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PREFACE

The present thesis entitled "ON MHD FLOWS CF* VISCOUS
INCOMPERESSI ALY FLUIDS" is being presented for the award of
the degree of Doctor of Philosophy in Mathematics. It is
the outcome of my researches conducted in the Department of
Mathematics, Rasnaras Hindu University during the years .
1983-86 under the esteemed guidance of Dr. llewal Kishore,
Reader in the Department of Mathematics, Banarss Hindu
University, Varanasi, India,

The whole thesis consists of six chapters. The
first chapter is introductory, giving the general descrip-
tion and fundamental equations of magnetchydrodynamics,
free convection flow, flow through porous mcdia, rotating
fluid flow, oscillatory flow and flow with Hall currents.
Lastly, a brief review of the past researches related to
the thcsiz have been given. Throughout the work'we are
considering the flows of electrically conducting, wviscous
and incompressible flulds, 7The magnetic Reynolds number
is assumed small for all the problems except tle probdiems

discussed in chapter two,



The second chapter has been divided into pests.
Part A of this chapter deals with the flow between two
Infinite, non-conducting, parallel porous flat plates,
when the lower plate 1s Injecting fluid and the upper one
is absorbing it. The flow is subjected to a uniform trans-
verse magnetic field and the magnetic Reynolds number of
the flow is sufflciently large so as %0 incluce the effect
of induced magnetic field. The expressions for the ve}ocity
and induced magnetic fields have been obtained by using
Laplace traasform technique. The effect of the magnetic
parameter M on the velocity and induced mognetic field
has been studied. It is found that the veolocity decreases
with increasse in M in the lower region between the glatea
and increases with increase in M in the upper region, The
induced magnetic field Jdecreases with increcss in M, In
part 8 of this chapter, the effect of a unifonrin tranaverse
magnetic field on unsteady MHD free convective flow past
an impulsively started infinite vertical non-conducting
plate has been discussed, Here also, the magnotle Reynolds
number is assumed to be sufficlently large “c take account
of the inducad magnetic field. There is constont heat flux
at the plate, Fxpressions €or the velocity =»n? in&gned
magrnetlc have been obtained by Laplioce tran:form technique,
The affect of the different parameters on itve flow have been

discussed with the help of tables,



In part A of the third chapter, the effect of a
uniform transverse magnetic field on the steady free convec-
tive flow through a porous medium, occupying a semi~-infinite
region of space and bounded by a steadily moving vertical
porous plate has been studied. The flow is subjected to
constant suction. Approximate solutions ‘o the equations
relevant to the problem have been obtained. The influence
of the different parameters on the velocity and tempelbature

fields have been dlscussed with the help of graphs and-tables;

The problem considered in part 2 of this chapter
is an extension of the problem considersd in part A, Here,
we have taken into accocunt the effect of rotation on the
flow. Due to rotation the flow becomes three dimensicnal.
Approximate solutions to equations relevant tc the problem
have been obtained. Effects of the various parareters on
the primary velocity, secondary veloclity, the :omﬁbnenta

of skin friction and the temperature have been discussed.

The fourth chapter i3 concerned with the unsteady

free convective flow past zm impulsively startad infinite

. L Y -
vertical porous plate in presence of a uniform transverse

magnetic field. The free stream is assumad to oscillate

in time about a constant mean. The flow is subjected to

constan: suction velocity and there is constant heat flux

at the plate. Approximate sclutions for the mean flow and



transient flow have besen obtained and the results have been

Jiscussed with the help of tables and graphs.

In +he fifth chapter we have studiecd the effects

-

of Hall currents on the unsteady MHD free convective flow

past an impulsively started infiniée vertical porous plate
in presence of a uniform transverse magnetic field. The
plute temperature is assumed to oscillate in time ahcuk 3
constant mean and the {low is subjected to constant suction
at the plate. Approximate solutions for the mean flow and
tr-nsient flow have been obtained, The influence of the

various parswmeters on the mean and transient ilcws has been

dicscussed with the help of tanles and graphs. *

In the last chapter, an attempt hazz Leen made to
study the effects of rotation and Hall currcats on the
unsteady MHD free convective flow through z porous medium
occupying @ semi-infinite region of space and counded by an
infinite vertical morous plate 1n presence >f ¢ Lransversely
applied uniform magnetic fiz1ld. The plate ls dssumad ¢
ost:illate in time about @ constant mean znd there is constant
heat flux at tﬁo plate., Approximate solutions for the me;;
flow and transient flow have been cohtainzd nd the fesult;
have been discussed with the help of grapbh:s snd tsbles.

-
“:?c‘v_.j toe Lakrnan

( Fouzia RARMAN )
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CHAPTER — I

INTRODUCTION

Magnetohydrodynamics

Magnetohydrodynanics is that branch of continuum ,
mechanics which deals with the flow of electrically conduc-
ting fluids in electric and magnetic fields. It combines in
a common framework the electromagnetic and fluid dynamnic .
theories, to yield a description of the concurrent effects
of the magnetic field on the flow and the flow on the magne-
tic field. Magnetohydrodynamic (MHD) phenomena result £ rom
the nutual effect of a magnetic field and a concducting fluid
flowing across it. Thus, an electromagnetic force is produced
in a fluid flowing ' across a transverse magnetic field, and
the resulting current and magnetic field combine to produce
a force that resists the fluid's motion. The current also
generates its own magnetic field which distorts the original
magnetic field.

1
Faraday (18232) carried out experiments with the

flow of mercury in glass tubes placed between poles of a’ *

magnet, and discovered that a voltage was induced across.

-------------- A R e e S TR RS e

1. Faraday,M. Experimental researches in Flectricity Phil.,
Trans. vol. !5, p. 175 (1832).




(2).

the tube due to the motion of the mercury across the magnetic
field, per-pendicular to the direction of flow and to the mag-
netic field. He observed that the current generated by this
induced voltage interactedlwith the magnetic field to 319w
down the motion of the fluid, and this current produced its
own magnetic field that obeyed Ampere's right hand rule and

thus, in tum distorted the magnetic field.

The first astronomical application of the MHD
theory occurred in 1899 when Bigalow suggested that the sun
was a gigantic magnetic system, Alfven1(1942) discovered
MHD waves in the sun. These waves are produced by disturban.
ces which propagate simultaneously in the conducting fluid

and the magnetic field.

The current trend for the agpplication of magneto-
fluid dynamics is toward a strong magnetic field (so that
the influence of electromagnetic force is noticeable) and
toward a low density of the gas (such as in space flight
and in nuclear fusion research). Under these conditions

the Hall current and ion slip become important.

Electromagnetic Ecquations:

Magnetohydrodynanmic equations are the ordinary

L B N R - PERPREe R RSRERER R E S

1. Alfven,H., On the existance of Electromagnetic. Hydrody-
I}?‘ﬂiC)W&V&S, Arkiv F.,Mat.Astro. O.Fysik Bd. Vol.298,No.2,
942).



electromagnetic and hydrodynamic equaticns modified to take

account of the interaction between the motion of the f£fluid

and electromagnetic field; formulation of electromagnetic

theory in mathematical form is known as Maxwells eqguations.

Maxwell's basic equations show the relations of baslic field

The basic laws of electro-

quantities and their production,

magnetic theory aré all contained in special theory of rela-

tivity. But here we will always assume that all velocities

are small in comparison with the speed cf light.

Before writing down the MHD equation we should

first of all know the ordinary electromagnetic equations and

hydrodynamic equations.

First, we give the electromagnetic equations:

Charge Continuity:

1.1 ".— = 1
D ,Je
y
Current Continuity:
o
1. -- = A .__,..ﬂ
P VJ 3t

Magnetic Field Continuity:

1.3 V.B = O

Ampere's Law:

1.4 VXﬁ=E+-§——

Magnetofluid dynamics for engi-

1-- crmer, K.R. and Pai,S.I-
neers and applied physicists. McGraw Hill Boock Company,

(1973) , p. 38.



Rk

(4)

Faraday's Law

T = - 2B
1.5 VX E gog

wl
L)

Constitutive Equations fogB an

N

1.6 B =E-E_

1.7 -ﬁ = JL -I:i
e

Lorentz force on a'chg_z_-;_c‘@

1.8 A =‘q(§+VPXB)

Current Density

1.9 :'7-=:c:v('E«i-'\'I'X'E)-|-t:-'1¢=‘e'6

The first five are the Maxwell's equations.

where
D electric displacement
Py charge density
E electric field
H ; magnetic field
B magnetic induction
J current density
2D displacement current density
et
= the electrical pemitivity of the medium
Py the magnetic pemmeability of the medium
2V the convection current due to charges

moving with the fluid.



(5)

<li

velocity of the charge

<l

velocity field.

Fundamental Equations of Fluid dynamics of Viscous i‘luida1

In the study of fluid flow one dftennines the've].-o..
city distribution as well as the states of the fluid over the
whole space for all time. There are six unknownsnamely, the
three components of velocity V (u, vy w), the temperature T
the pressure p and the density @ of the fluid, which are
functions of spatial co.ordinates and time. In order to°

‘ determine these unknown we have the following equations.
(a) Equation of state which connects the temperature, the
pressure and the density of the fluid.

1.10 p = RPT

For an incompressible f£luid the equation of state is

simply
111 P = constant
< (b) Equation of continuity which gives the relation of

conservation of mass of the fluid. The equation of
continuity for a viscous incompressible fluid is,
1.12 V'V = 0

oo W - O - -

4 3.4 o T 174 mrmts e £l Treoanr e 1 . I.aminar €low. D.Van NOS o
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(@)

(6)

Equations of motion, known as the Navier.stokes equations
and which give the relations of the conservation of momen .

tum of the fluid.

&

For a viscous incompressible fluid the equation of
motion 1s
5V N i
1.13 p—— = F—=Vp+uVvV Vv
Dt

where T is the body force per unit volume and the last
term on the right hand side represents the force per unit

volume due to viscous stresses and p is the pressure.

D 0 e g e
T y — ——— e ] = 4 V +. —_— -
he operator ) = W P

L]

This is known as the material derivative or total deri-
vative with respect to time, and it gives the variation
of a certain quantity of the fluid particle with respect
to time.

v? is the Laplacian operator.

Equatiocn of energy which gives the relation of conserva-
tion of energy of the fluid.
For an incompressible fluid with constant viscosity

and heat conductivity the energy equation is

1.15 pcp-g%=-g—‘:+kvzr+¢

where,



(7)

28 ig the rate of heat produced per unit volume by

¢
extemal agencies,

Cp is the specific heat at constant pressure,

k is the thermal conductivity of the fluid anc¢ ¢ is
the dissipation function.

For an incompressible fluid

.16 b = 2u [ (%;‘-‘;)2 + @02, (%_\;{)2

o

1 2 2
+5 (ny+ Yiz + sz)]

wnere,

Xy oy ox
Y, = 35 +
.
. ow au
sz . ox ¥ 2z

MHD Approximation a?

The electromagnetic ecuations as given from 1.1=- 1.9
are not usually applied in their present form and regquire:
interpretation and several assumptions to provide the set te
be used in MHD. In MHD we consider a fluid that is grossly

neutral. The charge density »e in Max:well's aquatio-ns must
A

Te Cr;r;c—ar,IZ.R. -and Pal ,é:l. b;agn;bth.zid dynamics for engineers
and applied physicists McGraw Hill Book Co. (1973) 4p. 72,




(8)

then be interpreted as an excess Ccharge density which is.
generally not large. If we dlsregard the excess charge dene
sity then we must disregard the displacement current. In most
problems the displacement current, the ¢xcess charge density
and the current due to convection of the extess charge are

small.

The electromagnetic equations to be used are then
the following:

1.17 V'B = O
1.18 VJd = ©
1.19 V-B = O
1.20 COVXH = 9
= _ 8B_
1.22 D = ¢ E
1.23 B = ua-'ﬁ' :
1'24 -J- = g (Eﬁfx-ﬁ )

MHD Equations:

we shall now modlify the equations of fluid dynamics

suitably to take account of the electromagnetic phenomena.
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(a) The MHD equation of continuity for viscous incompressible

electrically conducting fluid remains the same

1.25 VoV = ©

(b) The MHD momentum equation for a viscous incompressible

and electrically conducting fluid 151

1.26 p% = FuVp+ nV Vs @ x5

where F is the body force temm per unit volume and
the  new termm Jx B is the force on the fluid per
unit volume produced by the interaction of the

current and the magnetic field (called a J X B

force or lorentz force).

The MHD energy equation for a viscous incompressible electri-

cally conducting fluid is

2
DT - a0 2 o
1 The new term = is the Joule heating and is due to the

resistance of the fluid to the flow of current.

From equations 1.20, 1.21 and 1.24 we have an equa-
tion for the magnetic field viz.

----------------- W e e

1. Cramer, K.R, and Pal, S.I. Magnetofluid dynamics for engi.
neers and applied physicists, McGraw Hill Book Co. (1273),p.73.
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-2% = Vx (WxH) = %, W (VxH)

1.28 oOF, -g% s @) V- (V.9 H 4 vHV2 a

(s v.H =o0 and V.V = o for incompressible £1luid)

where ¥, = -}—}5 is the magnetic diffusivity.
) e
In some problems 1t is of interest to write the MHD

momen tum and energy equations in temms of the magnetic field,

hence eliminating J from 1.26 and 1,27 we get respectively.

1 = 2= N | 2
1,88 # * F— Vp + pvv-o-u.(n.v)n zuev(a).
and

DT _ 29 e H : H)—iL_VxH
1.30 pCp it mt k V7 + b + w"“)'[%{"e“?‘m""‘e"m]

THE IMPORTANT NON -DIMEN SIONAL PARAMETERS OF FLUID
DYN2MICS AND M AGN ETOHY DRODYN AMICS

$
we define here some important non.dimensional

parameters used in the present investigation:

Reynolds Number Re.
It is the most important paraneter of £luid éynarnics

of a viscous fluid. It represents the ratio of the inertial

force to viscous force and is defined as




(11)

inertial force .ot.tzL2

1-31 R = =
" viscous force uuL

UL
“ —
¥

where U, L, @ and u are the characteristic values

of velocity, length, density and coefficient of viscosity of
the fluid respectively. When the Reynolds number of the

system is small ‘the viscous force is predominant and the

effect of viscosity is important in the whole velocity field.
When the Reynolds number is large.the inertial force is pre-
dominant, and the effect of viscosity is important only in a
narrow region near the solid wall or other restricted region
which is known as boundary layer. If the Reynolds number is

enormously large, the flow becomes turbulent.

Prandtl number P(;:

The Prandtl number is the ratic of kinematic vis.
cosity to thermal diffusivity and may be written as follows

: Kinematic viscosity
1,32 Pr = Thermal diffusivity = ﬁ
Ply

The value of » shows the effect of viscosity of
the fluid., The smaller the value of % is, the narrower is
the region which 1s affected by viscosity and which is known
as the boundary layer region when ¥ is very small. The value

of 3%— shows the thermal diffusivity due to heat conduction.
P



T —

(12)

The smaller the value of 5%— is, the narrower is the region
P

which is affected by heat conduction and which is known as

thermal boundary layer when _k_is small, Thus the Prandtl bumber
PcC

shows the relative importance 8f heat conduction and viscosity

of a fluid. For a gas the Prandtl number is of order of unity.

Peclet number Pe

Peclet number is defined as:

!t!L ch

1.33 Pﬁ == —k——' = Pr. RG

It is the product of Reynolds number and Prandtl

number.

Eckert Number E.

w5 .|-.!'-. " o .
s R SR =

The Eckert number can be interpreted as the addition
of heat due to viscous dissipation and is very small for
incompressible fluid and for low motion. It may be defix;e_d
as follows:

U2

cp ('1". 1‘“)

1.34 E =

where U is some reference velocity and -‘I‘w— T_ is the diffe- °

rence between two reference temperatures.
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Magnetic Pressure Number RH:

It is thewmtio of the magnetic pressure to the dy-

n-mic pressure and is given by

H-Hz

- P

It is a measure of the effect of the magnetic field
on the f£luid. Only when Pl-l is the order of unity, will the
flow be influenced noticeably by the magnetic field, and if

it is very small, all the magnetic effectscan be disregarded.

Magnetic Reynolds Number R,:

It is the ratio of the fluid flux to the magnetic

diffusivity and is given by

il 1.36 R =3
o 7
| o

It is one of the most important parametexs of MHD.
E The magnetic Reynolds number determines the diffusion of the

magnetic field along the streamlines. Ra is a measure of the

effect of the flow on the magnetic field, If it is very

small compared to unity, the magnetic field is not distorted
by the flow. When it is very large the magnetic field moves

with the flow and is called frozen in.

D
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Magnetic Number R.:

It is the ratio of the magnetic force to the
inertial force and is given by

/2 /2

- 1 1
1.37 Rmm uen‘:(-‘;ﬁ-) (PHRGJ

When R:r is very small R is also used to measure the electro.

magnetic .effects on the flow.

Magnetic Prandtl Number Pp

The magnetic Prandtl number is the ratio of the
viscous aiffusivity to the magnetic diffusivity and is
given by

1.38 P = _2’_ = Eg-
) » % Re

Pm is generally small and is a measure of the relative
magnitude of the fluid boundary layer thickness to the magne-
tic boundary layer'thickness. However when the magnetic
Reynolds number is large, the magnetic boundary layer thicke.
ness is small and is of nearly the sane size as the viscous

boundary layer thickness.

In this case Pm is not small.



MHD Boundary Layer Msnmptionn:1

Boundary layer phenomenon occurswhen the influence
of a physical quantity is restricted to©o small regions near
confining boundaries. This phenomenon occurs when the none
dimensional diffusion parameters - the Reynolds number, Peclet
number or magnetic Reynolds number are large. The boundary
layers are then the velocity and themmal or magnetic boundary
layers; and each thickness i3 inversely proportional to the
square root of the associated diffusion number. Prandtl
fathered classical fluid.dynamic boundary theory by observing,
from experimental flows, that for large Reynolds number, the
viscosity and themmal conductivity appreciably influenced the
flow only near a wall., When distant measurements in the
flow direction are compared with a characteristic dimension
in that direction, transverse measurements compared with the
boundary layer thickness, and velocities compared with the
free stream velocity, the Navier-Stokes and energy equations
can be considerably simplified by neglecting small quantities.
The number of component equations is reduced to those in the
flow direction and pressure changes across the boundary layer
are negligible, The pressure is then only a function of the
flow direction and can be detemmined from the inviscid flow

solution, Al=o the number of viscous temms is reduced to the

1, Cramery,K.,R. and Pal, S.I. Magnetofluid dynamics for eng.tnears
and applied physicists, McGraw Hill Book Co. (1973),p.141.



dominent term znd the heat conduction in the flow direction

in negligible.

MHD boundary laver flows sre separated indtc two
types by considering the limiting cases of a very large or
a negligibly small magnetic Reynolds number. @when the mag-.
netic field is o.riented in an arbitrary direction relztive
to a confining surface and the magnetic Reynolds number is
very small, the flow direction component oi the magnetic
interaction and corresponding Joule heating is only a function
of the transverss magnetic field component and the local velo.
cizy in the flow dixacﬂon. Changes in the transverse magnetic
field component and pressure across the boundary layer are
negligible. The thickness of the magnetic boundary layer is
very large and the induced magnetic field is negligible. Héw.
ever, when the magnetic Reynolds number is very large, the
magnetic boundary layer thickness is small ané is ©f nearly
the sane size as the viscous and themmal boundary iayers and
then the MilD boundary layer equations must be solved simmul.
tanecusly. In this case, the magnetic field moves with the
flow and is called frozen in.

Two Dimensional Flow:
1f the velocity distribution in a moving £luid

depends on only two coordinates (x and y say) and the velocity
is everywhere parallel to the x.y plane, the flow is sald %0

be two dimensglonal.
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The MHD Boundary Layer Equations for two .dimensional
Flow in case of Small Magnetic Reynolds Number:

with constant fluid properties, transversely applied
uniform magnetic field Hoand x-axis along the direction of
flow, the MHD boundary-layer equations for incompressible

1
fluid flow under the boundary layer assumptions are as follows:

1.39 L , 2 . 9
ax oy
2
1.40 u 2u 2u . .13 gdu_o 2 .2
| ot T Sx *V ey > x'l-vayz pueﬂou
1.41 22 = 0

e i e
a2
o]

1.42 pcp(gi + uld 4 vL) = kL + u(a“) v op? Hi "

] MHD Boundary.lLayer Equations for Two.dimensional
i Flow in case of Large Magnetic Reynolds Number:
| when the magnetic Reynolds number is large we

cannot neglect the induced magnetic field. With constait

fluid properties, transversely applied uniform magnetic field

Ho and xeaxis along the flow direction the MHD boundary layer
” i equations for incompressible fluid under the boundary layer

assumptions am2 as follows:?

1, Cramer,K.R. and Pal, S.I. Magnetofluid dynamics for engineers
applied Physicists,McGraw Hill Book Co. (1973) yp. 149.

2. Pai, S.I. Magnetogasdynamics and Plasma dynanics Wein Springer
i Verlog (1962), p.67.
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1043 'g"u"‘ + ﬂ = 0

2 7 oH
%o u & -2 &g X
4 at"'uax*'v'ggy pax*'"'g;f*p Hoay
- 2
2 Hx
1.45 = P+ e ) = 0
2 oH_ 2
oT oT oI k 2T g9y2 1 (X
1.46 at+uax+vay=Tppay2+Cp(ay)+UPC (ay)
oH oH oH 3’1
EH_.-tu{m + Vv ay‘ xax-rﬂoay-i-vﬂ—-uz—ay

where H:‘c is the induced magnetic field.

gction and Injection:

For ordinary boundary layer flows with adverse pre-
ssure gradients, the poundary layer flow will eventually sepa-
rate from the surface. Separation of the flow causes many
undesirable features over the whole field; for instance 1if
separation occurs on the surface of an airfoil, the lift of
the airfoil will decrease and diag will enormously increase.

In some problems we wish to maintain laminar flow without s;pa.
ration. Various means have been proposed to prevent the
separation of boundary layer £lows, suction and injection are

two of them.
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Injection of Fluia:

Fluid is injected from the body intoc the boundary
layer s0 as to increase the kinetic energy of the £fluid in

the boundary layer and to delay the separation.

Suction:

The retarded fluid in the boundary layer is sucked
into the body. The point of suction is near the point of -
separation, either slightly shead or behind so that no back

flow will occur.

suction is a very effective means for avoiding
separation. Suction of the fluid along the surface of the
body is able to keep the boundary layer laminar, because

the boundary layer is kept so thin that the transition from
a laminary boundary layer flow to a turbulent one is avoided.

Free and Forced ComreCt:i.czmg’2

The problem of heat transfer due to convection may
be divided into two cases, free convection and forced convec-
tion. By free convection we mean flows in which the motion
is caused by the effect of gravity on heated fluids of vari-
able density, by forced convection we mean flows in which

the velocities arising from variable density distribution,

L R R T L L L e e R R R L

1. Pai, S.I. Viscous Flow theory 1. Laminar flow D.Van Nos-
trand Company Inc (1956) 4p.99.

2., Tritton,D.J. Physical Fluid Dynamics, Van Nostrand Reinhold
company Ltd. (1979), p. 127.
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arising from the effect of gravity are negligible in compa-
rison with the velocities of the maln or forced flows

The temperature variations within a convective flow give

rise to variations in the properties of the fluid. Aan
analysis including the full effects of these is so complicated.
that some approximations become essent? 21, The equations are
commonly used in a form known as Boussinesq . approximation.
In the Boussinessg. ¢ . spproximation, variations of all fluid
properties other than the density are ignored completely.
Variations of the density are ignored except in sO far they
give rise to a gravitational force, i.e. the density varlation
with temperature is considered only in the body force temm,
the influence of density variations in other terms of the

momentum and energy eguations are considered negligible.

In free convection, a body force tem viz.

F_= gp g (T.T)

appears in the equations of motion where g is the accelera-
tion due to gravity, B i the coefficient of thermal expansion
and T-To is the excess temperature of the heated parts of the
fluid over the parts which remain cold. The non -dimensional
parameter Characterizing free convection is known as Grashof.i

number aid may be defined as



21)

1.48 G = ¥9 B (T'To)

U
o

two
where T, T are/representative temperatures and U is

some characteristic velocity,

The Boundary Layer Equations of Motion of MHD Free
Convection Flow:

The continuity and energy equations remain the
same in cases of free and forced convection. In free con-
vection flow we have a body force term in the momentum

equation.

The two dimensional boundaxy layer momentum
equation of MHD steady free convection flowdl in absence

of pressure gradient is

2
2 oB u
Qu - u
1.49 uax-l-vﬂ v-i;é--rgﬂ('r.'rm)-

where the flow is in the x.direction and magnetic
field is acting along y-direction.

------------------- .----.-.------‘---------—---‘l—u----.-—---

1. Cramer, K.R. and Pal, S.I1. Magnetofluid dynamics for
engineers and applied Physicists, McGraw Hill Book Co.,

p. 165 (1973).
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Porous Medium:

One may be tempted to deflne Porous Media as solid
bddies that contain'"pores" it being assumed as intuitively
cquite clear what is meant by a pore. However it is much
more difficult to give an exact geometrical definition of
what is meant by the notion of a pore. A special effort

must therefore be made to obtain a proper description.

Intuitively "pores" are void spaces wnich must
pe distributed more or less frequently through the material
4f the latter is to be called "porous.". Extremely small
voids in a solid are called "molecular interstices" very
large ones are called "oaverns' Pores are void spaces
intermediate between cavems and molecular interstices; the
1imitation of their sizes is therefore intuitive and rather

indefinite.

The pores in a porous medium may be inter.connected
or non-interconnected. Flow of fluids through porous medium
is possible only if at least part of the pore space is intere.
connected. The interconnected part of the pore system is

called the effective pore space of the porous medium,

According to the above description the following

are some examplesof porous medial

towers packed with pebbles, porous rocks such as
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lime stone, fibrous aggregates such as cloth, filter pgperx

etc. and finally catalytic particles, containing extremely

fine 'micro' pores.

A Model of Flow Through a Porous Medium:

Bear and BaChmat1 proposed & ~ndel of flow through
a porous medium in which the restriction of the fluid trans-
port, in well defined channels is an essential feature:; be -
cause of the immediate presence of the walls of the solid
matrix, the velocity of a fluid particle at a point in the
void space is essentially in the direction parallel to the
walls, and not normal to them. They visualise the void
space of a porous medium as composed of a spatial netwoxk
of interconnected random passages (Channels or tubes) and
junctions. Channels are of varying length, cross-section and

orientation; a junction is a place where channels meet.

Permeability:

Permeability is the term used foc conductivity of

the porous medium with respect to permeation by a Newtonian
&
fluid. This is,property that measures the ability of the

porous medium to transmit fluid through it,

1. Bear, I. and Bechmat, Y.: IASH Symp. Artificial Recharge
and Management of Aquifers Haifa, Israel, IASH, p.72(1967) .
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Darcy's Law:

1

Darcy »2 described his experiments on the seepage
of water throughi sand. The experiments were on unidirectional
flows only, and the main result is that the mean velocity is

directly proportional to permeability K of the medium having

dimension of area, to the grad of -({ 4+ >y), where u is the
potential of grivational attrection on sand and equal to g
times elevation, and inversely proportional to the viscosity
i of the fluid. Ge_neralized to three.dimensional flow Darcy's

law has the Cartesisn form

2 .
1.50 u o, p + PW)

n
!
Fim

provided p is constant. " 1t should be emphasized that u‘l is
the ith component of the meanvelocity taken over a volume

containing many grains of the porous matexial.

p-zations of Motion of Viscous Incompressible Fluid
Through Porous Medium:

i The porous medium is in fact a non.homogeneous
medium but for the sake of analysis, it may be possible to

replace it with a homogeneous £luid which has dynamical

1. Darcy, H.P.G.: Les Fontaines Publique de la ville de Dijon
Paris (1956).

2w HETw : Researches experimentates relatives an move-
ment de lean dans les tuysux, Parls (1957).
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properties equal to the local averages ofthe original non-
homogeneous continuum, Hence one can study the flow of a
hypothetical homogeneous fluid under the action of properly
averaged external forces and 0, a complicated problem of the
flow through a porous medium reduces to the flow problem of

a homogeneous fluid with some additional resistance.

The MHD equation of motion for a viscous incompre-

ssible electrically conducting fluid through a porous medium is

"-““r:‘x-
oV = 2. uV - Yo e,
1,51 P Es & F . VD Y V-5 + (JxB) 4
’ o '_“_ S \" 3
= o .-t .f
where K is the pemmeability of the medium. % /¥

Equations of Motion in Rotating Co-ordinatesi:

If one takes a body of fluid snd rotates its boun-
daries at a constant angular veloclity '{f then at any time
sufficiently long after starting the rotation, the whole body
is rotating with this angular gvelocity, moving as if it were
a rigid body. There are no viscous stresses acting within
the fluid. Any disturbance i.e. ahything that would produce
a motion in a non.rotating system, will produce motion relative
to this rigid body rotation, This relative motion can be cons=
sidered ‘as the flow pattemy it is the pattem that will be

observed by an oObserver fixed to the rotating boundaries.

- - e - W N e - - P il - .

1, Tritton, D.J.: Physical Fluid pynanics, Van Nostrand Reinhold
Company Ltd., p. 163 (1979).
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The effect of using a rotating frame of reference
is well known from fhe mechanics of solid systems, ther are
accelerations associated with the use of a non-inertial
frame that can be taken into account by introducing centri-
fugal and coriolis forces. The statement may be expressed in
a form appropriate to fluid systems by =
1.52 (-E%)Is (sﬂt)n+3x @XT) +20 XV,

The subscripts I and R refer to inertial and rota-
ting frames of reference. (%VE) is thus the éccel'e_eration
that the fluid part-:icle is experiencing and s0 (%%) is
the quantity to be equated with the sum of the var.tois forces

acting on the fluid particle. (ﬁ—

bt is the acceleration

)
R
relative to the rotating frame and can thus be expanded in

the usual way

- v
DV R P
1.53 (=) = = 4 (V.VV)
Dt o ot R

Dropping the subscript R as all velocities will be

referred tothe rotating frame the equation of motion i3

1.54

bt b

+ V.9V = = E} Vp — oX (OXD) — 20XV + W
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d terms on the right hand

The second and thir
the centrifugal and

side of equation 1.54 are respectively

co.riolis forces.

In many problems the centrifugal force is un-

important. This is because it can be expressed as the

gradient of scalar quantity.
155 o X @xT = -V (%gz r'z)

where r' 1s the distance fyrom the axis of rotation.

Hence replacing pressure P by

1.56 p—-% p 02‘1_,2 = P (say)

the equation of motion reduces to

Dtﬂ pVP 2 0xV + 9V V

Two important dimensionless parameters appearing

in rotating fluid are

the Ekman number E

- ;
i 1.58 L
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9]

where L is some characteristic length.

Boundary Layer Equations in Rotating Co-ordinates:

An important practical type of rotating boundary
layer flow is the flow over rotating blades, occurring in
turbines, helicopters and propellers. In this case, the
centrifugal and coriolis forces due to rotation, combine
with pressure gradients and viscous forces, cause the flow

to be three dimensional.

we consider a blade rotating about the z-axis
with angular velocity « and £iX ‘the exes with respect to the
rotating blade. Let the y-axis be along the span of the blade
and xe-axls be the third axis so as form a right.handed

cartesian system.

If we apply the boundary layer approximations to
equation 1.54, the distance of the boundary layer in the
z.direction is of the order of § , which is much smaller
than ‘the characteristic length in the x or y-direction ad
if the velocity component w is much smaller than u or v we
have the boundary layer equations of motion in rotating

coordinates. 1

------------------ -t-----ﬁ---.--&---t---..-n--.-----.-'-.-

1. Pal, S.I.: Viscous Flow Theory, I.Laminar Flow D.Van Nos-
trand Company Inc., p. 146 (1956) .

-
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2

ou au gu o - 2_ _..132 ,,Q_.“

1.60 ot Al T " vay * wg?z M, » W p ox * 2

oz

_ 2

v v v 2 18 oV

1.61 at-q-u%id-v%‘-;q-wg-i Y pwarvaz2
1,62 B =0

Oscillatory Flow:

FPluctuations in a stream incident on a body are
known to occur, and it is importasnt to understand how the
the boundary layer reacts to the oscillation of the stream.
For example, in the occurrence of flutter of air on air.
craft the boundary layer effects may be considerable. The
effects of free oscillations on the flow past horizontal
bodies were studied by Moore‘, IJ.qhﬂ:illz and others. A
simple case of oscillation treated by ughthillz is the one
in which the free stream oscillates in magnitude but not in
direction. Owing to the mathematical difficulties there are
sometimes restrictions on the amplitude and frequency of
oscillations. After the pioneering initiation by Lighthill

--.----na.---.------.-----c-.-..--o.-------------------..-

1. Moore,F.K.: NACA 2471 (1951),
2, Lighthill,M,J.: Proc. Roy. Soc, Lond, 2224,1 (1954).
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there have been many work on the subject of laminar boundary
layer which have regular fluctmating flow superimposed on
the mean steady flow. The most general case in which the
stream fluctuates both in direction and magnitude has been

studied by Gibson.

Equations of Motion of MHD Oscillatory Flow:

The two dimensional MHD boundary layer equations
of motion with transversely applied uniform magnetic field
Bo and x.axis along the flow direction. assuming the flow
to be at small magnetic Reynolds number are—

2
163 fu, .u, B __12p, 3% _g g2
ot TVt Yoy T Tpmxt? og? P e

1.64 %5 - 0

If the free stream oscillates in magni tude only
and is a function of time, i.e. U = U(t) where U is the velo-
city of the free stream. We have from (1.63) for the free

stream,

1.65 au __lsp_¢o
r 5 5 By

"
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Eliminating - % between 1.63 and 1.65 we get

the equation of oscillatory MHD flow as

2
2w, Lo - u_g g2
1.66 +“'3';(+"‘§% dt+ y:?- 5 o(u..u)

@

Hall Currents:

It is known that in an ionized gas where the density

is low or the magnetic field is strong the conductivity of

the fluid becomes a tensor. Due to the free spiralling of
electrons and ions about the magnetic lines of force, before
suffering collisions with other particles, the conductivity
transverse to the magnetic lines of force is reduced and a
current is induced in a direction nomal to both electric
and magnetic fields. The flow of such currents is known as
Hall Currents. Due to the presence of these currents the

efficiency of the MHD generator or accelerator is reduced.

The generalized Ohm's law taking Hall Current into

account in the absence of electric fleld is of the form".

M - A ;
1.67 J + i JxH = ou VXH + =, VPG)

where l-lo is the constant transverse magnetic field,

---.ot-.-.-ﬁ-H-ﬂtqﬂm‘bﬂﬂ..t-----n-ﬁ-.-ﬂnd -------- FE R R N L A

1. Cowling, T.G.: Hagnebohydmdynanics Interscience Publ.Inc.
New York, p. 101 (1957).
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o] e the electrical conductivity

hg =~ the magnetic permesbility

w, = the cyclotron frequency

Ty the collision time of electrons with ions
=) -  the electric charge

n. < the number density of electrons

Pa the electron pressure.

The boundary layer equations of MHD with Hall currmta1z Let

us consider xz to be the plane of the plate, the positive
x-axis being in the direétion of fiow, y-axls is taken per-
pendicular to the plate, A unifdbmly distributed strong
magnetic field Ho is acting in the y.direction., The effect
of Hall current gives rise to a force in the z.direction,
which induces a flow in that direction. Hence the flow
becomes 3J-dimensional. The plate is considered to be none

conduc ting.

The fundamental equations of incompressible MHD

flow with generalized Ohm's Law are,

- e SV eE TS APPSRt Ae RS eTSS TR E RS RS S T E ST EEReSEER eSS

1, Katagiri ,M.: J. Phys. Soc., Jpn. 27, 1051{1969).
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1.68 9.V = O

1.69 + V.0V ---;-vp+vvz'\7+'s- X

4

" e AR - 1
-ee = s
+ R @xH) = o (nVxH + =, vp,)

2]

1.70

since the plate is infinite in extent all the phye-
sical quantities except pressure are functions of y and t
only. Assuming the magnetic Reynolds number to be small we
neglect the induced magnetic field in comparison with the

applied magnkthc field.

Using the relation V.H = 0 for the magnetic field

H = (Hx,Hy,Hz) we obtaine HY = H_ (Ho is a constant) every-

where in the fluid.

From the relation V.J = O for current density J s:(Jx,Jy,Jz)
*

we have Jy= constant. Since the plate is ncn.conducting

Jym 0 at the plate and hence zero everywhere.

By applying the usual boundary layer approximations,
to equation 1,69 the basic equations under the above

assumptions are.

o

P S T
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where Jx and Jz are obtained from 1.70

under the usual assumptions, that the electron pressure
(for a weakly ionized gas) y the thermoelectric pressure and

the ion slip are negligible we have £rom 1,70,

1. — . w= Y

15 J w_T Jr_ - _;&Hw

1.76 J + w1 9 = oM Hu
z e e X e O

from 1.75 and 1.76 we get

ou H
1.77 ——3—59- (mu «w)
Tx {+m
ot H
1.78 J = -—%9 (u + mw) .

Jd4m
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A BRIEF DESCRIPTION OF PAST RESEARCHES RELEVANT

T0 _THE THESIS:

Couette Flow:

The Couette flow of a viscous incompressible
and electrically conducting fluid between twe infinite
parallel plates in the presence of a magnetic field when
one of the plates starts impulsively from rest, was studied
by Katagiri’. He presented his analysis by taking the mag-

netic lines of force fixed relative to the fluid.

Singh and Kumar2 have considered Katagiri's problem
by taking magnetic lines of force fixed relative to the
moving plate. The Laplace transform technique has beenl used

to solve the equation,

Suction and Injection:

Ben’nan3 has studied the problem of viscous flow
in the annular space bounded by two concentric circular

cylinders when the inner cylinder is discharging fluid and

the outer one is obsorbing it.

b_ Y E R E R R R R R R R R R R R L LR YR L R R R R R R - - .

1. Katagiri,M.: J.Phys. Soc, Jpn. 17,393(1962).
2. Singh,A.K. and Kumar,N. Wear 89, 125(1982),
v ; 2. Beman,A.S.: J. Appl. Phys. 29, 71(1958).
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Satya Prakash1 investigated the problem of unsteady
incompressible viscous flow under a time varying pressure
gradient in a straight channel with two parallel porous flat
walls when one wall is discharging fluid and the other wall

obsorbing it.

2
Kishore et al® have extended the work of Satya
Prakash to magnetohydrodynamic case. The magnetic Reynolds
number of the flow is assumed to be small so that the induced

magnetic field has been neglected.

Muhuri® has described the flow of an electrically
concucting, viscous and incompressible fluid between two
parallel porous walls when one of the walls moves with uni.
form acceleration :arld there is uniform suction and injection,
in presence of a uniform transverse magnetic field. The
magnetic lines of force are assumed fixed relative to the

fluid,

Free Convection:

soundalgekar and Pat:!:14 have studied the unsteady
free convection flow of an electrically conducting, viscous
and incompressible fluid past an impulsively started infinite

vertical plate with constant heat flux at the plate.

- oEEEmew s e T e N s R E W W e E e & N R R - -

1. Prakash,S.: Proc.natn.Inst.Sci.India,35a,123 (1969).

2. Kishore,N,,Tejpal,S. and Katiyar,H.K.: Ind.J,Pure 2ppl.
Math. 12 (11)1372(1981).

3, Muhuri,P.K.: J.Phys.Soc.Jpn. 18, 1671(1963).

4. soundalgekar,V.M.and Patil;M.R.: Astrophys.Space sei.70,179 (1"
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Nanousis et a11 have studied the effect of a uni.
form transverse magnetic field on unsteady free ccnvection
rlow of a viscous incompressible and electrically conducting
£luld past an impulsively started infinite non.conducting
vertical porous plate when the fluid is subjected to cons-
tant suction velocity. The magnetic lines of fuorce are assu-

med fixed relative to the fluid.

Singh2 has modified the problem of Nanousis et a12

' py assuming the magnetic lines of force to be fixed relative

to the plate.

_ Raptis and Tzivmidis“i have studied the effect of
a magnetic field on steady free convection flow past an in-
finite vertical limiting surface. The limiting surface is
unmoving and is subjected to constant suction velocity and
there is constant heét flux at the surface. The magnetic
Reynolds number is not small so that the induced magnetic

field has been taken into account.

4

soundalgekar and Wavre® have studied the two dimen .

sional unsteady free convective flow in the presence of

foreign mass past an infinite vertical porous plate, when the

-------------------- o-—n.q-*uunuu..u——--u---..-m--r-.p--u-'-

1. Nanousis,N.D., Georgantopoulos,G.A. and Papaioc annous,a.l.
Astrophys.Space Sci. 70, 277(1980) .
2. Ssingh,A.K.: Astrophys. Space sci, ,87,455(1982).
3. F‘l?ptis,h.h. and Tzivanidis,G.J: Astrophys.Space sci. 94,311
°83) .
4. scundalgekar,V.M., and Wavre,P.D.: Int.J.Heat iMass Transfer
20, 1263(1977).
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plate temperature oscillates in time about a constant mean. Assu.
ming constant suction at the plate, approximate solutions to the
coupled non.linear equations have been obtained.

Plow Through Porous Media:

Ahmadi and Hanv:l.1 have derived the eguations of motion

of viscous flow through a rigid porous medium.

Vs:rs‘rmey2 studied the hydrodynamic fluctuating flow of a
viscous incompressible fluid through a porous medium bounded by a
porous plate.

A theoretical snalysis of two dlm&zsional free convective
flow through a porous medium bounded by a porous and steady tempera.
ture plate was presented by Raptis et 31.3

Megshed® has studied the wnsteady two dimensional flow of a
viscous incompressible and electrically conducting f£luid through a
porous medium bounded by an infinite porous horizontal plate and
subjected to uniform external magnetic field, assuming low magnetic
Reynolde number. Two cases have been studied by him:

(1) At time £>0 the plate starts moving with velocity u(t) and
the flow is subjected to time dependent suction velcclty v, (e,

(ii) The fluid is subjected to constant suction velccity at the
plate surfsce and the free stream velocity is assumed as any given
arbitrary function of time,

------------ et o 2 X R R L R R R R A R R A R

1. ahmadi,G. and Manvi,R.: Ind, J. Tech.,9,441 (1977),

2. Varshney, C.L.: Ind. J. Pure Appl, Math.,10, 1558 (1979).

3. Raptis, A.A., Perdikis, C, and Tzivanidis, G.J.: Jl. Phys.,D.
Appl. Phys. 14, L99 (1981),

4. Megahed,A.A. ! Ind. J1, Pure Appl. Math., 15(10), 1140(1%84).
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Raptis et 311 have investigated the free convection
and mass transfer steady flow of a viscous incompressible
fluid through a porous medium, occupying a semi.infinite
region of space bounded by an infinite vertical porous plate
wi"len the flow is subjected to constant suction velocity and

the heat flux at the plate is constant.

i Flow in Rotating Flﬁids:

Chawlaz, Singh and Sathi:: soundalgekar and Pop4

studied the eifect of rotation on Rayleigh's problem in none
magnetic case. Interesting conclusions have been derlved in

these problems,

Debnath and Mukherjee® have studied the vnsteady
boundary layer flow of on incompressible homogeneous viscous
rotating fluid bounded by an infinite porous plate with uni.
form suction or blowing. They have . discussed the structure

of the steady znd the unsteady flow fields including the

nature of the associated boundary layers induced by the non-

torsional oscillation of the plate.

1. Raptis,A.A., Kafousias,N.G. and Massalas,C.V.: ZAM 62,
489 (1982).

2. Chawla,S.S.: J.Phys.Soc.Jpn.,23,663(1967).

3. singh,M.P. and Sathi,H.L.: J.Math.Mech.,1€,193(1968).

4. soundalgekar,V.M. and Pop,L.: Bull.Math.,14 (62)375(1971).,
5, Debnath,L, and Mukherjee,S.:? Phys.Fluids, 16,1418 (1973).
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Delmath1 has investigated the unsteady boundary
layer flow in the senl.infinite expanse of an electrically
conducting rotating viscous fluid bounded by an infinite
ncneconducting porous plate with uniform suction or blowing
; in the presence of a transverse uniform magnetic field. The
structure of the steady and unsteady flow flelds and the asso-

ciated hydromagnetic multiple boundary layer have been studied.

The free convectivwe flow past an infinite vertical
isothermal plate started impulsively in motion in its cwn
4 plane in a viscous incompressible and electrically conducting
fluid in presence of a transverse uniform magnetic field has
been presented by Singh:" in a rotating system. The governing
equations of the flow have been solved by Laplace traisfonmmn

technique.

Oscillatecxry Flows:

The effect of Lfree stream oscillations on the flow

3 and Lighthilll.

past horizontal bodies were stdied by Moore
Their oscillations were based on small anplitude of oscilla.

tions.

c2<=_'~::u\':t;1ant:z::_pv::i.ll<::‘:t35 has discussed the free convecticn

effects on oscillating flow in the gtokes problenm past “an

infinite porous vertical plate with constant suction,

Ta Debnaﬁa i one Phys.Fluids, 17(9) , 1704 (1574).

2. Singh, A.K.. Astrophys Space Sci.,95,283(19831

3. Moore,F.K.: NACA, 2471(1954).

4. Li‘.}hmill,M-Jo- Proc, RDY.SOC. ,Ionr‘on,M24,1(1954).

5., Georgantopoulos,G.,A.! Astrophys.Space Sci, ,65,433(1979).
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{afousias.et 311 have extended the sbove problem
in the presence of a2 uniform transverse magnetic field with.

ocut taking into account the induced magnetic field.

Georgantopoulos and I-Cnt:mlii.j.en.'z2 have studied the
free convection and mass transfer effects on tne hydromagnetic
oscillatory flow past an infinite vertical porous plate, in

case of small magnetic Reynolds number,

The unsteady two.dimensional free convection, hydro.
magnetic oscillatory flow past an infinite vertical porous
limiting surface was investigated by Ka:lfcrmsa.i.sa“l when the
limiting surface is moved impulsively with a constant velo.
city. The magnetic Reynolds number of the flow is not taken
to be small s0 that the induced magnetic field is not negli-
gible. wWith viscous dissipative heat and Joule heating
tsken into account, approximate solutions to the goveming

equations are obtained.

Flow with Hall Currents:

4

Katagiri® has discussed the effects of Hall currents

on the steady boundary layer flow of an electrically conduc.
ting, viscous and incompressible fluid past a semi.iniinite

plate in the presence of & constant transverse mcgnetic fleld.

M e A o N W PN L I R R R TERRTRE TSRS SRRSO RAsET SRR EE T s - - -

1. Kafousias,N.G., Massalas,C.V., Raptis,A.r., Tzivanidls,G.J.,
Georgantopoules,G.A. 33 Goudas,G.Ll.: Astrophys.Space Sci.,
68,99(1980) .

Geocrgantopoulos,;G.A. and Koullias,J.: Astrophys.Space Sci,,
74, 357(1981).

Kafousias,N.G.: Astrophys.Space Seig, 76,133(1981).
Katagird,MiJ.. Phys.S0c.Jpn.,27,105111569).
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Hall effects on Couette flow between two parallel
plates for both cases of impulsives as well as unifimnly
accelerated motion of one of the plates has been discussed
by Jana, and Datta1. Expressions for the shear stress com=
ponents are obtained in terms of two nonedimensional parame-

ters, the Hartmann number and Hall parameter.

Sj.ngh2 has studied the Hall effects cocn the MHD
free convection flow of an incompressible, viscous and elece-
trically conducting fluid past an impulsively startea infinite
vertical porous plate in the case of small mzjnetic Reynolds
number. Exact solution have been obtained by defining a comp.

jex velocity with the help of Laplace transform technigue.

Hall effects on the hydromagnetic free convection
flow past an impulsively started infinite vertical porous
plate has been analysed by Sing.;h3 when the free stream o0sCi.

1lates in magndtude.

The effects of Hall currents on MHD free Ccnvec.
tive flow past an infinite vertical porous flat plate has

been studled by Agrawal et al® yhen the fluid and the plate

1. Jana,R.N., and Datta,N.: Int.J.Engg.Sci.,15,75(1977). .

2. Singh,A.K.: Astrophys.Space Sci., 92,177(13€3).

3. sinch,A.K.: Astrophys.Spece Sci., 93,1(1983),

4. Agrawal,H.L., Ran,#,.C. and 3ingh,V.: J.Natn.Acad.iiath.India,
165 (1987)
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are in a state of rigid body rotation. The free stream is
assumed to oscillate in time about a constant mean value and

the applied magnetic field is perpendicular to the plate,

Agrawal et a11'2 have analysed the effects of
Hall currents on the combined effects of themal and mass
diffusion flow of an electrically conducting, viscous and
incompressible fluid past an infinite vertical porous plate
in presence of a unifoum externally spplied magnetic field.
The free stream is assumed to osclllate in time about a

constant mean.

----- ll.---t---z-----.--n-u----.‘-----.--------—---—---------..

1. Agrawal,H.L., Ram,P,C, and Singh,V.: aAstrophys Space
:;:in t?1 )4‘15{1983) -

2. Agrawal,H.L., Ram,P.C, and Singh,V.: Astrophys Epace
Sci., 94, 383(1983).
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CHAPTER — II

PART 'A'

UNSTEADY MHD FLOW BETWEEN TWO
PARALLEL POROUS FLAT PLATES

Introduction:

The flow of a viscous incompressible and electri.
cally conducting fluid between two infinite parallel plates
in presence of a magnetic field, when one of the plates
starts moving impulsively from rest was studied by Katagiri
(1962) .

Muhuri (1963) has studied the flow of a viscous
incompressible and electrically conducting fluid between
two porous walls, when one of the walls moves with uniform
acceleration and there is uniform suction and injection,
Katagiri (1962) and Muhuri (1963) presented their analysis
by assuming the magnetic Reynolds number t© be small so
that the induced magnetic field is neglected.

In this part of the chapter we have reviewed
Muhuri's (1963) problem under different conditions. In our
problem the magnetic Reynolds number is taken to be suffi.
ciently large so as to include the effect of the induced
magnetic field. The lower plate is assumed to be moving

] L]
with velocity era L . The Laplace transform techniqgue is
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used to solve for the velocity field and induced magnetic
field. The effect of the magnetic parameter on the velo.

city and induced magnetic fields is discussed with the help
of graphs.

Mathematical Analysis:

we consider the two.dimensional flow of the fluid
between two parallel, non.conducting infinite porous flat
plates at y'= 0 and y'= d. At time t'< 0 the fluid and the
plates are at rest. At time t'> 0 the lower plate begins
to move in its own plane in the x'edirection with velocity
U&ea't' . & uniform magnetic field of strength Hy is acting
perpendicularly to the plates. The magnetic Reynolds number
of the flow is not étnall so that the induced magnetic field
has been taken into account. Fluid is being :injected into
the flow region with constant velocity W, through the plate
at y'= 0 and is being sucked away with the same velocity
through the plate at y'= d. The flow is in the x'.direction
and y'-axis is nomal to the plates. Since the plates are
infinite in extent all physical quantities are functions of
y' and t' only. In our problem we assume the pressure gradi.
ent to be zero. The equations of mbtion taking into account

the induced magnetic field are (pagi (1962)).
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Momentum Equation:

= w He ”
2.1 »p ]—;'%'“ —uo(ﬁ'.v) H' == vip'+ —°~2——) + B VUV

Equation for H':

o 2 b |
2’ ' VA ')V 4LV H
2.2 £, + (V'R = H' V)V + oi,

Ecuation of Continuity:

where V' = (',v',w')

by = ] ] ]
H (.Hx, Hy’ Hz)

according to the condition of our problem, equations

2.1 = 2.3 give the following differential equations

]
at' ay’ aylz p 3y'
2.5 aH? aH? R 8%
— ¢V == fo— e
at/ ] o oy’ ik, 2y"
2.6 v’ 0



(47)

where
H;{ —  the induced magnetic field.

H'= Ho —— the constant externally applied trans-

verse magnetic field.

ke —— the magnetic pemmeablility.

g '—— the electrical conductivity..

the other quantities have their usual meanings.

Equation 2.6 integrates t©

’ =
957 v i, (w°> 0)

nf injection

‘ ¢ where W is the constant velocity
at the lower plate and constant suction velocity at the
upper plate, the velocity being nommal to the plates.

As the plates are non .conducting the initial

and boundary conditions of the flow are,

2.8 t'< 0 : u'= 0, H;‘a 0 forx 0<y'<d
|
a't’ :
2.9 £'>0 t u'=sU e g H'= 0 at y'= 0
o x
¥ u'= 0, H;‘ue at y'= d.
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Introducing the following non.dimensional equantities

u' (] " 1/2 H!
u ==, y:x H = (-R) .
Yo a’ P Yo
t'w ‘4 "od
. 1/2 H
M = (39-) -2, P=y0u
Wo m L]

2.11 2u  2u 1 2u o
at*ay'naz+"ay
Y
2
8H , oH _ gu i [ o |
2.12 5t | 8y M oy RoPp o2

The initial and boundary conditions become in non.

dimensional form:

0, H =0, for 0<y<

2.14 £>0: u=et , H=0, at y=0
u=0, H=0 at y=1
where,
R - Reynolds number

p — Magnetic Prandtl number

M -—— Magnetic parameter
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We will use Laplace transform technicue to solve the coupled

equations 2.11 and 2,12 and assume that P = : R

Taking Laplace transfomm of equations 2.11 and

2,12 and using 2.13 we have respectively

2 ™
ldu_gu gH _ =
2.15 Rdyz--&;«r!‘i-&;’-suuo
2.16 -1&—-@“4@—&-0
+ 8 R dyz @ dy
- ” st
where u(y,s) =/ e u(y,t)dt
o)
_— ® o8t
Hiy,s) =J e H(y,t)dat
o
The boundary condition 2.14 is transfommed to
- 1 i
= e— H =
u Sod » 0 at Y-—-O
2.17 - %
u = 0, H=20 at y=1

In order to uncouple equations 2.15 and 2.16 we

add them and subtracting 2.16 from 2,15 we get,

(=}
b

1
2.18 = 94X _ (1.»4)%- sX = 0

2

(o]
o

2.19

o] Y
%,

- (1+M)%-- sQ = 0




where x=ﬁ+§ andQ-E’—ﬁ

subject to boundary conditions.

1 S -
% = s-a ’ . S-a ol g

Solutions of the equations 2,18 and 2.19 under boundary
condition 2.20 yield,

1 1
- -a, (h§+81)-£ -a, (b§+s1) 2
2.21 En-%ekﬂf $[ & - e
n=0 9 B4
2 3
co 2 2 2 2
1 Ky = e-a.l (b2+s1) e-az (b2+s1)
to e n=o [ -
* %4
and 1 1
o, 248 )%  a (6242
— o kgy = "30MS 85 gty
2 n=o 5, s,
Al hl
2 2 2 2
1 21’ - s«-a.l (b2+s1) a-uz (b2+s1)
-2e [ -
n=o s s,

where,
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R(1.M) R(14M)
k1 = " ’ kﬂ = >
1 1
a, = (2n+y) Rz- a, = (2n+ 2.y) R}-

, R(1.M) %442
b1 = 4 ]

2 _ RO %440
2 4

S, = 8 - a
1

Using tables of Inverse Lsplace Treansfomm of Bateman (1954)

we get the expression for u and H from 2.21 and 2,22 respeC-

tively.
1
as -l
o Y  app, ast :
2.23 U s ————— L[ e erfcl—— - byt® )+
4 n=o
3 1
=2
a.b a,t -
R L IS LA
,} .
1 o2 1
b 4 b a.t
{ 32 1 erfc(a2 - byt )+ eaz 1 erfc (—&— +b1t5)7ﬂ+
( : 2
at'l'k ) o -a . 2
4 n=o _
% -
- 1
a.b a,t
+e12erfc(—1- +b2t!)*
.1 : 1
-2 -2
-a, b b t -
_YLe %272 erfc (—2— ,+Baz erfc (~5 +b2t2)7j ]




«a.b a,t” -
2.24 eSS e ' erfc (==~ b,V 4
4 n=0 2
- 172
a.b a,t
+e V1 arfe G—;—-——- +bt1/2)..
1/2 -1/2
- b b t ’
e o R b,t 7). 02 1 ortc - Sl +b1t1"2)1
(at+k,y) -1/2
2 » ~a4b a,.t
= [ e 120::&:(-1?-— —-b‘th)«r
4 n=0 “
=172

Discussion of the Results:

In order t© get physical insight into the problem
numerical calculations have been carried out for the velo .

city u and induced magnetic fileld H, corresponding O different
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Fig.2.1Velocity variations with distance tor M=0,1,2
t=0.4, a=0.4_R =10

0

02 04 06 0.8 10
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0.6 Fig.23 Induced magnetic field variations with
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Fig.24aInduced magnetic field variations with
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values of the magnetic parameter M snd time t. In the

entire calculation we have taken R = 10 and a = 0.4.

The profiles for the velocity versus distance
have been displayed in figures 2.1 and 2.2 for t = 0.2 and
t = 0.4 respectively, From both the figures it is clear that
the velocity u decreases with increase in M in the lower
region between the plates vhereas it increases with increase

in M in the upper region.

The profiles for the induced megnetic field versus
Aistance have been displayed in figures 2.2 and 2.4 for
t = 0.2 and t = 0.4 respectively. It is seen from the figures
that H takes negative values. It decreases with inCrease
in M,

Curves corresponding to M = 0 represent the non-

magnetic case.
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PART —'B'

UNSTEADY MHD FREE CONVECTION FIOW OF AN INCOMPRE.

SSIBLE VISCOUS FLUID WITH CONSTANT HEAT FLUX

Introduction:

The effect of transverse magnetic field on steady
free convection flow of a viscous incompressible and electri.
cally conducting fluid past an unmaving infinite porous ver
tical limiting surface with constant heat flux at the surface
has been carried out by Raptis and Tzivanidis (1983). 1the
flow is subjected to constant suction at the plate. The
effect of transverse magnetic field on the unsteady free =ons«
vection flow past an impulsively started infinite vertical
limiting surface, without constant heat flux at the surface
has been carried out by Kafousias and Georgantopoulos (1982).
In the zbove two problems the magnetic Reynolds number is
not taken to be small, so that the induced magnetic field
has been taken into account. The object of this part of the
present chapter is to study the effect of transverse magnetic
field on unsteady free convective flow of an incompressible
viscous and electrically conducting fluid past an impulsively
started infinite non.conducting vertical plate; there is *
constant heat flux at the plate. ;The magnetic Reynolds
number is not small so that the induced magnetic field has

been taken into account. The Laplace transfomm technique
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has been used to obtain the expressions fcr the velocity
field and induced magnetic field.

Mathematical Analysis:

The unsteady MHD free convection flow of an
electrically conducting viscous incompressible fluid past
an infinite vertical plate has been considered. At tine
£'< 0 the fluid and the plate are assumed to be at rest.
At time t'> 0 the plate starts moving in its own plane with
uniform velocity Uo and heat 1s also started supplied to
the plate at a constant rate. A uniform magnetic field of
strength Ho is acting perpendicular to the plates. The
magnetic Reynolds number of the flow is not taken to be
small so that the induced magnetic field has been taken into
account. 7The flow is assumed to be in the x'.direction
which is taken along the vertical plate in the upward direc.
tion and y'.axis is nomal to the plate. The pressure

gradient is assumed to be zero.

In accordance with the Boussinesq - appmiimat.ton
we assume that all fluid properties are considered constant
except that the density variation with temperature is consi.
dered nonly in the body force termm. Under the above condia
tions the flow is govemed by the following equations (Kafou.
sias and Georgantopoulos(1982))
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2 M H_9H'
2u' 2 - - et
2T k2o

2+26 ot '53; .
aﬂ' i 32 ]
ot oy O iy ayiz
with the initial and boundary conditions,
2.28 t'<0 : u'=0, H;‘-o, T'= T! Y y'
' ﬂ'- - S' ] ]
2.29 t'>0 : u's=U_, oy X’ Hx-O at ¥Y'=0

u'=0, -rt.'r;, H;: = 0 at y'= e

where. T'— the temperature of the fluid near to the plate
% o the temperature of the fluid far away from

¥ the plate.

k — the thexmmal conductivity.
i._—= the magnetic permeability.

q'— the constant heat flux per unit area
at the plate.

8 — the coefficient of themmal expansion. -

C,.— the specific heat at constant pressure.

H;{-—- the induced magnetic field.




The other variables have their usual meanings.

the following non.dimensional quantities,

2.30

2.31

232

2.33

. y'U T
bEgr YE T
KU
2 P
t'u vzga q N
t = —-.—.2’ G = =it P = k
¥ kUg

1
%5 5
= t-
P.= 0 M ¥ H ( ==) 5

P [« ]
1
H = H
- 2,2 _o
M (P)Uo

in equations 2.25 — 2,27 we get

. 2

L. Q4 4 GT +M-§‘i

ot - Y
2

2T _ 1 %7

et P 3}‘1
2

ot Pm ay2 )'g

(53)

Introduecing

The initial and boundary conditions becomes in

non-dimensional form



o8 ]
a

i
=

2.35

(59)

t<0 ¢ u=0, T=0, H=0 Vv vy

u=0, 7T=0, H=0 at y=w

' In order to sdve the equations 2,31 to 2,33 we will use

Laplace transforxm technicque and assume that Pand

Applying Laplace transfoxmation to equations

2.37 t0 2,33 and using 2.34 we get respectively,

2.36

2.37

2438

transfoms

2.39

2 i
su -?+GT+H%
D
BE=L§
ady

¢ By
=
218

sH

where U, H and T are respectively the Laplace
of u, H and T,

The boundary conditions are,

m 2. B ey B -
u = 8’ ayﬂ ﬂ’ Ha atYlo
u = 0, -‘i"no, He=0 at y = =
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The soluticn of equation 2,37 under boundary
condition 2.39 is given by,

&

In order to uncouple the equations 2.36 and 2.38

we add them and substracting ?2.38 from 2,36 we get,

2
2.41 .3;%-‘ + u% - sX = = GT
and
&g ag -
2,42 —"'M'&"Y—SQ = = GT
2
ay
where X=ii + 5 and Q=u—H
subject to boundary condition
1 1
X = s? Q= - at y=0
2.43
X =0, Q=0 at y=o

Solutions of the equations 2.41 and 2.42 under
boundary condition 2.43 yleld
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2 2
E}i’_ --+s;/2y -(%— +si‘/2y
;I:.-S. [Q _9— e ]-4-
2 8 M 8~
2.44
2
%x -Z+ s)”by a(%’+ 8)1/2y
+-L[ e +§ e ]
2 & M ol
and,
2 2
..%‘1 .(-E‘--i-s)vz -(%-rs)vzy
Ha®—[ & - y .
2.45 2 2 M g2
L 4
2
T2
G
YN

Using tables of inverse Laplace transform of Bateman (1954)
we get the expression for u, T and H from 2.44, 2.40 and

2.45 respectively as,

-1/2 1/2

1 My t M
2.46 u-z[e erfe (% —-2:‘ ) 4+
-1/2 1/2
+ erfe (XL ~ BE -

2 2



2.47

2448
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— )erfe(%t- -t le

2 -
=2t (aF /At 5"V %t erfc *t )
«1/2 1/2 e1/2 1/2
H=le ¥ erfc( &t -%t )+ erfc( 4t *%: )
2G 1/2 <12 1 172 1/2
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+ %_'-t-vz + §t1/2) erte ( ftnﬂ-r g-tvz) 51

- 3 [extel a}t'm- -‘g—tm)n"" erfe §t'1/2+ %tw)
. igtm {- (§t“1'/2- %tWJ erfc( g’-tz'm- e %)

+ ( %t-‘;/“ + %tj/z) erfel %‘h"!/?b %!,i@)a'\ ¥y



Table 2. 1

Values of the velocity u

(64)

¢ M G y = 0.0 0.5 1.0 1.5 250 2.5
0.2 0.4 3 u- 11,0000 0.4651 0.1266 0,0201 0.0018 0.0001
0.7 2 1.0000 0.4663 0.1301 0.0215 0.0021 0.0001
0.4 10 1.0000 0.5476 0.1526 0.0239 0.0uz1 0,0001
0.7 10 1.0000 0.5486 0.1562 0,0255 0.0024 0.0001
0.4 0.4 3 1.0000 0.6879 0.3357 0.1227 0.0339 0,0071
0.7 2 1.0000 0.6867 0.3415 0.1294 0.0377 0.0084
0.4 10 1.0000 0.9496 0.4974 0.1832 0.0500 0.01702
0.7 10 1.0000 0.9471 0.5030 0.7907 0.0543 0,0117




Table 2,2

vValues of induced magnetic field H. -

(65)

G y- 0.0 0.5 1.0 1.5 2.0 2.5
s u  0.0000 -0.0436 -0.0237 -0.0056 -0.0007 -0.0000
3 .0.0000 -0.0761 -0.0415 .0.0089 -0.0012 -0.0001
10 00.0000 -0.0455 +0.0257 -0.0061 .0.0007 -0.0000
10 0.0000 -0.0794 -0.0450 -0.010% -0.0013 .0.0001
3 0.0000 «0.0584 -0.0571 -0,0313 .0.0115 -0.0030
3 0.0000 -0.1014 .0.0994 -0.0551 -0.0206 -0.0055
10 0.0000 .6.0609 .0.0675 -0.0385 .0.0142 .0.0037
10 0.0000 -0.1057 -0.1176 -0.0676 -0.0254 -0.0067
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Table 2.2
Values of Temperature T

t Y T
0.0 0.5046

0.5 0.1546

1.0 0.0307

0.2 1.5 0.0037
2.0 0.0003

2.5 0.0000

3.0 C.C00C

0.0 0.7136

0.5 0.3223

1.0 0.1184

0.4 1.5 - 0.0346
2.0 0.0079

¥

2.5 0.0014

2,0 0.0002
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Conclusions:

In order to get physical insight into the problem,
we have calculated the values of uy, H and T for different

values of magnetic parameter M, Grasholf number G and time t.

Values of the velocity are given in Table 2.1,
Frcm table we conclude that the velocity increases with in.
Crease in G and t. For t=0.2 the velocity increases witn
increase in M while for t=0.4 the effect of M is to decrease
the velocity in a thin fluid layer near the plate and increase

beyond it.

Values of the induced magnetic field H are dise
played in table 2,2. From the table we see that H takes

negative values and it decreases with increase in G, M and t.

In table 2.3 variation of temperature T is shown
for different values of t. The temperature increases with
time.
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CHAPTER ~ IIX

PART ‘A

STEADY MHD FPREE CORVECTIVE FLOW THROUGH A FOROUS MEDIUM

BOUNDED BY AN INFINITE VERTICAL POROUS PLATE

Introduction:

Raptis et al (1982) have studied the e_ifaady free
convective znd mass transfer flow of a viscous incompressible
fluid through a porous medium bounded by an infinite vertical
porous plate, with constant heat flux at the plate. The

flow is subjected to constant suction velocity at the plate.

The present part of the chapter is a modification
of the above problem, in the sense that we have applied it
to MHD case, but have neglected the effects of mass transfer
and constant heat flux. Approximate solutions to the coupled
non.linear equations are derived for the velocity and tempera-
ture fields. Effects of the various parameters occuring in

the problem have been discussed with the help of graphs

and tables.
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The study of flows through porous medium is
of great importance in many sclentific end engineering
applications. The porous medium 4s in f£act a non.homoge-
necus medium but for the sske of analysis, it may be possi.
ble to replace it with a homogeneous fluid which has
dynanical properties equivalent to those ¢l non-homoge-
neous continuurfl. Thus we canh study the flow of a hypo-
thetical homogeneous £hﬁ& under the action of properly
averaged extemrnal forces and 80, a complicated problem
of the flow throuch a porous medium reduces to the flow

problem of a homogenecus fluild with some reslstance.

Mathematical Analysis:

we consider the free convective flow of an
mlestrically conducting viscous incompressible fluid
through a porous medium occupying 2 semi -infinlte region
of srace, bounded by an infinite vertical porous plate.
The plate is assumed to be moving steadily in the vertically
upward directibn along which x'.axis 18 chosen and y'e.axis
is perpendicular to the plate. A unifomm magnetic field
of strength “o is act;iﬁg transverse to the plate. The
magnetic Reynolds nurber of the flow 18 assumed to be
small so that the induced magnetic field has beeh neglected.
The flow ie subjected to constant suctior velocity at the

plate and the pressure gradient is assumed to be zero.
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In accorxdance with the Bousai;nesq spproximation
we assume that all fluid properties are considered constant
except that the density variation with temperature is cone.
sidered only in the body force term, The two dimensional
houndary layer equations which govern the steady MilD free

convective flow through a porous medium are given by

o1 s =
3 3y (v]
- 2 2
P a” Hu!
1.9 v L ga(rrap), XUl _ e o
dy L ay* F
2
ar* k g1 ' 4 du'’,2
1.2 v = 4 (=2

u' = vyelocity of the fluld in x'.direction
v' - velocity of the fluid in y'.direction,

T' temperature of the fluld in the bcundary
layer.

T'—— temperature of the fluld cutside the
boundarxy layer.

K'Y - permeability of the porous medium,

;| S thermal conductivity of the fluid.

heek
C, = specific, at constant pressure

B e the coefficient of thermal expansion.
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The boundary conditions are:
u' = Uo’ T = T;A at y'= 0

3.4 u' =0 , ™ &gk as y'»
Equation (2.1) integrates to:

2.5 V' o=V (vof 0)
vhere the negative sign indicates that there is

svction at the plate.

Introducing the following dimensionless guantities,

y'v ’ P
o
¢ P g vgg (7'~ T!)
2.6 T = o~ G = zﬁL

] L ]
Tu.T” Uovo
2B® ¥ voK" u?

M= _-.g—-n, K = —95—, E = L
. 1 Tt
FVq Y Cp (I‘E )

in equations 7.2 and 1.3 we have respectively,

2
d"u Su 3y
1.7 2 - m*-"")d = - GT
o2 W K
&1 PaT 2
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The boundary conditions 3.4 become in none.

dimensional fomm,

u = 1, Tw 1 aty =0
u-—>» 0, T-—+0 as y = e

The coupled non.linear equations 3.7 and 3,8 are not solvable
in exact form, s0 we find the approximaté scolution. In
arder to do so, we expand u and T in power of -, the :ickert
number assuming that it is very small, This is justified in

low speed incompressible flows. 80 that

. 2
u-u°+Eu1+0(E)

Ta T + ET, + C (Ez)
o 1

where u s Ugy T, and T, are functions of y,substi.
tuting 1,10 in equ:tions 3.7 and 3.8 and equating the
coefficients of different powers of E, neglecting those of
Ez and higher powers of E we have the following set of
equaticns

y - b -
3.1 u';+u° (u+x) “o"' a*ro

3. 12 u';! + uf =~ L (] +.%) u = = GT.'
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312 ™ 4 P = O
o )

2

- L ]
1,14 'r!!' + PT!l = JPu o

where the primes denote differentiation with

respect O Y.

The boundary conditions for Uy Uy T and T4 are,

u°==1, ‘113 0, TO‘ 1' T1ﬂ 0 at Yy = 0

1,15
uss 0, wyr 0, TgF0y TyPO asyS
he solutions of ecuations 3.11 to 2,11 subject
tc boundary conditions 3,15 are given respectively by
1 -B,y -Py
3.76 u, = A.e - Aq@
2,17 w, = L e-B"Y - C e*pyq- C e.231y
) 1 2 1 2
-(B““"?)Y -ZPY
e Caﬁ + C¢B
3.18 iy = e—PY
o

< i - F : —
3.19 r‘l L.1e .\Ba Aqa Ase
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Hence the expressions for velocity end temperature
fields are given by u-auo + m, and '.ru'ra + ET4 respeCs
tively from 3.10, where U s Uqy T, and T4 are given
by 1.16 to 3.19 respectively.

The skin friction in non dimensicnal fom is

given by

- - 'EB‘I + AP 4 E(.I.b31 + C4P = 2C,B4+ C, (B1+P) ..ZC‘P)

The different constants are defined in the sppendix.
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Tabla 2.1: Values of skin frivtion ¢ (P=0,71, E=0.01).,

M G K 3
s o | - 2.2348
10 . » 0,7686
5 . - 0.0130
10 .3 2.3756

1 5 " - 2.4501
10_ % -« 1,0467
8 3 - 0.5122
10 3 1.6203

2 5 a1 - 2,6512
10 e | - 1.3030
5 3 - 0.9181
10 «3 1.0284

Table 3.2: Values of temperature (E=0.01, P=0.71, G=10).

M b ¢ K=o 1 Ke,3
0 0.0 1.0000 1.0000
0.5 0.,7019 0.7031
1.0 0.4925 0.4946
1.5 0.3455 0.3479
2.0 0,2423 0.2446
245 0. 1700 0.1713
2.0 0. 1192 0. 1206
1 0.0 1.0000 1.0000
0.5 0.7019 0.7026
1.0 0.4925 0.4928
1.5 0,3454 0.3469
2.0 0.2423 0.2437
3.0 0. 1192 0. 1200
2 0.0 1.0000 1.0000
0.5 0.7019 0.7023
1.0 0.4924 0.4933
1.5 0.3454 0.3464
2.0 0.2422 0.2432
2.5 0.1699 0. 1706
3.0 0. 1191 0.1197
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Discusesion

For the purpose of discussing the effects of
various parameters on the flow behaviour numerical cslcula.
tions have been carried out for velocity u, temperature T
and skin friction 1 corresponsing to different value of
magnetic parameter M, Grashoff number G and pameability K.
In order to be realistic, the value of the Frandtl number P
is schosen to be 0,71 which corresponds t¢ air. In the

entire calculation we have taken E = 0,01,

The velocity profiles u against y have been displayed
in ficure 3.1, It is clear from the figure that u increases
with incresse in K and G, The effect of the magnetic para.
meter ¥ is to decrease the velocity, that is, it decreases

with increase in M.

Values cf the gkin friction are presentéd in Table
2.1. From the table we conclude that the skin friction decrea.
ses with increase in M, The skin friction increases with

increase in K and G.

Values of the temperature are displayed in Table
2.2, It is clear from the tabh; that the temperature increases
with increase in K. The effect of the magnetic parameter M is
to decroase the temperature (the effect belng rather small).

The values corresponding to M=0 represent the non

magnetic case,
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MHD FREE CONVECTIVE FLOW THROUGH A POROUS MEDIUM

PAST A STEADILY MOVING PLATE IN ROTATING SYSTEM

Introduction:

The problem considered here is an extension of
that of part 'A' of this chapter. In part A we have consi.
dered the flow of an electrically conducting viscous incom.
pressible £luid through a porous medium, past A steadily
moving porous li.nfinite vertical plate. In this part of the
chapter we have considered the same problem, taking into
account the effect of rotation on the flow. The whole system
is assumed to be in a state of rigid body rotation, due to
retation the flow becomes three dimensional, The magnetic
Reynolds number of the flow is assumed small s0 that the
induced magnetic field has been neglected. The influence
of the various parameters occuring in the problem on the
temperature field, the axial and transverse components of
the veloeity and skin friction is discussed with the help

of tables and graphs.

Mathematical Analysis:

we conslder the steady MHD free convectiwe flow

of an electrically conducting, viscous and incompressible fluiad
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through a porous medium occupying a semi.infinite region
of space bounded by an infinite vertical porous plate at
2'=0, The whole system is in a state of rigid body rota-
tion with constant angular velocity G' aboutl: 2z'.axis,which
is normmal to the plate. The plate is assumed to be moving
with vniform velocity U, in its own plane in the vertically
upward direction, along which x.axis is chosen, the plate
is assumed to be electrically non.conducting. Since the
plate 1s infinite in extent all the physical variables are

functions of z'only.

A uniform magnatic fleld of gtrength Ho is assu.
med to be applied transversely to the porous plate. Assuming
the magnetic Reynolds number to be small we neglect the
induced magnetic field in comparison with the applied magnetic
field. 1In our problem we assume the pressure to be constant,
hence neglecting the pressure gradient and centrifugal farce
terms from the steady MHD equations of motion for free
convection flow through porous medium l‘ﬁ rotating co.0rdi.
nates, viz.: : .*-;:

b
F}

1.21 ()G = -=Tp'. o x(Brxz)-20"x% ?q-‘+ 992 q"

™ im|

1Gxp - 8
fp(JXB) T

gives
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1
’ 2 ] T 4 W iyt
w' E:fu, -2 N'v'e :s'g‘——u2+ gs (T .T' )~ fa 2 - 3?
o Jbr. ) dz' Ld k 9
Pyr _ g
w'ﬁ' b 20 =2 v --l' - ——._e—-g Vi ﬂ.
az' dz'2 3 X!

. 2
wo 48 o K 4T +£—[(§%lz + ('g:)zj

and equation of continuity is

dw'
-

az' 0

wvhere the third and fourth temms of equation 3,21
are respectively the centrifugal and Coriolis forces
and ¥ 1< the body force temm per unit volume due to
free convectionj the other physical quantities nzve

their usual meanings.

The boundary conditions are:

u' = Uo’ vi= 0 T'= T:n_ at =z2'=0

u'—> 0, vi—>0, T'=— T! as z'=> =



1.28

3.29

(33)

since the fluid is subjected to constant suction

volocity at the plate, eguation 3.25 integrates to:
Wt om - wo (Wo3’ 0)

where w,  1s the constant nomal velocity of suction

at the plate,

Introducing the following non.dimension: quantities,

z2'U w uC
z = —-—-—o’ S = .ﬁﬂ' P = —ER’ U= .::.3-'-
o o]
R
vV o= v M ”uﬂ HO i ?Q' ¥
- U"! i - —_r! " Uz
@ FUU ) o
Tl T 38 (T'.T!)
T= ToFT o ke o
(N L
_ Q
u? ke u;_rﬁ
K= 2 E = s .
7 (T 10

in equations 3.22 — 1,24 we get

. s@-«—cvuigq-ﬁ'l’-u (H-r-%)
de

dz
2V 1
-S%-tc}u-ﬁ-ﬁ--viﬁ-ﬁz)

dz
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2 2 2
~gdl .l T Su &y)” -
s 4 P kal;(‘iu)-»(m‘)J

The boundary condltions 3.26 becomes in non.dimensional

form

u=1 v=0, T=1 at z=0

VedQs Vp 0y T=p0 as ¥rore

Introducing the complex variable Q = u:iv eguations

2,29 and 3.20 can be combined into a single equation

& — pef 90 .40
-—"_--!-SPQ%H PE[dz %g)

where 0 is the complex conjugate of . The boundary

conditions 1.%2 becomes

Q=1, T=1, at 2=0

G =5 0, T=-b0, as o=

Equations 2,77 and .24 are coupled eguations. In
order to solve them let us expand ¢ and T in tems
of &L, the Eckert number assuming it to be very small

E <« 1 for incompressibile fluid).
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Q=q0+nql + 0 (32)

3,36
T=T '
J+ET, + O ()
Ssubstituting 3.36 in equation 3.33 and 3.34 we
get the following set of equations
1,37 qg+ Sqé-(r‘1+k1-+10)qon—GTo
2.18 o7 + Sq;-m+%+1a)q1n-GT1
3.39 ™ 4+ SPT' = 0
o) c
- " ' == [ Bt
2.40 T1+ SPT1 e quqé
where a dash represents differentiation with
respect to z.
The boundary conditions for 9 . T, and T, are
qD = 1I’ q1= 0’ To- 1’ T-l‘ 0 at 2 = 4]
3.41

-—p () as gz —> =

solutions of equations 3,37 — 3,40 subject o

boundary condition 3.41 are as follows

-B.‘z -SPz



.43

7 .44

2,45

1,46

(26)
qq= ye - Ae + Aje
- (SP+B4) 2 -(sP+By) 2 .28Pz

= Age e * 4@
. -SPZ
i.c = 0B

«SPz n(81+ E‘) 2
+ A4e + Asc - A6e

wvhence from 3.26 we obtain the expression for ¢ and T.

In the absence of rotation and for S=1 the solu.
tions given by %.42 ~— 3,45 reduce to those given by
7,16 = 2,19 in Part A

af tx and 1:y are the axial and transverse CompO=

nents of skin friction we obtain
d.
Ex'!' 1CY = E;\ _—
=eA, Byt AqSP. ¢ B[ olyBq+ A,SP
- Aa(E1+B1)+A9(5P+B1)4-A10(SP-&B.,)-2&115&']

where the different constants are defined in the

anpendix.
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Table 3.3

Numerical values of skin friction components

tx and Tygpﬁ 071, E= 0.01,6:5.

K S Q M t}.! ry
9 0.5 1.0 1 2.1255 0.2138
2 2.3312 0.1999
2.0 1 2.1479 0.4248
2 2.3501 0.2977
1.0 1.0 1 2.4571 0.2074
2 2.6571 0.1945
2.0 1 2.4779 C.4124
2 2.6748 0.3871
.2 0.5 1.0 1 0. 1269 0.4760
2 0.5465 0.3974
i 1 0.2677 0.9061
2 0.6408 0.7620
1.0 1.0 1 0.5563 0.4384
2 0.9473 0.3680
2.0 1 0.6760 0.8404
2 1.0293 0.7156
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Discussion of the Results:

In order to study the effects of the various
parameters on the primary and secondary velocities the
components of skin friction due to primary and secondary
! flows and the temperature field, numerical calculations have
1 been carried out for different values of the parametars, In

order to be realistic the value of the Prandtl nurber P is

chosen to be ©.71 which corresponds t© air. In the entire

calculation we have taken E = 0,01,

The primary velocity profiles .. u against z have
been displayed in figure 3.2, It 48 clear from the figure
that u decreases with increase in rotation pararmeter ¢ and

mametic parameter M, but it increases with the permeability

K of the medium. Therefore we conclude that rotation and
? macnetic field exert a retording influence on the primary

The secondary velocity profiles v against z are

shown in figures 3.2, It is seen from the figure that v
takes negative  values and it decreases with increase in
and K, The effect of the M is 'oo increase the secondary
velocity v, that is, it increases with increase in M,

values

Table 3.3 gives the numerical of the skin friction

components b and Py It is clear from the table that b

increages with the increase in magnetic parameter and rotation
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parameter, but decreases with the permeability K of the

medium, T, decreases with increase in M bat increases with

the incresse in rotation parameter g and K.

Values of the temperature are given in table
.4, From the table we conclude that the temperature in.
creases with increase in rotation parameter and K whereas
it decreases with increase in M., The change in temperature

with the various parameters is rather small,
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CHAPTER — IV

FREE CONVECTION EFFECTS ON THE HYDROMAGNETIC
OSCILLATORY FLOW PAST AN INFINITE VERTICAL
POROUS PLATE WITH CONSTANT HEAT FLUX

Introduction:

The flow of an incompressible viscous fluid
past an impulsively started horizontal plate in its own
plane was first studied by Stokes (1851). Georgantopoulos
(1979) has discussed the free convection effects of the
oscillatory flow in the stokes problem past an infinite
porous vertical plate with constant suction. Kafousias
et al (1980) have extended the above problem in the presence
of a transverse magnetic field without taking into account

the indvced magnetic fleld.

In the present chapter we have reviewed the
problem of Kafousias et al (7980) where we have considered
the effect of constant heat flux at the plate. Hence the
object of the present chapter is to study the free convec.
tion effects on the flow of an incompressible, viscous and
electrically conducting £fluid past an impulsively started
infinite vertical porous plate in presence cf a constant
transverse magnetic field; the magnetic Reynolds numder of
the flow is assumed to be small so that the induced wagnetic
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field has been neglected. The free stresm oscillates in
time about a constant mean value. The flow is subjected
to constant suction through the porous plate and there is
constant heat flux at the plate., Approximate solutions to
the coupled non.linear equations relevant to the problem
have been obtained. The effects of the various parametexs
on the mean flow and transient flow are discussed with the

help of tables and graphs.

Mathematical Analysis:

we congider the 2.dimensional unsteady free con.
vection flow of an electrically conducting, incompressible
and viscous fluid past an infinite vertical porous plate.
Initially the porous plate is at rest but at time t'>0 it
starts moving impulsively in its own plane with a constant
velocity Uo and heat is also being supplied to the plate at
a constant rate., The flow is assumed to be in the x'.direc.
tion which is taken along the vertical plate in the upward
direction and y'-axis is taken nommal to the plate. A uni.
form magnetic field of strength H, is acting nomal to the
platef assuming the magnetic Reynolds number to be small,
we neglect the induced magnetic field in comparison with
the applisd magnetic field, The free strean is assumed t©

oscillate in time about a constant mean.
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In accordance with the Boussinesq spproximation
we assume that all fluid properties are considered constant
except that the density veriation with temperature is consi.

dered only in the body force term.

The equations of motion relevant to the present

problem are,

4.1 &' -0

oy’
- \ ; su “ui e
4.2 L ﬂ' -ﬂ' + gB(T'.T) + ¥ . 4 —2(U* ')
Crt' ay dt .= ayiz P
5 2T 2T . K L Lz ()2
13 To vV Gy TG g G ¥

The boundary conditions are,

t' < 0: u'(y',t') =0, T (y*,t') = T}

=G
£' > 0: u'(0,t) =U,, 'g. e -

ut (eo,t') = U (E'), T (=,t') = T
Equation 4.1 integrates to

4.5 v' = - v (v.> 0)
o ©
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where vo is the constant suction velocity at the plate,
the negative sign indicates that there is suction at
+the plate.

Ingmducing the following non.dimensional

quantities

v
Gl 'Uz v o
Yy = ’ t:to/’, uuuﬁo, S:::—-Uo

2
T'-T;) UI ’Gﬂq.
4.6 T = ———y U= 7 G =
. ° x u
ka o
3
pyce kU
l’,c
%%

v p v2

in equations 4.2 and 4.3, we get

2

2u __gou _ L 4 GT u U.
4.7 T Say dt+ + & + M(U.a)

v-1

2 2
4.8 p-gé"--sp-%alg-»pz(ﬂ)

and the corresponding boundary conditions assume the form




. (96)

u=1, %-'—1 at y=20

4.9 £-0:

u=U(t), T=0 at y = &

To solve these coupled non.linear equations, we
assume following Lighthill (1954) that the unsteady
flow is superimposed on the mean steady flow. Hence

we write in the neighbourhood of the plate,

uly,t) = uoiy) + e:u.,(y)emt

and the free stream is given by,

4,11 U = 1-(-5.!5:'“1t

wvhere ¢ is a positive constant (¢ « 1), and u,
and T  are the mean and uy and T4 ara.the corresponding
unsteady components of oscillatory motion.

substituting 4.710 and 4.11 in equations 4.7 and 4.8

we obtain the governing differential equations for uc",

To’ u, and T‘l to be

" L I - -
4.12 u, + Suo M w, - M GTO
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.1 " 1 ) '2
4,13 To-l-SPTo- PEuo

4.4 u"1+3u:,-(n+1n) u.l--in-M—G'r.l

4.15 TY + SPT!

— p— | | [}
1 1 in PT1 = 2PE uo u

1

where primes denote differentiation with respect to y.

The i:oundary conditions are

uo = 1’ u1= 0’ Té‘ -1, T!lz 0 at Y= 0

uo = 1, tl.'ll 1, Ton 0, 11- 0 at y = e

The system of equations 4.72 to 4,75 is still coupled

and non-linear and in order to solve them we expand

u =u_q o+ B ¢ O(Ezl
u., = 1 + Ba,.,+ 0(32)
1 11 12

T =T

* 2
s o1t ET°2+ 0(=R)

T.o=T 2t 0(!2)

1= Tt BT

1




. ; (98)

where E the Eckert number is very small for in.
compressible fluids (E « 1),

Introducing equations 4.17 into equations 4.12
to 4.15 we obtaine the following system of equations
4,18 — 4,21 and 4.22 — 4.25 which govern the mean

steady flow and the oscillatory cne.

4.18 u:’.‘ + ,Suc.:'l - Mu 4 = M - GT°1

4.19 ugz + StJ.‘f‘,‘2 - Mu°2 = =G '1‘02

4,20 '1‘31 + SPT:,.’ﬂ 0

4.21 Ty, + SPTg,= = pu:)f

4,22 uyy + Sujy— Miin)ugq=e (M+in) -GT, ,

4.23 uf, + Suj,~ (M+in)u .= ~GTy,

4.24 ok, +'sp-r'n- in PTy, = O

4.25 Ty, + SPT,~ in PT,, = —2:9&:51 u'ﬂ}
subject to boundary conditions
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= f = . '
4.26
Y91 7 Ty Gy Q’ Toa= 00 T2 I
For the mean steady flow, and
4.27

ugq= 1, ugy= 0y Tyqm 0y Tpp= 0 at y =®
for the oscillatory flow.

First we proceed to obtain the solution for the
mean flow, while the solution of the¢ unsteady flow
field will be presented later.

The solutions of equations 4.18 — 4.21 under
poundary condition 4.26 are given by

'B1y -SSPy 3
4.28 u, 4= A.‘e - Aqe +
-B,y -SPy -2B4y
4,29 u L= Lze - Fie + er
«-2SPy -(By+ SP)y
+ F_ e - F @
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; =SPy
4.30 T(}1 = ‘_SF e
-SPy 2B,y «2SPy - (B44sP)y

. where the different constants are deofined in

the appendix ~ . at the end of the chgpter.

Hence the velocity and temperature fie' ds for

the mean steady flow are given respectively by,

u:c:u ﬂuo‘l * Euo?

and
To = '1'01 + E '.1'02 from 4.17

where U qr Yo To'l and '::02 are given by 4.28 — 4.31,
Knowing the mean velocity we now calculate the

mean skin friction L due t© mean steady flow. In non.

dimensional form it is given by

3130"

(8]
o)
[

y=0

= =A,B +A,SP4E[ -L, By +F SP.2BF, -2SPF,+F, (By+sP) ]
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Now we proceed to obtain the solution for the
unsteady part of the flow field. The unsteady flow

field is described by the equations 4.22 — 4,25, viz.

4.22 ut, + Sul, — Medn)ugq= = (M+ln) GT,,
4.213 u'.'lz + Su.!l2 - (H+1n)u12- - GT,,

4.24 T8, + SPTy;= in P Tyq = O

4.25 Tf]'z + SPT:lz"‘“ in P T12 = 2P (ué.‘ u:H)

under the boundary conditions.

= = . = ' =
4.27
ugq = 1, upp= 0y Tyy= 0y Typ= 0 at y ==

The solution of the above equations of the unsteady

atmaidy flow under thelr koundary conditions are givea by,

o 1_3"’13’ Py -PoY
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] - % e- (B1+P1 )Y+ a-(SP-&P.‘)Y_]
i 4 X5

P,y -(By#P)y  ~(EP4PJY_

. =g [ Ke + Xqe -X,e J

where all the constants are defined in the appendix
at the end of the chapter.

Now, since we Rmow U_, Y4, T, and T4 we obtain

the expression for u and T from 4.10, viz.

uly,t) =u (y) +¢ et uy(y)

4.10
T(y,t) = To(y) + £ eint T4 {y)
The expressions for u and T may be written as
4.35 uly,t) =u (¥)+ e [mﬁﬂﬂ‘,nt-ﬂi sin nt)
+ 410, cos at+ M, gin nt)
and
A.26 T(y,t) = 'ro(y) + a_,['(’rrca'ag ne - T, sin nt)
+ 4 (P,cosnt + T, 8in nt) ]
where a4 = Hr+ . § H.i
A.37

T1 = Trf-_ i -‘._Ei
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From the expressions 4.35 and 4.36 we can obtaln
the expressions for transient velocity and transient

temperature respectively for nt = g. as

L -—
and,;
"
4.29 T(y, -ﬁ-) = 'ro e T:L

{(neglecting the imaginary part)

The skin friction t is given by

g
4.A0 T = oo
3Y‘Y,,{)
su o
= — + & Bint """"‘a L
oy ¥ y=0

y=0
e oo +e oMY P BUXPy+ X Pt Xg(By4Py)
o 1+ Bl-XgPyt Xt 2475

- X (sP + Py) ]

where;

auo
“ - -
o 8y !y=0

The ‘skin friction for nt = L is given by

¢



.41

4.42
¢

'y n[;o""EBi

(neglecting the imaginary part).

3“1
where B + 1B, = —
r i

ey YEO.
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‘ Table 4.1
Values of mean temperature To (P=0.71, .E=C., J071).
8=1
" Ce=35 G = 10
y  E=0 Mi=q =8 M=0 V=4 M=8
O 1.437271 1.40952 1.40909 1.52351 1.41%14%2 1.41100
2., 0.25127 0.734091 0.2406% 0.38378 ©€.242°2 0.14121
4 0©.08595 0,08241 0,08233 0.09696 0.08278 0.08248
6 0.02090 0.01992 0.01990 0,02398 0.02001 0.01993
g8 0.00806 0.00481 0.00481 0.00883 0.00483 0.00481
S = 2
0 0.70467 0,.70437 0.70427 0.70602 C./0460 0,70442
2 0.04720 0,04115 0.04114 0.04137 0.02118 0.,04116
a4 0.,00240 0,0024C 0.00240 G.00240 0©,.00240 0.00240
6 (.00074 U 00014 0.000%4 0.00014 0.,00014 0.0001¢
8 0,00000 0,00000 0,00000 0.00000 0.00000 0.00000

—————
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Table 4.2
Values of mean skin.friction L (P=0.71, E=0.001)
G =5
|
1
! 0 10.20536 2.48190
A 1,10378 1.32590
e ' 2.28587 1.02965
l G = 10
I 0 22.12085 4,97725
!
| 4 6.22907 2.65308
| g 4.57846 2.05979
|
!
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Variation of transient temperaturs T in air (P=0.77. nt = 'é"; ‘F.=5-2: g= 0.0C1,)

S M n y 0 1 2 3 4 5 ) 7 3 9

1 0 10 T 1.47747 0.71082 0.,35127 0.17383 0.08595 0.04242 0.02090 0,10292 0.00506 0.,00249
1 4 1 1.40998 0,69333 0,34091 0.16762 0.08241 0.04057 0,01992 0,00979 0.00481 0.00236
18 10 1.40914 0.69283 0.34063 0.16747 0.08233 0.04048 0.01990 0.00978 0.00481 0.00236
2 8 10 0.70429 0,17023 0.04114 0.00994 0.00240 0,00058 0.00014 0.00003 0.00000 0.00000
1 4 10 1.4099 0,69331 0.34091 0.16762 0.08247 0.04051 0.01992 0,00979 0.00481 0.00216
1 4 10 1.41446 0.69592 0.34231 0.16835 0.08278 0.04070 0.02001 0.00983 0.00483 0.00237
1 4 10 1.41442 0.69589 0.34232 0,16835 0.08278 0.04070 0.02001 0.00983 0.00483 0.00237
2 4 30 0.70462 0,17035 0.04118 0,00995 0©.00240 0,00058 0.00014 0.00003 0.00000 0,00000
2 8 30 0.,70444 0.17028 0,04116 0,00994 0,00240 0,00058 0.0001¢ 0,00003 0,00000 0.,00000
2 8 10 0.70445% 0,17029 0.04116 0,00994 0,00240 0.00058 0.00074 0,00003 0.00000 0.00000

(LoL)




(108)
Table 4.
Values of skin friction ; P=0.71, G=5,
E=0.001, €=0.2, nt= %,
n = 10 n = 30
‘M 5=1 S =2 S = 1 s =43
0 9,7642 2.0565 9,4%41 1.7201
4 2.7401 0.9743 2.3820 0.6129

8 1.9789 0.7312 1.6096 0.3615
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Discugsion of the Results:

i In order to get physical insight into the problem,

numerical calculations have been carried out for LN

the transient velocity, the transient temperature and skin

friction at nt = -’25 corresponding to different values of the
parameters. In the entire calculation we have taken E=0.001
anad the value of the Prandtl number P is chosen to be 0.71

wihich corresponds to air.

The mean velocity profiles u, against y have been

displayed in Fig. 4.7. From the figure we conclude that U
increases with increase in 6. The fluid mean velocity is
grocter in the hydrodynamic case (M=0) than in the hydro-
» | magnetic case. The mean velocity decreases with increzse

in the maonetic parameter M and suction parsmeter S.

* Values of the mean temperature To is given in

Table 4.1, It is clear from the table that ‘I‘o decreases
with increase in M and S. It increases with increase in G,

Values 0of the mean skin friction " is given in Table 4.2.

From the table we conclude that the mean skin friction in.
crease with Increase in G but decreases with increase in M

ana S. "

T
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Transient velocity nrofiles uly, _ér_r;) againzt y
have bern displaved in Fig. 4.2. From the figure it is
clenr that the transient veleoclty decreases with incCrease
in =uction parameter $and magnetic parameter M, but increa-
ses :qith increase in Grashof number G. The transient velo.
city increases with increase in the frequency parameter n,
near to the porous plate, but away from the plate the influ.

ence of n is insignificant.

Table 4.3 shows the values of the transient
temperature T(y,%). The effect of M and 8 is to decrease
the transient temperature whereas rise in G causes a rise
in T(y,%) . The transient temperature decreases with increase
in n near the plate, but away from the plate the effect of
n is insignificant.

Values of skin friction ¢ for ntmfz- are given in
Table 4.4, From the table we conclude that the skin fric.

tion decreases with increase in M, and S and n.
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CHAPTER -— V¥

HALL EFFECTS ON MHD FLOW PAST AN INFINITE VERTICAL
POROUS PLATE WHEN PLATE TEMPERATURE OSCILLATES

IN TIMRE ABOUT A CONSTANT MEAN

Introduction:

The unsteady free convection flow of an incom-

pressible and viscous fluid past an infinite vertical
unmoving porous plate, with constant suction has been
studied by Soundalgekar (1972). The plate temperature
was considered to oscillate in time about a constat mean.
soundalgekar and Wavre (1977) have extended the akove
problem, taking into account the effects of mass transfer.
However, the flow past plates started impulsively from
rest plays an important role. These are particularly im.
portant in the design of space ships, solar energy collec.
tors etc. On the other hand the effects oi a magnetic
field on the flow of an electrically conducting fluid have
many technical applications e.g. in the boundary layer
flow of high speed air.craft, in the region between the
surface of blunt body and its shock wave, etc. However,
1f the strength of the magnetic field 1s strong, one Tan

not neglect the effects of Hall currents.

Hience, the object of the present chapter is to

study the effects of Hall currents on the MHD free convec.
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tive flow past an impulsively started infinite, vertical
porous plate in'the presence of a strong transverse mag-
netic field; the plate temperature is considered to osci.
l1late in time about a constant mean. The flow is subjected
to constant suction through the porous plate. Hall currents
glve rise to a cross flow making the flow three-.dimensionalj;
the magnetic Reynolds number of the flow is taken to be
small enough so the induced magnetic field is negligible.
Approximate solutions to the coupled non.linear equations,
cccuring in the problem have been obtained. The effects

of the various parameters on the mesn flow and transient

flow have been discussed with the help of tables and graphs.

Mathematical Analysis:

we consider the unsteady free convective flow
of an electrically conducting, incompressible and viscous
£luid past an infinite vertical porous plate. The x' -axis
is taken along the plate in the vertical upward direction
and y' -axis is normal to the plate. Initially the fluid
and the plate are at rest but at time t'> 0 the plate
starts moving impulsively in its own plane with constant
velocity Uo. A uniform magnetic field of strength Ho is
acting transverse toO the plate. The plate temperature is
considered to oscillate in time about a constant mean. In

the present problem the pressure i{s assumed to be constant.
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since the plate is infinite in extent all physical guanti.
ties are functions of y' and t' only., The fluid is sub-
jected to constant suction at the plate and hence if

¥ = (u',v', w') the equation of continuity gives v'=-v_
vhere v, {s the constant suction velocity. Using the
*relation v.H = 0 for the magnetic field H = (Hx'Hy’Hz)

we obtain Hy= H everywhere in the fluid (Ho is the cons-
tant entermnally applied magnetic field). If J= (Jx,.:rr,.:z)
is the current density, from the relation V J= 0 we have
Jym conetant. Since the plate is non -conducting Jyu 0 at
+the plate and hence zero everywhere. Assuming the magnetic
Reynolds number to be small, we neglect the induced magnetic
field in comparison with the applied magnetic field. The
ceneralized Ohm's law, taking Hall current into account,

(Cowling (1957)) in the absence of electric field is of

the formm,
- Yil, = = - - 1
5,1 J+—ﬁ—ﬁﬂo J%Hua(ueVXH+;ﬁ: vPe)

Under the usual assumption thatthe electron pre-
ssure (for a weakly ionized gas) , the themoelectric pressurs

and ion slip are negligible we have from 5.1,

5.2 J = J = 3 H w'
pld Yale “2 “e (o]

Bad J+wyg J= 0un Hu'
z ee X e ©
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from which we get

Cu H
5.4 J = —-‘-59- (ma'— w')
x 14m
ou Ho
5,5 J a =22 (u's mw')
2 T4m
where,

g == the electric conductivity
®“ = the magnet.i.c permeablility
w_ == the cyclotron frequency

t, = the electron collision time

e ~—— the electric charge

e — the number density of electron
p_, =—— the electron pressure

m=w T~ the Hall parameter

In accordance with the Boussinesq approximation we
assume that all £fluid properties are considered
constant except that the density variation with
temperature is considered only in the body force teom.

The basic equations relevent to the problem are,




2 2

. 2 o H
5.6 Wy B ga(r- 1) ey BB 0 (yiimy)
ot o 2y 2 2
2 p (14m")
2 .2
. a2y Oou_H
5.7 -g{:-—v ey BM L 80 iy~ )
: o ay aylz 2
| . p (1am?)
- ' ‘
; 5.8 8T L 8T, k 2T, ¥rdu'y2  2w')?
__ | at' ~oay'" pCp ay.z"E;[(ay" + Gyl
j where all the physical quantities have their:
| usual meanings. The initial and boundary conditions
; are:
‘ t'< 0: u'=0, w=0, T=T, V Y'
5.9
r in'¢*
t'>0: u'= UO’ w'=0, T=Tw' (1+5 e )
- & 't o Y'=0

u' =0, w=0, T=I', aty'=®

Introducing the following non.dimensional

quantities.
. Y'u ﬁ'“ﬁ ’ '
v te—2 meBZ,u.

©
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2 2
TIL ¥ v, Tl
--5—-9—, 8 = -62 3 s g'-' P = -—iz

pu S .,

i A g8 (T'=T1") u?
TV T’. G = _g_ -] ’ E = [+

1 ¥ U C (T"’“ w
Tw. ' (o] P w

in equations 5.6 to 5.8 we get

5.11

5.12

5.13

form,

5.14 t7o:

2
fu _ . gu BN
Bt s aY'-GT-l- ay’ 8 (u + mw)

2 ;
% say j—g-l-b(nm w)

2y
2 ;
p & sP-g% ayg-n-n[(-g) + &%)

where, § = —!5—5
14m

Boundary conditions 5.9 become in non.dimensional

| int .

u=sl, w=0, T=i+tie aty =0

u-O, w‘o' r-lo aty--

The task of solving equations 5.11- 5. 13 under .

boundary conditions 5.14 is quiu complicated. To simpiify

the mathematical part, we introduce a complex variable definaed a
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which enables us to combine equations 5.11 and

5.12 into a single equation of the fomm

2
5.16 2.8 83-9- = (1-1m)ﬂ-"2—2

= = GT
| . ayz ey

equation 5,13 with the help of 5.15 becomes

1 2

; T o - _a_. - .QQ 29

: 517 + SP P < =~ PE( )
3Y2 oy ey

The corresponding boundary ceonditions assume

5 the formm

3 a=1, T=1+£emt at y =0
5.18 t>0:

1 Q=0, T=0 at y = =
|

Equations 5.16 and 5.17 are coupled and non.

linear, In order to solve them we cCan represent the
velocity and temperature in the neighbourhood of the

plate as follows (assuming small amplitude of oscillation)

Qly,t) = qo(y) + € q1(y) ot
5.19

T(yyt) = To(y) + & 'r.‘{y) g e
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Substituting 5.19 in equations 5.16 and 5.17
and equating coefficients of different powers of ¢
neglecting those of & . and higher powers of ¢ we

obtaing the following set of equations:

5.20 q + 8q) = Mqq, = = 6T,

5.21 q!!' + Sqf - (M1+ in) q1- ~ GTy

5,22 T + SPT! = - px(qé'&;)

5.23 T; + SPT{—in PT, = = PE(gjq+ajqy)

where Mq= &(1.im) and primes denote differen.
tiation with respect to y.

The corresponding boundary conditions are,

qon 1, q1= 0, Ton 1' T1=l 1 at y=0
5.24

The equations 5.20 to 5.23 are still coupled
and non.linear and hence difficult to solve analye.
tically. In order to solve them we expand q,, qq»

To and T, in powers of E the Eckert number assuming
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it to be very small as follows (E « 1 for incompre-
gsible Huids).

q, (¥) = qp1{¥) + Bayy (y) + 0(&%)

. a, W =q BEq_ ( 0 (g2
1 qﬂy)-r qu’:n-t()

T (y) = Toqy) + ETg,(y) + 0 (&%)

T ly) = Tqqy) + BTy, () + 0 (£%)

12

Substituting 5.25 in equations 5.20 to 5.23

we obtain the following system of equations 5.26 to

5.29 and 5.30 to 5.33 which govemn the mean steady

i flow and the unsteady one.

5,26 q" + Sq' - M = = GT
1 qo‘i 191 01

02 02 1702 02

L :
T +SPT61-0

" ] P— L] -l
'I'02 + 81"1'02 P(q°1 qo1)
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5.30 ajq +. Sq:”"' q11(n1+ in) = = GT44

5.31 q:llz + sal T M.+ in) = = GTy,

5.92 T 4+ SPTi7 in P Tpy 7 0

5.33 Ty, + SP T'12-_in PT,, = "Pl Q' +q' Q' )

1101 1101

subject to the boundary conditions

a =1, q =0, Toa= 1y Tgo=0 at y=0

'g 5.34
i qo1= 0, q02= 0, ’1‘01‘ 0, '1":}21=== 0 at ymee
Q for the mean steady flow and
q =0, q =0, T_ .= i, T =0 at y=0
* o YT T T e
5.35
1 12 11 12

= uady s

for the unsteady flow

First, we proceed to obtain the solution for

the mean steady £low while she solution for the un.

steady flow will be obtained later.
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The solutions of equations 5.26 to 5.29 subject

to boundary conditions 5.34 are given by

5,36 e "
. q = (] - A.€
01 A? 1
, . =B,y -SPy -(By+By)y
02 2 ’ %
-(SP+B1)Y -‘@1’31)?
= Agg — A.'OQ
-2SPy
+ A"e
-SPy
5.38 T01— e
-SPy -(B 4B,y -(sP+B,)y
.39 = - Lt 1
5.3 T02 Lje Ae +ae
' -(sp+'é1)y -28Py
+ As e - A; ®

The expression for mean steady velocity and

temperature are given from 5.285 as

qQ = q _+ Eq
o) o1 02

To = TO1 * ETOZ

where g 9 q ‘1‘01 and '1'02 are given by 5.36 to 5.39
01 02 '



5.40

5.30

5.31

5.32
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Ift o and T OFe the components of mean skin

friction L at the plate due to mean primary velo-

city u, and mean secondary velocity w, we have

= - AZB1+ A.'SP + E [tl’a1+ ATSP-AB (31"'-3.1)

where the different constant are defined in

the appendix at the end of the chapter.

Now we proceed to solve the unsteady part of

the flow field which are characterised by equations

5.30 to 5.73, viz:

q* + 8q¢' - q110ﬂ1+ in) = = GT44

11 11
q" + 8g'° — q M.+ in) = — GT
12 0 2 2 V- 12
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5.33 T 4+ SP T%, = in PT, =.Plg' q' + q' q' )
12 12 12 11 %01 %1171

subject to the boundary conditions

5.35

The solution of the equations 5.30 to 5,33 of
the unsteady flow field under thelr boundary condi.

tion 5.35 are given by,

+ Dyqe 12°
; .(h1+ 31)3' -(h1+ SP)y
= D13 e + D'M [
b e.(Ezd-B.l)y . 3.62+ 8P)y
15 16
-+ By -+ sp)y
= Dpge ¥ Dgg®
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and
5.42 T‘l = Tqq -o-E'.T.‘.'2
= e-h1y+ E[X1e-h1y— Dze'(hz.'. .51)}'
. -(h,+ sP)y -(h,+ By)y
-+ D.ae + D¢e

_ .(h1+ SP)y -(32+ 31)}'
D e ~ Dge

-(h,+ sP) -(h.+ B,)
-Gy sy By

7 +%¢

-(ﬁ.l + SP)y
e
9
where the constants appearing in the solution

- D

are defined in the appendix at the end of this chapter.

Since, now we know Gy 99y T, and T4 we obtain

the expression for Q and T from 5,19 viz.:

Qlyst) = q () + ¢ qq(y) e 17t

and

T(y,t) = T (y) + ¢ T4(y) et

The expression for Q(y,t) may be written as,



5.45

5.46

5.48
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oly,t) = qt - [(Mr cos nt.M, gin nt)

+ 1M, cos nt + M_ sin nt) ]

where,
q‘I = Mr + 1 Mi
similarly,
T(y,t) = T + ¢ [(‘rr cos nt — T, sin t)
+ 1 (T, cos nt + T_ sin nt) ]
where,

T, = T+ 1Ty
From the expression 5.43 we can obtain the
expression of the transient primary velocity and
transient secondary velocity and from expression
5.45 we obtain the expression for transient tempera-

ture at nt = — as

2

uly, -%;) =u°(y) -5 M

W(Y,g-;) = wo(y) +e M_

where,
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5.49 qo = uo + 1 HO
and

5.50 Tly, 2=) = T _(y) = € T
2n o 4

neglecting the imaginary part,
where U, W, and To are the mean primary velocity,
mean secondary velocity and mean temperature respece.

tively.
The skin friction is given by

1 =
5.57 T tx+i;z

= 29|
oy y=0

=Ei9-l + £ oiNE fﬂ'
oy 3y

int .
Tt £ € [-Dhpt Dihgt B 40,
+D4 0h 1~D11 (h2 -mi) +Dy, (hz-i-SP)

+D4q (h14-B1)'*D14 (h.l-'-SP)—D,IS (h?+ B1)

o+ D16(h2+SP)+D17(ﬁ1+B1)-D18 (hq+sP) ¥ ]

3%
rﬂ

where,
c gy y;__,o_

is the mean skin friction.



4 y b -(
: v a;u A of mewn prim ary veloe ity "uc; and mean sSecondery valoo Ty g RO T/ ER T a
S 0.0 0.5 140 1.5 2,0 245 3.0 3.5 4.0 4,53
1.0000 1.6225 1.671% 1.5089 1.,2912 1.0810 0.8981 0.7451 0.613C¢ 0.5153
0.5 _
0.0000 0.6582 0,9620 1.0423 1.0015 0.9050 0.7906 0.5774 0.5741 024326
1.0000 1.4826 1.5076 1.3684 1,1863 1.0078 0.8487 0.7120 0.5%54 0.4394
0.5
0.C000 00,2613 0.5094 C.5380 0, 5080 0.45471 0.3942 0.32367 0.2850 0.,2401
1.0000 1.0073 0.8731 0.7249 0.6138 0.5724 0.4282 0.3532 0.2898 0.2510
4 0.5 0.5
0.0000 0,2850 0.3749 0.2312 0.,2912 0.2485 0.2095 0,.1759 0.1474 0.1235
1,0000 0.8194 0.5958 0.4196 10,2933 0.2050 0.7435 0.71005 0.0704 0.0494
4 0.5 1.0
0.0000 0.2175 0.2239 0.1793 0.1324 0.0%7 0.0670 0.0471 0.0331 0,0232
‘ 1.0000 1.6633 1.6380 1.4386 1.2208 1.0253 0.8588 0.7190 0.6020 0.5041
I‘. 0 L ] 5 B - 5
1 " 0.0000 0.490 0.6461 0.6381 0.5726 0,4938 0.4187 0.3524 0.2958 0.2479
; 1.0000 1.8309 1,7981 1.5478 1.2859 11,0623 0,8804 0.7327 0©.6116 0.5115
4 <0 0.5
0.0000 0,9236 1,2522 1.2655 11,1484 ©.9946 0.8438 0,7098 0.5951 0.4985
3 1.,0000 2,7717 13,1423 2.9493 2,5756 2.1812 1.8244 1.5200 1.2661 1.0558
2 .0 0.5
0,0000 1,2173 1,.,8351 2.0370 1.9807 1.8093 1.5929 1.3726 1.1681 0.9870
1.0000 2,5249 2,.8323 2.6697 2.3561 2,020 11,7103 1.4393 1.2080 1.0128
2 0,8 0.5
] 0.,0000 0,6578 0.9634 1.0424 11,0000 0,9033 0.7897 0.6778 0.5757 0.4860

(o€L)




Table 5,2

Values of mean tmperatu.ra TO.‘ P“’0.71, E—"D.OOB, H".O).

(131)

G = G =10
m= 0.5 m= 1.0 m= 0.5 m= 1,0
y §=0.5 S=1.0 S=UeB B5=1.0  S=0.5 8=1.0 S=0.5 85=1.0 i
0.0 1.0000 1.0000 1.0000 1,0000 1.,0000 1.0000 1.,0000 1,0000
0.5 0.8376 0.7015 0.8379 0.7016 0.8384 0.7018 0.8395 0.7023
1.0 0.,7016 0.4920 0.7019 0.4922 0.7025 0.4926 0.7038 0.4932
1.5 0.5876 0.3451 0,.5880 0.3452 0.5887 0.3457 0.5901 0.3463
2.0 0.4921 0.2420 0.4925 0.2422 0,.4933 0.2426 0.4947 0.2431
2.5 0.4721 0.1697 0.4125 0,.1698 0.4134 0.1702 0.4147 0.1706
2,0 0.3452 0,1190 0,3455 0,1191 0.3463 0.1194 0.3475 0.1197
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¥ ' .
j . Table 5.3
i Values of 1 and t__ (P=0,71, E=0.003).
4 mu mw
k-
]
G m M S tmu tmw
5 0.5 2 0.5 1.7776 1.0110
1.0 1. 1386 0.8327
" 3 4 o5 0.3250 0.9650
, 1.0 - 0.1286 0.8724
1.0 2 0.5 2.2324 1.7549
1.0 1.5803 1.3967
4 4 0.5 0.7378 1.6280
1.0 0.3312 1.4427
1 10 0.5 2 0.5 5.1534 1.7285
1.0 4.1795 1.3818
4 0.5 2.7608 1.5006
e 140 2.1495 1.3256
1.0 2 0.5 5.8812 3.0925
1.0 4.8754 2.3868
4 0.5 1.4046 2.6248
1.0 2.7890 2.2721




P=071, E=0-003,6=5, €=0:2,nt=3
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FIG.5.1 TRANSIENT PRIMARY VELOCITY DISTRIBUTION
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P=0-71, E=0.003,6=5, €02, nt=1
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Table 5.4
Variation of transient temperature T(y,i’%) in air (P = 0.77, E=0,003, G=5, ¢=0.2, nt= -g-—}

s m o y> 0,0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 440

.5 0.5 5 1.0000  0.8957 0.7447 0.6071 0.4974 0.4122  0.3444 0.2888  0.2424
o5 1.0 5 1.0000 0,8964 0.7456 0.6080 0.4984 0.47131 0.3453  0.2897 0.2431
o5 1.0 5 1.0000 0.8956 0.7445 0.6067 0.4970 0.4117 0.3439 0.2883 0.2419
5 1.0 15 1.0000 0.8905 0.7142 0.5864 0.4911 0.47123 0.3455 0.2893  0.2423
W0 0.5 5 1.0000 0.7533 0.5271 0.3595 0.2455 0.1696 0.1184 0.0831 0.0584
«0 1.0 5 1.0000 0.7535 0.5274 0.3599 0.2458 0.1698 0.1186 0.0832 0.0585
Y 0.5 5 + 1.0000 0.7532 0.5269 0.3592 0.2452 0.1693 0.1181 0.0829 0.0583
0 0.5 15 1.0000 0.7492 0.5023 0.3440 0.2470 0.1695 0.1190 0.0834 0.0585

(EEL)
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Table 5.5
values of skin friction components Ve and T, at ntpg

(P= 0.71, E= 0.003, G= 5, ¢= 0.2)

5 M m n tx ‘z
0.5 2 , 0.5 5 1.9402 1.2061
15 1.8762 1.1126

-

1.0 5 2,4050 1.9485
15 2.3327 1.8580
A 0.5 5 0.4665 1.1770
1s 0.4213 1.0730
$ 1.0 5 0.9502 1.8446
. 15 | 0.8876 1.7350
10 2 0.5 5 1.3020 1.0307
1% 1.2381 0.9269
1.0 5 1.7538 1.5935
15 1.6815 1.5003
a 0.5 5 0.0130 1.0869
18 - 0.03714 0.9810
1.0 5 0.4936 1.6625

15 0.4319 1.5504




(135)

RESULTS AND DISCUSSION:

In order to get physical ingight into the problem
numerical calculations have been carried out for mean
flow and transient flow corresponding to different values
of the Grashoff number G, suction parameter S, Hall
- parameter m, magnetic parameter M and frequency parameter
{ﬂ n. In order to be realistic the value of the Prandtl
number P is chosen to be 0.71 which corresponds to air,
In the entire calculation we have taken E=0,003 and

o= 0-21

g Values 6f the mean primary velocity u, and mean
. secondary velocity wo are given in Table 5.1. It is seen
> from the table that u, increase with increase in m and G.
It decreases with increase in 8 and M. FProm the same
table we conclude that the effects of the various para-

meters on wo are similar to their effects on u, .

Table 5.2 shows the variations of the mean
temperature T  in air (P=0.71). 1t is clesr from the
table that the temperature increases with increase in m

and G and decreases with increase in s.
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Tabie 5.3 gives the values of the mean skia
friction components "o and v From the table we
cbserve that ‘mu,the mean skin friction component due
to mean primary flow hcmésas with increase in m but
decreases with 1;'1crease in s'and M. mw the mean skin
friction component due to mean secondary flow increases
with increase in m but decreases with increase in S.

B in general, decreases with increase in M, but increa.
ges with increase in M for G=5 and S=1. Both the compo-.
nents of skin friction increase with increase in G. The
transient primary velocity profiles uly, J=) have been
displayed in Figure 5.1. It is clear from the figure

that the transient primary velocity decreases with increase
in M and S, but increases with increase in m. we also
observe from the figure that near to the porous plate

uly, ) decreases with increase in n, but away from the
Zn

plate it increases with increase in n.

The transient secondary velocity profiles
wiy, "Q‘Eﬁ) are shown in Figure 5.2. From the figure we
conclude that the effects of my M and S on w(y,Z-) are

similar to their effects on ul(y, %). As for the effect
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cf n we see that near to the porous plate the transient
secondary veloclty decreases with increase in n, but

away from the plate it increases with increase in nj§
further away from the plate the influence of n is insigni.

flcant.

Table 5.4 displays the values of transient
temperature T(y,%) of air. We observe from the table
that the transient temperature increases with increase
in m whereas rise in M and S causes a fall in T(y,-z-’-';).
It decreases with increase in n, near the plate but

increases with increase in n away from the plate.

Table 5.5 shows the values of the skin friction

components t,_ and Y at nt= %' T decreases with increase

P

in ny, M and 5 and increases with increase in m. ‘g de.
creases with increase in n and 8, but increase with
increase in m. The effect of M on B depends on S. For

S = 0.5, . decreases with increase in M but for S=1.0

T, increases with increase in M,
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APPENDIX
1/2
G - 8+(52+4M1) , Az' 14+ A1

p? g’ -S?P-M.' 1 2

PIA1218,1° 5P% A_A
s e LI il B

(B1+B1J -SP(B1+B1) By+ sp
sp%p. A PIA]I2
-—-—-1—-2-—! A =
'51-;- sp & “

Ry

A= A= Agh Ay

? =
szp?‘ -szp.m.l pt" (B1+§1)2"S(B1+ B1)..M1
G G A
—AA 510- >
- 3 =
(5)+B1)2—S(SP+B1)-M1 (sm-a,) —s(sp+a1)-!41
G A
>3 2 Ly= A= Mg+ Agt Aqg™ Aqq

A4S P 28 PM,

SP+(52P2+4P in)1ﬂ

* Hzt M1 + in

2
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G
D1 =
== = 2
= AEB‘ED‘ih?p’ Cz = A.I D.I h2 SP
=% B = A 2
(h,+B4) “= sP (h,+ By) -in P
C
2.

(h, +5P) 2_ sp (h,+5P) -in P

c
3

(h1+'ﬁg-sp (hy+ By)= in P

Cy

(h1+SP)2" SP (h,+5P)— in P

<4

- 2 —
(h2+B1) sssthzq-a.!) in P

T
2 s
(52,,59)2_ sp (i, +5P) -4n P




»
i

D4p=

127

Dig

}{2==

Cq

e 2 -
(h+B1) - sp(h1+n1)-1n P

<
4

('51-} SP)Z— SP(K.‘-#SP) -in P

D2n DB- D4+ D5+ D6... D.?- Da + D9
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GX4 GD,
5 ’ Dqyq= . A
1‘11 -Sh-' -Mz (h2+31) =S (h2+31) -Mz
GD GD
2 Dys= !
2 -2 -
(h2+SP) s(h2+sp) ...!u‘.l2 (h1+B1) —S(h1+81) -H2
GD GD
(h1+SP) -—s(h1+sp) M, lh2+B1) -s(hz+s1) '"2
GD GD
- —— Y .
(h,+sP) =5 (h2+SP) .Mz & i )2_5 B o i
Gl 1757
Gng

2 ' -
G1+SP) ~s (hy+sP) 1,

Dyg=D11+D15 ¥ g5 +Dq, =Dy 5#D 4 +D

150161047 Dyg-
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CHAPTER -~ VI

HALL EFFECTS OR UNSTEADY MHD FREE CONVECTIVE FLOW THROUGH

A POROUS MEDIUM IN ROTATING FLUID WITH CONSTANT HEAT FLUX
Introduction:

The effect of Hall currents on unsteady MHD free
convective flow of a viscous incompressible and electrically
conducting fluid past an infinite vertical porous plate has
been studied by Agrawal et al (1983). The whole system &s
asgumed to be in a state of rigid body rotation and in addd .
tion, the free stream is considered to oscillate in time
-bout a constant mean. The effects of Hall currents and
rotation on steady free convection and mass transfer flow
through a porous medium bo;mded by an infinite vertical
porous plate with constant heat flux at the plate has been
.c:arx:i.ad out by Raptis and Ram (1984). The flow is subjec.

ted to constant suction velocity at the plate.

In the present chapter we have modified the work
of Raptis and Ram (1984), in the sense that we have consle.

dersd the unsteady case snd the plate is assumgd to oscl.
1late in time. The effect of mass transfer has been nege-
lected., Approximate solutions to the coupled non linear
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equationy occurring in the problem have been obtasined.
The effect of the various parameters on the mean and
transient flows are discussed with the help of graphs
and tables.

M'athunat.lcgl Analysis:
we consider the unsteady free convection flow

of an electrically conducting, viscous and incompressible
£luid through a porous medium occupying a semi.infinite
region of space houndeﬂ::n infinite vertical, non.conduce.
ting pormus plate. The x'.axis is taken along the plate
in the vertical upward direction and y'.axis is taken
nommal to the plate. Initially the fluid as well as tl:a
plate are at rest but at time t'> 0 the whole system begins
to rotate with constant angular velocity )/ about y'.axls
and in addition the plate is assumed to oscillate with fre.
quency n. A unifonn strong magnetic field is acting trans.
verse to the plate. The pressure gradient is assumed t©
be constant. .S:ane the plate is infinite in extent all
physical quantities are functions of y' and t' only. The
fluid is subjected to constant suction at the plate and
hence 1f V = (u',v',w') the eguation of continuity gives
v'--vo where v, is the constant suction velocity. Using

the relation 7.H =« 0 for the magnetic fleld ﬁ-(ﬁx'%'“l)

we obtain Hym rio (H o 4s the constant externally applied
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>
magnetic field)., IfJ = (Jx, Jy’ "73) is the current den.
| sity from the relation v.J = 0 we have J = constant. since
the plate is non.conducting, JY- 0 at the plate and hence
zero everywhere. Assuming the magnetic Reynolds & Be
small we neglect the induced magnetic field in comparison
y with the applied magnetic field.

The generalized Ohm's law taking Hall current
into account (Cowling (1957)) in the absence of electric
field; is of the form

‘ & - Yalg e - - 1
u+---—-—§v}{ JK;;::(4@VIR+:‘;‘-—=pB)
© e
By the ssme reasoning as in chapter V, we have
4
from 6.1
" Oy H,
e
6.2 J = __2 - ‘m. - ")
, = T4m
\ o, Hy
L 4
? 6.3 Jz = ?—3-;5 {ut+ W_’

where me w1 is the Hall parameter., The othar

cumntities are defined in chapter V.
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1 In accordsnce with the Boussinesq approximation
we assume that all fluid properties are considered
congtant except that the density vu:latton' with tem.
1 perature is considered only in the body force temm,
The basic equations releveant to the problem are

) ) 2., OB
6.4 W', B2 0 we g(T T4 » 28 2 o (utme"
ot o &y ay'z F{l4m”)

2., o

:] aw' ‘a!l . i . nl
6.5 -t -y =20 u'e ¥ + ( Mt ow') « &8
ot o 8y 3Y| i (1_‘“:‘ ) K

4 % &T* | ] _!‘_ﬁl ' 2 ', 2

where K' is the permmeablility of the medium, the

1 other physical cquantities have their usual mesnings.

1 ; The initial and boundary conditions are
t'<0: u'=0, w'=0, T'=T0

¥ 4 "t '

£'>0: u'uu°(1+s; em = )y W0, %:" - %- at ;=0

v'~> 0, w'=»0, T2 as y'=—>e
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Introducing the following non.dimensional guantites

2
t'u . v
y'uU Q n'y o
pels, ya=F t=57r RET S=g
UO 3 'do o

R -
(-]
3 2 Ky 2 a'y
kU oB” ¥ -]
B o= O ' M = ......g....v K= #2 ’ e 5
q'rS Pl (]

in equations 6.4 to 6.6 ¢ get

2
-  — ﬂn
2 &%-r-ﬂmcra»ﬁ S (uemw)= 2

8t

2
SW _ ~8W & W - -
3 8% ﬂ.uu-;-;,_--l- S (mu.w) X

2
T 22,1 17'1' fu )2, (4w 2
s 4 P +t[(ar)+(w)l

-+

The boundary condition 6.7 becomes in non.

dimensional form:

int

0 t u=ls§ e , w=0, 2F . 1 er y=0

oy

whiere,

Se e
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The task of solving equations 6.5 to 6.11 under
woundary condition 6,12 is quite complicated. To simplify
the mathematical part we introduce a complex variable de.

fined as

6.12 Q = u + iw
which enable us to combine eguations 6.9 and

6.10 into a single equation of the fomm

24_
6.4 .a?... —[é-t .1(5m+.n.)]u-—-§-"é-.0’r
2

Equation €.11 with the help of 6. 12 becomes

6.15 X, p-ﬂ—--rs(-a—xa"‘)
2 Ey &y

The corresponding boundary conditions assume the

form,
Q= 1+& ‘hlt’ g-.ﬂ aty = 0
6.16
2— 0, T—0 as y— =

Bquations 6.14 and 6,15 are coupled non.linear
ecquations, in order to solve them we can represent
the velocity and temperature in the neighbourhood of
the plate as follows (assuming small amplitude of

oscillation)
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0lgs®) = gy + £ q b o7

6. 17

T(yet) = To(Y) + £ Ti(y) th

substituting 6.17 in equations 6.14 and 6.15 end

equating coefficients of different powers cf < , neg.

lecting those of ¢ 2 and higher powers of £ we obtain

the following set of equations.

6.18 9 + 8~ Hyg, = 0%,

6.19 q;' 4+ Sq; = (4g+ in) 113 -GT,

6.20 TS + 8PTY = -PE q Eé

6420 Y + sPTy~ in PT, = JFE(Q' Q' + ¢ q')

1 o 1 o

vhere H1- =) +-£--'1 { Sm+2 )
and primes denote differentiation with respect to y.

The corresponding boundary conditions are

g =1 q =% Tel T4=0 sty

q= 0, g=»0, T-=»0, T~>0 asy>®
0 1 -
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The equations 6.18 to 6.21 are still coupled
and non linear and hence difficult to solve analyti.
cally., In order t© solve them we expand qo; a0 A
and T, in powers of £ the Eckert number assuming it

.to’ ba very small as follows (E - « 1 for incompre.

esible fluids).

(v) = (v) + Ea (9 + 0(F)
_qo y q,, a,

g @) = q ) +Eq (@) +0G)
1 11 12

6.23

T (y) = Tyl + Eigyly) + 0GD)

r1(y} = Tqq(y) + BTy, y) + O(Ez)

substituting 6.23 in equations 6.1¢ tc 6.2% we
obtain the following system of equations 6.24 to 6.27
and 6.28 to 6.31 which govern the mean steady flow and

the unsteady one respectively.

6.24 " S = M, q = «GT
o1 " 01 1 %01 o1

6.25 q" +8q = My q = »GT
02 02 ! 02 02
i ] [



6.28 q:1 + Bq;1-* q11(M1+ in) = . ot

6.29 q;'? + 3q;2 - 612 (Mq4+ in) = & Ty, ",

€.30 THy + &P -r;—; in PT,4 = 0

6.1 B, sPT;z— in PTy, = -i?(q; 1'&&14- E;1q;1)

subject to the boundary conditions

g = a0, Tyl T=0 aty=o

6,72
qo—1-r 0, qo? 0, ‘I‘o-:i-r 0y ro-? 0 as y=>e
for the mean steady flow and
q =1y, @ =0y T =0y T =0 at y = 0
11 T2 ' n 12
6.3%

for the unsteady ﬂo_w.

First we obtain the solution for the mean steady
flow while the soluticn for the unsteady flow will be

obtained later.



ALY

6.36 T

6.37 1‘02

0

o

-{B,+8,)
= L1G-Spy -LC.8 1 1 ¥

9 = q

Aza

"
Sp

+ C

-B,y «5Py

-B.ly .m

- ?1.

" (SP+§1)Y _

& Y

1

. (SP+81 )y.
e

4

and mean temperature 'I‘O

+
01

T =7 _ &

01

E q
02

BT, .~
g

Fg

+ Fe
2

«{3P+B
e

to boundary conditions 6.22 are given by

1y

=2 5Py

«(By+By)y
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; The soluticns of equations 6.24. to 6.27 subject

-25Py

+F @

3

+ Cac

are given from 6.2 as

-
l given by equations 6.74 to 6.37 respectively.

|

" (sr+‘§,) Y

The expression for the mean steady velocity q
0

‘ respectively, where
, ’ 91" 9t To1 ¥4 Tpy are



(1s52)

if . ‘mw oFe the components of mean skin
friction t, at the plate due to mean primary velocity

u and mean secondasry velocity v, we have,

6438 g™ ¢ +1¢ - 51

= - A8y + ASP + B[ L, By+ F,SP.F, (8,4 B,)
- 25P P+ F, (SP+B,) + Fg(sPen) ]
where the different constants are given in the

appendix,

Now we proceed to solve the unsteady part of the
flow field which are characterised by equations 6.28

W 6,371 viz,

6.28 q" + 8 ' - q ‘H + in) 2 « GT
11 r 11 1 1
6.29 Q" +8q = q My in) = « GT
12 12 2 v 12
6.90 iy + SPTy, ~ in PT,, = 0
6.31 DY+ SPTY—in PT,.=-Plg’ ' +3' q' )
12 12 12 11 %1% %4
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Subject to the boundary conditions
q = 1 =0y, T =0, T =0 at y = 0
1m0 Y 11 12 _
6,97
q = 0’

-» 0 T =0 T =20
11 D77 ST T

as yve

The solution of the equations 6.28 to €.23 of

the unsteady flow fleld under their boundary conditions

6.33 are given by

-hy J\Y uhy
=e ! +E[I=4e 1-—P9e 2

"(h1+-§1)y -(.'K’i-h.')'f

10

.(ﬁ'{B‘)y -(SP-I»'I'{‘)Y

+» P, e -rﬂa

12

and

6,40 Ty = T, .+ EY

1 11 12 P
h,y -(h1+31)y -£5p+h1)y

"P,‘! ’ +P20

 e(hqeB,)y ~(8Pehq)y
Pt + P‘l& y

m E{ L?Q

where all the constants appearing in the solution

are defined in the appendix at the end of this chapter.
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since now we know q, q1, 'ra and '1‘1 wa obtain

the evpression for Q snd T from 6,17 viz.

lyst) = q () + ¢ q (y) g o
o 1
6.17
T(yyt) = ’I'oiy) + £ T.'(y) smt'
The expression for ((y,t) may be written as
641 alyst) = g + ¢ [Hr cos nt — ¥, sin nt)
o

+1 (M, cosat + M, sin nt) ]
£.42 where q1 e Hr + 1 My
gimilarly,
6.4% T(y,t) = T+ £ (T cos nt = Ty sin nt)
+ 1 (Ti cos nt + T sin nt)

From the expression 6,41 we can obtain the
exprossions of the transient primary veloclity and tran -
sient secondary velocity and £rom expression C.43 we
ohtain the expression for transient temperature at

2
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6od% uly, gg) = u (y) = € My
hid
6.46 wiy, ?.n) = wo(y) t2 M
6.4% where q° = i L
4 and
6448 T(y, fﬁ) = T (y) = ¢ 1
|

| where

U,y W, ané T, are the mean primery velocity,
mean secondary velocity and mesn tempsrature respeCe

tively,

The skin fricticen is given by

RS —

# £e49 I S i iy
- 29
3 ¥ - -
- a_i_qQ. - ge‘mt’ “:3-:
¥ ym0 % | yeo
int
—(h1+a11pw+(sp+h1)r"—(h.l+ﬂ1)pn+(5p+h119u} ]
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& §
-5-?-9- : is the mean skin friction., ¢_ and
Y i y.o - x

v, are the component of skin friction along x, and z direc.

e o=
wiere to

tions respectively.
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Sinle 6.1l3 Valuzs of mean tepecatu-s2 0. P=0,71, E=0,001, GaS§
v 0.0 1 2 3 5 5 7 3 ‘9

2

.
(2]

e ]
L]
@

1hie

[ ]
®

[ ]
L]
FES

e 9
S 00 0 o oo
e s

O QO O O O O owmon

Q

L ]
id

(51BN S « + B s Y s RS ) YL S Y ;|
o N I N i

. .
QO 0O

L]

N ]

.
i

i

.
248215 1.,9788 1,3877 00,9731 2.35524 0.4785 0.3355 0.2353 00,1650 ).,1157
2.8215 1.,9788 1.,3877 0.9731 2.5424 044785 0.3355 0.2353 0.1650 J.1157
2.8256 1.9820 1,3900 0.,9748 0.7:36 02,4794 00,3361 0.2357 2.1653 .1159
2.53286 1.9843 1,3918 0.9761 2.5:45 0,4800 0,3366 0,2360 02,1655  :,1160
1.4094 0.6931 0,3408 0,1576 02,2224 00,0405 02,0199 00,0098 0,0048 11,2724
1.4093 0.6930 0,3408 0.1575 ©.0324 0.0405 0,0199 0,0098 0,0018 75,3024
1.4093 0.6930 0.3407 0.1675 0.02324 0,0405 0,0199 0,0098 0,.0048 02,2024
1.4092 0,6930 0.,3407 0.1675 0,2324 02,0405 0.0199 0.,2098 00,0048 02,0024
1.4091 0.6928 0.3406 0.1675 0,.7323 0,0405 0,0199 0,2058 ©,0048 0.0024

(LS1L)
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1 D Da5 3.2
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C.4

1.0 0.2

0.4

. 2 Dl

. Ded

1.0 042

0.4

+
nts qs 303 o P=0,
L]

_mu .
L, 6023 1.5805
1,5615 1,55%0
2,3433 2.8014
T,.28645 2.6773
1.,1000 1.0413
l1.1218 1.09585
0.5451 1.6342
0.5865 1.6856
1.8755 1.7266
1.8273 1.80%4
2.6029 2.3887
2,3101 29625
ie#130 1.11a7
0.9385 1.179%
De3564 1.7233
0.4048 1.82333

(€SL)




velocity wiv,=)

ala.f.3s . Valu >f transzient primary velocity u{y, 50/ and transizant secondary 5o .
o= 0,71, T = 0,001, £= 0,2, =23, 5= 0.3

" M m o o ¥ 3 i - 3 k] 3
5 0.5 0.2 1o ¥ 1.2000 11,5002 1,1350 0.8100 9.5677 0.3981 0.2791 0,19574 0.1372
TeT Mef 7Y W 0,2000 0.5989  0.4919 0.3518  0.2472 02,1733 0.1215 0.0832 U.0587
BE © 2 35 U 10007 1.5839 1,154 0.8100 0.5677 0.3981 0,2791 0,1957 0,1372
A ’ w 0.2000 23,5951 0.4925 00,3519 00,2472 0.1733 0.1215 0.0852 0.03597
. 0.5 0.4 30 U 10000 1.5529 11,1223 0.7863 0.5510 0.3854 0.2709 0.1899  0,1332
. ** 7Y W 0.,2000 0.6347 0.5225 0.3727 0.2617 0.1835 0.1287 0.0902 ©.1£32
5 1.0 0.2 1o Y 1.0000 1.7829 11,2572 0.8724 0.6102 0,4277 0.2999 0.2103 - 0.1474
: : w 0,2000 1.0883 0.9208 0.5606 0.4638 0,3252 0,2280 (.1528 C.1121
5 1.0 0.2 10 B 1.0000 1.2133 0.8198 0,5698 0.3993 0.28C0 0,1963 0.1376 0.9965
« 8 . w 0,2000 0.8714 0.6726 C©.4737 0.3320 0.2328 0.1632 0.1144 0,0802
5 0.5 0.4 30 Y 1.0000 1.6880 1,2227 0.8554 0.5992 0.,4201 0.2946 09,2065 0.1448
* * w 0,2000 0.7763 0.6516 0.4667 0.3279 0.2299 0.1612 0.1130 0.0792
a 1.7 0.4 1n U 1.0000 1.1750 0.7886 C.5479 0.3840 0.2692 0.1283 0.1323 0.0928
YOTeT SY W 0,2000 0.8350 0.5786 00,4772 0,.3345 0.2345 0,1641 2$.1153  0,0808
5 0.5 0.4 1o U 140000 1,7007 11,2228 00,8354 0.50%2 0.4201 0.2945 0.2085  0.1448
: T W 002000 0,7801 0.6508 0.4666 0.3273 0.2299 C.1612 0.1130 0.0792
8 0.5 0.4 10 v 1.0000 1,0834 0.%556 0.5288 0.3707 92.2599 0.1823 0.1278 0.0896
y * w '0.4303 0.3625 0,2554 0.1791 0.1256 0.0880 0.0617 0.0433

0.20.00
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Tail " Jilue: ~f transient temporature T{yv.=x—) ’
[ T
L ]
P = 0.7, B o= 9,201, £= 0,2, 8 B =53
L ]

U R T e B e e e e
r, Fo i ;i bl - .‘. J i q 2 ,7 8
s : N e . - - . .

1 5 0.5 0.2 10 7 2.82136 137875 143785 0,97312 2.68238 0,47350  2.33552 '«23527 0.16497
I 5 B 0,2 30 2.63139 1.97877 1.35748 0,97312 0.68238 9,47830 0,.33552 2,23527 2.164327
i 50,5 5«4 30 2.82139 1,97877 1:38767 2.27311 02.638238 0.47843 5.33552 223328  N,16496
I 5 1. 2.2 10 2.82557 1.982705 1.39012 0,97489 0.83366 0.,47931 0,.33617 7.23572 0,16529
i1 8 1.2 0.2 1i0 2.82144 1.97377 1.38784 0,97306 0.€8232 0,.47345 7©.33543 1.23324 J.164924
3 5 0% 0.4 30 2.52294 1.,97995 1.38852 13,2737¢ 0.68286 C.47824 2.33578 D.23544 2.16509
L 8 1.0 0.4 10 2.82146 1.97877 1.357583 0.37305 0$.68232 0.47844 .33542 2.23323 2.16494
3 05 0.5 T.4 10 2.82292 1.97997 1.33859 0,97378 £.68286 02.47334 0.33576 0.23544 3.16509
1 8 0.5 0.4 10 - 2.81877 1.97659 1.38611 02,97195 C.83153 0.47733 C.33508 0.23456 0,16479

(029p)




Table 6.5: Values of skin friction components < and x5
P= 0,71, E = 0,001, £= 0,2, G=5, M= 5, 3=
]
X m o n 28 .

1 0.5 0.2 10 3.38344 1.01422
30 3.77354 0.73385

0.4 10 3.31115 1.13912

30 3.70415 0.85803

1.0 0.2 10 4.12775 2.08239

30 4.51822 1.77726

0.4 10 3.995%4 2.20620

30 4,38953 1.89985

3 0.5 0.2 10 3.83173 1.28100
30 4.21911 0.99099

0.4 10 3.73977 1.41717

30 4.13008 1.12624

1.0 0.2 10 4,56297 2.58629

. 30 4.94903 2.26728
0.4 10 4.39475 2.70264

30 4.78391 2.38578

(tsy)
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Discussion of the results .

In order to get physical insight into the problem,
numerical calculations have been carried out for mean primary
velocity uy, mean gsecondary velocity Wye mean temperature Toe

components of mean skin frictlon'(nu.'Tmu. transient primary
velocity u(y.%%), transient secondary velocity w(y.%%).
components of skin friction Ix and tz at nt = %%- corres-
ponding to different values of the parameters. In order

to be realistic, the value of the Prandtl number is chosen
to b= 0.71 which corresponds to air. In the entire calcula-

tion we have taken E = 0,001, o= 0,2 and G = 5,

Variations of the mean primary velocity profiles
are illustrated in figure 6.1. It is clear from the figure
that u, increases with increase in the Hall parameter m and
permeability X. A rise in the rotation parameter. , magnetic
parameter M and suction parameter S causes a fall in the mean
primary velocity Uge .

Figure 6.2 display the mean secondary velocity
profiles. From the figure we.conclude that mean secondary

velocity w, increases with increase in. K and m but decreases

with increase in M and € .
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Table 6.1 shows the values of the mean temperaturs
Ty o WE conclude from the table that TO dacrgases with
increase in s. The effect oflon T, is insignificant. T,
increases with increase in X and m and decreases with

{rrranze in M{the changes being rather small).

Table 6.2 gives the values of the mean skin friction
components T and To, o Ty increases with increase in

m and kX, while it decreases with increase in O and S. ‘rmu
increases with increase in (., m and K and decreases with

increasze in S.

values of the transient primary velocity u(y.;%)
are given in table 6.3. We conclude from the table that
the tronsient primary velocity decreases with increase in
and M, but increases with increase in m and K. u(y.%%)
Aecreases with increase in the frequency parameter n near
the plate, but away from the plate the influence of n is
insignificant.

values of the transient secondary velocity -
w(y.%%) are alsc given 1n*mb;e 6.3. It is cléar from the
table., The transient secondary velocity increases with
increase in m, - and K. It decresses with increase in M.
w(y.%%) decreases with increase in n near the plate, waut
awvay from the plate it increases with increase in n. Further

away from the plete the influence of n is insignificent.
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Table 6.4 shows the values of the transient
tempe rature T(y.%%). The transient tempa}ature'risea
with rise in m and XK. It falls with a rise %n M. Near
the plate T(y,%%) increases with increase in n; away from

the plate the influence of n is insignificant.

values of skin friction components Tx and tz

at nt = %; are given in table 6.5. Increase inm, n and

K leads £0 incresse in T . Tx decreasces with increase

X

in -, tz increases with increase in -, m and K,

but decreases with increase in n.
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APPENDIX
a ‘s + (52+4M1)%
A = = r A = 1 + A » B £
1 sp(szpz-szp-nl) ‘ 1 2
2 2 . 2
P |A2' Iall P \Ali
Gy = e NP = ¢ Coy = 3
- (Bl + al) - 59(31 + 31)
2, -, 2=
2 P AgALS sSP g;Az
C3 o - ’ c4 = "8P + B
5P + By 1
(g, + B.)C (sp + B,)C
1 : i 1 - 1’>~3
) Dy = SP » Dy = 2C, » Dy sp
(5P + 81)C4
Dy = SD s Ly = Dy + Dy =Dy =D,
GL GC
F, = -—‘—i 1 s Fo = 1-'.
1 2 2 2 - 2 .
§P° -~ 8P = M, (51*51) - 3(B1+31) - M
3} GC, GC,
¥ £ -.E » P = e i oy
3 45 p? o 282P - M 4 (5r+D )2 - S5(3P+B,) = M
1 1 1 1
F, = s
5 e (s5pP+B,) M »
(sp+31) - 5(8P+B,) - M,
s + (szwmz)li
sp(szpz+4inp}5
hy = 2
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A.B, h,P
Pl - p— 221 1 ~— e
(hi-e-Bl) - SP(h1+Bl) - inP
A.5P%h
i 1°F ™
2 2
(SP+h1) - SP(SP+h1) - inpP -
. A.B.h,P A, 5P%h
. 271™M 1 1
Py = 3 : o Pg = ——) = *
(Ei+51) - sp(ﬁi+al) - inP (sP+h, ) “~sP(5P+h; ) -in
. - (h1+Bl)P1 - (SP 4 hl)P?. B P3(h1 + B.'I.)
5 h, 6 h, 9 h,
. P (5P + Rl)
oL Gp
Pgnhz-ﬂha-u '910-(h+ﬁ}2-s(:+§)-u
il R | 1771 178 2
GP GP
¥ — y By 8 i ;
(SP+h1) o S(5P+h1) - M, (h1+81) - S(h1+31) -]
GP
Pyg ™ g, —
(SP+h1) - S(SP+h1) - M,
Lg = Pg ~ Pyg + Pgq = Pyp *+ Py3 -
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