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PRE FACE 

t.1sis entitled "ON I4H1) FLO,S O VISCOUS 

S' is being presented for the award of 

: of Philosophy in Mathematics. It is 

searches conducted in the Department of 

Hindu University during the years 

teemed guidance of Dr. ITe'al Xi.shore, 

.rnt of Mathemetics, J3an€srsc iirc3u 

L, India. 

Lhesis consista of six chapters. The 

broductory, giving the quneril deserip-

1. equations of magne tohyr rodynamic s, 

flow through porous m fiia, rotating 

Lory flow and flow with iiali currents. 

iew of the past researches rtlated to 

r given. Throughout the wcr we are 

s of electrically conucLing, viscous 

fluids. The magnetic Reynolds number 

r all the problems except th.r prob'ems 

rtwo. 
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The second chapter has been diviftcl into pasts. 

Part A of this chapter deals with the flow between two 

nfinite, non-conducting, parallel porous fial: plates, 

when the J.oer pl;te is injecting fluid the uppçr one 

is absorbina it. The flow is subjected to a uniform trans-

verse magnetic field •:rAd the magnetic Reynnicir number of 

the flow is sufficiently large so as to irclue the effect 

of induced magnetic field. The expressions for the velocity 

and induced magnetic fields have been obtalnod by usJng 

Laplace traL1forrn technique. The effect of the m;3gnetic 

parater on the velocity and induced rngnetic field 

has been studied. It is found that the volocitv dreass 

with increase in H !n the lower region betc'en the plotes 

and increases with increase in N in the rn)por reqion. Th 

induced magnetic field decreases with incre -s in M. in 

of this chapter, the effect of a :m trnverse 

qnetic field on unstd.y MR11 free ccnvecvo fiow past 

n ipui;iriy startd infinite vertical. non-coructLng 

plert' h- been discss"d. fere also, the r:ntic Reynolds 

number is aumecl to be sufficiently lare t 1ke account 

of the induced magnetic field. There is cnnst:"nt host fliux  

at the late. rxpressions for the velocity ;r- induced 

magnetic have been obtained by Lapl:'ce t.rr1::orn1 technique. 

The o be different: e.-3rarncter5 on C r .t''ve been 

discussed with the help of tables. 

S 
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In part A of the third chapter., the effect of a 

uniform transverse magnetic field on the steady free convec-

tive flow through a porous medium, occupying a semi-infinite 

region of space and bounded by a steadily roving sfrtical 

porous plate has been studied. The flow is subJected to 

constant suction. Approximate solutions the equtioas 

relevant to the problem have been obtained. The influence 

of the different parameters on the velocity an• rnee3ture 

fields have been discussed with the help of graphs and. tables. 

The problem considered in part of this chapter 

is an extension of the problem consid€red in part h. Ten, 

we have taken into account the effect of retaton on the 

flow. Due to rotation the flow bcome three dimensional. 

Approximate solutions to equations relevnt to the problem 

have been obtained. Effects of the various prer'eters on 

the primnry velocity, secondary velocity. ;b components 

of skin fricticn and the temperature hive been discussed. 

The fourth chapter i concerned "ibb the unsteady 

free convective flow past rn impulsively startd infinite 
U I 

vertical porous plate in presence of a iini.form transverse 

magnetic field. The free stream IS assuricd to oscillate 
S 

in time about a constant mean. The flow is subjected to 

content suction velocity and there is constut heat flux 

at the plate. .pprxiniate solutions for thc mean flow an 

Jr 



trrsiont flow have been obtained and the results have been 

iScUs3cd with th help of tables and graplhp- 

In the fifth chapter we have studied the effects 

of flail currents on the unsteady !IHI) free corvctive flow 

past impulsively strte.d infinite verticLl po,.LouF p1te 

i) prc. erc o unifQrm t.nsverse magnett: fi1c1. 'he 

p1te periturc surned to oscillate i tiv zibcut 

conit.:'tt and the £1o' is 3ubjected to oD5zmt suction 

at the pite. Approximite solutions for thc flow .nd 

tr:nsient flow hva bn obtained. The inf1;mce of the 

various paraters on the mean and transienu ic:s hs been 

c1icissd with thc 1;elp of tles and grary 

In thc last chapter, an at:ernpt h 'c r'e to 

study th effects of rottion and Hail curnt.s on the 

r unsteady HD free convcctive flow through pc rou ncUui 

OCCUpy1flJ a semi-iifinte region of spca nd ounchd by an 

infirite vert1c1 orc plite in presence f 1-IQr1sversely 

appli'd i.miforr1i maqnr1c fi1d. The pltc is urnd to 

ostil1ae In tfme ac,u c'nstent mean thr.c iS c0nstar2t 

heat flux at :ho p1 te. 1\pproxirnte soiutJ !:or thp mean 

flow and transient flo 'have; been o,)tain- ,7 result's 

have been discussed wilth the help of graps tbis. 

JL
• 
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CHJPTER - I 

INTFDUCTION 

Magn eto1ydro dyn gnic g 

M agn e tohydro dyn nic s is that branch of con tinuurn. 

mechanics which deals with the flow of electrically conduc-

ting fluids in electric and magnetic fields. It combines in 

a comon framework the electromagnetic and fluid dynamic 

theories, to yield a description of the concurrent effects 

of the magnetic field on the flow and the flow on the magne-

tic field. MagnetohydrodynamiC (MHD) phenomena result from 

the mutual effect of a magnetic field and a conducting fluid 

flowing across it. Thus, an electromagnetic fo re e is produced 

in a fluid flowing across a transverse magnetic field, and 

the resulting current and magnetic field combine to produce 

a force that resists the fluid' s motion. The current also 

generates its own magnetic field which distorts the original 

magnetic field. 

'Faraday1  (182) carried out experiments with the 

flow of mercury in glass tubes placed between poles of a' 

magnet, and discovered that a voltage was induced across 

------------------------------------- 
1. 'Faraday,X4.  Experimental researches in Electricity Phil., 

Trans. vol. 1, p.  175 (1832). 
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I 

the tube due to the motion of the mercury across the magnçtic 

field, perpendicular to the direction of flow and to the mag-

netic field. He observed that the current generated by this 

induced voltage interacted with the magnetic field to siow 

do the motion of the fluid, and this current produced its 

o',n magnetic field that obeyed Ampere's right hand rule id 

thus, in tu m di sto rted the magnetic field. 

The first astronomical application of the Mi-il) 

theory occurred in 1899 .hen Bigalow suggested that the sun s  

was a gigantic magnetic system. Alfven1  (1942) ciscovered 

MUD waves in the sun. These waves are produced by disturben-

ces which propagate simultaneously in the conducting flujd 

and the magnetic field. 

The current trend for the application of magneto-

fluid dyneniics is toward a strong magnetic field (so that 
r, 

the influence of electromagnetic force is noticeable) and 

toward a low dity of the gas (such as in space flight 

and in nuclear fusion research). Under these conditions 

the Hall current and ion slip become important. 

Electromagnetic Ecivatiofls: 
- 

Magnetohydrodyninic equations are the ordinary 

S fl0 ---------- 

1. Alfven ,H., On the existence of Electromagnetic - Hydrody- 
4 namic waves, Arkiv F.Mat.Astro. O.Fysik Bd. Vol.29BNo.2, 

(1942) 
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electromagnetic and hydrodyn arnic equations mod! flea to taice 

account of the interaction between the motion of the fluid 

and electromagnetic field)  formulation of electromagnetic 

theory in mathematical form is known as Maxwell's equations. 

Maxwell's basic equations show the relations of basic field 

cju an titles and their p roduc tion • The basic laws of electro-

magnetic theory are all contained in spec! al th eo ry of rela - 

tivity. But here we will always assume that all velocities 

are small in comparison with the speed of light. 

Before writing down the XHD equation we should 

first of all know the ordinary electromagnetic equations and 

hydrodyn amic equations. a 

First, we give the electromagnetic equations 1 

Charge Continuity: 

1.1 .D = e 

1.2 
Current Continuity: 

a) 
1.2 'c:.j 

Magnetic Field Continuity: 

1.3 0 

1mpere's Law: 
— 1.4 Vxi J+T 

1. Cramer, KR. and Pai,S.I. Magnetofluid dynandcs for engi. 
neers and applied physicists. McGraw Hill Book Company, 
(1973) , P. 38. 

-4 
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Faraday's Law 

1.5 
at 

Constitutive Equations for 0 and 13 

1.6 D =CE 

1.7 13 =it ii e 

Lorentz force on a charqe 

1.8 T = q (+VXB) 

Current Density 

1.9 = a ( + V x I ) + v 

The first five are the Maxwellb $ eations. 

where 

D electric displacnent 

charge density 

E electric field 

magnetic field 

B magnetic induction 

13 cii rrent density 

displacement current density 
at 

the electrical permitivity of the medium 

the magnetic  pexmeability of the medium 

Ii V the convection current clue to charges 
e moving with the fluid. 

S 

S 
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velocity of the charge 

V velocity field. 

Fundental Equat.ioflB of Fluid dynnics of Viscous Fluids1  
e 

In the study of fluid flow one dterrnines the velo-

city distribution as well as the states of the fluid over the 

whole space for all time. There are six unknowS namely, t1e 

three components of velocity V (u, v, w ), the tnperathre T 

the pressure p and the dsity P of the fluid, which are 

functions of spatial co.ordinates and time. In Order to 

determine these unknown we have the following equ ations. 

Equation of state which connects the terrqperature, the 

pressure and the density of the fluid. 

1.10 p = R P T 

For an incompressible fluid the equation of state is 

simply 

1.11 p constant 

Equation of continuity which gives the relation o 

conservation of mass of the fluid. The equation of 

continuity for a viscous incompressible fluid is, 

1.12 V'V = 0 
------------------------------------- 

flow. D.Van Nos- 
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(c) Equations of motion, known as the NaviertOkeS equations 

and which give the relations of the conservation of momen - 

b.im of the fluid. 

For a viscous incompressible fluid the equation of 

motion is 

DV 
1.1 p —  =F—Vp+)LV2 V 

Dt 

where F is the body £0 zce per unit volume and the last 

term on the right hand side represents the Lorce per unit 

volume due to viscous stressog and p is the pressure. 

F The op e r ato r = + u 
- 

+ V - + w 

This is known as the material derivative or total deri-

vative with respect to time, and it gives the variation 

of a certain quantity of the fluid particle with respect 

to time. 

is the Laplacian operator. 

(d) Equation of energy which gives the relation of conserva-

tion of energy of the fluid. 

For an incompressible fluid with coflstMt viscosity 

and heat conductivity the energy equatiOn is 

1.15 dC
P

= - 
+ k 2 T+

at  
aQ 

where, 
0 
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DQ  is the rate of heat produCed per unit volume by 
at 

external agencies, 

C is the specific heat at constant pressure, 

k is the thermal conductivity of the fluid and is 

the dissipation function. 

I For an incompressible fluid 

1.16 2ii [ 
(3) 2 

+ 
(3)2 

• 

+ y2 )j 
2 xy yz zx 

where, 

y • 

xy By ax 

Y = + 3w 
yz 

BU Y = 

zX dX az 

141W ?pproximatiOflS? 

The electromagnetic equations as given from 1.1 - 1.9  

are not usually applied in their present form and requirei 

interpretation and several assumptions to provide the set to 

be used in MIlD. In MIlD we consider a fluid that is grossly 

neutral. The charge density ,J in Max-  well's ecuatiofls must 

1. Cramer,K.R. and P8i,S.I. Magnetofluid dynamics for engineers 
and applied physicists McGraw Hill nook Co. (1973) ,p.?2. 
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then be interpreted as an excess charge density which is. 

generally not large. If we disregard the excess charge den-

sity then we must disregard the displacønent current. In most 

p roblerns the di sp lac enen t current, the excess charge dçn Si ty 

and the current due to convection of the excess charge are 

small. 

The electromagnetic equations to be used are then 

the following: 

1.17 VD 0 

1.18 VJ = 0 

1.19 v. 0 

1.20 vxii 

1.21 Vx aB 
- at 

1,22 D = 

1,23 B = 

1,24 Cr +Vx') 

M) Equations 

we shall now modify the equations of fluid dynnics 

suitably to take account of the electromagnetic phenomena. 
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The MHD equation of continuity for VISCOUS incompressible 

electrically conducting fluid rnains the sane 

1.25 V. V 0 

The MHD momentum equation for a viscous incompressible 

and electrically conducting fluid  is 1 

1.26 P 
DV  

= F—Vp+ Dt 

where F is the body force teni per unit volume and 

the new tetin Jx B is the force on the fluid per 

unit volume produced by the interaction of the 

current and the magnetic field (called a 5x 

fo rc e or I.o ren tz force). 

The MHD energy equation for a viscous incompressible electri -

cally conducting fluid is 

1.27 Cp - - + k V  2  T + 4) Dt at + 

2 
The new term is the Joule heating and is due to the 

resistance of the fluid to the flow of current. 

From equations 1.20 9  1.21 and 1.24 we have an equa-

tion for the magnetic field viz. 

--------------------------------- 
1. Cramer, K.R. and Pai, S.I. Magnetofluid dynamics for engi. 

neers and applied physicists, McGraw Hill 1300k Co. (1973) ,p.73. 
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- = V x (Vxii) 
- WH 

Vx (vxTh 
at 

aF iLV) V - (V.V) + 
1.28 or, at 

c: v.ii o and v.V = o for incompress e fluid) 

where 
V is the magnetic di £ fui vi ty. 

= IL C 
e 

In some problemS it is of interest to write the MHD 

momentum and energy equatiOfl5 in teims of the magnetic field,  

2 .26 and 1.27 we get respectivelY 
hence eliminating J from 

i 

1.29 l)t = i—Vp+ 0 

and 

1.0 

PC - 
+ k V2T + 'I + (Vxi) 

THE IMPORTANT NON_DIM5b0 
TERS OF FUJID 

yICSD 

We c5efir*e here some importaflt non.,dimen5i0al 

parameters used in the present jflVeStigati0 

Reynolds Number Reo 
most important paramet of fluid dyna1iCS It is the

of a viscous fluid. it represents the ratio of the inertial 

force to viCOU5 force and is defined as 
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3 

inertial force aU2 L2  
1.31 ____________ 

UL R  - 

e viscous force LLUL 

where U, L, a) and a are the characteristic values 

of velocity, length, density and coefficient of viscosity of 

the fluid respectively. When the Reynolds number of the 

system is small the viscous force is precminant and the 

effect of viscosity is important in the whole velocity field. 

When the Reynolds number is large the Inertial force is pre 

dominant, and the effect of viscosity is important only in a 

narrow region near the solid wall or other restricted region 

which is known as boundary layer. If the Reynolds number is 

enormously large, the flow becomes turbulent. 

Prandtl number  Rp 

The Prandtl number is the ratio of kinematic vie. 

cosity to thermal diffusivity and may be written as follows 
01 

1.32  Pr Kin ernatic viscosity - 
Thermal diffusivity k 

pcp  

The value of v shows the effect of viscosity of 

the fluid. The smaller the value of v is, the narrower is 

the region which is affected by viscosity and which is knoi 

as the boundary layer region when v is very small. The value 
k 0f -s- shows the thermal diffusivity due to heat conduction. 
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The smaller the value of is, the narrower is the region 
PC P 

which is affected by heat conduction and which is known as 

thermal boundary layer when j..  is small. Thus the Prandtl mznbex 
ac 

shows the relative importance 8f heat conduction and viscOsity 

of a fluid. For a gas the Prandtl number is of order of unity. 

I
Peclet number Pe 

L Peclet number is defined as: 

UL CP 
1.33 P 

e k PrsRe 

It is the product of Reynolds number and Prandtl 

number. 

Eckert Number E. 

The Eckert number can be interpreted as the addition 

of heat due to viscous dissipation and is very small for 

incompressible fluid and for low motion. It may be defined 

as followss 

1.34 E 
c (T - T) 
Pw  00 

where U is some reference velocity and T - T is the diffe- w 
rence between two reference tperatUres. 
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Magnetic Pressure Number 

It is thetio of the magnetic pressure to the dy.. 

n-mic pressure and is given by 

)LM2  e 
1.35 R = 

q 
 

It is a measure of the effect of the magnetic field 

on the fluid. Only when RH  is the order of unity, will the 

flow be influenced noticeably by the magnetic field, and if 

it is very smallp all the magnetic effects can be disregarded. 

Magnetic Reynolds NumberR 

It is the ratio of the fluid flux to the magnetic 

diffusivity and is given by 

1.6 UL  
I a 
I kLe

a  

It is one of the most important par&neters of MMD. 

The magnetic Reynolds number determines the diffusion of the 

magnetic field along the strenlines. R0  is a measure of the 

effect of the flow on the magnetic field. If it is very 

small compared to unity, the magnetic field is not distorted 

by the flow. When it is very large the magnetic field moves 

;i th the flow and is cal led frozen in. 

S 



magnetic Number R 

It is the ratio of the magnetic force to the 

inertial force and is given by 

L 1/2 1/2  
1.37 R e "oU - ( RdRa) m 

I 

hen R is very small Rm 

m 

is  also used to  measure the electzo. 

agnetiC effects on the flow. 

magnetic Prandti Number Pm 

The magnetic Prandt] number is the ratio of the 

viscous diffusivity to the magnetic diffusivity and is 

given by 

R 

1.38 p = - - - 
In Yi Re 

is generally small and is a measure of the relative 

magnitude of the fluid boundary layer thickness to the magne-

tic boundary layer thickness. However when the magnetic 

Reynold5 number is large, the magnetic boundary layer thick. 

ness is small and is of nearly the anne size as the viscous 

boundary layer thickness. 

In this Case Prn 
 is not small. 

(14) 

Ir 
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MHD Boundary Layer Assumptions: 1 

Boundary layer phenomenon occren the influence 

of a physical quantity is restricted to 9na11 regions near 

confining boundaries. This phenomenon occurs when the non. 

dimensional diffusion pareters - the Reynolds numbers  Peclet 

number or magnetic Reynolds number are large. The boundary 

layers are then the velocity and thermal or magnetic boundary 
-I 

layers-, and each thickness is inversely proportional to the 

square root of the associated diffusion number. Prandtl 

fathered classical fluid.dynnic boundary theory by observing, 

£ torn experimental flows, that for large Reynolds numbers  the 

viscosity and thermal conductivity appreciably influenced the 

flow only near a wall. When distant me&3urnents in the 

flow direction are compared with a characteristic dimension 

in that direction, transverse measurenenta compared with the 

boundary layer thickness, and velocities compared with the 
I 

free strewn velocity, the Navier.Stokes and energy equations 

can be considerably simplified by neglecting small quantities. 

The number of component eap ation a is reduced to those in the 

flow cli rec tion and pressure changes an ross the boundary layer 

are negligible. The pressure is then only a function of the 

flow direction and can be determined from the inviscid flow 

solution. Also the number of viscous terms is reduced to the 

.Crer,K..andPal,S.].Magfl;thfluid dyninics for en ineera 
I and applied physicists, McGraw Hill Book Co. (1973) ,p.14. 
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dominant tezm and the heat conduction in the flow direction 

in negligible. 

M!D boundary layer flows are separated into two 

types considering the limiting cases of a very laxje Or 

a negligibly small magnetic Reynolds number. Mien the mag. 

nctic field is oriented in an arbitrary direction relative 

to a confining surface and the magnetic Reynolds number is 

It I. very small, the flow direction component oi the magnetic 

interaction and corresponding Joule heating is only a function 

of the traisverse magnetic field component and the local ve2o. 

city in the flow direction. Changes in the tranelerae magnetic 

field component and pressure across the boundary layer are 

negligible. The thickness of the magnetic boundary layer is 

very large and the induced magnetic field is neglijiLde. How. 

ever, when the magnetic Reynolds number is very large, the 

magnetic bounarj layer thickness is small and is of nearly 

- the szine size as the viscous and thexmal boundary layers and 

then the tiiD boundary layer equations must be solved $imul. 

tneously. In this cases  the magnetic field moves with the 

flow and is called frozen in. 

Two DimEnsional Plow: 

If the velocity dstr.it.on in a moving fluid 

depends on only two coordinates (x and y say) and the velocity 

- I. is everywhere parallel to the x.y pline, the flow is said to 

be two dimensional. 
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The MI-ID Boundary Layer Equations for tsio.dimensiOflal 

Flow in case of &nall Magnetic Reynolds Numbe 

with constant fluid properties, transversely applied 

uniform magnetic field H0and x..axis along the direction of 

flow, the rAjHD boundary-layer equations for incompressible 

fluid flow under the boundary layer assumptions are as follows: 

1.31 A + Aly W o 
ax By 

1.40 au 22 
pax 

1.41 
. 0 
By 

1.42  pC + + i,) kL. + 2 2 H2  u2  
ax By 

MI-ID Boundary...Layer Equations for Two.dimeneional 

Flow in case of Large Magnetic Reynolds Number: 

When the magnetic Reynolds number is large we 

cannot neglect the induced magnetic field. With constant 

fluid properties, transversely applied uniform magnetic field 
S 

H and xaxis along the flow direction the MHD boundary layer 

equations for incompressible fluid under the boundary layer 

assumptions are2  as follows: 
a a a a a S S S 55 S a - S 5.5fl55S5SSS0 n S 

Cramer,K.R. and Pai, S.I. Magnetofluid dynics for enginQers 
applied Physicists,McGraw Hill Book Co. (1973) ,p. 149. 

p ai, S.I.  M agnetogasdyn nic s end P1 aa dynamics Wein Springer 
Verlog (1962), p.67. 
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1.43 ax ay 

au 

+ - .1 .2 + V + - H 
1,44 + ax 8y )ax oay 

at ay 

1.45 A. (p + 11e 
- 0 

ay 

au 2 

1 
+ U + V 1! = _L 

+ 

2 1 

at ax ay pcp ay2 
+ a)C 1,46 BY 

au au au  x 
1 • + u—a + v - = H au  + H + 2 

at ax x3, o3Y BY 

where H is the induced magnetic field. 
x 

Suction and Injection: 

For ordinary boundary layer flows wi th adverse p re 

ssure gradients, the boundary layer flow will eventuallY sepa-

rate from the surface. separation of the flow causes m&y 

undesirable features over the whole field for instance if 

separation occurs on the surface of an airfoil, the lift of 

the airfoil will, decrease and drag 411 enorm0uslY increase: 

In some problems we wish to maintain 1Ttiflar flow without sepa 

ration. Various means have been proposed to prevent the 

separation of boundary layer flows, suction and inj ection are 

two of them. 
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Injection of Fluid: 

Fluid is injected from the body into the boundary 

layer so as to increase the kinetic energy of the fluid in 

the boundary layer and to delay the separation. 

Suction: 

The retarded fluid in the boundary layer is sucked 

into the body. The point of suction is near the point of 

separation, either slightly ahead or behind so that no back 

flow will occur. 

Suction is a very effective means for avoiding 

separation. Suction of the fluid along the surf ace of the 

body is able to keep the boundary layer lu.1nar, because 

the boundary layer is kept so thin that the transition from 

a larninary boundary layer flow to a turbulent one is avoided. 

-1 
Free and Forced Convection2'2  

The probln of heat transfer due to convection may 

be divided into two cases, free convection and forced convec -

tion. By free convection we mean flows in iich the motion 

is caused by the effect of gravity on heated fluids of vari-

able density, by forced convection we mean flows in which 

the velocities arising £ torn van able density di. s tn bu tion, 

S S S S SC S 5 5S 5555 CC S S - 555055s 

Pai, S.I. Viscous Flow theory 1. Lninar flow D.Van Nos5 
trand Company Inc (1956) ,p.99. 
Trltton,D.J, Physical Fluid DyniiCs. Van Nostrand Reinhold 
company Ltd. (1979), p.. 127. - 
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arising from the effect of gravity are negligible in compa- 

rison with the velocities of the main or forced flows 

The tnperature variations within a convective flow give 

rise to variations in the properties of the fluid. in 

analysis including the full effects of those is so complicated. 

th at some approximations become es sent - 1 • The equations are 

I comnonly used in a fo nu known as Boussinec approximation. 

I 
I: in the Boussinesq. '::... approximation, variations of all fluid 

properties other than the density are ignored completely. 

Variations of the density are ignored except in so far they 

give rise to a gravitational force, i.e. the density variation 

with temperature is considered only in the body force term, 

the influence of density variations in other terms of the 

momentum and energy equations are considered negligible. 

in free convection, a body force term viz. 

I 

F= gP 13 (TT0) 

appears in the equations of iTxtion where g is the accelera-

tion due to gravity, 8 i's the coefficient of thermal expansion 

and T-T0 
 is the excess teperature of the heated parts of the 

fluid over the parts uhich rnain cold. The non ..dimisioflal 

parameter characterizing free convection is known as Grashoff 

1 number and may be defined as 
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1,48 = 2' g J3 (T.T0) 

U3  
0 

two 
where T, T0  are/representative tnperatUreS and U0 

 is 

some characteristic velocity. 

The Boundary Layer Equations of Motion of MHD Free 

Convection Flow: 

The continuity and energy eçuatiofls remain the 

saffne in c ase s of free and forced convection • In free Con - 

vection flow we have a body force term in the momenthm 

equ ation. 

The two dimensional boundary layer rnomenthm 

equation of Mi-ID steady free convection flow1  in abeI1ce 

of pressure gradient is 

1.49 uf+v& v L +g (Ti.T).. °  
ay By 

where the flow is in the x.directiofl and magnetic 

field is acting along y.directiofl. 

S 

- -_ - ------------- 

1. Cramer$  K.R. and Pai'  S.I. Magnetoflu.id  dynamics for 
engineers and applied Physicists, McGraw Hill Book Co., 

p. 165 (1973). 
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Porous Medi]m 

One may be tempted to define Porous Media as solid 

bodie3 that cor1taifl uPOre$ it being assumed as intuitively 

quite clear what is me&it by a pore. However it is much 

more dii!icult to give an exact geometrical definition of 

what is meant by the notion of a pore. A special effort 

must therefore be made to obtain a pxoper scriptiofl. 

Intuitively "pores" are void spaces ich must 

be distributed more or less frequently through the material 

if the latter is to be called "porous-". Extremely sinall 

voids in a solid are called "molecular interstices" very 

large ones are called "caverfls" pores are void spaces 

intermediate between caverns ad molecular interstiCe3, the 

limitation of their sizes is therefore intuitive and rather 

in defini te. 

The pores in a porous medium may be inter-conn%ted 

or non in terconfl ec ted. Flow of fluids through porous medium 

is possible only if at least part of the pore space is inter.. 

connected. The interoonneCted p4art of the pore system is 

called the effective pore space of the porous medium. 

ccordthg to the above descriptiOn the following 

are some examp le' of porous media: 

towers packed with pebbles, porous rocks such as 

S 
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lime stone, fibrous aggregates such as cloth, filter paper 

etc. and finally catalytic particles, containing extremely 

fine 'micro' pores. 

A Model of Flow Through a Porous medium: 

Bear and I3achrnat1  proposed e -del of flow through 

a porous medium in which the restriction of the fluid trans.. 

port, in well defined channels is an essential feathre be 

cause of the immediate presence of the walls of the solid 

matrix, the velocity of a fluid particle at a point in the 

void space is essentially in the direction parallel to the 

walls, and not normal to them. They visualise the void 

space of a porous medium as composed of a spatial netrk 

of interconnected random passages (Channels or tubes) and 

junctions. Channels are of varying length, cross..sectiofl and 

orientation', a junction is a place where channels meet. 

PeiTneabi liy: 

Permeability is the term used fo.c conductivity of 

the porous medium with respect to permeation by a Newtonian 
a 

fluid. This isproperty that measures the cthility of the 

porous medium to transmit fluid through it. 
eOe*SflSSS SSS  

1. Bea.r I. and Bachmat, Y.: lASH Symp. Artificial Recharge 
and Management of Aquifers Haifa, Israel, lASH, p.72(1967). 



Darcy's Lew 

Darcy1'2  described his experimits on the seepage 

of water through sand. The experiments were on unidirectional 

flows only, and the main result is that the mean velocity is 

directly proportional to permeability K of the medium having 

dimension of area, to the grad of (p + where 6 is the 

potential of grivational attraction on sand and equal to g 
.4 

times elevation, and inversely proportional to the viscosity 

,u of the fluid. Generalized to three..dim8ional flow DarCy's 

law has the Cartesixi form 

1.50 u =- - (p+i) i 1.1 ar,  

provided d is constant. - it should be ønphasized that u is 

the ith component of the meanvelocity taken over a volume 

containing many grains of the porous material. 

1iiations of Motion of Viscous Incompressible Fluid 

Thx.ough Porouo Medium: 

The porous medium is in ft a non ..homogen&us 

medium but for the sake of analysis, it may be possible to 

replace it with a homogeneous fluid which has dynnical 

----------------------  ___ _ nn n 

Dary, H.P.G.: Les Fontaines Publique de la yule de Dijon 
ParIs (1956). 

•.. .. : Researches experimei tates relatives an move - 
merit de leali daz35 les tuyaux, Paris (19571. 

(24) 
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properties equal to the local averages of the original non-

homogeneous continuum. Hence one can study the flow of a 

hypothetical homogeneous fluid under the action of property 

averaged external £0 roes and so, a complicated probln of the 

flow through a porous medium reduces to the flow prvbln of 

a homogeneous fluid with some additional resistance. 

The MHD equatiOn of motion for a vi scous incompre-

ssible electrICally conducting fluid through a porous medium is 

1.51
r7V 

 t = 
- vp + itv2V - + (x' 

çç er 

• 
¼. 

where K is the permeability of the medium. \7 

Equations of Motion in itating Co..OrdinateJ 

• If one takes a body of fluid and rotates its boun- 

daries at a constant angular velocity then at any time 

su £ fic I en tly long aft.e r starting the rotation, the who Le body 

is rotating with this angular avelocitY9 moving as if it were 

a rigid body. There are no viscous stresses acting within 

the fluid. Any disturbance i • e. anything th at would pro 1c e 

a motion in a n_rotating systfl, will produce motion relative 

to this rigid body rotation. This relative motion can be c0n 

sidered as the flow patterfl it is the pattern that will be 

observed by an observer fixed to the rotating boundaries. 

ld 
1. Trittofl, D.J. Physical Fluid Dynamics, Van Nostrand Reinho 

Company Ltd., p. 163 (1979). 
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The effect of using a rotating frame of reference 

is well known from the mechanics of so lid sy 8teTLs, ther are 

accelerations associated with the use of a non inertial 

frame that can be tkefl into account by jntducing centri- 

The statnent may be expressed in fugal and coriolis forces.  

a form appropriate to fluid systefla by 

1 
1.52 x +2XVR  

'Ir.ae subscripts I and R refer to inertial and rota- 

ting frames of reference. (41) is thus the acceleration 
i)t 1 - 

that the fluid particle is experiiciflg d so () is 

the quantity to be equated with the sum of the various fortes 

acting on the fluid particle. () is the celeratiOI1 
DtR 

relative to the rotating frame and can thus be expanded in 

the usual way 

av  

1 - - - 

'-st 
+ 

Dt R R 

Dropping the subscript R as all velocities W&U be 

referred to the rotating frame the equation of motion is 

1,54 + V.cV - Vp - • X (x) - 2QXV + 
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The second and third teLThS Ofl 
the right harld  

side of equation 1.54 are reSPeCU'1e1Y 
the centrifugal and 

co_riOliS forces. 

In many probløfl5 the 
centrifUgal force is un- 

imOrt8 
This is becanse it carl be 

expressed as the 

gradient of scalar quanUtY. 

4 

1.55 x (o x 2  r'2 ) 

where r' is the distance from the axis of rotation. 

Hence replacing pressure p by 

1 2 
1.56 p - p 

2 r P (say) 

the equatiOfl of motion redtlCe8 tO 

.4 

1.57 DV_VP2XV +IVV 
Dt P 

Two importar dimension
less imen8i0fl8 paraueters appearifl 

in rotating fluid are 

the  Ekiflan number E 

1 
1.58 E 

QL2 

an a the Roe sby number 
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1 

U 
1,59 OL  

where L is some characteristic length. 

Boundary Layer Equations in RotatiB2 Co-ordinates: 

in important practical type of rotating boundary 

layer flow is the flow over rotating blades, occurring in 

turbines, helicopters and propellers. In this case, the 

centrifugal and coriolis forces due to rotation, combine 

with pressure gradients and viscous forces, cause the flow 

to be three dimensional. 

we consider a blade rotating out the zaxis 

with angular velocity W and fiX the exes with respect to the 

rotating blade. Let the y...axis be along the span of the blade 

and xaxis be the third axis sO as to form a right.haflded 

cartesi an system. 

If we apply the boundary layer approximations to 

equation 1.54 9  the distance of the boundary layer in the 

z..direCtiOfl is of the order of S , which is much smaller 

than the characteristic length in the x or ydireCUOU and 

if the velocity component w is much smaller than u or v we 

have the boundary layer equations of motion in rotating 

coordinates. 1  
a a a a a a S a a S 0 S• _ - 5 - S OS 

1. Pal., S.I.: Viscous Flow Theory, I5Laminar Flow D.V&1 Nos. 
trand Company Inc., p. 146 (1956). 
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BU  + + + w - 2v. .1 + SILAU  
at ax ay 3z pac 2 az 

2 
av 1.61 

av 
ax ay az paY 

1.62 - 0 
az 

scillatozy Flow: 

Fluctuations in a etren incident on a body are 

known to occurs  and it is important to imderstand how the 

the boundary layer reacts to the oscillation of the atrea. 

For exnple, in the occurrence of flutter of air on air. 

craft the boundary layer effects may be considerable. The 

effects of free oscillations on the flow past horizontal 

bodies were studied by Moore1. Liahthill2  and others. A 

simple case of oscillation treated by £icihthill2  is the one 

in which the free atrean oscillates in magnitude but not in 

direction. Owing to the mathnatical difficulties there are 

sometimes restrictions on the amplitude and frequency of 

oscillations. After the pioneering initiation by Lighthil3. 

Moore,F.K. NA 2471 (1951). 
Lighthill,M.J.: Proc. Ey, Soc. Lore, A224 9 1 (1954). 

(29) 
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there have been many mork on the subject of iaminar boundary 

layer which have regular f1ucating flow superimposed on 

the mean steady flow. The most general case in which the 

stream fluctuates both in direction and magnitude has been 

studied by Gibson. 

I EquatiOfl5 of Motion of MHD Oscillatory Plow: 

The two dimensional MHD boundary layer equations 

of motion with transversely applied unifonn magnetic field 

B
0 
 and xaxis along the flow direction, assuming the flow 

to be at small magnetic Reynolds number are- 

1.63 Bu + u3 + IV = - .1 - 
ap  + v - B2u 

at ax ay pax 
ay 
2 p 0 

1.64 
By 

If the free stre1n oscillates in magnitude only 

and is a function of time, i.e. U U(t) where U is the velo. 

city of the free stren. We have from (1.63) for the free 

stream, 

165 -82  
dt pax p  o 

-r 

. 
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If 

Eliminating —  22   between 1.63 and 1.65 we get 
ax 

the equation of oscillatorY MMD flow as 

2u 
1.66 - 

+ u-- + v' . 
+ — 

(u ..U)
ay  

Mall Currents: 
- 

It is known that in an ionized gas where the density 

is low or the magnetic field is strong  the conduCtiVitY of 

the fluid becomes a tensor. Due to the free spiralling of 

electrons and ions about the magnetic lines of force, before 

guffering collisions with other partiC.es, the conductivitY 

transverse to the magnetic lines of force is reduced and a 

current is induced in a direction normal to both electric 

and magnetic fields. The flow of such currents is known as 

Hall Currents. Due to the presence of these currents the 

efficiencY of the MMD generator or accelerator is reduced. 

The generalized Ohm's law taking Hall Current into 

account in the absenCe of electric field is of the form1. 

1.67 o(LVX+ p ) 
a 

. 

-r where H is the constant  transverse magnetic field, 

5 a s 5 
as 

.. s e a 50 5 --------S S ------- 

1. Cowling, T.G. MagnetOhYddYTiC5 InterscienCe Publ.IflC. 

New York,  p. 101 (1957). 
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- the electron pressure. 

the electrical conductivity 

the magnetic perme&:>ility 

the cyclotron frequency 

the collision time of electrons with ions 

the electric charge 

the number density of electrons 

(2) 

4 

The boundary layer equations of MHD with Hall currents1  Let 

us consider xz to be the plane of the plate, the positive 

x..axis being in the direction of flow, y..exis is taken per.. 

pendicular to the plate. A uniformly distributed strong 

magnetic field H0  is acting in the y.direction. The effect 

of Hall current gives rise to a force in the z ..direction, 

which induces a flow in that direction. Hence the flow 

becomes 3..dlmensional. The plate is considered to be non.. 

conducting. 

The fundental equations of incompressible MHD . 

flow with generalized Ohio' s Law are, 
1 

S S S -0S S S a a - - 

1. Katagiri,M.. J. Phys. Soc. Jpn. 279  10511969). 
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1.68 V.V 0 

1.69 -+ (V.v)V a—Vp+ V+1x  at 

wt 
( ILVX14+ Vp) 

1.70 + (xi) c e 
en

0 
 e 

0 

since the plate is infinite in extent all the phy... 

sic al 
quantities except pressure are functions of y and t 

only. jissuming the magnetic Reynolds number to be small we 

neglect the induced magnetic field in comparison with the 

applied magntitC field. 

Using the relation V. 0 for the magnetic field 

ii (H x y  
,H ,H ) we obt&.ne H 

y 
0 0 

a H (H is a constant) every. 
z 

 

- where in the fluid. 

From the relation V.J a 0 for current density J (J x y ,J ,J 

we have J= conatant. Since 
the plate is ncn..conductiflg 

J = 0 at the plate and hence zero everywhere. 

By applying the usual boundary layer approximations, 

to equation 1.69 the basic equations under the above 

assumptions are. 
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1.71 
av 0 
BY 

+ = 
- .1 . + v L3 J 1-1 

at p ax arP z 0 1.72  

1.73 o 
BY 

1.74 aw  + v - 
+ v 4 + 

where J x 
an d J are obtained from 1.70. 

tin de r the usual 
as surnp tiori s, that the .eleC t ron pssure 

(for a weaklY ionized qas), the therm0eleCttc pressure and 

the ion slip are negligible we have 
from 1470, 

J —wt 1.75 ee 

HU J +wt eO 1.76 z ee x 

from 1.75 and 1.76 we get 

aH e -i (mu-w) 
l+rn 

aLH 

1.78 J = (u .+ mw) 
14-rn 



(35) 

-q 

A BRIEF DESCRIPTION OF PAST RESEARCHES RELEV?NT 

10 THE THESIS: 

Couette Flow: 

The Couette flow of a viscous incompressible 

and electrically conducting fluid between tw. infinite 

parallel plates in the presence of a magnetic field when 

one of the plates starts impulsively from rest, was studied 

by Katagiri1. He presented his analysis by taking the mag-

netic lines of force fixed relative to the fluid. 

Singh and Kumar2  have considered Katagiri' s pxohlein 

by taking rnaqnetic lines of force fixed relative to the 

moving plate. The Llace transform technique has been used 

to solve the equation. 

- 

Suction and Injection: 

Berman3  has studied the pzobln of viscous flow 

in the annular space bounded by two concentric circular 

cylinders when the inner cylinder is discharging fluid and 

the outer one is absorbing it. 

• t5 a see a assess See S easeS - S C S 5005 S_aS 

Katagiri,t4.: J.Phys. Soc pn. 17,393(1962). 
sinqh,A.K. and Kuinar,N.. wear 899  125(1983). 

. Berman,A.S.: J. Appl. Phys. 299  71(1958). 
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Satya Prakash1  investigated the probln of unsteady 

incompressible viscous flow under a time varying pressure 

qracieflt In a straight channel with two parallel por:ous flat 

walls when one wall is discharging fluid and the other wall 

obsorbing it. 

Kishore et a12  have extended the work of Satya 

Pra3cash to magnetohydrodYflamic case. The magnetic Reynolds 

number of the flow is assumed to be small so that the induced 

magnetic field has been neglected. 

Muhuri3  has described the flow of an electrically 

conducting, viscous and incompressible fluid between to 

parallel porous walls when one of the walls moves with urii. 

form acceleration and there is uniform suction and injection, 

in presence of a uniform transverse magnetic field. The 

I magnetic lines of force are assumed fixed relative to the 

fluid. 

Free Convection: 

soundalgekar and Pati14  have studied the unsteady 

free convection flow of an electrically conducting, viscous 

and incompressible fluid past an impulsively sLarted infinite 

vert.ical plate with constant heat flux at the plate. 

------------------------------------------------------ 
Prakash,S.: Proc.natn.Iflst.SCi.Ifld1a,35A,123(1969) 
Kishore,N.,Teipal,S. and Katiyar,H.K.: Ind.J.Pure Appl. 
Math. 12 (11) 1372 (1981). 
Muhuri,P.K. J.Phys.Soc.Jpfl. 1 1671(1963). 
Soundalgekar,V.M.and Patil1M.R.: Astxophys.SpaCe ci.70079(1' 
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Nenousis et a11  have studied the effect of a uni-

form transverse magnetic field on unsteady free convection 

21ow of a viscous incompressible and electricallY conducting 

fluid past an impulsively started infinite non..conductthg 

vertical porous plate when the fluid is subjected to cons.. 

tent suction velocity. The magnetic lines of force are assu. 

med fixed relative to the fluid. 

Singh2  has modified the probløn of Nanousis et aX2  

by assuming the magnetic lines of force to be fixed relative 

to the plate. 

Raptis and TzivMidis3o have studied the effect of 

a magnetic field on steady free convection flow past an in-

finite vertical limitinq surface. The limiting surface is 

unmoving and is subjected to constaflt suction velocity and 

there is constant beat flux at the surface. The magnetic 

Reynolds number is not small so that the induced magnetic 

field has been taken into aCCOUnt. 

Soundalgekar and Wre4  have studied the two dimen - 

sional unsteady free convective flow in the presence of 

foreign mass past an infinite vertical porous plate, when the 

1# _____________ 

Nanousis,N.D., GeorqantopoUlOS,G.A. and Papa.ioannOUs,AaI. 
Astrophys.Space Sci. 709  377(1980). 
singh,A.K. Astrophys. Space Sci.,87,455(1982). 
Rapt-is,A.A. arid TZivaruidi30G. AstrophYS.SPW Sci.,4,3ll 
(1983) 
soundalgekar,V,M. and Wavre,P.L). Int.J.Heat iass Transfer 
209  1363(1977). 

-r 
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plate tperathre oscillates in time about a constant mean. Assu. 

ming constant suction at the plate, approximate solutions to the 

coupled non.linear equations have been obtained. 

Plow Through Porous 14edi a: 

Abmadi and Manvi1  have derived the equations of motion 

of viscous flow through a rigid porous medium. 

Varshney2  studied the hydrodynwLtC fluctuating flow of a 

viscous incompressible fluid through a porous medium bounded by a 

porous plate. 

A theoretical analysis of to dimensional free convective 

flow through a porous medium bounded by a porous and steady tempera. 

thre plate was presented by 1aptis et 

Megehed4  has studied the unsteady to dimensional flow of a 

viscous incc*pressible and electrically conieting fluid through a 

porous medium bounded by an infinite porous horiontal plate and 

subjected to uniform external magnetic field, assuming low magnetic 

Reynolds number. Two cases have been studied by him: 

At tirte t>0 the plate starts moving with velocity u(t) and 

the flow is subjected to time deperdont suction velocity 

The fluid is subjected to constant suction velocity at the 

plate surface and the free strewn velocity is assumed as any given 

arbitrary function of time. 

AhmadiG. and Manvi,R.: md. J. Vech. 9,9 9 441 (1971), 

Varshney, c.L.: md. 7. Pure Appi. Math. 9 10, 1958 (1979). 

Raptis, A.A., Perdikis, C. and rzivanidis, G.J.S Jl. Phys.,D. 

Appl. Phys. 14 9  l99 (1981). 

Megahcd,A.A. I md. Ji. Pure Appi. Math., 15(10), 1140(1984). 
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Raptis et a].1  have investigated the free convection 

and mass transfer steady flow of a viscous incompressible 

fluid thz:ough a porous medium, occupying a semiinfinite 

region of space bounded by an infinite vertical porous plate 

vhen the flow is subjected to constant suCtion velocity and 

the heat flux at the plate is constant. 

Flow in Rotating Fluids: 

Chawla2 , Sirigh and Sathi Soundalgekar and Pop4  

studied the effect of rotion on Rayleiyh' s probli in ion. 

magnetic case. Interesting conclusions have been derived in 

these problems. 

Debn ath and Mukhe rj ee5  have tu died the uris ce ady 

boundrJ layer f10 of -n nccrrpressible liomogr.eouii viscous 

rotating fluid bounded by an infinite porous plate with uni 

form suction or blowing. They have discussed the structhre 

of the steady •nd the unsteady flow fields inclu±ing the 

nature of the associated boundary layers induced by the non - 

torsional oscillation of the plate. 

Raptis,A.A., Kafousias,N.G. and lulassalas,C.V. ZXIM 62, 
489 (1982). 
Chawla,S.S. J.Phys.Soc.Jpn. ,23,663 (1967). 

Singh,M.P. and athi,H.Lh.. J.Math.Mech.,1C,l9(l968). 

soundaigekar,V.M. and Pop,I.: Bull.Math. ,14 (62)375(1971). 

D&xlath,L. and Mukherjee,S. Phys.Fluids,16,1418(1973). 
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Debnath1  has investigated the unsteady boundary 

layer flow in the si4nfinite expanse of an electrically 

ccnductinq rotating viscous fluid bounded by an infinite 

non -conducting porous plate wi th uniform suction o r blowing 

in ehn preserve of a transverse uniform magnetic field. The 

sticture of the steady and unsteady flow fields and the asso- 

ciited hydrorragnetic multiple boundary layer have been studied. 

The free convctte flow past an thfn!.te vertical 

isothermal plate started impulsively in motion in i 

plane in a viscous incompressible and electrically conducting 

fluid in presence of a transverse uniform magnetic field has 

been presented by Singh in a rotating syst. The governing 

equations of the flow have beefl solved by Laplace tc vA  

technique. 

Oscillatory Flows: 
- 

.?he effect o free stream oscillations on th flow 

past horizontal bodies were stdied by Moore3  r an Lighthill4 . 

Their oscillations were based on snail amplitude of oscilla-

tions. 

C2e0rgantop0u1os5  has disciissed the free convection 

effects on oscillating flow in the tokes problem past - 

infinite porous vertical plate with constant suction. 

------------- 
Singh,A.K.: Astrophys Space Sci. ,95,283 (1983). 
Noore,F.K.: NACA, 2471(1951). 
Liqhthill,M.J.: Prc.Poy.Soc.,Lon"on,A224,1(1954). 
Georqantopoulos,G.A.: Astrophys.Spce Sci. ,65,433 (1979). 
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ilafoujas. at al have extended the above proh1n 

in the presence of a uniform transverse magnetic field with 

Out taking into account the inducad magnetic field. 

Georgantopoulos and Koullias2  have studied the 

free convection and mass transfer effects on the hydromagnetic 

oscillatory flow past an infinite vertical porous plate, in 

case of small mcigntic Reynolds number, 

The unsteady twodimensional free convection, nydro0 

magnetic oscillatory 'flow past an infinite vertical porous 

limiting surface was investigated by KafOusais3  when the 

limiting surface is moved impulsively with a constant velo 

city. The magnetic Reynolds number of the flow is not taken 

to he rnll so that the induced magnetic field is not negU 

gible. with viscous dissipative heat and joule heating 

taken into account, approximate solutions to the governing 

equations are obtained. 

Flow with Hall Currents: 

Katagiri4  has discussed the effects of Hall currents 

on the steady boundary layer flow of an electrically conduc 

ting, viscous and .1ncompxssible fluid past a siinfiIAite 

plote In the presence of c constant transverse ni i-gnetic field. 

Kafousias,N.G., Massalas,C.V., Raptis,A.A., Tzivanidis,G.J., 
organtopoulos,(?.\. .3. Goudas,G.L..: ?stzophys. spA:e sci.,, 

68 9 99(1990). 
Georg.antopoulos,G.k. and Koullias,J.: Astrophys.Space Sc., 
74, 357(1991). 
Kafousias,N.G.: Astrophy.SpaC.e Sd 76 133(1981). 
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Hall effects on Couette flow between tuo parallel 

plates for both cases of impulsives as well as unifinrtly 

accelerated motion of one of the plates has been discussed 

by Jana, and Datta. Expressions for the shear stress corn.. 

ponents are obtained in terms of two non..dimensina1 parne-

ters, the FXaa:tmann number and Hall pareter. 

sinçfti2  has studied the Hall effects on the Mk-iD 

free convection flow of an incompressible, viscous arid elec.. 

tricaily conducting fluid past an impulsively Ltirtea infinite 

vertical porous plate in the case of small m.jnetic Reynolds 

number. Exact solution have been obtained by defining a comp. 

jex velocity with the help of Laplace transform technique. 

Hall etfects on Jae hydxomanetic free corttion 

flow past an impulsively started infinite verticcil porous  

plate has been analysed by Singh when the free strewn osci-

1lites in nagri1tude. 

The effects of flail currents on MUD free ccnvec- 

tive flow past an in,'Einite vertical porous flat plate has 

been stiidied by Agrawal ot a14  when the fluid and the plate 

Jaria,R.N. and Datta,N.: Int.J.Engg.Sci.,l5(19'77). 
inqh , A.I-.. As Lrepu . pice sci •,  

. ingh,A.K.. Astrphjs.pCe SCi., 91(198. 
4. Aguza2. ,H. i. , Rli •L. and ..uiglt ,V. . J . a-Lr • AL ad. ,;itli. India, 

1J3 (192') 
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are in a state of rigid body rotation. The free stren is 

assumed to oscillate in time about a constant mean value and 

the epplied magnetic field is perpandicular to the plate. 

Agrawal et a112  have analysed the effects of 

Hall currents on the combined effects of thexmal and mass 

diffusion flow of an electrically conducting, viscous and 

-< I incompressthle fluid past an infinite vertical porous plate 

in presence of a un.tfomi extera1ly 9pp11ed magnetic field. 

The free stream is assumed to oscillate in time aut a 

constant mean. 

00 _  ------ -- 

Agrawal,H.L., RnP.C. anci Singh,V.. Astxophys 3pace 
?1,44933). 

Agrawal .H. L14 , Ri ,P.C. and Singh ,V.: Astrophys Space 
sd., 94, 383(983). 
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CHAPTER - II 

P/ART 'A' 

UNSTEADY MHD FLOW BETWEEN TWO 

PARAJLELPOUS FLAT PLATES 

Introduction: 

The flow of a viscous incompressible and electri 

cally conducting fluid between two infinite parallel plates 

in preeence of a magnetic field, when one of the plates 

starts moving impulsively from rest was studied by Katagiri 

(1962). 

Muhuri (1963) has studied the flow of a viscous 

incompressible and electrically conducting fluid between 

two porous walls t  when one of the walls nves with uniform 

acceleration and there is uni fo XU% suction and in j ec tion 

Katagi ri (1962) and Muhuri (1963) presented their an alysis 

by assuming the magnetic Reynolds number to be small  so 

that the induced magnetic field is neglected. 

In this part of the chapter we have reviewed 

Muhuri's (1963) probln under different conditions. In our 

problii the magnetic Reynolds number is ta3en to be suffi - 

ciently large so asto include the effect of the induced 

magnetic field. The lower plate is assumed to be moving 

with velocity U eat. The Laplace transform technique is 

-'I  
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used to solve for the velocity field and induced magnetic 

field. The effect of the magnetic parneter on the velo-

city and induced magnetic fields is discussed with the help 

of graphs. 

Mathematical Analysis: 

we consider the ti.x,.dimensional flow of the fluid 
A 

between two parallel, nonconducting infinite porous flat 

plates at y'= 0 and y= d. At time tl< 0 the fluid and the 

plates are at rest. At time t'> 0 the lower plate begins 

to move in its own plane in the x' .direction with velocity 

UeC'  tj  .A uniform magnetic field of strength H is acting 

perpendicularly to the plates. The magnetic Reynolds number 

of the flow is not small so that the induced magnetic field 

has been taken into account. Fluid is being z.njected into 

the flow region with constant velocity w0  through the plate 

at y'= 0 and is being sucked away with the some velocity 

through the plate at y' d. The flow is in the x' -cli rec tion 

and y' -axis is normal to the plates. Since the plates are 

infinite in extent all physical quantities are functions of 

y' and t' only. In our problem we assume the pressure gradi. 

ent to be zero. The equations of motion taking into account 

the induced magnetic field are (Psi (1962)). 

Ir 
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Momen turn fTj  

J.L H' 2  
f) 

Dt' 
- %(.V) ii' = - v(p'+ 2.1 -s--- + 

Equation  for H': 

22 I%t +  (V' eV)H' - 1i' .V)V' + ._i.. V2 Th
0110 

A 

Equation of Continuity: 

2.3 v.v' = 0 

where V' = u',v',w') 

To = (H', H', H') 
x y  z 

t According to the condition of our pzobln, equations 

4 1 2.1 - 2.3 give the following differential equations 

2,00 
H 

....2 2.4 -' + v' ' 
+ at' ay' 

2.5 3H 3H' x 1  __ = H + 
ay 2 ' 08y ay ' .L 

1 2.6 0 



CA 

(47) 

4'  

If 

where 

He - the induced magnetic field. 

- 
the constaflt externallY applied trans-

verse magnetic field* 

the magnetic permeabilitY. 

- the eleCtriC al cnUCtivity.. 

the other quantities have their usual meings. 

EquatiOn 2.6 integrates to 

2.7 v' = w0  (w0> 0) 

Where w is the constant velocity f injection 

at the lower plate and constaflt suctiofl velocity at the 

upper plate, the velocity being norma1 to the plates. 

AS the plates are 0 _conducUng the initial 

and boundarY conditiOflS of the flow are, 

H' = 0 or O<y'$d 
2.8 0 : u'= 0 9  

U eat H'  0 at y'= 0 
2.9 t' O u ' 

us= O f HIm 0 at Y= d. 
x 
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Intro&'cirig the following nondime1siOUal aquantities 

L 1/2  H' 
y=, 

t'w • wd 

2.10 t=- , 

M 1/2 H 
2, Pm=VOo 

in equations 2.4 and 2.5 we have 

2.11 au  + = _i i_31 + 
at 3y R ay 2 By 

' 12 
PH 

+
BH  Iwl in + _L à 

at ay BY R•Pm ay2 

The initial and boundary conditiOnS become in non. 

dirnansional form: 

2.13 t < 0 :. u = 0 1 H = 0 9 for Oyl 

2.14 t > 0 ueat,H0, at y=0 

u=0, H=O at y=l 

where, 

R - Reynolds number 

P — Magnetic P ran dtl number 

M - Magnetic parneter 

. 
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we will use Laplace transform technique to solve the coupled 

equations 2.11 and 2.12 end assume that Pm  1 

Taking Laplace transform of equations 2 • 11 and 

2.12 and using 2.13 we have respectively 

2.15 —+M—si - 0 
dy A 

: 

dH 

2.16 -; + 
du - = 0 

Ost where 1(y,$) A e u(y,t)dt 

- .st 
H(y,$) A e H(y,t)dt 

0 

I The boundary condition 2.14 is transformed to 

I 
—1— u -a 

H=O aty=O 
s 

2.17 
U = 0 9 H-0 atyail 

In order to uncouple equations 2.15 and 2.16 we 

add tht and subtracting 2.16  from 2,15 we get, 

2.18 - (1..M) dX   - aX = 0 

-4.  

2.19 •: E3 - (1+ii) - SQ = 0 



(so) 

ere x=+ij and Q=u—H 

subject to boundazy conditions. 

at yo s-a s-a 

2.20 

X=0, 0=0 at y=l 

)' 
Solutions of the equations 2.18  and 2 • 19 Under boundaxy 

condition 2.20 yield, 

1 1 
-a (b51)T 

.a2  (b+ 1) 2  
ek*Y 

J n i Si 

1 

H + ek2Y n 
[ e

06 
1 (b+s1)2 

- 

82 

* 

81 Si 

and 

2.22 ek1Y ai si)  

I 

ek2Y Li (b4 
- 

 

where, 

nuo . 
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R(1..z4) R(141!1) 
k2 

2 2 

.1 
1 (2,+'i) 2  a R , a2 2r 2-y) 

R(1_1'1) 2+4 
b - 

b = R(1+14)2+4a 
4 

s
i 
 = S - a 

Using tables of Inverse Laplace TransfOxm of Batnan (1954) 

we get the expression for u and H from 2.21 and 2.22 respec- 

tively. 1 
- 

as (at+k1y) -a b a1t 
2.2 = e [ e 1 1 erfc(-- - b1t2  )+ 

n 

1 
1 ab a4t - 

+ e 1 1 erfc 2- + b1t )- 

1 1 

a2t a2b, a..t2  
— {e2b1 erfc(-— — b1t )+ e erfc(j +b1t2)1+ 

+ 
e t+C2 E1b2 erfcff"- b2t2) 

fl =0 

alt  + ea1b2 erfc (+ b2t) 
* 

M.a2b2 
ec (-2 b2t, +e 2erfc (-- +b2t2

2 2 ) ] 
S 



(s2) 

-1,672 

A 

3 

(at+k1y) 
____ e .ab a 

2.24 H Z [ e 1 ezfc ( --s-  - b1t1") + 
4 nwo 2 

+ e 11 _ erfc C-
alt  

+ b1t 1/2 ) 
2 

1/2  
_[ e 2'1  erfct- 112 a2b1 

( ____ b1t )+ e erfc - 

2 2 

(at+k2y) a1b, alt 
b..t1'2  erfc ) + 

-- - 

4 limO 

1b2 I C3 .t. 1/2 
+ a erfc C -. - + b2t') - 

a t '2  
- e2b2 erfc 2 - 

2 
b

2
t1"2) 

ab at'112  
+e22etf0 (_2 — +b2t112 ) j 

Di5cusSiOfl of the Results: 

In order to get physical insight into the prbln 

numeriCal calculations have been carried out for Vne velo.. 

city u aji ci induced m acn etic field H, Co rrespon ding to di ffer t 
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v91Ue8 of the magnetic parneter I'l and time t. In the 

en U re c alcu 1 ation we have t&en K - 10 and a = 0 • 4. 

The profiles for the velocity versus distiNCe 

have been displayed in figures 2.1 and 22 for t a 0.2 and 

t = 0.4 respectively. From both the figures it is clear that 

the velocity u decreases with increase in 14 in the lower 

A region between the plates mhereas it increases with increase 

in 1'l in the upper region. 

The profiles for the induced m.çnetic field versus 

dlistance have been displayed in figures 2. and 2.4 for 

t 0.2 id t 0.4 respectively. It is seen from the figures 

that H takes negative values. It deCrease3 with increase 

in ?. 

Curves corresponding to M = 0 rep resent the non. 

4 magnetiC Case. 

S 
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PART — 'B' 

UNSTEADY MIlD FREE CONVECTION FLOW OFN INCONPRE. 

ssl BLE VISCOUS FW I DWI TM CON ST!NT HE AT FWX 

Introduction: 

The effect of transverse magnetic field on steady 

A I free convection flow of a viscous incompressible and electri 

cally conducting fluid past an unmving infinite porous var.. 

tic al limiting surface with constant heat flux at the surface 

has been c arri ed out by Rap Us and Tzivani di s (1983). The 

flow is subjected to constant suction at the plate. The 

effect of transverse magnetic field on the unsteady free on. 

vection flow past an impulsively started infinite vertical 

limiting surface, without constant heat flux at the surface 

has been carried out by Kafousias and Georgantopoulos (1962). 

In the above two problems the magnetic Reynolds number is 

not taken to be small, so that the induced magnetic field 

has been taken into account. The obj act of this part of the 

present chapter is to stidy the effect of transverse magnetic 

field on unsteady free convective flow of an incompressible 

viscous and electrically conducting fluid past an impulsively 

started infinite non.conducting vertical plate; there is 

constant heat flux at the plate. :.The magnetic Reynolds 

number is not &nall so that the induced magnetic field has 

been taken into account. The Laplace transform technique 
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has been used to obtain the expressions fc r the velocity 

field and induced magnetic field. 

MathnatiC al Analysis: 

The unsteady Z4HD free convection flow of an 

electrically conducting viscous incompressible fluid past 

an infinite vertical plate has been considered. At time 

t' < 0 the fluid and the plate are assumed to be at iest. 

At time t'> 0 the plate starts n3ving in its own plane with 

uniform velocity U0  and heat is also started supplied to 

the plate at a constant rate. A uniform magnetic field of 

strength H is acting perpendicular to the plates. The 

magnetic Reynolds number of the flow is not taken to be 

nall so that the induced magnetic field has been taken into 

account. The flow is assumed to be in the x' direction 

which is taken along the vertical plate in the upward direc 

tion and y' -axis is normal to the plate. The pressure 

gradient is assumed to be zero. 

In accordance with the Boussiiesq. - approximation 

we assume that all fluid properties are considered constant 

except that the density van ation with tenpe ratu re is consi - 

de red non ly in the body force term. Under the above con di 

tions the flow is governed by the following equations (Kafous, 

sias and Georgantopoulos(1982)) 



(5.7) 

I
2.25 ii + g CT' ..T,) + O  -;~ 

2.26 k  -  at' PC 
p By 

2.27 - = H 3L. + _i_ 
at' ° r' 

with the initial and boundary conditions, 

2.28 t'<O : u'=O, H*.0, T' T v' y'IM 

zz: - H' =0 at Y =0 2.29 t'>O : u'=U0, 
By k x 

u'=O, T''zT' , H' 0 at y'=  so 
as x 

where. T'— the tanperathre of the fluid near to the plate 

T'— the teperathre of the fluid fox away from 

the plate. 

k - the thermal conductivity. 

the magnetic permeability. 

q' the constant heat flux per unit area 

at the plate. 

- the coefficient of thermal expansion. 

C— the apecfic heat at Constant pressure. 

H'— the induced magnetic field. 
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The other variables have their usual meings. Intzoducing 

the following non.dimensional q.iantities, 

y'U T'—  T' U' 
___ 

ao 

kU0  

t'u2 2gq' ,
PVC 

, G - -- k 
'p kU4  

A 

2.30 H' 
_&_ 

Tn 0 p U0  

M -1 H 
M ()2 o 

p U0  

in equations 2.25 - 2,27 we get 

2 • 31 + CT + M 
at By ay 

2.32 aT 1 a 
at p 

2.13 P—H =  .i_ LU + M  Ou at p 
m ay2  

By 

 

The initial and boundary Conditiuis becomes in 

non -dimensional fozm 

4 
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2.34 tO : u=O, T=0, 11=0 '/ y 

2.35 t>O : u=1, .1, 11=0 at y=O ZY 

u09 T09 11=0 at y 

In order to soive. the equations 2.31 to 2.33 we will use 

Laplace transform technique and assune that PmPmu=l 

Applying Laplace transformation to equattons 

2.31 to 2.33 and using 2.34 we get respectively, 

2.36  
2-. - 

su + GT + N dy 

2-. 
2.37 sT = 

2.38 all = + 
d1r dy 

where u H and T are respectively the Laplace 

transforms of u, H and T. 

The boundary conditions are, 

U •, H0 aty=0 
By 

2.39 

0, T=0, H=O aty - 
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The solution of equation 2.7 under boundary 

condition 2.39 is given by, 
1 

sy 

2.40 T 

In order to uncouple the equations 2.36 and 2.38 

we add them and substractinc) 7.38 from 2.36 we get, 

) 

H 2.41 + dK 
 - SX=GT 

and 

2.42 — 
  

—M - 
  

--—SQGT 

where Xru+Fi and Q=u — H 

subj ect to boundary condition 

x 

2.43  

x = 0,  

at yaO 

at Yom  

Solutions of the equations 2,41 and 2.42 under 

1 s. 
boundary condition 2.43 yield 
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I My Ml/2 .(& +5jV2 
I - re G e_ 14- I 8 14 s- 

2.44 

(M )1/2 1/42 

2 y -(+s) y 
________ 

e 
14 

S 

arid, 

142 1/2 14 .( 
2 

- + s) y 8) l/2 

e 
2.45 

m - - -  

14 82 S 

2 ) 1'2 142 1/2 
y 

_ 2L 
1 
re_' + .____4 Jf- 2 14 S 

4 

1 /2  
.8 y 

+ 14 2 

(i 
KLJEI 

Bangladesh  

L''Y 

Using tables of inverse Laplace transform of Batenan (1954) 

we get the expression for u, T and H from 2.449  2.40 and 

2.45 respectively as, 

1/2 Mt   2.46 ii = . [e' erfc (Xt - 
1/2 

+ 

+ erfe 
1/2  - 1/2  

Ib 



- t1  - (t — rfc( 
1/2  

 ) 2 2 2 2. 

.1/2 1/2 - 14 1/2 
+ (t + 

1/2 
) erfc (t + t )3 J 

1/2 .1/2 1/2  
+ [erfc( t )+ erf( + 

.1/2 1/2 14 1/2 1/2 
 - Xt - ) erfc ( - 

.1/2 1/2 .1/2  
+ (t + ) erfc( + t) e' f J,  

1/2 
mY 2/4t .1/2 .1/2 .1/2  

2.4'7 T2t —t erfct 

1/2 1/2 .1/2 M  1/2 
2.48 H erfc( t - )+ erfc( + ttt ) 

2G 1/2 1/2 M  1/2 .1/2 1/2  
at .I4y 

- —t —(t - ) erfe C - ) • 

(62) 

+ 

S 



+ t 
.1/2 M  1/2 .1/2 M  1/2 

I + (t ) ertc(t +t )fl 

.1/2 .1/2 1/2  
_t)+J4 erfc(ft at  4 2 

I 

1/2 .1/2 M  1/ 2 .1/2 1/ 2  
~ (t - t ) erfc ( - 

1/2 .1/2 . 

bi 
+ ( *t + ) erfa C 4 ) 

Gtr 
+ ir I 1+2 

'22 5. erfc Zt
.1/2 

I 
.1/2 

) 
2 

 1. 
. 1/2  4t 

— y(rt) e  .  

(6) 



(64) 

Table 2.1 

Values of the velocity u 

t H C y 0.0 0.5 1.0 1.5 2.0 2.5 

0.2 0.4 3 u - 1.0000 0.4651 0.1266 0,0201 0.0018 0.0001 

0.7 1 1.0000 0.4663 0.1301 0.0215 0.0021 0.0001 

0.4 10 1.0000 0.5476 0.1526 0.0239 0.00/1 0.0001 

0.7 10 1.0000 0.5486 0.1562 0.0255 0.0024 0.0001 

0.4 0.4 3 1.0000 0.6979 0.3357 0.1227 0.0'39 0.0071 

0.7 3 1.0000 0.6867 0.3415 0.1294 0.0377 0.0084 

• 0.4 10 1.0000 0.9496 0.4974 0.1832 0.0500 0.0102 
4- 

0.7 10 1.0000 0.9471 0.5030 0.1907 0.0543 0.0117 

1-3 

S 
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Ta3le 2 

Values of induced rnaçnetic field lid, 

M G y -, 0.0 0.5 1.0 1.5 2.0 2.5 

0.2 0.4 11 0.0000 .0,0436 .0.0237 .0.0056 .0.0007 .0.0000 

0.7 3 .0.0000 .0.0761 .0.0415 .0.0099 .0.0012 ..0.0001 

0.4 10 00.0000 .0.0455 .0.0257 .0.0061 .0.0007 .0.0000 

0.7 10 0.0000 .0.0794 .0.0450 .0.010 .0.0013 .0.0001 

('i A i( 
- 

0.0000 .0.0584 .0.0571 .0.0313 .0.0115 .0.0030 

3 0.0000 .0.1014 .0.0994 ..0.051 .0.0206 .00055 

0.4 10 0.0000 .0.0609 .0.0675 .0.0385 .0.0142 .0.0037 

0.7 10 0.0000 .0.1057 .0.1176 .0.0676 .0.0254 .0.0067 



(66) 

1- 

Table 2.3 

Values of Temperi&turo T 

t y T 

0.0 0.5046 

r 0.5 0.1546 

1.0 0.0307 

0.2 1.5 0.0037 

2.0 0,0003 

2.5 0.0000 

3.0 0.0000 

I IV 

0.0 0.7136 

0.5 0.3223 

1.0 0.1184 

0.4 1.5 0.0346 

2.0 0.0079 

2.5 0.0014 

0.0002 
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conclusions: 

In order to get physical insight into the pblem, 

we have calculated the values of u, H and T for d.ifferent 

values of magnetic parameter M, orasholf number G and time t. 

• Values of the velocity are given in Table 2.1. 

From table we conclude that the velocity increases with in.. 

reaso in G and t. For t=0.2 the velocity increases with 

increase in M while for t=0.4 the effect of M is to decrease 

the velocity in a thin fluid layer near the plate and increase 

beyond it. 

Values of the induced magnetic fie1d H are dis.. 

played in table 2.2. Prom the table we see that H takes 

negative values and it decreases with increase in U 9  M and t. 

In table 2 .3 variation of temperature T is show 

for different values of t. The temperature increases with 

time. 
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CUPTER - III 

!A1T 

FREE CCNVOCTIVE FLOW ThIOUGH A POFCUS M1LIUM 

SOUNDED BY NN INFINITE VERTICAL POROUS PLArE 

•1 In  _tzoduct.to 

aptis et al (1932) have stidied the Ready free 

convective and mass transfer flow of a viscous incompressible 

fluid through a porous medium bounded by an infinite vertical 

porous plate, with constant heat flux at the plate. The 

flor is subjected to constant auction velocity at the plate. 

ic present part of the chapter ir, a modification 

- 

oZ,  the above probleii, in the sense that we have applied it 

to cHD case, but have neglected the effects of mass tz&sfer 

an3 constant heat flux. içproximate eclutions to the coupled 

non linear eqationa are :erived for the velocity and tenpera. 

ture fields. Effects of the various pareneters occuring in 

the problem have been discussed with the help of graphs 

1 and tables. 
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rho study of flows through porous ErcCUUM is 

of gre.t importance in my scientific and engineering 

alications. The porous medium is in fact a noi.hoge. 

nous medium but for the sake of analysis, it may be possi-w 

ble to replace it with a homogeneous fluid which has 

(3ynamlc(T11 properties equivalent to those of non.homogeo 

ous continuum. Thus we can study the flow of a hypo. 

thetical homogeneous f1uI under the action of properly 

averaged external forces and so# a contplicated problem  

of the flow through a porous medium reduces to the flow 

probl€n of a homogeneous fluid with some resistar4Ce. 

thematic al Analysis: 

We consider the free convective flow of an 

4r'-'tr1crdly conducting viscous incompresihle fluid 

j
trough a porous medium occupying a sTLi.infiflite reç4on 

I of szce, bounded by an infinite vertical porous plate. 

Tho plate is assumed to be moving steadily in the vertically 

upward 01irection along which x'exie is chosen and y'.exis 

is perpendicular to the plate. A uniform mgne tic field 

of strength Ho  is acting transverse to the plate. The 

magnetic reynolds nurrber of the flow is aoid to be 

small so that the induced mauetiC field has been neglected. 

The flow is subjected to constant suction velocity at the 

plate and the pressure gradient is assumed to be zero. 
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In accordanCe with the aoussinesq approximation 

we assume that all fluid properties are considered constant 

except that the density variation with tenperature is con. 

sPered only in the body force term. The two dimensional 

boundary layer ecuat.tons which govern the steady £i) free 

convective flow through a porous medium are given by 

'I 0 

2 H2U' 
1.2 vh dul i g(V.,r1)+ d'u' 

dy' dy'1  

k + ( dL1 )2 
V - dy' dy'2 C dy' 

where, 

- velocity of the fluid in x' ..directiofl 

V O - velocity of the fluid in y' -direction. 

'I T' - tnperature of the fluid in the boundary 

I layere 

tperature of the fluid outside the 

boundary layer. 

K' - permeability of the porous medium. 

- thermal conductivity of the fluid. 

heck 
- specific,, at constant pressure 

D - the coefficient of thermal expansion. 
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- I 

The boundary conditions are: 

U0 , T' at y'sa 0 

3.4 u' -O , T' -'i 

EçuaUOfl (.1) integrates to: 

v' =-v0  (v 0 - 0) 

• here the negative sign indicates that there is 

ction at the plate. 

Introducing the following dimensionless qutiUes, 

yIv us p.c 
y - 

U 
= 0 

j 
____ 

(T'- T') 
j .6 T=- G= 
I T'.T' 

-'I I 00 

2 2 V K' U 
- K = E = 

2 
' c(r'-r) .vo p 

in eqtiaUons 1.2 and 1.3 we have respecUvely, 

2 4 

+ - or 
dy K dy 

I + PdT 
- 
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I 

me }undary conditiOfla 3.4 become in non 

dinensional form, 

u = it T a I aty - O 

.3 '9 
U - 0, T -+ 0 as y —#  ge 

The coupled non.linear equations 3.7 and 3.8 are not solvle 

in exact form, so we find the approximate solution. in 

crr-r to e-0.  so, we expan< u nd r in power of the j.ckert 

number assuming that it in verY small. Thlz is Justified  in 

low speei incompressible flaws. SO that 

U 
- 

+ Eu,  + 0 CE2) 

T = 70  + ET,  + 0 (E2 ) 

FA wbere u0, U1 , and are functions of y  substi - 
.10 

thUnç, .10 in equ::ttons 3.7 and 3.8 and eqtiating the 

coefficients of different powers of E, neglectiw those of 

rtd highor powers of E we have the following set of 

ecruations 

1.11 U' + u I - CM + U a - GT 
% 

I 12 u + us,  -  tM  + u1  -  GT 
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T" + PT' 0 0 
0 . 0 

+ 

here the pr1rfle8 denOte diffetenti ation with 

repE!Ct to y. 

The b ncry conditions for U
0
, u1 , To  aid Ti  are, 

u0
l, u1= 0, T0

m& 1, T 1 
w 0 at 7  w 0 

u,0,zr0, i-0 T1—'O aay 

The o1utiofl s of eru ation a .11 to . 1 1 subj ect 

b boundary conditionS  1,15 are given respectiVelY by 

B1y Py 
.16 u Ae - Ale 

I 
' 

- y _:Py 2B1y 
.17 1 1 

- + 

.2Py 
+C4e 

= 
0 

I Py .2R1y .( 1+P)y .2Py 

I 3.I) r i 1e - + A40 -. 
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I 

Itence the expressions for velocity and teupersture 

fields are given by u.U0  + Eu1  and TT0  + ET1  resp. 

tively from 10 9  where  u  0  gulp T. and T1  are giv$a 

by .16 to 3,19 respectively. 

The skin friction in nçn dimensionc1 foxm is 

given by 

.2O E = 
du 
dy' 

+ A1P + E(.L2 B1  + C1P - 2C2 B1+ c3 (i1+p).2c4P) 

-the different const%ts are defined in the appendix. 

-1' 



W. 

MAMA 

0•5 10 15 2•0 25 50 

PO•71, E = 0•01 

y 

FIG.3•1 VELOCITY DISTRIBUTION u AGAINST y 

MI 

1.2 

-1 



(76) 

Table 1. 1: Values of skin frittion (P.0.71, o.01). 

M G K 
- - 

0 5 
- 

.1 .2.248 
10 .1 0.7686 

• 5 .3 * 0.0130 
10 .3 2.3756 

1 5 .1 2.4501 
10 .1 . 1.0467 

5 .3 - 0.5122 
10 .3 1.6203 

2 5 .1 2.6512 
10 .1 1.3030 

5 .3 v.0.9181 
• 10 .3 1.0284 

Tabl1: Values of temperathre (E0.01, P0.71, G10). 

K. 1 -=. 3 

0.0 1.0000 1.0000 
0.5 0.7019 0.7031 
1.0 0.4925 0.4946 
1.5 0.3455 0.3479 
2.0 0.2423 0.2446 
2.5 0.1700 0.17143 
14 .0 0.1192 0.1206 

0.0 1.0000 1.0000 
0.5 0.7019 0.7026 
1.0 0.4925 0.4938 
1.5 0.3454 0.3469 
2.0 0.2423 0.2437 
2.5 0.1699 0.1711 
3.0 0.1192 0.1200 

0.0 1.0000 1.0000 
0.5 0.7019 0.7023 
1.0 04924 0.4933 
1.5 0.3454 0.3464 
20 0.2422 0.2432 
2.5 0.1699 0.1706 
3.0 0.1191 0.1193 

It 

- 1 1 

2 

I - 
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Discussion 

For the purpose of discussing the effects of 

various parameters on the flow behaviour numerical calcula. 

tions have been carried out for velocity u g temperature T 

skin fi1ction t corresponsing to different value of 

rnegnetic parameter 14 Grashoff number G and peiTneability K. 

I In order to be realistic, the value of the PrandU number P 

is schosen to be 0.71 which corresponds to air. In the 

entire calculation we have taken E u 0.01. 

The velocity profiles U against y have bn displayed 

in ficure 1.1. It is clear from the figure that u increases 

with increase in K and G. The effect of the magnetic para. 

meter 1 is to decrease the velocity, that is, it decreases 

with increase in M. 

j V lu es of the skin friction are r es en ted in Table 

From the table we conclude that the skin friction decrea. 

sea with increase in 1$. The skin friction increases with 

increase in K and C. 

Valuea of the temperature are dispi ayed in Table 

It is clear from the table that the temperature increases 

with increase in K. The effect of the magnetic paremeter M is 

I to decrease the temperature (the effect being rather ama11. 

rho values corresponding to M.O represert the non 

rnignetic case. 
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C 
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A 
2 

U 
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X4HD FREE CONVECTIVE FLOW TIUUGH A POFCUS MDIW4 

P3T A STEADILY MOVING PLX?E IN WTATING 5YST4 

I Introduction: 

The probln considered here is an extension of 

that of part 'A' of this chapter. In part A we have consi-

dered the flow of an electrically conictthg viscous incom 

pressible fluid through a porous medium, past. a steadily 

moving porous infinite vertical plate. In this part of the 

chapter we have considered the ene problem, taking into 

account the effect of rotation on the flow. The whole systn 

is assumed to be in a state of rigid body rotation, due to 

- I rctntioi the flow becomes three dimensional. The marietic 

Reynolds number of the flow is aes*ned small so that the 

induced magnetic field has been neglected. The influence 

of the various pareters occuring in the problem on the 

tnperature field, the axial and transverse components of 

the velocity and skin friction is discussed with the help 

of tables and graphs. 

I Mathematical AflaZysis: 
I -  - 1-

-_ 

I e consider' the steady MHZ) free convective flow 

of an electrically conducting, viscous and incompressible fluid 
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through a porous medium occupying a eni -in finite region 

of space lounded by an infinite vertical porous plate at 

z'O. The whole syaten is in a state of rigid body rota. 

tion with constant angular velocity 71  aut z' .axte,which 

is normal to the plate. The plate is aaumed to be moving 

with uniform velocity U in its own plane in the vertically 

upward direction, elong which xexia is chosen, the plate 

is assumed to be electrically non-conducting. Since the 

plate is infinite in extent all the physical variables are 

functions of zonly. 

A uniform mgneUc field of strngth H0  is seen. 

med to be applied transversely to the porous plate. Assuming 

the magnetic Reynolds number to be snail we neglect the 

induced magnetic field in comparison with the ipplied magnetic 

field. In our problem we assume the pressure to be constant, 

hence neglecting the pressure grediant and centrifugal fózie 

terms from the steady MMD equations of notion for free 

convection flow through porous medium 4 rotating co.ordt. 

nates, viz.: 

S 

F ZO  21 7!')i' a —'5—V p'. x('x?)-2c'xq'+ 2,,V2  

K1  

If gives 
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e) II 
L •1.,i ii t. 

'.22 ' )'V'&z 2 g3(T'..T')—  

dz' 

• ' '( 1 L i • 
,,2 112 

civ eo 2 K' dz dz'2 — 

energy equation is 

9 
2-1.24 1 dft  k 

PCI, dz'2  + 
'dzI + dz' 

and equation of continuity is 

1.) - dw 

rr the third and fourth terms of equation '.21 

are respectively the centrifugal and Coriolis forces 

I i the body force term per unit volume due to 

free convection; the other physical qutities have 

their usual meanings. 

The boundary conditions are: 

u' U . V'I 0 
0 C) at z' = 0 

UI—.  C), v8 —, 0, r'-* 
T.11 as 

-4 
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since the fluid is subjected to constant suction 

vr'locity at the plate, equation 13.25 integrates to: 

'.77 .,; 
- 0) 

where WO is the con sti t no vn al velocity Q f $UC tiOn 

at the plate, 

Introducing the following non.dimensiont. quantities, 

w MC 
=-Q, p_._.Z, u.*IL 

U0 k U0  

22 lit H e 0vs 

0 1U' U 
0 0 

(T' .T' 

0 

I.. E 

in equtions .22 .24 we get 

dz clz 

'.'o _s+cu —v 
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dT 1 _4T + E [( + () dz dz dz ' P dz 

T otridiry conaitions 3.26 becomes in non.dirnasiOnal 

vO, r1 at z=O 

I 

I " -- 0, V—p 0, T —* 0 as z 

introducing the complex variable Q a u +iv equations 

1.29 and 3.1.0 can be combined into a single equation 

lying 

1, + S dQ  - + 4 iQ) Q — GT 
d2 dz 

Eq ation . 1 becomes 

• 4 + EP — P E[ • •dz dz dz  

where is the complex conjugate of Q. The boundary 

conditions 1.12 becomes 

L5 Q=l, T1, at s-0 

- 0, 1'-+ 0, as s' Ow - 

Icuationa 1.11 and .24 are coupled equations. In 

order to solve that let us expand Q and T in tenna 

the Eckert number assuming it to be very ønall 

(:; << 1 for Incompressille fluid). 
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Q E + 0 () 

T = T+ ET1  + 0 () 

Substituting 16 in equation 3.3 and 1.34 we 

get the following set of equations 

+ 

+ Sq' - (M + 1 + iQ)q = - GT. 

1 1 

+ SPT' 0 
0 0 

1.40 T!1  + SPT I - P 

where a dash represents di f feren tt atton with 

respect to Z. 

The boundary conditions for q, q1 , To  and T1  are 

1, q= 09  Tom i t  Tin 0 at a 0 

3.41 

0, q - 0, T0—+ 0, T 0 as a —' 

solutions of equations 3.37 — 3.40 subject to 

1xDun<iary condition 3.41 are as follows 

SPz 
1.42 %= A2e — A1e 
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, ,41 
SPz 

q1 Le Ae 

.2SPz 
- A10e + A11e 

If 

.sP z 
e 

..SPz 
T1L1e —Ale 

• .1 t 

1.45 

(sP+B1) z ..(SP+B1)2 02SPz 
+A4e +A5e -.A6e 

whence from 1.16 we obtain the expression for Q and T. 

In the absence of rotation and for s=1 the solu 

tiori - g±ven by 1.41  - 3.45 reduce to those givi by 

.16 ,19 in Part A 

if t and t, are the axial and transverse compo - 

nr'nts of skin friction we obtain 

1.46  

-w 

C + JC = ..1 
'C y dz 

ELS+ 

- 

where the different constants are defined in the 

pendix. 
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I' 

Table 3.3 

Numerical values of skin friction C0inp0nent3 
and 0719  E= 0.011G5. 

K S M 

•1 0.5 1.0 1 2.1255 0.2138 
2 2.3312 0.1999 

2.0 1 2.1479 0.4243 
2 2.3501 0.1977 

1.0 1.0 1 2.4571 0.2074 

2 2.6571 0.1945 

2.0 1 2.4779 0.4124 

2 2.6748 0.3871 

•1 0.5 1.0 1 0,1269 0.4760 
2 0.5465 0.3914 

2.0 1 0.2677 0.9061 

2 0.6408 0.7620 

1.0 1.0 1 0.5563 0.4384 

2 0.9473 0.3680 

2.0 1 0.6760 0.8404 
2 1.0293 0.7156 
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D1scus1on of the Results: 

in order to study the effects of the various 

rmeter on the primary and secondary velocities the 

conponents of skin friction due to primary and secondary 

f lows a the temperature field, numerical calculationa have 

been cried out for different values of the parwetera. In 

order to be realistic the value of the Prandtl number P is 

chosen to be .71 which corresponds to air. in the entire 

calculation we have taken E = 0.01. 

The primary velocity profiles u against z have 

be-en displayed in figure .2. It is clear from the figure 

that u decreases with increase in rotation pareter o and 

magnetic parameter M but it increases with the permeability 

K of tti rdiurn. Therefore we conclude that rotation Pnd 

rnac?netic fIeld ezert a retording influence on the primary 

1 velocity. 

The secondary velocity profiles v against z are 

shown in figure It is seen from the figure that V 

takes negative values and it decreases with increase in 

nd 1< • The- effect of the H is to increase the secondary 

velocity v, that is, it increases with increase in 14. 

VCk (U ES 
rable 1.1 gives the numerical.,of, the skin friction 

I
components and It is clear from the table that  L

X  

iflCte ;:itb tie increase in magnetic parameter and rotation 
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pararneterl  but decreases with the permeability K of the 

rndiurn. 
, 

decreases with increase in M ht increases with 

the increse in rotation parameter Q and K 

Vdues of the temperature are given in table 

"•• From the table we conclude that the ternperature in. 

creases with increase in rotation peraetar and K whereas 

j it decreases with increase in H. The ch*ge in tsmperature 

with the various parneters is rather small. 
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CHAPTER - IV 

FREE CONVECTION EFFECTS ON THE HYDIMtGNETIC 

OSCILLATORY FLOW PAST AN INFINITE VERTICAL 

PO1U8 PLATE WITH CONSTPT HEAT FLAJX 

Introduction: 

The flow of an incompressible viscous fluid 

pt an impulsively started horizontal plate in its o'.ra1 

plane was first studied by stokes (1851). GeorgantopOUlOs 

(1979) has discussed the free convection effects of the 

oscillatory flow in the stokes problen past an infinite 

porous vertical plate with constant suction. Kafousias 

et al (1980) have extended the above probleTi in the presence 

of a transverse magnetic field without taking into account 

the inc3i'ced magnetic field. 

In the present chapter we have reviewed the 

probl of Kafousias et al (1980) where we have considered 

the effect of constant heat flux at the plate. Hence the 

object of the present chapter is to study the free convec. 

tion effccts on the flow of an incompressible, viscous and 

electrically conducting fluid past an impulsively started 

infinite vertical porous plate in presence of a constant 
I 
4 transverse magnetic field' the magnetic Reynolds nuirer of 

the flow is assumed to be small so that the induced magnetic 
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I 

field has been neglected. The free strean oscillates in 

time &out a constant mean value. The •f low is subjected 

to constant suction through the porous plate and there is 

constant heat flux at the plate. Approximate solutions to 

the coupled non .].inear equations relevant to the problen 

have been obtained. The effects of the various parøneters 

on the mean flow and transient flow are discussed with the 

help of tables and graphs. 

Mathematical Afl a1ysia 

we consider the 2 .dimen sion al unsteady free con 

vec tLo n flow of an electrically conducting, incompressible 

and viscous fluid past an infinite vertical porous plate. 

Initially the porous plate is at rest but at time t'O it 

starts moving impulsively in its own ple with a constant 

velocity U and heat is also being supplied to the plate at 

a constant rate. The flow is assumed to be in the x' di rec. 

tion which is taken along the vertical plate in the upward 

direction and y' .axia is taken normal to the plate. A uni. 

form magnetic field of strength Ho is acting normal to the 

plate assuming the magnetic Reynolds riumbe r to be ønal 1, 

we neglect the induced magnetic field in comparison with 

t1jr,  applied magnetic field. The free stream is assumed to 

oscillate in time about a constant mean. 
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In acCOrdaX'lCe with the Boussinesq itpprOximatiOn  

we assume that all fluid pperties are considered COfl8t1t 

except that the density vexiatiOfl with te1peratUre is consi- 

dereci only in the body force teem. 

The equations of motion relevant to the preselt 

problfl are, 

41 
avo 

=0 
BYS  

C 2  H2  

4.2 
au  

+ v' 1' = + g (T.T) + + 

Y' dt' By 

+ 22 - 
k 32 T' £_ C 

4. -- a? tI yI  Pcp ay' p  

The boundarY conditions are, 

To  
t' < 0: u' (y' ,t') as 0, T' (y' ,t') as 

4.4 

to > 0: U' (O,t) as 

' (as,t') = u' (t'), To (D,t') as To 

EquatiOfl 4,1 integrateS to 

4.5 V1 _v 
0 0
(v>0) 
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where V is the constat suction velocity at the plate, 

the negative sign indicates that thtre is suction at 

the plt. 

Intioducing the following non..diuieflsiOflal 

qu ti ties 

y'U V 

___ y —p-, t=t1 U/, -u'/10, S 0 

U 

g q 
MO , _____ 

4.6 -, U= -, 

0 

kU0  

3 
1)C kU 

D, E= k 

2 

M 
U0 pU 

in equationS 4.2 and 4.9 we get 

4 .7 an - S
BY 

dU + GT + + M (U u) 
ay 

4.8 p LT   -s' + ( •Ou  
 )2 

at 8y ay ay 

ana the corresponding boundary conditions assnne the fozin 
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u=l, IT = -1 at yO 
By 

4.9 t>O: 

u=U(t),T=O at Y° 

To solve these coupled nonlinear equations, we 

assume following Lighthill (1954) that th unsteady 

flow is superimposed on the mean steady flow. Hence 

we write in the neighbouriood of the plate, 

u(y,t) - u0 (y) + eu1(y)et 

4.10 

T(y,t) = T0(y) + CT1(y)eint 

and the free strewn is given by, 

4.11 U l+e int 

where c is a positive constant (* <<1), and U0  

and T are the mean and U1 and T1  are the correspond.ing 

unsteady components of oscillatory motion. 

substitutIng 4.10 and 4.11 In equation4.7 and 4.8 

we obtain the governing differential equations for 

T, u1  nd P1  to be 

4.12 u + Su, - M u M - GT0 
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L 

4.1 T" + SP T' PE 
0 0 

4.14 u'j + Su -( M+in) U 1iv in M - G 

4,15 T" + SPT' - in PT = - 2PE ul  u 
1 1 1 ol 

where primes denote differentiation with respect to y. 

The boundary conditions are 

= 1 9  u1= 09  T 'I, 0 at y n 0 

4.16 

u
0
=1, Ufsl, =°s TInO at ya 

The systn of equations 4.12 to 4.15 is still coupled 

and non linear and in order to solve them we ecp and 

U
0

, u17  To  and T1  as 

U01 + Eu02+ o(E2) 

U1 = 11 +  EU o(B ) 
4.17 

T T01+ 02 

E2 ) r 11  + ET12+ 0(  



4.18 UN 
ol + su' - Mu GT 1 ol ol 

4.19  U 2  + 5UO2  - M%2 —G T02  

4.20 T"1  + SPTc1=  0 

4.21 T"2 + 
, 2 

T02 -Pu  

4,22 u 911  + Su— (M+in)u11 M+in)GT11  

4 .21 U12 
+ 12 (M+1n)u12 -GT12  

4.24 T 1  +SPT 1— in PT11  - 0 

4.25 T'2  + u) SPTf in PT12 —2P(u, 11 

subj ect to boundary conditions 

I 'P- 

Ir 
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where E the Eckert number is very small for in. 

compressible fluids (E 4( 1). 

Introducing equations 4.17 into equations 4012 

to 4.15 we obtaine the following systu.r of equations 

4,18 - 4.21 and 4.22 - 4.25 which 9ovezn the mean 

4- steady flow and the oscillatory one. 
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.1 

u
01

al, u =0, T'1=.1, T'O at y=0 
02 0 02 

4.26 

U01 l, %2=0, T01
0, T 0 at o2 

For the mean steady flow, and 

u11= 09 "12=  o T!11  09  T 2as 0 at y = 0 

4.27 

1 .1 = it "12= O t  Tiim 0 9  T12  0 at y * 

for the oscillatory flow. 

First we proceed to obtain the solution for the 

meri flow, while the solution of tht unsteady flow 

field will be presented later. 

The solutions of equations 4.18 - 4.21 under 

boundary condition 4.26 are given by 

B1y .SPy 
4.28 u01  A1e — A 1e + 1 

..281y 
4.29 u02= L2e — F1e + F2e 

2SPy (B1+ SP)y 
+F3e —F4e 



. (100) 

1 4.10 
WSPY 

 ol S.P 

.SPy .281y .2SPy ..(B1+SP)y 
4.1 T 2  L1e - D1e - D2e +D3e 

where the different constants are fined In 

the appendix -- at the end of the chapter. 

Hence the velocity and teiperature fie da for 

the mean steady flow are given respectively by, 

%i + E UO2  

and 

T = T + E T02 
 from 417 

where u01  UO2 p T  0 1  and T02  are given by 4.28 - 4.31, 

I(nowing the mean velocity we now calculate the 

mean skin friction v due to mean steady flow. In non.. 

dimensional form it is given by 

IUO 4.2 t = —I 0 By 

I 

= —A1B1+A1SP+Et 2B4  +P1SP.2B1F2  .2SPF3+P4  (a1+sp)] 

4 
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Now we proceed to obtain the solution for the 

unsteady part of the flow field. The unsteady flow 

field is described by the equatiO1le 4.22 - 4.25, viz. 

4.22 u". + Su 111  - M+in)u11=— (14+in)GT11  

4.21 12 + Su l 2 - (M+in)u1f' 
- 12 

4.24 T?i+SPT!i_flPTll O  

4.25 T12  + SPT12— in P T12  = ..2P(u 1  u!i )  

under the boundary cónditione. 

00 "12 0
9, T 1  0, T 2* 0 at y 0 

4.27 

19  "12 °' T11 T12  0 at y = 

The solution of the above equtiofls of the unsteady 

t1y flow under their koundary conditions are given by, 

4 , "I u1(y) = u11 (y) + Eu12(Y) 

I 

.I.p y P1y 
I.e 1 + E[x6e 
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..(B1+P1  )y 
— xe +X5e ] 

•'• r1  () r 11(y) + ET 12  (y) 

+X1e —X2Q 

where all the constants are defined In the appendix 

at the end of the chapter. 

Now since we kaow %, U1, T and T1  we obtaln 

JI 
the express on for u and T from 4.10 9  viz. 

u(y,t) = u0 (y) + 
i.nt 

e u1(y) 

4.10 

T(y,t) 
mt 

T(y) + e e T1(y) 

The expressions for u and T may be written an 

u(y,t) = u,(y)+ S (0 cOn nt.M sin nt) 
4.15 

+ i(M cos mt+ m r s
in nt) 

4.16 T (y ,t) (y) + n t sin nt) 

+ i (T i coo nt + Tr bin nt) j 

where U =M+iM 
1 r i 

T.T r + . 
iT 

1  



'I- 

(103) 

From the expressiOns 4.35 and 4.36 we can obt.afl 

the expres$iOfls for transiøt velocity and transient 

IT 
tpexatUre repCtiVelY for nt as 

u(y, Z n
—) M 

4.9 

(neglecting the imagiflarY part) 

The skin friction •t is given by 

4.40 
- yo 

au int  Iru  1 
+ e 

ay YWO 

eint[ Pi+ E(XP1+ C3 4 X4(I31+P1) 

- (sP + 

'kiere
an 

 

- 

0 ,Y yo 

The s1in friction for nt is given by 
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' I 

4.41 C 
Co  

—eB 

(neglecting the Imaginary part). 

BU 

I 

4,42 where B + iB 
r

ay 
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FIG. 41 MEAN VEL0CIT1' DISTRIBUTION 
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I 
Table 4.1 

V,31ues of rnei tcperathre T (P=0.71, EC. )01). 

G5 G10 

y! V=4 N=8 t40 M=4 

0 1.4721 1.40992 1.40909 1.52351 1.41,142 1.41100 

2. 0.%5177 0.14091 0.1400 0.33378 0.4121 

4 t,•03595 0.0841 0.08231 0.09696 0.038 0.08248 

6 0.02090 0.01992 0.01990 002195 0.02001 0.01991 

8 0.0050-€' 0.00481 0.00481 0.00583 0.00483 0.00481 

S2 

o 0.7046 0.70431 0.70427 0.70602 C. 704f0 0.70442 

2 0.04120 0.04115 0.04114 0.0417 0.04118 0.04116 

4 0.00240 0.00240 0.00240 0.00240 0,00240 0.00240 

6 O.00C .34 3.00014  0.00014 0.00014 0.00014 0.00014 

0.00000 0.00000 0.00000 0.00000 0.03000 0.00000 

1 

I 
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Table 4.2 

Values of mean skin-friction T.0 (PO.71, E=0.001) 

G5 

M s1 S=2 

0 10.20536 2,48190 

4 3.1078 1.32590 

P 2.28587 1.02965 

G10 

0 22.13085 4.97725 

4 6.22907 2.65306 

8 4.57846 2.05979 
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1e 4. 

Viriati.on of trdnsi:.1 tperathr3 1' In :Ir (P.0.71 at , i0..2 9  

SMny 0 1 2 - 3 4 5 6 7 9 

1 0 10 `2.41 747 0.71032 0,35127 0.17385 0.08595 0.04242 0.02090 0.10292 0.0506 0.00249 

1 4 10 1.40998 0.69333 0.14091 0.16762 0.03241 0.04051 0.01992 0.00979 0.00481 0.00236 

1 3 10 1.40914 0.69283 0.34063 0.16747 0.08233 0.04048 0.01990 0.00976 0,00481 0.00236 

2 8 10 0,70429 0.17023 0.04174 0.00994 0.00240 0.00058 0.0001 0.00003 0.00000 0.00000 

1 4  30 1.40996 0.69331 0.34091 0.16762 0.08241 0.04051 0.01992 0,00979 0.00481 0,00236 

1 4  10 1.41446 0.69592 0.34231 0.16835 0.08278 0.04070 0.02001 0.00983 0.00483 0.00237 

1 4 30 1.41442 0.69589 0.34232 0.16835 0.08278 0.04070 0.02001 0.00983 0.00483 0.00237 

2 4 30 0.70463 0.17035 0.04119 0.00995 0.00240 0.0003e 0.00014 0.00003 0.00000 0,00000 

2 8 30 0.70444 0.17028 0.04116 0.00994 0.00240 0.00058 0.00014 0.00003 0.00000 0.00000 

2 8 10 0.70445 0.17029 0.04116 0.00994 0.00240 0.00058 0.00014 0.00003 0.00000 0.00000 

.4 
0 
.4 
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Table 4.4 

Values of skin friction P=0.71, G=51  

E=O.Ool, tz0.2, flt.zc, 

n1O _____________ 

O m  s=1 s2 s= 

0 9.7642 2.0565 9.441 1.7201 

4 2.7401 0.9743 2.3820 0.6129 

8 1.9789 0.7312 1.6096 0.3615 

I 
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Discussion of the Results: 

In order to get physical insight into the pxobløn, 

celculations have been carried out for u
0

, T0, 

the trcncient velocity, the transient tetperature and skin 

77 friction at nt = corresponding to different values of the 

pr"t:er. In the entire calculation we heve taken E=0.001 

ani thr' velue of the Praridtl number F is c*',V-1. 3en to be 0.71 

wtch corresponds to air. 

The mean velocity profiles u
0  against y have been 

displayed in Fig. 4.1.  From the figure we conclude that 

ircreseo with increase in G. The fluid mean velocity is 

1n :-i'iiroc1ynic case (4r0) thi in the hydro. 

maqnetic case. The mean velocity decreases J.th increase 

in the magnetic parieter M and suction parmeter S. 

Values of the mean tnperature T0  is givcn in 

Tnbie 41. It is clear: from the table that T oecresses 
C) 

with increase in M and S. It increases with increase In G. 

Values of the mean skin friction is given in Table 4.2. 

From the table we conclude that the mean skin friction in. 

croase wti increase in G but decreases with increase in M 

-.ir 
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I S  

Transient velocity profiles u(y, ) against y 

displayed in Fig.. 4.2 From the ficjire it is 

cir that the transient velocity decreases witi increase 

• n r.uction rrameter sand magnetic parameter M, but increa.. 

ss with increase in Grashof number G. The transient velo-

city increases with increase in the frequency parameter n, 

I near to the porous plate, but away from the plate the influ 

ence of n is insignificant. 

Table d.1 shows the values of the transient 

tamperature T(y4). The effect of N and S is to decrease 

the transient tiiperature whereas r18e in G causes a rise 

In T (y,). The transient teiperathre decreases with increase 

in n near the plate, but away from the plate the effect of 

n is insignificant. 

Values of skin friction r for nt are given in 

Table 4.4. From the table we conclude that the skin fric-

tion decreases with increase in M, and S and n. 
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APP DIX 

C 
Al 

cw(1;2p2 82pJ4) 

22 

C - 1 
= 

15(2fl1 - Si') 

s+(52-i- 4M)l/2 

2 

C2 = AP 

L1 = C1— C2  

2SPC2  
D3- B1+S1 

GD 

2 4B 2B1S..M 

GD 

(a1+s)2— s(ai+ 

SPC:i 
= 81 

D2 = 

M + in 

672 
S (s+ 44 ) 

 11*2 

2 
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K p2  
X2 s 

GX1  
x4 - 

(21+P1) 2—s (s1+ 1) .141  

KP 

1 -  

GK 

= p _- 

(1 12) 

SP+ (82P2+ 41n 
p 
2 2 

2PP1  A1B1(21+P1) 

P.,[ (B1+p)2-5p(B1+p1) ..ln P le. 

25P2  A1P1(SP+ P1) 

21 (sP+ 1) 2—sP (sP+p) in P] 

K 

x 
Gx2  

(sp+P1) 2—s(sP+P1)— M1  
x6 x3+ x4- x5. 
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CHAPTER - V  

HALL EFFECTS ON MIlD PWW PAST AN INFINITE VERTICAL 

pOItJS PLATE WHEN PLATE TPERA 

IN TIME AaOUT A cONSTANT MEAN 

Introduction: 

The unsteady free convectiofl flow of an incom-

pressible and viscous fluid past an infinite vrtiCal 

i'rirncving porous plate, with constant suction has been 

studied by Soundalgekar (1972). The plate tenperature 

was considered to oscillate in time about a constt mean. 

soundalgekar and wavre (1977) have extended the akVe 

problen, taking into account the effects of mass transfer. 

However, the flow past plates started impulsively fzoifl 

rest plays  an important role. These are particularly im.. 

portent in the design of space ships, solar energy collec. 

tors etc. on the other hand the effects oL a magnetic 

field on the flow of an electriCallY conducting fluid have 

ryny technical applications e.g. in the boundary layer 

flow of high speed eircraft, in the region between the 

surface of blunt body an a its shock wave, etc • However, 

if the strength of the magnetic field is strong, one can 

not neglect the effects of Hall currents. 

Hence, the object of the present chapter is to 

study the effects of Hall currents on the MIlD free conveC- 
0 
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tive flow past an impulsively started infinite vertical 

porous plate in the presence of a strong transverse mag-

netic field; the plate tønperature is considered to osci. 

3. late in time about a constant mean. The flow is subj ected 

to constant suction through the porous  plate. Hall currents 

gfve rise to a cross flow making the flow three.dimen8i0fla1  

the magnetic Reynolds number of the flow is taken to be 

small enough so the induced magnetic field is negligible. 

ipproximate solutions to the coupled non.linear equations, 

cccu ring in the probln have been obtained. The effects 

of the various pareterS on the mean flow and transient 

flow have been discussed with the help of tables and graphs. 

MatheatiCal MlySiS 

we consider the unsteady free convective flow 

of an electrically conducting, inc01 re$sible and viscous 

fluid past an infinite vertical porous plate. The x .axie 

is taken along the plate in the vertical upward directiOn 

and y -axis is normal to the plate. Initially the fluid 

and the plate are at rest but at time t'---  0 the plate 

starts moving impulsively in its o''ti plane with constant 

velocitY U
0

. A uniform magnetic field of strength is 

acting transverse to the plate. The pl.te temperature is 

considered to oscillate in time about a constant mean. In 

ure is assumed to be constant. 
the present problem the press  
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I 

since the plate is infinite in extent all physiCal quariti. 

ties are functiOnS of y' and t' only. The fluid is sub-

jectd to constant suction at the plate c1 hence if 

V = (u' ,v', w') the equation of continuity gives v' 

where V is the constant suction velocity. Using the 

relation v .ii = 0 for the magnetic field Ti = (u ,H ,H ) xy z 

we obtain H=H everywhere in the fluid (I-Ia is the cons-

tant enternally applied magnetic field). If 

is the current density, from the relation V .5= 0 we have 

J= constant. Since the plate is on.conCThcting J= 0 at 

the plate and hence zero everywhere. Assuming the magnetic 

ReynOlds number to be small we neglect the induCed magnetic 

field in comparison with the applied magnetic field. The 

ceneralized Ohm's laws  taking Hall current into account, 

(Cowling (1957)) in the absence of electric field is of 

the form, 

w -. - 

5.1 ?( H=a(ALe VXH+j 
0 

Under the usual assumptiOn that the electron pEe-

ssure (for a weakly ionized gas), the  thermoelectric pr.ssur€ 

and ion slip are negligible we have from 5.1. 

5.2 j W C J - 4 H w' 
x ee z e 0 

J 
z 
 +w 

e  t 
 c J 

X e = 7L H 
0 

 U' 
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from which we get 

5.4 j _e_..a (mu'—w') x 

aLH 
5%5 j (u'+ mi,') 

14m 

II 
ii. where, 

- the electric conductivity 

- the magnetic pezTneability 

We the cyclotron frequcy 

11 - the electron collision time e 

e - the electric charge 

-- the number dsity of electron 

- the electron pressure 

T; the Hall pereneter fll We  

In accordance with the Bouskineaq approximation we 

assume that all fluid properties are considered 

constant eept that the density variation with 

tnperature is considered only in the body force tenu. 

The basic equations relevant to the problen are, 
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5.6 - v ' - g (T'— T) +, L3.'. _- - Cu' .1nw') 
at' o ay' 

p(1.int2) 

aw' 
- 0 

H2  
(mu' - w') 5.7 ___ 

 8Y02 
 +  

p(1..a2) 

5.8 BTI  —V  1!' ._& .I1+ [C:)+ 2] 
at oay' pc IP , 

ay 

where all the physical quantities have their 

usual meanings. The initial and boundary condition5 

are: 

t' 0: u'= Of  w'rs 01, T' V y' 

5.9 

t'> 0 u" U0, w' O T'- Tw1  (1~ in't' a ) 

- B eiflt at y'-O 

0, wl= 01, T'T'_ at y' 

Introducing the f.olloidng non.dimeisional 

quantities. 

y'U th u2 - 

Y- -" 2   , '.- , 
3' U2 U0 
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5.10 M 8 - w - p - 

T'— igf3(T'-.T') 
________ 

— 
U 

c CT'- ) 0 

in eçu ation $ 5.6 to 5.8 we get 

5.11 au  -s=GT+9-6(u+mw) at By 
By 

5.12 s 1 h1+6 (muw) at Dy 

. - 
a + 2 + 2 

By ay 5.13 at ey Dy2 

,here, 6 M 
14m 

Boundary conditions 5.9 becOme in nondImansicflal 

fo rTn, 

u1, w - O, 

5.14 '7O 

uO, w - O, T-O aty 

rj- 
The task of solving equationa 5.11- 5.13 undr 

boundary conditions 514 is qitte complicated. TO simpUfy 

the rnathenatical part, we introduce a complex variable defined a 
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5,15 QU+iW 

which enables us to combine equ attons 5,11 and 

5.12 into a single equation of the fonn 

5.16 + - 8 (14m)Q GT at 
• 2 By BY 

equation 5,13 with the help of 5.15 becomes 

5,17 LT 
2 

+ 
ay at ay y 

zy 

The corresponding kxundaxy conditiOnS assume 

the form 

0=11 T=1+Ee 
in t aty0 

5.18 t>O: 

T=O at y 

EquatiOns 5,16 and 5.17 are coupled and non-

un ear. In o rde r to solve them we can represent the 

velocity Sand temperature in the neighbDurhOcd of the 

plate as follows (assuming email amplitude of oscillation) 

Q(y,t) q,(Y) + E. q1(y) e mt  

5.19 

T(y,t) a T(y) + E. i1(y) 0 
mt 

I 

612 
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Substituting 5.19  in equations 5.16  and 5 • 17 

and equating coefficients of different powers of E 

neglecting those of 2  and higher powers of E we 

obtains the fcloing set of equations: 

5.20 +SqM1%GT0  

U  + Sq! - (M 1+ in) q - GT1  

5.22 T" + SPT' - PE(q) 
0 0 

5,23 T j  + SPT1*._in PT1 - - PE(qq+) 

where M1= 6(11.im) and primes denote differi.. 

tiation with respect to Y. 

The corresponding boundary conditions are, 

CIOIM 1 9  q1= 01 T
0
- I t T1  1 at y=0 

5.24 

q= 01  q1= 0 9, T 0 = 0, T1= 0 at YWCOR  

The equations 5.20 to 5.23 are still coupled 

and non...linear and hence difficult to solve analy. 

tic ally. In order to so lye thei we expand %1 q, 

and T in powers of E the Eckert number assuming 
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it to be very ønall as follows (E C I for incompre. 

ssib].e .fIiid5) 

% i (y) + Eq 2  (y) + 0(z2 ) 

q
1
Y) q

11
(y) + Eq

1
(Y) + 0E2  

5.25 
T0

(y) = T01 (y) + ET02 (y) + 0(E2) 

T1 (y) T11 (y) + ET12 (y) + 0(z2) 

substituting 5.25 in equations 5.20 to 5.23 

we obtain the following system of equations 5.26 to 

5.29 and 5.30 to 5.33 which govern the mean steady 

flow and the unsteady are. 

5.26 q" + 8q' M1q 1  - GT01  
01 01 

5.27 q' + Sq' - M1q - GT 02 
02 2 

5.28 T 1  + SPT 1  0 

SPT' —P(q' q' ) 5.29 T'2  + 02 01 01 
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+ Scf - q (l+ in) a - GT11  
5.30 

11 11 

5.31 q" + Sq' - q in) GT12  
12 12 12 

+ SPT in P T11 0 
11 5.32 Pu   

+ SP P12  in P a —P(q' q' +•' q' ) 
12 11 01 11 01 

subj ect to the boundary conditions 

q 1, q = 0 9  T 01
a i t  T02  0 at y=0 

01 02 

5.34 

q = 0 ' q °, T01 w,   0, T02  = 0 at y uvm 

01 02 

for the mean steady flow and 

q 0, 0, P l, P 0 at q 12 11  
Y"° 

ii 12 

5.35 

q =0, q =0, T 0, 1 a0 at 
12  

y.  09  
11 12 ii 

for the 

f 

unsteady flow 

First, we proceed to obtain the eolutiofl for 

the mean steady flow while the solution for the un. 

steady flow Will be obtained later. 
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The solutions of equations 5.26 to 5.29 subject 

to boundary conditions 5.4 are given by 

B1y SPy 
5.6 q =Ae —Ale 

01 

.SPy - (B1+B1) y 
5.7 q =Le —ae +Je 

02 

.(sP+B1)y 
- Age - A10e 

4SPy 
+ A11e 

.SPy 
5.8 T01= 

.SPy (B1+i1)y 
5.9 T L 4  1e - Ae +Ae 

.2SPy 
+A5 e 

The expression for mean steady velocity and 

t'nperathre are given from 5.25 as 

q q + Eq 
0 01 02 

T 
0 

= T01 + ET02  
1 

I ihere g 
01 02 
, q , T01  and T02  are given by 5.36 to 5.39 
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If I MU 
and xrr.w

are the cOnpOflt3 of mean skin 

friction at the plate due to mean primary velo... 

city u0 
 and mean secondary velocity w0  we have 

5.46 c +i mw dy  YMO 

I 

-, A81+ A1SP + E [J42 B1+ A7SP?8 (B1+B1) 

+ Ag  (SP+81) + A10 (SP+B1) - 2A11  sp) 

where the different constant are defined in 

the appendix at the end of the thapttr. 

Now we proceed to solve the unsteady part of 

the flow field which are characterised by equations 

5.0 to 5.3, v1z 

5O q't +' Sq' - q11 '11+ in) - 6T11  
11 11 

5,1 ci" + Sq' - q (f11+ in) -GT  
 12 

12 12 12 

5.2 T 1  + SPT 1  - in PT11 - 0 
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T + SP Tj2  - in PT12 P(q' ' + ' q' ) 
11 01 1101 

subj ect to the boundary conditions 

q 0 9 
q 12 11 

0, T 19  T12 0 at y.O 
11  

5.15 
-$1 

q 
11 12 

= 0 2 q 0, T11  00 T12= 0 at y 

The solution of the equations 5.30 to 5.33 of 

the unsteady flow field under their boundary condi 

t.ion 5.35 are given by, 

5.41 q 1 
11 

=q + E q 
12 

.h2y 
= D1e —Die + E[X2e - D10  e 

—D12e 

(h1+ ;) ...(h1+ SP)y 
+D14 e 

v 

+ D
15e

2 1 
- D16  e 

BP)y 

B1)y ..(h1+ SP)y 
- D17e + D18e 
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S 

end 

5.42 Ti = T11  +ET12  

.h1y ...h 1y ..(h2+ 1)y 
+E[X1e —D20 

(h2+ SP)y 
+D 

13 
e +D4e 

(h1~ SP)y ,(j2 B1)y 
D5e —D6e 

SP)y 1.(i 1+ B 1)y 
+D70 +D8e 

+ SP)y 
—D9 e J 

where the con stants appearing in the solution 

are defined in the appendix at the end of this chapter. 

Since, now wc know cz,, q 1 , To  and T,  we obtain 

the expression for 0 and T from 5.19 viz-: 

Q(y,t) = q0(y) + '?. q1 (y) e t 

5.19 

and 

T(y,t) = T
0

(y) + E. T1(y) eint 

The expression for Q(y,t.) may be written as, 

V 
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5. 41 Q(y,t) % 
[r cos nt.M sin nt) 

+ i(M1  cos nt + Mr sin nt)j 

where, 

5.14 q = M r + i M 
1  

similarly, 

5.45 T(y,t) T  0  + 
. 1r cos nt - T  sin t) 

+ I (rI r cos nt + T sin nt) j 

where, 

5.46 T = T + I T 1 r I 

From the expression 5.43 we can obtain the 

o.p ression of the trarl Si en t prim azy ye bc I ty and 

transient secondary velocity and from exp re S sion 

5.45 we obtain the expression for transient tpera. 

tureat nt=.f as 

5.47 u(y, ) = u(y) - 

5.48 w(y,) = w(y) + Mr  

,here, 

I 
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5.50 T(y, fl—) T (y) —  E Ti 
2n 0 

neglecting the imaginary part, 
[-I 

wh ere u0  w0  and are the mean primarY velocity, 

mean secondary velocity and mean tnperatUre respec. 

tively. 

The skin friction is giV1 by 

5.51 = tx + i 

Ziy 

+ . e .!..iI 
BY ycO ay 

in t 
. e [.r1h2+ D1h1+ E X2h2  

+D10hç'D11 (h2+11) +D12  

+D1 (h1+ 1)D14 (h1+8P)Dj 2 + B1) 

+ D16 (h2 +SP)+D17 (i 1+81)D19  Gh lY 

,here, CIO t — I s the mean skin friction. 

lot 
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Tab1 5. 1: V iiues 0 r pr1xuty Ie10 .lty iian,12 iiiir 

M m S Y-> 0.0 0.5 1.0 1.5 2.0 : 3.0 3.5 4.0 4.5 

u 1.0000 1,6225 1,6719 1.5089 1.2912 1,0810 0.8981 0.7151 0.6190 0.5153 
2 •J 0.5 ° 

0 
0.0000 0.6532 0.9620 1.0423 1.0015 0.9050 0.7906 0.5774 0.5711 0:4336 

u 1,0000 1.4826 1.5076 1.3684 1.1863 1.0078 0.8487 0.7120 0.5964 0.494 
2 0.5 0.5 

0.0000 0.613 0.5094 0.5380 0, 5080 0.4541 0.3942 0.3367 0.2330 0,2401 

u 1.0000 1.0013 0,8731 0,7349 0.6138 0.5124 0.4282 0.3532 0.2998 0,2310 
4 0.5 0.5 ° 

w 0.0000 0.2850 0.3749 0.3312 0.2912 0.2485 0.2095 0.1759 0.1474 0.1235 0 - - 

u 1.0000 0,8194 0.5958 0.4196 0.2933 0.2050 0.1435 0.1005 0.0704 0.0494 
4 0.5 1.0 

0.0000 0,2175 0.2239 0.7793 0.1324 0.0947 0.0670 0.0471 0.0331 0.0232 

u 1.0000 1.6633 1.6380 1.4386 1.2208 1,0253 0.8588 0.7190 0.6020 0.5041 
r 0.5 0.5 

w 0.0000 0.4960 0.6461 0.6381 0.5726 0.4938 0.4187 0.3524 0.2958 0.2479 

U 1,0000 1.8309 1.7981 1.5478 1.2859 1.0623 0.8804 0.7327 C6116 0.5115 
4 1.0 0.5 

. 
 

0.0000 0.9236 1.2522 1.2655 1.1484 0.9946 0.8439 0.7098 0.5951 0.4985 

U 1.0000 2.7717 3.1423 2.9493 2.5756 2.1812 1.3244 1.5200 1.2661 1.0558 0 2 1,0 0.5 
w 0.0000 1.2173 1,8351 7.0310 1,9807 1.8093 1.5929 1.3726 1.1681 0.9870 0 

u 1,0000 2.3249 2.8323 2.6697 2.3561 2.0205 1.7103 1.4393 1.2080 1.0128 
2 0.5 0.5 ° 

w 0.0000 0.6578 0.9634 1.0424 1.0000 0.9033 0.7897 0.6778 0.5757 0.4860 
0 
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Table 5,2 

Values of mean tenperathre T0.( Pr0.719  E=0.0031  M=4.0). 

G5 G=10 
m 0.5 m= 1.0 m= 0.5 M. 1.0 

v S0.5 s1.O s,5 - s=1.0 s=0,5 s=1.0 5=0.5 s1.0 

0,0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

0.5 0.83760.7015 0.8379 0.7016 0.8384 0.7018 0.8395 0.7023 

• 1.0 0.7016 0.4920 0.7019 0.4922 0.7025 0.4926 0.7038 0.4932 

1.5 0.5876 0.3451 0.5880 0.3452 0.5887 0.3457 0.5901 0.3463 

2.0 0.4921 0.2420 0.4925 0.2422 0.4933 0.2426 0.4947 0.2431 

.5 0.4121 0.1697 0.4125 0.1698 0.4134 0.1702 0.4147 0.1706 

1.0 0.452 0.1190 0.3455 0.1191 0.3463 0.1194 0.3475 0.1197 

4 
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Table  53 

Vabies of z mu  and  mw  (P=0,719  E=0.00). 

C m M S mu t mw 

5 0.5 2 0.5 1.7776 1.0110 

1.0 1.1386 0.8327 

4 0.5 0.3250 0.9650 
1.0 . 0.1286 0.8724 

1.0 2 0.5 2.2324 1.7549 
1.0 1.5803 1.3967 

4 0.5 0.7378 1.6280 
1.0 0.3312 1.4427 

10 0.5 2 0.5 5.1534 1.7285 
1.0 4.1795 1.3818 

4 0.5 2.7608 1.5006 

1.0 2.1495 1.3256 

1.0 2 0.5 5.8812 3.0925 

1.0 4.8754 2.3868 

4 0.5 3.4046 2.6248 

1.0 2.7890 2.2721 
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Table _:-i 

Variation of transient tnperati1re T(y,  Tr  ) in air (P = 0.'Jl. E=0.003, G5, 0.2, n.t f) 

I 

S M m fl 0.0 0.5 1.0 1,5 2,0 2.3 • 3.0 3.5 

.5 2 0.5 5 1.0000 0.8957 0.7447 0,6071 v.4974 0.4122 0.344 0.488 0.2424 

.5 2 1.0 5 1.0000 0.8964 0.7456 0.6080 0.4984 0,4131 0.343 0.2897 0.2431 

4 1,0  5 1.0000 0.8956 0.7445 0.6067 0.4970 0.4117 0.3439 0.2883 0.2419 

,5 4 1,0 15 1.0000 0.8905 0.7142 0,5864 0.4911 0.4123 0.3455 0.2893 0.2423 

.0 2 0.5 5 1.0000 0.7533 0.5271 0.3595 0.2455 0.1696 0.1184 0.0831 0.0584 

.0 2 1.0 5 1.0000 0.7535 0.5274 0.3599 0,2458 0.1698 0.1186 0.0832 0.0585 

.0 4 0.5 5 1.0000 0.7532 0.5269 0.3592 0.2452 0.1693 0.1181 0.0829 0.0583 

.0 4 0.5 15 1.0000 0.7492 0.5023 0.3440 0.2410 0.1695 0.1190 0.0834 0.0585 

"I 
'a, 
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* Table 5.5 

Vt1ues of skin friction components and at nt 

(P= 0.71, E= 0.003 9  G= 5, .= 0.2) 

S M M n 

0.5 2 • 0.5 5 1.9402 1.2061 

15 1.8762 1.1146 

1.0 5 2.4050 1.9485 

15 2.3327 1.8580 

4 0.5 5 0.4665 1.1770 

15 0.4213 1.0730 

1.0 5 0.9502 1.8446 

15 0.8876 1.7350 

1.0 2 0.5 5 1.3020 1.0307 
15 1.2381 0.9369 

1.0 5 1.7538 1.5935 

15 1.6815 1.5003 

4 0.5 S 0.0130 1.0869 

15 _ 0.0314 0.9810 

j 1.0 5 0.4936 1.6625 

15 0.4319 1.5504 
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RESULTS AND DISCUSSION: 

In order to get physical insight into the pzobleu 

numerical calculations have been carried out for mean 

flow and triisient flow corresponding to different values 

of he Grashoff number G, suction parøneter 59  Hall 

paraneter m, magnetic paranetar 14 and frequency paraneter 

n. In order to be realistic the value of the Prandtl 

number P is chosen to be 0.71 which corresponds to air. 

In the entire calculation we have taken E=0.003 and 

0.2. 

Values of the mean primary velocity u0  and mean 

secondary velocity w are given in Table 5.1. It is seen 

J from the table that u 0 increase with increase in in and G. 

It c3ecreases with increase in S and H. From the sane 

table we conclude that the effects of the various para-

meters on w are similar to their effects on U0. 

Table 5,2 shows the variations of the mean 

tmperathre T
0  in air (P=0.71). It is cle&.r from the 

table that the teiiperature increases with increase in in 

and G and decreases with increase in S. 
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Table 5.3 gives the values of the mean skin 

friction components t mu 
and tmw 

• From the table we 

observe that c the mean skin friction Component due 

to mean primary flow increases with increase in m but 

decreases with increase in S id M. T the mean skin 
mw 

friction component due to mean secondary flow increases 

with increase in m but decreases with increase in S. 

t 
mw 

in general, decreases with increase in ZI, but increa-

ses with increase in M for G5 and 5=1. BOth the compo.. 

nents of skin friction increase with increase in G. The 

transient primary velocity profiles u(y, ) have been 

displayed in Figure 5. 1. It is clear from the figure 

I
that the transient primary velocity decreases with increase 

in H and 5, but increases with increase in m. we also 

observe from the figure that near to the porous plate 

u (y, ) decreases with increase in n, but away from the 

plate it increases with increase in n. 

The transient secondary velocity profiles 

w (y, L)  are sho in Figure 5.2 • From the figure we 

concluce that the effects of m. H and S on w(y,) are 

similar to their effects on u(y, ). As for the effect 
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of n we see that near to the porous plate the transient 

secondary velocity decreases with increase in n, but 

away from the plate it increases with increase in n 

further away from the plate the influence of n is insigfli 

floarit. 

Table 5.4 displays the values of transit 

tperathre T (y,) of air. We observe from the table 

that the transient tnperature increases with increase 

in m whereas rise in M and S causes a fafl in T(y,). 

It decreases with increase in n, near the plate but 

increases with increase in n away from the plate. 

Table 5.5 shows the values of the skin friction 

components t ifld at nt= 
.

r.  decreases with increase 

In n, M and S and increases with increase in m. g de. 

creases with increase in n and 5, but increase with 

increase in m. The effect of M on t depends on S. Fr 

S = 0.51  T 
7 

decreases with increase in M but for s-1.0 

t increases with increase in M. 
7 
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L1 = A-A4 A5+A6  

CL1  

A7 22 T' 
S P tS PM1  

GN 

GA4 GA 
'A10- - 

(s)+B1) 2—s(SP+B1) ..M1 1)2_ ,+81) M1  
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S+(S+4M2) 

c
i A.B1D1h2P, 

'2 L 1  D1  h1  P, 

p 

G 

h1  8h1—M2  

C2 D  1  h  2 s 2  

c4 = A D h1  sP2  

C 
D2 

(h2 + 1) 2—  SP(h2+ p 

C2  

(h2+sp)2— SP(h2+SP)-in P 

I C 

I A 

3 

4 1 (h1+B—sP(h1+ i)- in P 

C4  

(i-i i+ 
2_ 'SP  (h.1+SP) - in P 

C 
ID 

6 2 - — sp(h2+B1)— in P 

C 
- 

- sp(i 2+sP).in P 
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I 

Do 
- (+B 21) - sP(h1+B1)in P 

C4  

(h1-f sI)2  sp( 1+sp)4n P 

12 . D.. D4+ D5+ 16 .. 1)7.. 8  + D9  

GX1  
-- I 

h..sh1 .M2  

GD 

12 2 (h2+SP) —s (h2+sP) m 2 

GD2  
D11 (h

2 4r 1) 2—S(h2+ 1).M2  - 

GD4  

(h1+f31) 2—s(h1+i1) .M2  

.3 

1) 
GD

5 
 

(h1+sp) 2—s(h1-fSP) .M2  

GD7  

16 (i,+sp)2—s( 2 +SP) .M, 

GD9  
D19  

(h1+sP)2—s(1+sP) 2  

D 
GD6  

15 (h24B1)2S(h2+31)a.M2 

GD8  

17 - 

(h1+B1)2—s(1+B1) 2 

X2= D10 D11+D12+D13  .D14-D15+D16+D17..D18. 
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CHAPTER - VI 

HALL FFECTS ON UNSTEID MHD )R.EE CONVECTIVE FLOW IQUH 

APCCU ?EDIUM 1W FThTING WID WITh CONSTT HEAT_Ut 

rj 

Introduction: 

• The effect of H all currents on un ate ady MFID free 

convcttve flow of a viscous incompressible &nd electrically 

con&ictinç fluid past an infinite vertical porous plate has 

been studied by Agrawal ot al (1983). The whole system is 

assumed to be in a state of rigid body rotation and in adM. 

tion, the free stream is considered to ozcillate in time 

• about a constant mean. The effects of Hall currents and 

rotation on steady free convection and mass transfer flow 

thr0t2gh a porous medium bounded by an infinite vertical 

porous plate with constant heat flux at the plate has been 

carried out by Raptis and Rn (1984). The  flow is subjec. 

ted to constant suction velocity at the plate. 

in the present chapter we have modified the irk 

of R apt1 a and R (1984), in the sense that we have COfl Si. 

dere' the unsteady case and the plate is 5sauméd to osci. 

hate in time. The effect of mass transfer has been ne;. 

looted. Approximate solutions to the coupled non linear 



cI )  

lip- I 

eqution occurring in the problen have bem obtained. 

The effect of the various pareters on the mean and 

transient flows are discussed with the help of graphs 

and tables. 

Mathanatical Nlalysie: 

We consider the unsteady free convection flow 

of an eloctrically conducting, viscous and incompressible 

fluid through a porous medium occupying a semi .infinite 
b'y 

region of space bounded,,an infinite vertical, non.conduc. 

ting porous plate. The x' w axis is taki along the plate 

in the vertical upward direction and y .axis is taken 

normal to the plate. Initially the fluid as well, as the 

plate are ,t rest but at time t" 0 the ihole system begins 

to rotate with constant angular velocity J1" about y' .axia 

and in addition the plate is assumed to oscillate with ire.. 

crUflCy n. i uniform strong magnetic field is acting trans. 

verse to the plate. The pressure gradient is assumed to 

be const'nt. Since the plate is infinite in extent all 

physiCal quantities are functions of y' and t' only. The 

fluid is subjected to constant suction at the plate and 

hence if V (u' ,v' ,w') the equation of continuity gives 

v"-v0  Vnere v0  is  the constant uctio' velocity. Using 

the relation .TT 0 for the magnetic fiel 

we obtain Hf is the constant extern11Y applied 
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. 

rnqnctic field) If i J,, J,,) is the currant d. 

itj frrr the relation j.J a 0 we have Jx3 constatt. since 

th l;te is non.conducttng, 0 at the platLe and hence 

-. - 

zero everywhere. Assuming the magne a Jeynolds 

small we neglect the induced magnetic field in comparison 

I with the applied magnetic field. 

The genercilized On' s law taking Hall current 

into account (Cowling (1957)) in the absence of electric 

field, is of the form 

w 

y the seme ro aeon ing as in chapter v, we have 

from 6.1 

04 
6.2 1 &_! (mu'.w') 

X 1+m 

6.3 J
2 (u'+mw') 

1+m 

where m is the Hall parneter. The other 

r,utntitIes are tefthed in aht.er V. 
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In accordcnCe with the Boussineaq approximation 

we assume that all fluid properties are considered 

c,ntnt excett that the density variation with ten 

perature is considered only in the body force tex?n. 

The beisic equations relevant to the pibln are 

08 2 

6.4 v 2 w' g$(T'T')+ L'_ ° -.j(u'sIw' 
&t' 0 cy y12  ç(14m ) 

0b2  
ws U'- + p (muS.w*)ap.1' 65 ay' y' Cur2 ) 

6.6 + 
at' o • pc. 

where K' is the pemeebility of the medium, the 

other physical quantities have their ustial meenings. 

The in I U a 1 and bound ery conditions are 

t'O: n"O, w'-O, '=T ,  

6.7 

t'?O u'U0(l+€ ain' t' ), at j'O 

u'— 0, w'-$O, D1 1wT, 55 
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Introducing the following non.dimen8ional qu&atita 

U' 
y'TJo - 0 , 8 - ujj - Y ---;-' 

C) 
U0  

T'T' 
•W:17 P'p , 

kUj 

6.8 

kU 0821, VU2 2 fL')' 

0 p K af, c--  - 
0 

U0  

in eguatione 6.4 to 6.6 vJe get 

6 • 9sAW + - w. 0? + 1— (uw)' 
ly 

6 • 10 - - .n- u + (mu .iv) K ZY 

6.11 (t By P 872 By ay  

The boundary condition 6.7 becomes in non. 

dimEmsional fon: 

6.12 

t>O:u1+E emt aty*O 
ZVY 

u— O, v -IO, T - O asy- 

14Th 
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The task of solving eqUations 6.9 to 6 11 under 

boiindry condition 6.17 is qUite complicated. To simplify 

the mathitiCal part we introduce a complex variable cia. 

fined as 

6.11 Q u + iw 

which en able us to combine equations 6.9 and 

6.10 into a single eauation of the forn 

6.14 +sj-  { 

quation 6.11 with the help of 6. 1 becomes 

6.15 
2 _ 

pE(Lx) 
at ay sy 

The corresponding boundary conditions assume the 

form, 

Q mt .L. l+E- a aty  ft O 

6.16 
as y— 

iquatiofls 6.14 and 6.15 are coupled non...linear 

-1 
equations, in order to solve them we can represent 

the velocity and tenperature in the neighbourhood of 

thfa plate as follows (asawning wall anplitude of 

oscilltiofl) 



+ SPT, a Pq 

+ SM17 in PT a .PZ(q' ' + q') 
lo 

6.20 

6.20 
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S 

Q(y ,t) a % (y) + E 
1
(y) e mt  

6.17 

T(y,t) a T0(y) + E T1(y) •int 

substituting 6.17 in equations 6.14 and 6.15 and 

equating coefficients of different powers of Z , neg. 

•0 
lcctiriq those of and higher powers of we obtain 

the following set of equations. 

44+Sq'41%aGT0  

619 q" + Sq! (M1+ in) q a GT 
1 1 1 

where M1 a +'—j(m4n) 

d primes denote differentiation with respect to y. 

The Co rresponding )ôundazy conditions are 

q a 1, 
o 1 

q a 11  T a-I, 9a 0 at ya0 

6.22 

q 0, q.—i'O, 'T — O, ¶r1-0 
0 1 .0 
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The equations 6.18 to 6.21 are still coupled 

and non linear and hence difficult to solve analyti. 

cally. In order to solve then we expand CL; q , T 
r.d 1 0  

d T in powers of i the Eckert number assuming it 

to be very small as follows (E 1 for incompre. 

4 

q 
01 02 

(y) + Eq (y) + 

q 
1 11 12 

(y) q (y) + Eq (y) + 

6.23 
T
0

(y) 'r01(y) + Lt-r02 + 

T1 (y) = T11 (y) + ET12 (y) + 0(E2 ) 

substitutinQ 6.23 in equations 6 S 1 tc 6.21 we 

cibtath the  following system of equations 6.24 to 6.27 

and 6.28 to 6.1 which govezn the mean steady flow and 

the unsteady one respectively. 

6.24 q 0 V,  Sq'M,  q * . GT01  
01 01 01 

6.25 q' + S q' — M1  q - • 02 02 02 02 

6.26 T 1 +SPT 1 • 0 

t1:1. f1uid3) 

-4 



q - 0, q - 0, r 0, TJ* 0 as y- 
01 02 

for the rnen iteady ilow and 

q =1, q T'0, T'0 ety-0 
11 12 11 12 

6111 

q—,o, q-O, Tt-0, T-)O 

for the trnteady flow. 

Fi rat we obtain the solution for the mean steady 

flow while the solution for the unsteady flow will be 

obtained later. 

I 

6.28 q' + 8q in) GT 
11 11 Ii 

(150) 

6..9 q" + .0 T12 . 
17 12 12 

4.30 r;'1 + S'T'-LnPT11 . 0 
11 

6.11 + SPT' - in PT .P(q' ' + ' q' ) 
12 12 ii ci 11 01 

subj eat to the txundary Conditions 

q 1, q '0, T611s.l, aty0 
01 02 

6.2 

4 
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The sOlutiolls. of equations 6.24. to 6.21 subject 

to tundry conditions 6.2 are given by 

II.13 i7 SPy 
6.4 q - 2e 

01 

6.5 q La 
 Bly SPy .(B1+ 1)y 2SPy 

02 2 2 
+r. 

P4e F50 

T - i. e' 01 sP 

a 

T 0,. L1e 
.2SPy -(siI )y 

-cia -C2e +Ce 

. (SP+81)y. 
+C4 e 

The expression for the mean steady velocity 

nd rean temperathre are given from 6.2 as 

q +Eq 
0 q 01 02 

T = T +p,. ) 01 r 0 

respectively, *ere q 
01 
, q 

02 
, '

0 
 and T02 are 

'iven by equations 6.14 to 6.17 respectively. 
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. 

4f C 
'rnw are the COMPonents of mean akin 

friction at the plate due to men, primary velocity 

d mean cecondry velocity we have, 

68 n g +i 0 mu mu dy 

+ A1SP + E[.I81+ P16P.F2  (s1+ 'g1) 

2SP F+ P4 (SPi11) + 

where the different constnt.s are givi in the 

appenJix. 

N-f0w we proceed to eolve the Untteady part of the 

flow field which are chartj by eqitions 6.28 

to 6.1 viz, 

6.28 q" +Sq' q (M.+ in) s..GT11  
11 11 11 

S 

6.29 q of + $ q' - q (M1+ in) GT12  
12 12 

LII 
11 + SPT1 - in PT11 0 

T" + SPT' in 12 12 PTP(q' +' q' ) 12'-  11 01 11 01 
S 

4 

A 



ri'bject to the bondzy conditions 

q11  q =0, T'  a O t  T'vaO 
11 12 11 12 

at y = 0 
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q -O, q -*0, T '*09  T -*0 
11 1. 11 12 

The solution of the equetiona 6.28 to 6.33 of 

the unsteady flow field under their boundary conditions 

6.31 are given by 

6.149 
q1 11 

q + £g 
12 

.h2y 

+P10e - P11e 

(T41 1)y 
+ P12e P 3e 

and 

6,40 T1 T11+ EI' 

..h2y ..(h14)y 
"4'1e 

j 

,where all the constants eppeazing in the solution 

rfined in the apenUx, at the end of this chtar. 

A- 
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Since now we cnow % we obtain 

t' prisIOfl for 0 end T fzom 6.17 vie. 

(y) 
mt 

(y,t) q + q (y) e 
0 1 

V1 
14 

T(y,t) T0 (y) + E. T1(y) elt 

The expression for ' (y,t) may be writtfi as 

6.11 L(y,t) - q +E [MrcOBfltMj in at) 
0 

+i (Mjcosnt+Msmnt) J 

w!'ere q + I. 

imi12r1y, 

T(y,t) - T + E (Tr COS ut sin nt) 
0  

.44 where, Ti  T fiT r i  Ift 

From th expression 6.41 we ci obtain the 

op rsaion & of the transient primary velocity and trw. 

slent secondary velocity and from expresiofl v.43 w 

obtain the expression for transit tnperztture at 

ntc as 



(Iss) 

6,47 w)re q - U0  + i 11
0 0 

c1 

6.48 T(y, - T0 (y) - Tj  

where 

%' w0  end ixe the *een primary velocity, 

rnen secondary velocity eo4 uean tenperature repec. 

tively, 

The skin fricUon is given by 

6.4) -L + i 

By y.'O 

zqO Eet q11 +  

by 
Y 

- 
+ E ein [..h1+ E [.h1L4+ h2  P9  



(156) 
. 

where t is the m*aa skin friction. 
0 

2 re the component of skin friction alonç x, and z di rsc 

tions respcctively. 

S 
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0'4 5 Ol 15 1.u590 

1.0 0.2 2.3433 2.6014 

0.4 264S 2.6773 

- 1.3 0.5 0.2 - 1000 1.0413 

0.4 - 1.1210 1.0955 

1.0 0.2 - C.5451 1.342 

0.4 - 5865 1.6096 

3 (,5 0.5 0.2 1.8755 1.7266 

0.4 1.9273 1.8094 

1.0 0.2 2.6029 2.3e37 

0.4 2,101 2.02 
-' 
-,.'. .. • ?:J 

0.4 - 0.0385 1..17JJ 

1.0 0.2 - 0.3564 1.7833 

0.4 - 0.4048 1.8393 
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.Vu... )Z riry V1Oi m.J t:::;.iin condry i1cy wi 

= 371 - 5 

r 5 J 2 U 1.030 1.5002 1.1550 381D0 ').56?7 3 .39i31 0.2731 ).13574 D.72 
. 4 . 0.2000 0.5989 0.4319 0.3515 3.2472 3.1733 0.1215 0.0852  

0.5 u 0.2 ') t.u00' 1.39 1.14 0.100 3.5677 0.3981 0.2791 0.1957 0.1372 
w 0.2300 3.5951 0.4023 0.3519 f'.2472 0.1733 0.1215 0.0352 0.397 

u 1.0003 1.5529 1.1223 0.7863 3.5510 0.3864 0.2709 3.1899 0.1332 
w 0,2000 0.6347 3.5225 0.3727 0.2617 0.1835 0.127 0.0902 lk,i2 

5 1.0 10 u 1.0000 1.7829 1.272 0.8724 0.6102 0,4277 0.2939 0103 0.1474 
.' 

w 0.2000 1.0883 u.9208 0,6606 0.4638 0.3252 0.2280 t. ...98 0.1121 

• 
u 1.000 1.2133 0.8198 0.698 0.3993 0.2800 0.1963 0.1376 0.096 

S w 0.2000 0.8714 0.6726 0.4737 0.3320 0.2328 0.1632 0.1144 0.0802 

0.5 • 0 u 1.0000 1.6880 1.2227 0.8554 0.5992 0.4201 0.2946 0.2065 0.1448 
w 0.2000 0.7763 0.6516 0.4667 0.3279 0.2299 0.1612 0.1130 0.0792 

I '3 4 4,-i U 1.0000 1.1750 0.7896 0.5479 0.384') 0.2692 3,1 0.1323 0.3925 
233' 3.5()3.76 '.4772 '3.3315 .2345 2.16 ,11.3 D,333 

3 U 1.0300 1.7007 1.222 0'3554 0.3032 0.4201 0.2946 0.20 3.1448 
'- 

' w 0:2000 0.7801 0.6508 0.4666 0.3279 0.2299 0.1612 0.1130 0.0792 

8 0.5 • 0 4 10 u 1.0000 1.0834 0.756 0.5288 0.3707 0.2599 0.1823 0.1278 0.0896 
w 0.2000 0.4303 0.362S 0.2554 0.1791 0.1256 0.0880 0.0617 0.0433 

S 
-S 
U, 
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3.63153 0.47?Z9 
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0.33609 
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0.23496 
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3 0.5 0.2 10 3.83173 1.28100 
30 4.21911 0.99099 

0.4 10 3.73977 1.41717 

30 4.13008 1.12624 

1.0 0.2 10 4.56297 2.8629 

30 4.94903 2.26728 
0.4 10 4.39475 2.70264 

-J 

30 4.78391 2.38578 

-a 

a 

4 4- 

Table 6.5: ValUes of z;%in Eric ti.::!n components ' x  
and n -r 

P = 0.71 0.001, 3.2. G 5, 5, 3 
a 

K 

0.5 0.2 10 3.38344 1.01422 
30 3.77354 0.73385 

0.4 10 3.31115 1.13912 

30 3.70415 0.85803 

1.0 0.2 10 4.12775 2.08239 

30 4.51822 1.77726 

0.4 10 3.99594 2.20620 

30 4.38953 1.89986 
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Discussion of the results 

In order to get physical insight into the problem*  

numerical calculations have been carried out for mean primary 

velocity U0, mean secondary velocity w0, mean temperature T0*  

components of mean skin friction t MU  1, transient primary 

-4 velocity u(y,). transient secondary velocity 

components of skin friction and at nt 4 corres- 

ponding to different values of the parameters. In order 

to be realistic, the value of the Prandtl number is chosen 

to be 0.71 which corresponds to air. In the entire calcula-

tion we have taken F 0.001, fin  0.2 and G - 5. 

Variations of the mean primary velocity profiles 

are illustrated in figure 6.1. It is clear from the figure 

Ar t1vt u0  increaser with increase in the Hall parameter m and 

permeability X. A rise in the rotation parameter.X) • magnetic 

parameter N and suction parameter S causes a fall in the mean 

primary velocity u0. S 

Figure 6.2 display the mean secondary velocity 

profiles. From the figure we conclude that mean secondary 

velocity w0  increases with increase in.ik and m but decreaee 

Ii with increase in M and 

9 
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Table 6.1 shs the values of the ran temperature 

T,.. w conclude from the table that T0  dcrea8e5 with 

incrca€' in S. The effect offLon T0  is insignificant. T0  

incrc.ss with increase in k and m and decreases with 

.n '(the changes being rather sinaf 1). 

Tnhle 6.2 qives the values of the mean skin friction 

-4 
coponenta T and T W 

. -t 
MU 

increases ith increase in 

r Ic, w?ile it  decreases with increase in £L and S. TMW  

increases wil-h increase jCL, m and 1< and decreases with 

.increase in S. 

values of the transient primary velocity u(y.) 

rc qiven in table 6.3. We conclude from the table that 

the trnsicmt prinary velocity decreases with increase in 

and IM, but increases with increase in in and K. 

creases with increase in the frequency parmeter n near 

the plate, but away from the plate the influence of n is 

insignificant. 

values of the transient secondary velocity 

w(y.) are also given in ble 6.3. It is clear from the 

table. The transient secondary velocity increases with 

increase in m, CL and K. it decreases with increase in M. 

w(y, lk  ) decreases with increase in n near the plate, A1t 

away from the plate it increases with increase in n. ?urtr 

away from the plete the Influence of n is insignificant. 



-4 

Table 6.4 shows the values of the transient 

mp€'rature T(y,). The transient temperature rises 

with rise in m and Y. It falls with a rise in M. Near 

the plate T(y,) increases with increase in nj away from Mn 
the plate the influence of n is insignificint. 

. 

values of skin friction components Tx and 

at nt are given in table 6.5. Increase in m, n and 

1< 1ea to increase in decreases with increase 

in fL- T increses with increase in J'-. m and k, 

but decreases with increase in n. 

1 

0 
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£ sp(82P2-s2P-M1) 
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1 + A1, 2 

so 

2 
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2 P 2 

C 1 (D1  + 
1
)2_ nt(31 + 

S C2 2 

P2AA6 $P2 2. A2 
C3 - 4 SP+13 

sp+81 

(B1  + (;p + 
• • D 2C2 D1 .50 3 SP 

(SP 4. 
1)4 SP 

at1 ccl  
P'1 

- s2p M1 ' 
P'2 

(a1+ 1)2 s(Bi+i) - 

CC2 cc3  
F3 

22 - 2S2I) - - 

cc4  

(sP+a1) - 3(sP+31) - 

Ia2 F1 F2 P3 +F4 + :r5  

S + 
?42 -M1 +in ,h1 2 

sP(s2P2+4inP) ' 
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A281  h1P 

17j3
1
) SP(h1+fl1) - in? 

1SP2h1  

2 (sp+h1)2  - s(sP+h1) - in? 
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V A2B11P A1SP2h1  
' p3 

- sP(+R1) in? 4 

(Si' + h1)?2 + 

S h2 6 h2 - 7 

pe 

P4(SP + h) , 3 p5 P6 + 

CL 
3_ 

Cp1  
p9 .P 

- Sh2 (h1+?1) - s(h+) - M2  

GP2 GP3  

11 (sP+h1)2 s(SP+h1) -M2 
• '12 (i 1+R1)2 s(11+131) 

p 
Gp4  

2.3 (!P+E1)' - s(sP+h1) 
- 

L4  - P9  - p10 +11 - 
p12  + p13  
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