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Abstract 

The numerical studies are performed to examine the MHD free convection and mass transfer 

flow with thermal diffusion and dufour effects past an infinite vertical porous plate. Method 

of Superposition and the Shooting method are used as main tools for the numerical approach. 

The studies of the flow feature mentioned above are made in different sections takin 

different aspects of the flow that are of practical importance. These studies are mainly based 

on the similarity approach. At first similarity solutions have been obtained for the Unsteady 

MHD free convection and mass transfer flow past an infinite vertical porous plate taking 

into account the thermal diffusion and Dufour effects. Impulsively started plate moving in its 

own plane is considered. Similarity equations of the corresponding momentum. enel-gv and 

concentration equations are derived by introducing a time dependent length scale which 

infact plays the role of a similarity parameter. The suction velocity is taken to he inversely 

proportional to this parameter. The momentum, energy and concentration e (luatiotis al-c 

solved numerically by applying the method of superposition. The above flow problem has 

further been considered in a steady two dimensional problem of the MHD free convection 

and mass transfer flow past an infinite vertical porous plate taking into account the Soret and 

Dufour effects. The similarity solutions of the governing equations are obtained by 

employing the usual similarity technique based on large suction. The effects on the velocity. 

temperature, concentration, skin-friction, Nusselt number and the Sherwood number of the 

various important parameters entering into the problems separately are discussed for each 

problem with the help of graphs and tables. 

Finally, a general dis cussion o n t he overall solutions o f the problems c onsidcred in t lie 

dissertation are sorted out. 
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Introduction 
The aim of this dissertation is to make some numerical calculations on 

Magnetohydrodynamic free convection and mass transfer flows which have been of interest 

to the engineering community and to the investigators dealing with the problems in 

geophysics and astrophysics. The thermal diffusion and Dofour effects, which are often 

neglected in free convection and mass transfer processes, has been included in the analyses 

for the above mentioned calculations. The analyses so produced in fact arouse out of the 

natural tendency to investigate a subject that may be said to relate to some academic types of  

problems of solving the equations of the fluid mechanics. The results of this investigation 

may not have direct practical applications but are relevant to the problems mentioned above. 

It is however, to be mentioned that the thermal instability investigations of natural convection 

MHD flows have direct application to problems in geophysics and astrophysics. The natural 

convection processes involving the combined mechanism of heat and mass transfer are 

encountered in many natural processes. in many industrial applications and in many chemical 

processing systems. In our analyses the combined buoyancy effect arising from the 

simultaneous diffusion of thermal energy and chemical species are considered on the MHD 

flow of electrically conducting fluid under the action of a transversely applied magnetic held. 

Considering various aspects of an MHD free convection and mass transfer flow, the analyses 

presented here, as mentioned above, are classified mainly into two different numerical methods. 

one is superposition method for solving the linear ordinary coupled equations and the other is 

shooting method for solving the nonlinear ordinary coupled equations. 

In chapter 1, available information regarding MHD heat and mass transfer flows along with 

various effects are summarized and discussed from both analytical and numerical point of 

view. In chapter 2, the basic governing equations related to the problems considered 

thereafter are shown in standard form. In chapter 3, the calculation techniques for different 

problems are discussed. In chapter 4, a specific problem of the Unsteady MHD free 

convection and mass transfer flow past an infinite vertical porous plate taking into account 

the thermal diffusion and Dufour effects are considered. In chapter 5, we have considered a 

steady two dimensional problem of MHD free convection and mass transfer flow past an 

infinite vertical porous plate taking into account the thermal diffusion and Duthur effects 

based on large suction. Finally a general discussion on all the problems dealt is produced 

with some conclusive remarks. 
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Chapter 1 

Available Information on MHD Flow 

1.1. Magneto hydrodynamics (MHD) 

Magneto hydrodynamics MHD is that branch of continuum mechanics, which deals with the 

flow of electrically conducting fluids in electric and magnetic fields. Probably, the largest 

advance towards an understanding of such phenomena comes from the field astrophysics. It 

has long been suspected that most of the matter in the universe is in the form of Plasma or 

highly ionized gaseous state, and much of the basic knowledge in the area of Electromagnetic 

fluid dynamics evolved from these studies. 

As a branch of plasma physics, the field of Magneto-hydrodynamics (MHD) consists of the 

study of a continuous, electrically conducting fluid under the influence of electromagnetic 

fields. Originally, MHD included only the study of partially ionized gases as well as the other 

names have been suggested, such as magneto-fluid mechanics, or magneto-aerodynamics. 

but original nomenclature has persisted. The essential requirement for problems to he 

analyzed under the laws of MHD is that the continuum approach be applicable. 

Many natural phenomena and engineering problems are susceptible to MHD analysis. It is 

conducting fields and magnetic fields that are present in and around heavenly bodies. 

Engineers employ MHD principles in the design of heat exchangers, pumps and flow meters, 

in space vehicle propulsion, control and re-entry, in creating novel power generating systems, 

and in developing confinement schemes for controlled fusion. 

The most important application of MHD is in the generation of electrical power with the flow 

of an electrically conducting fluid through a transverse magnetic field. Recently, experiments 

with ionized gases have been performed with the hope of producing power on a large scale in 

stationary plants with large magnetic fields. Cryogenic and super conducting magnets are 

required to produce these very large magnetic fields. Generation of MHD power on a smaller 

scale is of interest for space applications. 

It is generally known that, to convert the heat energy into electricity, several intermediate 

transformations are necessary. Each of these steps means a loss of energy. This naturally 

limits the overall efficiency, reliability and compactness of the conversion process. Methods 



for direct conversion to energy are now increasingly receiving attention. Of these, the fuel 

converts the chemical energy of fuel directly into electrical energy; fusion energy utilizes the 

energy released when two hydrogen molecule fuses into a heaver one, and thermoelectrically 

power generation uses a thermocouple. Magneto hydrodynamic power generation is another 

important new process that is receiving worldwide attention. 

Faraday (1832) carried out experiments with the flow of mercury in glass tubes placed 

between poles of a magnet and discovered that a voltage was induced across the tube, due the 

motion of the mercury across the magnetic fields, perpendicular to the direction of flow and 

to the magnetic field. He observed that the current generated by the induced voltage 

interacted with the magnetic field to slow down the motion of the fluid and this current 

produced its own magnetic field that obeyed Ampere's right hand rule and thus, in turn 

distorted the magnetic field. 

The first astronomical application of the MHD theory occurred in 1899 when Bigalow 

suggested that the sun was gigantic magnetic system. Alfven (1942) discovered MI-ID waves 

in the sun. These waves are produced by disturbances, which propagate simultaneously in the 

conducting fluid and the magnetic field. 

The current trend for the application of magneto-fluid dynamics is toward a strong magnetic 

field (so that the influence of electromagnetic force is noticeable) and toward a low density 

of the gas (such as in space flight and in nuclear fusion research). Under this condition the 

Hall current and ion slip current become important. 

1.2. The important dimensionless parameters 

Reynolds number 

It is the most important parameter of the fluid dynamics of a viscous fluid. It represents the 

ratio of the inertia force to the viscous force and is defined as 

inertia force 
= 

pU 2L2  UL 
R = 
  
viscous force jj.UL u 

Where U, L, p and it are the characteristic values of velocity, length, density and coefficient 

of viscosity of the fluid respectively. When the Reynolds number of the system is small the 

viscous force is predominant and the effect of viscosity is important in the whole velocity 

field. When the Reynolds number is large the inertial force is predominant, and the effects of 
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viscosity is important only a narrow region, near the solid wall or other restricted region, 

which is known as boundary layer. If the Reynolds numbers is enormously large, the flow 

becomes turbulent. 

Prandtl number F,. 

The Prandtl number is the ratio of kinematic viscosity to thermal diffusivity and may be 

written as follows 

Kinemellc viscisily 
- 

u 

Thermal dzffiisivily - k/Cp 

The value of v shows the effect of viscosity of the fluid. The smaller the value of v is, the 

narrower is the region which is affected by viscosity and which is known as the boundary 

layer region. The value of 
k 
 shows the thermal diffusivity due to heat conduction. The 

c p p 

smaller the value of 
k

is, the narrower is the region which is affected by the heat 
cp p 

conduction and it is known as thermal boundary layer. Thus the Prandtl number shows the 

relative importance of heat conduction and viscosity of a fluid. For a gas the Prandtl number 

is of order of unity. 

Magnetic Force Number M 

This is obtained from the ratio of the magnetic force to the inertia force and is defined as 

M ,uBL 

Up 

Schmidt number Sc 

This the ratio of the viscous diffusivity to the chemical molecular diffusivity and is defined 

as 

- 
Viscous diisivity 

= 
u 

- Chemical molecular diffusivity D kf  

Grashof number G,. 

This is defined as 
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Gr g,8VTL3 
= 2 

LI 

and is a measure of the relative importance of the buoyancy and viscous forces. The larger it 

is, the stronger is the convective current. 

Modified Grashof number Gm  

This is defined as 

g L3  18VC 
Gm =  

Soret number S0  

This defined as 

- 
D m k T (T v  —Tj 

S0 
 - T\lv(CW  -c) 

Dufour Number D1  

This is defined as 

- 
D lk T (C V  -cj 

Df 
 - CSCPV(T%V —T) 

1.3. Suction and Injection 

For boundary layer flows with adverse pressure gradients, the boundary layer will eventually 

separate from the surface. Separation of the flow causes many undesirable features over the 

whole field; for instance if separation occurs on the surface of an airfoil, the lift of the airfoil 

will decrease and the drag will enormously increase. In some problems we wish to maintain 

laminar flow without separation. Various means have been proposed to prevent the 

separation of boundary layer; suction and injection are two of them. 

The stabilizing effect of the boundary layer development has been well known for several 

years and till to date suction is still the most of efficient, simple and common method of 

boundary layer control. Hence, the effect of suction on hydro-magnetic boundary layer is of 

great interest in astrophysics. It is often necessary to prevent separation of the boundary layer 

to reduce the drag and attain high lift values. 
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Many authors have made mathematical studies on these problems, especially in the case of 

steady flow. Among them the name of Cobble (1977) may be cited who obtained the 

conditions under which similarity solutions exist for hydro-magnetic boundary layer flow 

past a semi-infinite flat plate with or without suction. Following this, Soundalgekar & 

Ramanamurthy (1980) analyzed the thermal boundary layer. Then Singh (1980) studied this 

problem for large values of suction velocity employing asymptotic analysis in the spirit of 

Nanbu(1971). Singh & Dikshit(1988) have again adopted the asymptotic method to study the 

hydro-magnetic effect on the boundary layer development over a continuously moving plate. 

In a similar way Bestman (1990) studied the boundary layer flow past a semi-infinite heated 

porous plate for two-component plasma. 

On the other hand, one of the important problems faced by the engineers engaged in high- 

speed flow is the cooling of the surface to avoid the structural failures as a result of frictional 

heating and other factors. In this respect the possibility of using injection at the surface is a 

measure to cool the body in the high temperature fluid. Injection of secondary fluid through 

porous walls is of practical importance in film cooling of turbine blades combustion 

chambers. In such application injection usually occurs normal to the surface and the injected 

fluid may be s imilar to o r different from the primary fluid. In some r ecent applications. 

however, it has been recognized that the cooling efficiency can be enhanced by vectored 

injection at an angle other than 900  to the surface. A few workers including Inger & Swearn 

(1975) have theoretically proved this feature for a boundary layer. In addition, most previous 

calculations have been limited to injection rates ranging from small to moderate. Raptis et al. 

(1980) studied the free convection effects on the flow field of an incompressible. ViSCOUS 

dissipative fluid, past an infinite vertical porous plate, which is accelerated in its own plane. 

He considered that the fluid is subjected to a normal velocity of suction/injection 

proportional to t 2  and the plate is perfectly insulated, i.e., there is no heat transfer between 

the fluid and the plate. Hasimoto (1957) studied the boundary layer growth on an infinite flat 

plate started at time t=0, with uniform suction or injection. Exact solutions of the Navier-

Stokes equation of motion were derived for the case of uniform suction and injection, which 

was taken to be steady or proportional tot 2 . Numerical calculations are also made for the 

case of impulsive motion of the plate. In the case of injection, velocity profiles have injection 

points. The qualitative nature of the flow on both the suction and the cases are obtained form 

the result of the corresponding studies on steady boundary layer, so far obtained. 
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Large Suction 

When the rate of suction is very high then it is called large suction. Singh (1988) studied the 

problem of Soundalgeker and Ramanamurthy( 1980) for large value of suction parameter by 

making use of the perturbation technique, as has been done by Nanbu( 1971). Later Singh and 

Dikshit(1988) studied the hydro-magnetic flow past a continuously moving semi-infinite 

porous plate employing the same perturbation technique. They also derived similarity 

solutions for large suction. The large suction in fact enabled them to obtain analytical 

solutions those are of immense value that compliment various numerical solutions. For the 

present p roblem studying on MHD free c onvection and mass transfer flow with t hcrmal 

diffusion, Dufour effect and large suction we have to use the shooting method for getting the 

numerical solutions. 

1.4. MHD Boundary layer and related transfer phenomena 

Boundary layer phenomena occur when the influence of a physical quantity is restricted to 

small regions near confining boundaries. This phenomenon occurs when the non-dimensional 

diffusion parameters such as the Reynolds number and the Peclet number or the magnetic 

Reynolds number are large. The boundary layers are then the velocity and thermal or 

magnetic boundary layers, and each thickness is inversely proportional to the square root of 

the associated diffusion number. Prandtl fathered classical fluid dynamic boundary layer 

theory by observing, from experimental flows, that for large Reynold number. the viscosity 

and thermal conductivity appreciably influenced the flow only near a wall. When distant 

measurements in the flow direction are compared w ith a c haracteristic dim eiision in that 

direction, transverse measurements compared with the boundary layer thickness. and 

velocities compared with the free stream velocity, the Navier Stiokes and energy equations 

can be considerably simplified by neglecting small quantities. The number of Component 

equations is reduced to those in the flow direction and pressure is then only a function of the 

flow direction and can be determined from the inviscid flow solution. Also the number of 

viscous tenn is reduced to the dominant term and the heat conduction in the flow direction is 

negligible. 

MHD boundary layer flows are separated in two types by considering the limiting cases of a 

very large o r a negligible small magnetic Reynolds nurn ber. W hen the magnetic field is 

oriented in an arbitrary direction relative to a confining surface and the magnetic Reynolds 

number is v ery s mall; the flow di rection c omponent o f the magnetic i nteraction and t he 
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corresponding Joule heating is only a function of the transverse magnetic field component 

and local velocity in the flow direction. Changes in the transverse magnetic boundary layer 

are negligible. The thickness of magnetic boundary layer is very large and the induced 

magnetic field is negligible. However, when the magnetic Reynolds numbers is large. the 

magnetic boundary layer thickness is small and is of nearly the same size as the viscous and 

thermal boundary layers and then the MHD boundary layer equations must be solved 

simultaneously. In this case, the magnetic field moves with the flow and is called frozen 

mass. 

1.5. MHD and heat transfer 

With the advent of hypersonic flight, the field of MHD, as defined above, which has been 

associated largely with liquid-metal pumping, has attracted the interest of aero dynamists. II 

is possible to alter the flow and the heat transfer around high-velocity vehicles provided that 

the air is sufficiently ionized. Further more, the invention of high temperature facilities such 

as the shock tube and plasma jet has provided laboratory sources of flowing ionized ­as. 

which provide an insentive for the study of plasma accelerators and generators. 

As a result of this, many of the classical problems of fluid mechanics have been 

reinvestigated. Some of these analyses arouse out of the natural tendency of scientists to 

investigate a new subject. In this case it was the academic problem of solving the equations 

of fluid mechanics with a new body force and another source of dissipation in the energy 

equation. Some t imes there w ere no practical a pplication for t hese r esults. F or example, 

natural convection MHD flows have been of interest to the engineering community only 

since the investigations, described later in section 1 . 1, are directly applicable to the problems 

in geophysics and astrophysics. But it was in the field of aerodynamic heating that the largest 

interest was aroused. Rossow (1957) presented the first paper on this subject. His result. for 

incompressible constant-property flat plate boundary layer flow, indicated that the skin 

friction and heat transfer were reduced substantially when a transverse magnetic field was 

applied to the fluid. This encouraged a multitude analyses for every conceivable type of 

aerodynamic flow, and most of the research centered on the stagnation point where, in 

hypersonic flight, the highest degree of ionization could be expected. The results of these 

studies were sometimes contradictory concerning the amount by which the heat transfer 

would be reduced (Some of this was due to misinterpretations and invalid comparisons). 

Eventually, however, it was concluded that the field strengths, necessary to provide sufficient 
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shielding against heat fluxes during atmospheric flight, were not competitive (in terms of 

weight) with other methods of cooling (Sutton & Gloersen, 1961). However, the invention of 

new lightweight super conducting magnets has recently revived interests in the problem of 

providing heat protection during the very high velocity re-entry from orbital and super orbital 

flight (Levy & Petschek, 1962). 

1.6. Free convection 

In the studies related to heat transfer, considerable effort has been directed towards the 

convective mode, in which the relative motion of the fluid provides an additional mechanism 

for the transfer of energy and of material, the latter being a more important consideration in 

cases where mass transfer, due to a concentration difference, occurs. Convection is inevitably 

coupled with the conductive mechanisms, since, although the fluid motion modifies the 

transport process, the eventual transfer of energy from one fluid element to another in its 

- 
neighborhood is through conduction. Also, at the surface the process is predominantly that of 

conduction because the relative fluid motion is brought to zero at the surface. A study of the 

convective heat transfer therefore involves the mechanisms of conduction and sometimes. 

those of radioactive processes as well, coupled with that fluid flow. This makes the study of 

this mode of heat or mass transfer very complex, although its importance in technology and 

in nature can hardly be exaggerated. 

The convective mode of heat transfer is divided into two basic processes. If the motion of the 

fluid is caused by an external agent, such as the externally imposed flow of a fluid stream over a 

heated object, the process is termed forced convection. The fluid flow may be the result of for 

instance, a fan, a blower, the wind or the motion of the heated object itself. Such problems are 

very frequently encountered in technology where the heat transfers to or from a body is often due 

to an imposed flow of a fluid at a different temperature from that of a body. If, on the other hand, 

no such externally induced flow is provided and arises naturally simply owing to the effect of a 

density difference, resulting from a temperature or concentration difference in a body force field. 

such as the gravitational field, the process is termed natural convection. The density dilference 

gives rise to buoyancy effects, owing to which the flow is generated. A heated body cooling in 

ambient air generates such a flow in the region surrounding it. Similarly the buoyant flow arising 

from heat rejection to the atmosphere and to other ambient media, circulations arising in heated 

rooms, in the atmosphere, and in bodies of water, rise of buoyant flow to cause thermal 

stratification of the medium, as in temperature inversion, and many other such heat transfer 
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process in our natural environment, as well as in many technological applications, are included in 

the area of natural convection. The flow may also arise owing to concentration differences, such 

as those caused by salinity differences in the sea and by composition differences in chemical 

processing unit, and these cause a natural convection mass transfer. 

In many cases of practical interest, both processes are important and heat transfer is by mixed 

convection, in which neither mode is truly predominant. The main difference hetveen the 

two really lies in the word external. A heated body lying in still air loses energy by natural 

convection. But it also generates a buoyant flow above it, and body placed in that flow is 

subjected to an external flow and it becomes necessary to determine the natural. as well as 

the forced, convection effects and the regime in which the heat transfer mechanisms lie. 

When MHD became a popular subject, it was only normal that these flows would he 

investigated with the additional ponder motive body force as well as the buoyancy force. At 

the first glance there seems to be no practical application for these MHD solutions, for most 

heat exchangers utilize liquids whose conductivity is so small that prohibitively large 

magnetic fields are necessary to influence the flow. But some nuclear power plants employ 

heat exchangers with liquid metal coolants, so the application of moderate magnetic fields to 

change the convection pattern appears feasible. Another classical natural convection problem 

is the thermal instability that occurs in a liquid heated from below. This subject is of natural 

interest to geophysicists and astrophysicists, although some applications might arise in 

boiling heat transfer. 

The basic concepts involved in employing the boundary layer approximation to natural 

convection flows are very similar to those in forced flows. The main difference lies in the 

fact that the pressure in the region beyond the boundary layer is hydrostatic, instead of being 

imposed by an external flow, and that the velocity outside the layer is zero. However, the 

basic treatment and analysis remain the same. The book by Schlichting (1968) is an excellent 

collection of the boundary layer analysis. There are several methods for the solution of the 

boundary layer equations namely the similarity variable method, the perturbation method, 

analytical method, numerical method etc. Details are available in the books by Rosenberg (1969). 

Gosman et. al. (1969), Patankar and Spalding (1970). Spalding (1977) and Jaluria (1969). 

1.7. Heat and Mass transfer 

Combined heat and mass transfer problems are of importance in many processes and have 

therefore received a considerable amount of attention (Jaluria, 1980). In many mass transfer 
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processes, heat transfer considerations arise owing to chemical reaction and are often due to 

the nature of the process. In processes such as drying, evaporation at the surface of water 

body, energy transfer in a wet cooling tower and the flow in a desert cooler, heat and mass 

transfer occur simultaneously. In many of these processes, interest lies in the determination 

of the total energy transfer, although in processes such as drying, the interest lies mainly in 

the overall mass transfer for moisture removal. Natural convection processes involving the 

combined mechanisms are also encountered in many natural processes, such as evaporation, 

condensation and agricultural drying, in many industrial applications involving solution and 

mixtures in the absence of a n externally induc ed flow and in many c hemical processing 

systems. In many processes such as the curing of plastics, cleaning and chemical processing 

of materials relevant to the manufacture of printed circuits, manufacture of pulp-insulated 

cables etc, the combined buoyancy mechanisms arise and the total energy and material 

transfer resulting from the combined mechanisms has to be determined. 

The basic problem is governed by the combined buoyancy effects arising from the 

simultaneous difftision of thermal energy and of chemical species. Therefore the equations of 

continuity, momentum, energy and mass diffusions are coupled through the buoyancy terms 

alone, if there are other effects, such as the Soret and Duffer effects, they are neglected. This 

would again be valid for low species concentration levels. These additional effects have also 

been considered in several investigations, for example, the work of the Caldwell (1974). 

Groots & Mozur (1962), Hurle & Jakeman (1971) and Legros, et al. (1968, 1970). 

Somers (1956) considered combined buoyancy mechanisms for flow adjacent to a wet 

isothermal vertical surface in an unsaturated environment. Uniform temperature and uniform 

species concentration at the surface were assumed and an integral analysis was carried out to 

obtain the result which is expected to be valid for J. and S values around 1.0 with one 

buoyancy effect being small compared with the other. Mathers et al. (1957) treated the 

problem as a boundary layer flow for low species concentration, neglecting inertia effects. 

Results were obtained numerically for Pr1.O and Sc varying from 0.5 to 10. Lowell and 

Adams (1967) and Gill et al. (1965) also considered this problem, including additional 

effects such as appreciable normal velocity at the surface and comparable species 

concentrations in the mixture. Similar solutions were investigated by Lowel & Adams (1967) 

and by Adams and Lowell (1968). Lightfoot (1968) and Saville and Churchill (1970) 

considered some asymptotic solutions. Adams and Mc Fadden (1966) presented experimental 

measurements of heat and mass transfer parameters, with opposed buoyancy effects. Gehhart 
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and Pera (197 1) studied laminar vertical natural convection flows resulting from the 

combined buoyancy mechanisms in terms of similarity solutions. Similar analyses have been 

carried out by Pera and Gebhart (1972) for flow over horizontal surfaces and by Mollendrof 

and Gebhart (1974) for axisymmetric flows, particularly for the axisymmetric plume. 

Mollendrof and Gebhart (1974) carried out an analysis for axisymmetric flows. The 

governing equations were solved for the combined effects of thermal and mass diffusion in 

an axisymmetric plume flow. Boura and Gebhart (1976), Hubbel and Gebhart (1974) and 

Tenner and Gebhart (1971) have studied buoyant free boundary flows in a concentration-

stratified medium. Agrawal el al. (1977) have studied the combined buoyancy effects on the 

thermal and mass diffusion on MHD natural flows, and it is observed that, for the fixed G, 

and P the value of Xt (dimensionless length parameter) decreases as the strength of the 

magnetic parameter increases. G eorgantopoulos et a! ( 198 1) discussed the effects of free 

convective and mass transfer flow in a conducting liquid, when t he fluid is subject to a 

transverse magnetic field. Haldavnekar and Soundalgekar (1977) studied the effects of mass 

transfer on free convective flow of an electrically conducting viscous fluid past an infinite 

porous plate with constant suction and transversely applied magnetic field. An exact analysis 

was made by Soundalgekar et al. (1979) of the effects of mass transfer and the free 

convection currents on the MHD Stokes (Rayleigh) problem for the flow of an electrically 

conducting incompressible viscous fluid past an impulsively started vertical plate under the 

action of a transversely applied magnetic field. The heat due to viscous and Joule dissipation 

and induced magnetic field are neglected. 

During the course of discussion, the effects of heating Gr  <0 of the plate by free convection 

currents, and G, (modified Grashof number), S and iv! on the velocity and the skin 

friction are studied. Nunousis and Goudas (1979) have studied the effects of mass transfer on 

free convective problem in the Stokes problem for an infinite vertical limiting surface. 

Georgantopolous and Nanousis (1980) have considered the effects of the mass transfer on 

free convection flow of an electrically conducting viscous fluid (e.g. of a stellar atmosphere, 

of star) in the presence of transverse magnetic field. Solution for the velocity and skin 

friction in closed from are obtained with the help of the Laplace transform technique, and the 

results obtained for the various values of the parameters,S,I. andM are given in graphical 

form. Raptis and Kafoussias (1982) presented the analysis of free convection and mass 

transfer steady hydro magnetic flow of an electrically conducting viscous incompressible 

fluid, through a porous medium, occupying a semi infinite region of the space hounded by an 
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infinite vertical and porous plate under the action of transverse magnetic field. Approximate 

solution has been obtained for the velocity, temperature, concentration field and the rate of 

heat transfer. The effects of different parameters on the velocity field and the rate of heat 

transfer are discussed for the case of air (Prandtl number P,. = .71) and the water vapor 

(Schmidt numberS = .60), Raptis and Tzivanidis (1983) considered the effects of variable 

suction/injection on the unsteady two dimensional free convective flow with mass transfer of 

an electrically conducting fluid past vertical accelerated plate in the presence of transverse 

magnetic field. Solutions of the governing equations of the flow are obtained with the power 

series. An analysis of two dimensional steady free convective flow of a conducting fluid, in 

the presence of a magnetic field and a foreign mass, past an infinite vertical porous and 

unmoving surface is carried out by Raptis (1983), when the heat flux is constant at the 

limiting surface and the magnetic Reynolds number of the flow is not small. Assuming 

- constant suction at the surface, approximate solutions of the coupled non-linear equations are 

derived for the velocity field, the temperature field, the magnetic field and for their related 

quantities. Agrawal et al. (1987) considered the steady laminar free convection flow with 

mass transfer of an electrically conducting liquid along a plane wall with periodic suction. 

The considered sinusoidal suction velocity distribution is of the form v' = v
0 
{1 + C cos 

>0, is the wavelength of the periodic suction velocity distribution, and e is the where v0   

amplitude of the suction velocity variation which is assumed to be small quantity. It is 

observed that near the plate the velocity is a maximum and decreases as y increases. Also, 

an increase in the magnetic parameter the velocity decreases. Agrawal et al. (1983) have 

investigated the effect of Hall current on the combined effect of thermal and mass diffusion 

of an electrically conducting liquid past an infinite vertical porous plate, when the free stream 

oscillates about constant nonzero mean. The velocity and temperature distributions are shown 

on graphs for different values of parameters. The value of P, is chosen as 0.71 for air. In 

selecting the values of S, the Schimidt number, the diffusing chemical species of most 

common interest in air are considered. From the figures it is seen that, with the increase in 

Hall parameter, the mean primary velocity decreases, where as the mean secondary velocity 

increases for a fixed magnetic parameter M and S.  However, for a fixed m, and increase in 

magnetic parameter M orS, leads to a decrease in both the primary and the secondary 

velocities. The mean shear stresses at the plate due to primary and secondary velocity and the 
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mean rate of heat transfer from the plate are also given. To study the behavior of the 

oscillatory and transient part of the velocity and temperature distribution, curves are drawn 

for various values of parameters that describe the flow at it! = . The non-dimensional shear 
2 

stress and the rate of heat transfer are obtained. The above problem has been extended by the 

same authors (Agrawal et al. (1982)) when the plate temperature oscillates in time about a 

constant nonzero mean, while the free stream is isothermal. The velocity, temperature and 

concentration distribution, together with the heat and mass transfer results, have been 

computed for different values of Pr. Gr, M and m. 

1.8. Soret and Dufour Effect 

In the above-mentioned studies, heat and mass transfer occur simultaneously in a moving 

fluid where the relations between the fluxes and the driving potentials are of more 

complicated nature. In general the thermal -diffusion effects is of a smaller order of 

magnitude than the effects described by Fourier or Flicks laws and is often neglected in heat 

and mass transfer process. Mass fluxes can also be created by temperature gradients and this 

is Soret or Thermal diffusion effect. There are, however, exceptions. The thermal-diffusion 

effect, (commonly known as Soret effect) for instance, has been utilized for isotope 

separation and in mixtures between gases with very light molecular weight (H 2. He) and of 

medium molecular weight (N-,, air). The diffusion thermo effect was found to be of such a 

magnitude that it could not be neglected (Eckert and Drake, 1972). In view of the importance 

of the diffusion thermo effect, Jha and Singh (1990) presented an analytical study for free 

convection and mass transfer flow for an infinite vertical plate moving impulsively in its own 

plane, taking into account the Soret effect. Kaffoussias (1992) studied the MHD free 

convection and mass transfer flow, past an infinite vertical plate moving on its own plane, 

taken into account the thermal diffusion when (I) the boundary surface is impulsively stailed 

moving in its own plane (ISP) and (ii) it is uniformly accelerated (UAP). The problem is 

solved with the help of Laplace transfer method and analytical expressions are given for the 

velocity field as well as for the skin friction for the above mentioned two different cases. The 

effects of the velocity and skin friction of the various dimensionless parameters entering into 

the problem are discussed with the help of graphs. For the 1.S.P and U.A.P. cases, it is seen 

from the figures that the effect of magnetic parameters A-I is to decrease the fluid (water) 

velocity inside the boundary layer. This influence of the magnetic field on the velocity field 
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is more evident in the presence of thermal diffusion. From the same figures it is also 

concluded that the fluid velocity rises due to greater thermal diffusion. Hence, the velocity 

field is considerably affected by the magnetic field and the thermal diffusion. 

Nanousis(1992) extended the work of Kafoussias (1992) to the case of rotating fluid taking 

into account the Soret effect. The plate is assumed to be moving on its own plane with 

arbitrary velocity U0 f(i') where U0  is a constant velocity and f(i') a non-dimensional 

function of the time!'. The solution of the problem is obtained with the help of Laplace 

transform technique. Analytical expression is given for the velocity field and for skin friction 

for two different cases, e.g., when the plate is impulsively started, moving on its own plane 

(case I) and when it is uniformly accelerated (case II). The effects on the velocity field and 

skin friction, of various dimensionless parameters entering into the problem, especially of the 

Soret number So, are discussed with the help of graphs. In case of an impulsively started plate 

and uniformly accelerated plate (case I and case II), it is seen that the primary velocity 

increase with the increase of So and the magnetic parameter M. It has been observed that 

energy can be enerated not only by temperature radients but also by composition gradients.g g  

The energy flux caused by composition gradients is called the Dufour or diffusion thermo 

effect. On the other hand, mass fluxes can also be created by temperature gradients and this is 

the Soret or thermal diffusion effect. 
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Chapter 2 

The Basic Governing Equation 

The Navier-Stokes equation and energy equations, together with the Maxwell equations, for 

the basis for studying Magnetofluid Dynamics (MFD). In MFD, we consider a conducting 

fluid that is approximately grossly neutral; the charge density in the Maxwell equations must 

then be interpreted as an excess charge density which is not large. If we disregard the excess 

charge density, then we must disregard the displacement current. In most problems, the 

displacement current, excess charge density, excess charge body force and the current due to 

convection of the excess charge are small. The electrodynamics equations to be used are then 

pre-Maxwell equations and the complete set becomes 

V.D=O (2.1) 

v.J=o (2.2) 

V.B=O (2.3) 

VAH=J (2.4) 

(2.5) 
at 

D=E (2.6) 

B=uH (2.7) 

J=a'(E+qAB) (2.8) 

where D is the electric displacement, J is the current density, B is the magnetic induction, 

H is the magnetic field strength, E is the electrostatic field, e is the electrical permeability, 

a' is the electrical conductivity, q is the velocity, ,u is the magnetic permeability. 

The continuity equation for a viscous compressible electrically conducting fluid in vector 

form is 

+V.(pq)=O (2.9) 
at 

where p is the density of the fluid and q is the fluid velocity. 

For incompressible fluid, the equation (2.9) becomes Nk 
\7.q=O (2.10) 
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In three-dimensional Cartesian coordinate system the equation (2.10) becomes 

all öv av (2.11) 

E sQy 6z 

where ii, v and w are the velocity components in the x, y and z direction respectively. 

The Momentum equation for a viscous compressible electrically conducting fluid in vector 

form is 

49- = F - 'VP + .V(V.q) + vV2q (2.12) 

di' p 3 

where F is the body force per unit volume, P is the fluid pressure and u is the kinematic 

viscosity. 

For incompressible fluid, the equation (2.12) becomes 

= F_VP+vV2q (2.13) 
di p 

In the absence of pressure gradient, the equation (2.13) becomes 

.-(i = F+ vv 2q (2.14) 
dt 

When the fluid moves through a magnetic field, then the equation (2.14) becomes as a MHD 

equation 

dq  = F+vV2q+JAB (2.15) 
di p 

where J A B is the force on the fluid per unit volume produced by the interaction of the 

electric and magnetic field (called Lorentz force). 

Wehave-=+(q.V)q (2.16) 
di of 

jr 
Then the equation (2.16) becomes: 

£i+(q.v)q=F+vv2q+!JAH. B=f!eH} (2.17) 
of p 

The generalized Ohm's law in the absence of electric field (Mayer, 1958), is of the form 

J+JA H=a'1pqAH+VP (2.18) 
H 0 en0 ) 

where a 0  is the cyclotron frequency, v., is the electron collision, e is the electric charge, n0  

is the number density electron. 

Neglecting the Hall-current, we have from equation (2.18) 
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J=u'(UqAH) [®wç =0andPe  =0] (2.19) 

Let H=(H,H,Hj. (2.20) 

I 
Then q A H = u v w = (vH - wH )i + wH - +(uH - vH )k (2.21) 

H X H V H Z  

Therefore the equation (2.19) becomes 

J=x'1i('H: _wH.)i+crU(WH x  —UN z)j+cr'pe uH y —vH x)k (2.22) 

1 5 
Then JAil = CiLie (VH :  —wH,) o'ii(wH —UN: ) a'ii 1th1  —vH 

H H H, 

= 1e1VH,cH. - , IH : 2 )_ (uH , 2 
 - vHH,,)}I +o juHH - vH 2 )_ (vH2 - 14/H 

+ C H yH:  - wH2 )_ (vH 2 
 - UHxH: )$ 

=(OUCWHxH.. - cruuI-L2  - U',LleUHy2  + OUeVHxHy )1 

+(C*~OUHxHy - O'IJeVHx2 - 0/1eVH:2 
- iU'H

y
H)5r 

+ O-IJCVH,H. - OLLe11'ITI' v 2  - auewHx2  + OUeUHxH:)k (2.23) 

Let (2.24) 

In three-dimensional Cartesian coordinate system the equation (2.15) with the help of the 

equations (2.17), (2.23) and (2.24) becomes 

-, - - (-2 ' ' 

cv Cu â cv 1 o U ?7u &u 
F.+t- —+—+— 

a , 22 &2  

- 

:2 
- UH,2)_

(UH 
Y 

2 
- vHH) (2.25) 

- / -' ' 

ôv ôv ôv cv ô2v cYv Thy 
—+u—+v—+W—Vl — +--+-- 

öt ox 
2 2 

cru2 
(UH XHY  _1,Hx2 )_(1,H:2  _WH yH: )} (2.26) 

v 8v av sv (02w 02w 02w 
—+u—+v—+w—U —+--+-- 
a 22 &2  
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_5
e

2 

 I(IHyHz _WH
y

2 )_(wH x 2  —uHH)} (2.27) 

The MIHD Energy equation for a viscous incompressible electrically conducting fluid in 

vector form (in the absence of heat source, viscous dissipation term and Joule heating term) 

is 

aT  + (q.V)T = __V 2T+'T V 2C (2.28) 
of PC1, CsC p  

where k is the thermal conductivity of the medium, p is the density of the fluid, c, is the 

specific heat at constant pressure, D, is the coefficient of mass diffusivity, kT  is the thermal 

diffusion ratio and c IS the concentration susceptibility. 

In three-dimensional Cartesian coordinate system the equation (2.28) becomes 

aT aT ÔT aT k (Ô2T 2T 3T D k (a2c a2c a2C 
—+u+v—+w—I ++—  1+ I I (2.29) 

ax ay ôz PCax2 az 2 ) C 5 C ax 2 2 az 2 ) 

The MI-ID Concentration equation for a viscous incompressible electrically conducting fluid 

in vector form (in the absence of heat source, viscous dissipation term and Joule heating 

term) is 

V2C+,kT V 2 T (2.30) 
at m T 

where T is the mean fluid temperature. 

In three-dimensional Cartesian coordinate system the equation (2.30) becomes 

ac ac  
—+u+ 

(a2C  
2

C 
ac

)  DI 
 k

, 

 (a271 

av  a
2   ar 

 

ec ac 8 T 
v — +w — D

fli 
 

a 
+  +- 

 (2.31) 
ox2 oz  -  oz )  

ci ax ôy oz 
 

Thus in three-dimensional Cartesian coordinate system the Continuity equation, the 

Momentum equation, the Energy equation and the Concentration equation become 

Continuity equation 

au a, &v 
—+—+--=0 (2.32) 
ax ôy öz 

Momentum equation 

a a (82ui a2u 8u 
—+u—+v—+w—=F +t—+— +— 
& & X22&2 



, 2 

(wHxHz 
- uH 

- 
2'

1— ( iH,2  —vHH) (2.33) 
p 

ôv av (a2v a2v Ô2v 
—+U+V+WV —+--+ I a. a ôy ôz t2 5y (;z) 

, 2 
- Q' UHXH, — vH 2)_ )H:2 - WH yH:) (2.34) 

p 

av av av av (w 3w 
- +71— +V— +W— = - +— +— a. ô & 222 

— 

,2 

{()HyH: _wH2)_(wH2  —ziHH)} (2.35) 

Energy equation 

ôT T cT öT k(32T ö2T a2T"1  D 1k oC 
A. —+u--+v—+w--= +—+--I+ --+---+---- (2.36) 

of a pc csc p  2 s.2) 

Concentration equation 

o c ac oc oc (O2C 02c 6C D k (a2T 32T a2T' 
--+----+---- 1+ m I (2.i7) 

01 Ox Oy cz J3x E3y 0v) 0y 0z) 

The next section deals with the specific problem. 

Case-I: 

Let us consider an unsteady MHD free convection and mass transfer flow of an electrically 

conducting viscous fluid past an infinite vertical porous platey = 0. The flow is also assumed 

to be in the x - direction which is taken along the plate in the upward direction and y -axis is 

normal to it. The temperature and the species concentration at the plate are instantly raised 

from T, and C, to T and C respectively, which are thereafter maintained as constant, 

where T and C are the temperature and species concentration of the uniform flow 

respectively. A uniform magnetic field of strength B is imposed to the plate, to be acting 

along the y - axis, which is assumed to be electrically non-conducting. We assume that the 

magnetic Reynolds number of the flow be small enough so that the induced magnetic field is 

negligible in comparison with applied one (Pai, 1962), so that B=(0,Bo,0) and the magnetic 
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lines of force are fixed relative to the fluid. The equation of conservation of charge V.J = 0 

gives J, = constant, where the current density J = (J J.  J)  Since the plate is electrically 

non-conducting, this constant is zero and hence Jy  = 0 at the plate and hence zero 

everywhere. 

In the free-convection and mass transfer flow along the vertical plate, the body force along 

the flow direction is 

F,:  =g/3(T—Tj+g/3(C—Cj (2.1.1) 

where g is the acceleration due to gravitation, /3 is the coefficient of volume expansion, /3* 

is the volumetric coefficient of expansion with concentration. 

With reference to the above assumptions, the continuity equation (2.32), the momentum 

equations (2.33)-(2.35), the energy equation (2.36) and the concentration equation (2.37) 

become 
Al 

Continuity equation 

Oil  av aiv (2.1.2) 
av ay öz 

Momentum equations 

., ... ._, / , .-, , , 2 
on on on on I a- 0_li &U uB0  U 
—+u_+v—+w--=g/3(T—Tj+g/3 (C—Cj+1.1 --+----+--- I - (2.1.3) 
ci &• ay az ay-  z) p 

av 6v öv av (ô2v ô2v av 
—+u—+v—+w—=vl a, a. a a- a- ôz 

(2.1.4) 

aw &w aw 32w 32w  82w'  o-'B0 2w 
—+li—+v—+w_-- = V 
at a y az P 

(2.1.5) 

Energy equation 

öT öT ai' aT k (a2T  32T 32T 
+ 

(a2C a2c ac 
--i-zi—+v—+w—=---I -+----+--- -+---+---- (2.1.6) 
at 6x o öz p 2  2  az- cc ) 

Concentration equation 

—+n—+v—+w--D 
a2CJDnkr ~a2

T 
2" 

(217) ac ac ac ac a2ca2c oT ol j  

at ay a 2 az' j' 
2 az 2  
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Since the plate occupying the plane y = 0 is of infinite extent and the fluid motion is 

.A. 
unsteady, all physical quantities will depend only upon y and t. Thus mathematically the 

problem reduces to a one dimensional problem. Then the equations (2.1.2)-(2.1.7) become 

av  
—=0 (2.1.8) 

Cy 

+ v = g13(T— T,,)+g/3(C —C)+v - (2.1.9) 

3v cv ov 
— +—= — — (2.1.10) 
at 

3w 8w 821V B 2 v 
—+v — =v----  
81 

37' 0T k 32T D k 82C (2.1.12) 
—+v—=—+ 
3/ , cc 

6C 8C 8 2C Dn'  kT  32T 
—+v---=D-----+ (2.1.13) 
81 öy 6y T. E9y 

Let viscosity of the fluid be small and let S be small thickness of the boundary layer. Let 

s <<1 be the order of magnitude of 8, i.e., 0(8) = e. Let the order of magnitude of ii and 

w are one, i.e. 0(u) = I and 0(w) = 1. Then the order of magnitude of v and y are e and 

the order of magnitude of I is one, i.e., 0(v) = e, 0(y) = c and 0(1) = 1. 

Hence oI-"=i
all 

, o1)=I, 
all 

o1-')=-- and ( ')=g, oI-')=i, oI-'-'L-- 
6t) 3y) 6i) 6y) e öy) 

within the boundary layer. 

Then the equations (2.1.8)-(2.1.11) with order become 

an,  
—=0 (2.1.14) 

Gy 

 

= gfl(T_Tj+g (C—Cj+v _° l' (2.1.15) 
cloy ay_ p 

I I 
lc— —;. I 

6 

ôv öv 8 2v (2.1.16) —+v—=v-- 
ay 
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1 
4' 6 

aw aw a2 2  
—+—=--

w  
--- 

w (2.1.17) 
at 

1 1 
1 

Again, let 8T  be the thermal boundary layer thickness and let e <<1 be also the order of 

magnitude of 8, i.e., O(ä) = . Let the order of magnitude of T and C be one, i.e., 

O(T)=1 and O(C)=i. 

ac  
Hence O111 , O1 '  -- , (_-') I and , O1 -- 

vat) 
2) 2 0t)

Y) 

0

(,2C 

within the boundary layer. 

Then the equations (2.1 .12) and (2. 1.13) with order become 

(2.1.18) 
at a3 2 cc p  a))2 

is— - - 

6 6 

aC EIC 
- 

a 2 C a2T (2.1.19) —+1'— D 
at ay 

- Ti,, 

is— - — 

Equations (2.1.14)-(2.1.19) requires that O(g/J(T—T,)) = 1 , 0(g/3(C—C)) = I 

0 
(aBO)_1 

0()=1, 
0(DrnkT)=1 

O(D,)1, 
Q(DfllkT)=1 

and 0(0)=6 2 . 
p pc c5c p T, 

Since the viscosity is very small, so neglecting the small order terms, we have from equations 

(2.1. 14)-(2. 1. 19) 

(2.1.20) 
ay 

= gfl(T-T)+gfl(C 
ou aB0 2u 

—+v 
at 

- j+v -- (2.1.21) 
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RA 

ÔT ar k Ô2T öC (2.1.22) 
at 5y jx ay2 

+ 
c3c öy2  

ac .3C 82C D,,,k. ö2T (2.1.23) —+v—=D ____ 
T 

— 
CY2 

The boundary conditions for the problem are 

t !~ O,u = O,i' = 0, T = Tm ,C = C foralivaluesofy 

t > 0,u = U0  (t), i' = v(t), T = T. , C = C. at y 0 

1> 0,u = 0,v = O,T T,C Caty I  

(2.1.24) 

Case-Il: 

Let us consider a steady MHD free convection and mass transfer flow of an electrically 

conducting viscous fluid past a semi-infinite vertical porous plate y = 0 . The detail 

descriptions of the present problem are similar to those of Case-I. 

In the free-convection and mass transfer flow along the vertical plate, the body force along 

the flow direction is 

Fgfl(T—Tj+gj3(C—C) (2.2.1) 

where g is the acceleration due to gravitation, /3 is the coefficient of volume expansion, /3 

is the volumetric coefficient of expansion with concentration. 

With reference to the above assumptions, the continuity equation (2.32), the momentum 

equations (2.33)-(2.35) the energy equation (2.36) and the concentration equation (2.37) 

become 

Continuity equation 

5u 017 aiv 
—+—+--=0 (2.2.2) 
av ay öz 

Momentum equations 

( 

(2.2.3) 
a 02 aXa)) 02 p 

av ôv öv (a2v ô2v ô2v 
u—+v—+w—=vl 

' 
—++ I (2.2.4) 

I ' 

6y 02 2 
av ay oz l oX  
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ow Ow Ow (02w ô
2 -2  

u—+v—+w--=vl -+--- (2.2.5) 
ôz 

2 

Energy equation 

02 2 (02C o2c a 2c6 OT OT Tk T T' 
+-+- = 

 (2.2.6) (a2T  
a 2  

3z  

 

Concentration equation 

OC OC OC - OC E32C 02C'\ Dk (02T 02T 32 T 
- -- D + +-+--- 11—+v—+w (2.2.7) 

az " 2 ' 2 2 
-

Cz 

Since the plate occupying the plane y = 0 is of semi-infinite extent and the motion is steady, 

all physical quantities will depend only upon x and y. Thus mathematically the problem 

reduces to a two dimensional problem. 

Then the equations (2.2.2)-(2.2.7) become 

Ozi 0i' —+—=0 (2.2.8) 

Ou all (02 z, 02i '\ 2 

ii—+v—= ---+- (2.2.9) 
2) 

av 0)) GX p 

CV 0v (ö2v 02v'\ 

u—+v—=vL---+---- (2.2.10) 
Ox Oy c'x O) 2 ) 

Ow Ow (02w 02w"l ? 2  IV  
zi—+v—=vl --+---- (2.2.11) 

ar Oy J)x 3y) p 

OT OT k [32T + O?T"i D k (02C o2c'\ 
(2.2.12) rn I

) Ox pc 
., 

) c5 c ar 2 2 

ac ac (02C O 2CDk(O2 TO2 T \\ 
+11 (2.2.13) 

rn 2 + 2) T, av2 8y2J 

Let the viscosity of the fluid be small and let S be small thickness of the boundary layer. Let 

e <<1 be the order of magnitude of 5, i.e., 0(8) = s. Let the order of magnitude of it, w 

and x are one, i.e. 0(u) = 1, 0(w) = I and 0(x) = 1. Then the order of magnitude of v and 

y are e, i.e., 0(v) = e and 0(y) =  c. 

-4 
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ô2u 
a2z' 1 (ö2v 

Ak andol — i=e 01-1= 5' ,  Hence 0=1, , 0[ j= 

, 

0(ôv 
-- within the boundary layer. 

CY  ) 

Then the order of the equations (2.2.8)-(2.2.11) become 

—+ 
 CIV  
—=O (2.2.14) 

axay 

ii 

all  ö2u ö2u) 0 

u—+v— 
71 öu 

_____ (2.2.15) 
axay 

IV 
 —+— = —+ (2.2.16) av (ô2v ô2vj 

ox ay ax2 03,2 

1 
Is si s - 

C 

Ow Ow (02w O2w '\ 732 
—+ 

ax ôy Ox 2 p 
(2.2.17) 

1 
5 5 

Again, let 5T  be the thermal boundary layer thickness and let e <<1 be also the order of 

magnitude of 8T'  i.e., O(S) = s . Let the order of magnitude of T and C be one, i.e., 

0(T)=1 and 0(C)=1. 

Hence0I=1 01-)1 o1)- QI -! and0Iac z1 oI-)=, 
2) 2) 2 

s 
2) 

OC' 
01 1=—, 

I (O2C\ 1 
01 within the boundary layer. 2) 2 

Then the order of the equations (2.2.12) and (2.2.13) become 

OT OT k (52 T 02 T'\ D k (a2c o2C' 
i—+— I (2.2.18) 

-' ax Oy pcax2 03,2) cc 2) 
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ii 1 1 
-& 

6C ÔC (a2C
+

ök
+

DmkT (ô2T a2T' 
u+ v— = D 

&c E!y a2)  Tm 
(2.2.19) 

11 :i --- 
1 

S 
1 

Equations (2.2.14)-(2.2.19) requires that 0(g/3(T - Tm )) = 1 , 
O(g/3*(C 

- Cm )) = 1 

O( ° )=1, O()=1, Q(DmkT)=1, O(Dm)=1, Q(DmkT)=1 and O(v)=s2 . 
p pc T, 

Since the viscosity is very small, so neglecting the small order terms, we have from equations 

(2.2.14)-(2.2. 19) 

(2.2.20) 

'r2 
CU au 0 U II (2.2.21) u—+v--= gf3T Tm )+ gflC_C)+v___  

ax ay 

3T aT k 6 2T DmkT  CC (2.2.22) = 
ax ayPCP Cy 2 cc y2  

ac 3C a2c D,,J kT  T (2.2.23) u—+ v— = D 
ax ay 

The boundary conditions for the problem are 

11 = U0,v = v0 (x),T = T,,C = Ca(y = 0} (2.2.24) 
it = 0,v=0,T—* Tm,C Cm Q1Y 
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Chapter 3 

The Calculation Technique 

3.1. The Method of Superposition 

The theoretical treatment of MHD heat and mass transfer flow has so far been made mostly 

analytically, applying Laplace transform and perturbation methods. In some cases 

asymptotic method has been applied. There are, however, few numerical solutions 

regarding MHD heat and mass transfer boundary layer flows. Here our solutions 

would be based mainly on numerical methods. For this purpose method of superposition (Na, 

1979) and shooting method will be used for solving the problems for which similarity 

solutions of ordinary differential equations are sought. The detail description of' the 

shooting method will be sought in the next section. As for the superposition method, which 

will be used in this dissertation, it is necessary to discuss the method in briell The basic 

idea, o f the superposition method is to reduce the b oundary value problem into an 

initial value problem which then can be easily solved by any initial value solver such as 

the Runge-Kutta. method. The transformation of linear ordinary differential equations 

from boundary value to initial value problems by the method of superposition is well 

known. For linear ordinary differential equations it is in general possible to reduce the 

boundary value to initial value problems. Thus combination of these solutions then 

Ir give the solution of the original boundary value problem. For example, let us consider 

a second order linear ordinary differential equation 

dx - dx 
= p(x)  

Subject to the boundary conditions 

v(a) = , v(b) = (3. I .2) 

To transfer the boundary value problem into an initial value problem. We consider that 

= v 1 (x)+2v,(x) (3.I.3) 

where 2 is a constant, to be determined. 
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Substituting equation (3.1.3) into equation (3.1.1) we get 

A. 
Id' 

+f1(x)+f2(x)y1 _ p(x)]+2[ 2  +f1 (x)+f,(x)y2 0 (3.1.4) 
dx dx dx 

From the above equation, we obtain the following two equations 

d2y +f
1 (x)+f1 (x)y =p(x) (3.1.5) 

dx dx 

d2y2 +f
1 (x)+f 2 (x)y1  =0 (3.1.6) 

dx- dx 

Applying the first boundary condition from (3.1.2), the equation (3.1.3) is next transformed to 

y (x)=y1 (x)+2y2(x) (3.1.7) 

from which we have 

y(a) = ya,Y2(a) =0 (3.1.8) 

Further differentiating equation (3.1.3) we have 

dy(x) 
= 

dy1 (x) 2 dy2 (x) (3.1.9) 
dx dx dx 

Setting x equal to a in (3.1.9), we have 

dy(a)dy(a) 2 dy2(a) (3.1.10) 
dx dx dx 

For the transformed equations (3.1.5) and (3.1.6) we require two more boundary con- 

ditions in addition to (3.1.8). These unknown boundary conditions are taken to be 

dy1 (a)
0
' 

 dy2 (a) 1  
dx dx 

such that from (3.1.10) 

dy(a) 2  (3.1.12) 
dx 

Hence the unknown constant ). is identified as the missing initial slope. As a final 

step, the boundary condition at the second point is transformed to 

Yb =y1 (b)+2y.,(b) (3.1.13) 

From which we have 

2= [Yb —y1 (b)] (3.1.14) 
y.,(b) 

From the equation (3.1.14) 2 can be calculated, which according to the equation (3.1.3), 

is the missing initial slope. 
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a. 

0 

3.2. The Shooting Method 

To solve the boundary layer equations by using shooting method technique, there are two 

asymptotic boundary condition and hence two unknown surface conditions f(0) and O'(0). 

Within the context of initial value method and Nachtscheim-Swigert iteration technique the 

outer boundary conditions may be functionally represented as 

.f'(irnax)= f'(f"(o),o'(0))= 81  
(3.2.1) 

0(77.1) = O(J"(0), O'(0)) = 62 . (3.2.2) 

With asymptotic convergence criteria given by 

f"(7max) f"(f"(0),9'(0))= 83  (3.2.3) 

9'(17max) = 9'(.f"(o), e'(0)) = 84 . (3.2.4) 

Let us choose ['(0) = g1 , O'(0) = 92 . Expanding first order Taylor series expansion after 

using the above equations (3.2.1)-(3.2.4) yields 

f '(7max) fc'(77max) 1Ag1  +-laf--Ag2  = 8 (3.2.5) 

092 

(3.2.6) 

09, cg2  

I, 
f fl  f"(ii a )=f;i7 ax )+ Ag1  +—Ag, =83  (3.2.7) 

cg1 og., 

E0' cO' 
+---Ag2  =84  (3.2.8) 

09, c'g, 

where the subscript 'c' indicates the value of the function at 77ma., determined from the trial 

integration. 

Solution of these equations in a least squares sense requires determining the minimum value 

of the error E as, 

E = 2 +82 2  +832 54
2 (3.2.9) 

With respect to g1  and g2 . 

Now diferentiating E with respect to g1  and g, we get, 

81L+82 2(52  +83 -+84 -=O (3.2.10) 

ag,ag, ag, agi 
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4 
81 ±5

2 
as, 

+53 -=0. (3.2.11) 
5g., c92 09 2  

Applying equations (3.2.5)-(3.2.8) in equations (3.2.10), we obntain 

ao co 
[f+._A i  + _Ag2 _+1O+-g1 +-Ag2  

og1 c92 og E3g1

ao  

5g1  

+[fff+_A 
og1 og1 ag, c92 )0g1  

i.e. [12 
(\2 

+1.iY 
+(!)2lAg(T 

' LL) i) g)  j 59 2 92  - Sg 59 2 5g1  Sg,) 

(3.2.12) 
cg1 159, 

Again applying equations (3.2.5)-(3.2.8) in equations (3.2.11), similarly we obntain 

112 
+1-- +(~~)

2 
0
,)2IA92 

 

591) t.5g,) 592 5g 592 Sg  59  59  59 5g  59.,) 

(3.2.13) 

L c92 c92 og-, 

From the equations (3.2.12) and (3.2.13), we have 

a11 Ag1  +a12 Ag =b1  (3.2.14) 

a,1 Ag +a21t\g2  =b,, (3.2.15) 

where 

,0 

 =i'-Y +
1- )2 

 +
1i)2 

 +
1i)2  (3.2.16) 

Sg1) 5g1) ag1 ) ag1 ) 

(3.2.17) 
L 

('91 592 59, 592 59, 592 59, 592  

a., (3.2.18) 
Sg, 592 59,  592 Sg, 592 591  592  

2
\12 )2 ao  )2 (3.2.19) 

 +( +1L') 

(
aO

, 

(092 ) 92 ) 592 ) 5g2 ) 

b1  (3.2.20) 

Ak L og1 cg1 cg1 og  j 
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(3.2.21) 

L c92 og2 ag2 o9 2 j 

In matrix form, equations (3.2.14) and (3.2.15) can be writen as 

Ia11 
a12' (b," J(Ag1"i 

J 

(3.2.22) 
a, a,, b 1 Ag2 2J 

Now to solve the system of linear equations (3.2.22) by Cramers rule we have 

detA1 detA, 
Ag1 = 

' 
Ag 2 

= 

(3.2.23) 
detA detA 

where 

I all a12! 
detA I I = (a11 a,, —a12a,1 ) (3.2.24) 

la,1 22 

lb1 a121(b -b,a12 ) det A1 
= 

(3.2.25) 
b2 a,2! 

a11 b1
= (b,a11  -b,a,1 ). detA, = 

la, 
(3.2.26) 

1 b.,1 

Then we obtain the (unspecified) missing values g1  and g, as 

g1  +- g1  + Ag1  (3.2.27) 

92  <- 92  + Ag.,. (3.2.28) 

Thus adopting this type of numerical technique as described above, a computer program was 

setup for the solution of the basic nonlinear differential equations of our problem where the 

integration technique was adopted as the sixth order Runge-Kutta method of integration. 

At 
Based on the integrations done with the above numerical technique, the results obtained are 

presented in the appropriate section. 

4'  
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Chapter 4 

Unsteady MHD free convection and mass transfer 
flow past an infinite vertical porous plate with 
thermal diffusion and Dufour effects 

4.1.1. introduction 

From technological point of view, MHD free-convection flows have great significance in the 

fields of stellar and planetary magnetospheres, aeronautics. chemical enincering. and 

electronics (Alfven, 1950 Cramer and Pai, 1973; Lui, 1987). Model studies of MHD free 

convection flows have thus been made by many, some of them are Georgantopoulos (1979) 

and Raptis and Singh (1985). The effect of mass transfer on MHD free convection flows 

have also been considered by many of whom the names of l-lalclavnekar and 

Soundalgekar(1977). Soundalgekar and Gupta (1979), Nanousis and Goudas (1979) and 

Georgantopoulos and Nanousis( 1980) are worth mentioning. 

However, in the above studies the thermal diffusion effect was ignored under the assumption 

that the concentration level is very low. In view of the importance of this diffusion ilienito 

effect, Jha and Singh (1990) studied the free convection and mass transfer flow in an infinite 

vertical plate moving i mpulsively i n it s o wn p lane, t aking into a ccount t he Soret eflct. 

Kafoussias (1992) studied the same problem to the case of MHD flow. They made analytical 

studies based on Laplace transform technique. The objective of the present study is to 

consider the above problem past an infinite vertical porous plate taking into account the 

thermal diffusion as well as Dufour effects. For this purpose impulsively started plate moving 

in its own plane is considered. Similarity counterpart of the momentum. energy and 

concentration equations is derived by introducing a time dependent length scale. The suction 

velocity is taken to be inversely proportional to the above length scale. The momentum. 

energy and concentration equations are solved numerically by the method of superposition as 

introduced by Na (1979). 
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4.1.2. The Governing Equation 

Let us consider an unsteady MIHD free convection and mass transfer flow of an electrically 

conducting viscous fluid past an infinite vertical porous plate y=O. The flow is also assumed 

to be in the x-direction which is taken along the plate in the upward direction and y-axis is 

normal to it. The temperature and the species concentration at the plate are instantaneously 

raised from T. and C, to T and C.  respectively, which are thereafter maintained as 

constant, where T and C are the temperature and species concentration of the uniform flow 

respectively. A uniform magnetic field B is imposed to the plate to be acting along they-axis, 

which is assumed to be electrically non-conducting. We assumed that the magnetic Reynolds 

number of the flow be small enough so that the induced magnetic field is negligible in 

comparison with applied one (Pai, 1962), so that B=(O,Bo,0) and the magnetic lines of force 

are fixed relative to the fluid. The equation of conservation of charge V.J = 0 gives 

J,= constant, where the current density J=(J, J.., J )Since the plate is electrically non-

conducting, this constant is zero and hence J =0 at the plate and hence zero everywhere. 

With reference to the generalized equations described in case-I of Chapter 2, the one 

dimensional problem under the above assumptions and Boussinesq approximation can be put 

in the following form: 

ay 

&i, Z$u 
2
11 

 

= 

- p 
(4.1.2) 

Cl 
00 

aT aT k &2T D 7 k OC (413) 
ci ty 2  cc öj 2  

ac ac a 2c D 1k 82T  —+v—=D -+ 
at a3' 

rn2 

and the boundary conditions for the problem are 

I > 0,u = U0 (i),v = v(t),T = T,C = Caiy = 01 (4 15) 
1> 0,u = 0,1,  = 0,7' - T,C —>CaIy cc J . 

where it, v are the velocity components in the x ,y direction respectively, v is the kinematic 

viscosity, g is the acceleration due to gravity, p is the density, 3 is the coefficient of volume 
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A 

expansion, 13 is the volumetric coefficient of expansion with concentration. T, Tw  and T are 

the temperature of the fluid inside the thermal boundary layer, the plate temperature and the 

fluid temperature in the free stream, respectively, while C, C, C are the corresponding 

concentrations. k is the thermal conductivity of the medium, Dm is the coefficient of mass 

diffusivity, C is the specific heat at constant pressure, T. is the mean fluid temperature, kT is 

the thermal diffusion ratio, C is the concentration susceptibility and other symbols have their 

usual meaning. 

4.1.3. Mathematical Formulation 

In order to obtain similarity solutions we introduce a similarity parameter (i as 

ci = a(t) (4.1.6) 

such that a is the time dependent length scale. In terms of this length scale, a convenient 

solution of equation (4.1.1) is considered to be 

1) (4.1.7) 
a 

Here the constant v0  represents a dimensionless normal velocity at the plate, which is 

positive for suction and negative for blowing. 
We now introduce the following dimensionless variables 

77=. (4.1.8) 

(4.1.9) 
U0  

(4.1.10) 
T 

 

From the equation (4.1.9), we have 

ii =U0 f(i) (4.1.12) 

From the equation (4.1.12), we have the following derivatives 

all U0  cci 
rbf (4.1.13) 

at act 

all 
 = (4.1.14) 

ay a 
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4 

I 

(4.1.15) 
ôycr 

Again from the equation (4.1.10), we have 

(T—T)=(r.—Tj9(7?) (4.1.16) 

Also from the equation (4.1.11), we have 

(c—c)= (c. —c)q(ii) (4.1.17) 

Substituting the equations (4.1.7), (4.1.10), (4.1.12) and (4.1.13)-(4.1.17) into the equation 

(4.1.2), we get 

OU  —21ij'—vj' =J"+Gr 9 +Gn:cb — Mf (4.1.18) 
V 01 

where G = 
_j2 

is the Grashof number, G = is the modified 
U0v U0v 

' 

Grashof number, M = 
cr 0o 2

is the Magnetic parameter. 
PV 

Again, from the equation (4.1.10), we have 

T= T.  +(i. —T,)O(i) (4.1.19) 

From the equation (4.1.19), we have the following derivatives 

ÔT (rn. (4.1.20) 
at o 01 

3T (T. 9?()  
17 (4.1.21) 

oT (T _T)011()  (4.1.22) 
ay- cr 

Further, from the equation (4.1.11), we have 

c. = c +x(C0  —Cj (4.1.23) 

From the equation (4.1.23), we have the following derivatives 

ac = - (cs, - C)aa () (4.1.24) 
at or Of 

= (c (4.1.25) 
a 

a2c 
- 

(c (4.1.26) 
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Substituting the equations (4.1.7), (4.1.20)-(4.1.22) and (4.1.26) into the equation (4.1.3), we 

have 

cröa ---779'—V00' =_.O+D1q5" 
at 

(4.1.27) 

PVC (cu, -cj 
is the Dafour number. where P = is the Prandlt number and - 

k ccv (T— T) 

Again substituting the equations (4.1.7), (4.1.22), (4.1 .24)-(4. 1 .26) into the equation (4.1.4), 

we get 

aacr 
----770 —v00'=10"+S09" 

of s 
(4.1.28) 

where S = is the Schmidt number and s = D fl kT  (T - Tj 
is the Soret number. 

C r 
vT, (c-c,) 

The corresponding boundary conditions for the above mentioned problem are 

f =1,9 = 1,0 = 1a177 =0 (4.1.29) 
f=0,9=0,q5=Oas7/—>co 

The equations (4.1.18), (4.1.27) and (4.1.28) are similar except for the term csac-- where 
v at 

time t appears explicitly. Thus the similarity condition requires that in the equations 
at 

(4.1.18), (4.1.27) and (4.1.28) must be constant quantity. Hence following the works of 

Sattar and Alam (1994) one can try a class of solutions of the equations (4.1.18), (4.1.27) and 

(4.1.28) by assuming that 

aaa 
-- = c (a constant) 
vol 

Now integrating (4.1.30) one obtains 

U = s[2CVi 

(4.1.3 0) 

(4.1.31) 

where the constant of integration is determined through the condition that a = 0 when 1=0. It 

thus appears from (4.1.30) that, by making a realistic choice of c to be equal to 2 in (4.1.3 1) 

the length scale a becomes equal to a = 2Ii which exactly corresponds to the usual 

scaling factor considered for various unsteady boundary layer flows (Schlichting, 1968). 

Since a is a scaling factor as well as a similarity parameter, any value of c in (4.1.3 1) would 

not change the nature of the solution except that the scale would be different. Finally, 
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introducing (4.1.31) with c = 2 in equations (4.1.18), (4.1.27) and (4.1.28) we respectively 

have the following dimensionless ordinary differential equations 

f"+2f'+Gre+Gmø-Mf =0 (4.1.32) 

(4.1.33) 

q5"+2Sq'+SS09" = 0 (4.1.34) 

where =77 +  vo  

The corresponding boundary conditions are 

f=1,9=1,Ø=1a177=0 

f=0,O=0,çb=Oasl7->ciDJ 

In all above equations primes denote the differentiation with respect to 77. The section 4.1.5. 

deals with the solution of the problem. 

4.1.4. Skin friction Co-efficient, Nusselt number and Sherwood 
number 

The quantities of chief physical interest are the local Skin friction Co-efficient, Nusselt 

number and Sherwood number. 

The equation defining the skin friction is 

(E$,i 

C-Y),.=o  

T /JI 

V x f 

41 The Nusselt number, denoted by N, is propoional to - 
 Ur  

and it can be expressed as 
oy =0  

( 
N x 

aT 
—i— 

y=o 

That is, N oc -O 

ac 
The Sherwood number, denoted by Sh, is propoional to 

- 

 —C) ( Y Y=O  

and it can be expressed as 

Sh oc 
 —( 0(~Cy )Y=o 

That is, Sh  oc -q 
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Thus the values proportional to the skin friction co-efficient, the Nusselt number and the 

Sherwood number are respectively obtained numerically. These values are sorted in the 

tables 4.1.1-4.1.3 

4.1.5. Numerical Solution 

The solutions of equations (4.1.32)-(4.1.34) with the boundary conditions (4.1.35) are 

obtained by the method of superposition (Na, 1979). This method is used to reduce the 

boundary value problem to an initial value problem that can easily be integrated out by an 

initial value solver. Thus to reduce equations (4.1 .32)-(4. 1.34) to an initial value problem the 

function f( , ),O(ii) and i)  are respectively decomposed to 

(4.1.36) 

(4.1.37) 

(4.1.38) 

where ,u, 2 and o are constants, the physical significance of which is obtained later. Now 

substituting the equations 4.1.36-4.1.38 in equations 4.1.32-4.1.34 and then equating the 

different coefficients to zero we obtain the following differential equations 

f+2cJ11— MJ1+G 01+GØ1=O (4.1.39) 

f,' +247,' —Mf2  +Gr 92 +G,,, =0 (4.1.40) 

f3" +2J —Mf3  +Gr03  +Gcb3  =0 (4.1.41) 

f" +2J —Mf4  +Gr84  +G 4  =0 (4.1.42) 

0 +2P161 " +Df Pr 4 l" =0 (4.1.43) 

02  +2Pr 0 2' +Dj Pr21' = 0 (4.1.44) 

03  +2cPro3"  +Dj Pr31' =0 (4.1.45) 

0 4  +2Pre4' +D f4" =0 (4.1.46) 

4" +2S 1 " +ss0e =0 (4.1.47) 

2 +2S 2 " +ss0e' =0 (4.1.48) 

4 + 2cS43"  +SS0O 3" =0 (4.1.49) 

+2çS4/ +ss0e4'" =0 (4.1.50) 

41 

-14 



The initial values of the decomposed functions j (n), f2  (n), f (u), f (, ).K etc. are now obtained 

through the boundary conditions (4.1.35) as 

f1 (i7) =1.0,f2 (zj) =O,f3 (i) =0,f4 (j) =0 

9I()= 1 .0, 82()= 0, 93()= 0, 04()= 0  (4.1.51) 

0(17)= 1.0,02(77) = 0,03(17) = 004(77) = 0 

Again as r7 -* o , applying the boundary conditions (4.1.35) in (4.1.36)-(4.1.38) we get 

= - 
f1(O3q -43)1(f4O3  —f)+0(J94 f4!) (4 152) 
f2(34 043)+f 1(f 403  — f34)+01(11O4 f41) 

x f(842 -044)+01(A4 — f442)41(02f4 -04f2) (41 53) 
f1(034 —f)+(f0 -1401) 

(4154) 
f2(0 —043)+fff43  —f34)+(f04  — 140!) 

In (4.1.36)-(4.1.38) all the functional values are obtained as 

(4.1.55) 
all 

(4.1.56) 
Oq a1 a1 CTI a1 

= 
a(ii) 

+ö (4.1.57) 
all an arl 

Then by setting the missing slopes 

f(0) X(0) and 4(0) 
 as = 

£0(0) 
= and 

3(0) 
= 

the initial conditions for the slopes of the decomposed functions are obtained easily. The well 

-4 known Runge-Kutta Merson integration scheme has been used as an initial value solver to 

integrate the above mentioned equations and to obtain converged solutions which are 

presented graphically in Figs. 4.1.2 - 4.1.16. If now v , N,, and Sh  are respectively denoted 

as the local values of the skin friction, Nusselt number and Sherwood number, they are 

- respectively proportional to 
öf(0) Ee(0) and 

- 

E4(0) 
 The numerical values of the skin 

a1 ' a1 afl 

friction, Nusselt number and Sherwood number are sorted in Tables 4.1 .1-4.1.3. 

4.1.6. Results and Discussions 
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The velocity profiles are shown in Figs. 4.1.2-4.1 .7 for different values of suction parameter, 

v0, the magnetic parameter, M, the Prandtl number, Pr, the Soret number, So, the Schmidt 

number, S and the Dufour number, D1- and for fixed values of local Grashof number, G, and 

modified local Grashof number G1. The value of Gr is taken to be large, since this value 

corresponds to a cooling problem that is generally encountered in nuclear engineering in 

connection with the cooling of reactors. For Pr, three values 0.71,1.0 and 7.0 are considered 

(0.71 represents air at 200  C, 1.0 corresponds to electrolyte solutions such as salt water and 

7.0 corresponds to water). The values 0.22,0.60 and 0.75 of S are also considered as they 

represent specific conditions of the flow. In particular, 0.22 corresponds to Hydrogen while 

0.60 corresponds to water vapor that represents a diffusivity chemical species of most 

common interest in air and the value 0.75 represents Oxygen. The values of i, M, So, 1?1and 

G,7, are however chosen arbitrarily. 

With the above mentioned parameters, the velocity profiles are presented in Figs. 4.1.2-4.1.7, 

the temperature profiles are presented in Figs. 4.1.8-4.1.11 and the concentration profiles are 

presented in Figs. 4.1.12-4.1.16. The effects of the suction parameter ro  on the velocity is 

shown in Fig. 4.1.2. It is observed from this figure that an increase in r, leads to a decrease in 

the velocity. The usual stabilizing effect of the suction parameter on the boundary layer 

growth is also evident from this figure. In Figs. 4.1.3 and 4.1.4, the effects of Soret number 

So and Dufour number Dj on the velocity field are shown respectively. It is observed from 

these figures that the velocity increases with the increase of So and D1  In Figs. 4.1.5, 4.1.6 

and 4.1.7, the effects of magnetic force number M, Schmidt number S and Prandtl number 

Pr on the velocity field are shown respectively. From Fig. 4.1.5, it is observed that the 

velocity decreases with the increase of magnetic force number. The same effect is observed 

from Figs. 4.1 6 in case of Schmidt number. From Fig. 4.1.7, it is seen that the Prandtl 

number has quite a larger decreasing effect on the velocity field with its increase. 

The effects of suction parameter on the temperature profiles is shown in Fig. 4.1.8. It is 

observed from this figure that the temperature decreases as the suction parameter increase. In 

Figs. 4.1.9 and 4.1.10, the effects of Soret number and Dufour number on the temperature 

profiles are shown respectively. It is observed from these figures that the temperature 

decreases as the Soret number increases (Fig. 4.1.9) while the temperature increase as the 

Dufour number increase (Fig. 4.1.10). In Fig. 4.1.11, the effects of Prandtl number on the 

temperature field is shown. It is observed from this figure that with the increase of the 

Prandtl number the temperature decreases at a particular position of the boundary layer (Fig. 
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+ 4.1.11). This decrease is very large in case of water (P=7.0). We also observe that for Pr7.0 

the field temperature remains less than the uniform flow temperature for most part of the 

boundary layer. 

The effects of suction parameter J/ on the concentration field is displayed in Fig. 4.1.12, 

which shows that the concentration decreases as the V0 increase. In Figs. 4.1.13 and 4.1.14, 

the effects of Soret number S0  and Dufour number Df  on the concentration profiles are 

displayed respectively. It is observed from these figures that the Soret number has a large 

increasing effect on concentration (Fig. 4.1.13) while the Dufour number has a minor 

decreasing effect on concentration (Fig. 4.1.14) with their increase. In Figs. 4.1.15 and 

4.1.16, the effect of Prandtl number Pr and Schmidt number S on the concentration field are 

shown respectively. It is observed from these figures that the concentration increases as the 

Prandtl number Pr increase (Fig. 4.1.15). It is also seen from these figures that the Schmidt 

number S has a major decreasing effect on the concentration (Fig. 4.1.16) with its increase. 

Finally, the effects of various parameters on the skin friction v , the Nusselt number N, and 

the Sherwood number Sh are shown in the Tables 4.1.1-4.1.3. From Table 4.1.1, we observe 

that the skin friction v decreases while the Nusselt number N11  and the Sherwood number Sh 

increases with the increase of the suction parameter i:. It is also seen from this table that the 

skin friction r and the Nusselt number N11  increases while the Sherwood number Sh 

decreases with the increase of Dufour number D1  From Table 4.1.2, it is seen that the Nusselt 

number N1, and the Sherwood number Sh increases while the skin friction r decreases with 

the increase of Magnetic force number M. Also, from Table 4.1.2, we observe that the skin 

.41 friction r and the Nusselt number N11  increases whereas the Sherwood number Sh decreases 

with increase of Soret number So. From table 4.1.3, we see that the skin friction r and the 

Sherwood number Sh decreases while the Nusselt number N11  increases the with increase of 

Prandtl number Pr. Further, from Table 4.1.3, we observe that the skin friction r and the 

Sherwood number Sh decreases with the increase of Schmidt number S, but the Nusselt 

number N11  increases. 

41 



  

v(t) 

B 

Fig. 4.1.1. Physical model and coordinate system. 
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Fig.4.1.2. Velocity Profiles for different values of V0 ,taking M = 0 .50, S0  =2.00, 

Df= 0.20, Gr 10.00, Grn = 5.00, Pr 0.71 , S 0.60 as fixed. 
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Fig.4.1.3. Velocity Profiles for different values of So ,taking Vo = 0 .50 , Pr 0.71 

M = 0 .5, Df  0.2, Gr = 10.00, G.. = 5.00, S 0.60 as fixed. 
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Fig.4.1.4. Velocity Profiles for different values of Df,taking V0  = 0 .50, S0  =2.00, 

M= 0 .5, Gr =10.00, Gm = 5.00, P1 = 0.71 , S = 0.60 as fixed. 
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Fig.4.1.5. Velocity Profiles for different values of M,taking V0  = 0 .50, S0 =2.00, Df  

0 .20, Gr  =10.00, Gm = 5.00, Pr= 0.71 , Se  = 0.60 as fixed. 

Fig.4.1.6. Velocity Profiles for different values of S.taking V0  = 0 .50 ,Pr  =0.71 

M = 0 .5, Df  0.2, Gr = 10.00, G1= 5.00, So = 2.0 as fixed. 
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Fig.4.1.7. Velocity Profiles for different values of Pr ,taking Vo  = 0 .50, S0  =2.00, 
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- M= 0 .5, Df  0.2, G1  = 10.00, Gm = 5.00, Sc = 0.22 as fixed. 
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Fig.4.1.8. Temperature Profiles for different values of Vo, taking M = 0 .50, 

S0  =2.00 ,Df = 0 .20, Gr =10.00, Gm = 5.00, Pr= 0.71 , S = 0.60 as fixed. 
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Fig.4.1.9.Temperature Profiles for different values of So,taking Vo = 0 .50, 

Pr 0.71, M= 0 .5, Dç0.2, Gr = 10.00, Gm = 5.00, S = 0.60 as fixed. 
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Fig.4.l.lO. Temperature Profiles for different values of Df,taking Vo = 0.50, 

S0 2.00, M0 .5,Gr l0.00, Gm 5.0O, Pr 0.71, S=0.60 asfixed. 
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Fig.4.I.11. Temperature Profiles for different values of Pr, taking Vo = 0 .50 

S0 2.00, M= 0 .5, Df 0.2 , Gr = 10.00, Gm = 5.00, S = 0.22 as fixed. 

47 



0.8 

0.' 

0. 

0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 . 4 

-4 

.4 

11 

Fig.4. 1.12. Concentration Profiles for different values of V0  ,taking M = 0 .50, S0  =2.00, 

D0 .20,Gr 10.00,Gm = 5.00, Pr 0.71, S0.60 as fixed. 
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Fig.4.1.13. Concentration Profiles for different values of S0 , taking V0  = 0 .50, Prz0.71 ,M 

= 0 .5, Df =0.2 , Gr = 10.00, Gm = 5.00, S = 0.60 as fixed. 
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Fig.4.1.14. Concentration Profiles for different values of D,taking Vo = 0 .50, 

S0  =2.00 , M= 0 .5, Gr 10.00, Gm 5.00, Pr 0.71 , S = 0.60 as fixed. 

11 

Fig.4.1.15. Concentration Profiles for different values of P,taking V0  = 0 .50, S0 2.00, 

M= 0 .5, Df  =0.2, G = 10.00, G1,1  = 5.00, S = 0.22 as fixed. 
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Fig.4.1.16. Concentration Profiles for different values of S,taking V0  = 0 .50 , Pr 0.71, 

M= 0 .5, Df  =0.2, G1  = 10.00, G1  = 5.00, So = 2.0 as fixed. 

Table: 4.1.1 Numerical values of Skin Friction, Nusselt Number and Sherwood Number 

proportional to f ,-9'and - qY respectively, for different values of V0  and Df  ,taking Gr 

10.00,Gm = 5.00, M0.5,S0  2.0, Pr 0.71,Sc0.60 as fixed. 

VO  Df  -4' 
rois 0.2 1.784958492 1.41983732 0.22187363 

(1.5 0.2 1.107044722 1.973658468 0.3951249 

2.5 0.2 0.25258435 2.58081135 0.397388 

[5 0.5 1.828867473 1.48232346 1 0.13702065 

0.5 0.8 1.871162634 1.65752702 1 -0.82259632 
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Table: 4.1.2 Numerical values of Skin Friction, Nusselt Number and Sherwood Number 

proportional to f' ,-O'and - çb' respectively, for different values of M and So ,taking Gr 

10.00,Gm = 5.00, Vo =0.5 , Df=O.20, Pr 0.71,Sc0.60 as fixed. 

7S4958494i983732
F

22i87 P 
22188526 

0.5 2.0 1.55512162 1.35394784 0.78080973 

I 0.5 3.0 I 2.028048486 I 1.4981375278 -0.43033981 I 

Table: 4.1.3 Numerical values of Skin Friction, Nusselt Number and Sherwood Number 

proportional to f ,-O'and - q respectively, for different values of Pr and S ,taking Gr 

=10.00,G11 = 5.00, M=0.5,So 2.0, Df 0.20, V0 0.5 as fixed. 

- 

0.71 0.22 1.9344219 1.403163282 %.289813788  

1.0 0.22 1.5900065 1.822974568 .20471111 

7.0 0.22 0.386611 12.07647156 4.342624045 

0.71 0.60 1.784958492 1.41983732 0.22187363 

0.71 0.75 1.75809629 1.42843432 0.1710122012 
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Chapter 5 

Steady MHD free convection and mass transfer flow 
past a semi-infinite vertical porous plate with thermal 
diffusion, Dufour effect and large suction. 

5.1.1. Introduction 

Cohble( 1977) showed the condition under which similarity solutions exist to a 

hydromagnetic flow over a semi-infinite plate in presence of a magnetic field and pressure 

iradient with or without injection and suction. The heat-transfer aspect of this p101)1cm has 

been studied by Soundalgekar and Ramanamurthy( 1980) taking the effects of suction and 

injection. Following the above studies, Singh (1985) studied the problem of Soundalgekar 

and Ramanamurthy( 1980) for large values of suction parameter by making use of the 

perturbation technique as has been done by Nanbu (1971). Later Singh (1985) and Singh and 

Dikshit (1988) studied the hyclromagnetic flow past a c ontinuously moving semi-infinite 

porous plate employing the same perturbation technique. They also derived similarity 

solutions for large suction. This large suction, infact, enabled them to obtain analytical 

solutions and indeed these analytical solutions are of immense value and compliment various 

numerical solutions. However, in the above studies the thermal diffusion effect was inored. 

in view of the above studies we aim to make a study of the steady two dimensional problem 

of the MHD free convection and mass transfer flow past a semi-infinite vertical porous plate 

taking into account the Soret as well as Dufour effects. Similarity counterparts of the 

momentum, energy and concentration equations are derived by introducing usually employed 

technique. The momentum, energy and concentration equations are then solved numerically 

by the method of shooting based on large suction as suggested by Na (1979) 

5.1.2. The Governing Equation 
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Let us consider a steady MI-liD free convective and mass transfer flow of an electrically 

conducting viscous fluid past a porous medium along a semi-infinite vertical porous plate 

y=O. The detailed descriptions of the present problem are similar to those of chapter 4. 

With reference to the generalized equations described in case-I! of Chapter 2, the two 

dimensional problem under the above assumptions and Boussinesq approximation can be put 

in the following form: 

all av 

avy 

C 
+ 

II all 0 U iBzi 
(5.1.2) U— 1'— = 

öT aT k a2T 02C (5.1.4) 
& aY pc E3y c5c 

öC öC k 32C DmkT (5.1.5) = ----+ 
& E$y pcay 2  T, ay2  

and the boundary conditions for the problem are: 

11 = ' = i' (x), T = Tn,, C = C. city = 0 

u O,v= O,T i,C Caiy } 

(5.1.6) 

where ii, v are the velocity components in the x, y direction respectively, v is the kinematic 

viscosity, g is the acceleration due to gravity, p is the density, fi is the coefficient of volume 

expansion, fi
* 
 is the volumetric coefficient of expansion with concentration T, T, T, are the 

temperatures of the fluid inside the thermal boundary layer, at the plate and in the free 

stream, respectively, while C, C., C, are the corresponding concentrations. Also, k is the 

thermal conductivity of the medium, D. 1  is the coefficient of mass diffusivity, C, is the 

specific heat at constant pressure, 7 is the mean fluid temperature, kT is the thermal 

diffusion ratio, Cs is the concentration susceptibility and other symbols have their usual 

meanmg. 

5.1.3. Mathematical Formulations 

To solve the above system of equations (5.1.2)-(5.1.5) under the boundary conditions (5.1.6), 
we adopt the well defined similarity analysis to attain similarity solutions. 
For this purpose, we introduce the similarity variables 

yJ
i (5.1.7 

2ux 
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(5.1.8) 
U0  

(5.1.9) 

b(i)= 
_

00 (5.1.10) 
x(C0  -cm ) 

The concentration at the plate is given by 

c.=C+x(c0 —C,)  

Where Co is considered to be mean concentration and Y = 

From the equation (5.1.8), we have 

U_—U 0 J'(T/) 
(5.1.12) 

In order to satisfy the continuity equation, we introduce (5.1.12) in the equation (5.1.1) to 

obtain 

= (5.1.13) 
077 

Integrating both sides with respect to q, we have 

=F2 - f(77)] (5.1 14) 

From the equation (5.1.12), we have the following derivatives 

= ...JL u0p(77 ) (5.1.15) 

J
U-0 all 

 = UO  
vx 

(5.1.16) 

= (5.1.17) 
ay 2 2ux 

Again from the equation (5.1.9), we have 

(T-T)=(T1r-T)O(q) (5.1.18) 

Also from the equation (5.1.10) and (5.1.11), we have 

(C-C,)  (Cl  -Co)IJ(& (5.1.19) 

Substituting the equations (5.1.12) and (5.1.14) - (5.1.19) into the equation (5.1.2), we get 

fm+ff"+GO+G,q5_Mf'=0 (5.1.20) 
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where G 
= gfl(T, - T)2 

is the local Grashof number, G is the 
r in u0- u0 2  

cr 0
2 
 2x 

modified local Grashof number and M = is the Magnetic force number. 
pU0  

Now from the equation (5.1.9), we have 

T = T ±(T1 Tci,)0(17) (5.1.21) 

From the equation (5.1.21), we have the following derivatives 

T 17 
(T —Tj9'(ii) (5.1.22) 

ox 2. 

—T)9'(i) (5.1.23) 

£Z2_(T;, —09"(77) (5.1.24) 

y 2 2vx 

Again from the equation (5.1.10), we have 

C = C +(c0  —Cç(17) (5.1.25) 

From the equation (5.1.25), we have the following derivatives 

IC 
 = (C - C)--Y(7/)— (c - C)1çb'(ii) (5.1.26) 

2x  

—Cj'(i) (5.1.27) 
cy 

?-=_Z?-(c —C(17) (5.1.28) 

y 2vx 

Substituting the equations (5.1.12), (5.1.14), (5.1.22)-(5.1.24) and (5.1.28) into the equation 

(5.1.4), we get 

0" + PfO' + Pr D f  0" = 0 (5.1.29) 

where P = pvc ° is the Prandit number and D = D ink 
T 

(C w 

k c5c1,v (T.—T) 

—C) 
is the Dafour number. 

Again substituting the equations (5.1.12), (5.1.14), (5.1.2) and (5.1.26)-(5.1.28) into the 

equation (5.1.5), we get 

0M_2ScfScf0'+ScSr0" =0 (5.1.30) 

where S = is the Schmidt number and S = 
D,k1  (T - 

° vT,,1 (ca. - 
T) is the Soret number. 
c) 
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Thus the equations (5. 1.2)-(5. 1.5), reduces to the following dimensionless differential 

equations 

fm + ff:I + GO+GMf:_O (5131) 

0" + P,.f8' + PDJ.qY' = 0 (5.1.32) 

- 2SJ0 + Sfq5' + ScSr O" = 0 (5.1.33) 

where Gr is the local Grashof number, G,,1  is the modified local Grashof number, M is the 

magnetic force number, Pr is the Prandtl number, S is the Schmidt number and So is the 

Soret number. 

The corresponding boundary conditions are 

f = f,,f' = 1,0 = 1,0 = 1(7177 = 0 
(5.1.34) 

f'=0,0=0,ç5=Oas77—cID J 

where f —v0 (x)j---. is taken as transpirationl suction parameter. 
v 
 uU0 

In section (5.1.5) the solution of the problem is given. 

5.1.4. Skin friction Co-efficient, Nusselt number and Sherwood 
number 

The quantities of chief physical interest are the local skin friction co-efficient, local Nusset 

number and local Sherwood number. 

The equation defining the local skin friction is 

(Ezi 
7-  = ff1 

ay)v=o 

i.e. z 

The local Nusset number, denoted by N, is propoional to 
- ay  

and it can be expressed 

as 

(T 

y=o 

That is,N u  oc —0' 
-k 
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The local Sherwood number, denoted by Sh, is proportional to 
- ( 

 ay)y=o  
- 

and it can be 

expressed as 

ac ( 
S cx: — 

 
l — 

ay 

That is, Sh  OCçb 

The values proportional to the skin friction co-efficient, the Nusselt number and the 

Sherwood number are respectively obtained numerically. These values are sorted in the 

Tables 5.11-5.1.3 

5.1.5. Numerical Solution 
Equations (5.1.31)-(5.1.33) with boundary conditions (5.134) are solved numerically using a 

standard initial value solver, we have chosen the shooting method. For the purpose of this 

method, we applied the Nachtscheim-Swigert iteration technique. 

In a shooting method, the missing (unspecified) initial condition at the initial point of the 

interval is assumed and the differential equation is integrated numerically as an initial value 

problem to the terminal point. The accuracy of the assumed missing initial condition is then 

checked by comparing the calculated value of the dependent variable at the terminal point 

with its given value there. If a difference exists, another value of the missing initial condition 

must be assumed and the process is repeated. This process is continued until the agreement 

between the calculated and the given condition at the terminal point is, within the specified 

degree of accuracy, reached. For this type of iterative approach, one naturally inquires 

whether or not there is a systematic way of finding each succeeding (assumed) value of the 

missing initial condition. 

The boundary conditions (5.1.34) associated with the nonlinear ordinary differential 

equations (5.1 .31)-(5.1.33) of the boundary layer type is of the two-point asymptotic class. 

Two-point boundary conditions have values of the dependent variable specified at two 

different values of the independent variable. Specification of an asymptotic boundary 

condition implies the value of velocity approaches to unity and the value of temperature 

approaches to zero as the outer specified value of the independent variable is approached. 

The method of numerical integration of two-point asymptotic boundary value problem of the 
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boundary layer type, the initial value method, requires that the problem be recast as an initial 

value problem. Thus it is necessary to set up as many boundary conditions at the surface as 

there are at infinity. The governing differential equations are then integrated with these 

assumed surface boundary conditions. If the required outer boundary condition is satisfied, a 

solution has been achieved. However, this is not generally the case. Hence a method must be 

devised to logically estimate the new surface boundary conditions for the next trial 

integration. Asymptotic boundary v alue problems, s uch as t hose g overning t he boundary 

layer equations, become more complicated by the fact that the outer boundary condition is 

specified at infinity. In the trial integration infinity is numerically approximated by some 

large value of the independent variable. There is no general method of estimating this value. 

Selection of too small a maximum value for the independent variable may not allow the 

solution to asymptotically converge to the required accuracy. Selecting a large value may 

result in divergence of the trial integration or slow convergence. Selecting too large a value 

oL 
of the independent variable is expensive in terms of computer time. Nachtscheim-Swigert 

developed an iteration method, which overcomes these difficulties. Extension of the 

Nachtscheim-Swigert iteration to above system of differential equations (5.1.3 l)-(5. 1.33) is 

straightforward. In equation (5.1.34) there are three asymptotic boundary conditions and 

hence three unknown surface conditions f"(0) , O'(0). and '(0). 

5.1.5. Results and Discussion 

For the purpose of discussing the effects of various parameters on the flow behavior. Some 

numerical calculations have been carried out for different values of ft..  M. P,. Sf,. S,. D, and 

for fixed values of G,. and G111 . The value of Gr is taken to be large (Gr =10) throughout the 

calculations. For Prandtl number P,., three values 0.71, 1.0 and 7.0 are considered and three 

values 0.22, 0.60, and 0.75 of the Schmidt number S are also considered for those which 

represent specific conditions of the flow. In the ca1culationsj., M, So, D, and G,,, are chosen 

arbitrarily. In this case we consider large suction. 

The effects of various parameters on the velocity are shown in Figs. 5.1.2-5.1 .7. With the 

above mentioned parameters, it is observed from Fig. 5.1.2 that the suction parameter f, has 

a decreasing effect on the velocity with its increase. In Figs. 5.1 .3 and 5.1.4. the variations of 

the velocity field for different values of Soret number St1 and Dufour number D, are shown 

respectively. From these figures it is observed that the primary velocity increases with the 

increase of Soret number S0. The same effect is observed in the case of Dufour number D,. In 
..4. 

58 



Figs. 5.1.5, 5.1.6 and 5.1.7, the variations of the velocity field for different values of 

magnetic force number M, Prandtl number P,. and Schmidt number S are shown respectively. 

It is observed from these figures that the magnetic force number M has a decreasing effect on 

the velocity (Fig. 5.1.5). It is also seen from these figures that the velocity decreases with the 

increase of Prandtl number. The same effect is observed in the case of Schmidt number. The 

effects of various parameters on temperature field are shown in Figs. 5.1.8-5.1.11. It is 

observed from Fig. 5.1.8 that the temperature decreases as the suction parameter 1  increase. 

In Figs. 5.1 .9 and 5.1.10, the temperature profiles for different values of Soret number S and 

Dufour number D1  are shown respectively. It is observed from these figures that the Soret 

number S, has a minor decreasing effect while the Dufour number D1  has an increasing 

effect. In Figs. 5.1.11, the temperature field for different values of Prandil number 1',. is 

shown respectively. It is observed from this figure that the Prandtl number P has a large 

decreasing effect on temperature. 

The effects of various parameters on the concentration field are shown in Figs. 5.1 .12-5. 1. 16. 

It is observed from Fig. 5.1 .12 that the concentration decreases as the suction parameter 1, 

increase. 

In Figs. 5.1.13 and 5.1.14, the concentration profiles for different values of Soret number S, 

and Dufour number D, are shown respectively. It is observed from these figures that the 

concentration increases as the Soret number S1  increases while the concentration decreases as 

the Dufour number D, increases. In Figs. 5.1.15 and 5. I .16. the concentration profiles for 

different values of Prandtl number Pr and Schmidt number Se are shown respectively. It is 

observed from these figures that the concentration increases as the Prandil number I', 

increases while the concentration decreases as the Schmidt number S increases. 

Finally, the effects of various parameters on the skin friction r. the Nusselt number ,V1, and 

the Sherwood number S,, are shown in the Tables 5.1.1-5.1.3. From Table 5.1.1. we observe 

that the skin friction r decrease while the Nusselt number N and the Shenvood number S,, 

increases with increase of the suction parametertr. It is also seen from this table that the skin 

friction r and the Sherwood number S11  increase while the Nusselt number V1, decreases with 

the increase of Dufour number D1 . From Table 5.1.2, it is seen that the skin friction r . the 

Sherwood number S1, and the Nusselt number N1, decreases with increase of manetic force 

number M. Also, from Table 5.1.2, we observe that the skin friction r and the Nussclt 

number N1, increases with the increase of Soret number S0, but the Sherwood number S, 
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v(x) 

Bo 10 

'1 

decreases. From table 5.1.3, we see that the skin friction T decreases while the Sherwood 

number Sh and the Nusselt number N. increases with the increase of Prandtl number Pr. 

Further, from Table 5.1.3, we observe that the skin friction and the Nusselt number N.  

decrease with increase of Schmidt number S, but the Sherwood number Sh increases. 

Fig. 5.1.1. Physical model and coordinate system. 
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Fig.5.1.2. Velocity Profiles for different values of f,taking G 10.00 , Gm = 4.00 ,M = 

0.50, Pr= 0.71 , So=1.00,S = 0.60, Df= 0.20 as fixed. 
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Fig.5.1.3. Velocity Profiles for different values of S0 , taking G1  10.00 , G. = 4.00 

3 .00, P= 0.71 , S=0.60, Df = 0.20, M= 0 .50 as fixed. 
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Fig.5.1.4. Velocity Profiles for different values of Df,taking G1 10.0O , G1 = 4.00, 

f3 .00,Pr =0.71,So=1.00,Sc60,M050,as 
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Fig.5. 1.5. Velocity Profiles for different values of M,taking G1  =10.00, 

Grn 4.00,fw 3 .00,Pr  0.71, S0 1.00, S0.60,Dr0 .20 asfixed. 
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Fig.5.1.6. Velocity Profiles for different values of P,taking Gr 10.00 ,Grn  = 4.00, f 3 .00 

S= 0.60, So =1.00, Df = 0.20, M= 0 .50 as fixed. 
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* Fig.5.1.7. Velocity Profiles for different values of S,taking Gr =10.00, 

Gm 4.00,fw 3.00,Pr 0.71,So1.00,Df0.20,M0.50,asflxed. 
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Fig.5.1.8. Temperature Profiles for different values of f,taking Gr = 10.00, 

G1 4.00,M0.50,Pr 0.71,S01.00,ScO60J)f°.2° asfixed. 
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Fig.5.1.9 Temperature Profiles for different values of So ,taking Gr =10.00, 

Gm = 4.00, f v  = 3 .00 , Pr= 0.71 , S0.60 , D= 0.20, M = 0 .50 as fixed. 
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Fig.5.1.10. Temperature Profiles for different values of Df,taking Gr =10.00, 

Grn 4.00,fw 3.00,Pr 0.71,SO100,Sc0.60 ,M 0 SO,a5  
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Fig.5.1.11. Temperature Profiles for different values of Pr ,taking G1 10.00, 

G. 4.00, 3 .00, S= 0.60, S0 1.00 , Df= 0.20, M= 0 .50 as fixed 
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Fig.5.1.12. Concentration Profiles for different values of f,taking Gr = 10.00 

Grn  = 4.00, M0 .50,Pr = 0.71, S0 1.00, SO.60,DfO .20 as fixed. 
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Fig.5.1.13. Concentration Profiles for different values of So taking Gr =I0.00, 
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Fig.5.1.14. Concentration Profiles for different values of Dt-.taking Gr =10.00, 

Gm 4.00,fw 3 .00, Pr0.71 , S0 =1.00, S0.60,M0 .50, as fixed. 
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Fig 5.1.15. Concentration Profiles for different values of Pr .taking Gr =10.00, 
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Fig.5. 1.16. Concentration Profiles for different values of S,taking G1  10.00, 

Gm = 4.00, fw = 3 .00, Pr 0.71 , S0 1.00 , Df= 0.20, M= 0 .50,as fixed. 



Table: 5.1.1 Numerical values of Skin Friction, Nusselt Number and Sherwood Number 

proportional to f ' ,-and - qY respectively, for different values of f and Df ,taking Gr 

10.00,Gm = 4.00, M=0.5,S0 1.0, Pr 0.71,Sc0.60 as fixed. 

Df  

L3.00 0.20 2.4593537 2.21977383 1.384951 

[4.00 0.20 .9303722928 2.845368 1.359548 

00 0.20 -.63798719 3.49663641 1.393932 

3.00 0.50 2.87896333959 1.892243032 1.6117786 

[3.00 0.80 3.28386396 1.432133258 1.91051521 

Table: 5.1.2 Numerical values of Skin Friction, Nusselt Number and Sherwood Number 

proportional to 
f/I ,-0'and - çb' respectively, for different values of M and So ,taking Gr 

=10.00,Gm = 4.00, D1 0.20,fw 3.00, Pr 0.71,Sc0.60 as fixed. 

M So -0' 

0.5 1.00 2.4593537 2.21977383 1.384951 

1.00 1.00 2.11764846 2.2140913 1.3606401 

1.50 1.00 1.802440554 2.208901627 1.33807262 

0.5 2.00 2.93868726 2.409968647 0.144219291 

0.5 3.00 3.38549656 2.635870087 -0.135753897 

Table: 5.1.3 Numerical values of Skin Friction, Nusselt Number and Sherwood Number 

proportional to f' ,-9'and - 01  respectively, for different values of Pr and S ,taking Gr 

=10.00,G1  = 4.00, M=0.5,f= 3.0, S0=1.0,D0.20 as fixed. 

[Pr Sc V -0' 
4' 

0.71 0.60 2.4593537 2.21977383 1.384951 

LLO 0.60 1.798839883 3.146054229 7.8857607 

To 0.60 -0.20454209 137.323342503 79.76484544 

0.71 0.22 3.452743603 2.350056672 0.711242531 

0.71 0.75 2.306378539 2.176246469 1.652005523 
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- General Discussions 

Model studies on various aspects of the magnetohydrodynamic free convection and mass 

transfer flows have been made considering some physical viability of the flows. In natural 

processes or in engineering problems, the types of flows that arise are of similar nature to the 

model studies made here in. The well recognized mathematical approach, numerical method. has 

been adopted to analyze the equations being constructed separately. The model flows were 

considered into two parts, one comparatively simple one dimensional model flows, and the 

second one is a relatively difficult two-dimensional model flows. In the 1st case the problem was 

considered to be unsteady while in the 2nd ease the steady problem was taken into account. As 

for the unsteady one dimensional problem, similarity solutions have been obtained by 

introducing a similarity parametera(!), the functional value of which has been obtained during 

the process of analyses. This functional value was found to correspond exactly with the usual 

similarity length scale considered prior to the analyses adopted in unsteady problem. The 

advantage of taking this similarity parameter a(t) is that one can easily obtain the similarity 

equation of a governing equation as has been found in chapter 4. The results obtained of the 

problem have been discussed and analyzed in the respective chapters. Since no experimental 

results of the corresponding studies are available, comparison of our results could not he made 

with experimental results. However, in chapter 4 and chapter 5 qualitative agreement of our 

results with other results due to numerical solution is very good. 
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