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Summary 

In this thesis we have studied the nature of distributive Lattice and Boolean 

Algebra. Lattice theory is branch of Mathematics. A poset (L,:!~)is said to be 

forma Lattice ifforevery a,hEL,avband aAb existin L. where v, hare 

two binary operation. A letter L is called lattice, if it is distributive lattice 

then we have shown that a A (b v c) = (a A h) v (a A c) for all a, h, c e L. In 

this thesis we give several results on distributive Lattice, Boolean algebra 

and Boolean ring which are certainly extend and generalized many results in 

Lattice theory. The material of this thesis has been divided into five 

Chapters. A brief scenario of which we present as below. 

Chapter one we have discussed basic definition of set, Lattice, convex sub 

lattice, meet semi-lattice and joint semi-lattices which are the basic to this 

thesis. We also prove that if A and B are two Lattices, that the product of A 

and B is a Lattice. In this Chapter we have also discussed the definition of 

ideals, bounded lattice, finite lattice, Complemented lattice and relatively 

complemented lattice. We have established the relations among them. Also 

we studied some other properties of these concepts. We have prove that two 

bounded Lattice are complemented if the cartesian product of the two 

Lattice is complemented. 

In Chapter two we have discussed Modular lattice, Distributive lattice. We 

include some characterization of modular and distributive Lattices. We have 

also proved a modular lattice is distributive lattice if and only if it has no 

sublattice isomorphic M 5 . 

In Chapter three we discuss Pseudocomplemented lattice, Stone lattice, 

Stone algebra are discussed. We have proved the theorem let L be a 



Summary  

pseudocomplernentd distributive lattice and P be a prime ideal of L. Then the 

following conditions are equivalent. 

P is minimal. 

xEP implies x*P 

XEI'lrflpliesX**EI'. 

P n D(L) = 

In Chapter four Boolean algebra has discussed here. Since Boolean Lattice, 

Boolean subalgebra have been studied by several authors including Cornish [ 
9] and A. Monteiro [33 J. We have established the relation among them. 

Also we have studied some other properties of this concept. We also proved 

that in a Boolean algebra, the following result are holds 

(a')' =a 

(aAb)'  =a'vb' [De Morgan's Law] 

(avb)'  =a'Ab' [De Morgan's Law] 

a:!~b=a'>b' 

a:!~baAb'=Oa'vb=u 

In Chapter five Boolean ring, Disjunctive Normal form, Conjunctive Normal 

form are expressed here. We also have showed every Boolean ring with 

unity is a Boolean algebra. 

Last section in this chapter we should try to discussed the switching circuit 

system. The simplest example of such switch being on ordinary ON-OFF. 

These are two basic way in which switches are generally interconnected. 

These are referred to as in series and parallel. We have also explained with 

figure the circuit represented by the Boolean function f = a A (h v c). 

Li 

-r 
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"Lattice and convex sublattice" 

1.1 Introduction 

In this chapter we recall some definitions and known results on Lattice, 

convex sublattice and ideals. Some more definitions and result are included 

in the relevant chapters. We consider this chapter as the base and 

background for the study of subsequent chapters. The intention of this 

chapter is to outline and fixed the notation for some of the concepts of ideals, 

convex sublattice, meet and joint semi-lattice of a Lattice which are the basic 

of this thesis. 

The ideal, meet and joint semi-lattice all are introduced by Gratzer (15), 

Cornish (9 ), Noor (35 ) in their several papers. The ideals have also been 

used for improving some results J. Nieminen (34) . The meet and joint semi-

lattices have been studied extensively by Noor and Latif (36). 

Cornish and Hickman (10) has defined meet semi-lattices and joint semi-

lattices by introducing upper bound property. 

A sublattice of a Lattice L is a convex sublattice if and only if for all 

x,yEK, (x<y), [x,y]cK. 

Definition (Set): Any collection of objects which are related to each other 

Example 1.1.1 A = {1,2,3} is a set. 

Definition (Finite set) : A set is fmite if it consists of a specific number of 

different elements ie. if in counting the different members of the set 

the counting process can come to end. 

Example 1.1.2: Let M be the set of days of week. Then M is finite. 

Definition (Infinite set): A set is infinite if it does not consist of a specific 

number of different elements ie. if in counting the different members 

of the set the counting process can not come to end. 

Example 1.1.3 : Let A = {l,5,10,15,......}. Then A is infinite. 
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Definition (Comparable) : Two sets A and B are said to be comparable if 

AB orBc:A 

ie if one set is a subset of the other. 

Example 1.1.4: Let A = {l,5,10,15} and B = {l,5,lo,15 .......  }. Then A c B 

ie A and B are comparable. 

Definition (Line diagrams): If A c B, then we write B on a higher level 

then A and connect them by a line; 

lfA(--:B and Bc:C,wewrite 

Fig. 1.1 
 

Fig. 1.2 

Example 1.1.5: Let A = {i}, B = {2} and C = {i, 21 Then the line diagram of 

A, B and Cis 

AZB 
Fig. 1.3 

Example 1.1.6: Let X = {x}, Y = {x, y}, z = {x, y, z}and W = {x, y, w} 

Then the line diagram of X, Y, Z and W is 

11 
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w 

Fig. 1.4 

Definition (Power set) : The family of all the subsets of any set S is called 

the power set of S. We denoted the power set of S by 2S 

Example 1.1.7: Let M = {x, y}. Then = {{x, y}, {x}, {y},01 

Definition (Disjoint set): If sets A and B have no elements in common. 
I 

ie. no element of A is in B and no element of B is in A, then we say A 

and B are disjoint. 

Example 1.1.8: Let V = {x, y}, z = {x, y, z}, then Y and Z are not disjoint 

since x, y in both sets ie x, y E Y and x, y E Z 

Example 1.1.9: Let F = x, y, z}and F = r, s, t}. Then E and F are disjoint. 

Theorem 1.1.1: Let A and B be two sets which are not comparable. 

Construct the line diagram of A, B and A r B. 

Proof: A r- B is a subset of both A and B that is A n B c A and A n B c= B. 

Accordingly, we have the following diagram 

AB 

01% z 

AnB 
Fig. 1.5 

Definition (Function) : Let A and B be two sets , a relation I?: A -> B is 

called a function if each element of A is assigned to a unique element 

Definition (Domain and co-domain): If the relation R : A -> B is a function 

then the set A is called domain and the set B is called co-domain. 

-Y 
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Definition (One One function) : Let f be a function from A to B then the 

function f is said to be one one function if every element of A is 

assigned to a single element of B. 

Definition (Onto function) : Let f be a function from A to B then the 

function f is said to be onto function if eveiy element of B is assigned. 

Definition (Product function): Let f be a function of A into B and let g be 

a function of B, the co-domain of f, into C. The new function is called 

a product function or composite function of f and g and it is denoted 

by (go f) or (g f) 

A (D CD C 
Fig. 1.6 
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1.2 Relation ,Lattice, Convex Sublattice. 

Definition (Relation) : A relation R from A to B is a subset of A x B. 

Example 1.2.1 : Let A = {1, 2, 31 and B = {a, b}. Then 

R = {(1, a), (1, b), (3, c)} is a relation from A to B. 

Definition (Equivalance Relation) : A relation R in a set A is an 

equivalence relation if 

R is reflexive, that is for every a E A, (a,a) c I? 

R is symmetric, that is ,(a,b) e R implies (b, a) R 

R is transitive, that is (a, b) E R, and (b, c) E R implies (a, c) E R 

Example 1.2.2 : Let A = {l, 2, 31 be a set and 

R = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 1), (1, 3), (3, 1), (2, 3)) 

be a relation of A x A then the relation is an equivalence relation, since 

R is reflexive, (1, 1), (2, 2), (3, 3) E R, 

R is symmetric, (1, 2), (2, 1), (1, 3), (3, 1) E R and 

R is transitive, (2, 1), (1, 3), (2, 3) E R. 

Definition (Partially ordered set): A nonempty set P, together with a 

binary relation is said to form a partially ordered set or a poset if the 

following conditions hold: 

Reflexivity: aRa for all a E P 

Anti-symmetry: if aRb,bRathen a = h (a,b E P) 

Transitivity: If aRb,bRcthen aRc (a,b,c E P) 

Example 1.2.3 : Let X be a non empty set. Then P(X), the power set of X 

( ie, set of all subsets of X) under c forms a poset. Here if 

A,BEP(X),then A:!~B means AcB. 
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Definition (Totally ordered set) : If P is a poset in which every two 

members are comparable it is called a totally ordered set or a toset or a 

chain. 

Thus if P is a chain and x, y E P then either x :!~ y ory :!~ x. 

Clearly also if x, y are distinct elements of a chain then either 

x <y ory <x. 

Definition (Greatest element of a poset) : Let P be a poset. If 3 an 

element a E P s.t. x :!~, a for all x E P then a is called greatest or unit 

element of P. Greatest element if exists, will be unique. 

Definition (Least element of a poset) : Let P be a poset. If 3 an element 

bE Ps.t. b :!~ xfor all x E P then b is called least or zero element of P. 

Least element if exists, will be unique. 

Example 1.2.4 : Let X = {1, 2, 3}. Then (P(X), c) is a poset. 

Let A = {Ø, {l, 21, {2}, {3}} then (A, c)is a poset with 0 as least 

element. A has no greatest element. Let B = { {1, 2}, {2}, {3}, {1, 2, 3} } 

then B greatest element {1, 2, 3} but no least element. If 

C = {Ø, {l}, {2}, {1, 2}} then C has both least and greatest elements 

namely, 0 and {l, 21 

Definition (Maximal element ) : An element a in a poset P is called 

maximal element of Pifa<x for no xEP 

Definition (Minimal element ) : An element b in a poset P is called a 

minimal element of P if x <b for no x E P. 

Definition (Upper bound of a set) : Le S be a non empty subset of a poset 

P. An element a € P is called an upper bound of S if x :!~ a Vx € S 
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Definition (Least upper bound of a set): If a is an upper bound of S s.t. 

a :~ b for all upper bounds b of S then a is called least upper bound 

(l.u.b) or supremurn of S. We write sup S for supremum S. 

It is clear that there can be more upper bound of a set. But sup, if it 

exists, will be unique. 

Definition (Lower bound of a set) : An element a E P will be called a 

lower bound of S if a < x Vx E S. 

Definition (greatest lower bound of a set) : If a is a lower bound of a set S. 

Then a will be called greatest lower bound (g.l.b) or Infimum S (Inf S) 

if of a set b !~ a for all lower bounds b of S. 

Example 1.2.5: Let (Z,:!~)be the poset of integers 

Let S = I. ..,-2,-1,0,1,2} then 2 = SupS 

Again the poset (R,:!~) of real numbers if S = {x E Rx <O,x # 01 then 

Sup S = 0 (and it does not belong to S). 

Definition (Lattice) : A poset (L,:!~) is said to form a lattice if for every 

a,b EL, Sup{a,b} and Inf {a,b} exist in L. 
( 

In that case, we write 

Sup{a,b} = a v b (read a join b) 

Inf{a,b} = aAb (read a meet b) 

Other notations like a + b and a b or a u b and a 'm b are also used 

for Sup{a,b} and Jnf{a,b}. 

Example 1.2.6 : Let X be a non empty set, then the poset (P(X),c)of all 

subset of is a lattice. Here for A,B E P(X) 

A4AB=AflB andAvB=AuB 
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As particular case, when X = {1,2,3} 

P(X) = {q$, {l} , {2} , {3} , {1,2} , {1,3} , {2,3}, {1,2,3} } 

It represented by the following figure 

11 1 l 

{I,2} 2,31 

{3} 

0 
Fig. 1.7 

Example 1.2.7 : Every chain is a lattice. Since any two elements a, b of a 

chain are comparable, say a :!~ b, we find 

a A b = Jnf{a,b}= a,avh = Sup{a,b} =b 

Example 1.2.8 : The set L = (1, 2, 3, 4, 6,121 of factors of 12 under 

divisibility forms a lattice. It is represented by the following diagram 

3 

Fig. 1.8 

Theorem 1.2.1: A poset (L,:!~)is a lattice iff every non empty subset of L 

has Sup and lnf. 

Proof: Let (L,:!~) be a lattice. Let S be any non empty finite subset of L 

Case (i) S has one element a, then ml S = Sup S = a 
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Case (ii) S has two elements a, b; then by definition of lattice, Sup S 

and Iiif S exist. 

Case (iii) S has three elements. Let S = {a,b,c} 

Since by definition of lattice any two elements of L have Sup and Inf. 

We take d=Inf (a, b), e= Inf {c,d}. 

We show e = Inf {a, b, c} 

By definition ofd and e, d :!~ a, d :!~ b, e :!~- c, e :!~ d 

Thus e:!~a,e<b,e<c 

z:> e is lower bound of {a, b, c}. 

1ff is any lower bound of {a, b, c}then 

f:!s~a,f:!~b,f<c 

f:!~a,f:!~b,and d=Jnf {a,b} gives f d 

J :!~ c, f :!~ d and e = Inf c, d} gives f e 

Hence e=infa,b,c}=inf S 

Similarly Sup S exists. 

The result can similarly be extended to any finite number of elements 

inS. 

Indeed 

inf S = inf{. ..... inf{inf{a1 , a21, a3}. ...... a,1} 

if S = {a, a2 ........ a,7 

Conversely, the result holds trivially as when every non empty finite 

subset 

Has Sup. and Inf. , a subset with two elements has Sup. and Inf. • 
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Theorem 1.2.2: If L is any lattice, then for any a,h,c E L,the following 

results hold 

aAa=a,ava=a 

aAb=bAa,avb = b v a 

aA(bAc)=(aAb)Ac 

a v (b v c) = (a v b)v c 

(4)aAb:!~-a, b:!~avb 

a:!~baAb=a 

> a v b = b 

If o, u E L, then 

0 A a = o, ova = a 

uAa=a, uva=u 

aA(avh)=a 

a v (a A b) a 

a :!~b,c:!~d= aAc:!~bAd 

avc :!~bvd 

In particular, a :!~ b => ax :!~ bt.x 

avx:!~bvx VXEL 

(Idempotency) 

(Commutativity) 

(Associativity) 

(Consistency) 

(Absorption) 

Proof: We prove the results for the meet operation and urge the reader to 

Prove similarly the results for join operation. 

aAa=irlf{a,a}=inf{a}=a. 

a v a = sup{a, a}= sup{a}= a. 

aAh=inf{a,h}=Inf{b,a}=bAa. 

a v b = sup{a, b}= sup{b, a}= h v a. 
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Let b AC = d,then d = InJ b, c} 

d:!~b,d<c 

Let e=Inf {a,d}then e:!~a, e:!~d 

Thus e :!~ a, e :!~ h, e :!~ c (using transitivity) 

Now proceeding as in proof of theorem 1.2.1 we find 

e= aAd = a A (h A C) = inf {a, h, C} 

Similarly, we can show that (a A b)A c = inf {a, b, c}. 

Let bvC=d,then d=sup{b,C} 

=> d~!b, d>c 

Let e = sup {a, d} then e ~! a, e ~!! d 

Thus e ~ a, e ~! b, e ~: c (using transitivity) 

Now proceeding as in proof of theorem 1.2.1 we find 

e = a v d = a v(b v c)= sup {a,b,C} 

Similarly, we can show that (a v b)v c = sup {a,b,C}. 

Hence av(bvc)=(avb)vc 

Follows by definitions of meet and join. 

a :!~h, a :!~a(by reflexivity) 

=:> a is lower bound of {a, b}and therefore a = a A h. 

a :!!~ b, b :!~ b (by reflexivity) 

=> b is upper bound of {a, b}and therefore a = a v b. 

Since o :!~ x :!~ u,for all x E L, the results are trivial for meet and 

join. 

a:~avb by 

aA(avb)=a by(S). 
-r 
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aAb:!~a by(4) 

(a A b) v a = a by (5) 

av(aAb)=a by(2) 

(8) aAcf~a<b 

ac <c:!~ d 

Thus a A cis lower bound of {b, d} 

Hence aAc:!~bAd, the g.1.b. {b,d} 

Alsothen a:!~h,x::!~x=>aAx_<hAx. 

We also proof the result for the join operation. 

Proposition 1.2.3: Show that idempotent laws follow from the absorption 

laws. 

Proof: Wehave aA(avb)=aand av(aAb)= a 

Take, b = aAbin first and we get a A (a v(aAb)) = a 

or aAa=a. Similarly we can show ava=a. 

Theorem 1.2.4: In any lattice the distributive inequalities 

aA (b v (a A h)v (a A c) 

av (b A c) (a v b)A (a v c) 

hold for any a, b, c. 

Proof: aAb:!~a 

aAb:!~h :!~bvc 

a A b is lower bound of {a, b v c} 

=aAb:!~aA(bvc) (1) 

Again aAc!~a 

aAc!~ c:!~hvc 

=> aAc!~aA(bvc) (2) 
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(1) and (2) show that a A (b v c) is an upper bound of {a A b, a A c} 

(a A b)v (a A c):!~a A (b V c) 

Similarly we can prove the other inequality. 

The above are also called semi distributive laws. . 

Theorem 1.2.5: In only lattice L, the modular inequality 

(b v c) ~!b v (a A c) 

holds for all a, b, c E L, a > b. 

Proof: Follows from previous theorem as a ~! b => a A b = b. 

The dual of the modular inequality reads as: 

av(hAc):!~hA(avc) Va, b, c with a:!~b • 

Theorem 1.2.6: In any lattice L, 

(aAh)v(bAc)v(cAa)<(avh)A(hvc)A(cva), for all a,h,cEL 

Proof: Since aAb:!~avb 

aAh :!~b :!~bvc 

aAb:!~a:~cva 

Wefind (aAb):!~(avh)Ahvc)A(cva) 

Similarly, (bAc):!~(avb)A(bvc)A(cva) 

and (cAa):!~(avb)A(bvc)A(cva) 

Hence (aAb)v(bAc)v(cAa):!~(avb)A(bvc)A(cva). • 

Definition(Algebric lattice) : A non empty set L together with two binary 

compositions (operations) A and v is said to form a algebric lattice if 

for all a, h, c E L, the following conditions hold: 

Idempotency: aAa=a, a v a = a 

Commutativity: a A b = b A a, a v b = b v a 
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Associativity: aA(bAc)=(aAb)Ac,av(bvc)=(avh)vc 

Absorption: a A (a v h) = a, a v (a A b) = a. 

Theorem 1.2.7: Show that a poset is a lattice iff it is algebncally a lattice. 

Proof: Clearly L is a non empty set. 

So set a A b = inf{a,b} and a v b = sup{a,b} 

Then a A a = inf{a,a} = a;av a = sup{a,a} = a 

So A and v are idempotent 

a A h =inf{a,b}=inf{b,a} =b A a 

a v b = sup {a,b} = sup{b,a} = b v a 

Aand v are commutative. 

Next, a A (h Ac) inf{a, h A c} = inf{a, inf{b, c} } 

= inf{inf{a, b}, c} = inf{aAb, c} 

= (a A b) A C 

a v (b v c) = sup{a, b v c} = sup{a, sup{b, c}} 

= sup{a, b vc} = supa, sup{b, c}} 

= sup{sup{a, b}, c} = sup{a v b, c} 

= (a v b) v c 

so A and v are associative. 

Finally, a A (a v b) = a A sup{a, b} = inf{a, sup{a, b} } = a 

av(aAb)=avinf{a,b} =sup{a,inf{a,h}}=a 

Hence A and v satisfy two Absorption identity 

So if = (L; A, v)is a lattice. 

(ii) Since A is idompotent ie a A a = a Va L 

So a:!~a 
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~ isreflixive 

Since A is commutative 

:.aAb=bAa 

=> a =b [:. aAb=a and avb = b] 

So, :!~ is anti symmetric. 

Let a :!~ b and b < c 

Than a=aAb, b=bAc 

= a A (b Ac) 

=(aAb)Ac 

EMOMMA 

=> a = a AC 

=a>c 

So, ~ is transitive 

.. (L, ~!) is a poset. 

Example 1.2.8 : Every non empty subset of chain is a sublattice. 

If S be a non empty subset of a chain L, then 

a,beS=a,heL=a,barecomparab1e 

Let a:!~b.Then aAb=aES 

a v b = b E S 

Definition (Meet-semilattices) : A non empty set P together with a binary 

operation (meet) A is called a meet-semilattice if for all a, b, cEEP. 

aAa=a 

aAb=bAa 

aA(hAc)=(aAb)Ac 
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Definition (Joint-semilattices) : A non empty set P together with a binary 

operation (joint) v is called a joint-semilattice if for all a, b, c 

ava=a 

avb=bva 

a v (b v c) = (a v b) v c 

Theorem 1.2.8 : If A and B be two lattice, that the product of A and B is a 

lattice. 

Proof: It is given that A and B are two lattice then 

A x B = {(x, y)Ix c= A, y E B} is a poset under the relation :!~ defined 

by (x1, Yi) :!~ (x2, Y2) x1  :!~ x in A, Yi Y2 in B 

We show that A x B forms a lattice. 

Let (x1, Yi),  (x2,  Y2) E Ax B be any element 

Then x1, x2  A and Yi Y2 e B 

Since A and B are lattices, (x1, x21 and {Yi, Y2} have Sup and Inf in A 

and B respectively. 

Let x1  A x2  = inf{x1, x21 and y1  A Y2 = inf{y1, y21 

then x1  A X2  < x, x1  A x2  =~ x2  Yi A  Y2 ~ Yi' Yi A  Y2 Y2 

(x1Ax2,y1Ay2):!~(x1,y1) 

(x1  A X2, Yi A  Y2) :!~ (x2,  Y2) 

= (x1  A x2, Yi A  Y2) is a lower bound of {(x1, yr).  (x2,  Y2)} 

Suppose (z, w)is any lower bound of {(x1,YO,(x2, Y2)} 

Then (z, w) :!~ (x1, Yi) 

(z, w) :!~ (x2,  Y2) 

=z:!~ x1,z:!~ x2 w:!~y',w:!~y2 
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=> z is a lower bound of {x1, x21 in A. 

w is a lower bound of {yi. Y21 in B. 

= Z~X1 AX2 =iflf{X1,X2 } 

W ~ Yi A  Y2 mf{ Yi Y2 } 

= (z,w):!~(x1 Ax2 ,y1 Ay2 ) 

or that (x1  A X2, Yi A  Y2) is g.1.b. {(x1, yi).  (x2, .Y2)} 

Similarity (by duality) we can say that 

(x1  v X2, Yi V  Y2) is I.u.b. {(x1, y)  (x2, Y2)) 

Hence A x B is a lattice. 

Also (x1, A (x2, Y2) = (x1  A x2), (Yi A  Y2) 

(x1, Yi) v (x2, Y2) = (x1  v x2), (Yi V  Y2). 

Definition (Convex sublattices) : A sublattice K of a lattice L is called a 

convex sublattice if for all x, y E K [x A y, x v y] K. 

Example 1.2.9 : In the lattice {1, 2, 3, 4, 6,121 under divisibility {l, 61 is a 

sublattice which is not convex as 2, 3 E [1, 6], but 2, 3 e {1, 61 

Diagrammatically the lattice {1, 2, 3, 4, 6,12) can be represented by 

the following figure 

Fig. 1.9 
Theorem 1.2.9 : A sublattice ot a lattice L is a convex sublattice if and only 

if for all Vx, y € K(x :!~ y), [x, y] c K. 
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If 

Proof: Let K be a convex sublattice of L. 

Let x, y € K(x ::~ y) be any elements, then by definition 

[xAy,xvy]K 

[x,y]çK as X:5y=xAy=x X<y=XAy=X xvy=y. 

Conversely, let [x, y] g K V x, y, (x :!~ y) 

Let x, y E K be a sublattice 

Also these are comparable. Thus by contrition. 

[xAy,xvy]GK. • 
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1.3 Bounded Lattice, Complete Lattice and Ideal of a Lattice. 

Definition (Bounded Lattice) : A lattice with a largest and a smallest 

element is called a bounded lattice. Smallest element is denoted by 

zero and the largest element is denoted by 1. 

Definition (Complete Lattice) : A lattice L is called complete if for its 

every subset K, both Sup K and Inf. K exists in L. 

Definition (Finite Lattice) : A Lattice L is called finite if it contain a finite 

number of elements. 

Example 1.3.1: Let L = {1, 2, 5, 101be a lattice under divisibility. Here in 

the lattice the finite number of element in L. So, L is finite lattice. 

Definition (Ideal of a Lattice) : A non empty subset I of a lattice L is 

called an ideal of L if 

a,bEJ avheI 

aEJ,iEL => aA1EI 

Example 1.3.2: Let L = [1, 2, 5, lO} be lattice of factors of 10 under 

FD 

2 61  

Fig. 1.10 

divisibility. Then {1}, {1, 21, {1, 51, {l, 2, 5, 101 are all the ideals of L. 

Definition (Prime Ideal) : An ideal P of L is called a prime ideal if for any 

x, y E L, x A y P implies x E P or y E P 

Definition (Principal ideal) : An ideal which is generated by a single 

element is called principal ideal. 
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Example 1.3.3 : Let (a] = {x x :!~ a} then the ideal (a] is generated by the 

element a. Hence (a] is principal ideal. 

Definition (Filter or Dual ideal) : A subset D of a lattice L is called a dual 

ideal if 

d1,d2 eD =d1 Ad2 eD 

dED and xEL.=xvdED 

Proposition 1.3.1. : Let CI?: L --> K be an onto homomorphism. Let I be an 

ideal of L, and let J be an ideal of K. Show that 0(I) is an ideal of K, 

and I'(J)= {a ac L,cD(a)E.J}is an ideal of L. 

Proof: To prove that D(I) is an ideal of K, let x, y c 

Then 3 a, b E I such that D(a) = x and D(b) = y. 

Now every x v y = 1(a) v ct(b) = cD(a v b) [ D is a homomorphism I 

Since us an ideal, avhEl and so (avb)ECl(I) 

ie xvyEclT.(I). 

Now z:!~x =(a):!~-D(b) 

a)=(a)A(b)=(aAh).ButaAbEI 

Since aEL,bEI & I is an ideal of L 

Hence z = I(a) = D(a A h) E 

Therefore 1(I) is an ideal of K. 

Again, let x, y e CD '(J). Then CD(x), CD(y) E J 

=> CD(x) v CD(y) E J [. J is an ideal] 

=CD(xvy)EJ 

x V yE 

Fj 
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Now let xED 1 (J) and zEL with x;then (x)EJ 

• D(z) A I(x) = D(z A x)= 

= t(z):!~ct(x)eJ 

= (J())J 

=> ZED 1 (J) 

Hence cD(J) is an ideal of L. 

Proposition 1.3.2 : Prove that every ideal of a Lattice L is prime if and only 

.4. if L is a chain. 
Proof: First suppose that every ideal of L is prime. Now we are to show that 

L is a chain. 

Let a,b E L. Then a A b E L. Now consider the ideal I = (a A b] 

generated by a A b. By hypothesis I is prime. 

Now aAbEI => either aElorbEl 

> either a:!~aAbor b:!~aAb 

=> either a=aAhorb=aAb 

=> either a:!~borb:!~a 
-r 

=> Lisa chain. 

Conversely, let L be a chain and P be an ideal of L, we are to show that P is prime. 

Let x,yEL with XAyEP. Since L is a chain 

Then either x :!~ y or y :!~ x = either X A y = x or x A y = y 

=> either xEP ory€P 

=> P is a prime ideal of L 

Hence proved. . 

Theorem 1.3.3: Let L be a lattice and K and I be non-empty subset of L 
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I is an ideal iff for all x, y E 1, x v y E I and for all 

x El, t :!~ximplies I El 

(K]={xELx:!~k1  vk2  v•••vk?? for some 

k1 ,k2,••,k,7  EH}. 

(a] = {x E Lx :!~ a) 

Proof: (i) Suppose I is an ideal. So I is a sublattice and so for all 

x,yel, xvyel.Nowlet xci, t:!!~x implies icL. 

41 
Then t=tAxcl 

Conversely, suppose I has the stated properties .let x, y c I then 

x A y :!~ x implies x A y e I. ie I is a sublattice. 

Now suppose i E I, x c L. Then / A x :!~ i implies / AX E I. 

Therefore I is an ideal 

(ii) Let x, y c R.H.S. 

Then x :!~ k1  v k 2  v v k,1  for some k1 , k2 , ••, k,7  c K 

y:!~k1 vk2 v  .. . vk for some k1 ,k2,•,k,11 cK 

Soxvy:!~k1 vk2 v••vk,7 vk1 vk2 v  .. . vk,,, 

Which implies x v y E R.H.S. 

If XER.H.S and tELwith t:!!~x,then x:!~k 1  vk 2  v ... vk for some 

k1 , k 2 , ..., k,7  c K. and t :!~ x ::~ k1  v k2  v v k,1  implies I E R.H.S. 

Hence R.H.S. is an ideal. 

Obviously R.H.S. contain K. 

Let 11 be an ideal then x:!~k 1  vk 2  v••vk,7 for 

somek1, k 2 , ..., k17  c K. Since k is an ideal containing K, x G K 

Therefore R.H.S. is the smallest ideal containing K. 
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(iii) Obvious from (ii) • 

Theorem 1.3.4: Set of all ideals l(L)of a lattice L again a lattice. 

Proof: Let I .1 e 1(L). Then clearly I A J = I (Th I. Now we claim that 

IvJ={xELx:!~ivj} for some iEI,jEJ. 

To prove this, let x, y E R.H.S. Then x :!~ I v j for some 

I El, J E land y :!~i vj1  for some I Ii El. 

So, xvy::~(ivj)v(,1  vj1 ) =(1v11)v(jvj1 ) [/vi1  EJ,jvj1  €1] 

which implies x v y E R.H.S. 

If x R.H.S and t E L with I :!~ x then x :!~ I v j for some 

li EJ,jEJ. 

So I :!~ / v j implies I E R.H.S 

Therefore R.H.S. is an ideal. 

Obviously this contain both I and J. 

Let xER.H.Sthen x:!~/vj for some i, el,j1  El. Since 11  is an 

ideal containing both I and J So / v j E I Hence i v j c J and hence 

x E 11 ie R.H.S :!~ K ie R.H.S. is the smallest ideal. 

Therefore R.H.S = I v j and so 1(L) is a lattice • 

Theorem 1.3.5: Prove that if D and F are dual ideals of L. Then 

l)AF=DnF 

1)vF={xELx~!dAf for some dED,fEF} 

[a) = {xE Ll x ~! a} 

complement element. 0 
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1.4 Complimented and Relatively complimented lattice 

Definition (Complimented lattice) : Let [a, b] be an interval in a lattice L, 

Let xE[a,b]be any element. If yeL s.t., X A y—a,xvy=b. We 

say y is a complement of x relative to [a, h], or y is a relative 

complement of x in [a, b]. 

Definition (Relatively complimented lattices) : If every element x of an 

interval [a, b] has at least one complement relative to [a, b], the 

interval [a, b] is said to be complemented. 

Further, if every interval in a lattice is complemented, the lattice is 
said to be relatively complemented. 

Theorem 1.4.1 : Let A be a non-empty finite set. Show that (p (A), c)is 

uniquely complemented 1 attices. 

Proof: Let A = cb finite set and p (A) be the power set of A. We know 

(p (A), c) form a lattice with least element (D and greatest element A. 

Any X,Y E p(A)X AY = X n Yand XvY=XuY 

since AA(A-X)=An(A-X)=D 

Av(A-X)=Au(A-X)=A 

We see A - X is complemented of X relative to [0, A] 

Then p (A) is complemented lattice. 

Suppose Y is any complemented of X then 

XAY=XnY=Ø 

XvY=XuY=A 

ie, XnY=An(A—X). 

XuY=Au(A—X) 
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Y=A—X ............(i) 

or that A-X is uniquely complemented of X. 

So (p (A), ç)  is an uniquely complemented lattice. 

Now we prove p (A) is also relative complemented. 

Consider any interval [x, y] in p (A). 

Let Z E [x,] be any number, Then 

Zn(Xu(Y—Z))=(ZnX)u(Zn(Y—Z))=Xuq5=X 

Zu(Xu(Y—Z))=(ZuX)u(Y—Z)=Zu(Y—Z)_—Y 

Showing that x u ( - z) is the complemented of Z relative [X, Y] 

Z is any element of any interval of p (A). 

Hence p (A) is relative complemented . • 

Theorem 1.4.2 : Two bounded lattices A and B are complemented if and 

only if A x B is complemented. 

Proof: Let A and B be complemented and suppose o, u and o, u are the 

universal bounds of A and B respectively. 

Then (o, o')and (u, u') will be least and greatest elements of Ax B. 

Let (a, b) E A x B be any element. 

Then a E A, bE Band as A, B are complemented, 3 a' A, h' E B s.t., 

aAa'=o, ava'=ubAb'=o', bvb'=u'. 

Now (a, b) A (a', b') = (a A a', h A h') = (o, o') 

(a, b) v (a', b') = (a v a', h v h') = (u, u') 

Shows that (a', b') is complement of (a, b) in A x B. 

Hence A x B is complemented 

Conversely, let A x B be complemented. 
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Let a e A, b e B be any elements. 

Then (a, b) e A x B and thus has a complement, say (a', b') 

Then (a, Li) A (a', Li') = (o, o') , (a, Li) v (a', b') = (u, u') 

= (a A a', Li A Li') = (o, o'), (a v a', Liv Li') = (u, u') 

=aAa'=o ava'=u 

hAh'=o' bvb'=u' 

ie., a'and b' are complements a & b respectively. Hence A and B are 

complemented. • 

Theorem 1.4.3 : Two lattice A and B are relatively complemented if and 

only if A x B is relatively complemented. 

Proof: Let A ,B be relatively complemented. 

Let [(a1 , b1 ), (a2 , Li2 ) be any interval of A x B and suppose (x, y) is 

any element of this interval. 

Then (a1 ,Li1 ):!~(x,y):!~(a2 ,b2 ) a1 ,a2 , XE A Li1 ,h2 , ye B 

=a1:!~x:!~a2 Li1:!~y:!~b2 

> xe[a,a] an interval in A, ye[b1 ,h2 ] an interval in B. 

Since A, B are relatively complemented, x, y have complements 

relative to [a1 , a2 ] and [Li1 , b2 ] respectively. 

Let x'and y' be these complements. Then 

xAx'=a1  yAy'=Li1  

xvx'=a2  yvy'=b2  

Now (X, y) A (x', y') = (x A x', y A y') = (a1, b1 ) 

(x, y) v (x', y') = (X v x', y v y') = (a2, Li2 ) 

(x', y') is complement of (x, y) related to [(a1 , b1 ), (a2 , b2)]. 
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Thus any interval in A x B is complemented. 

Hence A x B is relative complemented. 

Conversely, let A x B be relatively complemented. 

Let [a1 , a2 ] and [b1 , h2 ] be any intervals in A & B. 

Let x E [a1 , a21, y E [b1 , b2 ] be any elements. 

Then a1 :!~x:!~a2 ,b1 y:!~b2  

=' (a1 ,b1 ):!~(x,y):!~(a2,b2 ) 

= (x,y)E[(a1 ,b1 ),(a2 ,b2 )], an interval in Ax B 

= (x, y) has a complement, say (x', y') relative to this interval. 

Thus (x, y) A (x', y') = (a1 , b1 ) 

(x, y) v (x', y') = (a2, b2) 

= (x A X', y A 

(x v x',y vy')=(a2 ,b2 ) 

=, xAx'=a1,xAx'=a2  

yAy'=b1,yvy'=b2  

is complement of x relative to [a1 , a2 ] 

is complement of y relative to [b1 , b2 ] 

Hence A, B are relatively complemented. • 

Theorem 1.4.4 : Dual of a complemented lattice is complemented. 

Proof.: let (L, o) be a complemented lattice with o, u as least and greatest 

elements. Let (L, ) be the dual of (ia, p). Then u, o are least and 

greatest elements of L. 

Let a E L = L be any element. 

Since a E L, L is complemented , a' E L s.t., 
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aAa'=o,aAa'=u inL 

i.e., o = inf{a, a'} in L 

=> opa, opa' 

=> apo, a'po in L 

=> o is an upper bound of {a, a'} in L 

If k is an upper bound of {a, a') in L then apk, a'pk 

= kp a, ko a' => kpoasoislnf. 

opk 

i.e., o is l.u.b. {a, a') in L 

i.e., a v a' = o in L 

Similarly, a A a' = u in L 

or that a' is complement of a in L 

Hence L is complemented. 
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1.5 Atom and Dual atom. 

Definition (Atom) : An element a in a lattice L is called an atom if it is 

covers o. In other words a is an atom iff a # o and x A a = a or 

xAa=o vxEL. 

Definition (Dual atom) : An element b is called dual atom if u, the greatest 

element of the lattice covers b. 

Definition (Length) : A finite chain with n elements is said to have length 

n - 1, (i.e. , length is the number of 'links' that the chain has.) 

Definition (Cover) : If a and b two elements in a chain b <a if there exist 

no element c s.t. b <c <a then we say a cover b. 

Definition (Height or dimension) : Let L be a lattice of finite length with 

least element o. An element x E L is said to have height or dimension 

n if I[o, x] = n and in that case we write h(x) = n. 

Proposition 1.5.1 : Show that no ideal of a complemented lattice which is a 

proper sublattice can contain both an element and its complement. 

Proof: Let L be complemented lattice. Then o, U L. Let I be an ideal of L 

such that I is a proper sublattice of L. Suppose 3 an element x in I 

such that its complement x' is also in I. 

Then XAX'=O, xvx'=u 

since I is a sublattice X A X', x v x' are in I i.e., o, U el 

Now if I E L be any element then as u E I. 

IAUEI 

/EI=J.çI=I=L,acontradiction. • 

Proposition 1.5.2 : Let L be a uniquely complemented lattice and let a be an 

atom in 1. Show that a' the complement of a is a dual atom of L. 
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Proof : Since L is uniquely complemented lattice, every element has a 

unique complement. 

Suppose a' is not a dual atom, then 3 at least one x s.t., a' <x <U 

= a'va:!~xva 

=> u:!!~xva:!~u 

=> u=xva 

Now if a :!!~ x then x v a = x => x = u, not true. Again if a :~ x, then 

a A x = o (note a is an atom) 

Thus aAx=o,avx=u =x=a', again acontradiction. 

Hence a' is a dual atom. • 

Proposition 1.5.3: Let L be a lattice, let P be a prime ideal of L, and let 

a,b,ceL.Provethatifav(bAc)P,then (avb)A(avc)EP. 

Proof.: Since a v (b A c)E P then a E P and b A C E P [P is an ideal and 

a, h A C E P] 

=> a E P and b E P or C E P [as P is prime ideal] 

=> either avbEP oravCEP 

= (a v b)A (a v c)E P [as P is prime ideal] 
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"Modular and Distributive Lattice" 

2.1 Introduction. 

In this chapter we discuss the definition of homomorphism, isornorphism, 
join-reducible element, hereditary. An element a E L is call a join-reducible 
element if b,ce L,a=b v c implies that either b =a or c = a 

1 

-f 

a 
b a=avO, b=bvO 

0 
Fig. 2.1 

Here a, b are all join irreducible elements. We denote .1(L) as the set of all 

join irreducible elements. 

In this chapter we also prove the following theorem, "A Lattice L is 

distributive if and only if for all x, y € L x <y. There exist a prime ideal P 

with xeP,yP" 
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2.2 Modular and Distributive Lattice 

Definition(Modular Lattice): A lattice L is called modular lattice if all 

a,b,c E Lwith a > h 

a A (b v c)= (a A b)v (a A c)= [b v (a A c)] 

Definition (Distributive Lattice): A lattice L is called distributive lattice if 

all a,h,cE L, aA(bvc)=(aAh)v(aAc) 

Example 2.2.1 : The lattice (p(x), ç)  is a distributive lattice as 

An(BUC)=(AnB)LJ(AnC) 

For a distributive Lattice L 1(L) denotes the set of all nonzero join 

ineducible elements, regarded as a poset under the partial ordering of 

L. H (1(L)) denotes the set of all hereditary subsets partially ordered 

by set inclusion. H (1(L)) is a Lattice in which meet & join are 

intersection & union respectively. Hence H (1(L)) is a distributive 

Lattice for aEiL, set r(a) = Ix E J(L) I x :!~ a} 

Theorem 2.2.1: Every maxima! chain C of a finite distributive Lattice L is a 

length 1(L) (order of 1(L)) 

Proof: For a € 1(L), Let m(a) be the smallest element of C containing a. 

Defme a map (1) :1(L) - C - {o} by (I)(a) = m(a) 

Let (a)=tD(b). Then m(a)=m(b). let m(a)>x and xEC 

Then, x v a = x v b. Therefore, a = a A (x v a) 

= a A (xv b) 

= (a A x) v (a A b) 

either a =(a Ax) or a —(a A h) [:a E 1(L)] 

But a=(aAx) =a:!~x =rn(a):!~x<m(a);acontradiction. 

Therefore, a = (a A h)and so a :!~ b .Similarly b :!~ a. 

I 

ri 



[x=zAx U3qj xz:.] (zAaT)v(i(Ax)v(zAx)= 

(zAdT)v[(fAx)vx]=(zA)vx uqj 

XZ I4jJM 73Z'4T'X 

Iui 

pjoq (x A z) v (z A aT) v ('iT A x) = (x v z) A (z v aT) A (( v x) osoddns 

'1cj3SJOAUO3 

(x A z) V (z A aT) V (T A x) = 

(xAz)v(dTAx)v(z AaT)= 

()icq (zAx)v(xAaT)v(zAaT)= 

(z) cq [(x v z) A (z A x)] v [(x v z) A T] = 

(j)cq (xvz)A[(zAx)vAT]= 

(xvz)A[(zvaT)A(xvaT)J=(xvz)A(zvaT)A(aTvx) 

7 D z '( 'x 11g  Joj 

(z) (zAx)v(aTAx)=(zvaT)Ax 

(j) (zvx)A(aTvx)=(z AaT)VX 

UQqj oAunqusip si j osoddnS : J00d 

jmpjoq (xAz)v(ZAAT)v(aTAx)=(xvz)A(zvaT)A(aTvx) 

/(11upi 0q2J1 1c1uo pr ji Aunqusip Si OAOJd : ZZZ UOJSOtIOJd 

pAo1d OOUOH 

quojjo : JUqj  sAoJd I°'1iM {o} - (cr)r 'ouo si q 'oiojo.iouj 

(v) = 

(z)d 
- 

(aT).i D v Xuu ioj (t)tu = ( Os puu '(z) (d)d uq 

• DD z 'z < aT PULI {o} - aT 331 'SSOu-O3uO oqj MO4S oi 

. uo— ouo Si SOAOJd qotqM q = 

ouEd 
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-w 

=(xvy)A(yv z)A(zvx) 

A y) V (y A z) V (z A x) 

=(xAy)v(yAz)vz[:z::~x then xAz=z] 

= (x A y) v z 

=> L is modular. 

Now for any a,b,cEL, 

a A (b v c) = [a A (a V b)] A (b v c) 

=[aA(av c)]A(avb)A(bvc) 

=a A [(a v b) A (b v c) A (c v a)] 

=a A [(b A c) v {(a A b) v (c A a)}] 

= (a A b A c) v (a A b) v (c A a) 

(a A h) v (c A a) 

ie aA(bvc)=(aAb)v(cAa) 

Thus L is distributive. 

Theorem 2.2.3: A lattice L is modular if and only if no sublattice 

isomorphic to N 5 . 

Proof.: Suppose L is a modular lattice. Then its eveiy sublattice is also 

modular. Since N 5  = {o, a, b, c, i}. Where c :!~ a, a A b = b A C = 0. 

a 

C 

0 

Fig. 2.2 

And a v b = b v c =1 is not modular. So L does not containing 

sublattice isomorphic to N5. 
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To prove the converse, Let L be not modular. Then there exists 

elements x,y,zeL with z:!~x suchthat xA(yvz)#(xAy)vz. 

But x A (y v z)> (x A y) v z. Then the elements X A y ,y, (x A y) v z, 

X A (y v z) y v z form a lattice. Diagram as follows, 

w 

XA(yVZ) 

(xAy)vz 

V 

XA 

Fig. 2.3 

Observethat, (xA(yvz))A y =x A[(yv z)A y] 

=XAy 

and yA(xA(yvz))=xAy 

Again, yv[(xAy)vz]=[yv(xAy)]vz 

=yv z 

and yv[xA(yvz)]=yvz 

IfyxAy then y:!~x andso yvz=(xAy)vz 

=(xAy)vz=yvz (i) 

Also,y:!~x and z:!~x,=yvz:!~xand 

SO XA(yVZ)yVZ (ii) 

Hence we have, x A (y v z)= (x A y)v z 

Which is a contradiction, Since L is not modular. So y # x A Y. 

Similarly we can show that, (x A y)v z # X A y, y # y V z, 

X A (3/V z)#yv z. 
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Hence the five elements are distinct and they fonn a sublattice of L 

which is isomorphic to N 5 . 

Therefore L is modular. 

Theorem 2.2.4 : A modular lattice is distributive if and only if it has no 

sublattice isomorphic M 5 . 

Proof.: 1St suppose a modular lattice L is distributive. Then its eveiy 

sublattice is also distributive. 

a/jc 

Fig. 2.4 

Since M 5  is not distributive (For a A (b v c) = a A 1= a but 

(a A b) v (a A c) 0 v 0 0) So, L cannot contain any sublattice 

isomorphic to M 5 . 

Conversely, suppose that L is not distributive. Then there exist 

elements x, y, z eL such that x A (y v z)# (x A y)v (x Az) but 

(xAy)v(xAz)~xA(yv z) 

=(xAy)v(xA z)<xA(yv z) 

Thus every modular lattice which is not distributive contains a 

sublattice isomorphic to M 5 . 

Hence L is a distributive. . 

-4- 
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V 

2.3 Sectionally complemented Lattice 

Definition (Sectionally complemented): A lattice L with 0 is called 

sectionally complemented if for each x E L, o, x] is complemented. 

Definition (Generalized Boolean lattice): A sectionally complemented 

distributive lattice L is called a generalized Boolean lattice. 

Theorem 2.3.1: A lattice L is distributive if and only if every element has at 

most one relative complement in any interval. 

Proof.: 1 St suppose a modular lattice L is distributive. Let a, b, c E L with 

ba<c. 

Suppose a has two relative complements d and e in [b, c]. Then we 

have 

aAd=b a v d = c 

and aAe=b a v e = c 

Now, d=dAc 

d A (a v e) 

= (d A a) v (d A e) 

=bv(dAe) 

= (a A e)v (d A e) 

= e A (a v d) 

=eAc 

=e 

=> d = e 

Hence a has one relative complement in any interval. 

Conversely, suppose L is not distributive. Therefore it contains a sublattice 
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isomorphic to either M 5  or N5  given below: 

a 

a 

C 
C 

5 

0 U 

Fig. 2.5 Fig. 2.6 

In both case c has two relative complements. Which gives a 

contradiction. 

Hence L is distributive. . 

Theorem 2.3.2: A lattice L is distributive if and only if for any two ideal I 

and JofL 

IvJ={ivji€J,jeJ} 

Proof.: 1st suppose a modular lattice L is distributive. Then clearly 

R.H.ScJvJ. 

Now, let 1 E I v J .Then we have 1 :!~- 1 v j for some i €1 and j c J. 

11A(iVj) 

= (IA (t A 

=i'vj' where, i'=IAIEI and j ' =IAjEJ 

Hence 1€R.H.S. IvJcR.H.S 

Therefore, IvJ={ivjjiEl,jEJ} 
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Conversely, suppose L is not distributive. Therefore it contains 

elements a, b, c in M 5 or N 5  

Vr 

  

a 

a 

c b 

0 0 
Fig. 2.7 Fig. 2.8 

• Let I = (b] and J = cc], since a :!~ b v c, then we have a E I V J. 

However a has no representation as in given theorem. 

For if a = I v j, I e I, j e J. Then j :!~ a. Also j :!~ c. Therefore 

/:!~aAc<h.Thus jEI. 

Which gives a contradiction. 

Hence L is distributive. • 

Theorem 2.3.3: For any two ideals I and J of a distributive lattice L if I A J 

and I v J are principal then both I and J are principal. 

Proof.: Let I A .J = (x] and I v .1 = (y] 

Then y=ivj forsome iEIand je.J. Set c=xvi and b—xvj. 

Then clearly cEI and beJ. 

We have to show that .1 = (c] and J = (b]. 

If I # (c], then there exists an element a > c such that a E I. 

Moreover, the set {x, a, b, c, y} fonn a lattice isomorphic to N 5  

X 

Fig. 2.9 
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ie, L is not distributive. Which is a contradiction 

Hence I = (c]. Therefore I is a principal ideal. 

Similarly, we can show that, J = (hi. ie  J is also a principal ideal. 

Hence proved. • 

-Y 

A. 
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2.4 Homomorphism and Isomorphism. 

Definition (Homomorphism): Let L and M be lattices. A mapping 

8: L —> M is called a meet homomorphism if O(a A h)= 0(a) A 0(b). 

It is called join homomorphism if 0 (a v h) =0 (a)v 0(h). 

If 0is both meet as well as join homomorphism, it is called a 

homomorphism. A homomorphism is sometimes called a morphism. 

Definition (Isomorphism) : Let L and M be lattices. A mapping 

0: L -> M is called an isomorphism if for all a, b c L ,then 

0(a A b)=0(a)AO(h), 0(av b)=0(a)v 0(b) and 0 is one-one and 

roiwej 

Theorem 2.4.1 : Let L be a distributive and a e L, the map 

ço : x -> (x A a, x v a) is an embedding of L into (a]x [a). it is an 

isomorphism if a has a complement. 

Proof.: For x, y E L 

we have, (x) = A a, x v a) and (y) = A a, y v a). 

Then (xAy)=((xAy)Aa,(xAy)va) 

= (X A y  A a, (xv a)A (y  v a)) 

=((xAa)A(yAa(xv a)A(yva)) 

= KxAa,xva) A (y Aa,y va) 

=(x)A(y) 

and ço(xvy)=((xvy)Aa,(xvy)va) 

=((xAa)v(yAa),(xv a)v(yv a)) 

= (x A a, xv a) v (y  A a, yv a) 

= ç(x)v (y) 

A. 
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Hence q is a homomorphism. 

Now let q,(x)=ço(y),x,y€L. 

Then (xAa,xva)(yAa,yva) and 

So, XA a =yAa and xv a =yv a. 

Now, x=xA(xva) 

= X A (y v a) 

= (x A y)v (x A a) 

=yA(xva) 

=yA(yv a) 

=y 

'x — y and so ço is one-one. 

Hence q is an embedding. 

2nd part: Let a E L has a complement. Choose an element 

(x, y)  (aix [a), then x :!~ a :!~ y. Since a has a complement in L so it 

has a relative complement b in the interval [x, y]. 

Then wehave, aAb=x and avb=y 

:.(x,y)=(aAh,avb) 

=(b) 

Hence ço is onto. Therefore çø is an isomorphism. . 

Zorn'a Lemma 2.4.2: Let A be a subset and let 
, 

be a non empty subset of 

P(A). Let us assume that X has the following property: 

IfCç X and Cisa chain,then u {XXEC}.Then X hasa 

maximal number. . 

1 
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Corollary 2.4.3: In a distributive lattice L every ideal is the intersection of al 

prime ideals containing it. 

Proof.: Let I be any ideal of L. Let I = nfll  P P is a prime ideal of 

L. We have to show that 1=11 . 

If I # I, then there exists an element x e I but x 0 I, Then by Stone 

theorem there exists a prime ideal 11  I but x E P1 . This implies that 

x 0 I. Which is a contradiction. 

Hencel=I1 . . 

Theorem 2.4.4: Let L be a distributive lattice with 0 and 1. Then L is a 

Boolean lattice if and only if P(L), the set of all prime ideals of L is 

unordered. 

Proof.: First suppose L is a Boolean lattice. 

Suppose P(L) is not unordered. Then there exist P, Q P(L). Then 

there exists an a E 0 - P. 

Now a A a' = 0 E P. Since P is prime and a o P implies a' E P c Q. 

=a' EQ. 

Thus a v a= I E Q. Which is a contradiction as Q is prime. 

Hence P(L) is unordered. 

Conversely, Suppose that P(L) is unordered. We have to show that L 

is a Boolean lattice. 

If L is not Boolean, then there exist an element a E L which has no 

complement. 

Set D=avx=1}. Then isadual ideal. 

Consider D1  = Dv [a)= Ix I x A a} for some d ED 
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[D={ravx=1}, [a)={xa:!~x}, Dva=x~!a~!aAd}for 

some d D] 

Now we have to show that D1  does not contain 0. 

If D1  contain 0, then 0 = d A a for some d E D. Then we have 

d v a = 1. Which gives a contradiction as L is not Boolean. 

Hence 0 o D1 . Then there exists a prime P such that P n D1  = D. 

Now i o [a)v P for otherwise 1= a vp for some p E P. 

Which is a contradiction.. 

Definition (Join irreducible element): An element a € L is called a join 

irreducible element if for b, c e L, a = b v c implies that either b = a 

orc=a. 1 

b 
a=av0, b=bv0 

Fig. 2.10 

 

Here a, b are all join irreducible. We denote J(L) as the set of all join 

irreducible element. 

Definition (Hereditary): A subset A of a poset P is called hereditary if for 

any x E A and y :!~ x ; (y E P) implies y E A. 

H(P) denote the set of all hereditary subset of P. 

Theorem 2.4.5: Let L be a finite distributive lattice. Then the map 

q': a -> r(a) is a isornorphism between Land H(J(L)). 

Proof.: Define q: L —* H(J(L)) by p(a) = r(a), a E L. 

Since L is fmite, so evely element is the join ofjoin irreducible 

elements. Thus a e L => a = v r(a). 
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19. 

Obviously ço(a A b) = (a) r-  ço(b) . So ço is a meet homomorphism. 

To show that ço is a join homomorphism. We are to show that 

r(a v b) = r(a) u r(b). 

Now r(a) j r(b) c r(a v b) is obvious. 

Let xe r(a vb) 

=x:!~avb 

X = X A (a v b) 

= (x A a)v (x A b) 

Since xEJ(L),sowehave either x=xAa orx=xAb 

=> either x:!~a or x < b 

=> either x € r(a) or x E r(b) 

=> xcr(a)ur(b) 

Hence, r(a v b) g r(a) .i r(b). 

Therefore, r(a v b) = r(a) u r(b). So ço is ajoin homomorphism. 

Therefore, ço is a homomorphism. 

Suppose q'(a) = (b), a, h E L 

=r(a)=r(b) 

z:> v r(a) = v r(b) 

=> a = b 

Hence qq is one-one. 

Toshow çi, is onto. Let A E H(J(L)) and aEL.Set a=vA.Weare 

to show that r(a) = A. 

Clearly, A c r(a). 

Let x e r(a) = x :!~ a 

- x=xAa 
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=XA(VA) 

= v(x A I I  1 EA) (since L is distributive) 

Since xEJ(L) so x=xAi forsome tEA. 

=> x < I 

=xeA as A€H(J(L)) 

=.r(a)c:A 

=ço(a)=A 

Hence q is onto. 

Therefore, L H(J(L)). 

Proposition 2.4.6: Let L be a lattice, let P be a prime ideal of L and let 

a,bEL. Prove that ifav(bAc)EP then (avb)A(avc)EP. 

Proof.: Suppose av(bAc)EP, then wehave aEP and hACEP, since 

a:!~av(bAc), bAc:!~av(bAc) and Pis ideal. 

=aEP and bEPor cEP 

=> either avbEP or avcEP 

= (avb)A(avc)EP [asPis prime ideal.] 

Proposition 2.4.7: Show that the lattice L is distributive if and only if for all 

x, y E L, x <y .There exists a prime ideal P with x E P, y 0 P. 

Proof.: Suppose L is distributive, let x, y e L with x <y. Consider I = (x} 

and D = [y), then I n D = cti and so there exist a prime ideal P such 

that PDI and PmD=,then xEI', yP. 

Conversely, let us assume that for all x, y E L with x <y there exists 

aprime idealP such that xeP, yP 

We have to prove that L is distributive. 
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If possible, let L is not distributive. Then there exists a, b, c E L such 

that av(bAc)#(avb)A(avc)asav(bAc):!~(avh)A(avc) 

=> a v (b A c)<(a v h)A(a v c) 

Hence there exist a prime ideal P such that a v (b A c) E P, 

(a v h)A (a v C) 14  

Now, av(bAc)EP 

=> aEP and bAcEP[: Pis prime ideal] 

=> a P and either b E P or c E P 

=> either a, b cP or a, c E P 

= either avbEP oravcEP 

= (a v h)A (a v c)E P which is a contradiction. 

Hence L must be distributive. 

Since P is prime, it is follows that a v (b A c) E P & 

(a v b)A (a v c) 0 P gives in a contradiction. 

Hence L is distributive. • 

Proposition 2.4.8: A lattice L is distributive if and only if 1(L) is 

distributive; 1(L) is the set of all ideals. 

Proof.: Suppose L is distributive. Let I,], K E 1(L). We need to show that 

I A(JV K)_— (I AJ)V(I A K). 

The relation (i A .J)v (i A K)c I A (i v K) is obviously true. Let 

xeJA(JvK), then xEI and xEJvK. Since L is distributive. 

So XXA(jVk)=(XAj)V(XAk)E(IAJ)v(JAK) for some 

j€J, keK. 

Then, IA(.JvK)c(IAJ)v(IAK) 

.'.IA(JVK)(IAJ)V(IAK) 

A 

4 
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1(L) is distributive. 

Conversely, suppose, 1(L) is distributive, let x, y, z E L. Then 

(x A (y V z)]= (x] A (V V z] 

= (x] A [(y] v (z]) as 1(L) is distributive. 

=(x A y]v (x AZ] 

= ((x A y)v (x A z)] 

=> X A (y  v z)= (x A y)v (x A z) 

So L is distributive. 
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"Pseudocomplemented Lattice" 

3.1 Introduction. 

In this chapter we discuss presodocomplernented lattice, stone and algebric 
lattice. presodocomplemented lattice have been studied by several authors 
(17), (22), (25), (26), (27), (29) 
Recall that let L be a lattice with 0 and 1 and a E L. An elernentsa* E L is 
called pseudocomplement of a if a A a* =0 and a A x =0 (x E L) 
impliesx:!~a*. 

a b = a * 

Fig. 3.1 
b pseudo complern ent of a ie b = a * 

We denotes pseudocomplernent of a by a * 

C C* 

Fig. 3.2 

A lattice L with 0 and I is called pseudocomplernent if its every 

element has a pseudocomplement. 

a.c 

Fig. 3.3 

Every finite distributive lattice is called pseudocomplernented. 
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1=0* 

C 

b=c >(&=b 

0 = 1* = C * 
Fig. 3.4 

pseudocomplernented lattice 

El 
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3.2 Pseudocomplemented Lattice. 

Definition ( Pseudocomplemented): 

Let L be a lattice with 0 and 1 and a E L. An elements a* e L is 

called pseudocomplement of a if a A a* = 0 and a A X =0 (x € L) 

irnplie Y < (7* 

a b = a * b pseudocomplement of a ie b = a * 

4 Fig. 3.1 

We denotes pseudocomplement of a by a * 

C C* 

Fig 3.6 

A lattice L with 0 and 1 is called pseudocomplement if its every 

element has a pseudocomplement. 

a 

4<b 

C 

Fig 3.7 
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Every finite distributive lattice is called pseudocompleinented. 

1=0* 

C 

0 = 1* = c * 
Fig. 3.8 

pseudocomplemented lattice 

Definition (Dense element): If the pseudocomplemented zero of an 

element is called dense element and denoted by D(L). 

D(L)={aELa*=0} 

Cu  

as b 
D(L) = {i, c} 

0 

Fig. 3.9 
Definition (Dense Lattice): A pseudocomplemented lattice is called 

dense lattice if S(L) = {o, i}. 

S(L) is called the skeletal of L. The elements of S(L) are called 

skeletal elements. 

b S(L)={0,1} 

a 

0 

Fig 3.10 

Proposition 3.2.1 : Let L be a pseudocomplernented meet semilattice and 

let a, b E L verify that formulas 

(a A b)* = (a * * A b) = (a * * A b * 
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Proof.: We know that, (aAb)*=(aAb)***=((aAb)**)* 

ie, (aAb)=(a**Ab**)* (i) 

Again, (a * * Ah>c = (a **A b)* ** =((a * * A b)* *)* 

= (a * * * * A b * * 

ie, (a**Ab)*=(a**Ah**)* (ii) 

Now from (i) and (ii), we get, 

(a A b)* = (a * A b)* = (a * *Ab * 

Proposition 3.2.2 : Let L be a pseudocomplemented distributive lattice. 

Prove that for each a E L, (a] is a pseudocomplemented distributive 

lattice, In fact, the pseudocomplement of x E (a] in (a] is x * a. 

Proof.: Since L is distributive lattice, then for each a E L, (a] is also 

distributive lattice. We shall now show that (a] is 

pseudocomplemented. 

let xE(a] then xA(x*Aa)=(xAx*)Aa=OAa=O. 

Furthermore, ifxA/=O then I < x * =,>IAa:!~x*Aa 

=?l:!~x*Aa [IE(a]=t:!~a=tAa=t.] 

From the above it follows that x * a is the pseudocomplement of x. 

Therefore, (a] is a pseudocomplemented distributive lattice. 

The proof is thus complete. 
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3.3 Minimal prime ideal. 

Definition (Minimal prime ideal): 

A prime ideal P of a lattice L is called a minimal prime ideal if there is 

no prime ideal Q such that Q c P. 

Theorem 3.3.1.:Let L is a lattice with 0. Then every prime ideals contains a 

minimal prime ideal. 

Proof.: Let P be a prime ideal of L and X denotes the set of all prime ideals 

Q contained in P. Then 
,'' 

is nonempty, since P E 

Let C is a chain in X and letM=r{eC}. 

Then M is nonempty and 0 E M. 

Clearly M is an ideal. Let a A bE M for some a, b E L, then 

a A h E 
,' 

for a V 
, 

E C. 

Since x is prime, so either a or b E X . 

ieeither M=n{ae}orM =n{%bE%} 

ie either a eM or b eM. 

Hence M is a prime ideal. Therefore every chain in has a smallest 

element. 

Therefore by Zorn's Lemma X has a minimal ideal R. 

In other words P contains a minimal prime ideal R.. 

Theorem 3.3.2.: Let L be a pseudocomplementd distributive lattice and P be 

a prime ideal of L. Then the following conditions are equivalent. 

P is minimal. 

xeP implies x*P. 

xeP implies x**eP. 

Pn1)(L)= 

-4 
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Proof.: (I) = (ii) 

Suppose (i) holds. ie  P is a minimal prime ideal. 

Let x El'. I f(ii) fails, then x* E P. 

Let D=(L—P)v[x) we claim that OD, 

forif O€D,then O=qAx forsomeqEL—P 

=?q:!~x*EP => qEP which is a contradiction. 

Hence 0 0 D. 

Then by Stone representation theorem there exist a prime ideal Q such 

that QnD=. 

=(L-P)nQ=D and soQcP. 

Moreover x e P but x 0 Q and so Q c P. 

Which is a contradiction. 

Hence x*  o P . ie (ii) holds. 

Suppose (ii) holds. ie  x e P implies x*  o P. 

Now x*Ax**=OEP.  SincePisprimeand x*P, so x** E P. 

ie (iii) holds. 

= (/v) 

Suppose (iii) holds. ie x € P implies x * * E P. 

Let x E P r D(L). then x E P and x E D(L). 

Then x*=0  =:,.x**=1. But x** E P1E P. 

Which is a contradiction. 

Therefore P n D(L) = cb. Hence (iv) holds. 

= (i) 

Suppose (iv) holds. ie  P n D(L) = 

-4 
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If (i) does not hold, then there exists a prime ideal Q such that Q c P. 

Let xEP—Q. Then xQ.Now XAX*=O€Q. 

Since Q is prime and xz Q then x* e Q c P. 

= x* E P 

Therefore xvx*EP. Moreover (xvx*)Ic=x* Ax**=O. 

X V X*  E D(L) 

x v x* E P r D(L). Which contradict (iv) 

Hence P is minimal. ie  (i) holds. 
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3.4 Stone lattice, Algebraic Lattice and Compact element 

Definition (Stone lattice): 

A distributive pseudocornplernented lattice L is called Stone lattice if 

for allaEL a*va**=1 

Example 3.4.1 (Eveiy Boolean lattice is Stone lattice Converse is not true). 
140 

 40 

0 

Fig. 3.11 

Stone lattice but not Boolean lattice 

Definition (Stone Algebra): 

A pseudocomplemented distributive lattice is called a Stone algebra if 

for each a*va**1. 

Definition (Generalized Stone Lattice): 

A lattice L with 0 is called generalized Stone lattice if (x]* v(x]* * = L 

for each x L. 

The generalize pseudocomplernented lattices (ie. a lattice with 0 such 

that (x]* is a principal for each x.) 

Katrinak [5, Lemma 8, p.1  34] proved the following result. 

Lemma 3.4.1 : A lattice with 0 is a generalized Stone lattice if and only if 

each interval [o, x], 0 <XE L, is a Stone lattice. 

We remark that a Stone lattice can be considered as either a 

generalized Stone lattice with 1 or a pseudocomplemented lattice in 

which x*vx**=i for each xwhere x}=x]. • 

Theorem 3.4.2 : For a distributive lattice L with pseudocomplementation 

the following condition are equivalent: 

(i) L is a stone algebra. 
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For a,bEL (aAb)*=a*vb*. 

a, b E S(L) implies that a v b e S(L). 

S(L) is a subalgebra. 

Proof: (I) = (ii) 

Suppose (i) holds. ie L is a Stone algebra. 

Weshalithat, (aAb)*=a*vb* 

Let a, b € L. Then, 

(aAh)A(a*vb*)=(aAbAa*)v(aAbAb*) 

[. L is distributive lattice] 

= (a A a * Ab)v (a A b A b *) 

= (o A b)v (a A 0) 

=Ov0 

=0 

Now suppose xELsuch that (aA b)A x=0. 

=(bAx)Aa=O =.bAx:!~a*.Meetingbothsideswith a** 

we get, 

a**A(bAx):~a**Aa*=0 

= (x A a* *) A b =0 

=xAa *=b*. 

since L is a Stone algebra, then we have 

a * va * * = 1 

Now x=xA1=xA(a*va**) 

A a *)v  (x A a * 

~ a * vb * 
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Hence a * vb * is the pseudocomplement of a A b. ie (ii) holds. 

= (/i/) 

Suppose (ii) holds. Let a, b E S(L) we have a = a * * and b = b * * 

avb=(a**vb**) 

= (a * Ab *)* 

= (a v b) * * 

='avbeS(L) 

(iii) :=:. (iv) 

Suppose (iii) holds. ie  a, b E S(L) implies that a v h E S(L). 

As a,bES(L), sowehave 

avbeS(L). 

Hence (iv) holds, ie S(L) is a subalgebra. 

(ii) => (1) 

Suppose (iv) holds, ie S(L) is a subalgebra of L. 

Now, for any a E L, a* E S(L), a * * E S(L). 

Hence a*va**=(a**Aa***)* [From avb=(a*Ab*)* ] 
-71  = 0 * 

=1 

Hence L is stone algebra. ie  (i) holds. • 

Theorem 3.4.3.: Let L be a distributive lattice with pseudocomplemented. 

Then L is a Stone algebra if and only if P v Q = L for any two distinct 

minimal prime ideal. 

Proof.: 1st Suppose L is a Stone algebra. Suppose P & Q are two distinct 

minimal prime ideals. 

Let a E Q - P. Then a P . Now a A a* =0 c P. Since P is prime 

and aP so a* E P. 
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Now L 
- 

Q is a minimal dual prime ideal. 

Thus(L—Q)v[a)=L.Soa=xAa for somexEL—Q. 

=> a*>— xeL — Q 

=> a*eL—Q 

= a*Q 

=> a* E P—Q 

Similarly we have, a * * E P 
- Q. 

Ir 
Hence a * va * * e P v Q. But since L is a Stone algebra then 

a * va * * =1. 

= lePvQ => L=PvQ. 

Conversely, 

Suppose P v Q = L for any two distinct minimal prime ideals. 

We have to show that L is a Stone algebra. 

If L is not Stone algebra, then there exists a E L such that 

a * va * * # 1. Then there exists a prime ideal R such that 

a * va * * e R. 

If We claim that, (L - R) v [a*) # L 

For if (L - R) v [a*) = L then x A a* = 0, for some XE (L - R) 

a**>—xE(L_R) =a**E(L_R) a**R 

Which is a contradiction. 

Hence (L - 1?) v [a*) # L 

Let F be a maximal dual prime ideal containing (L - R) v [a*) and G 

be a maximal dual prime ideal containing (L - R) v [a * 

Put P=L—FandQ=L—G. 

-4 
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Then P and Q are minimal prime ideal and P # Q. as a* E Q but 

a*o Pand a**e  P but a**Q. 

ie P and Q are distinct. 

Also P,Qcl? andthus PvQR#L. 

Which is a contradiction. 

Hence L is a Stone algebra. • 

Proposition 3.4.4: Show that a distributive pseudocomplemented lattice is a 

Stonelatticeifandonlyif (avb)**=a**vb** for a,beL. 

Proof.: Let L be a distributive pseudocomplemented lattice. If L is a Stone 

lattice, then for a, b E L. 

we have, 

(a A b) = a * vb *, and for any pseudocomplemented lattice, 

(a v b) = a * Ab * 

Hence (avb)**=(a*Ah*)I=a**vb** 

Conversely, let (a v b) * * = a * * v b * * for all a,bEL. 

Now for x€L. Let x *'j * * =y, then 

(x * vx * *)* * =y* * 

or x***vx****=y** 

or x*vx**=y** 

or y=y** 

Now y* = (x * vx * * 

X**AX* 

=0 

y=1 
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Hence x * vx * * = 1. Therefore L is Stone lattice. . 

Proposition 3.4.5: Show that in a Stone algebra every prime ideal contain 

exactly one minimal prime ideal. 

Proof: Let p be a prime ideal and let Qi & Q2 be two minimal prime ideals 

contains in p with Q1:#Q2. Let xeQ1 —Q2 ,then xEQ1 but xQ2  

Now XA x =0 EQ2. = x E p. 

Again since a1  is minimal, then x e Qi = x" E Qi = x E P. 

* Hence 1 = v E P which contTadict the fact that P is prime. 

Hence Qi = Q2. 

Hence in a Stone algebra every prime ideal contains exactly one 

minimal prime ideal. 

Proposition 3.4.6: If P is a prime ideal of a lattice L, then 
L 
 is a two 

R(P) 

element chain. The elements are P, L - P 

Proof: Let x,yEL — P. 

If for some / e L , X A / E P ,then / e P ( x o P and P is prime). 

Hence yAlEP 

ie V / E L, x Al J) 

yA/EP 

=.x_=yR(P). . 

Definition (Compact element): 

Let L be a lattice. An element a E L is called compact if for any 

X c L with a :!~ v X implies the existence of a finite subset X1  c X 

such that a :!~ v X1. 

-7 
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Definition (Algebraic Lattice): 

A complete lattice L is called algebraic if its every element is the 

supremum of compact element. 

Theorem 3.4.7: Eveiy distributive algebraic lattice is pseudocomplemented. 

Proof.: Let L be a distributive algebraic lattice. Then L I(S), the lattice 

of ideals where S is a join semilattice with 0, let I, 'k  E I(S) for 

k E K (index set). Then I A I, C I A v(Ik  I k E K) for any r E K. 

Clearly v (Ik I k E K) ç I A v(lk  I k e K). To prove the reverse 

inequality. Let a E I A v(lk  I k E K). Then a E I and 

a E v(Ik  I k E K). Then there exist indices 2 22 , . •, An such that 

i v/2 v ... v/2,,  for some i
Ak E 12k for some k El, 

Thus aEI.t1  -2 
vi v•••vl. 11   and so 

a_—IA(I 1  v122 v...v121 ). 

= (I A I), ) V (I A '2  V'• V (I A I) as I(S) is distributive 

cv(Ik kEK) 

ie I A v(ik  I k E K) c v(Ik I  k E K) 

Therefore I A v(Ik I k E K) = v(ik I k E K). 

This shows that I(S) has the join infinite distributive property. 

Moreover as 0 E 5, I(S) is complete . Therefore I(S) is 

pseudocomplemented and so L is pseudocomplemented. 

Theorem 3.4.8: Let L be a pseudocomplemented meet semilattice 

S(L) = {a * a E L}. Then the partial ordering of L partially orders 

S(L) and make S(L) into a Boolean lattice . For a, b E S(L). We 
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have a A b E S(L) and the join in S(L) we described by 

a v h = (a * Ab*) * 

Proof.: We start with the following observations. 

 VaEL,a:!~a** 

 a:!~h=a*>-b* 

 a*=a*** 

 aES(L) if and onlyifa=a** 

 Fora,beS(L), aAbES(L) 

 For a, b E S(L), a v h = (a * Ab*) * 

 Since a * A a = a A a* = 0. Also a * A a * * = 0. 

So a :!~ a * * from the definition of pseudocomplement. 

a:~b,so.aAb*—<bAb*=O 

ie a A = 0 = b* a * 

from the definition of pseudocomplement. 

By (i) a*  <— (a*) * * = a * * 

again a :!~ a * * by (i) 

so by (ii) a* ** a 

Hence a*=a***. 

Let a E S(L) then a = b * for some b E L. 

Hence a * * = b * ** = b* = a. If a = a * * then a = (a*) * 

and so, a E S(L). 

Let a, b E S(L) then a = a * * , b = b * * so a ~!! (a A b) * * 

b ~!: (a A b) * *. So (a A b) * * <— a A b. Again by (i) & (ii) 

aAb :!~ (aAb)**. 

Hence aAb=(aAb)** 
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So, aAbES(L), a~!aAb 

=a**>(aAb)** by(ii) 

=> a ~ (a A b) * * 

For a, b e S(L) 

we have a*  >— a * Ab *. So by (ii) and (iv) a :!~ (a * Ab*) *. 

Similarly b :!~ (a * Ab*) *. 

Nowifa:!~x,b:!~x(xcS(L)),thena*->x*, b*>-x*.So 

a * A b* >- x * 

Hence, x * * >— (a * Ab*)* ie x ~ (a *Ab*)* as xe S(L), 

Hence, (a *Ab*)* = sup{a, b}= a vb e S(L). 

Thus S(L) is a lattice. Moreover 0, 1 e S(L). Therefore S(L) 

is a bounded lattice 

Now for any aeS(L), aAa*=0 and 

a v a* = (a * A a * *)* = 0* = 1. ie a * is the complement of a 

in S(L). Hence (S(L); A, v) is a complemented lattice. Then 

we only to show that 8(L) is distributive. Let x, y, z e S(L) 

XAZ :!~ xv(yA:) and yAZ —< xv(yAj. Hence 

xAzA(Xv(yAz))*= 0and yAzA(xv(yAz))*= 0. 

Thus, zA(xv(yAz))* x* and y*, and so 

zA(xv(yA z))* —<X*Ay* 

Consequently, Z A (x v (y A z)) * A(x * Ay*) = 0, which 

implies Z A (x * Ay*)* = (x v (y A z)) * * = x v (y A z) So by 

(vi) and (iv) ZA (x v y) = xv (y  A z) 

Therefore S(L) is distributive 
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Defmition (Dense set): 

D(L) = {a (=- L = o}, D(L) is called the dense set. 

i)(L) is a filter or Dual ideal, I D(L). If L is a 

pseudocomplemented lattice L then some properties hold in L 

 aAa*=0 

 a::~b=a*>—b* 

 a:!~a** 

-41 
 (avb=a*Ab* 

 (aAb)**=a**Ab** 

 aAb=0a**Ab**=0 

 aA(aAb)*=aAb* 

 0*=1, 1*=0 

 a€S(L)a=a** 

 a,bES(L)iaAbES(L) 

 Sup{a, b}= (a*Ab*)* 

 0,1 E S(L), 1 E D(L), S(L) A D(L) = {i} 

 a,bED(i)aAbED(L) 

 aED(L),b~:a=bED(L) 

 ava*ED(L) 

 x -> x * * is a meet homomorphism of L onto S(L). 

Proof.: 

(v) (avb)*=a*Ab* 

(avb)Aa*Ab* =(aAa*Ab*)v(b Aa*Ab*) 

=0v0=0 
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Now, Let (a v b) A X = 0, X E L 

Then (aAx)v(bAx)=0 

aAx=O, bAx=O 

=x::!~a*, =x<b* 

=> x :!~ a * Ab * 

i.e. a * Ab * is the pseudocomplemented of a v b 

Hence (a v b)* = a * Ab * 

aAb=O =(aAb)*=0*=1 

a*=b, b*=a 

U 

Fig 3.12 

a * vb* = a v b = c 

(aAb)* # a *vb* 

(vi) (aAh)**=a**Ab** 

Proof:- we know that x * * is the smallest element in S(L) Continuing x. 
T 

Also we know that for any p,q E S(L), p A q E S(L). 

Then for any a,b E L ,a * * A b * * e S(L) 

and it is obviously the smallest element of S(L) Containing a A b. 

Therefore (aAb)** = a**Ab** .. 

(viii) Since a A b :!~ b, so (a A > b * 

So a A (a A ~! a A b * 

(xii) Let aAb=0, Then (aAh)**=0**=0 

So by (vi) a ** Ab * * = 0 
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Conversely, Suppose a * * A b * * = 0 

So a A b A a * * A b * * = a A b A 0 

or, (aAa**)A(bAb**)= 0 

or, a A b = 0 

Let x E S(L) n D(L). Then x c S(L) and x D(L). 

Now xES(L) =x=x** & xE D(L)=x*=0. 

So, x=x**=(x*)*=(0)*=O*=1 

Hence S(L) A D(L) = {i} 

a, b c= D(L) 

=> a* = 0 

=> a** =b**=1 

by (vi), (aAb)**=a**Ab**=1AI=l 

:.(aAb)*=(aAb)***=1*=0 

So, aAbED(L). 

aEI)(L),h~!!a, h*a*=0=h*=0, => hED(L) 

(aAa*)*=a*Aa** by(v) 
-r 

=0 

=ava*ED(L) 

follows from (vi) 

q(x A y) = (x A )* * = x * * A y * * 

= (x)Aq,(y) 

Theorem 3.4.9: For a distributive lattice with pseudocomplemention L, the 

following condition are equivalent 

L is a Stone algebra 

Va,hEL,(aAh)*=a*vb* 
-71 
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a,b E s(L) implies a v b E s(L) 

S(L) is a subalgebra of L. 

Proof. : (i) = (ii) 

Suppose L is a Stone algebra. 

We shall show that, a * vb * is the pseudocomplement of a A b 

Wehave, aAbA(a*vb*)=(aAbAa*)v(aAbAb*) 

= OvO=O 

Now, Suppose a A b A X = 0 for some x E L 

Then (b A x)A a = 0 which implies b AX :!~ a * 

Multiplying both sides by a * * 

Wehave bAxAa a*Aa**=O 

i.e. (xAa**)Ah=O 

Which imply xAa**<—b** 

Now by, Stone identity a * va * * = 1. 

So, x=xAl=(xAa*)v(xAa**):!~a*vh* 

Therefore, (a A b = a * vb * 

Suppose (ii) holds 

Let a,b E s(L). Then a = a * *, b = b * * 

Soby(ii) avb=a**vb** 

=(a*Ab*)* by (iii) 

= avb 

i.e. avbES(L) 

(iii) = (iv) is trivial 

= (i) 

Suppose (iv) holds 
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Let a EL. Then a*,a * * E s(L) 

Since (iv) holds, a * va * * = a * va * * 

= (a * * A a * * *) * 

= 0* = 1 

Hence L is Stone. . 

Theorem 3.4.10: Let L be a pseudocomplemented distributive lattice and P 

be a Prime ideal of L. Then the following conditions are equivalent 

P is minimal 

XEP, =x*P 

XEP, X**EF 

PAD(L)=q 

Proof:- (i) = (ii) 

Let P be minimal. 

Suppose, It (ii) fails there exists x E P such that x* E P. 

Let D = (L - v {x) Then 0 E D. 

For otherwise 0 = q A x for some q E L - P, which implies 

-r q:!~x*EP. 

Therefore, q E P, which is a contradiction. 

Hence Oo P r D. Then by Stones representation theorem there 

exists a prime ideal Q such that Q n D = ço. This implies 

Q (L - = q' and So Q ç P. But Q # P as x E Q . This 

contradict the minimally of P. 

Hence (ii) follows. 

Suppose (ii) holds and x E P. 
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Now x * AX * * = 0 E P. But x* P and P is prime, So x * * E P 

i.e. (iii) holds. 

(iv) 

Suppose (iii) hold 

Let xEPnD(L). 

Then x E P and X E D(L). 

x e D(L) implies x* = 0 

By(iii) X**EP 

...x**(x**0*1EP which is impossible as Pisprime. 

So (iv) holds. 

(v) => (i) 

Suppose P is not minimal, Then there exist a prime ideal Q c P. Let 

x€P-Q 

Now, x A X* = 0 E Q. Since xZ Q and  Q is prime, 

So, x* € Q c P. Then x, x* E P 

So, x v x* E P 

Now (x v x *)* x * AX * * = 0 implies x v x* e D(L) 

i.e. PrD(L):#ço 

and So (iv) does not hold. 



 (aAb)' =a'vb' 

 (avb)'  =a'Ab' 

 a:!~ba'>b' 

 a:!~b= aAb'=O a'vb =u 

[De Morgan's Law] 

[De Morgan's Law] 
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"Boolean Algebras" 

4.1 Introduction. 

In this chapter we introduce and study on Boolean algebra, Imbedding 
mapping and obtain their several features. 

A complimented distributive lattice is called Boolean algebra. If Boolean 

lattices so considered are called Boolean Algebra. 

In this chapter we have also proved the following theorem 

In a Boolean algebra, the following result hold 

(i) (a')'  = a 

T 
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4.2 Boolean Algebra, Dual Meet and Join Homomorphism. 

Definition (Boolean algebra): A complimented distributive lattice is called 

Boolean algebra. If Boolean lattices so considered are called Boolean 

Algebra. 

The main results of this paper are 

Let M be a bounded distributive lattice and c E M. Thus M can 

be imbedded in [0, c] x [c, u) 

A Boolean Algebra is self-dual. 

Definition (Boolean lattice): A complemented distributive lattice is called a 

Boolean lattice. 

Since complements are unique in a Boolean lattice we can regard a 

Boolean lattice as an algebra with two binary operations A and v and 

one unaiy operation'. Boolean lattices so considered are called Boolean 

algebras In other words, by a Boolean Algebra, we mean a system 

consisting of a nonempty set L together with two binary operation A 

and v and one unaiy operation (i), satisfying (Va,b,c E L) 

aAa=a, ava=a 

aAb=bAa, avb=bva 

aA(bAc)=(aAb)Ac, av(bvc)=(avb)vc 

aA(avb)=a, av(aAh)=a 

aA(bvc)=(aAh)v(aAc) 

Va E L, a' E L, s.t., a A a' = 0, a v a' = u where o,u are 

elements of L satisfying 0 :!~ x :5 u V x e L 

(a' will be unique and is the complement of a) 
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Example 4.2.1: Let A = {O,a,b,u}. Define A ,V and complementation ' by 
U 

a 

,0 

MEMBER 
IflDflD 
BEEM 
IIDDIMI 
Ramon 

Eamon 
flDfl 

IIIIDIM!i 
flflflflD 

Then A form a Boolean algebra under these operations A, V ,'. 

Theorem 4.2.1:L and M are Boolean algebras iffLxM is a Boolean 

algebra.. 

-t Theorem 4.2.2: A Boolean lattice is relatively complemented and relative 

complements are unique. S 
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4.3 Boolean Subalgebra. 

Definition (Boolean subalgebra): A subalgebra (or Boolean subalgebra) 

is a non empty subset S of a Boolean algebra L 

s.t. a,bES=aAb,avb,a'eS. 

We thus realize that a subalgebra differs from a sublattice in as such as 

it is closed under complementation also. Notice that if [a,b]be an 

interval in a Boolean algebra L, where a > 0, then [a, b] is a sublattice 

of L, but is not a subalgebra as 

aE[a,b]=a'E[a,b] 

=> a A a' E [a, b] 

=0E[a,b] 

which is not possible as a >0. 

Hence a Boolean sublattice may not be a Boolean subalgebra. (The 

converse being, of course, true). 

Theorem 4.3.1: Every interval of a Boolean algebra is itself a Boolean 

algebra. 

Proof: Let [a, b] be any interval of a Boolean algebra L, then [a. b] being a 

sublattice will be distributive. 

Since L is distributive complemented lattice, it is relatively 

complemented. 

i.e., each interval in L is complemented 

i.e. [a,b] is complemented distributive lattice and hence is a Boolean 

algebra. • 

Proposition 4.3.2: Show that a non empty subset S of a Boolean algebra is a 

subalgebra if it is closed under v and complementation. 
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Proof: We need prove that for any a,b € S. a v bE S 

Now (aAb)' =a'vb'ES 

(aAb)=((aAb)') ES 

similarly, one can show that S would be a subalgebra if it is closed 

under v and complementation. • 

Theorem 4.3.3: In a Boolean algebra, the following result hold 

(a')'  = a 

(a A b) = a' v b' [De Morgan's Law] 

(a v b) = a' A [De Morgan's Law] 

a :!~ b a' > b' 

a < b aAb' 0 a'vh = u 

Proof: (i) Let (a')'  = a", then 

a A a'  = 0 a v a'  = u 

a'Aa" =0 a'va" =u 
, 1? = aAa =a Aa,ava =aif  va 

0- => a"=a 

(ii) Wehave(aAb)A(a'vb')=[(aAb)Aa']v[(aAb)Ab'] 

= [(a A a')A b]v [a A (b A b')] 

=[0Ab]v[aA(0)]= OvO = 0 

(aAb)v(a'vb')=(a'vb')v(aAb) 

= [(a' v b')v a]A [(a'  v b')v b] 

= [(a' v a)v b']A [a' v (b' v h)] 

= [u v b']A [a' v u] = U AU = u 
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Hence (aAb=a'vb' 

Similar as (ii) 

a < b ='a=aAb 

=a'=(aAb) = a'vb' 

= b' :!~ a' 

b' < a' = b" :!~- a" => b :!~ a 

a<b aAb':!~,bAb'=O:!~aAb':!~O=aAb'=O 

Again,let aAb'=O 

Then, a=aAu=aA(bvb') 

=(aAb)v(aAb')=(aAb)vO=(aAb) 

='a:!~aAb. 
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4.4 Dual Meet Homomorphism. 

Definition (Dual meet homomorphism) : Let L, M be two lattice a map 

0: L -> M is called a dual meet homomorphism 

if, O(aAb)=O(a)v8(b) (1) 

where a, h E L and 0 is called a dual join homomorphism 

if 8(avb)=O(a)A8(b) (2) 

It is called a dual homomorphism if it satisfied the above conditions. 

Theorem 4.4.1 : A Boolean algebra is it self dual 

Proof. Let L be a Boolean algebra. 

Define a map 8: L -> L, s.t., 

8xj=x 

then 0 is well defined as for each x E L , xexists  and unique. 

Now 0(x)=0(y)=x'=y' 

(x' =(y' => x=y 

Thus 0 is 1-I. 

For any y e L, y'is it required pre image under 8 showing that 8 is 

onto. 

Also 8(xAy)=(xAy) = x' v y'  = 0(x)v 0(y) 

0(xvy)=(xvy) = x' Ay'  = 8(x)AO(y) 

shows that 8 is a dual homomorphism. 

Thus 0 is a dual isomorphism and hence L is self dual. • 

WN 
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4.5 Imbedding Mapping. 

Definition (Imbedding) : Let L, M be two lattices a one-one 

homomorphism 0 : L -> M is called an imbedding mapping. Also in 

that case we say L is imbedded in M. 

Theorem 4.5.1 : Let L be a bounded distributive lattice and a e L then L can 

be imbedded into [O,a]x[a,u]. 

Proof.: Define amap 8: L —* [O,a]x[a,u], s.t., 

8(x)= (x A a,x v a) 

Clearly then XA a e [O,a]and xv a E [a,u]. 

Let x=y=xAa=yAa 

xva = yv a 

= (xa,xv a)= (yAa,yva) 

=> 0(x)=0(y) 

Thus 0 is well defined. 

Again, if 0(x) = 0(y) 

then (xAa,xva)=(yAa,yva) 

xAa=yAa 

xva =yva 

x=y 

Thus 8 is 1-1 

Now 0(xAy)=((xAy)Aa,(xAy)va) 

= ((x A a)A (y  A a),(x v a)A v a)) 

and 0(x)AO(y)=((xAa,xva)A(yAa,yva)) 

shows that 8(x A y) = 8(x)A 0(y) 

similarly 0(x v y) = 0(x)v 8(y) 

Hence 0 is a 1-1 homomorphism, i.e.,8 is an imbedding map. • 
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Theorem 4.5.2: If L is a Boolean algebra and a EL, then L [O,a]x [a,u]. 

Proof.: By previous theorem 

9: L - [O,a]x [a,zi] s.t., 

9(x) = (x A a,x v a) 

is a 1-1 homomorphism. (Note a Boolean algebra is distiibutive). We 

show 0 is onto. 

Let (y,z) E [O,a]x [a,u] be any element 

then O:!~y:!~a, a:!~z_<u (i) 

Take x = y v (z A a'), then 

8(x)=9(yv(zAa')) 

((y v (z A a')) A a, y v (z A a') v a) 

= ((y A a)v ((z A a')A a),y v ((z v a)A (a'  v a))) 

= (Z A O),yv (z A u)) 

=(y,z) 

Hence 0 is an isomorphism. . 

Proposition 4.5.3: If A, B, C are lattices such that B C, then 

AxBAxC 

Proof: Let f: B --> C be the given isomorphism 

Define 0:AxB—*AxC,s.t., 

9((a,b)) = (a,f(b)) 

then since 9((a,b)) = 9((c,d)) 

(a, f(h)) = (c, f(d)) 

a=c, f(b)=f(d) 

a = c, b = d (f being well defined 11 map) 

(a,b)=(c,d) 
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We fmd 9 is a well defined 1-1 map. 

Again, for any (x,y)E AxC, as y E C,f B —> C is onto, 3 bE B s.t., 

f(b)=y 

Now O((x, b)) = (x, f(b)) = (x, y) and thus 0 is onto. 

Finally, 

0((a, b)A (c, d)) = 9(a A C, b A d) = (a A c, f(b A d)) 

= (a A C, f(b) A f(d)) = (a, f(b)) A (c, f(d)) 

9(a,h)A9(c,d) 

Similarly, O((a,b)v (C,d))= 9(a,b)v 9(C,d) 

Hence 9 is an isomorphism. • 

Proposition 4.5.4 :If L is a Boolean algebra and a e L, then show that 

L = [O,a]x[O,a']. 

'I 
64 

Proof: By theorem 5.2.8 

L [O,a]x[a,u] 

Defme amap f: [a,u]—> [O,a'] s. t. 

f(x) = X A a' 

Now xe[a,u] =. a:!~x:!~u 

=> aAa':~xAa':!~uAa' 

=> O:!~xAa'::~a' 

=> xAa'E[O,a] 

andx=y =xAa' =yAa'  =>f(x)=f(y) 

we find f is well defmed 

Again, f(x)= f(y) 

XA a' = Y A a' 

(x A a')v a = (y A a')va 

TT 
A) 
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(x v a) A (a'v a) = (y v a) A (a'v a) 

xAu=yAu =x=y 

Thus fis 1-1. 

Now f(x A y) = (x A y)A a' = (x A a')A (y A a') = f(x)A f(y) 

f(xvy)=(xvy)Aa'=(xAa')v(yAa')=f(x)vf(y) 

Hence f is a homomorphism. 

Finally, let y E [o,a'] be any element. 

Then O<y:!~a' 

~ => avO:!~avy:!~ava'ora:!~avy:5u 

=> avye[a,u] 

andas f(avy)=(avy)Aa' 

=(aAa')v(yAa')=Ovy =y 

we fmd f is onto and hence an isomorphism using Theorem 5.2.8 we 

get, 

L{O,a]x[a,u][O,a]x[O,a'] • 

-11 
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"Boolean Ring" 
5.1 Introduction. 
In this chapter, we introduced and study on Boolean ring, Disjunctive normal 

form, Conjunctive normal form and obtain their several features. 

Recall that a Boolean function is said to be a Disjunctive normal form (DN 

form) in n variables x1 , x2 , x3  - - - -x, if it can be written as join of terms 

of the type f1(x1)Af2(x2 )Af3 (x3 )A----Af(x). Where f(x1)=x1  

or x, for all i=l,2,3,-----,n and no two terms are same. Also 1 and 0 

are said to be in Disjunctive normal form. 
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5.2 Ring, Ring with zero devisor ,Boolean Ring 
Definition (Ring) : A non-empty set R together with two binary 
operations 
addition (denoted by "+") and multiplication (denoted by ".") is called 

a ring if it is satisfied the following laws: 
Associative law of addition: 
V a,b,c€R =(a+b)+c=a+(b+c) 

Existence of additive identity zero: 
OR =a+O=O+a, Vael? 

Existence of additive inverse: 

aER =H —aER =a+(—a)=(—a)+a=O, VaER 

p 4. Commutative law of addition: 

V a,bER =a+b=b+a 

Associative law of Multiplication: 
V a, b, c E R = (a.b).c = a.(b.c) 

Distributive laws: 

Left: V a, b, c E R => a.(b + c)= a.b + a.c 

Right V a,b,cER =(a+b)c_—a.c+b.c 

Definition (Ring with unity): A ring R is called a ring with unity if there 

exists an element 1 # 0 E R such that a . 1 =1. a = a, V a E R where 1 is 

called the multiplicative identity or multiplicative unity. 

Definition (Commutative Ring): A ring R is called Commutative Ring if 

under the binary operation of multiplication a .b = b. a V a, b E R. 

Definition (Ring with zero divisor): A ring R is called with zero divisors if 

there exist at least two elements a and b of R such that a b = 0 where 

a # 0 and b # 0 

Example 5.2.1: The rings Z Q R and C are integral domains. 

Definition (Subring): Let R and S be two rings with respect to the two 

binary operations addition and multiplication. IfS is a subset of R, then 

S is called a subring of R. 
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Theorem 5.2.1 : Let S be a subnng of a ring (R, +,.). Then show that S is 

an additive subgroup of R. 

Proof.: Let a, bc S. 

Since S is a subribg of R then bES => — bES. 

Now a—bES 

=> a + (—b) E S, by the closure property of addition 

=a —b€S 

Thus S is a subgroup of R. 

Definition (Boolean Ring): A ring R is called Boolean Ring if 

a 2 =aV aER. 

Example 5.2.2: Show that a ring R with x2  = x V x e R must be 

commutative. 

Solution: We have  x2 = x V xER 

Now (x+x) = X+X 

(x + x)(x + x) = (x + x) 

= (x + x)x + (x + x)x = x + x [by distributive law] 

(x2  +x2 )+(x2  +x2 )=x+x 

=(x+x)+(x+x)=x+x [:x2 =x] 

= x + x =0 [by left cancellation law for addition] 

x +x =0,V x E R. 

Let a,bER =a2  =a, b 2  =b and (a+b)2  =a+b. 

Now (a+b)2  = a + b 

= (a + b)(a + b) = a + b 
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=(a+b)a+(a+b)b=a+b [bydistributive law] 

=(a2  + ba) + (ab +b 2 )=a+b 

(a+ba)+(ab+b)=a+b [.a 2  =a, b 2  =b] 

(a+b)+ (ba + ab) =(a+b)+O 

=' ba + ab = 0 [by left cancellation law for addition] 

=ba+ah=ha+ba[:x+x=O] 

=> ab = ba [by left cancellation law for addition] 

=> ab = ba , V a, bE R 

t => R is commutative. 

Example 5.2.3: If R is a Boolean ring. Then show that 

a+a=0,VaER 

a+b=O =a=b 

Solution: (i)we already proof in example 8. 

a+b=O 

=a+b=a+a[:a+a=0] 

=> b = a [by left cancellation law of addition in R] 

Theorem 5.2.2: Every Boolean algebra is a Boolean ring with unity. 

Proof.: A Boolean ring is a ring in which x2  = x Vx 

Let (A, A, V,' ) be a Boolean algebra. 

Defme two operation (+) and (.) on A by 

ab=aAh 

a+b=(aAb')v(a'Ab) a,bEA 

Then (+) and (.) are clearly binary compositions on A. 

To show that <A, +,• > forms a Boolean ring, we verify all the 

conditions in the definition. 
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Let a, b, c E A be any members. 

a+b=(aAb')v(a'Ab)=(bAa')v(b'Aa)=b+a 

(a+b)+c=[(a+b)Ac']v[(a+b)'Ac] 

=[{(aAb')v(a'Ab)}Ac']v[{(aAb')v (a'Ab)} AC] 

= [(a A b' A c') v (a' A b A C')] v [(a A h')' A (a' A b)' A c] 

=[(aAb'Ac')v(a'AbAc')]v[(a'vb)A(avb')Ac] 

=[(aAb'Ac')v(a'AbAc')]v[{(a'vb)Aa} 

V {(a'v b) A b'}A C] 

[(a A b' A c') v (a' Ab A c')] v 

[{(a' A a) v (b A a) v (a' A b') v (b A b')}A c] 

=(a A b' A c')v(a' A b A c')v[{(b A a)v (a' A b')}A C] 

=(aAb'Ac')v(a'AbAc')v[(bAaAc)v(a'Ab'Ac)] 

=(aAb'Ac')v(a'AbAc')v(aAhAc)v(a'Ab'Ac) 

Since the resulting value is symmetric in a, b, c it will also be equal to 

(h + c) + a = a + (b + c) (by commutativity of +). 

Hence + is associative. 

Again, a+O=(aAu)v(a'AO)=a=O+a 

Also, a+a=(aAa')v(a'Aa)=O 

Thus (A, +) forms an abelian group. 

Since a b = a A b and A is commutative and associative. V f  

We find also (.) is also commutative and associative. 1' / 
( 

sr' 
Again, a(b+c)=aA(b+c)=aA[(bAC')v(h'Ac)] ,1 

=(aAbAc)v(aAb AC) 

ab + aC = (a A b) + (a A c) 

= [(a A b) A (a A C)' ] v [(a A b)' A (a A c)] 

= [(a A b) A (a' v c')] v [(a' v b') A (a A c)] 
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= (a A b A a') v (a A b A c') 

v (a A CA a') v (a A CA b') 

= (a A bA c') v (a A b' A c) 

Hence a(b+c)=ah +ac 

Similarly, (b+c)a=ba+ca 

Finally,since au=aAu=a=uAa=u•a. 

We find (A, +, .) forms a commutative ring with unity u 

Alsoas aa=aAa=a Va 

We gather that A forms a Boolean ring. 

Theorem 5.2.3 : Every Boolean ring with unity is a Boolean algebra. 

Proof.: Let <A, +,•> be a Boolean ring with unity. 

We defme two operations A and v on A by 

aAb=ah 

a v b = a + b + ab 

Then since () is commutative (a Boolean ring is commutative) and 

associative, we find A is commutative and associative. 

Again, av a=a+a+aa=(a+a)+a=O+a 

(In Boolean ring a + a =0 Va, where 0 is zero of the ring) 

Also av b=a+b +ab=b+a+ba=bv a 

(av b)v c=(avb)+C+(avb).c =(a+b +ab)+C+(a+b +ab).c 

= a +h +ab +c + ac + bc +ahc 

Since, av (b v c)=(b V C)v a (by commutativity of v) 

By symmetry, 

(bvc)v a=b+c+bc+a+ba+Ca+abc 

Hence v is associative. 

Finally to check absorption, we find 
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aA(avb)=a(a+b+ab)=a2  +ab+a 2b=a+ab+ab 

a + 2ab 

S 

(asx+x=O Vx) 

av(aAb)=av ab=a+ab+aab =a+2ab = a 

Thus A is a lattice. 

We verify distributively for A. Let now a E A be any element. We show 

it has a complement, namely, a + 1 (where 1 is unity of ring A) 

Now aA(a+1)=a(a+1)=a2  +a=a+a=O 

a v (a +1) = a + a + I + a (a +1) = 2a +1+ a + a = I + 2a =1 

Showing that a' = a +1 

Notice, in the ring A 0. a =0 Va e A (0 being zero of ring) 

=> 0Aa=O VaEA. 

Again 1a=a Va 

ie. 1Aa=a VaEA. 

Thus 0 and 1 are least and greatest elements of the lattice A. • 
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5.3 Disjunctive Normal form, Minterms, Boolean Expression. 

Definition (Disjunctive normal form): A Boolean function (Expression) 

is said to be in Disjunctive normal form (DN form) in n variables 

x1,x2,x3 ....... ..if it can be written as join of terms of the type 

J(x1)AJ(x2)Aj(x3)A ......At(x,,) where f(x1 )=xor x for all 

i=1,2,3 ..... n and no two terms are same, Also I and 0 are said to be 

in disjunctive normal form. 

Definition (Minterms or Minimal polynomials): Again, in that case, terms 

of the type f(x1)A J(x2 ) A J(x3)A ......A f(x)are called minterms 

or minimal polynomials,( A normal form is also called a canonical 

form) 

For instance, (x A y A z')v (x' A y' A z)v (x' A y A z) is in disjunctive 

normal form (in 3 variables) and each of the brackets is a minterm. 

Definition (Boolean expressions or Boolean polynomials): Let 

(A,A,V, I')  be a Boolean algebra. Expressions involving members of A 

and the operations A,V and complementation are called Boolean 

expressions or Boolean polynomials. For example, x v y', x, x A 0 etc 

are all Boolean expressions. Any function specifying these Boolean 

expressions is called a Boolean function. Thus if J(x,y) = X A ythen f 

is the Boolean function and x A y is the Boolean expressions (or value 

of the function f). Since it is normally the function value (and not the 

function) that we are interested in, we call these expressions the 

Boolean functions. 

Theorem 5.3.1: Every Boolean function can be put in disjunctive normal 

form. 

Proof.: We prove the result by taking the following steps. 

7 
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If primes occur outside brackets, then open brackets by using De 

Morgan's law 

(aAb)' = a'v b, (a v b)'= a'Ah' 

Open all brackets by using distributivity and simplify using any 

of the definition conditions like idempotency, absorption etc. 

If any of the terms does not contain a certain variable x.(orx') 

then take meet of that term with x, v x. Do this with each such 

term. (It will not affect the function as x, v x = 1 and 1 A a = a) 

Now, open brackets and drop all terms of the type a A a'(= 0). 

Again , if any of the terms occur more than once, these can be 

omitted because of idempotency. The resulting expression will be 

in DN form. 

Hence every function in a Boolean algebra is equal ton a function 

inDNfomi. • 

Proposition 5.3.2: Put the functionf = [(x A y')' v z] A (x' v z)'  in the DN 

form. 

Proof: We have, 

= [(x' v y") v z] A (z' A x") = (x'  v y v z') A (z' A x) 

=(x'Az'Ax)v(yAz'Ax)v(z'Az'Ax) 

= 0v(xAyAz')v(xAz') 

= (x A y A z') v [(x A z') A (y v y')] (Note this step) 

= (x AA z') v [(x A Z'  A y) v (x A A y')] 

=(xAyAz' )v(xAz' Ay'). . 

Proposition 5.3.3: Put the function 

f=[(x'Ay)v(xAyAz')v(xAy'Az)v(x'Ay'Az'At)vt']' in the 

DN form. 
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Proof: We have, 

f=[(x'Ay)v(xAyAz')v(xAy'Az)v(x'Ay'Az'At)vt']' 

=(x'Ay)'A(xAyAz')'A(xAy'Az)'A(x'Ay'Az'AI)'AI 

=(xvy')A(x'vy'vz)A(x'vyvz')A(xvyvzvt')Ai 

=[(xvy')A(x'vy'vz)]A(x'vyvz')A[(xvyvzvl')At] 

= [(x A x') v (x  A y')  v (x  A z) v (y'  A x') 

V (y'  Ay') V (y'  V z)] A (x' vyv  z') A 

[(xAt)v(yAt)v(zAt)v(t At')] 

I 
= {(x Ay') v (x A z) v (y'  Ax') V y'  v (y'  v z)]A 

[(x'  Ay At) v(x'  AZ A t) v (y  AX A t) v (y  At) 

v (y  A z A t)v (z'  AX A t) v (z' AA t)] 

=(xAy'A:'AI)v(xAzAyAt)v 

(x'Ay'AzAl) v(y'AzAtAx) 

v (y'  A Z'  AX A t)v (y'  A ZA x' A 1) 

=(xAy'Az'AI)v(xAzAyAl)v(x'Ay'AzAt). 

Note: Some times it is easy to use the notation (+) fory and () for 

A while simplifying. Thus, for instance, the above solution would read 

41 
f = (x'y + xyz' + xy'z + x'y'z'I + 1')' 

= (xy)'(xyz')'(xy'z)'(xy'z'I)'1 

= (x + y')(x' + y' + z)(x' + y + z')(x + y + z + i')i 

= (xx'+xy'+xz+y5c'+y3/+yz) 

(x'+y+z')(xt +yt+zt +t't) 

= (xy'+xz+y'+y'+yz) 

(x'yt+x'zt+yxt+yt+yzt+z'xt +zyt) 

= xy'z't +xyzt +y'zl +y'ztx' +y'zx't 

= xy'z't +xyzt +y'x'zl 
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We have shown above that every function can be expressed in DN 

form. • 

Proposition 5.3.4: Write the function x v y' in the disjunctive normal form 

in three variables x,y,z. 

Proof.: We have 

xvy'=[xA(yvy')A(zvz')]v[y'A(xvx')A(zvz')] 

= [{(x A y)  v (x  A  y')}  A (z v z')] v 

[{(y'  A x) v (y'  A x')} A (z v 

=(xAyAz)v(xAyAz')v(xAy'A:) 

v (x A y'  A z') v (y'  A xA v (y'AxA z') 

v (y'  A X' A V (y'  A X'  A z') 

= (x AyA z) v (x AA z') v (x A y'  A v 

(XAy'  A z')v(y' AX' A z)v(y' Ax'A  

Proposition 5.3.5: Find the Boolean expression for the function f given by 

I When x = z = l,y = 0 
f(x,y,z)= x=1,y=z=O 

0 Otherwise 

Proof: The function is specified by the minterms (x A y' A z) 

and (x A YA z') 

i.e. the function in the DN form is 

(xAy'Az)v(xAy'Az') 

Example 5.3.1 : Let A={0, 1 } and f: A2  -* A, be defmed by 

f(x, y) = (x A y) v (x' A y) v (x A y') v (x' A y') 

i.e. f is complete DN form. We calculate all values of 

f(x,y), X,yEA. 
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f(O,O)(OAO)v(lAO)v(OAl)v(lAl)=l 

f(1,O)=(1A0)v(0A1)v(1A1)v(1A0)=l 

f(O,l) = (0 A 1) v (IA 1) v (0 A 0) v (1A 0) = 

f(l,l) = (1A 1) v (0 A 1) v (IA 0) v (0 A 0) = 

(Note x = 0 x' = I) 

We thus notice that in each case, one minterm is 1 A l = 1 and all others 

are zero. Also the resulting value of f(x, y) is always 1. 

If we go through similar process, with a function f which is in complete 
•1 

DN form in 3 variables x, y, z we'll get the same result. We can 

generalize this result. 

Example 5.3.2 : Let A={O,l} and f: A3  - A,be the function defined by 

f(x, y, z) = x A (y v z), then the functional values of fare given by 

rj 

f(O,O,O) = 0 A (0 v 0) = 0 

J(1,0,0) = 1 A (0 v 0) 0 

f(0,1,0) = 0 A (1 v 0) = 0 

f(0,0,1) = 0 A (0 v 1) = 0 

f(1,I,0) = I A (vO) = 1 

[(1,0,1) = 1 A (0 v 1) = 1 

f(0,I,1) = 0 A (lv 1) = 0 

f(1,1,1)= 1A(lVl) =1 

which we sometimes write in the tabular form as 

10 
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x y z f(x, y,z) 

0000 

1000 

0100 

001 0 

1 10 1 

101 1 

0110 

1 11 1 

Example 5.3.3: Complete DN form in 2 variables is 

(x A y) v (x'  A y) v (x A y') v (x'  A y') 

Let f = (x A y) [any one DN form] 

f'=(xAy)'=x'vy'=[x'A(yvy')]v[y'A(xAx')] 

= (x'  Ay)v (x'v y')v (y'  A x)v (y'  A x') 

= (x'  A y) v (x v y') v (y'  A x'). 

Thus what we gather from here is that if we pick up any DN form the 

41 complete DN form then complement of that DN form will contain the 

'left out' term in the complete DN form. 

Take for instance, p = (x A y) v (x' A y) 

p'  = [(x A y) v (x'  A y)]' = (x A A (x'  A 

= (x' v y')  A (xv y') 

A x)v = = Y A (x v x') 

A x)v (y'  A x') 

the 'left out' terms in the complete DN form. 

•1 
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Proposition 5.3.6: In a Boolean algebra, show that 

f(x, y) = [x A f(1, y)] v [x' A f(O, y)] 

Proof: We know that any function f (in 2 variables) in complete DN form 

is f(x,y) =(xAy)v(xAy')v(x'Ay)v(x'Ay') 

=[xA(yvy')]v[(x'A(yAy')] 

Put x 1, x' =0 and we get 

f(1,y)=[1A(yvy')]v[(OA(yAy')]=yvy' 

Again by putting x=O,x'=l weget 

f(O,y) = [OA (yv y')]  v [(IA (y Ay')] = yv 

Thus (1) gives 

f(x,y) = [x A f(1,y)] v [x' A f(0,y)] 

Remarks 5.3.7: One can extended the above result to n variables and prove 

that, 

f(x 1 , x 2, •••, x) = {x1  A f(1, x2, x3, •••, x)}v {x A f(O, x 2, x3, ... , 
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5.4 Conjunctive Normal form. 

Definition (Conjunctive Normal form): A Boolean function f is said to be 

conjunctive normal form (CN form) in n variable x1  , x2 , •, x if f is 

meet of terms of the type f (x  ) v  j (x2) v v J (xv) where 

f.(x,)=x,or x for all i=12•,n and no two terms are same. Also 0 

and I are said to be in CN form. 

Proposition 5.4.1: Put the function J = [(x A V z'] A (x' v z)' in the CN 

form. 

Proof: We have, 

f=[(x'vy)v z']A(xAz') 

Is r 7 . I =(x vyvz)A[xAz)v(yAy)} 

=(x'vyv z')A{[(xAz')vy]A[(xAz')vy']} 

= (x'  v y  v z' ) A [(x v y) A (z'  v y) A (x A z' ) v y']} 

=(x' vyvz')A[{xvyv(zAz')}A{(z' vy)v(xAx' )} 

A {(x v y') v (z A z' )} A {(z'  v y') v (x A 

=(x' vyvz' )A[{xvyv(zAz' )}A{(z' vy)v(xAx' )} 

A {(x v y') v (z A z' )} A {(z'  v y') v (x A x')}] 

=(x' vyvz')A(xvyvz)A(xvyvz' )A(z' vyvx) 

A (z'vyv x') A (x v v z) A (x v v z' ) 

A (z'v y'v x)  A (z'v V x') 

= (x v yv z) A (x'  v yv z' ) A (x v yv z' ) 

A(xvy'vz)A(xvy'vz')A(x'vy'vz') 

Proposition 5.4.2: Put the function x A (y v z) in the CN form. 

Proof: xA(yvz)=[xv(yAy')]A[(yvz)v(xAx')] 

=(xvy)A(xvy')A(yvzvx)A(yvzvx') 

= (xvy)v(zAz')A(xvy') 

v (z A z') A (x vyv z) A (x' vy  v 

If 

A 
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•1 
=(xvyvz)A(xvyvz')A(xvy'vz)A(xvy'vz') 

A(xvyvz)A(x'vyv z) 

= (x vy v A (x vyv  z') A (x v v 

A (X V YV A (X' Vy V 

Proposition 5.4.3: Find the DN form of the function whose CN form is 

f=(xvyvz)A(xvyvz')A(xvy'vz)A(xvy'vz')A(x'vyvz) 

Proof: We know, f = (f')'. Thus, 

f = [{(x vyv  z) A (x vyv A (x v v z) 

A (x v v A (x'  v y v 

=[(xvyvz)'v(xvyvz')'v(xvy'v:)' 

v (x v v v (x' v y v 

(by De Morgan's law) 

= [(x'  A A z') v (x'  A y'A :) v (x'  AA  ZO 

v (x'  A y A :) v (x A A 

(by De Morgan's law) 

=(xAyAz)v(xAy'Az)v(xAyAz') (by previousproblern) 

Note: By similar steps we can find the CN form of a function from its 

DN form. 

Proposition 5.4.4: Prove that in a Boolean Lattice; x # 0 is join irreducible 

if and only if x is an atom. 

Proof.: Suppose x is a join irreducible element. Consider the interval 

[O,x]. Let aE[0,x], we claim that either a = 0 or a=x. 

Since L is Boolean then there exists [o, x] such that 

a A b =0 and a v b = x 

Butavb=x => either a=x orb=x 

If a = x then nothing to prove. 

If b=x then aAb=O=aAx=O 

I.  
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1v 

=a=O [:a:!~x] 

Hence x is an atom. 

Conversely, let x is an atom and x = b v c 

..bvc>Oas..hvc~!b>O 

Then either b = b v c = x or b =0 

Also,asabove:.bvc~:c>0 =eitherc=bvc=xor c=O. 

As b =0 and c =0 => x =0 which is impossible. 

Hence x = b or x = c. 

ie x is join ineducible. 

Proposition 5.4.5: Let L be a distributive lattice, a, b, c E L, a :!~ b. Show 

that [a, b] is Boolean if and only if [a v c, b v C] are Boolean. 

Proof.: Suppose [a, b] is Boolean and let t e [a v c, b v C] then 

(t v a) A b E [a, b] .. there exists z € [a, b] such that, 

[(tva)A(bvz)]=a and ((tv a)Ab)v z =b 

= ((i A b)v (a A b))A z = a 

=.(tA b A z)v(aA hA z)=a 

or(lAz)v(aAz)=a 

or(1Az)va=a1Az a. 

=(1Az)Ac:!~aAc= IA(zAc):!~aAc 

Again, aAc:!~I and aAc:!~zAc 

a A C :!~ I A (z A c) 

Hence IA(zAc)=aAc (i) 

Also, (Ivz)Ab=(IAb)v(zAb)=(IAb)vh=b 

:.b:!~Ivz.Butt:!~bAc and z:!~b=>lvz:!~b 

Then tvz=b (ii) 

Again a A c :~bA c 
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cv (a A c)<cv cv (b A c) 

..C:!~Cvi:!~CzCV1C  

Now, (zAc)vi=(zvl)A(cvl) 

h A C [from (ii) and (iii)] 

(zAc)=bAC (iv) 

Hence from (i) and (iv) we can conclude that [a, b] is Boolean implies 

that [a v c, b v C] is Boolean. 

Again, let t c- [a v c, b v c] then (tA b)v a E[a, b] since [a, b] is 

Boolean, there exist z € [a, b] such that 

(Ab)vavz=b (v) 

and ((tAb)va)Az=a (vi) 

[(tAh)va~!a, IAb::~b, a < b =(IAb)va:!~h.] 

From (v), (tAb)vavz=b 

or, (tAb)v(zva)=b 

or, (iv zv a)A(b v zv a)=b 

or, (lvz)Ab=b 

=b:!-<ivz 

Now, IA(zvc)=(IAz)v(IAc)~!avc 

or, IA(zvc)~:a (vii) 

But,avc<t and a:!~z =.avc:!~zvc 

=avc:!~tA(zvc) (viii) 

From (vii) and(viii), IA(zv c)=avc 

Also, tv(zvc)=(tvc)vz::5(bvc)vz=(bvz)vc=bvc 

ie, tv(zvc):!~bvc (ix) 

From b:~ivz,wehave bvc:!~(tvz)vc (x) 

1 
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From ((ix) and (x), iv(zvc)=bv c (xi) 

From (viii) and (xi), we conclude that [a, b] Boolean implies that 

[a v c, b v c] is Boolean.. 

Theorem 5.4.6: Let L be a distributive lattice with 0 and 1. Then L is 

Boolean if and only if P(L) , the set of all prime ideals of L is 

unordered. 

Proof.: Let L is Boolean. If P(L) is not unordered. Then there exists 

P,QEP(L) such that Pc:Q.ChooseaeQ—P.Now, aAa'=O 

aAa'EPCQ. Since P is prime and aP. So a'ePQ. Thus 

a, a' E Q and so 1 = a v a' E Q which is a contradiction. 

Therefore P(L) must be unordered. 

Conversely, let P(L) be unordered. Suppose L is not Boolean, then 

there exists a E L which has no complement. 

Set D={x I  x v a =i}, then D is a filter. Take D1  = Dv [a). Filter I) 

does not contain D. For otherwise 0 = d A a for some d E D. Then 

d v a =1 would imply that d is complement of a which is a 

contradiction. Thus D o D1  . Then by Stone representation theorem 

there exists a prime ideal P disjoint to D,  . Also note that 1 (a] v P 

otherwise 1= a v p for some p E P. Contradicting P n D = . Then 

by Stone representation theorem there exists a prime ideal Q = (a] v P 

and so P c Q which is impossible, since P(L) is unordered. Therefore 

L must be Boolean. 0 

* 
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1' 
5.5 Switching Circuits 

One of the major applications of Boolean algebra is to the switching 

systems (an electrical network consisting of switches) that involve two 

state devices. The simplest example of such a device being an ordinary 

ON-OFF switch. By a switch we mean a contact or a device in an 

electric circuit which lets(or does not let) the current to flow through 

the circuit. The can assume two states 'closed' or 'open' (ON or OFF). 

In the first case the current flows and in the second the current does not 

flow. We will use a,b,c, . •,x,y,z, .. etc. to denote switches in a current. 

There are two basic way in which switches are generally 

interconnected. These are referred to as 'in series' and' in parallel'. 

Two switches a, b are said to be connected 'in series' if the current can 

be pass only when both are in closed state and current doesn't flow if 

any one or both are open. We represent it as in the following diagram. 

a 

Fig. 5.1 

Two switch a,b are said to be connected 'in parallel' if current flows 

when any one or both are closed does not pass when both are open. We 

represent this by the diagram 

Fig.5.2 

If two switches in a circuit be such that both are open(closed) 

simultaneously, we'll represent them by the same letter. Again if two 

4 

,11 
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-p 
switches be such that one is open if the other is closed, we represent 

them by a and a'. 

We show that the system discussed above forms a Boolean algebra. 

Let 0 denote open circuit (current does not pass) 

I denote closed circuit (current passes). 

Let 'in series' connection be represented by A (i.e. a A b denotes 

'switches a and b are connected in series'). Also let a v b denote 

'switches a and b are connected in parallel'. 

Consider the system (B = (0, 1), A, v). 

Then B is a non empty set A and v are two binary compositions 

(operations) on B as is evident the following tables 

AO 1 1 vO 1 

00 0 00 1 

10 1 1 1 1 

The conditions of idempotency, commutativity, associativity, and 

absorption are clearly seen to be satisfied. 

e.g.. 1A(1v0)=lA1=l 

1A(1A0) =IAO=(IAI)AO 

In fact, a A (b v c) = (a A b) v (a A c) also holds when a, b, c take 

values 0 or 1. Also since OA1=0, Ovl=1 we find 0 and 1 are each 

others complements. 

Hence B is a distributive lattice in which each element has a 

complement, i.e. it is a Boolean algebra. 

the system ({0,1},A,v,' )discussed above is usually called switching 

algebra which we have shown is a two valued Boolean algebra. 
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Proposition 5.5.1: Draw the circuit represented by the Boolean function 

f = a A (b v c) 

Proof: The circuit is given by the diagram 

ia 
IC 

Fig. 5.3 

Notice, the current would flow when a and b or a and c are closed i.e., 

when a and b or c is closed. • 

Proposition 5.5.2 Draw the circuit which realizes the function 

aA [(b v d') v (c' A (a v dv c'))] Ab 

C'  

Fig. 5.4 

Proposition 5.5.3 : Find the function that represents the circuit 

Fig. 5.5 
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Proof: The circuit given by the function 

aA[(bAc)v (dA(evf))]. 

Let us consider the circuit given by the function 

(a A b) v (a A c) 

It is represented by 

Fig.5.6 

since (a A b) v (a Ac) = a A (b v c), the circuit could be simplified to 

Fig. 5.7 

) 

Proposition 5.5.4: Sirnplif,' the circuit 

I' lb 

a 

be 

Fig.5.8 

Proof: The circuit is represented by the function 

(a'Ac)v(a'Ab)v(aAb'Ac)v(bAc) 

which is equal to 

(a'  A b) v (a' v (a A b') v b) AC 

=(a'Ab)v[a'v(aAb')v(ava')Ab]Ac 

=(a'Ab)v[a'v(aAb')v(aAb)v(a'Ab)]Ac 

= (a' A b) v [a' v {a A (b' v b)}v (a' A b)] AC 

= (a'  A b) v [a'  v av (a'  A b)] AC 

~ 
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= (a' A b) v [lv (a' A b)] AC 

= (a' A b) v c 

which is given by, 

' lb 

IC 

Fig. 5.9 

Proposition 5.5.5: Simplify the circuit represented by 

f = (ciA C' Ad')v (aA b'A d)v (a A CA d') 

Proof: We have, 

f = (ciA C'  A d')v (a A b' Ad)v (a ACA d') 

= [(aA d') A (c'v c)]v (a Ab'A d) 

=[(aAd') Al] v(aAb'Ad) 

=(aAd')v(aAb'Ad) 

= a A [d' v (b' A d)] 

= ci A [(d' v b') A (d' v d)] = a A (b' v d') 



Reference page no 107 

 J. C. Abbott - Sets Lattices, Boolean algebra. 

 ---------------, Semi boolean algebra. 

 ---------------, Imp licational algebra. 

 G. Birkhoff- Lattice theory, Amer' Math. S.C. collog, 

Pub!. 25. 3rd  Edition (1967) 

 R. Balbes- A representation theory for prime and 

implicative semilattices. Trans. mer. Math. 

Soc. 126 (1969) 26 1-267. 

 C. M. Biles - 'Waliman-type compactification', 

Proc.aAmer. Math.Soc. 25(1970),363-368. 

 R. Cignoli- Stone filters and ideals in distributive 

lattices, Bull. Math. Soc. Sci. Math. R. S. 

Roumanie 15 (63) (1971), 13 1-137. 

 ---------------, The lattice of global sections of sheaves of 

chains over Boolean spaces, AIg. University 

8 (1978), 357-373. 

 W. H. Comish, The multiplier extension of a distributive 

lattice J. Algebra 32 (1974), 339-355. 

 W. H. Cornish and R. C. Hicman- 'Weakly distributive semilattices', 

Acta Math. Acad. Sci. Hungar. 32 (1978), 5- 

16. 

 B. A. Davey, Some annihilator conditions on distributive 

lattices, Aig. Univ. 3 (4) (1974), 3 16-322. 

 E. Evans, Median lattices and convex subalgebras, 

Manuscript. [18]. G. Gratzer, General lattice 

theory, Birkhauser verlag, Basel (1978). 

 ---------------, Lattice theory . First concepts and 



Reference page no 108 

distributive lattices, Freeman, San Francisco, 

1971. 

14. Freeman sen. Francisco.- First concept of distributive lattices. 

15. Gratzer - Lattice theory. 

16. ---------------, Lattice theory first concept and distributive 

lattices. 

17. G. Gratzer and E. T. Schmidt, "On a problem of M. H. Stone" Acta 

Math. Acad. Sci. Hunger, 8 (1957), 455-460. 

18. ---------------, Standard ideals in lattices, Acta Math. Acad. 

Sci. Hung. 12 (1961), 17-86. 

19. M. F. Janowitz- Section Semicomplemented lattices Math. 

Zeit. 108, 63-76 (1968). 

20. E. Kamble- Theory of sets. 

21. J. E. Kist- Minimal prime ideals in a conm-iutative 

semigroups, Proc. London Math. Soc. 

(3) 13(1963), 31-50. 

22. T. Katnnak- Remarks on Stone lattices, I' (Russian) 

Math. fyz. Casopis 16 (1966), 128-142. 

23. ---------------, A note on normal ideals, J. Sci. Hiroshima 

Univ. Ser. A-I, 30 (1966), 1-9. 

24. ---------------, 'Remarks on Stone lattices,I',(Russian) 

Math.-f'z casopis 16 (1965), 128-142. 

25. T. Kertrinak and P. Medarly- Constractions of P-algebras Algebra 

Universalis, 17(1983), 288-316 

26. H. Laxser - Principal congruences of 

pseudocomplemented distributive lattice, 

Proc. Amer. Math. Soc. 37(1973), 32-36. 



I 

Reference page no 109 

 The structure of pseudocomplemented 

distributive lattices I subdirect 

decomposition. Jrans. Math. Amer. Math. 

Soc. 156(1971), 335-342. 

 J. E. Kist- 'Minimal prime ideals in commutative 

semigroups', Proc. London Math. Soc. (3) 

13(1963),3 1-50. 

 K. B. Lee- Equations classess of a distributive 

4 pseudocomplemented lattices, Canad. 

J. Math. 22 (1970), 88 1-891. 

 F. Maeda and S. Maeda- Theory of Symmetric lattices, Springer 

Verlag Berlin, Heidelberg. 1970. 

 M. Mandelker- Relative annihilators in Lattices, Duke Math. 

J. 40 (1970), 377-386. 

 ---------------, 'Relative annihilators' J. London. Math. Soc. 

(2) 1(1969), 135-139. 

 A. Monteiro- L'arithmetique desfilters less espaces 

4 topologiques, Segundo Symposium de Math, 

Centro de Cooperacion Cientifica de la 

UNESCO para Amer. Latina Montevideo, 

1954, 129-162. 

J. Nierninen- About generalized ideals in a distributive 

lattice, Manuscripta Math. Springer Verlag 

7(1972), 13-21. 

A. S. A. Noor & M. A. Ali- Minimal prime n-ideal of a lattice, 

The Journal of Science Math. Bangle 

University Raview, India 9 (1), 1998, 32-36. 



Reference page no 110 

A. S. A. Noor & M. A. Latif- Standard n-ideal of a lattice, SEA. Bult. 

Math. 4 (1997), 185-192. 

T. P. Speed- 'On Stone lattices', J. Austral. Math. Soc. 

9(1969), 297-307. 

J. Verlet- 'On the characterization of Stone lattices', 

Acta Sci. Math. (Szeged) 27(1966), 81-84. 


