exist, then [(x V t) A bl V a

[(x Ab) Va ]l VI[(tAb)Va]

[(y Ab) Va]lVI[(LADb)Val]l
=y Vt) Ab]lVa. ie. xVt=yVt (8).
Thus, 81 is a congruence. Clearly, ea and Tb c Bl. Hence

8, VY cé.

-

Conversely, x = y (GH implies
x 2 x A b Tb = 5y A bBlEy{Tb} i.e. x = y HE)a Vv Yh].
Therefore, 8, = 8, V ¥ = 8(a,b)’ .

(48] Bings @ =W {8 lakls o d b, ns 8],
8 =n {8 (a,b)': a < bja = b(8)). But as c(S) is

distributive and 8 (a,b) is complemented, Q{a,b}* =

B(a,b)” and hence the result clearly follows from (i).

Theorem 2.2. Let S be a distributive nearlattice with 0.
Then for any 8 € c(S). x = ¥y (8‘} if and only if
8(0 ,x) N ® = 8(0, y) n 8 if and only if

T ne-= T, n e.

Proof: Define a relation ® on S by x = y (®) if and only

if Tx n 6 = Ty N 8. From Papert [46], & is the

pseudocomplement of 8 in the lattice of congruence of the

semilattice (S; A). We now show that ® is a congruence.

a
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Suppose x = y(®) and x V t, y V t exist for some t € S.
Then, because of distributivity of S, Y:Vt= T‘ n !t and
T;Vt = Tr ne. Thus.‘fI ne = !I N ® implies

Tx?t n e =ﬂ yt N 8 and hence x V t = y V.t (®). This

implies ® = 8" in c(s). ¥

Finally we know that Q‘and ﬂ are the complementary

and c(S) is distributive. Now, in a distributive lattice

L, if a”, b" are the complements of a and b respectively

then obviously, a A c = b A ¢ if and only if
a" Ac=b" A c for any ¢ € L. Thus, x = y(® = B*) if and

only if 6,06 =8 ne. 0

Theorem 2.3. For a distriﬁutive nearlattice S with 0,

the following conditions hold.

(i) For any ideal J, x =y (8(J)') (x, vy € ) if
and only if (x] n J =(yl nJ, i.e., if and only if
XN Jj =y ANj for all J € J.

(ii) For an ideal J, both B(J)t and B(J’) have J' as

their kernel.

Proof: (i) By theorem 3.4 of chapter 1, for any two
ideals J, and Jé of S, @ (Ji n JZ) = G(Jl) n Q(Jz). Thus,

i% NB(J) =8((x])n B(J) = 8((x] N J). Hence, by
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theorem 2.2.2, x = y (8(J)") if and only if

B((x] nJ) =8yl nJ), i.e., if and only if

(x] n J

n

(yl] nJ, i.e if and only if x A j = y A j for
all j € J.

(i1) x € ker(8(J)') if and only if x = 0 (8(J)), fos

if and only if x A j = 0 for all J €J (by (i)), i.e., if
and only if x € Jt. Thus, ker {B(j})* = J'. 0
Theorem 2.4. In a distributive nearlattice S with 0,

the following conditions hold.

(i) An ideal J is the kernel of a skeletal
congruence if and only if it is the

intersection of relative annihilator ideals.

(ii) Each principal ideal is an intersection of

relative annihilator ideals.

Proof. (i) For any 8 € c(s), 8' = V (8 (a, b):

a=b (8) ). If 8 is skeletal, then

Bzﬁ“ =N {8 (a, b}‘: a £ b ; a = b(G‘} } and hence

ker® = N {ker(® (a, b)t} ' a £ b; az=b (et)}

=N {<b, a> : a < b b (8)) by (i) of theorem

m

;oa
2.2.1, and this completes the proof.

(ii) Since Qa: B ((a]) is complemented, (a] is the
kernel of a skeletal congruence and hence the result

follows from (i). a
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3. Disjunctive nearlattices and semiboolean algebras.

A non empty subset T of a nearlattice S is called
large if x At = y At for all t € T, (x, ¥ € S) imply
x =y, while T is called joln-dense if each z € S is the
join of its predecessors in T. Following result shows
that two concepts coincide when T is a .convex
subsemilattice of a distributive nearlattice and hence an

ideal of a nearlattice is large if and only it is

join-dense.

Lemma 3.1. A convex subsemilattice J of a
distributive nearlattice S is large if and only if it is

join-dense in S.

Proof. Obviously, every join-dense subset of § is
large in S. Thus, let J be large in S. Suppose x € S and
{ji] are its predecessors in J. Let t be an.upper bound

of {ji}. Clearly, for any j ¢ J, Ji AJj £ x Aj < j and
so x A j € J by the convexity of J. Thus, x A j = Jy for
some k. Hence, x A j £ t for all j € J ; it follows that
xAj=x At Aj for all j € J. Since J is large,

X N B = %, Hiesy % £ & This implies that x is the

supremum of {j,}. a
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Now, we give a characterization of join-dense ideals

in terms of skeletal congruences.

Lemma 3.2. An ideal J of a distributive nearlattice
S is join-dense if and only if 8(J) is dense in c(S),

that is G(J)t = o, the smallest element of c(S).

Proof. Suppose J is jofn—dense. Then by lemma 2.3.1,

'
J is large. Let x y (8(J)), then by 2.2.3,
xAj =y ANj for all j € J. This implies x = y as J is

large. So 8 (J)‘ = ®. That is, 8(J) is dense.

Conversely, let 8 (J)* = @. Suppose x A j = v A j
for all j € J. Then again b; theorem 2.2.3,

X =y 8 (J)* (=0) and so x = y. This implies J is large

and so by lemma 2.3.1, it is join-dense. a

Recall that a distributive nearlattice S with 0 is

disjunctive if 0 £ a ¢ b implies there is an element

x € S such that x A a = 0 where 0 ¢ x < b,

From section 3 of chapter 1 we know that for an
ideal I of a distributive nearlattice S, the relation
R(I) defined by x = y R(I) if and only if for all

r €S, x Ar €1 is equivalent to y A r € 1 is a
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congruence of S. Moreover, it is the largest congruence

of S containing 1 as a class.

Proposition: 3.3 For an ideal I of a distributive

nearlattice S, S/R(1) is disjunctive.

Proof. If 1 is a prime ideal, then S/R(I) is a two
element chain {I, S-1} and so it is disjunctive (in facf,

Boolean).

Suppeose 1 is not prime, consider the interval

I c [x] € [y] in S/R(I), where x, v € S,

We claim that there exidts at least one t ¢ I, such
that t A x € I. If not, then for all t ¢ I, x At ¢ I and
since [x At] c [y At]l, soy At ¢ I. This implies that
x = y R(I) and so [x] = [y], which is a contradiction.
Moreover, there exists a t ¢ I such that x A t € I but
y ANt ¢ I. For otherwise x = y R(I) would lead to another
contradiction. Put s = y A t. Then I <« [s] & [y] and
[x] Als] = [x] Ay At]l] = Ix Ay At]l] =1 and this

implies that S/R(I) is disjunctive. 0O
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Following theorem gives characterizations of
disjunctive nearlattices.
Theorem 3.4. For a distributive nearlattice S with 0,
the following conditions are equivalent, '

(i) S is disjunctive.

(ii) For all a € S, (a] = (a]“.

(iii) R((0]) = w.
Proof. (1) implies (ii). Suppose S is disjunctive.

« t

For any a € S. Obviously, (a] © (a]t. To prove the

reverse inequality, let x ¢ fa]“. If x ¢ (al, then
x § aie., x + x A a. Then 0 £ x A a < x. Since S is

disjunctive there exists t with 0 ¢ t < x such that

t AxAa=2013.e, t A a = 0. This implies t € (af
; t . . $
Since x € (a] ', so x At = 0, i,e. t = 0, which gives a
contradiction. Hence x € (a]. In otherwords (a] = {a]"
for all a € S.
(ii) implies (iii). Suppose (ii) holds and

m

X y R((0]) for some x, ¥y € S. If x ¥ y, then either

x Ay < yor x Ay < x. Suppose x A y < y. Then
(y]* c (x A y]t. Since (a] = {a]” for all a € S,
(y}* + (x A y]t. Thus, {y]’ c (x A y]*. So there exists

t € (x A y]* such that t ¢ {y]’. Then t Ax Ay =0
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but t Ay 0, which implies x Ay £y R((0]1), and so

x # y R((0]), which is a contradiction. Therefore,

R((0]) = w.

(iii) Implies (i). *Suppose R((0]) = o.
Let 0 € x < y (x, vy € S). Since R((0]) = o, there exists

t € S such that t A x = 0 but t A ¥ + 0. For otherwise

m

X ¥y R((0]), which implies x = y and there 1is a

contradiction to our assumption. Thus we have

0 <t Ay £y, such that x At Ay = 0, and so S is

-

disjunctive. a

In chapter 1, we have already denoted the set of all
finitely generated ideals of a nearlattice S by If(S). of
course IfUS} is a Jjoin semilattice of I(S). In [23]
Hickman exhibited a nearlattice S for which If(S) is a
meet semilattice. But in [14] Cornish and Hickman have
shown that i1f S 1is distributive then If{S) is a
distributive sublattice of I(S), the lattice of ideals.

Following lemma was suggested to the author by supervisor

Dr. Noor.
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Lemma 3.5. A distributive nearlattice S with 0 is

disjunctive if and only if II{S} is disjunctive.

Proof. Let S be disjunctive and L
{al,. SR N W ,ar] e (bl" SR R % ;bL] in If(S).

Choose x € (b].......,bt] - (al""""ar]'

Then (a, A Xyeorenoya A x] = {al,......,ar] n (xj c (x].

Now, by the upper bound property of §,
“ﬂ Ax) Vo.o.o.... V (a A x) = e (say) exists and
0 £ e < x. Since S is disjunctive, there exists d € S

such that 0 = d A e and 0 < d £ x. Thus (d] n (e] = (0]

and so (d] n {al, ...... ,ar] N (x] = (0]. This implies
that (4] n {av .....

o}
1"

’ (0]. Of course,

(0] + (d] & (x] & (bj,......,b] and hence, I, (S) is

disjunctive.

Conversely, let Ir(S) be disjunctive and suppose 0
fc<dj; c,de€S. Then, (0] £ (c] £ (d]. Since If(S) is
disjunctive, there exists {al, ...... ya ]l in Ir(S) such

that (c] n (al, ...... ya ]l = (0], where

(0] + {al, ...... ,z%] c (d]. Now, by the upper bound
property of S, a Voo,V a, = f (say) exists. Thus, we
have ¢ A f = 0 and 0 < f < d, and which proves that S is

disjunctive. ad
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The following theorem is an extension of Theorem.

2.1, of Cornish [11].

Theorem 3.6. In a distributive nearlattice S with 0,

the following condilions dre equivalent.

(1) S is disjunctive.
(ii) Each dense ideal J (i,e. J' = (0] ) is join-
dense.

(iii) For each dense ideal J, BlJt} = SEJJR

(iv) For each dense ideal J, 8(J%) = 6(J)".
Proof. Since J’ = (0] if and only if J" = S and J 1is
Join- dense if and only i% B{J}‘ = ©, obviously (ii),

(11i1) and (iv) are equivalent.

(i) Implies (ii). Suppose J is a dense ideal and

xANJj=yANJj (x, y €8S) for all j € J. If x + y, then
either x A y < x or x ANy < y. Without loss of
generality suppose x A y < x., Since S is disjunctive,
there exists a (+ 0) € S, a £ x such that a A x Ay = 0.
Then, 0 = a AxAyAj=aAxAj for all j € J.

Hence, a A x = 0 as J is dense ; i.e., a = 0 which is a

contradiction. Thus J is join-dense.
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(ii) implies (i). For any a € S, (a] V (a]l is
always a dense ideal. Thus, with (ii) holding, (a] V (a]‘
is join-define. Then by lemms 2.3,%, o= 8 (lal ¥ (ai%
= (8(a] V 8(alh' = 8((al)! n B((a))'. Thus,
8((&]‘]t = 8({3])“ = Br Taking the kernel on both sides
we have (a]" C (a] by using Th.2.2.3 (ii). It follows
that (a] = {a]” and hence S is disjunctive. 0O

Next theorem is an extension of 2.2 of Cornish

[11]. We omit the proof as this can be proved exactly in

a similar way the corresponding result of [11] was

proved.

Theorem 3.7. For a distributive nearlattice S wih 0,

the following conditions are equivalent.

(1) S is disjunctive.

(ii) For each congruence o, ¢‘ = B{ker@)'.

(iii) For each ideal J, R(J)' = 8(J)'

(iv) For each congruence &, ker(¢*) = (ker¢}t.

(v) For each congruence &, kert¢”) = (ker¢}”.
(vi) The kernel of each skeletal congruence is an

annihilator ideal. O
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According to section 4 of chapter 1 a nearlattice
S with O is called semiboolean if it is distributive and
[0, x] is complemented for all x € S. By 1.4.5 we know
that the lattice of all %deals of a nearlattice is
isomorphic Lo the laltice of congruences if and only if
S is semiboolean. Using this result we get the following

theorem, which is an extension of 2.3 of (11).

Theorem 3.8. The following conditions are equivalent
for a distributive nearlattice S with 0.

(1) S is semiboolean.

(ii) For each congruence o, &f = 8(ker @‘).

(iii) For each ideal J,,8(J') = 8(J)".

(iv) For each ideal J, 8(J") = @&(a)".

Proof. (i) implies (ii). Suppose S is semiboolean.
Then by 1.4.5 I(S) is isomorphic to c(S). Hence for any

congruence ¥, ¥ = @(ker¥). Taking ¥ = @h we see that

(i) implies (ii).

(ii) implies (iii) follows from Th.2.2.3 (ii) and

(iii) ===> (iv) is obvious.

(iv) implies (i). Suppose (iv) holds. Put

J =(a] V (a]*. Then J* = (0] and so i S.
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Then by (iv), 8((a] V (al")® = 1. It follows that

ad £,k LI tt
B8((al) N B((al]') = @ and so B((al ) © B8((a]) =
Ba” = Ga. Since ker'l'a = (a]‘, we have 8((&]'] c !a

n
e #]

and so 8, = 8'" c 8 ((al)'. Thus 8 ((al)' = 8,. But
(a' = (a1™ . Now, by (iv}, 8 ((a])" = 6 ((a)") =

8 ((al'). But 8' = 8((al")", and so 8 ((al') = 8' = ¥..

2 '

Now if 0 € a £ b, then a = b (Ta) and so *

a=b (8((al')). Then (al V (al' = (b] V (a]' and so

b =aVj for some j € (a].. Then j A a = 0, and so

[0, bl is complemented. Hence S is semiboolean. a
The skeleton Sc(S) = {8 € c(S) ; 8 = o' for some

® € c(S)} = (B € c(S) ; B8 = d’} is a complete Boolean

lattice. The meet of a set'{Bi} C Sc(S) is N Gi ; as in
c(S), while the join is given by ¥ Qiz(V 81)" = (N 9-1’)t
and the complement of 8 € Sc(S) is 8'. The fact that
Sc(S) is complete follows from the tact that Sc(S) is
precisely the set of closed elements associated with the
closure operation 8 --> 8" on the complete lattice c(S)

and Sc(S) is Boolean because of Glivenko's theorem, c.f.

Gratzer [ 19. Th.4,p.58].

The set KSc(S) = {ker® ; ® € Sc(S)} is closed under

arbitrary set-theoretic intersections and hence is a

complete lattice. We will use the symbol Y to denote the
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join in Sc(S) and in KSc(S). We also denote

A(S) = {J: J € 1I(8) ; J = J”}, which is a complete

Boolean lattice.

The following theorems are extensions of 2.4 and 2.5

of Cornish [11] to nearlatltices.

Theorem 3.9. For a distributive nearlattice S with 0,
the following conditions are equivalent.
(i) S is disjunctive:
(ii) The map 8 ----> ker8® of Sc(S) onto KSc(S) is
one-to-one.
(iii) The map 8 ----> ker8® of Sc(S) onto KSc(S).
(iv) The map 8 ----> ker® is a lattice isomorphism

of Sc(S) onto KSc(S), whose inverse is the map

J ---> 8 (0.

Proof. (i) implies (iv). Suppose S is disjunctive.
Then by Th.2.3.7 (vi) KSc(S) = A(S). By 2.3.7 (ii),
o = ¢“ = B(ker@)H for any ® € Sc{S). Thus, the map

8 ---> ker® is one-to-one. Clearly it preserves meet.

Now using 2.3.7 (iv), for 8, ® € Sc(S), ker(8 X @)




= ker((8 n o)) = (ker(8' n ¢')) = (ker® N ker o) =

{(kere}*ﬂ (ker @)*ﬁ = ker® Y ker® as KSc(S) = A(S). Thus

8 ---> ker8 is a lattice isomorphism. Moreover, by 2.3.7,
ker(8(0)") = (ker8(0)™ = 0" = J for all J € A(S) =
KSc(S), while 8(kerd)" = 0" = o for all @ e sc(s).
Therefore J --->8 (J)tt is the inverse of 8 ---> ker8.

(iv) implies (ii) is trivial.

(ii) implies (iii). If O ---> ker® is one-to-one,
then it is a meet isomorphism of the lattice Sc(S) onto
the lattice KSc(S), then of course it is a lattice

isomorphism and so (iii) holds.

Finally we shall show that (iii) implies (i). If
(iii) holds, then of course 8 ---> ker8® is a lattice
homorphism of Sc(S) onto KSc(S). Hence KSc(S) must be
Boolean. Since for all a € S, (a] = ker(Q“. the map
a ---> (a] embeds S, as a join-dense subnearlattice, into

the complete Boolean lattice KSc(S). Therefore S must be

disjunctive. 0O

We conclude this chapter with the following theorem

which is also a generalization of [11. Th. 2.5].




52

Theorem 3.10. A distributive nearlattice S is

semiboolean if and only if the map ® ---> kerB is a

lattice isomorphism of Sc(S8) onto KSc(S), whose inverse

is the map J ---> 0 (J).

Proof. If S is semiboolean, then of course it is

.

disjunctive and so by Theorem 2.3.9 the inverse of

t tt 131
8 ——-> ker® is J —--> 8(J)*". Now by 2.3.8 8(J) = 8(J )
for any J € KSc(S). Since by Th. 2:3.7, 3 € A(S) so

7 = 3% Thus J ---> 8(J) is the inverse.

Conversely, suppose J ---> 8 (J) is the inverse of

8 --> ker8®. Then by 2.3.9 S is disjunctive and so

ker(8 (K]") = (ker® (K)}H — K” for any ideal K. This

implies K" e KSc(S). Then using the description of the

inverse, © (K"} = B(ker(® (K)"}} = 8 (K)“. Hence by

2.3.8, S is semiboolean. O
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CHAPTER — 3

NORMAL: NEARLATTICE

l.Introduction.

Normal lattices have been studied by several authors
including Cornish [8] and Monteiro [34] [35]; while
n-normal lattices have been studied by Cornish [9] and
Davey [16].0n the other hand Cignoli in [6] and [7]
introduced the notions of k-normal and k-completely

normal lattices.

A distributive lattice L with 0 is called normal if
each prime ideal of L contains a unique minimal prime
ideal. Equivalently, L is called normal if each prime
filter of L is contained in a unique ultrafilter (maximal
and proper) of L. L is called n-normal if each filter is

contained in at most n ultrafilters of it.

In this chapter we have defined normal and n-normal
nearlattices in the same manner. Then we have generalized
several results of Cornish [8] [9] and Davey [16].In
proving some of the results we have used principle of

localization [Th. 2.6], which is an extension of lecture
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note of Dr. Noor on localization. For some ideas on
localization see section 5 of Cornish [13].This technique

is very interesting and quite different from those of the

previous authors.



2. Normal nearlattices.

Throughoul Lhis chapter all nearlattlices are assumed

to be distributive.

For an ideal J in a nearlattice S with 0

i* = {yesS: yAx =0 for all x € J }.
Ideals 1T and J of a nearlattice S are said Lo be
comaximal if I V J = S.

If P is a prime ideal in a nearlattice S with O then
O(P) is used to denote the ideal { vy €S ; ¥y A x = 0 for
some x € S-P }. Clearly O(P) £ P.

A prime ideal P is said to be a minimal prime ideal
belonging to ideal I, if (i) I £ P and (11) there exists
no prime ideal @ such that d + P and I ©€ Q@ © P. 1In
lattice theory some authors called it minimal prime

divisor of T

A minimal prime ideal belonging to the zero ideal
of a nearlattice with O is called a minimal prime ideal.
For the Lheory of minimal prime 1ideals in a general
setting see Cornish [12].

Lemma 2.1. Let P be a prime ideal in a nearlattice S
with O. Then each minimal prime ideal belonging to O(P)
is contained in P.

Proof: Let Q be a minimal prime ideal belonging to Q(P).
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If Q ¢ P then choose y € Q-P. Then from [ 27, lemma 3.1]
and by the distributivity of S it follows that

vy AN z € O(P) for some z ¢ Q. Hence y A z A x = 0 for a
suitable x ¢ P. As P is prime, y A x ¢ P so

z € O(P) £ Q. This is a contradiction. Hence Q £ P. 0
Proposition. 2.2. If P is a prime ideal in a nearlattice
with 0, then the ideal O(P) is the intersection of all
the minimal prime ideals contained in P i,e

0(P) =N {Q ; Qe P, Q is a.minimal prime ideal }.

Proof. If Q is prime and Q = P, then
0(P) £ 0(Q) cQEeP. Again, if Q is a minimal prime ideal

belonging to 0(P) then Q@ is a minimal prime ideal inside

P by the lemma 3.2.1.

Thus,{ @ : Q is minimal prime and Q c P } = { Q@ ; Q
is minimal prime ideal belonging to O(P) }. Since L is
distributive 0(P) is the intersection of all minimal

prime ideals belonging to O(P) ( c.f. corollary 1.2.8 )

this establishes the proposition. a

Let F be a filter of a distributive nearlattice S.
It can be easily shown that the relation TFon S, defined

by x = y (TP) (x , ye S ) if and only if x Af =y A f,
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for some f € F is a congruence on S. Let us denote S/¥(F)
by S (the quotient lattice) Then TF b §=--=>5; is the

natural epimorphism.
Lemma 2.3. SF igs a distributive lattice.

Proof: Clearly,Sp; is a lower semilattice. Now,,let

p, @ € SF' Then there exists x, y € S such that

p = YF (x) and q = TF (y), as TF is an epimorphism.
Clearly, x = x A f (%) and y = ¥y AT (TF) for any

f € F.

So, TF (x) = TF (x A f) and ‘PF (y) = TF (y A £).
Now, (x A F) V (y A f) always exists in S, due to the
upper bound property of S. Thus, p V q exists. Moreover
quzTF(foIVTF{yAf)=TF{(fo}V{yI\f)}.
Hence SF is a lattice. The distributivity of SF clearly

follows from the distributivity of S, a

Lemma 2.4. Let F be any filter of a distributive
nearlattice S. For any ideals I and J of S, the following
hold.
(i) T (1) is an ideal of S
(ii) TF (1) is a proper ideal ( i.e. § whole

lattice ) if and only if I N F = .
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(11i) ¥ (1) V % (J) = B (I V J).

(iv) YF (1) n ¥, (J) = ¥ (I n J).

Proof: (i) For i, J € I, TF (i) V TF ()
¥ (A VT (GAD) =% [ (LA VI(GAL ] for
any f € F. Thus, TF(I} is closed under finite supremum.

Now, suppose t € S, and t = TF (i) for some i € I. Then,

£, = TF (x) for some x € S, and t = TF (x) A YP (1)

= TF (x A 1) € TF (I). Therefore, TF (I) is an ideal of

{(ii) If TF (I) is proper , then there exists
x € S, such that TF (x) does not belong to TF (1).
Suppose 1 N F + ® and r € I N F. Since r € F,
x = x A r{TF}. But x A r € I, and this implies

TF (x) € TF (I), which is a contradiction. Hence,

Conversely, if TF (I) is not proper, then for any
f € F, TF (f) € T? (1). Thus, TF (f) = YF {i) for some
i € I. Then, f A f} =1 A fl for some f, € F and this

implies f A f, € I nF, and so I N F ¢ @.

(iii) and (iv) are trivial. a
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Theorem 2.5. Suppose F is a filter of a distributive
nearlattice S. Then for any ideal J of S, T{] TF (T) =

{x e s : x Af €¢J for some f ¢ F }) = n {P ; P is a

(minimal) prime ideal belonging to J in S such that

-

PNF=29 1},

Proof: ¥ ¥ (J) = (yes; ¥ (y) el (J) ) =
{y€es : yv= x (TF ) for some x € J} = { y eSS : yATf

=x ANf forsome feF, x€J }={yes ; yAf e€J for

some f € F }. Now we consider two cases:

Case 1. Let J N F § ®. Then there exists x € J N F and
for any prime ideal P belonging to J, PN F + ®. Thus,

{ P: P is a prime ideal belonging to J and PN F = & }
=®, and so N { P : P is a prime ideal belonging to J and

PNF=®}) =8S=(yesS:yAxeJ, xeJNF).

Case 2. suppose J N F = &, Clearly, { y €S ; yAf €J

for some f € F } e n { P P is a prime ideal belonging

to J and P N F = & }. Let x ¢ S be such that x A f ¢ J
for all f € F, and let G = [x) VF. IfJn @G + ©, then
there exists t € J and t 2 X| A f for some X; 2 x and for

some f € F. This implies x A f < X A f < t

and

consequently x A f € J, which is a contradiction. Thus,

J N G= &, Then by Birkhoff Stone theorem, there exists
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a prime ideal P of S such that J € P and G N P = ®. In
effect, x ¢ Pand F NP =0 as F © G. This completes

the proof. a

Theorem 2.6. Suppouse F is a [ilter of a distributive
nearlattice S. Also, suppose Q= (P : P is a prime ideal
of S, such Lhat P N F = & ) and P = { P P is a prime

ideal of Sy ). Then @ and P are order isomorphic posets.

Proof: Let P €g . Then TF (P) + Sy by 3.2.4.

Also, !F (x) A TF (y) € TF (é] implies TF (x Ay) = ﬂ (q)
for some q € P. Then, x Ay Af = q A f for some f € F
and so either x € P or y € P. Hence, Y (x) € Y (P) or
!F (y) € ,F (P), showing tLhet ,F (P) is a prime ideal of
Sp. Thus, !F is a map from & to P and it is clearly

isotone. Again, for any p € P it is very easy to show

that T{I (p) €4 and T{] : P --->4 is obviously isotone.
As YP * §---> S5; is onto, ﬂ TFq = IP' Moreover by 3.2.5
T{l ,F (Q) = Q for any Q € g , and hence T{] !F = Iq.

Therefore, P and & are order isomorphic. O

In the above theorem, S-P 2 F for all P € Q. Of
course in any nearlatblice §, the map I’--->S-P is an order
reversing isomorphism between the poset of prime ideals

and the poset of prime filters of S. Thus, we have the
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following important corollary which is an immediate

consequence of above theorem.

Corollary 2.7. For a distributive nearlattice S, the set
of prime filters of S containiing a given filter F of § is

order isomorphic to the set of prime filters of Sg a

Principle of localization.

Theorem 2.8. Let S be a distributive nearlattice. Then
for each ideal J of 8, J = n ( ¥ ¥ (J) ) where F

F
ranges over the prime F filters of S,

Hence for any ideals I and J of S, !F (X} = TF (J)

for all prime filters F of S implies I = J.

Proof: For any filter F of S. Clearly T{] TF (J) =2 J.
Hence, J = n ( T{I TF (J) ) where F ranges over the prime
filters F of S. Now, let x € n ( T{] TF (J) ). Then,

X € T{] ¥, (J) for all prim:‘filters F of S. But, for
any filter F of S, T{I ﬂ (J) ={ yes: yANf e€J for
some f € F } by 3.2.5. Thus, for any prime filter F of

S, x A £, € J for some f, € F. If x ¢ J, then by Birkhoff

Stone theorem, there is a prime ideal Q of S
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such that x does not belong to Q and J € Q. Then for any

f € S-Q, x A f does not belongs to J £ Q which is a

contradiction as Q is a prime ideal of S. Hence x € J. 0O

Suppose S is a distributive nearlattice. For any

X,y €8, we define <x , y> = { s €5 : s Ax £y } and
< x, J>={ s €S : s ANx €J )} for any ideal J of S. It
is easily seen that <x, y> and <x, J> are ideals of S.

Moreover, <x, y> 1is known as the relative annihilator

ideal c.f. Mandelker [33]. For any x in a nearlattice S
with 0, we denote (x1' = { y €S : vy Ax =0 ).

The following proposition is needed for the further
development of this chaptér. We omit the proof as it is

easily verifiable.

Proposition.2.9. Suppose F is a filter of a distributive
nearlattice S with 0. Then the following condition hold.
(i) P ((x1) = (¥ (x)]
(ii) For any ideal J of S, TF (<x, J >) =« ?F (x),
T, (J)>.
(1ii) T ((x1) = (% (07

(iv) T, (<x, y>) = < ¥p (x), ¥ (v) >. a
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Recall that a distributive nearlattice S with
0 is normal if each prime ideal contains a unique minimal
prime ideal. Equivalently, a nearlattice S with 0 is
called normal if each prime filter of S is contained in

a unique ultrafilter.(i,e,‘maximal and proper filter)

of S.

The following theorem contains the main result of

this section. This generalizes the result of Th. 2.4. of

Cornish [8].

Theorem 2.10. Let S be a distributive nearlattice with O,
Then the following conditions are equivalent.
(1) Any two distinc£ minimal prime ideals are
comaximal.
(i1) S is normal.
(iii) O(P) is a prime ideal for each prime ideal P.
(iv) For all x , y € S, x Ay = 0 implies

(x1' vV (y1' = s.

(v) (x Ay 1= (x1' vyt

Moreover, if 1 € S so that S is a lattice, then for
all x , y € S, x Ay = 0 implies there exists
X| » ¥y €S, such that x A Xy =0 =y A Y and
Xy Vv yy = 1,
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Proof: (i) <===> (1i) is trivial and (ii) <===> (iii)

hold by proposition 3.2.2.

(ii) implies (iv). Suppose (ii) holds. Then by corollary
3.2.7, for any prime filtér F of §, SF has a unique
ultrafilter. Thus SF has a unique minimal prime ideal.

But the zero ideal of Sp ( as 0 € S) is the intersection

of all minimal prime ideals of Sp. Hence by uniqueness,
it is a (minimal) prime ideal of SF‘ Now suppose

X , ¥y € S such that x A y =,0, and so

¥, (x) A ¥, (y) = 5. Then, either ¥ (x) = 5 or ¥; (y)=5.

L]

Thus [ ¥ (x) 1' V ( % (y) 1' = S;. Then by 3.2.9

7, ( (x1'

(x1' vV (y1' = s.

vV {y]t ) = TF (S) and hence by 3.2.8

(iv) implies (ii). Let P ,Q be distinct
ultrafilters of S containing a prime filter F of S. Then
PV Q =S otherwise P V Q will be a proper filter of S,
which contradicts the fact that P,Q are ultrafilters.
Thus, there exist x € P-Q and y € Q-P such that
x Ay = 0. Let L € {x]t. Then, t A x = 0, Thus, t € S-P
(otherwise if t € P, then 0 = t A x € P which is
impossible ) and S8-P £ S-F. That is, (x]’ c S-F.

Similarly, (y]* L S-F. Therefore,

i (x]t V(y]‘ £ S-F, which is a contradiction.
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(ii1) implies (v). Suppose (ii) holds. Then for
any prime filter F of S, the zero-ideal of SF is prime
( This has been already shown in (ii) ==> (iv) ). For any
X , vy €S consider the following two cases.
Case 1. TF (x A y) = 6. Then, either TF (x) = © or !F (y)

= 0. Hence,{TF (x A y}]‘ = S, and either {TF {x}]t,= Sp or

F
(¥ (y)1' = Sp. Thus, (¥ ( x Ayl o=
(%, (x)1' V (Z (v)1'. Then, by 3.2.9, ¥ ((x A y)') =

TF ((x]* V (y]*) and so ( x A,y ]‘ = (x]* \ [y]‘ by 3.2.8.

Case 2. TF ( x Ay ) ¥+ o. Then, TF (x), TF (v) % ©. Hence
(T ( x Ay ) Y, i Ty (x) 1 and ( ¥ (v) ' are equal to

zero ideal of SF ( as zero ideal is prime ), and so the

result follows trivially.

(v) implies (iv) is obvious.
Finally, (iv) and the stated condition are trivially

equivalent. 0O

A nearlattice S with O is called dense if (x]’ = (0]
for each x F 0 in 8. The following theorem 1is an

extension of 4.1 of Cornish-[8].
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Theorem 2.11. For a nearlattice S with 0, the following
hold.
(i) If S is normal, then §; is normal for any
filter F of S.
(ii) S is normal if" and only if for each prime
filter F of 5, SF is a dense lattice.
Proof: (i) Let TF (x), TF (y) € Sp be such that
TF (x) A TF (y) = 5. Then, x A y = O{YF), which implies
x ANy ANf =0 for some f € F. Since S is normal,

(x'V(yAf 1 =s by 3.2.10.

t L

Hence ( TF (xi ] V ( TF (v) ]
=% ()1 V(F (v A D)
% (x'V vy AT ) = F(8) =5

Thus, by 3.2.10 SF is normal.

(ii) Suppose S is normal. Let !F (x) ¥ © and
t

TF (q) € ( TF (x) 1. Then TF (q) A YF (x) = ©. But we
already know from the proof of (ii ===>(iv) in 3.2.10
that the zero ideal of S; is prime. Hence, Y, (q) = 5,

showing that Sp is dense.

Conversely, let SF be dense for each prime filter

F of S. Suppose x , ¥y € S are such that x A y = 0. Then,

T, (x Ay) =% (0) = 5.
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¥
That is, TF (x) A TF (y) = © which implies
TF(x) = G or TF (y) = © as Sy is dense. Hence, either
( %(x) 1' =s,0r (¥ (y) 1' =8 Thus,
T ( (x1' V (y1' ) = 5, = ¥, (S), and so by 3.2.8
{x]‘ Vv (y]‘ & B Therefore,‘s is normal.
>
-
#,
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3.Relatively normal nearlattices.

Definition 3.1. A distributive nearlattice S is called
relatively normal if each interval [x,y] with x < y is a

normal latltice.

Definition 3.2. A nearlattice S with 0 1is «called
sectionally normal if each interval [0,x]) with 0 < x is
a normal lattice.

Katrinak [28, lemma 9, P.135] has shown that a
normal lattice is sectionally normal. Cornish in
[8, Th. 3.3] has improved that result. Our following

theorem is a nice generalization of their results.

Theorem 3.3. Let S be a nearlattice with 0. Then the

following are equivalent.

(i) S is normal.

‘ (II) Each ideal J # S is a normal subnearlattice.

(iii) S is sectionally normal.

Proof: (i) implies (ii). If-J is an ideal and x, ¥ € S
with x A y = 0 then (x]‘ Vv (y]t = S because of theorem

4.9.10. Hence J = J N 8 = (3 n (x1) V(In et ¥
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¢

But J N {x]‘ and J N (y] are respectively
{z € J ; 2z AN x =20} and {z € J ; 2z A y = 0} and it
follows from theorem 3.2.10 that J is normal.

(i1) implies (iii) is trivial.

(iii) implies (i). Let x, y € S with x Ay = Q. Let

r € S, then (r A x) A (r A y) = 0.

Since S is sectionally normal, so (r] is a normal
. L t
nearlattice. Then r = (r A x] V (r A y] and so

p V q for some p € (r A x]' and g € (r A y]’. Then

n

r
rAx =0and gAr Ay =01i.e. pAx = 0 and
y= 0. This implies p € (n]* and q € (Y]*. Therefore

r € (x]* Vv {y]* and so (x]* A (y]‘ = 8 [H

For non-empty subsets A and B of a nearlattice
S, < A, B> denotes { x € S ; x A a €¢ B for all a € A }.
< a, b > denotes < {a}, (b} >. As observed by Mandelker
[33] ¢ a, b > is an ideal due to distributivity of S.
When A and B are ideals clearly < A, B > is an ideal.
Moreover, < (a), (b] > = < a, b >. For any ideal J of S
and x € S we write < x, J > ={y €S| x Ay €J ). The

following lemma summarizes some useful informations.

T

O

™ T R

-
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Lemma 3.4. Let S be a nearlattice. Then the following

hold.

(i) <%, J > =V< x, y >, the supremum of ideals
YEJ
< X, ¥ > in the lattice of ideals of S, for any

X € S and any ideal J in‘S.

{ii){<xra>v<y,a>}ﬂ[a,b]:.
{ <x, a>n [a, b] V{<y, a>n[a, bl] }, for any

X, ¥ € [a, b], a < b.

Proof: (i). Let p € <x,y> where y € J.

Then p A x <y

===> pAX €J s==2>peE ex;, J >

> ¢ Xy ¥y P EC X, d D

I
H
n

>V<ax, y>o>E < x, J>
yEJ

Suppose t € < x, J > ===> t A x € J.
Now t € < X, t A x > where t A x € J.

Hence t € V < x, y > and so (i) holds.

Y€J
(1i) Let z be a member of the left hand side of
(ii). Then a £ z = ¢ Vd £ b with ¢ A x € a and

d Ay £ a. Then (c Va) Ax = (¢ Ax)V (aAx)
= (c Ax) Va<aVac<a Qnd similarly (d V a) Ay < a.

Thus ¢ Va € < x, a >N [a, b] and

(dVa)e<y,a>n/([a, bl], soz =(zVa)V(dVa)is
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a member of the right hand side of (ii). The reverse

inequlity is clear and (ii) follows. a

The following theorem gives a characterization of a
relatively normal nearlattice which is also a

generalization of cornish [8, Th. 3.7]. '

Theorm 3.5. Let S be a distruibutive nearlattice. The

following conditions are equivalent.

(i) S is relatively normal.

(ii) For all x ,y €S < x, ¥y >V <y, x>=28

(iii) For all x, y, 2 € S,

Cx ANy, z22=<&xs 282V<€ 59 295
(iv) For any ideal J of S

<x ANy, J>»=<x,Jd>V<y, J>,

Proof: (i) implies (ii). Let x, y € S. For any a € S,
consider I= [ x Ay A a, a ] in S. Now, x A y A a =

(x A a) AN(y A a). Since I is normal, so by 3.2.10 there

exist r, s € I such that x Aa Ar =x Ay Aa-=

vy ANaAsand r Vs = a. Since r, s £ a, we have

x ANy ANa=xAr=yAs. Thus x Ar <y and y A s < x.

This implies a = r Vs € < x, y > V <y, x > and (ii)

holds.
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(ii) implies (iii). Suppose b € < x Ay, z >.

Then by  (ii) b = ¢ V d where ¢ € < x, ¥y > and
d € <y, x>. Thus x Ac = x Ay Ac < x A vy A b < z,

Hence ¢ € < x, z >, Similarly d € < Y, z >. It follows

that b = c Vd e <x, z >V<y, 2>,

The reverse inequality always holds and so,(1i1i) is

established.

(iii) ===> (i). Let a; b €S, ( a < b ). Suppose
X, ¥ € [a, b]. Such that x A y = a., Then by (iii)
{a,b]ﬂ((x,a)V(y,a)):[a,b]ﬂ(x/\y,a)
., = la, bl n < a, a >
= [a, b]

Hence by 3.3.4 and 3.2,10 S is relatively normal.

(iv) ====> (iii) is trivial as
<x Ay, z>=<xAvy,(z] >
(iii) ===> (iv). By lemma 3.3.4 (i)

<x Ay, IJ>=V<x Ay, t>,
ted

=V(<x, t>V<y, t>). Then applying lemma
ted

3.3.4 (i) again, < x Ay, J > =< x, J >V« Vg AT 58

i.e., (iv) holds. 0O
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Théorem 3.6. Let a , b and ¢ be arbitrary elements of
a nearlattice S. Let A,B and C be arbitrary ideals in S.
Then the following are equivalent.
(i) < c,aVb>=<c, a>V<cb > whenever
a Vb exists.

(ii) < C, AVB>

i

< C, A>V<KCC, B>

Proof: (i) ===> (ii). Let* t € < C, AV B >. Then for

any c € C, t Ac € AV B. Thus t Ac

P Vg for some
p € A and q € B, This implies t € < ¢, p V q > =
<c, p>V<cec, q> by {i)' c<C, A>V<cC, B>,

i.e., ¢<C, AVB>rEc <C, A>V<cC, B>

Reverse inequality is trivial.So (ii) holds.
(ii) ====> (i). Let a, b, c € S with a Vb exists,
then < ¢, aVb>=¢<(cl, (aVbl>

= < (c], (a] V (b] >

I

< (c], (a] > V < (c], (b] >

=<c¢c, a>V<c, b>. n

Lemma 3.7. A distributive nearlattice S is relatively
complemented if and only if for all x, y € S,
(x] V< x, y>=28, where < x, vy > ={ 2z € S ;

z Ax £y }.
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Proof: Suppose S is relatively complemented. For

X, ¥y 2 € S. Consider the interval [ x Ay Az, z ]. Let
w be the relative complement of x Az in [ x Ay Az, z].
Then x Az Aw=x Ay Az and (x A z) Vw= 2. Now
xAzAw=x Ay Nz <y implies z Aw € < x, y >. Hence

z = (xANz)Vw=(xAz)V(iwAz)e (x]V<x, vy,

Conversely, let ¢ € [ a, b ], a £ b. Then
b€ (c] V<c, a>=85and sob=cVd,de€<c, a>.
Then d A ¢ £ a and so '(d V a) A b is the relative
complement of ¢ in [a, b]. Here d V a exists by the upper

bound property as both d, a < b. 0O

Lemma 3.8. The set of all prime ideals of a distributive
nearlattice S is unordered if and only if for all x, ¥ in

S, (x] V <x, y> = 8.

Proof: Suppose the prime ideal are unordered and there
exist x, y € S such that (x] V < x, y > + S. Therefore
(x] V< x, vy > £ P for some prime ideal P. Since the

primes are unordered, S-P is a maximal filter. But

x ¢ S-P and hence [x) V (S-P) = S and so y € [x) V (S-P).

Therefore y = X A q for some Xy 2 x and q € S-P.

Then x A q < X A q =y and so q € <x, ¥y> £ P which is
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S
a contradiction.

»

Conversely, suppose (x] V ¢ Xy, ¥ > =S8 for all x, y
in S. Let P and Q be primes such that P < Q@ and P + Q.
Choose a € Q-P and b ¢ P.‘Now, (a] A < a, b> = (a A b]
and b € P implies a A b ¢ p. Thus (a] A < a, b > = P and
a € p. This implies < a, b>CcPasPis prime. Therefore
<a, b>cQ and (a] £Q and so, S = (a] V< a, b> c q.
Which is a contradiction. 0
Corollary. 3.9. ( Gratzer and Schmidt [21a].

A  distributive nearlattice § is relatively
complemented if and only if its prime ideals are

unordered. [

Following theorem generalizes Th-3.5, Th.3.7, and
Th.4.3 of Cornish [8] also c.f. [67 , section 5, p-83 ]

and Mandelker [33, Th.4, p-380].

Theorem 3.10. let S be a distributive nearlattice. The

following conditions are equivalent,

(i) S is relatively normal.
(11) The set of all prime ideals contained in a

prime ideal is a chain.
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(iii) Any two incomparable prime ideals are
comaximal,

(iv) The set of all prime filters of S containing
a prime filter is a chain.

(v) SF is a chain for each prime filter F of S.

Proof: (i) ====> (ii). Suppose (i) holds. Thén by Th.
3.3.5 < x, vy >V<y, x> =8, for all x, y € S. If (ii)
does not hold, then there exist prime ideals P, Q, R with
P2Q, R ; and Q and R are,incomparable. Let x € Q-R and
vy € R-Q. Then < x, ¥y > £ R and < y, x > £ Q.

Thus S = < x, vy > V< y, x >eQ VR P %S, which is a

contradiction. Hence (ii) holds.

(1i) <===> (1ii) 1is trivial.
(ii) <===> (iv) is also trivial,
(iv) ===> (v). Suppose (iv) holds. Then by 3.2.7 the

prime filters of SF form a chain for any prime filter

F of S. But, in a distributive lattice if the set of
prime filters form a chain, then the lattice itself is a
chain. Therefore SFis a chain for each prime filter F of

5.

(v) ===> (i). let F be any prime filter of S. By (v)
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SF is a chain, and so for any x, y in 8, we have either
TF (x) < TF (y) or TF (yv) < TF (x). In either case,
CHo(x) T (y) > VR (y), ¥ (x) > =8 i.e.,
TF ( < % ¥ > ¥ <9y x > )} = TF (S), and so by the
principle of localizationy < x, ¥y > V< vy, x > = S. Hence

by Th.3.3.5, S is relatively normal. 0O

Theorem 3.11. If F is a filter in a relatively normal
nearlattice, then S/P(F) is relatively normal.
Proof: Suppose 8 is relatively normal.

Let ¥; (x) , T, (v) € Sp-

Then by 3.2.9, < ¥, (x) , TF (v) > V < TF (v) Y? (x) >

Ve

TF < X, ¥y Vv TF <y, x>

YF [ < x, ¥ > V<y, x> 1]

n

TF (S) as S is relatively normal.

:SF

Hence by theorem 3.3.5 S; is relatively normal. O
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4. n- Normal nearlattices,

Recall that an n-normal nearlattice is a
distributive nearlattice with 0 such that each prime
jdeal contains at most n minimal prime ideals.
Equivalently a distributive nearlaltice with 0 is
n-normal if each prime filter is contained in at most

n ultrafilters.

n-Normal lattices have been studied by Cornish in
[9] and Davey in [16]. Davey called these lattices as
I%~lattices. To prove our main result we need the
following lemma 4.1 which is an extension of 2.3 of

Cornish [9]). Since the proof of the lemma follows easily

from Cornish’s proof, we omit details.
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Lemma 4.1 Let J be an ideal of a distributive
nearlattice S. For a given positive integer n > 1, the

following conditions are equivalent.

(i) For any Xgr X{ye+eevenssy, X € S, which are

"pairwise in J" i..e.x-l A X; € J for any i + Js

there exists k such that X, € Jea

(ii) J is the intersection of at most n distinct

prime ideals. a

Following theorem provides a characterization of
n-normal nearlattices which also generalizes some of the

results of Cornish [9] and Davey [16].

Theorem 4.2. For a distributive nearlattice

S with 0, the following conditions are equivalent:

(i) Each prime filter of S is contained in at most

n ultrafilters of S, i.e. S is n-normal.

(ii) For any Xgr X{sesreee.,x € 8 such that nbrve

X, A Xj = 0 for (i ='= J) e 4 =2 0,052 « ¢ ioayn

i t
J =20,1,2,...,n, (XU]

vV (Jr:}]t Vi oM (xn]' = §.

(iii) For any distinct n+l minimal prime ideals

Py, PiyevvesPy Py VP V...VP =5,
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Proof. (i) implies (ii). Suppose (i) holds. Then
by 3.2.7 for any prime filter F of S, SF has at most
n ultrafilters and so S{ has atmost n-minimal prime
ideals. Since every ideal is the intersection of all of
its minimal prime divisors, the zero ideal of éF is the

intersection of at most n minimal(distinct) prime ideals,

Now, let Xp, X;,.... X, € S be such that x; A X; = 0
for i + j,» 1 =0,1,...4n, j =0,1,...,n. Then
TF (xi) A TF (xj) = o ( zero of Sp ), for i ¥ j. Hence by

lemma 4.1 above, there exists k, 0 £ k £ n such that

%, (x,) = 0. Consequently, ( ¥ (x,) 1' = ;. Then
T, ( (x0' VPV (x1h)
= ¥, (x) VeV Y (x0
= (% (x)1 Veeou oV (T (201 = 5, = %, ().
Thus by 3.2.8  (x1' V (x' Vo....v(x1t = s,
(ii) ====> (i). Suppose (ii) holds and F is any

prime filter of S. If (i) does not hold then let

F c QU"“"’Qn’ where Qi are ultrafilters of S. Notice
that Q Vv Qj = § for i ¥ j. Thus for each Q, Qj S S O I
there exist x; € Q and X, (= Qj such that X A Xy = 0. Then
it is not hard to find elements yu,yd,........,ﬁlwith Y

€ Q, such that vy, A ¥ 0 whenever i # j. Then by (ii),

t

(v)' V(31" VooV (v = s,
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Now, if t € (y“* for some k ; 0 £ k € n, then

t A Yy = 0. This implies t ¢ Qy» otherwise 0 ¢ Q, as

%y € Q. Thus t € S- @ & 5-F, and so (y,]' € S-F for each

k: 0 £k £n. Hence S = (yD]* V{yi]. V.....V{yn]*:S—F,
which is a contradiction. ‘Therefore, (i) holds.

(i) ====> (iii). Suppose (i) holds and .
P0 VvV Pl Vi sV Pn + S. Since each proper ideal in a

distributive nearlattice is contained in some prime

ideal, there exists a prime ideal P of S containing

Py Vv P| Vi s s o'V P . Then S-P is a prime filter which is
contained 1in n+l1 ultrafilters S—Pw....,S-Pn. This
contradicts (i) and so Py Vv P, Wi s Vv P = S.

(1ii) =====> (i), Suppose (iii) holds. If (i) does
not hold, there exists a prime filter F which is
contained in atleast n+l ultrafilters QD""""'Qn (say)
of S. Then S~QU, ........ ’S”Qn are n+l distinct minimal
prime ideals of S8 and {S—Qn) Vi s 3V (S—Qn} c S-F, which

is a contradiction to (iii). Therefore (i) holds. 0
Notice that the above theorem plays an important
role in case of pseudocomplemented lattices. For the
class of pseudocomplemented Bn—lattices (ii) of the above
theorem reduces to the condition of Gratzer and Lakser

[21, lemma 8].
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Definition. Let S be a nearlattice with 0, S is
called sectionally n-normal for n > 1 if each initial
segmenl [0,x], x € S is an n-normal lattice.

Following result gene}alizes theorem 3.6 of Cornish
[9]. Here proof of (i) ====> (ii) is bit trick? as the
nearlattices are not that well behaved like lattices,

while the rest follows easily from Cornish's proof.

Theorem 4.3. For a nearlattice S with 0 the following
conditions are equivalent.

(i) S is sectionally n-normal.

(ii) S is n-normal.

(ii1) Each ideal J in S is an n-normal

subnearlattice,

Proof. (i) =====> (ii). Suppose that (i) holds. Let
Xpy Xpyeonnens yX, € S be such that x; A X = 0 for

i + J. Choose any y € S. Consider I = [0,y]. Now

<

A Xgy ¥ A IR A x, € I and (y A xi} Ay A xj)

vy A (xi A xj} 0 for i * J. Since I is n-normal,

= by ol %aisues V (y A x]", by 3.4.2. Where

(y Ax1' = { Lt eIt Ay Ax =01} go

vy € (y Axgl' Vo.o...V (y A x.]', and hence

y € (y /\xu]* Veoo.oo WV {y Axn]t. Thus y = t, Vi siwcim & 2N t,
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vhere b€ (y A xi]t. Then t; Ay A x; = 0, and

so t; A x; = 0 as t, ANy = t;. This implies t; € (xi]t, and

so y = t Vs oV t, € (xﬂ]* L (—— (xn]‘. Hence,

(xﬂ]t VieeoooV (xnf = S, and so by 3.4.2, S is n-normal.
(ii) =====> (iii). Let J be an ideal in S and

SUPPOSE Xy ) Xyp+ovvs s y X, € J are such that xy Ax. =0 for

]

all i + j. Let (xi]+ = {yeJdJ:yA X, = 0 }. Clearly,

(xi]+ = (xi]t N J By 3.4.2, {xo]' Maas b 6 oy {xn]’ = S and so
1
J=Jdns =30 ((x) Veoroo. Vo(x,1%)
= (30 (x)) VeV (@ (x,1°
= (xnf Vi v s A% (xnf. Consequently, J is n-normal.
(iii) ====> (i) is trivial. a

Following theorem extends theorem 3.5 of Davey [16].

Theorem 4.4. For a distributive nearlattice S with 0

the following hold.

(i) If S is n-normal, then SF is n-normal for any

filter F of S.

(ii) S8 is n-normal if and only if for each prime

filter F of S, SF has at most n minimal prime ideals.

Proof (i). Let T, {xu),.....TF (xn) € Sp; be such that

YF (xi) A TF (xj} = 5 for all i ¥ Jj,

i=0y...yny jJ=0,...yn. Then x; A X; =0 {TF) for each
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i, § (i J)- This implies
X A X, A fﬁ = 0 for some fﬂ € F. Set f = ﬁ;;}j ,where

i=0,.--..-,n;,j=0',--....,ﬂ. ThEHXiAxJAfzo

Since S is n-normal so by theorem 3.4.2,
(x, A £10V (xp AED VooV A £1' = s.
Hence (¥, (x)1' V (Zp (x)1' Veooo. VO (x)
(o ATV Y g ATV
e V(T (x, A D))
=7, ((xg A £10) V F (O A £1' V¥ suves
LV Rk, A1
by 3.2.9

S (g AEIT Ve VU A £l

TF (s) = SF
Hence SF is n-normal by : o e I

(3i). This is trivial by Th.3.2.7. a

We conclude this section with the following result

which was given by Cornish in [9] and Davey in [16] for

lattices.
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Theorem 4.5, For any n+l elements XporX s o aoann yX_ in

an n-normal nearlatlice S

(xof\....Axn]*=V(xu/\..../\xi_l/\xm /\....Axn]’
0 £i <n
Proof. Let b, = xp A .5 A X A Xjggp Nevvn i A X,

for each 0 £ i £ n. Suppose that x € (x N v o v wam N xn]'

Thenx/\xﬂf\... ..... ....Axn=Oso that for

1g gy A b,) A (x A bj) = 0. From the Theorem 3.4.,2

xfz‘(x:’\bn]' V......V(xa‘\bn]‘ so thatx=auV....Van,

for some a, € 5, such that a{ A x A b, = 0. Then

X = (an NV osawsze M {an A x) and a A x = {bi]* and so

(x, A A x‘f c V'(x A A %4 I %oy N A x]*
0 R n 0 e i-1 it] LR n

0 £ 1 £ n

The reverse inclusion is trivial. 0O
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9. Relatively n-normal nearlattices.

Recall that a relatively n- normal nearlattice S is
a distributive nearlattice such that for each

-

X < vy (xy ¥y € 8) [x, y] is an n-normal lattice. For

relatively n- normal lattices we refer the reader to
consult Cornish [9] while Davey [16] preferred to call

them as relative %‘—lattices.

We start this seebtion wilh the following
characterization of relatively n-normal nearlattices
which will be needed in our next theorem.

Theorem 5.1. Let S be a distributive nearlattice, the

following conditions are equivalent.

(i) S is relatively n-normal.

(ii) For all Xgp Xppevvannene, X €8,
< Xl A Xz A----'A Xn| XB >V < Xn A XE AL,
.Axn, xp > Voo, weizen Vo€ X A X, Nt w o

T . Xp-1r X, 2 = 8,

(iii) For all Xgy Xpaeononnoons , X
< %y A X) Novsionaa v o\ Xp 2 > = <X A Xy Ao,
...Axn,z)V(ngxaA...f\xn,z>V....

Sanna V¥ xﬁf\xl ' R X4y 2 2
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Proof: (i) ====> (ii). Let a € S, consider the
interval T = [ xg A x; Avooone Ax Aa, a] in S.

For 0 £ i £ n,the set of elements

t, = x A X, A..... A X;.| A X4 A..... A X, A a, are
obviously pairwise disjoi‘ﬁt in the interval 1. Since I is
n-normal, so by 3.4.2 (th+ v (tl]+ Vi ¢ sanie s A" (t“]+ =T
where (ti ]+ = (ti]‘ N I. Since 1 is n-normal,.
(td" Voo, Vot =1
¢ 4
So, a € (tu] Vs o ¢ vlowm Vv {tn]
Thus, a=pyV.e..ooonn. \'J P,
Where pUAt0=p1Atl= ......... = pu»’\t,l
= 0 of 1 .
= X A Xy 1 R A X, A a
Now, p; A ty = X A X A W . A X, AN a implies

pa.f\tusx0

Again pﬂf\t0=pﬂf\xll\ ......... Axnf\a
=p0f\x|f\ ......... A x, as p, < a.
This implies p A X N vwa z § 5 o A x, £ x, and
so  p; € < x N, w588 wees s A X Xy >
Similarly, P € < X Axlf\ ....... Axﬂ, X, >
pne<x{,!\x|f\ ...... Axn_l,xn >,



Therefore a € < x| M i s v B b f\xn . Voren s

s e oe V% Xg A Xy N v v v 5 8 Axn-l‘ x, > and

hence § = < x; A vovvvind Axp x> N v w e

..... Vo< onxl N sesimisaeey Ax

Th.en by (ii)bzsu V..........V Sn,

for some s; € < x| 4 QR X, » Xy 2

51€<x0/\x2/\....f\xn,x]>
s, € < xp Axp ALl AN Xy x>
Thus, x, A ...'..A X, A sy < X
xu/\xzf\ ..... AKNASISx]

Then xll\xzr\.....:'\xnl\so

n

=xDAxlI\.....Ax Asus.‘cu:’\xlf\....f\x A b

Hence, Sy E(x](\xz/\.....!\xn,z>

Similarly, s; € < X; Axaa’\ ¢ o woaond\ X, 4 2O

IA

88
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Therefore b ¢ ¢ X A LA X, » 2 >V« Xy !\)r:2 A..

ANx, oz > V..., V(xﬂf\xif\......./\xn_l,zx

Since the reverse inequality always holds. Therefore

<xﬁ/\../\xn,z>=<x]A.../\xn,z>V< onsz...

......’\xn,z>V ....... V<XUA"‘Axn-1'Z>-‘
{1ii) ======3 (i): Let a, b € 5 , with a < b,
Let X(o VX, € [ a, b] such that

X, A X; = a for ald i =|= g

Let dj = x V Xy vV . Vv X,
dI = X V Xy vV .. V X,
d, = x, V x V .V X

Note that dﬂ, di"""’ dn exist by the wupper bound

property of S .Then a < di < b for all i. Now using

X, A X ® A for all i % j. We can easily show by some

routine calculations that

XU = dl A dz A ---------- .A dno
Xp =dy Ady Avuul . A d
Xn = dﬁ A dl Ao L LR IA dn‘l [
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Then [a, b] n [ < Xpp a > V< X;, a > V...V« X, a >}

[a, b] n{<d1AdEA...Adn,a>V<dDAdZA

R . d, a > V< dﬂAd] N o vl d_;» a > }.

[a, b] N < dg A d1 Na o o ooy @i\ dn. a > ( by (iii) )

-

[a, bB] N < a, a >

[al b] n s = [al b]

Hence by 3.4.2 [a, b] is n-normal. Therefore S is

relatively n-noraml. a

Following characterization on relatively n-normal

nearlattices are extension of some work of Cornish [9]

and Davey [16].

Theorem.5.2. For a distributive nearlattice S with 0,

the following conditions are equivalent:

(i) S is relatively n-normal.

(ii) For any (n+l) pairwise incomparable prime
ideals Py, ..... P . Py V....._V P = S.

(iii) Any prime ideal of S contains at most

n mutually incomparable prime ideals.

Proof: (i) <===> (ii). Suppose S is relatively n-normal.

Let Pp,......... P, be (ntl) pairwise incomparable prime
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ideals. Then there exists ST »X, € S, such that
n
i=1
i=|=,j
Since S is relatively n-normal.
So by theorem 3.5.1 <Cxp Aol A X, xU>V<xﬂ A,
..... A Xpr Xy > Visams e s e N « Xq Aevevoi o WA X,.pr X, > = S,
Let ty € < x A........ A X0 Xp >
Then t A X| PN 5 8 W A X, $ X, € Py,
Thus t,; A Xy N s 5 N X, € Pj. Since Py, is prime
and X Novain w3 A x, € Py, so t; € Py. Therefore
< x AP X1 Xy > E Byt
Similarly < Xg Nos ez A Xy1 X; > & P
<*<Uf\x}!\.. ./\xl,ﬂ{ri)l:Pn.
Hence PU LV oV P =5
Conversely, let any (n+l) pairwise incomparable

prime ideals in S are co-maximal. Consider an interval
[a, b] of 8. Let P'ﬂ,........,P'n be (n+l) distinct
minimal prime ideals of.[a, b]. Then by 1.4.3 there

exists prime ideals Py, ..vv... yP, of S such that




92
P'n = PU n [a, b],
P .- Pn n [a, bl,
Since Pfﬂ,... ..... P are incomparable, so
Pypy ety P are incomparable. Now by (ii) Py V....V P, = 8.
Hence, P, V..... \% P'n = Py V.....V P ) N [a, b]
=S N [a, b}
= [a, b]

Therefore [a, b] is n-normal and so S is relatively

n-normal.

(1i) ======> (iii) is trivial.

r

Finally we extend a result of Davey [16, Th. 3.6].

Theorem. 5.3. If S is a relatively n-normal nearlattice,

then SP is also relatively n-normal for each filter F.

Proof : Suppose S is relatively n-normal.

Choose TF {xﬂ), ..... ,TF (xn) € S.

Then < ¥p (x;) Aot AT (%), T (%)) >

V < TF (xp) /\TF (xa] Nos oA TF (xn),TP (xl) ¥ A, e o
...... V¥ (x) A F (x) A A Y (x )8 (x)
=¥ (<xp Ay Av A x, xp > V< xg Ay Al

o L X, x1>V....V < % A X N w N X1 X, ) (by 3.2.9)



1

=TF(S}=S

Therefore by theorem 3.5.1, again, SFis relatively

n-normal.

F

a

by theorem 3.5.1.

93
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CHAPTER - 4

MULTIPLIER EXTENSION OF A DISTIRBUTIVE NEARLATTICE.
1. Introduction.

Multipliers on semilattices and lattices have been
previously studied by several authors includiné Szasgz
[54] [55], Szasz and Szendrei [56], Kolibiar [29],
Cornish [10], and by Nieminen [37] [38] on a lattice.
Analogues on multipliers have been studied by many other

workers in various branches of algabra ; for references
we suggest the readers to consult the bibliographies of

Petrich [47] and Cornish [10]. In a more recent paper,

Noor and Cornish in [39] studied them on nearlattices.

Let S be a nearlattice and ® a mapping of S into
itself. Then ® is called a multiplier en S if
® (x Ay) =9 (x) ANy for each x, y € S c.f. [39]. Each
multiplier on S has the following properties,
® (x) £ x, & (d (x) )= (x) and x £ y implies
® (x) £® (y). Each a € S induces a multiplier H, defined
by n, (x) = a A x for each x € S, which is called an
inner multiplier. The identity function on S, which will
be denoted by t is always a multiplier. M(S) denotes the
set of all multipliers on S. It is obvious that M(S) has

a zero,denoted by © if and only if S has a 0.
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In section 1, we have given a description of
multipliers on nearlattices. Here we have mentioned
several results given by Noor and Cornish [39] and
Nieminen [38]. Then we give a categorical result, where
we see that the multiplier extension has a functorial
character which is entirely diferent from that of Lattice

Theory c¢.f. Cornish [ 10, Theorem 2.4 ].

In section 2 we studied multipliers on sectionally
pseudocomplemented distribg}ive nearlattices and also on
distributive nearlattices which are sectionally in
Bn, -1 € n £ ® and generalized a number of results of
[10]. We showed that S is sectionally in Bn if and only
if M (S) is in B . We alsé showed that for 1 € n < @,

above conditions are also equivalent to the condition

that S is sectionally pseudocomplemented and for any n+l

minimal prime ideals Pi g % NN m e Y PM] ,

pIV'.""'..Vplﬂ’l:S.
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2. Multipliers on distributive nearlattices.

let S be a nearlattice and ® a mapping of §
into itslf. Recall that ® is a multiplier on S, if
® (x AN y) = & (x) ANy for each x , vy € S. For a
multiplier & on §, My = { x € 8} ®(x) = x } is clearly

and ideal of S. By Szasz [55, Theorem 3] My detefmines @

uniquely.

The following result is due to Niemineen

[38, lemma 1]. It is also a generalization of a part of

proposition 2.1 of Cornish [10].

Lemma. 2.1. An ideal I of" a nearlattice S generates a
multiplier ® on S, that is |, H’ = I, if and only if for
each a € S there is an element b € I such that

I N (al] = (b], and moreover, b = & (a). a

If ® and A are multipiers on a nearlattice S, then
® A X and ® V A are defined by ( ® A XA ) (x) =
® (x) AX (x) and ( @ VA ) (x) =@ (x) VX (x). Notice
that & (x) V A (x) always exists by the upper bound
property of S, as & (x), A (x) € x, though ® V 1 is not
necessarily a multiplier. Also, ® (XA (x) ) =

® ( A (x Ax)) =9 (X2 (x) Ax) = (x) AL (x).
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As shown by Szasz and Szendrei [56, Theorem 3], M(S) is

a meel semilattice.

The following result is due to Nieminen [38].

Proposition 2.2. Let ® and A be two multipliers on a
nearlattice S. Then, ® V 4 is a multiplier on S8 if and
only if ( Ht Vv Ml )y N o(x] = ( M’ n (x] ) V ( Hl n (x]) for

each x € S. 0O

Next result is due to No?r and Cornish [39]. For the
idea of standard ideals in lattices we refer the reader
to consult [18] and [21b] , while a complete description
of these ideals in nearlattices can be found in [15].
Proposition 2.3. [ Noor and Cornish 39, corollary
3.3 ]. Let ® be a multiplier on a nearlattice S. The
mapping ® V A is a multiplier on S for each

A € M(S) if and only if M, is a standard ideal of S.

Following result involves the ideas on direct
summands of a nearlattice given by Noor and Cornish in
[39]. For direct summand of a lattice we suggest the
reader to consult F. Maeda and S. Maeda [25] and M.F.

Janowitz [27].
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Proposition 2.4. [ Theorem 3.4. Noor and Cornish 39].

A nearlattice S with 0 has a decomposition into a
direct summand if and only if there are at least two
multipliers ® and A on 8 such that ® V 1 = v and

® AX = @, and both ® and A+have a supremum with each

multiplier on S. O

Next theorem is due to Nieminen [38, Theorem 3] also

see [39]. This is also a generalization of a part of

Cornish [ 10, Theorem 2.2].

Theorem 2.5. In a nearlattice S, the following

conditions are equivalent.

(1) The meet semilattice of all multipliers on S
is a lattice (in fact, distributive lattice).
(ii) Each multiplier on S is a join-partial
endomorphism of S.
(iii) (x] is a distributive sublattice of S for
each x € 5. In other words, S is

distributive. 0O

The next result was also mentioned by Nieminen in
[38, Theorem 4] without proof. A complete proof of this

has been given by Noor and Cornish [39,Theorem 3.6].
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Theorem. 2.6. Lel S be a nearlattice, Each multiplier @

on S has the properly Lhal @ (¢ (y) Vz)=0a (y) Vo (2)

when @& (y) V z exists in 5y. if and only if (x) is a

modular sublattice of S for each x € S§8. 0

A subsel T of a nearlaltice S is called finitely

Join-dense in S il each x € S is Lhe join of a finlte

numbers of its predecessors in T. Now we give the

following categorical resull.

Theorem. 2.7. Let S and T be distributlive nearlattices

and [ : § -—-—--- > T be a join-partial homorphism such

that f(S) is finilely join dense in T. Then the following

diagram is commulative, where §1 (s) = m, and p(t) = it

f
] > T
Mg He
Y Jx
M(S) > M(T)

M(f)
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for all s € S and t € T, and for ® € M(S),

M(f)(®)(t) = f(¢(sl)) V osamuaas vV f(@(sn}) for t € T where
t = f{sl) V..., Vv f(sn); S{perenranens S, € S.
Moreover, M (f) : M (S)----- > M(T) is an isomorphism

when f is one to one.

Proof. Let t] < t2 in T. Suppose
t]=f(ai)V....Vf‘ (an} and t, =f(b|) LY [— V f (bl)
where Blyoees 8, b]’ ...... ,b. € S. Since t.l < t2 , so for

any ® € M(S), f{¢(ai)) < f(ai) 38T t, for all i,
i, = 1 inms 2 n

Then f(¢(ai)) = f{@(ai)) A tﬁ

= f(@(a;)) A (f(b)) V....V £(b,))

= (£(®(a)) A £(b)) Veeun... V (£(®(a;)) A £(b,))
= £{0a) N by ) Ve V £(o(a;) A b,)

= Ffay A BIBEY) Wowswa s & poss V f(a, A o(b,))

& lag] K L FLOUBIYY Vi pawen s 3 pans V £(@(b,))]

= £(a;) A M(£)(9)(t;).

That is, f(®(a;)) < M (£)(®)(t,) for each i ;

3 =L5x 6 5 wis yn. Thus, M(£)(®)(t;) < M(£)(®)(t,) and
hence M (f)(®) is well defined for every ® € M(S). Also,

it can be easily seen M(f)(®) is a multiplier on T.

Now for any a € S, M(f)(n)(a) = H(f)(ua). Then for
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any t € T, M(f)(n,)(t) = f(u,(s))) Mas v vaowni'V fn,(s,)),

where t = f{sl) g a5 03V f(sn) i Sppeeceeays € S.
Thus, M(f)(n,)(t) =f(a)'\sI ) VooV U af\sn]
= f(a) A [ f(ﬁ)V.... ...... V f (s,) ]

Foa) At o= g, (8) = n (f (a) ) (t).
Thus, M(f)(n)(a) = nf(a), i,e., the diagram is

commulative.

Finally, suppose f is 1-1. Then without loss of
generality we can regard .5 as a finitely join-dense
subset of T. Define M(f) : M(T)------ > M(S) by
MOE)! (R) = Al; ( restriction to S). Here M(e)! is
clearly isotone. Now, M(f)l (M(£)(®))(s) = M(£)(®)!s(s)
= ®(s) for all s € S. That is M(f)'l M({f) = idﬂsr

Again, for a € T, if a = g Vi oo 5 o N a with a; € 8,

then (M(£) M(£) ) (A)(a) = M(EYM(E) (X)) (a)

MOE) (A (o) Veuon... VM (£) (1) (a,)

n

A(ay) Vieoooo VA(a)) = )L{a.l Vioo...Voa )
( by 4.2.5 )

A(a). Thus, H(f)M{f)_l = idHT} and hence M(f) is an

isomorphism. 0

We refer a join-partial homorphism of the Theorem
2.7 above, as finitely Jjoin-dense homomorphism. Now,

suppose S is a distributive nearlattice. Notice that the
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map € ; S----> % (S) (the lattice of finitely generated

ideals of S) defined by €(s) = (s] is clearly a

monomorphism. Also, it is easily seen that €(S) is
finitely join dense in I{(S). Thus, we have the following

result which is trivial from 4.2 7.

Corollary. 2.8. For a distributive nearlattice §,

M(S) is isomorphic to H(Jf(S)). a

Remark 2.9 : Suppose f ¥ § —=-—--- > T and

> R are two finitely join-dense homomorphisms
(S, R, T are distributive nearlattices ). Let r € R and

® € M(S), and so M(f)(®) € M(T). Then,

¥ = g(t!)V.......V g(tl) where t; € T, whereby each
t; = fis;) VooV f(sﬁi) for suitable STERCEREE s
in S; i = Yy v s vam 5m

- Here, it is not hard to see that gf

is also finitely join-dense.

Now, as @ (Sﬁ) < 84 for all j = 1,

i=1,...., m, f(¢(s“)) Vi s v vanaV f(@(sn

i
for all i = 1,.,m, and is equal to M (f) (Q)(ti). But,

reseasy D

i} ) exists in

M (gf) (@) (r) =V [(gf)(0(sy;) ) Ve V(gE) ((s, ;)]
1 1

Y RlE(O0sy)) VeuiioitV £(8(s, )] = v g(M(£)(0)(t,))

1 1

1
M (g)(M(f)(®))(r).

Hence, M(gf)(®) = M(g)(M(f)(®)) as r is arbitrary in 8.
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Since ® is also arbitrary in M(S), M(gf) = M(g)M(f). This
shows that M is a functor ( which is different from that
of Lattice Theory, c.f. Cornish [10, Theorem 2.4} )

from the category A to the category B. The objects of A
are distributive nearlattices and the morphisms are the
Join-partial homomorphisms such that if f : S---->T

(f, S, T € A), then f (S) is finitely join-dense in T. On

the other hand, B contains distributive lattices as its

objects and the morphisms are usual lattice

homomorphisms.

In conclusion, we would like to note that in the

commuting diagram of 4.2.7, H 1is not a natural

transformation, as it does not have finitely join-dense

components.
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3. Multipliers on distributive nearlattices which

are sectionally in Br

Lee in [31] has determined the lattice of all
equational subclasses of the class of all
pseudocomplemented distributive lattices., They are given

by B, « By < B c.....¢ B <c....c B, where all the
inclusions are proper and BO is the class of all
pseudocomplemented distributive lattices, Bq consists of
all one element algabras, BD is the variety of Boolean

algabras while Bn’ for 1 £ n < ® consists of all algabras

satisfying the equation

n
Cxp Ay Avec it d A )PV Y Cxp A A x ) A xt A
i=1

X4 s 75 7 sime A X, )t = 1 where x, denotes the

pseudocomplement of x. Thus B, consists of all stone

algabras.

A distributive nearlattice S with 0 is called
sectionally pseudocomplemented if each interval [0,x],
X € S is pseudocomplemented. Moreover, S is said to be
sectionally in B, -1 £ n < o, if each interval [0,x],

X € S is in Br
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Proposition 3.1, proposition 3.2 and Theorem 3.4 were
proved by Cornish in [10] for lattices. Here we extend

those results for nearlattices.

Proposition 3.1, If S is a sectionally

pseudocomplemented distributive nearlattice with 0, then

M(S) is pseudocomplemented.

Proof. For each o € M(S) and x e S, o(x) € [0,x].

Suppose o (x_)i denotes the pseudocomplemented of o(x) in

[0,x]. Define 0t ! S-———=- > S by o’ (x) = o (x)§ for each

X € 5. If a, b €5, then (c'(a) A b) A (a(a A b))

ot(a) Ab Ac(a) Ab =0 implies o’(a) Ab < o(a A b)'

n

0‘(& A b). On the other hand, ot(a A b) A o(a)

o (a Ab) Aa(a) = ala Ab) Ao(a) Ab

ala A b)' A ola A b) = 0 implies
o'{a A b) < o(a) = o*(a). Since o'(a Ab) < b,

so ct(a A b) < c*(a) A b. Therefore,

o (a A b) = o (a) A b, and so o € M(S).

Now (0 A o') (x) = o (x) Ao (x) = 0 = ¢ (x)
implies o A o' = o. If o At = ©, then o (x) A t(x) = 0
for each x € S. Since o (x), ©(x) € [0,x], so
t(x) £ o (x)! = c‘ (x). This implies t < o', and so o is

the pseudocomplement of o in M(S). Therefore, M(S) is

pPseudocomplemented. a
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Proposition 3.2. For a distributive nearlattice S with
0, if M(S) is pesudocomplemented then S is sectionally

pseudocomplemented.

Moreover, for each o € M\S) and x € § 0*(x} is the
relative pseudocomplemented of o(x) in [0, x].
Proof. Consider any interval [O,¥] in S. Suppose
x € [0,y]. Then 0 = @ (y) = (n, A u‘l) (v) =
B (v) A (v) = x Ay A p'x (vy)= x A ukx(y) Now, if
x At =0 for some t € [0,y], then for all p € s,

(p‘ A i) (p) = x At Ap =0, and so B, A B, = @. This

. t H
implies B < n,. Thus, By (y) =< Wy (vy), and so t = t A y

t : ’ ,
< B, (y). Hence, B (y) is the relative pseudocomplement

of x in [0,y]. Therefore, § is the sectionally

pseudocomplemented.

Finally, for each x € S, o (x) A o (x) = 0. Also,
o'(x) € [0,x]. Now, let t A o(x) = 0 for some & € [0,x].
Then for any p € 8, (i A o) (p) = 1, (p) A o(p) =
tApAo(p) =t Ao(p) =t A x A olp) = t A p A o(x) =
0 = @(p). This implies m AN o = e, and so B < o', Then
1%(x) < U*(X}. Thus, t = t A x < ot(x). This shows that

UWx} is the pseudocomplement of o(x) in [ 0,x]. 0]
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Corollary 3.3. Suppose S is a sectionally
pseudocomplemented distributive nearlattice with 0, If x'

is the pseudocomplement of x in (0,y], then

Recall from chapter 1 that a distributive

nearlattice S with 0 1is semiboolean if each interval

[0,x], x € S is boolean. .

Theorem. 3.4. Let S be a distributive nearlattice with
0. For given n such that'—l £ n £ o, the following

conditions are equivalent:
(i) S is sectionally in B, .

(ii) M(S) is in BW

Proof. (i) implies (ii). The case n = -1 is trivial. The
case n = @ follows from proposition 4.3.1.
For n = 0, S is semiboolean. Then by proposition

4.3.1, M(S) is pseudocomplemented and for o € M (8),

0*(x) = o(x)* for each x € S, where U(x}+ is the

pseudocomplement of o(x) in [0,x]. Since S is

semiboolean, U(x)+ is also the relative complement of

o(x) in [0,x]. Then (o V ot) (x) = o(x) V ct(x) =

o(x) Vo(x) = x = t(x). This implies o V o = 1



108

t
and so o is also the complement of o in M(S). Therefore

M(S) is boolean.

Now suppose S is sectionally in Bn i 1 £ n < o,

For Olyervsrsses0 € M(S) and for each x € 8§, using

proposition 4.3.1.

n
=(o; Aoih o)t (x) VV (o AciiA Gt AL Aot (x)

i=1

n
=(lop AveiAo) (x0)' V'V (o) A A of ALLA o) (%))

i=1

n
(o(x) A..A o, (x))W V(o (x)A. .. A (x)A. . Ao (x))}

i=1

t V +
(o)(x) A iAo (x))' V V (0,(x) A.iuA oi(x)

i=1

Hence, (cl A.... Ao )' Vv (0‘1 Ao WA cn)‘ V....V (01 N wvans

i v oely U‘n)t = 1, and so M(S) in is B .

(ii) implies (i). The case n = ® follows from
proposition 4.3.2. For n = 0, M(S).is boolean. Then by

proposition 4.3.2, S is sectionally pseudocomplemented.
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Suppose x € [0,y]. Then the pseudocomplement p: of

By is also the complement of . Thus, My A un =t. If

x! is the pseudocomplement of x in [0,y], then by

corollary 4.3.3, y = 1(y) = Uﬁ Vv pa) (y) =

n (y) V px (v) = (x Ay) Vx'=x Vx' This implies

x' is the relative complement of x in [0,¥y] and_hence S

is semiboolean.

Now suppose M(S) is in Bn; l £ n < . Let

X| yeeegXx, € [0,y]. Then using proposition 4.3.1.

n
y=uly) = Ly A A )PV VY np AcA Y AL
1 n i=1 1 i
* L)

n
= A A ) D' VY A A A A ) ()

1 n i=1 1 i n

n
= AN AN VY g A AR () ALA x A

i=1 i

n
= G A A X)) VY Gy A A (9 ALLA X))
j=1 i

1

n
= g A A x)t VY g A AR AL x )

i=1
Which implies [0,y] is in B, and so S is sectionally

in Bf
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Following lemmas are needed for further
development of this chapter. We omit the proof of 3.5 as

it is trivial.

Lemma 3.5. (i) Let S be a distributive nearlattice with

0. If 0 < x € S and the interval [0,x] is

pseudocomplemented, where y{ is the pseudocomplement of
y € [0,x], then in the lattice of ideals of S,

("1 = (v1' n (x] and ("1 = (v1" n (x].

(ii) If S is a distributive nearlattice with 0 and
0 £ x € S is such that (y]t N (x] is principal for each
y € [0,x], then [0,x] is pseudocomplemented and

(v1' n (x1 = (/7. O

Lemma 3.6. Let S be a distributive nearlattice with

0. For any r € S and any ideal I,

(el n1)n(e) =1 n (r].

Proof. Obviously R.H.S £ L.H.S. To prove the reverse
inequality, let t € ( (r1l n I)' N (r]. Then

t<rand t Ar Ai =0 for all i € I. This implies

t Ai =0 and so t e 1, Thus, t € it N (r] and this

completes the proof. [
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Recall that a prime ideal P of a nearlattice S with

0 is called minimal prime ideal if there exists no prime
ideal Q such that Q c P.

Followling lemma will also be needed for the proof of

the next theorem. This is an improvement of 1.4.3 and we

‘omit the proof as it can be done in a similar way,

Lemma 3.7. If S is a subnearlattice of a
distributive nearlattice *S and P, is a minimal prime
ideal in SI’ then there exists a minimal prime ideal P in

S such that P, = S, n P, a

We conclude this chapter with the following theorem

which is a nice extension of [10, Th. 4.5].

Theorem 3.8. Let S be a distributive nearlattice with 0,

For given n such that 1 € n < @, the following conditions

are equivalent

(i) S is sectionally in B, ;
(ii) M(S) is in B
(iii) For any y € S, and for Xjpeoereeony x € (y],

(v] & (Gl Aelon A (DY V(1Y AL,
A GV VT A A (1D
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(iv) For any Xjpeeeensany X €S,

(Gq] Ao A G VO A A 1 VL
v VT A A (1Y = s

"
]

(v) S is sectionally pseudocomplemented and each

-

prime ideal contains at most n minimal prime

ideals.

(vi) S is sectionally pseudocomplemented and for any

nt+l distinct minimal prime ideals PiseeessP

Pl VIUIOQIV Pn’l = S.

ntl?

»

Proof. (i) <===> (ii) have already been proved in

Theorem 4.3.4,

(i) implies (iii). Suppose 2 < n, Let x% be the

pseudocomplement of X; in [0,y]. By lemma 4.3:.5

(x]] Y R, ¢ (xif Paias 5 A (xn]

Ol Avee A 1 A (31 AL A (%]
(] Ave A (T AL A ()

1

G Avve b At Al A x )

Since (i) holds, so

n
(v =00 Avee At VIV g A A X A A )

i=1



n
=((x; Aueenn, Ax )TV V) A A st AL Akt

i=1

n
=HHA”AHfAWHVV(u’N“AxHAmMJ“WH

R |

n
= LN I T— A,V V. ((x] ALLL L Alxt] AL,
§=1

n
= oG A A D VY T ACA ()1 A (k1)

=1
by lemma 4.3.5 and as each X; £y. If n =1, then by (i)
and using lemma 4.3.5, we have

(v]

(X’+ Vv X[H]

(x'1 V (x*")

(G0 A (1) V(1" A (v])

e (x1" V (x,1"

(iii) Implies (iv). Firstly suppose 2 < n.

Let Xy eonenns 1X, € S. Choose any r € S. Then by (iii).

n
(Pl e (e Axd Ace A (e A, PV V(A xp)

i=1

Ac..A (r A xﬂ' Ac. A ((r A x”)*, and so

; n
(ﬂ=(HrAM]A”A(rAﬂH‘MH)VV(HrAﬁ]m.

i=1

..... Ale Axd  Avcc A (e A )Y A (£))
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Now, by lemma 4.3.6.

((r A xd Ao oA (m Ax, DY A (0] = ((x] A
A (DA (e,

Again for each 1 € i < n, r A x; < x; implies
(r A xﬂ* 5 (x]& .
Thus , (r A x;] A...A (¢ A x1' Adaee A (r A x,]
5 (2 N %] Moozl Nowess A (r A x,1, and 5
(e A x] AcA (2 A x 1P ACA (2 A x, 1) A ()
elix & 5T e ills0" A vasas AlrAx 1) A (r]
= ((x) Ao Alx 1 ALl e Ax, ' A (r],

by using lemma 4.3.6 again.
Therefore, (rl c ((x;] A...A (x, 1"V ((x1" AL,

amieily oD Mau s oW Ll B %55 i A (x5,

Which implies that

((x] A A DV g1 A A (D) VeV (%]

If n = 1, then for any r € S, we have by (iii) that

(r]l = (r A xﬂ. Vi(ir A xﬂ"
Thus, (rl = ((r Ax1" 0 (1) V ((r A x2" 0 (2])
= ((x1' 0 (e) V ((r A x2" 0 (2])

( bx lemma 4.3.6 )
e e )" W [

(xl]

,and hence

L v (X]]" = S
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(iv) implies (i) follows exactly from the same

proof of [10, Th.4.5(iv) ===> (i)1]1.

(v) implies (vi). Suppose (v) holds, and
PP""“"PMI are distinct minimal prime ideals. If
P1 V .......V Pml + S, ‘then by 1.2.5, there exists a
prime ideal P containing PI""""'pMI’ which

contradicts (v).

(vi) implies (v). Suppose (vi) holds. If (v) does
not holds, then there exists a prime ideal P which
contains more than n minimal prime ideals. Then by (vi)

P = 8 which is impossible.

(iv) implies (vi). We omit this proof, as it can be
proved exactly in a similar way that Cornish has proved

(iv) ===> (vi) in [10, Th.4.5].

(vi) implies (i). Suppose (vi) holds and a € S. Let
QP"“"'QMI be n+l1 distinct minimal prime ideals in
[0,a]. By corollary 4.3.7, there are minimal prime
ideals P, in S such that Q = [0, a] n P, for each
1 £ i £ n+l. Since Q; are distinct, all Pi are also
distinct. By (vi), (a]l = (a] A (P, L7 P,) =

((a]AP]) V".....V((a]APﬂi1}=Ql Vtﬂl.llVQn!ll
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Since each interval [0,a] is pseudocomplemented, so [0,a])

€ B by [31, Th.1], and hence

S is sectionally in Bn'
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