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Summary i

In this thesis we have studied the nature of distributive Lattice and Boolean

Algebra. Lattice theory is branch of Mathematics. A poset (L,<)is said to be
form a Lattice if for every a,be L,av band a A b exist in L. where v, Aare

two binary operation. A letter L is called lattice, if it is distributive lattice

then we have shown that aa (bv c)=(anb)v(anc) forall a,b,cel. In

this thesis we give several results on distributive Lattice, Boolean algebra
and Boolean ring which are certainly extend and generalized many results in
Lattice theory. The material of this thesis has been divided into five

Chapters. A brief scenario of which we present as below.

Chapter one we have discussed basic definition of set, Lattice, convex sub
lattice, meet semi-lattice and joint semi-lattices which are the basic to this
thesis. We also prove that if A and B are two Lattices, that the product of A
and B 1s a Lattice. In this Chapter we have also discussed the definition of
ideals, bounded lattice, finite lattice, Complemented lattice and relatively
complemented lattice. We have established the relations among them. Also
we studied some other properties of these concepts. We have prove that two
bounded Lattice are complemented iff the cartesian product of the two

Lattice is complemented.

In Chapter two we have discussed Modular lattice, Distributive lattice. We
include some characterization of modular and distributive Lattices. We have
also proved a modular lattice is distributive lattice if and only if it has no

sublattice isomorphic M .

In Chapter three we discuss Pseudocomplemented lattice, Stone lattice,

Stone algebra are discussed. We have proved the theorem let L be a
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pseudocomplementd distributive lattice and P be a prime ideal of L. Then the
following conditions are equivalent.

(i) P is minimal.

(11) xe P implies x*x¢ P.

(i) xe P immplies x**e P.

(iv) PAD(L)=d

In Chapter four Boolean algebra has discussed here. Since Boolean Lattice,
Boolean subalgebra have been studied by several authors including Cornish [
9 ]1and A. Monteiro [ 33 |. We have established the relation among them.
Also we have studied some other properties of this concept. We also proved

that in a Boolean algebra, the following result are holds

(i) (@) =a
Gi) (an b)' =dvb [De Morgan’s Law]
Gii) (avb) =d Ab' [De Morgan’s Law]

(iv) aboad2b

(V) asboanb'=0sdvb=u
In Chapter five Boolean ring, Disjunctive Normal form, Conjunctive Normal
form are expressed here. We also have showed every Boolean ring with
unity 1s a Boolean algebra.
Last section in this chapter we should try to discussed the switching circuit
system. The simplest example of such switch being on ordinary ON-OFF.
These are two basic way in which switches are generally interconnected.
These are referred to as in series and parallel. We have also explained with

figure the circuit represented by the Boolean function f =a A (bvc).
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“Lattice and convex sublattice”

1.1 Introduction
In this chapter we recall some definitions and known results on Lattice,
convex sublattice and ideals. Some more definitions and result are included
in the relevant chapters. We consider this chapter as the base and
background for the study of subsequent chapters. The intention of this
chapter is to outline and fixed the notation for some of the concepts of ideals,
convex sublattice, meet and joint semi-lattice of a Lattice which are the basic
of this thesis.

The ideal, meet and joint semi-lattice all are introduced by Gratzer (15),

Cornish ( 9 ), Noor (35 ) in their several papers. The ideals have also been

used for improving some results J. Nieminen (34) . The meet and joint semi-

lattices have been studied extensively by Noor and Latif (36 ).

Cornish and Hickman (10) has defined meet semi-lattices and joint semi-

lattices by introducing upper bound property.

A sublattice of a Lattice L is a convex sublattice if and only if for all

x,yek, (xSy), [x,y]gK.

Definition (Set) : Any collection of objects which are related to each other

Example 1.1.1 : A= {,2,3} is a set.

Definition (Finite set) : A set is finite if it consists of a specific number of
different elements ie. if in counting the different members of the set
the counting process can come to end.

Example 1.1.2: Let M be the set of days of week. Then M is finite.

Definition (Infinite set ): A set is infinite if it does not consist of a specific
number of different elements ie. if in counting the different members
of the set the counting process can not come to end.

Example 1.1.3: Let A= {1,5,10,15,------}. Then A is infinite.
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Definition (Comparable) : Two sets A and B are said to be comparable if
AcB orBcA
ie if one set is a subset of the other.

Example 1.1.4 : Let A= {1,5,10,15} and B = {1,5,10,15,-----}. Then Ac B

ie A and B are comparable.

Definition (Line diagrams): If 4 c B, then we write B on a higher level

then A and connect them by a line;

If Ac B and B c C, we write

ro—e Te—eN

Fig. 1.2
Example 1.1.5: Let A= {1}, B={2} and C = {I, 2} Then the line diagram of

e

Fig. 1.3

A, B and Cis

Example 1.1.6 : Let X = {x}, Y= {x, y}, L= {x, ¥, z}and W= {x, ¥, w}
Then the line diagram of X, Y, Z and W is
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N

4

I

X
Fig. 1.4

Definition (Power set) : The family of all the subsets of any set S is called
the power set of S. We denoted the power set of S by Ll
Example 1.1.7 : Let M = {x, y}. Then 2¥ = {{x, y}, {x}, {y},gb}
Definition (Disjoint set): If sets A and B have no elements in common.
ie. no element of A is in B and no element of B is in A, then we say A
and B are disjoint.
Example 1.1.8: Let ¥ = {x, y}, 2= {x, ¥, z}, then Y and Z are not disjoint
since X, y inboth setsie x,ye€Y and x, ye Z
Example 1.1.9: Let £ = {x, Y, z}and Fi= {r, s, t}. Then E and F are disjoint.
Theorem 1.1.1: Let A and B be two sets which are not comparable.
Construct the line diagram of A, Band 4N B.
Proof: A~ B is a subset of both A and B thatis AnBc 4 and AnBc B.
Accordingly, we have the following diagram
A /B
\
AnB
Fig. 1.5

Definition (Function) : Let A and B be two sets , a relation R: 4 - B is
called a function if each element of A is assigned to a unique element
of B.

Definition (Domain and co-domain): If the relation R: 4 — B is a function

then the set A is called domain and the set B is called co-domain.
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Definition (One One function) : Let f be a function from A to B then the
function f is said to be one one function if every element of A is
assigned to a single element of B.

Definition (Onto function) : Let f be a function from A to B then the
function f'is said to be onto function if every element of B is assigned.

Definition (Product function) : Let f be a function of A into B and let g be
a function of B, the co-domain of f, into C. The new function is called

a product function or composite function of f and g and it 1s denoted

by (go f)or (g f)
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1.2

Relation ,Lattice, Convex Sublattice .

Definition (Relation) : A relation R from A to B is a subset of 4xB.
Example 1.2.1 : Let 4={1,2,3} and B ={a, b}. Then

R={(,a),(,b),(3,c)} is arelation from A to B.

Definition (Equivalance Relation) : A relation R in a set A is an

equivalence relation if

(1)  Ruisreflexive, that is for every a € 4, (a,a) e R
(11) R is symmetric, thatis,(a,b) € R implies (b,a) € R

(11) R s transitive, that is (a,b) e R, and (b,c) € R implies (a,c) € R

Example 1.2.2 : Let 4 = {1, 2, 3} be a set and

R={(1,1),(2,2),3,3),(1,2),(2,1,(,3),3,1),(2,3)}

be arelation of 4 x 4 then the relation is an equivalence relation, since
(1) Risreflexive, (1,1),(2,2),(3,3)e R,

(1)  Rissymmetric, (1,2),(2,1),(1,3),(3,1) e R and

(1) Rs transitive, (2,1),(1,3),(2,3)e R.

Definition (Partially ordered set): A nonempty set P, together with a

binary relation is said to form a partially ordered set or a poset if the
following conditions hold:

P1: Reflexivity: aRa for all a € P

P2: Anti-symmetry: If aRb,bRathen a=»5b (a,b € P)

P3: Transitivity: If aRb,bRcthen aRc (a,b,c € P)

Example 1.2.3 : Let X be a non empty set. Then P(X), the power set of X

( ie, set of all subsets of X) under < forms a poset. Here if

A,Be P(X),then A< B means 4 C B.
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Definition (Totally ordered set) : If P is a poset in which every two
members are comparable it is called a totally ordered set or a toset or a
chain.

Thus if P is a chain and x, y € P then either x < yory <x.

Clearly also if x, y are distinct elements of a chain then either
X<yory<x.

Definition (Greatest element of a poset) : Let P be a poset. If 3 an
element a € Ps.t. x <afor all x € P then a is called greatest or unit
element of P. Greatest element if exists, will be unique.

Definition (Least element of a poset) : Let P be a poset. If 3 an element
be Pst. b<xforall x e P then b is called least or zero element of P.
Least element if exists, will be unique.

Example 1.2.4 : Let X ={1, 2, 3}. Then (P(X),<)is a poset.

Let A={g,{l,2},{2},{3}} then (A4,<)is a poset with ¢ as least
element. A has no greatest element. Let B ={{1, 2}, {2}, {3}, {1, 2, 3} }
then B greatest element {1,2,3} but no least element. If
C={4,{1},{2},{,2}} then C has both least and greatest elements
namely, ¢ and {1, 2}

Definition (Maximal element ) : An element a in a poset P is called
maximal element of P if a<xforno xeP.

Definition (Minimal element ) : An element b in a poset P is called a
minimal element of P if x <5 forno xe P.

Definition (Upper bound of a set) : Le S be a non empty subset of a poset
P. An element a < P is called an upper bound of S if x<aVvxe S
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Definition (Least upper bound of a set) : If a is an upper bound of S s.t.
a<b for all upper bounds b of S then a is called least upper bound
(L.u.b) or supremum of S. We write sup S for supremum S.

It 1s clear that there can be more upper bound of a set. But sup, if it
exists, will be unique.

Definition (Lower bound of a set) : An element a € Pwill be called a
lower boundof Sif a<xVxeS§.

Definition (greatest lower bound of a set) : If a is a lower bound of a set S.
Then a will be called greatest lower bound (g.1.b) or Infimum S (Inf S)
if of a set b < a for all lower bounds b of S.

Example 1.2.5: Let (Z,<)be the poset of integers
Let S ={-,-2,-1,0,1,2} then 2 = Sup S
Again the poset (R.<)of real numbers if S ={xe R‘x < 0,x # 0} then
Sup S =0 (and it does not belong to S).

Definition (Lattice) : A poset (L,<) is said to form a lattice if for every
a,be L, Sup{a,b}and Inf {a,b} existin L.

In that case, we write

Sup{a,b}=avb (read a join b)

Inf{a,b} =anb (read a meet b)
Other notations like a+b and a-bor aub and a b are also used
for Sup{a,b} and Inf {a,b}.

Example 1.2.6 : Let X be a non empty set, then the poset (P(X),<)of all
subset of 1s a lattice. Here for A,B € P(X)

AANB=ANB and AvB=AUB
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As particular case, when X = {1,2,3}

P(X) ={¢.{1}.{2}.{3}.{1,2},{1,3}.,{2,3},{1,2,3} }
It represented by the following figure

{1,2,3}
{123\ {2,3}
Piced
{1} {3}
¢
Fig. 1.7

Example 1.2.7 : Every chain is a lattice. Since any two elements a, b of a
chain are comparable, say a < b, we find
anb=Inf{a,b}=a,avb=Supla,b}=>b
Example 1.2.8 : The set L ={1, 2, 3, 4, 6,12} of factors of 12 under

divisibility forms a lattice. It is represented by the following diagram

Fig. 1.8
Theorem 1.2.1: A poset (L,<)is a lattice iff every non empty subset of L

has Sup and Inf.
Proof: Let (L,<) be a lattice. Let S be any non empty finite subset of L

Case (i) S has one element a, then /nf S =Sup S =a
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Case (i1) S has two elements a, b; then by definition of lattice, Sup S
and Inf S exist.
Case (i11) S has three elements. Let S = {a,b,c}
Since by definition of lattice any two elements of L have Sup and Inf.
We take d = Inf{a, b), e = Inf {c, d }
We show e = Inf{a, b, ¢}
By definitionofdand e, d <a,d <bh,e<c,e<d
Thus e<a,e<bh,e<c
= e is lower bound of {a, b, c}.
If f is any lower bound of {a, b, c}then
f2a. fsh.fsé
f<a, f<b,and d = Inf{a, b}gives f <d
f<c, f<dand e:]nf{c,d} gives f <e
Hence e =inf{a, b, c}=inf S
Similarly Sup S exists.
The result can similarly be extended to any finite number of elements
in S.

Indeed

If 8 =dai. @l
Conversely, the result holds trivially as when every non empty finite
subset

Has Sup. and Inf. , a subset with two elements has Sup. and Inf. e
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Theorem 1.2.2: If L is any lattice, then for any a,b, ¢ € L,the following

results hold

(D ana=a,ava=a (Idempotency)
2)anb=bnra,avb=bva (Commutativity)
B)an(bac)=(an b)/\ c (Associativity)

av(pve)=(avb)ve
4)anb<a, b<avhb
(5) asbsanb=a (Consistency)
<avb=b
(6)If o, u e L, then
ona=o,0va=a
una=d, uva=u
(7) an(avb)=a (Absorption)
av(anb)=a
8) asbh,c<d=anc<bnad
ave<bvd

In particular, a <b=>anx<bAax

avx<bvx Vxel
Proof: We prove the results for the meet operation and urge the reader to
Prove similarly the results for join operation.
(1) ana=inf{a, a}=inffa}=a.
ava=supia, a} =sup{aj=a.
2) anb=inf{a, b}=inf{,al=bnra.

avb=supfa, b}=supfh,al=bva
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(3) Let b Ac =d,then d = Inf{b, c}
= d<b,d<c
Let e=Inf {a, d}then e<a, e<d
Thus e<a, e<bh, e<c (using transitivity)
Now proceeding as in proof of theorem 1.2.1 we find
e:aAd:aA(b/\c):inf {a,b,c}
Similarly, we can show that (a A b)/\ ¢ =inf {a, b, c}.
Let bv c=d,then d =sup, c}
= d=2b d=e¢
Let e=supia,d} then e>a, e>d
Thus e>a, e>b, e=c (using transitivity)
Now proceeding as in proof of theorem 1.2.1 we find
e=avd=av(bvc)=supia,b,c}
Similarly, we can show that (a v b)v ¢ =sup {a,b,c}.
Hence av (bvc)=(avb)ve
(4) Follows by definitions of meet and join.
(5) a £b, a < a(by reflexivity)
=% is lower bound of {a, b}and therefore a = a A b.
a <b, b <b (by reflexivity)
= bis upper bound of {a, h}and therefore a = a v b,
(6) Since o< x<u,for all xe L, the results are trivial for meet and
join.
(7) a<avb by @)
an(avb)=a by ().
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anb<a by4)
(anb)va=a by (5)
av(a/\b)=a by (2)

(8) anc<ac<h -\" |

ancses<d
Thus a A cis lower bound of {b, d}
Hence anc<bad, theglb. {b,d}
Also then AED. XEX=SANEEHN
We also proof the result for the join operation.
Proposition 1.2.3: Show that idempotent laws follow from the absorption
laws.
Proof : We have aA(avh)=aand av (a/\b) =a
Take, b = a Abin first and we get an(av(anb))=a
or ana=a. Similarly we can show ava=a. e
Theorem 1.2.4: In any lattice the distributive inequalities
an(bve)=(@anb)vianc)
av(brc)<(avb)alave)
hold for any a, b, c.
Proof: anb<a
anb<b<bvec
= aAbis lower bound of {a, b v ¢}
=anb<an(bve) (1)
Again anc<a
anc<c<bhve

= anc<an(bve) (2)
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(1) and (2) show that a A (b v c:) is an upper bound of {a Ab,an c}

== (anb)vianc)<an(bve)

Similarly we can prove the other inequality.

The above are also called semi distributive laws. e
Theorem 1.2.5: In only lattice L, the modular inequality

an(bvc)=bvianc)

holds for all a,b,ce L,a > b.
Proof: Follows from previous theorem as a > b =>anb=>b.

The dual of the modular inequality reads as:

av(b/\c)sb/\(avc) Va, b, cwith a<bh e

Theorem 1.2.6: In any lattice L,

(a/\ b)v (b N c)v (c /\a)s (avb)/\ (b v c)/\ (cv a), forall a,b,ce L
Proof: Since anb<avb

anb<b<bvc
anb<a<cva

We find (anb)<(avb)a(bve)alcva)

Similarly, (hbac)<(avb)a(bvc)a(cva)

and (cra)<(avb)a(bve)alcva)

Hence (anb)v(bac)vicna)s(avb)abve)alcva) e
Definition(Algebric lattice) : A non empty set L together with two binary

compositions (operations) A and Vv is said to form a algebric lattice if

forall a, b, c € L,the following conditions hold:

(1) Idempotency: ana=a, ava=a

(1) Commutativity: anb=bnra, avb=bva
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(iii) Associativity: aa(bac)=(anb)ac,av(bvec)=(avb)ve
(W).MmmmMEcwﬂavﬂ=a,cﬂdaAM=a.
Theorem 1.2.7 : Show that a poset is a lattice iff it is algebrically a lattice.
Proof : Clearly L is a non empty set.
So set a A b =inf{a,b}and a v b =sup{a,b}
Then ana=mnf{a,a} =a;ava=sup{a,a}=a
So Aand v are idempotent
anb=mf{a,b}=inf{b,a}=bAra
av b =supf{a,b} =sup{b,a} =bva
"> Anand v are commutative.
Next, a A (b A ¢)=inf{a, b A ¢} =inf{a, inf{b, c}}
= inf{inf{a, b}, c} =inf{a n b, c}
=(anb)nc
av (bvc)=sup{a,bvc}=sup{a,supi{b, c}}
= sup{a, b v ¢} =sup{a, sup{b, c}}
= sup{sup{a, b}, ¢} =sup{av b, ¢}
=f(avhyve
so A and v are associative.
Finally, a A (a v b) = a A sup{a, b} =inf{a, sup{a,b}} =a
av(anb)=avinf{a, b} =sup{a,inf{a, b}}=a
Hence A and v satisfy two Absorption identity
So L =(L; A, v)is a lattice.
(i1)  Since A isidompotent ie ana=a Vael

So a<a
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< 1sreflixive

Since A 1s commutative
Lanb=bna
—a=b[..anb=aand avb=D>]
So, < 1s anti symmetric.
Let a<b and b<c
Than a=anb,b=bnc
=an(bnc)
=(anb)nc
=dNE
=S a=anc
=T - o
So, > is transitive
(L, =) 1s a poset. ®
Example 1.2.8 : Every non empty subset of chain is a sublattice.
If S be a non empty subset of a chain L, then
a,be S =>a,be L= a,b are comparable
Leta<b.Then anb=aeS
avb=beS
Definition (Meet-semilattices) : A non empty set P together with a binary
operation (meet) A is called a meet-semilattice if for all a,b,ce P,
(1) ana=a
(i) anb=bnra

(i) anbac)=(anb)ac



Chapter 1 page no- 16

Definition (Joint-semilattices) : A non empty set P together with a binary
operation (joint) v is called a joint-semilattice if for all a,b,ce P,
i) ava=yq
(i) avb=bva
(i) av(bvec)=(avb)vc
Theorem 1.2.8 : If A and B be two lattice, that the product of A and B is a
lattice.
Proof : It is given that A and B are two lattice then
AxB=4x y)|x € A, y € B} is a poset under the relation < defined
by (x1,¥1)<(x3,¥;) & x;<x;,in A, y; <y, nB
We show that 4 x B forms a lattice.
Let (x;, 1), (x5, ¥,) € AX B be any element
Then x;,x, € A and y;, y, € B
Since A and B are lattices, {x;, x,} and {y;, y,}have Sup and Inf in A
and B respectively.
Let x; Ax, =inf{x;, x,} and y, Ay, =inf{y,, y,}
then x Ax,<x, X3AX =<Xy AV, <V, AV, =<},
= (0 A X, i A V) S (X, 11)
(X1 A X3, V1 A YVa) S (X2, 1)
= (X A Xy, Y] A Yy) 1s alower bound of {(x;, ¥,), (x5, ¥,)}
Suppose (z, w)is any lower bound of {(x;, »,), (x5, ¥5)}
Then (z,w)<(x, »)
(2, w) < (%, ¥2)

=D ZZX,ZSE X WS W, WS Y,
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= zis a lower bound of {x;, x,} in A.
w 1s a lower bound of {y,, y,} in B.

= zZSXAX,=inf{x, x,}

WS YAy, =inf{y, 3,
=  (ZW)S(qAX, 1A Y)
or that (x; A Xy, % A Y,) s g1b. {Cxi, 3, (52 1)}
Similarity (by duality) we can say that
(1 v Xy, YV yp) 1sLub. {(x, 1), (%2, 3,)}
Hence Ax B is a lattice.
Also (X1, y) A (Xp, 13) = (g A Xy), (V1 A V)

(X, YDV (X3, ¥2) = (5 vV %5), (1 Vv ). ¢

Definition ( Convex sublattices) : A sublattice K of a lattice L is called a
convex sublattice if forall x, ye K [xAy,xvy]c K.

Example 1.2.9 : In the lattice {1, 2, 3, 4, 6,12} under divisibility {1, 6}is a
sublattice which is not convex as 2, 3 €1, 6], but 2, 3 ¢ {1, 6}
Diagrammatically the lattice {l,2,3,4,6,12}can be represented by
the following figure

12

Fig. 1.9
Theorem 1.2.9 : A sublattice ot a lattice L 1s a convex sublattice if and only

if forall Vx, ye K(x<y), [x,y]cK.
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Proof : LetK be a convex sublattice of L.

Let x,yeK(x<y)be any elements, then by definition
[xAy,xvylc K

[x, V] K as xS y=>xAy=x XSYyY=DXAYy=X XVYy=Y.
Conversely, let [x, yY]c K V x, y,(x<y)

Let x, y € K be a sublattice

Also these are comparable. Thus by contrition.

[xAy,xvy]cK. ®
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1.3 Bounded Lattice, Complete Lattice and Ideal of a Lattice.
Definition (Bounded Lattice) : A lattice with a largest and a smallest
element is called a bounded lattice. Smallest element is denoted by
zero and the largest element is denoted by 1.
Definition (Complete Lattice) : A lattice L is called complete if for its
every subset K, both Sup K and Inf. K exists in L.
Definition (Finite Lattice) : A Lattice L is called finite if it contain a finite
number of elements.
Example 1.3.1: Let L = {1, 2, 5,10} be a lattice under divisibility. Here in
the lattice the finite number of element in L. So, L is finite lattice.
Definition ( Ideal of a Lattice) : A non empty subset I of a lattice L is
called an ideal of L if
1) abel =avbel
(1) ael,ielL =aniel
Example 1.3.2: Let L = {1, 2, 5,10} be lattice of factors of 10 under

10

1
Fig. 1.10

divisibility. Then {1}, {1, 2}, {1, 5}, {1, 2, 5, 10} are all the ideals of L.
Definition (Prime Ideal) : An ideal P of L is called a prime ideal if for any
x,yel, xAnyePimplesxePor yeP.
Definition (Principal ideal) : An ideal which is generated by a single

element is called principal ideal.
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Example 1.3.3 : Let (a] = {.x[ x < a} then the ideal (a] is generated by the
element a. Hence (a] is principal ideal.
Definition (Filter or Dual ideal) : A subset D of a lattice L is called a dual
ideal 1f
(1) d,dyeD =dnrd,eD
(i) deDand xelL.=>xvdeD
Proposition 1.3.1. : Let ®: L — K be an onto homomorphism. Let I be an
ideal of L, and let J be an ideal of K. Show that ®(/) is an ideal of K,
and @' (J)={a| ae L,®(a) e J}is an ideal of L.
Proof : To prove that ®(/) is an ideal of K, let x, y € D(/).
Then 3 a,b e such that ®(a)=x and ©(b)=y.
Now every x v y =®(a) v ©(b) =D(a v b) [ Dis a homomorphism ]
Since lis an ideal, a vb e and so @(a v b) e O(J)
ie xvyed().
Now z<x = ®(a)<D(b)
=>D(a)=DP(a)ADb)=D(anbd).Butanbel
Since aeL,bel &1isanideal of L
Hence z = ®(a) = D(a A b) e D(])
Therefore ®(/)is an ideal of K.
Again, let x, y e ® 1(J). Then ®(x),D(y) e J
= O(x)vDd(y)eJ [ Jisan ideal]
=>O(xvyeJ

:>xvye(1)_l(.f).
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Now let xe ®'(J) and ze L with z <x then Dd(x)eJ
L D) AD(x)=D(z A x)=D(2)
= O(z)<D(x)e ]
= O(z))eJ

= ze® ()

Hence ® (/) is an ideal of L. o

Proposition 1.3.2 : Prove that every ideal of a Lattice L is prime if and only

if L is a chain.
Proof : First suppose that every ideal of L is prime. Now we are to show that

L 1s a chain.

Let a,be L. Then anbel. Now consider the ideal 7 =(a A b]

generated by a A b . By hypothesis I is prime.
Now anbel = eitheraelor bel
= eithera<anborb<Lanb
= either a=anborb=anb
— either a<bor b<a
= L is achain.
Conversely, let L be a chain and P be an ideal of L, we are to show that P is prime.
Let x,ye L with x A ye P . Since L is a chain
Then either x<y or y<x = either xAy=xorxAy=y

= either xe P or ye P

= Pisaprime ideal of L

Hence proved. e

Theorem 1.3.3: Let L be a lattice and K and I be non-empty subset of L
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(1) I is an ideal iff for all x,yel/, xvyeland for all
xel, t<ximpliestel
(i) (Kl={xeL|x<k; vk, v---Vk,for some
ki,ky,---,k,eH}.
(iii) (a]={xeL|x<a}
Proof: (i) Suppose I is an ideal. So I is a sublattice and so for all
x,yel, xvyel.Nowletxel, t<ximpliestel.

Then t=tAxel

Conversely, suppose I has the stated properties .let x, y € [ then
xAy<x implies x A yel.ielis a sublattice.
Now suppose i€ [, xe L. Then iAnx <i implies inxe .

Therefore I 1s an ideal

(1) Let x,yeRH.S.

Then x<k, vk, v---vk, forsome k, k,, -, k, €K
y<kvk,v---vk, for some k,k,,---, k,, €K

Soxvy<k vkyv---vk,vk vky,v---Vvk,

Which implies xv y e RH.S.

If xe RH.Sand t € Lwith t < x,then x<k; vk, v---vk, for some

ki ky,--,k,eK.and t<x<k vk, v--vk,impliest € RH.S.

Hence R.H.S. is an ideal.
Obviously R.H.S. contain K.

Let I, be an 1deal then x<k, vk,v---vk, for
somek,, k,,---,k, € K. Since k 1s an ideal containing K, xek

Therefore R.H.S. is the smallest ideal containing K.
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(1)  Obvious from (i1) °

Theorem 1.3.4: Set of all ideals 7(L)of a lattice L again a lattice.

Proof: Let /J eI(L). Then clearly /AJ=1nJ. Now we claim that
IVJ:{xeL|x£ivj} forsome iel, je.J.
To prove this, let x,yeRH.S. Then x<ivjfor some
iel,jeJand y<iyv j forsome i€/, jyeJ.
So, xvy<(@vjv@ivi) =Gvipv(vp) liviel, jv jel]
which implies xv ye RH.S.
If xeRHS and tel with (<x then x<ivj for some
hel, jed.
Sot<ivjimplies t€ RH.S
Therefore R.H.S. is an ideal.
Obviously this contain both I and J.
Let xe RH.Sthen x<iv j for some j €1, j,eJ. Since I, is an
1deal containing both Iand J So i v je/, Hence i v j € I, and hence
xel,. 1e RH.S<K ie RH.S.is the smallest ideal.
Therefore R.H.S=1v1J and so /(L) is a lattice °

Theorem 1.3.5 : Prove that if D and F are dual ideals of L. Then
(i) DAF=DANF
(i) DvF={xellx2dAf for some deD, feF)}
(iii) [a)={xe L|x2a}

complement element. e
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1.4 Complimented and Relatively complimented lattice

Definition (Complimented lattice) : Let [a, b] be an interval in a lattice L,
Let xe[a, b]be any element. If 3yel st, xAny=a,xvy=5b. We
say y i1s a complement of x relative to [a,b], or y is a relative
complement of x in [a, b].

Definition (Relatively complimented lattices) : If every element x of an

interval [a,b] has at least one complement relative to [a,b], the
interval [a, b] 1s said to be complemented.

Further, if every interval in a lattice is complemented, the lattice is
said to be relatively complemented.

Theorem 1.4.1 : Let A be a non-empty finite set. Show that (p (4), <)is

uniquely complemented lattices.

Proof : Let A= ®finite set and p (4) be the power set of A. We know
(p (A), <) form a lattice with least element ® and greatest element A.
Any X, Y e p(A) X AY =X nYand X vY=XUY
since AN(A-X)=An(4-X)=0
Av(A-X)=Au(4-X)=4
We see 4 — X is complemented of X relative to [¢, A]
Then p (A) is complemented lattice.
Suppose Y is any complemented of X then
XAY=XNnY=¢

XuY=Xu¥=4
ie, XNnY=An(4-X).
XuY=4u(4-X)
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or that A-X is uniquely complemented of X.

So (p (4),c) is an uniquely complemented lattice.
Now we prove p (A) 1s also relative complemented.
Consider any interval [X,Y]in p (4).
Let Z € [X,Y] be any number, Then
Zn(Xul-2)=Znx)u(Zn{r-2)=Xxug=X
Zu(XxXul-2)=Zux)u(r-z)=zu(r-2)=Y
Showing that X U (Y -Z ) is the complemented of Z relative [X, Y]
Z is any element of any interval of p (A)
Hence p (A) is relative complemented . o
Theorem 1.4.2 : Two bounded lattices A and B are complemented if and
only if Ax B is complemented.
Proof : Let A and B be complemented and suppose o, u and o, u are the
universal bounds of A and B respectively.
Then (o, 0")and (u,u") will be least and greatest elements of Ax B.
Let (a,b) € Ax B be any element.
Then ae€ A, be Band as A, B are complemented, 3a"€ 4,b" € B s.t.,
ana'=o, ava'=ubnab'=0", bvb' =u'.
Now (a,b)yn(a',bYy=(ana',brb")=(0,0")
(a,b)v (a',bY=(ava',bvb)=(uu")
Shows that (a’, b") is complement of (a, b)in Ax B.
Hence A x B is complemented.

Conversely, let Ax B be complemented.
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Let ae A, b € B be any elements.
Then (a, b) € Ax B and thus has a complement, say (a’, ")
Then (a,b) A (a’,b")=(0,0"), (a,b) v (a',b")=(u,u")
=>(ana,bab)=(0,0"), (ava,bvb)=(u,u')
=dAd =6 aNva'=i
bpab'=0" bub'=u'
ie., a'and b" are complements a & b respectively. Hence A and B are
complemented. e
Theorem 1.4.3 : Two lattice A and B are relatively complemented if and
only if 4 x B is relatively complemented.
Proof : Let A ,B be relatively complemented .
Let [(ay, by),(a,,b,) be any interval of 4x B and suppose (x, y) is
any element of this interval.
Then (ay,b,)<(x,y)=<(a,,b,) a,,a,,xeAd b.,b,,yeB
=>a;<x<a, b <y<bh,
= x€la;,a,] aninterval in A, y €[b;, b,] an interval in B.

Since A, B are relatively complemented, x, y have complements
relative to [a,, a,] and [b,, b, | respectively.
Let x"and y’ be these complements. Then

xAnx'=a; yny'=b

xvx'=a, yvy' =b,
Now AL Y)=(xAx, yny)=(a;, b))

(v Y)=(xvx,yvy)=(a,,b,)

= (x', y") is complement of (x, y) related to [(a;, b;), (a,,b,)].



Chapter 1 page no- 27

Thus any interval in 4 x B is complemented.
Hence A x B is relative complemented.
Conversely, let 4 x B be relatively complemented.
Let [a;,a,] and [b;, b, ] be any intervals in A & B.
Let xela;,a,], ye[b,b,] be any elements.
Then a,<x<a,, b <y<b,
= (a1,b)=(x,y)<(ay,b;)
= (x,y)€l(ay, b)), (a,,b,)], an interval in Ax B
= (x, ) has a complement, say (x’, y") relative to this interval.
Thus (x, ) A (x', ¥) =(ay, b;)
(x, V) v (x', ) =(a,,b,)
= (ax,yay)=(a;b)
(xvx,yvy)=(ay,b,)
= XAX =@, XAX =a;
YAy =b,yvy =b
=5 x' is complement of x relative to [a,, a, ]
y'" is complement of y relative to [b;, b, ]
Hence A, B are relatively complemented. e
Theorem 1.4.4 : Dual of a complemented lattice is complemented.
Proof.: let (L, p)be a complemented lattice with o, u as least and greatest
elements. Let (L, p) be the dual of (L, p). Then u, o are least and
greatest elements of 7 .

Let ae L = L be any element .

Since ae L, L is complemented ,3 a'e L s.t.,
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ana' =o,ana’'=u inL
ie., o=inf{a,a’} inL
= opa, opa’
= apo, d'poinlL
= o is an upper bound of {a,a'} in L
If k is an upper bound of {a,a’} in L then apk,a'pk
= kpa,kpa' = kpo asoisInf.
= opk
ie,oislub. {a,a’} in L
ie,ava =oin L
Similarly, aAa'=uinlL
or thata' is complement of ain L

Hence L is complemented.
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1.5 Atom and Dual atom.

Definition (Atom) : An element a in a lattice L is called an atom if it is
covers 0. In other words a is an atom iff a#0 and xAa=a or
xna=0 vxel.

Definition (Dual atom) : An element b is called dual atom if u, the greatest
element of the lattice covers b.

Definition (Length) : A finite chain with n elements is said to have length
n—1, (1e., length is the number of 'links' that the chain has.)

Definition (Cover) : If a and b two elements in a chain b < a if there exist
no element c s.t. b <c <a then we say a cover b.

Definition (Height or dimension) : Let L be a lattice of finite length with
least element 0. An element x € L is said to have height or dimension
n if /[o, x] = nand in that case we write h(x)=n.

Proposition 1.5.1 : Show that no ideal of a complemented lattice which is a
proper sublattice can contain both an element and its complement.

Proof : Let L be complemented lattice. Then o, u € L. Let I be an ideal of L
such that I is a proper sublattice of L. Suppose 3 an element x in I
such that its complement x' is also in I.

Then x i x'=0;, xvx' =u
since [isasublattice xAx’, xvx'areinlie., o,uel
Now if / € L be any element thenas u e/ .
IAnuel
—lel. = Lcl=1=L,acontradiction. e
Proposition 1.5.2 : Let L be a uniquely complemented lattice and let a be an

atom in 1. Show that ¢’ the complement of a is a dual atom of L.
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Proof : Since L is uniquely complemented lattice, every element has a

unique complement.

Suppose a' is not a dual atom, then 3 at least one x s.t., a’' <x<u

= aAvasxva

= usxvasu

=b W=XNd

Now if a<x then x va=x= x=u, not true. Again if a£x, then

a A x=o (note ais an atom)

Thus anx=0,avx=u = x=d', again a contradiction.
Hence @' is a dual atom. e
Proposition 1.5.3: Let L be a lattice, let P be a prime ideal of L, and let
a,b,c e L. Prove that ifav(b/\c)eP,then (avb)/\(avc)eP.
Proof. : Since av (hAc)eP then ae P and b Ace P [Pis an ideal and
a,bnceP]
= aeP and beP or ce P [ as Pis prime ideal]
= eitheravbeP oravceP

= (avb)a(avc)eP [asPis prime ideal] @
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“Modular and Distributive Lattice”

2.1 Introduction.

In this chapter we discuss the definition of homomorphism, isomorphism,
join-reducible element, hereditary. An element a € L. 1s call a join-reducible
element if b,c € L,a=>b v ¢ implies that either b=a or c=a

|

b a=av0, b=bvO0

0
Fig. 2.1

Here a, b are all join irreducible elements. We denote J(L) as the set of all

join irreducible elements.
In this chapter we also prove the following theorem, “A Lattice L is

distributive if and only if for all x, y € L x <y. There exist a prime ideal P

with xe P,yg P”
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2.2  Modular and Distributive Lattice

Definition(Modular Lattice): A lattice L is called modular lattice if all
a,b,ce Lwitha>b
aA(bvc)=(a/\b)v(a/\c)=[bv(a/\c)]

Definition (Distributive Lattice): A lattice L is called distributive lattice if
alla,b,ce L,an(bvc)=(anb)v(anc)

Example 2.2.1 : The lattice (p(x), g) is a distributive lattice as
An(BuC)=(4nB)u(4nC)
For a distributive Lattice L J(L) denotes the set of all nonzero join

irreducible elements, regarded as a poset under the partial ordering of

L. H(J(L)) denotes the set of all hereditary subsets partially ordered
by set inclusion. H (J(L)) is a Lattice in which meet & join are
intersection & union respectively. Hence A (J(L))is a distributive
Lattice for ae L, set r(a) = {x € J(L)} X = a}
Theorem 2.2.1: Every maximal chain C of a finite distributive Lattice L is a
length ‘J (L)\ (order of J(L))
Proof : For ae J(L), Let m(a)be the smallest element of C containing a.
Define amap ®:J(L) = C — {0} by ®(a) = m(a)
Let ®(a)=®D(b). Then m(a)=m(b).let m(a)>x and xC
Then, x v a=x v b. Therefore, a=an(xva)
=an(xvb)
=(anx)v(anb)
either a=(anx)ora=(anb) [raeJ(L)]
But a=(aAx) =>a<x = m(a)<x<m(a); a contradiction.

Therefore, a=(a A b)and so a<b .Similarly b<a.
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=(xvy)a(yvz)a(zvx)
=(xAyY)v(yaz)v(zax)
=(xAy)v(yaz)vz[z<xthen xAz=2z]
=(xAYy)Vvz
= L is modular.
Now for any a,b,ce L,
anbve)y=lan(avb]nabvc)
=lan(ave)la(a@avbyan(bvc)
=anflavb)an(bve)a(cva)l
=an[(brc)vi{(anb)v(cnaa)}]
=(anbnrc)v(anb)vicna)
=(anb)v(cna)
ie anbve)=(@anb)v(cna)
Thus L is distributive. e
Theorem 2.2.3: A lattice L is modular if and only if no sublattice
isomorphic to N;.
Proof. : Suppose L is a modular lattice. Then its every sublattice is also

modular. Since N, ={0,a,b,c,1}. Where ¢c<a, anb=banc=0.

1

0
Fig. 2.2

And avb=bvc=1 is not modular. So L does not containing

sublattice isomorphic to N,.
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To prove the converse, Let L be not modular. Then there exists

elements x, y,ze L with z <x such that x/\(yv z)£(xAy)vz.
But x A (yv z)>(x A y)v z. Then the elements x A y.y, (xAy)vz,

xA(yvz) yvz formalattice . Diagram as follows,

yVvz
xan(yvz)

(xAy)vz

XAY
Fig. 2.3

Observe that, (x A(yvz))Ay=xa[(yvz)a y]

=XAY
and yalxa(yvz)=xay
Again, yv[(x/\y)v z]:[yv(x/\y)]vz
=yVvz
and yv[x/\(yvz)]:yvz

If y=x Ay then y <x and so yvz:(x/\y)vz
:>(x/\y)vz:yvz (1)

Also,y<x and z<x ,=» yvz<x and

SO :>x/\(yvz):yvz (i)

Hence we have, x A (y v z)=(x A y)v z

Which is a contradiction, Since L is not modular. So y#xA y.

Similarly we can show that, (xAy)vz#xay, y#yvz,

xalyvz)zyvz.
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Hence the five elements are distinct and they form a sublattice of L
which is isomorphic to N;.
Therefore L is modular. s

Theorem 2.2.4 : A modular lattice is distributive if and only if it has no

sublattice isomorphic M.

Proof. : 1st suppose a modular lattice L is distributive. Then its every

sublattice 1s also distributive.

d C

MS
0
Fig. 2.4

Since M, is mnot distributive (For an(bvec)=anl=a but
(@anb)v(anc)=0v0=0) So, L cannot contain any sublattice
1somorphic to M.

Conversely, suppose that L is not distributive. Then there exist

elements x, y,ze L suchthat xA(yv z)=(x A y)v (x A z) but

(x/\y)v(x/\z)éx/\(yvz)
=>(x/\y)v(x/\z)<x/\(yvz)

Thus every modular lattice which is not distributive contains a

sublattice isomorphic to M.

Hence L is a distributive. ®
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2.3 Sectionally complemented Lattice
Definition (Sectionally complemented) : A lattice L with O is called

sectionally complemented if for each x € L, [0, x| is complemented.

Definition (Generalized Boolean lattice) : A sectionally complemented
distributive lattice L is called a generalized Boolean lattice.
Theorem 2.3.1: A lattice L is distributive if and only if every element has at
most one relative complement in any interval.
Proof.: 1st suppose a modular lattice L is distributive. Let a, b, c € L with
b<a<c.
Suppose a has two relative complements d and e in [b, c]. Then we
have
and=b avd=c
and ane=b ave=c
Now, d =d e
=d n(ave)
:(d/\a)v(d/\e)
=bv(dne)
=(ane)v(dne)
=enlavd)
=eAE
=g
=>d=e
Hence a has one relative complement in any interval.

Conversely, suppose L is not distributive. Therefore it contains a sublattice
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w
1somorphic to either M, or N, given below:
1 1
a
b
a c
c
N,
0 - -
Fig. 2.5 Fig. 2.6
In both case ¢ has two relative complements. Which gives a
% contradiction.
Hence L is distributive. e
Theorem 2.3.2: A lattice L is distributive if and only if for any two ideal I
and J of L
IvJ={vjliel, jeJ}
Proof. : 1st suppose a modular lattice L is distributive. Then clearly
RHScliIvJ.
Now, let fe /v J . Then we have t <iv j forsome ie/and jeJ.
_ t=tn(iv j)
=(t A i)v (r A j)

=i'v j" where, i'"=tniel and j'=tA jeJ
Hence te RH.S. IVJCRH.S
Thercforc,1vJ={ivj|ieI,jeJ}
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Conversely, suppose L is not distributive. Therefore it contains
elements a, b, c in M or N,

1

c

Ny
MS
0 0
Fig. 2.7 Fig. 2.8

Let / =(b] and J =(c], since a<bv c, then wehaveae/ v J.
However a has no representation as in given theorem.
Forifa=iv j,iel, jeJ.Then j<a. Also j<c. Therefore
j<anc<b.Thus jel.
Which gives a contradiction.
Hence L is distributive. e

Theorem 2.3.3: For any two 1deals I and J of a distributive lattice L if 7 A J

and / v J are principal then both I and J are principal.
Proof.: Let I AJ =(x] and 7 v J =(y]

Then y=iv j forsomeie/and jeJ.Setc=xviandb=xv j.

Then clearly ce/ and be J .
We have to show that 7 =(c] and J = (b].

If 1 #(c], then there exists an element @ > ¢ such that ae /.

Moreover, the set {x, ab,c, y} form a lattice isomorphic to N
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ie, L is not distributive. Which is a contradiction

Hence I =(c]. Therefore I is a principal ideal.
Similarly, we can show that, J = (b] ie J 1s also a principal ideal.

Hence proved. ®
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2.4 Homomorphism and Isomorphism.

Definition (Homomorphism) : Let L and M be lattices. A mapping
6:L — M is called a meet homomorphism if 8 (a A b): 0(a)n 6(b).
It is called join homomorphism if 8 (a v b)=8(a)v 0 (b).
If @is both meet as well as join homomorphism, it is called a
homomorphism. A homomorphism is sometimes called a morphism.

Definition (Isomorphism) : Let L and M be lattices. A mapping
@ :L — M is called an isomorphism if for all a,b € L ,then
Oanb)=0(a)A6(b), 0(av b)=0(a)v 6(b) and 6 is one-one and
onto.

Theorem 2.4.1 : Let L be a distributive and a € L, the map
QX —> (x NG, XV a) is an embedding of L into (a]x [a). Itis an
isomorphism if a has a complement.

Proof.: For x, ye L
we have , (o(x)=<xz\a,xva> and go(y)=(y/\a,yva).

Then ¢(x A y) :<(x/\y)/\ a,(x A y)v a)

Il

XAYyAa, (xva)f\(yva))

I

(G nayaly aa)leva)alyva)) (

(xna,xvaya(yna,yva)
o(x) A p(y)

aid w0y 9)={lev ns vy o)

(x na)v (b aa) eva)v (yva)

=1

xna,xvayv(yna,yva)

Il

=o(x)v o(y)

T N
<=0 Y O ™
(3 el
i g s o B
- \
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Hence ¢ is a homomorphism.
Now let (o(x)z (o(y),x, yel.
Then (x na,xva)=(yAa, yva)and
So, xAa=yAaand xva=yva.
Now, x=xn(xva)

= XA (y v a)

=(xry)v(xnra)

=ya(xva)

=yalyv a)

=¥
= x =y and so ¢ 1s one-one.
Hence ¢ 1s an embedding.
2nd part: Let a € L has a complement. Choose an element
(x, y) € (a]x [a), then x <a < y. Since a has a complement in L so it
has a relative complement b in the interval [x, y].
Then we have , anb=x and avb=y

~(x,y)=(anb,av b)
=p(b)
Hence ¢ is onto. Therefore ¢ is an isomorphism. e
Zorn’a Lemma 2.4.2: Let A be a subset and let ¥ be a non empty subset of

P(A). Let us assume that y has the following property :
fCcyandCisa chain,ﬂlenu{X|XeC}e;g."[hen ¥ hasa

maximal number. e
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Corollary 2.4.3: In a distributive lattice L every ideal is the intersection of al
prime ideals containing it.

Proof.: Let I be any ideal of L. Let /, = r'w{P' P } P 1s a prime 1deal of
L. We have to show that / =/,.
If 1 # I, then there exists an element x € /, but x ¢ /, Then by Stone
theorem there exists a prime ideal 7, © / but x e P,. This implies that
x ¢ I,. Which is a contradiction.
Hence / =1,. e

Theorem 2.4.4: Let L be a distributive lattice with 0 and 1. Then L is a
Boolean lattice if and only if P(L), the set of all prime ideals of L is

unordered.
Proof.: First suppose L is a Boolean lattice.
Suppose P(L) is not unordered. Then there exist P, € P(L). Then

there existsan ae 0 — P.

Now ana’"=0€e P. Since P is prime and a ¢ P implies a’'e P c Q.
=a e.

Thus av a’=1e Q. Which is a contradiction as Q is prime.

Hence P(L) is unordered.

Conversely, Suppose that P(L) is unordered. We have to show that L

1s a Boolean lattice.
If L 1s not Boolean, then there exist an element a € I. which has no
complement.

Set D=1{x|av x=1}. Then is a dual ideal.

Consider D, =Dv[a):{x‘x2d/\a} for some d e D.
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[D={x‘avx=l}, [a):{x‘an}, Dva={x‘x2a20/\d} for
some d € D]

Now we have to show that D, does not contain 0.

If D, contain 0, then 0 =d A a for some d € D . Then we have

d v a=1. Which gives a contradiction as L is not Boolean.
Hence 0 ¢ D, . Then there exists a prime P such that P D, =@,
Now 1¢ [a)v P for otherwise 1=a v p forsome peP.

Which is a contradiction. e

Definition (Join irreducible element): An element a € L is called a join

irreducible element if for b,c € L, a=b v ¢ implies that either b =a

orc=a. 1

a=av0, b=bv0

0
Fig. 2.10

Here a, b are all join irreducible. We denote J(L) as the set of all join
irreducible element.

Definition (Hereditary): A subset A of a poset P is called hereditary if for
any x€ 4 and y<x;(yeP) implies ye 4.
H (P) denote the set of all hereditary subset of P.

Theorem 2.4.5: Let L be a finite distributive lattice. Then the map
@:a — r(a) is a isomorphism between L. and H (J(L)).

Proof.: Define ¢: L - H(J(L)) by ¢(a)=r(a), ae L.
Since L is finite, so every element is the join of join irreducible

elements. Thus ae L = a=vr(a).
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Obviously ¢(a A b) =@(a) n@(b) . So ¢ is a meet homomorphism.
To show that ¢ is a join homomorphism. We are to show that
r(av b)=r(a)u r(b).
Now r(a)w r(b) < r(a v b) is obvious.
Let xer(avb)

— 5 20 V6

=>x=xalavb)

:(x/\a)v(x/\b)

Since xeJ(L), sowehaveeither x=xAaqa or x=xAb

= either x<a or x<b

= either x e r(a) or x e r(b)
= xer(a)ur(d)
Hence, r(a v b) c r(a) v r(b).
Therefore, r(av b)=r(a) v r(b). So ¢ is ajoin homomorphism.
Therefore, ¢ is a homomorphism.
Suppose ¢(a) =¢@(b), a,be L
= r(a) =r(b)
= vr(a)=vrb)
=a=b
Hence ¢ 1is one-one.
To show ¢ isonto. Let Ae H(J(L)) and ae L. Set a=vA. We are
to show that r(a)=A4.
Clearly, A c r(a).
Let xer(a)=> x<La

= X=XANa
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=xA(VA)
=Vv(x At|t€d) (since L is distributive)
Since x e J(L) so x=x At forsome t€ 4.
= |
=>xe€Aas Ae H(J(L))
=r(a)c 4
~r(a)=A4
= @p(a)=A4
Hence ¢ is onto.
Therefore, L = H(J(L)). #
Proposition 2.4.6 : Let L be a lattice, let P be a prime ideal of L and let
a,be L. Provethatifav (b Ac)e P then (av b)a(avc)eP.

Proof.: Suppose a v (b A c)e P, then we have ae P and b A c € P, since

a<av(bnac),bac<av(bnac)andP isideal.
=>ae€P and be Porce P
= eitheravbeP oravcelP

= (avb)a(avc)eP [asPisprime ideal.] .

Proposition 2.4.7: Show that the lattice L is distributive if and only if for all

x,y €L, x <y .There exists a prime ideal P with xe P, y& P.

Proof. : Suppose L is distributive, let x, y € L with x < y. Consider / = (x]

and D =[y), then I N D = ®and so there exist a prime ideal P such

that Po/ and PN D=®,then xe P, ygP.

Conversely, let us assume that for all x, y € L with x < y there exists

a prime ideal P such that xe P, y¢ P.

We have to prove that L is distributive.
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If possible , let L is not distributive. Then there exists a, b, c € L such
that av (b ac)z(av b)a(ave) as avbac)<(avb)alave)
=avarc)<(@avb)alave)

Hence there exist a prime ideal P such that av (b A ¢)e P,
(avb)/\(avc)EP

Now, av(b/\c)eP

— a€P and bAaceP[ . Pisprime ideal]

= aeP andeither be P orce P

= either a,be P ora,ceP
= eitheravbeP oravceP
= (avb)a(avc)e P which is a contradiction.
Hence L must be distributive.
Since P is prime, it is follows that a v (b A c)e P &
(avb)alav ¢)g P gives in a contradiction.
Hence L is distributive. o

Proposition 2.4.8: A lattice L is distributive if and only if /(L) is
distributive ; /(L) is the set of all ideals.

Proof. : Suppose L is distributive. Let /,J, K € I(L). We need to show that
INJVEK)=(IAJ)v(IAK).
The relation (/ A J)v (I A K)c I A(J v K) is obviously true. Let
xelA (J V K), then xe/ and xe.J v K . Since L is distributive.
So x=x/\(;'vk)=(x/\j)v(x.f\]c)e(IAJ)v([A K) for some
jedJ,kek.
Then, IA(JVvK)c(IAJ)v(IAK)

CIA(JIVE)=(IAJ)v(IAK)
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- I(L) is distributive.

Conversely, suppose, /(L) is distributive. let x, y,ze L . Then
(xAlyvz)=(]alyv ]

=(x]A [(y]v (z]) as 1(L) is distributive.

=(x/\y]v (x A z]

=((xry)vxnz)
=>xa(yvz)=(xay)v(xaz)
So L is distributive. .
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“Pseudocomplemented Lattice”
3.1 Introduction.

In this chapter we discuss presodocomplemented lattice, stone and algebric
lattice. presodocomplemented lattice have been studied by several authors
(17), (22), (25), (26), (27), (29)
Recall that let L be a lattice with 0 and 1 and a € L. An elementsa* € L is
called pseudocomplement ofaif ana*=0 and anx=0 (xe L)
mmpliesx < a *.

1

0 b pseudocomplement of aie b =a *
Fig. 3.1

We denotes pseudocomplement of a by a *.
1

b 0
Fig. 3.2

A lattice L with 0 and 1 is called pseudocomplement if its every

element has a pseudocomplement.
|

0
Fig. 3.3

Every finite distributive lattice is called pseudocomplemented.
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]:O*

a=b

O=1k=c=*
Fig. 3.4

pseudocomplemented lattice
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3.2 Pseudocomplemented Lattice.

Definition ( Pseudocomplemented) :
Let L be a lattice with 0 and 1 and a€ L. An elements ag*xe€ L is
called pseudocomplement of a if ana*=0 and aAnx=0 (xel)
implies < 7 *

1

a b—gw Dpseudocomplementofaie b=a*

0
Fig. 3.1

We denotes pseudocomplement of a by a *.
1

b 0
Fig 3.6

A lattice L with O and 1 is called pseudocomplement if its every

element has a pseudocomplement.

Fig 3.7
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Every finite distributive lattice is called pseudocomplemented.

1=0%*
c
be=a b pseudocomplemented lattice
O = 1* = gk
Fig. 3.8

Definition (Dense element) : If the pseudocomplemented zero of an
element is called dense element and denoted by D(L).
D(L)={aeL|a*=0}

1
C

D(L)=1{l, ¢}

0
Fig.3.9
Definition (Dense Lattice) : A pseudocomplemented lattice is called

dense lattice if S(L) = {0, 1}.
S(L) is called the skeletal of L. The elements of S(L) are called

skeletal elements.
®
1

to sw={,1

Fig 3.10
Proposition 3.2.1 : Let L be a pseudocomplemented meet semilattice and

let a, b € L verify that formulas

(anbl=(axxabp=(axxnb*x)*,
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Proof. : We know that, (a Abl=(anb)**x=((anb)**)*
ie, (@nbl=(axxnb**)x (i)
Again, (a**/\b}k:(a**/\b)***=((a**/\b)**)*
=(ax*xxnb*x)x
e, (@** Abp=(axxnb*x) (ii)
Now from (i) and (ii), we get,
(anbl=(axxnbl=(axxnbxx)x .
Proposition 3.2.2 : Let L be a pseudocomplemented distributive lattice.
Prove that for each a e L, (a] 1s a pseudocomplemented distributive
lattice, In fact, the pseudocomplement of x & (a] in (a] is x * Aa.
Proof. : Since L is distributive lattice, then for each a € L, (a] is also
distributive lattice. We shall now show that (a] is
pseudocomplemented.
let x € (a] then xa(x*ra)=(xAx*)Aa=0nra=0.
Furthermore, if x A7=0thenr<x* = tAra<x*Aq
=1<x*Aa ['.'te(a]:ﬂSa:HAa:t.]
From the above it follows that x * Aa is the pseudocomplement of x.
Therefore, (a] is a pseudocomplemented distributive lattice.

The proof. is thus complete. .
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3.3 Minimal prime ideal.
Definition (Minimal prime ideal) :
A prime ideal P of a lattice L is called a minimal prime ideal if there is
no prime ideal Q such that O c P.
Theorem 3.3.1.:Let L is a lattice with 0. Then every prime ideals contains a
minimal prime ideal.
Proof.: Let P be a prime ideal of L and y denotes the set of all prime ideals
Q contained in P. Then y is nonempty, since P € .
Let Cis achainin y andletM:m{/ﬂ ;geC}.
Then M is nonempty and 0 e M .
Clearly M is an ideal. Let anbeM for some a,bel, then
anbe yforav yeC.
Since y is prime, so either ae y or be y.
ie either M=m{z‘ aey}or M =m{;(] be y}
ie either ae M orbeM .
Hence M is a prime ideal. Therefore every chain in y has a smallest
element.
Therefore by Zorn’s Lemma ¥ has a minimal ideal R.
In other words P contains a minimal prime ideal R. ®
Theorem 3.3.2.: Let L be a pseudocomplementd distributive lattice and P be
a prime ideal of L. Then the following conditions are equivalent.
(1) P is minimal.
(1) xe P implies x¥¢ P
(1) xe P implies x**xe P,

(iv) PAD(L)=d
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Proof.: (i) = (ii)
Suppose (i) holds. ie P is a minimal prime ideal.
Let xe P.1f(u) fails, then xxe P.
Let D=(L— P)v[x) we claim that 0g D,
forif 0eD,then 0O=gAx forsomegel —P.
= g <x*e P = g e P which is a contradiction.
Hence 0¢ D.
Then by Stone representation theorem there exist a prime ideal Q such
that 0N D=®.
=>(L-P)nQP=Pandso Qc P.
Moreover x€ P but x¢Q andso Qc P.

Which is a contradiction.
Hence x* ¢ P . ie (i1) holds.

(i) = (iii)
Suppose (i1) holds. ie x € P implies x* ¢ P .
Now x* Ax**=0¢c P. Since P 1s prime and x*& P,so x**e P,
ie (i11) holds.

(iii) = (iv)
Suppose (111) holds. ie x € P implies x **e€ P .
Let xe P D(L).then xe P and xe€ D(L).
Then x¥=0 > x**=1. But x**e P=>1eP.
Which is a contradiction.
Therefore P n D(L) =®. Hence (iv) holds.

(iv) = (i)
Suppose (1v) holds. ie PN D(L) =O
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If (1) does not hold, then there exists a prime ideal Q such that Q c P.
Let xe P—(Q.Then x¢(Q.Now xAx*=0e(.
Since Q is prime and x ¢ Q then x*e Q c P.
= x*e P
Therefore x v x* € P. Moreover (x v x*k=x* ax**=0.
= xvxxeD(L)
= x v x¥*e€ P n D(L). Which contradict (iv)

Hence P is minimal. ie (i) holds. ®
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3.4 Stone lattice, Algebraic Lattice and Compact element

Definition (Stone lattice) :
A distributive pseudocomplemented lattice L is called Stone lattice if
forallae L a*va**=1

Example 3.4.1 ( Every Boolean lattice is Stone lattice Converse is not true).
1

a

0
Fig. 3.11
Stone lattice but not Boolean lattice
Definition (Stone Algebra) :
A pseudocomplemented distributive lattice is called a Stone algebra if
foreach a*va**=1,
Definition (Generalized Stone Lattice):
A lattice L with 0 is called generalized Stone lattice if (x]*v(x]#* =L
foreach xe L.
The generalize pseudocomplemented lattices (ie. a lattice with 0 such
that (x]* is a principal for each x.)
Katrinak [5, Lemma 8, p.134] proved the following result.
Lemma 3.4.1 : A lattice with 0 is a generalized Stone lattice if and only if
each interval [0, x], 0<xe L, is a Stone lattice.
We remark that a Stone lattice can be considered as either a
generalized Stone lattice with 1 or a pseudocomplemented lattice in
which x*vx#**=1 for each x where (x} = (x]. s
Theorem 3.4.2 : For a distributive lattice L with pseudocomplementation
the following condition are equivalent :

(1) L 1isa stone algebra.
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(i) Fora,bel (anbp=a*vb*.
(i1)) a,be S(L) implies that av be S(L).
(v)  S(L) is a subalgebra.
Proof : (i) = (i)
Suppose (i) holds. ie L is a Stone algebra.
We shall that, (a A b =a *vb *
Let a,be L. Then,
(a/\b)/\(a*vb*)=(a/\b/\a*)v(a/\b/\b*)
[*.- L 1s distributive lattice]
:(a/\a*/\b)v(aAb/\b*)
:(OAb)v(aAO)
=0v0
=0
Now suppose x € L such that (@ A b)Ax=0.
= (bAx)Aa=0 = b A x<ax*. Meeting both sides with a * *
we get,
a**A(bAax)<axknar=0
=(xAra**)ab=0
=S XAaQ**=h*,
since L is a Stone algebra, then we have
ax*vax*x=]
Now x=x;\1=x/\(a*va**)
=(xra*)v(x naxx)

<a*vb*



Chapter 3 pPageno 59

Hence a * vb * is the pseudocomplement of a A b. ie (i1) holds.
(i) = (iii)
Suppose (ii) holds. Let a, b S(L) we have a=a** and b=b**.
avb=(a**vbxx)
=(a*xnb*)*
= (a Vv b) * %
=avbeS(L)
(iii) = (iv)
Suppose (iii) holds. ie a, b € S(L) implies that av be S(L).
As a,beS(L), sowehave
avbeS(L).
Hence (iv) holds, ie S(L) is a subalgebra.
()= (@)
Suppose (iv) holds, ie S(L) is a subalgebra of L.
Now, forany ae L, axe S(L), a**e S(L).
Hence a*va**=(a** na***)* [Fromavb=(a*xab*)* ]
=0
=1
Hence L is stone algebra. ie (1) holds. e

Theorem 3.4.3.: Let L be a distributive lattice with pseudocomplemented.
Then L is a Stone algebra if and only if Pv QO =L for any two distinct
minimal prime ideal.

Proof.: 1st Suppose L is a Stone algebra. Suppose P & Q are two distinct
minimal prime ideals.

Let acQ—P. Then ag P . Now ana*=0€ P. Since P is prime

and ag P so axe P.
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Now L - Q is a minimal dual prime ideal.
Thus (L —-Q)v[a)=L.So a=x A a forsome xe L - Q.
= a*2xel -0
= axel-Q
= a*¢(
= axeP-Q
Similarly we have, a*x*xe P -Q.
Hence a*va**ePv Q. But since L is a Stone algebra then
a*va**x=].
= lePv@ = L=Pv(.
Conversely,
Suppose P v Q= L for any two distinct minimal prime ideals.
We have to show that L is a Stone algebra.
If L is not Stone algebra, then there exists ae L  such that
ax*vax**=%]1 Then there exists a prime ideal R such that
a*va**eR.
We claim that, (L — R) v [a*)# L
Forif (L — R) v [a*)=L then x A a* =0, for some xe(L —R)
=a**>xe(lL-R) = a**e(L-R) > a**¢R
Which is a contradiction.
Hence (L — R) v [a*)# L
Let F be a maximal dual prime ideal containing (L — R) v [a*) and G
be a maximal dual prime ideal containing (L — R) v [a * *) .

Put P=L—-Fand Q=L-G.
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Then P and Q are minimal prime ideal and P#(Q. as a*x€(Q but
ax¢ Pand ax*e P butax*xg (.

1e P and Q are distinct.

Also P,OQc R andthus PvOQc R# L.

Which is a contradiction.

Hence L is a Stone algebra. ®

Proposition 3.4.4 : Show that a distributive pseudocomplemented lattice is a
Stone lattice if and only if (avb)**=a**vb** fora,belL.

Proof.: Let L be a distributive pseudocomplemented lattice. If L is a Stone

lattice, then for a,be L.

we have ,
(a A by =a*vb *_ and for any pseudocomplemented lattice,
(@avbp=axnbx

Hence (av b)**=(a*xabxp=a**vb**

Conversely, let (av b)**=ag**v b*x forall a,be L.

Now for xe L. Let x *vx**=y then

(x*vx**)**:y**

or x***\/x****:y**
or X¥VX*k=y**
or y=y**

Now y*=(x*vx**)*
=XkF A X FEX
=X*¥kk A X ®
=0

S ykx=0%=]

=>y=1
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Hence x * vx * * =1, Therefore L is Stone lattice. e
Proposition 3.4.5 : Show that in a Stone algebra every prime ideal contain
exactly one minimal prime ideal.

Proof: Let p be a prime ideal and let O; & O, be two minimal prime ideals
contains in p with O; # 0,. Let xe Q) — O,,then xeQ,but x¢ 0,
Now x A x" =0e€0;. =x" €0, =5x" ep.
Again since a; is minimal, then xeQ; = x €0 = x" eP.

Hence 1=x" v x™ e P which contradict the fact that P is prime.
Hence Q) =0,.
Hence in a Stone algebra every prime ideal contains exactly one

minimal prime ideal . e

1S a two

Proposition 3.4.6 : If P is a prime 1deal of a lattice L, then

element chain. The elements are P, L —P.
Proof: Let x, ye L - P.
If for some /elL,xAlePhen /eP ( "~xgP and P is prime).
Hence yAleP
ieVielL, xnleP
S yaleP
=>x=yR(P). o
Definition ( Compact element) :

Let L be a lattice. An element a €L is called compact if for any

X c L with a <v X implies the existence of a finite subset X, c X

such that a<v X,.
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Definition ( Algebraic Lattice) :
A complete lattice L is called algebraic if its every element is the
supremum of compact element.

Theorem 3.4.7: Every distributive algebraic lattice is pseudocomplemented.

Proof.: Let L be a distributive algebraic lattice. Then L = /(S), the lattice
of ideals where S is a join semilattice with 0, let 7, /, € [(S) for
k € K (index set). Then / Al, €I AV(I; | k€ K) forany r e K .
Cleatly v (I, |ke K)cIAV(I, | keK). To prove the reverse
inequality. Let aelAv(l, ‘ ke K). Then ael and
aev(l, ’ k € K). Then there exist indices 4, 4,,-:-,4, such that

as<iy Vi, v---vi, forsome i, €l, for some ke€l,2,--,n.

Thus ael, vI, v.-vI, and SO

a=Inll, v, vl ).
=(UNL)VUANL )V AL ) as I(S) is distributive
c V(I | keK)

ie];\\/(]”keK)gv(]”k&K)

Therefore [ Av(I, ‘ ke K)=v(l, [ keK).

This shows that /(S) has the join infinite distributive property.

Moreover as 0eS, I(S) is complete . Therefore 7(S) is

pseudocomplemented and so L is pseudocomplemented. o

Theorem 3.4.8: Let L be a pseudocomplemented meet semilattice
S(L) = {a*| ae L}. Then the partial ordering of L partially orders
S(L) and make S(L) into a Boolean lattice . For a, b € S(L). We
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have anbe S(L) and the join in S(L) we described by

avb=(a*nbx)x*,

Proof.: We start with the following observations.

(1)
(ii)
(1it)
(iv)
v)
(vi)
(vi1)

(viii)

(ix)

()

(xi)

VaelL,aLax**

asb=ax2b*

ax = q * * %

aeS(L)ifandonlyif a = a**

Fora,be S(L), anbeS(L)

For a,b e S(L), avb=(a*nb¥)x

Since a*rna=anax=0.Also a*ra*x*x=0.
So a < a ** from the definition of pseudocomplement.
a<b,so.anbx*<bnabx=0
ieanbx=0=>bx<ax*

from the definition of pseudocomplement.

By (i) a* < (a¥)** =g *%*x

again a < a ** by (i)

so by (1) g *** < g *.

Hence a* = a* **,

Let a € S(L) then a = b * forsome b € L.

Hence a**=b**x=px=q. If a=a** then a = (a*)*

and so, a € S(L).

Leta,be S(L) thena=a**b=b**soa>(anb)**

b=2(anb)**. So (anb)**<anb. Again by (i) & (ii)

anb<(anb)*x,

Hence anb =(anb)*x .
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So,anbeS(L),az>anhb

=ax**2>(anb)** by (i)

= ax(anb)**
For a,b e S(L)
we have a*2a*Ab*. So by (i) and (iv) a < (a* Ab*)*.
Similarly b <(a* Ab*) *.
Nowif a<x,b<x (xeS(L)), then a*> x*, b*> x*_ So
a* ANbx>x*,
Hence, x** > (a*Ab¥)* ie x> (a*xAb¥)* as xeS(L),
Hence, (a* Ab¥)* = supia, b} =av b e S(L).
Thus S(L) is a lattice. Moreover 0, 1€ S(L). Therefore S(L)

1s a bounded lattice

Now for any aeS(L), anax=0 and
avax=(a*na*x)k=0%x=1,1ie a* is the complement of a
in S(L). Hence (S(L);A, V) is a complemented lattice. Then
we only to show that S(L) is distributive. Let x, y, z € S(L)
xnzsxv(ynz) ad yaz<xv(yaz). Hence
XAzA(xV (YA z)*=0and yazalxv(yanz)x=0.
Thus, zA(xv(yAz)*<x* and y*, and so
ZAXV(YAZ))* S Xx*AY*

Consequently, zA(xV(yAz))*A(x*Ay*)=0, which
implies ZA (X *Ay*)pk=(xv(yAz))**=xVv (¥ Az)So by
(vijand (iv) zA(xVv y)=xVv (¥ AZ).

Therefore S(L) is distributive
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Definition (Dense set) :
DAL= {a el | ax = 0}, D(L) is called the dense set.
D(L) is a filter or Dual ideal, 1e D(L). If L is a
pseudocomplemented lattice L then some properties hold in L
1 anax=0
(i) a<b=ax>bx
() a<axx*
(iv) a*=a**x*
v) (avbl=a*nb*
(i) (anb)xx=qagxxAb*x
(i) anb=0a*xab*x=0
(vili) an(anb)*=anbx
ax) Ox=1, 1*=0
x) aeS(L)yeoa=ax*
xi) a,beS(L)=anbeS(L)
(xi) Sup {a, b} = (a * n\b¥) *
@M)OJES@%IED@%S@JADQ&=§}
(xiv) a,be D(L)=> anbe D(L)
(xv) aeD(L),b=za=be D(L)
(xvi) ava*e D(L)
(xvii) x = x ** is a meet homomorphism of L onto S(L).
Proof.:
v) (avbl=axnbx
(avb)rna*nbx=(ana*nbx)v(bra*nbx)

=0v0=0
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Now, Let (avb)Ax=0, xel
Then (@nx)v(ax)=0
S arx=0, bax=10
=>x<ag¥ =>x<bx
> x<a*xNb*
i.e. a*Ab* isthe pseudocomplemented of a v b
Hence (@ v by« = a* Ab *

1
C

anb=0 = (anbp=0%=1

ak=b, bx=aqa

0
Fig 3.12

a*vbx=avb=c
(a Aby# a*vb*
(vi) (anb)kx=axxnbxx
Proof:- we know that x ** is the smallest element in S(L) Continuing x.
Also we know that for any p,q € S(L), pAqE S(L).
Then forany a,b € L ,a**/\b**eS(L)
and it is obviously the smallest element of S(L) Containing a A b.
Therefore (a Ab)** = a** Ab*% o
(viii) Since anb <h,so(anby>bh*

So a/\(a/\bﬁza/\b*

(xii) Let anb=0,Then (@ Ab)**=0%%=0
Soby (vi) a** Ab**=0
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Conversely, Suppose a ** Ab** = (
Soanbnra*xsabx*=anbn0
or, (@na**)A(bAb*%)=0
or; aAb=0
(xiii) Let x € S(L)N D(L). Then x € S(L) and x € D(L).
NowxeS(L) > x=x**& xe D(L)=> x+=0.
So, x=x#**=(x¥)*=(0)*=0*=1
Hence S(L) A D(L) = {1}
(xiv) a,be D(L)
= ax=bx=0
= ax*x=h**x=1]
by (vi), (anb)xx=ag*xsAbxx=1A1=1
Slanb)x=(a@nb)*xx=1x=0
So, anbe D(L).
xv) aeD(L),b2a, b*<ax=0=bx=0, =be D(L)
(xvi) (aAna*p=a*aa** by (v)
=0
= avaxe D(L)
(xvii) follows from (vi)
Pxny)=(xny)sr=xxsnyss
= p(x) A o(y)

Theorem 3.4.9: For a distributive lattice with pseudocomplemention L, the
following condition are equivalent
(i) L isa Stone algebra
() VabelL,(anblk=a*vb*
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(iii) a,b e S(L) implies av b e S(L)
(iv) S(L) is a subalgebra of L.

Proof. : (1) = (i1)

Suppose L is a Stone algebra.

We shall show that, a * b * is the pseudocomplement of a A b

Wehave, anba(axvb*)=(anbrax)v(anbnabx)
=0wv0=0

Now, Suppose a Ab A x =0 for some x € L

Then (b A x) A @ =0 which implies b A x < a *

Multiplying both sides by a ** .

Wehave bAaxna**<a*na*xx=0

ie. (xAax*x)Ab=0

Which imply x Aa#** < h#%*

Now by, Stone identity a *va**=1.

So, x=xAl=(xna*)v(xrna**)<a*vbx*

Therefore, (a A b = a* vb *

(i) = (iii)

Suppose (ii) holds
Let a,b € S(L). Then a = a** b =b **
Soby (ii) avb=a**vh*xx*
= (a * Ab *)* by (iii)
=avb

ie. avbeS(L)

(111) = (iv) is trivial

V) =0

Suppose (iv) holds
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Let @ € L. Then a*,a** e S(L)
Since (1iv) holds , a* va** =g *va* *
=(a**/\a***)*
=0x=1
Hence L 1s Stone . o
Theorem 3.4.10: Let L be a pseudocomplemented distributive lattice and P
be a Prime ideal of L. Then the following conditions are equivalent
(i) P is minimal
(i) xeP, >xxgP
(1) xelP, =>x**eP
(iv) PAD(L)=¢
Proof:- (1) = (1)
Let P be minimal.
Suppose, It (i1) fails there exists x € P such that x* e P.
Let D= (L - P)v[x) Then O € D.
For otherwise 0=gAx for some ge L - P, which implies
qg<xxeP.
Therefore, g € P, which is a contradiction.
Hence 0 ¢ P D. Then by Stones representation theorem there
exists a prime ideal Q such that O D =¢. This implies
ON(L-P)=¢ and So Qc P. But Q=P as xe(Q . This
contradict the minimally of P.
Hence (ii) follows.
(i) = (ii1)

Suppose (ii) holds and x € P.
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Now x*Ax**=0e€ P. But xx¢ Pand P is prime, So x**e P
i.e. (1i1) holds.
(i) = (1v)
Suppose (ii1) hold
Let xePnD(L).
Then x € P and x € D(L) .
- x € D(L) implies x* = 0
By (iii) x*ke P
X = (x *}* = 0% =1 € P which is impossible as P is prime .
So (iv) holds.
v =0
Suppose P is not minimal, Then there exist a prime ideal O < P. Let
xeP-0
Now, x Ax*=0e (. Since x ¢  and Q is prime,
So, x*e Q < P.Then x,x*xe P
So,xvxkelP
Now (xvx*)* = x* Ax ** =( implies x v x* € D(L)
ie. PnD(L)# @

and So (iv) does not hold. o
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“Boolean Algebras”

4.1 Introduction.

In this chapter we introduce and study on Boolean algebra, Imbedding
mapping and obtain their several features.

A complimented distributive lattice 1s called Boolean algebra. If Boolean
lattices so considered are called Boolean Algebra.

In this chapter we have also proved the following theorem

In a Boolean algebra, the following result hold

@ (@) =a
@) (anb)=av¥ [De Morgan’s Law]
(i) (avbd) =a Ab [De Morgan’s Law]

(iv) asboa'2b

v) asboanb'=0dvb=u
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4.2 Boolean Algebra, Dual Meet and Join Homomorphism.

Definition (Boolean algebra): A complimented distributive lattice is called
Boolean algebra. If Boolean lattices so considered are called Boolean
Algebra.

The main results of this paper are

(1) Let M be a bounded distributive lattice and ¢ € M . Thus M can
be imbedded in [0,c]x[c,u)

(1) A Boolean Algebra is self-dual.

Definition (Boolean lattice): A complemented distributive lattice is called a

Boolean lattice.

Since complements are unique in a Boolean lattice we can regard a

Boolean lattice as an algebra with two binary operations N and v and

one unary operation '. Boolean lattices so considered are called Boolean

algebras In other words, by a Boolean Algebra, we mean a system

consisting of a nonempty set L together with two binary operation A

and v and one unary operation (1), satisfying (Va,b,c € L)

(1) ana=a, ava=a

(1) anb=bara, avb=bva

(i) an(bac)=(anb)ac, av(bvc)=(avb)ve

(v) anlavb)=a, av(anb)=a

) an(bve)=(anb)v(anc)

(vi) Vael,dd el,st, ana =0,ava =u where o,u are
elements of L satisfying 0<x<uVxel

(a’ will be unique and is the complement of a)
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Example 4.2.1: Let A={0,q, b,u}. Define A ,v and complementation ' by

u
/\ ANlOlalblu Vi0Ola|b|u '
0/0/0]/0]0 0/0/a|b]u Ofu
a - /b al0|lalo0]a alalalulu al|b
TS bl[o]o[b]|b blblulblU bla
0 uf0la|b|u ulululfulu ufo

Fig.4.1

Then A form a Boolean algebra under these operations A, v,".

Theorem 4.2.1:L and M are Boolean algebras iff LxM is a Boolean

algebra.e

Theorem 4.2.2: A Boolean lattice is relatively complemented and relative

complements are unique. °
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4.3 Boolean Subalgebra.

Definition (Boolean subalgebra) : A subalgebra (or Boolean subalgebra)
1s a non empty subset S of a Boolean algebra L
st a,beS=>anb,avbdes.

We thus realize that a subalgebra differs from a sublattice in as such as
it is closed under complementation also. Notice that if [a,b]be an
interval in a Boolean algebra L, where a > 0, then [a,b] is a sublattice
of L, but 1s not a subalgebra as
ae [a,b]::> a' e [a,b]

= ana elab]

=0e [a, b]
which 1s not possible as a > 0.
Hence a Boolean sublattice may not be a Boolean subalgebra. (The

converse being, of course, true).

Theorem 4.3.1: Every interval of a Boolean algebra is itself a Boolean

algebra.

Proof : Let [a,b] be any interval of a Boolean algebra L, then [a,b] being a
sublattice will be distributive.
Since L 1is distributive complemented lattice, it is relatively
complemented.
1.e., each interval in L is complemented
ie. [a,b] 1s complemented distributive lattice and hence is a Boolean

algebra. e

Proposition 4.3.2: Show that a non empty subset S of a Boolean algebra is a

subalgebra if it is closed under v and complementation.
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Proof : We need prove that forany a,be S,avbe §

Now (anb) =d'vb es

(a/\b)=((a/\b)r) SNY
similarly, one can show that S would be a subalgebra if it is closed

under v and complementation. ®

Theorem 4.3.3 : In a Boolean algebra, the following result hold

Q) (@) =a
Gi) (an b)' =g vb [De Morgan’s Law]

(i) (av b)' =a Ab [De Morgan’s Law]
(iv) asboa'2b

V) asboanb'=0sdvb=u

Proof: (i) Let (a’)' =a", then
and =0savad =u
dna’ =0=a va'=u
= and =a nd,avad =a"vd
= d=a
(i) Wehave (anb)a(advb)=[(anb)ra]v[(@anb)ab]
=[(a/\a')/\b]v[a/\(b/\b’)]
=[oab]v]an(0)]=0vo=0
(anb)v(a@vb)=(a'vb)v(anb)
=[(@ v b)valalave)vb]
=[(a'v a)v]ala' v (' v b))

=[uvb|aldvul=unu=u
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(ii)
(iii)

(iv)

Hence (a/\b)'=a'vb'
Similar as (ii)
as<b =>a=anb
:>a’=(a/\b)’=a'vb'
=b'<q
b'<a'=b"<a"=b<a
asbh 2anbsbAb =20Zanb 0= anb' =0
Again,let anb' =0
Then, a=anu=an(bvb’)
=(@anb)vianb)=(arb)v0o=(anb)

S adanD. °
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4.4 Dual Meet Homomorphism.
Definition (Dual meet homomorphism) : Let L, M be two lattice a map

0:L > M is called a dual meet homomorphism

if, O(a Ab)=0(a)v 9(b) (1)

where a,b € Land 6 1s called a dual join homomorphism

if 8(avb)=06(a)r0(b) (2)

It is called a dual homomorphism if it satisfied the above conditions.

Theorem 4.4.1 : A Boolean algebra is it self dual

Proof. Let L be a Boolean algebra.
Defineamap 8:L —> L, s.t,,
O(x)=x'
then @ 1s well defined as for each x € L, x"exists and unique.
Now 6(x)=6(y)=x" =)'
= () =() =x=y
Thus 6 1s 1-1.

For any ye L, y'is it required pre image under 6 showing that @ is

onto.
Also O(xny)=(xA y)' =x'vy =6(x)vo(y)

8ev y)= (v ) =X Ay =6(:) A 6()
shows that € is a dual homomorphism.

Thus @ is a dual isomorphism and hence L is self dual. e
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4.5 Imbedding Mapping.
Definition (Imbedding) : Let L, M be two lattices a one-one
homomorphism 6:L — M is called an imbedding mapping. Also in

that case we say L is imbedded in M.

Theorem 4.5.1 : Let L be a bounded distributive lattice and a € I. then L can
be imbedded into [0, a]x la,u].

Proof. : Define amap 6 : L — [0,a]x[a,u], s.t.,
O(x)=(xra,xva)
. Clearly then x A a € [0,aland xv a € [a,u].
Let X=y=>xAa=yAa
xva=yva
= (xraxva)=(yra,yva)
= 6(x)=0(y)
‘ Thus @ is well defined.
| Again, if  0(x)=0(y)
then (xAa,xva)=(yaa,yva)
= XAa=yAa
xva=yva
= x=y
Thus 6 is 1-1
Now O(xry)=((xry)ra,(xAy)va)
=((xra)r(yra)(xva)alyva))
and O(x)A8(y)=(xra,xva)r(yra,yva))
shows that 6(x A y)=68(x)A6(»)
similarly ~ 0(x v y)=6(x)v 6(y)

Hence € is a 1-1 homomorphism, i.e.,@ is an imbedding map. e
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Theorem 4.5.2: If L is a Boolean algebra and a € L, then L = [0,a]x [a,u].

Proof.: By previous theorem
6:L - [0,a]x[a,u] st.,
0(x)=(xra,xva)
is a 1-1 homomorphism. (Note a Boolean algebra is distributive). We
show @ is onto.
Let (y,z) € [0,a]x[a,u] be any element
then 0<y<a, a<z<u (1)
Take x = yv(z A d'), then
6(x)=6(yv (zna)
=((yv(izrd)ra,yv(zrd)va)
=(padaloan)sayyiley daltval)
:(yv(Z/\O),yv(z/\u))
=(.2)

Hence € is an isomorphism. e

Proposition 4.5.3 : If A, B, C are lattices such that B = C, then

AxB=AxC
Proof: Let / : B — C be the given isomorphism

Define 0: AxB— AxC, s.t.,

0((a.b)) = (a. /(b))
then since  8((a,b)) = 0((c,d))
 (a.fb)=(cr()

a=c, f(b)=/(d)
a=c, b=d (f being well defined 1-1 map)
(a,b) = (c,d)

g ¢ ¢
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We find @ is a well defined 1-1 map.
Again, for any (x,y)e AxC,as yeC,f:B—C isonto, 3be B s.t,
fb)=y
Now ((x,5)) = (x, £(6)) = (x,y) and thus & is onto.
Finally,
6’((a,b)/\(c,d))= Olanc,bad)=(anc, f(brd))
=(anc, 1) f(d)=(a./B) A (e, £(d))
=0(a,b)A6(c,d)
Similarly,  0((a,b)v (c,d)) = 6(a,b)v 0(c,d)
Hence € is an isomorphism. L
Proposition 4.5.4 :If L is a Boolean algebra and a € L, then show that
L =[0,a]x[0,a].
Proof : By theorem 5.2.8 s
L= [O, a]x [a, u] : ol '
Define amap f : [a,u] > [0,a] s. t. A
flx)=xnd
Now xe[a,u] = asx=<u
= and <xandund
= 0<xad <d
= xadel0,d]

andx=y =xad=yad = f(x)=71(Q)

we find fis well defined
Again, f&)=r0)
= xnad =ynd

= (x/\a')va=(y/\a')va
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= (xva)aldva)=(yva)r(ava)
= XNUSYNUW SHX=Y
Thus fis 1-1.
Now f(rap)=(xap)ad =(nd)n(yad)= FR)r ()
fevy)=vynd =(xna)vyad)=fx)v £(y)
Hence f is a homomorphism.
Finally, let y € [0,a'] be any element.
Then 0<y<d
=" av0<avy<avdora<savy=<u
= avyela,ul
andas flav y)=(avy)ad
=(and)v(yna)=0vy=y
we find f'is onto and hence an isomorphism using Theorem 5.2.8  we
get,
L =[0,a]x[a,u]=[0,a]x [0,a'] @
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“Boolean Ring”
S.1 Introduction.
In this chapter, we introduced and study on Boolean ring , Disjunctive normal

form, Conjunctive normal form and obtain their several features.

Recall that a Boolean function is said to be a Disjunctive normal form (DN

form) in n variables x;, x,,x; ————x, if it can be written as join of terms
of the type fi(xl)/\ffl(xfl)"\fB(xB)/\ﬁ___/\fn(xn)' Where ff(xi)=xs
or xi’ forall i=1,2,3————— ,n and no two terms are same. Also 1 and 0

are said to be in Disjunctive normal form.
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5.2 Ring, Ring with zero devisor ,Boolean Ring
Definition (Ring) : A non-empty set R together with two binary
operations
addition (denoted by “+”) and multiplication (denoted by “.”) is called

L.

a ring if it is satisfied the following laws:
Associative law of addition:
V ab,ceR =>(a+b)+c=a+(b+c)

Existence of additive identity zero:
3 0eR =a+0=0+a, VaeR

Existence of additive inverse:

aeR=>31 —-aeR =>a+(-a)=(-a)+a=0, VaeR

Commutative law of addition :

V abeR =>a+b=b+a

Associative law of Multiplication:
VY ab,ceR = (a.b).c = a.(b.c)

Distributive laws:
(i) Left:V abceR =alb+c)=ab+ac
(ii) RightV a,b,ceR =(a+b)c=ac+bc

Definition (Ring with unity): A ring R is called a ring with unity if there

exists an element 1#0€ R suchthat a.1=1.a=a, Vae R where 1 is

called the multiplicative identity or multiplicative unity.

Definition (Commutative Ring): A ring R is called Commutative Ring if

under the binary operation of multiplication a b=b.a V a,beR.

Definition (Ring with zero divisor): A ring R is called with zero divisors if

there exist at least two elements a and b of R such that ab =0 where

a#0and b#0

Example 5.2.1: The rings Z Q R and C are integral domains.

Definition (Subring ): Let R and S be two rings with respect to the two

binary operations addition and multiplication. If S is a subset of R, then
S is called a subring of R.
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Theorem 5.2.1 : Let S be a subring of aring (R, +,-). Then show that S is

an additive subgroup of R.
Proof.: Let a,be S .

Since S is a subribg of Rthen be S = -beS.

Now a—-beS§
= a+(-b)e S, by the closure property of addition
=>a-beS

Thus S is a subgroup of R. o

Definition (Boolean Ring): A ring R is called Boolean Ring if

a2=a YV aeR.

Example 5.2.2 : Show that a ring R with x?=x V xeR mustbe
commutative.
Solution : We have x> =x V xeR
Now (Jnc-i-x)2 =x+x
=S x+x)x+x)=(x+x)
= (x +x)x +(x +x)x = x + x [ by distributive law]
:>(Jc2 +ch)+()¢2 +x2):x+x
> x+x)+(x+x)=x+x [ x? =x]
=>x+x)+(x+x)=(x+x)+0
=>x+x=0 [ by left cancellation law for addition]

=>x+x=0,VxeR.
Let a,be R = a’ =a, b> =b and (af+.b)2 =a+b.

Now (a+b)2 =a+b

=(a+b)a+b)=a+b
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= (a+b)a+(a+b)b=a+b [by distributive law]
= (a® +ba)+(ab+b*)=a+b
=(a+ba)+(ab+b)=a+b [va’=a, b* =b]
=(a+b)+(ba+ab)=(a+b)+0
=ba+ab=0 [by left cancellation law for addition]
=>ba+ab=ba+ba [ x+x=0]
=ab =ba [by left cancellation law for addition]
=ab=ba,VabeR
= R 1s commutative.
Example 5.2.3: IfR is a Boolean ring. Then show that
(1) a+a=0,VaeR
(i) a+b=0 >a=b
Solution : (1)we already proof in example 8.
(i) a+b=0
=>a+b=a+a [ a+a=0]
= b=a [ by left cancellation law of addition in R]
Theorem 35.2.2: Every Boolean algebra 1s a Boolean ring with unity.
Proof.: A Boolean ring 1s a ring in which x2=xVx .
Let (A4, A,Vv,")be a Boolean algebra.
Define two operation (+) and (-) on A by
a-b=anb
a+b=(anb)v(a Ab) a,be A

Then (+) and (-) are clearly binary compositions on A.

To show that < A, +,->forms a Boolean ring, we verify all the

conditions in the definition.
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Let a,b,c € A be any members.
a+b=(@nb)v(@nby=(bana)v b ra)=b+a

(a+b)+c=[(a+b)rc’lv[(@a+b) Ac]

=[{anb)v @ AbIacIvIfanb)v @ ab)} acl
=[(@anb' Acyv(@ anbacHlv(anb) n(a rb) ac]
=[(@anb'ac)v(@ nbnacHlvi@ vbya(avb)nac]

=[(anb' anchv (@ rbrchvi{a vb)aa}
vi{a' vb)ab}acl

=[(@anb' acyv(@a anbnac)lv
[{(a'/\a)v(b/\a)v(a'/\b')v(b,\b')},\ c]

=(anb' anchyv(@nbac)yviibra)v(a Ab)}ac]
=(anb' ncyv(@nbnachvilbranc)v(a ab ac)]
=(a@anb' acyv(@nanbnachyv(anbnacyv(a nb' ac)

Since the resulting value is symmetric in a, b, ¢ it will also be equal to

(b+c)+a=a+ (b+c) (by commutativity of +).

Hence + 1s associative.

Again, a+0=(anru)v(a@a r0)=a=0+a

Also, a+a=(ana)v(a na)=0

Thus (4, +) forms an abelian group.

Since a-b=a A b and A 1s commutative and associative.

We find also (-) is also commutative and associative.

Again, a(b+c)=an(b+c)=an[(bnrc)v (b Ac)]

G -',. ; ,‘&?-‘\j‘
= Eniral Lo

=(anbnac)v(anb nc)
ab+ac=(anb)+(anc)
=[(@anb)a(@anc)v@anb) a(anc)

=[(@anb)a(@ veHlvi(@a vb)a(anc)
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=(anbaa)v(anbac)

viancna)v(ancnab')
=(anbnac)v(anb anc)

Hence a(b+c)=ab+ac

Similarly, (b+c)a=ba+ca

Finally, since a-u=anu=a=una=u-a.

We find (A4, +, -) forms a commutative ring with unity u

Alsoas a-a=ana=a Va

We gather that A forms a Boolean ring. ®

Theorem 5.2.3 : Every Boolean ring with unity is a Boolean algebra.

Proof.: Let < 4,4+, - > be a Boolean ring with unity.
We define two operations A and v on A by
anb=a-b
avb=a+b+ab
Then since () is commutative (a Boolean ring is commutative) and
associative, we find A is commutative and associative.
Again, ava=a+a+aa=(a+a)+a=0+a
(In Booleanring a+a=0 Va, where 0 is zero of the ring)
Also avb=a+b+ab=b+a+ba=bva
(avb)vc:(avb)+c+(avb)»c=(a+b+ab)+c+(a+b+ab)—c
=a+b+ab+c+ac+bc+abc
Since, av(bvc):(bvc)va ( by commutativity of V)
By symmetry,
(bve)yva=b+c+bc+a+ba+ca+abc

Hence Vv i1s associative.

Finally to check absorption, we find
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an(avb)=a(a+b+ab)=a’*+ab+a’b=a+ab+ab
=a+2ab
=a

(asx+x=0 Vx)

av(anb)=avab=a+ab+aab=a+2ab=a

Thus A is a lattice.

We verify distributively for A. Let now a € 4 be any element. We show

it has a complement, namely, a +1 ( where 1 is unity of ring A)

Now an(a+l)=a(a+)=a’*+a=a+a=0
av(a+l)=a+a+1+a(a+)=2a+1+a+a=1+2a=1

Showing that a'=a +1
Notice, inthering A 0-a=0 Vae A(0 being zero of ring)

= 0Ana=0 VaeA.
Again 1-a=a Va
1e. lhna=a VaeA.

Thus 0 and 1 are least and greatest elements of the lattice A. e
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5.3 Disjunctive Normal form, Minterms, Boolean Expression.
Definition (Disjunctive normal form) : A Boolean function (Expression)

is said to be in Disjunctive normal form (DN form) in n variables

XpsXg, Xz ,0ereee x,1f it can be written as join of terms of the type
LA &) A f(X3) Ao A f(x,) where fi(x;)=x;0r x] for all
=123 . os n and no two terms are same, Also 1 and 0 are said to be

in disjunctive normal form.

Definition (Minterms or Minimal polynomials) : Again, in that case, terms
of the type fi(x))A L) A f3(x5) Aveeeee A f,(x,)are called minterms
or minimal polynomials,( A normal form is also called a canonical
form)

For instance, (xAyAZ')v (X’ Ay Az)v(X'AyAz) is in disjunctive
normal form (in 3 variables) and each of the brackets is a minterm.

Definition (Boolean expressions or Boolean polynomials) : Let
(A,A,V, /) be a Boolean algebra. Expressions involving members of A
and the operations A,vand complementation are called Boolean
expressions or Boolean polynomials. For example, xv }',x, x A0 etc
are all Boolean expressions. Any function specifying these Boolean
expressions is called a Boolean function. Thus if f(x,y) = x A ythen f
is the Boolean function and x A y is the Boolean expressions (or value

of the function f). Since it is normally the function value (and not the
function) that we are interested in, we call these expressions the
Boolean functions.

Theorem 5.3.1: Every Boolean function can be put in disjunctive normal
form.

Proof. : We prove the result by taking the following steps.
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(1)

(2)

3)

If primes occur outside brackets, then open brackets by using De
Morgan’s law

(anb) =dvb (avb) =a rb

Open all brackets by using distributivity and simplify using any
of the definition conditions like idempotency, absorption etc.

If any of the terms does not contain a certain variable x;(orx;)
then take meet of that term with x; v x;. Do this with each such
term. (It will not affect the function as x; vx. =1 and 1na=a)

Now, open brackets and drop all terms of the type a A a'(=0).

Again , 1f any of the terms occur more than once, these can be
omitted because of idempotency. The resulting expression will be
in DN form.

Hence every function in a Boolean algebra is equal ton a function

in DN form. e

Proposition 5.3.2: Put the function /' =[(x A }') v Z'] A(x" v z)" in the DN

form.

Proof : We have,

f=IxvYIWVWZIAEZAX)=E vyvZYa(Z Ax)

=i’ n.zl nxyvlpaz sxyv iz aez' 2x)
=0v(xAyAzZ)v(xaz)

=(xAyAZ)vI(xAZYAV I (Note this step)
=(xAyazZY)vixaZay)v(xaz Ayl

=(xAYAZ)IV(XAZAY). o

Proposition 5.3.3: Put the function

f=lXAvVEAYAZ)YvEAY AZ)V(XIAY AZ AN VE] in the

DN form .
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Proof: We have,
f=lEANVEAYAZYIVEAY AZ)VE AY AZADVE]
=(XAYACAYAZYAEAY A A AY AZ AL AL
=(xvIIANX' VY VIIAX VYVIIA(xvyvzVI)AaL
=[xV IIAX VY VA vyVIIA[(xvyvzv)al]
=[xAx)YvExAYIVvEAZ)V(Y AX)
V' AYIV VIIAE VY VA
[(xA)v(yAt)v(zat)v(tat)]

[ AYIVEADV I AXIVY V(O VDA
[('AyA)v(' AzAt)v(yAx L) v (Y AtL)
VyAzat)v(Z Axat)v(Z Ay al)]

=(xAY' AZAD)V((EAZAYAL)YV
(X'AY' AzZAL) V(Y AzZALAX)
vi(y' A Zinxnt) v (¥ Az nx’ wit)
=(XAYAZADVXAZAYADV (X AY AzZAT).
Note: Some times it is easy to use the notation (+) forv and (.) for
Awhile simplifying. Thus, for instance, the above solution would read
=&y +xpz’ +xyz+xVz't+1)

= (xy) (xyz') (xy'z) (xy'z'1)'t

=(x+y)x+y+2) X +y+2 ) x+y+z+)

=(xx"+x"+xz2+ y'x"+ Yy + y'2)
(xX"+y+z)(xt+ yt +zt +t't)

=(xy'+xz+yx"+y' +y'2)

(x'yt + x'zt + yxt + yt + yzt + z'xt + z'yt)

=x)'z't + xyzt + y'x'zt + y'ztx' + y'zx't

=x)'z't + xyzt + y'x'zt
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We have shown above that every function can be expressed in DN

form. e
Proposition 5.3.4: Write the function xv )’ in the disjunctive normal form

in three variables x.y,z
Proof. : We have
xvy =[xaQvi)Iazv)viy Alxvx)a(zv )]
=[{GxAvEAYNA(zv)]v
KO Ax)v (' Ax)}A(zvz))]
=(xAyAzZ)vxayaz)v(xay Az)
VXAY' AZYVO'AxAZ) VY AxAZ)
v Ax'AzZ)v('Ax' AZ)
=(XAYAZIVEAYAZ)VXAY AZ)V
(g nzyuity sl ngv (ansl sz
Proposition 5.3.5: Find the Boolean expression for the function f given by

1 When x=2z=1y=0

f(xﬂynz): x:Ly:z:
0 Otherwise

Proof : The function is specified by the minterms (x A y' A 2)
and (xA Y AZ)
1.e. the function in the DN form is
xAY' AZ)V(XAY AZ) .
Example 5.3.1 : Let A={0,1} and f: 4> — A, be defined by
FE) =@ANVE ANV EAYIVE AY)
1e. f is complete DN form. We calculate all values of

f(xﬁy)7 x’y € A'
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£(0,0)=(0A0)v(IA0)VOADV(IALD=1
f1,0)=AA0)VOADVIADVAAO)=1
FOD=0A)VAAD)VOA0)V(IAO0) =1
FAD=AADVOAYVAAO)V(OA0) =1

(Note x=0 x' =1)

We thus notice that in each case, one minterm is 1 A 1=1and all others

are zero. Also the resulting value of f(x, y) is always 1.

If we go through similar process, with a function f which is in complete
DN form in 3 variables x, y, z we’ll get the same result. We can

generalize this result.

Example 5.3.2 : Let A={0,1} and f: A’ — A4, be the function defined by

f(x,y,z) =xA(yV z), then the functional values of f are given by

£(0,0,0)=0A(0v0)=0 FAL0)=1A(VO) =1

f(1,0,0)=1A(0v0)=0 Lo =1A(0v]) =1
£(0,L0)=0A(1v0)=0 FO01LD)=0A(vI1)=0
£(0,0)=0A(0v1)=0 fAL)=1A(1v]) =1

which we sometimes write in the tabular form as
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x |y |z |Sf(y.2)
0 (0 [0 |O
1 (0 |0 |O
0 (1 |0 |O
0 [0 |1 0
1 1 |0 1
U 0 T i |
O L (L |0
I |1 |1 1

Example 5.3.3 : Complete DN form in 2 variables is
EANVE APVEAYIVE AY)
Let f =(xAy) [any one DN form]
=AYy =x"vy =x'A(yv vy A(xax)]
=X AY)VEVYIVO Ax)V( AX)
=@ AY)V(xV YV AX).
Thus what we gather from here is that if we pick up any DN form the
complete DN form then complement of that DN form will contain the
‘left out’ term in the complete DN form.
Take for instance, p = (x A y) Vv (X' A y)
P =AY E AN =@EAYY A AYY
=(X'vy)a(xvy)
=(xX'AX)vy =y =y A(xvx)
=('Ax)v(y Ax)

the ‘left out’ terms in the complete DN form.
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Proposition 5.3.6: In a Boolean algebra, show that
JE) =lxa fANIVIX A (0, )]
Proof : We know that any function f (in 2 variables) in complete DN form
s fOey)=GxANvVEAYIVE AYIVEAY)
=A@ VvINVIE AQA Y] (1)
Put x=1,x"=0 and we get
FAY)=0AG@VvIIIVIOAAYN=yVv )
Again by putting x=0,x" =1 we get
FO)=[0AGVIINVIAAGAYN=yv )y
Thus (1) gives
FEY)=xAfAPIVIX A f(0,p)]
Remarks 5.3.7: One can extended the above result to n variables and prove
that,

f(xlsxb""xn):{xl Af(-13x2’x33""xn)}v{x{Af.(03x2=x3=“°!xn)}'.
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5.4 Conjunctive Normal form.

Definition (Conjunctive Normal form) : A Boolean function f is said to be
conjunctive normal form (CN form) in n variable x;,x,,---,x, if fis
meet of terms of the type fi(x)Vv fo(x;)v---v f,(x,) where
fi(x;)=x;o0r x; for all i=12,---,n and no two terms are same. Also 0
and 1 are said to be in CN form.

Proposition 5.4.1: Put the function f =[(x A ') v Z']A(x' Vv z) in the CN
form.

Proof : We have,

f=l(x'vy)vzia(xaz)
=@ vyv)alxaz)v(yay)l
=(x'vyv)rl(xaz)v yIalxaz)v YT}
=@V yvI)ALGV AE Y Y AEAZYY YT
=x'vyvZ)al{xvyvEazDIa{EZ vy)v(xax)}
AMEVYIVEAZRAL{E v Y) Vv (xax)}]
=(xX'vyvIYa[{fxvyv(azZDIa{@Z' vy v(xax)}
NMEVY)IV(EAZRAL{(EZ VYV (xAx)]]
=(x'vyvzhia(xvyva)alxvyvzH)a(z'vyvx)
AEz'vyvihanxvy' vzyaxvy' vz)
n{zi ey v x) a2z yivwx)
=(xvyvaanxvyvzZHaxvyvz)

Axvyvonxvy vzZia(x'vy vz
Proposition 5.4.2: Put the function x A (y v z)in the CN form.
Proof: xA(yvz)=[xv(yAY)NAl(yvz)v(xax)]

=(xv)IA@EVYIAVZVI)IA(yVzZVvX)

=(xvy)vizazlia(xvy)

vizazZ ) a(xvyvz)a(x' vyvz)
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=(xvyvaanxvyvzHiaxvyvzaxvy vz
AxvyvzIAX vyvz)
=(xvyvaAalxvyvzia(xvy' vz)
Axvy' vzOIA(x'vyvz)
Proposition 5.4.3: Find the DN form of the function whose CN form is
f=vyvanxvyvhinxvy vzaIa(xvy'vzHax vyvz)
Proof : We know, f =(f") . Thus,
f=[{xvyvz)alxvyvzianlxvy'vz)
Aaxvy' vz A vyva)}YT
=[xvyvz)vEvyvz)vixvy vz)
vixvy'vz)Yv@E'vyva)]
(by De Morgan’s law)
= ny nzyv (@ Xy a)vx aynz’)
vix'ayaz)vaay' Az
(by De Morgan’s law)
=(xAyanz)v(xay az)v(xayaz') (byprevious problem) e
Note: By similar steps we can find the CN form of a function from its
DN form.
Proposition 5.4.4: Prove that in a Boolean Lattice ; x # 0 is join irreducible
if and only if x is an atom.
Proof. : Suppose x 1s a join irreducible element. Consider the interval
[0, x]. Let a0, x], we claim that either a=0 or a = x.
Since L is Boolean then there exists [0, x| such that
anb=0andavb=x
Butavb=x = eithera=x orb=x
If a=x then nothing to prove.

If b=xthenanb=0=>anx=0
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=>a=0 [‘.‘an]
Hence x 1s an atom.

Conversely, let x is an atom and x=b v ¢

nbve>0asbve=2b=0

Then either b=bvec=x or b=0

Also, asabove ..bvc2c>20 = eitherc=bvec=x or ¢=0.
As b=0 and ¢=0 = x=0 which is impossible.
Hence x=5b or x=c.
ie x 1s join irreducible. e
Proposition 5.4.5 : Let L be a distributive lattice, a,b,ce L, a<b. Show
that [a, ] is Boolean if and only if [a v ¢, b v ¢] are Boolean.
Proof. : Suppose [a, b] is Boolean and let 7 €[a v ¢, b v ¢|then
(tva)abela,b] . thereexists z e|a, b] such that,
[(tva)a(bv z)]=a and (t v a) A b)vz=b
=((tab)v(anb)az=a

=S{abrz)vlanbrz)=a
or(taz)v(anz)=a

or (t/\z)va=a:>t/\z£a.
:>(t/\z)/\c$a/\c:> r/\(z,f\c)sgz\c

Again, anc<tandanc<znac

:>a/\c$t/\(2/\c)

Hence ta(zac)=anc (i)
Also, (tv z)ab=(Ab)v(zab)=(tAb)vb=b
SbZtvz.Butt<bacand z<b=>tvz<bh

Then tvz=b (ii)

Again anc<t<bac
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=scv(anc)sevi<cev(bac)
SO ON ESCCNL =C (111)
Now, (z/\c)vt=(zvt)/\(cvt)
=b A ¢ [from (ii) and (iii)]
stvizac)=bnac (iv)
Hence from (i) and (iv) we can conclude that [, 6] is Boolean implies
that [a v ¢, b v ¢] is Boolean.
Again, let te[av ¢, bv c] then (¢ A b)v a €|a, b] since [a, b] is
Boolean, there exist z [a, b] such that
(tAb)vavz=b (V)
and ((t/\b)v a)/\z=a (vi)
[(tAb)vaza, tAb<b, asb =(rb)va<b]
From (v), (t/\b)vavz=b
SEalir Bl a) =
o, tvzva)a(bvzva)=bh
or, (tvz)/\b=b
=>b<tvz
Now, IA(zvc):(t/\z)v(t/\c)Zavc
o, tn(zve)2a (vi1)
But, ave<tand a<z = avc<zve
=avc<ta(zve) (viii)
From (vii) and (viii), ¢ A (zvc)=av ¢
Also, tv(zve)=(tve)vzs(bve)vz=(bvz)ve=bve
ie, tv(zve)shbve (ix)

From b<tvz,wehave bve<(tvz)ve (x)
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From ((ix) and (x), 1 v (zv c)=bv ¢ (xi)
From (vii1) and (x1), we conclude that [a, b] Boolean implies that
[a vebv c] is Boolean. e

Theorem 5.4.6 : Let L be a distributive lattice with 0 and 1. Then L is
Boolean if and only if P(L) , the set of all prime ideals of L is

unordered.

Proof.: Let L is Boolean. If P(L) is not unordered. Then there exists
P,Q e P(L) suchthat Pc Q. Choose aecQ—P.Now, ana'=0
ana'ePc(.SincePisprimeand ag P.So a’' e Pc Q. Thus
a,a’ €Q and so 1=av a’' € Q which is a contradiction.

Therefore P(L) must be unordered.

Conversely, let P(L) be unordered. Suppose L is not Boolean, then
there exists a € L which has no complement.

Set D= {x | xva= 1}, then D is a filter. Take D, = D v [a). Filter D,

does not contain D. For otherwise 0 =d A a for some d € D . Then
d v a =1 would imply that d is complement of a which is a

contradiction. Thus D ¢ D, . Then by Stone representation theorem
there exists a prime ideal P disjoint to D, . Also note that 1¢ (a|v P
otherwise 1=a v p for some p e P. Contradicting P N D =® . Then
by Stone representation theorem there exists a prime ideal Q = (a] v P

and so P c Q which is impossible, since P(l) is unordered. Therefore

L. must be Boolean. 0



Chapter 5 pageno 102

5.5

Switching Circuits

One of the major applications of Boolean algebra is to the switching
systems (an electrical network consisting of switches) that involve two
state devices. The simplest example of such a device being an ordinary
ON-OFF switch. By a switch we mean a contact or a device in an
electric circuit which lets(or does not let) the current to flow through
the circuit. The can assume two states ‘closed’ or ‘open’ (ON or OFF).
In the first case the current flows and in the second the current does not

flow. We will use a,b,c, -+, x,y, z,--- etc. to denote switches in a current.

There are two basic way in which switches are generally
interconnected. These are referred to as “in series’ and © in parallel’.

Two switches a,b are said to be connected ‘in series’ if the current can
be pass only when both are in closed state and current doesn’t flow if

any one or both are open. We represent it as in the following diagram.

|2 (b

Fig. 5.1
Two switch a,b are said to be connected ‘in parallel’ if current flows
when any one or both are closed does not pass when both are open. We
represent this by the diagram

| a

Lh

Fig.5.2

If two switches in a circuit be such that both are open(closed)

simultaneously, we’ll represent them by the same letter. Again if two
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switches be such that one is open iff the other is closed, we represent
them by a and a’.

We show that the system discussed above forms a Boolean algebra.

Let 0 denote open circuit (current does not pass)

1 denote closed circuit (current passes).

Let ‘in series’ connection be represented by A (i.e. aAb denotes
‘switches a and b are connected in series’). Also let av b denote
‘switches a and b are connected in parallel’.

Consider the system (B ={0,1}, A, V).

Then B is a non empty set A and v are two binary compositions

(operations) on B as is evident the following tables

Al O 1 vi 0 1
0] 0 0 0 1
110 1 1] 1 1

The conditions of idempotency, commutativity, associativity, and
absorption are clearly seen to be satisfied.
eg. Ian(lv0)=1al=1

IANAAO0)=1A0=(0A1DA0
In fact, an(bvce)=(anb)v(anc) also holds when a,b,c take
values 0 or 1. Also since 0A1=0, Ov1=1 we find 0 and 1 are each

others complements.
Hence B 1s a distributive lattice in which each element has a

complement, i.e. it is a Boolean algebra.
the system ({0,1},/\,\/,; ) discussed above is usually called switching

algebra which we have shown is a two valued Boolean algebra.
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Proposition 5.5.1: Draw the circuit represented by the Boolean function

f=an(bve)

Proof : The circuit is given by the diagram

b

—4a

C

Fig. 5.3

Notice, the current would flow when a and b or a and ¢ are closed i.e.,

when a and b or ¢ is closed.

Proposition 5.5.2 : Draw the circuit which realizes the function

an[bvd)v(ca(avdvc)ab

[+

Fig. 5.4

Proposition 5.5.3 : Find the function that represents the circuit

Fig. 5.5



Chapter 5 pageno 105

Proof : The circuit given by the function
an[(bac)v(dn(ev ).
Let us consider the circuit given by the function
(anb)v(anc)

It is represented by

4—bl
A L
Fig.5.6
since (anb)v(anc)=an(bvc), the circuit could be simplified to
b
=1 = "
C|
Fig. 5.7

Proposition 5.5.4: Simplify the circuit

L |h

—— \

a bec

! ! .\‘\

b c ‘
Fig.5.8

Proof: The circuit is represented by the function
(@nc)yv@nb)yv@anb ncyvbnc)
which is equal to
(@nb)yv(@v@anbyvb)ac
=(@nab)yviavanb)v(ava)ablnac
=@ nabyviadvanb)vanb)v(@aab)]nac
=@ ab)v[av{an® vb)}v(a ab)]ac

=@ aAb)yv[avav(@ab)]nac
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=@ Ab)v[lv(d Ab)]ac
=(@'Ab)vc

which is given by ,

|c

Fig. 5.9
Proposition 5.5.5: Simplify the circuit represented by
f=andand)v@nb ad)yvianend)
Proof: We have,
f=lancdand)v@anb ad)viancad)
=[(@and)n(c've)lv(@anbd and)
=[(and)Allv(anb rd)
=(and)v(anb and)
=anl[d' v (b And)]
=an[dvb)andvd)] =an@'vd) ®
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