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Abstract 

Mankind has been facing optimization problems throughout history and making the 

great efforts to solve them. Optimization problems, in simple terms, are to find the 

best or close to the best solutions to the problems. The task of optimization in solving 

engineering problems is also crucial and the biologically motivated computing 

techniques have waxed and waned over the period of time. Evolutionary approach is a 

common technique that uses natural phenomena like biological genes, population, 

mating etc., to solve optimization problems. In an evolutionary approach a population 

of solution is maintained and tries to improve the solutions for better performance as 

better fitted species survive. Among several different methods of evolutionary 

approach Genetic Algorithm (GA) is the most popular due to its simplicity. 

Genetic Algorithm is a stochastic search and optimization method imitating the 

metaphor of natural biological evolution. It works on the population of individuals 

instead of single solution. Although GA draws attention for functional optimization, it 

may search same point again due to its probabilistic operations that hinder its 

performance. Generally, GAs are time-consuming in computing due to the large 

number of fitness function evaluations required and the implementation of many 

operators and parameters, but sometimes they cannot produce the desired results. it is 

always challenging for GA for functional optimization to achieve optimal solution in 

acceptable time. 

In this thesis, we make a novel approach of standard Genetic Algorithm (sGA) that 

minimizes the shortcomings of sGA. The proposed method is called Precise Genetic 

Algorithm (PGA). The primary motivation for the proposed PGA is to ensure the 

successive convergence in optimization problems to reach optimal solution with a 

minimal time. PGA searches the target space efficiently and it shows several potential 

advantages over the conventional GA for solving both single and multivariable 

functional problems. We have shown that the proposed method reveals the good 

performance in the context of the quality and the time needed to reach the optimal 

solutions compared to sGA. 



.3- 

.y.  

Contents 

PAGE 
Title Page 

Declaration  
Approval  
Acknowledgement iv 
Abstract v 
Contents vi 
List of Tables x 
List of Figures xi 
Nomenclature xii 

CHAPTER 1 Introduction 1 

1.1 Preliminary 

1.2 Aspects of Optimization Problems 2 

1.3 Brief History of Evolutionary Computation 3 

1.4 Introduction to Evolutionary and Genetic algorithms 4 

1.4.1 Evolutionary Algorithms 5 

1.4.2 Why Evolutionary Algorithms? 5 

1.4.3 Problem Solving Using Evolutionary Algorithms 5 

1.4.4 Classification of Evolutionary Algorithms 7 

1.4.5 Genetic Algorithms 7 

1.5 The Problems and Prospects of GA for Functional 8 
Optimization 

1.6 Aims of the Research 9 

1.7 Organization of the Thesis 11 

CHAPTER 2 Literature Review 12 

2.1 Preface 12 

2.2 Application of GA in Neural Network 14 

2.2.1 Semi-supervised Clustering Using GA 15 

2.2.2 Using Genetic Algorithms for Supervised Concept 15 
Learning 

2.2.3 An Evolutionary Algorithm that Constructs 16 
Recurrent Neural Networks 

2.2.4 Evolving Controllers for Autonomous Agents 17 
Using Genetically Programmed Networks 

2.2.5 Feature Selection for ANN using GA in Condition 17 
Monitoring 

VI 



2.2.6 Application of ANNs in GAs: Odour Identification 18 
Using Sensor Array. 

2.2.7 Evolution of Artificial Neural Networks Using a 19 
Two-dimensional Representation. 

2.3 GAs for VLSI Design, Layout, and Test Automation 19 
2.3.1 Parallel GA for Simulation-Based Sequential 20 

Circuit Test Generation 
2.3.2 Multi-Objective Design Space Exploration Using 20 

Genetic Algorithms 
2.3.3 A Genetic Algorithm for Mixed Macro and 21 

Standard Cell Placement 
2.3.4 Structure Cell-based VLSI Circuit Design Using 21 

a Genetic Algorithm 
2.4 Application of GA in Image Processing and Pattern 22 

Recognition 
2.4.1 Improving a Rule Induction System Using Genetic 24 

Algorithms 
2.4.2 Genetic Programming for Image Analysis 25 

2.4.3 Dimensionality Reduction Using Genetic 25 
Algorithms 

2.4.4 Using GAs to Explore Pattern Recognition in the 26 
Immune System 

2.4.5 Hybrid Learning Using GAs and Decision Trees 27 
for Pattern Classification 

2.4.6 Bengali Character Recognition Using GA 28 

2.5 Applications of GA in Function Optimization 28 

CHAPTER 3 Aspects of GA as an Evolutionary Approach 31 

3.1 Preliminary 31 

3.2 Biological Background 31 

3.3 Aspect of Genetic Algorithm 32 

3.3.1 What are Genetic Algorithms? 32 

3.3.2 History of Genetic Algorithm 33 

3.4 Genetic Algorithm Terminology 34 

3.5 The major Advantages of Genetic Algorithm 36 

3.6 Areas of Application 36 
3.7 Genetic Algorithms vs Other Optimization Methods 37 

3.7.1 Hill Climbing 37 

3.7.2 Simulated Annealing 37 

3.7.3 Tabu Search 38 

3.7.4 Neural Networks 38 

3.8 Necessary Steps for the Application of GAs to an 38 
Optimization Problem 

VI I 



3.9 The Simple GA for Function Optimization 40 

3.10 Genetic Operators 41 

3.11 Selection 41 

3.11.1 Roulette Wheel Selection 42 

3.11.2 Stochastic Universal Sampling / Selection 42 

3.11.3 Tournament Selection 43 

3.11.4 Rank Selection 44 

3.11.5 Steady-State Selection 45 

3.12 Crossover (Binaiy Valued Rccombination) 45 

3.12.1 Single-Point Crossover 46 

3.12.2 Multi-Point Crossover 46 

3.12.3 Uniform Crossover 47 

3.12.4 Shuftie Crossover 48 

3.12.5 Arithmetic Crossover 49 

3.13 Mutation 49 

3.14 Parameters Selection 49 

3.15 Genetic Algorithm Complexities in Research 50 

3.16 Techniques for Solving Mathematical Problem 51 

3.17 Differences and Signilicances of GA from other 51 
Methods 

3.18 Why Genetic Algorithm For Function Optimization? 52 

3.19 Computer Accomplishment of GA 54 

3.20 Data Structures 54 

3.21 Search Space 55 

3.22 Searching for a Maximum of a Function with GA 56 

3.23 Coding in Computer Accomplishment 56 

3.24 The Whole Procedure of Genetic Algorithm in 57 
Accomplishment 

3.24.1 Selection Procedure 58 

3.24.2 Crossover Procedure 58 

3.24.3. Mutation Procedure 59 

3.25 Mathematical Background 59 

'-4 • I 

CHAPTER 4 Proposed PGA: An improved Evolutionary Approach 62 

4.1 Introduction 62 
4.2 Standard Genetic Algorithm (sGA) 63 
4.3 Problems Regarding sGA for Functional Optimization 64 

vfll 



4.4 Significance of the Propose Approach 64 
4.5 Aims of the Proposed Approach 65 
4.6 The Proposed Method PGA to Solve Optimization 65 

Problems 

4.7 Aspects of PGA 66 

4.7.1 Chromosomal Representation in PGA 68 

4.7.2 Search Points Generation 69 

4.7.3 Precise Crossover 69 

4.7.4 Precise Mutation 70 

4.7.5 Precise Selection 70 

4.7.6 Fitness Function 71 

4.7.7 Evaluation function and Fitness 72 

4.8 Experimental Analysis 72 

4.8.1 Problems Encoding 73 

4.8.2 Initial Population 74 

4.8.3 Evaluation Function 75 

4.8.4 Genetic operators 78 

4.8.5 Simulation 80 

4.9 Results Analysis and Perfonuance Comparison 86 
between PGA and sGA 

4.10 Discussion 91 

CHAPTER 5 Conc'usions and Recommendations 93 
5.1 Conclusions 93 

5.2 Limitations and Future Studies 94 

REFERENCES 96 

PUBLICATIONS RESULTING FROM THE THESIS 109 

Ix 



List of Tables 

Table No Caption of the Table Page 

2.1 Applications of Image Processing 23 

3.1 Relation between Tournament Size and Selection Intensity 43 

3.2 Simple Example of Coding 56 

3.3 Selection Example 58 

3.4 Crossover Example 58 

3.5 Mutation Example 59 

4.1 Results of 150 Generations [Double Variable] 84 

4.2 Results of 150 Generations [Double Variable] 85 

4,3 Test Functions with Range 86 

4.4 Sample Result of PGA for Functionf3  87 

4.5 Comparison between PGA and sGA 87 

x 



List of Figures 

Figure No Caption of the Figure Page 

1.1 Problem Solution Using Evolutionary Algorithms 6 

1.2 The Family of Evolutionaiy Algorithms 7 

3.1 Genetic Algorithm Application 39 

3.2 The Simple Genetic Algorithm 40 

3.3 Roulette Wheel Selection 42 

3.4 Stochastic Universal Sampling 43 

3.5 Properties of Tournament Selection 44 

3.6 Situation before Ranking (Graph of Fitness) 45 

3.7 Situation after Ranking (Graph of order Numbers) 45 

3.8 Single-point Crossover 46 

3.9 Multi-point Crossover 47 

3.10 Uniform Crossover 48 

3.11 Arithmetic Crossover 49 

3.12 Mutation (Bit inversion) - Selected Bits are Inverted. 49 

3.13 Plotofy1  53 

3.14 Minimization of y1 53 

3.15 Minimization for Different Case of y 53 

3.16 Schematic of a String Population in a Genetic Algorithm 54 

3.117 Example of a Search Space 55 

3.18 A Single Iteration Step of the Implemented GA 57 

4.1 Structure of a Genetic algorithm 63 

4.2 PGA Scheme 67 

4.3 Fitness Curve and Convergence Comparison off, 88 

4.4 Fitness Curve and Convergence Comparison off2  88 

4.5 Fitness Curve and Convergence Comparison off3  89 

4.6 Fitness Curve and Convergence Comparison off4  89 

4.7 Fitness Curve and Convergence Comparison off5  90 

4.8 Fitness Curve and Convergence Comparison off6  90 

4.9 Fitness Curve and Convergence Comparison of f7  91 

xi 



Nomenclature 

GA Genetic Algorithm 

sGA Standard Genetic Algorithm 

PGA Precise Genetic Algorithm 

EA Evolutionary Algorithm 

GGGP Grammar Guided Genetic Programming 

CSP Constraints Satisfaction Problem 

ANN Artificial Neural Network 

VLSI Very Large Scale Integration 

TSP Traveling Salesman Problem 

EDAC Evolutionary Divine and Conquer 

SoC System on a Chip 

xl' 



CHAPTER 1 

INTRODUCTION 

1.1 Preliminary 

Mankind has been faced optimization problems throughout human being history and 

making a great effort to solve them. Optimization problems, in simple terms, are to 

find the best or close to the best solutions to the problems. The task of optimization in 

solving engineering problems is also a crucial subject. The evolutionary algorithm has 

become the most promising focus for the scientists and engineers especially in the 

area of simulation models, multi-objective and combinatorial optimization, 

mathematical problems, image processing, engineering design and control problems, 

fitting nonlinear curves to data, setting weights on neural networks and so on [1-5]. 

Generally, evolutionary approaches [e.g. Evolutionary programming, Evolution 

strategy, Neuroevolution, Genetic Algorithm (GA), Genetic programming etc.] are 

inspired by biological evolution such as reproduction, mutation, recombination, 

natural selection and survival of the fittest. GA is a well known method among these 

mechanisms and draws attention for solving functional optimization problems [2, 5-
10]. 

Genetic algorithms were developed by John Holland at the University of Michigan in 

the early 1970's. Genetic algorithms are theoretically and empirically proven to 

provide robust search in complex spaces [2]. The genetic algorithm [4] is an 

intelligent search and optimization technique, which works based on evolutionary 

principle of natural chromosomes. Specifically, the evolution of chromosomes due to 

the action of crossover and mutation and natural selection of chromosomes based on 

Darwin's survival-of-the-fittest principles are all artificially simulated to constitute a 

robust search and optimization procedure. Genetic algorithms have been fairly 

successful at solving problems of multi-objective and combinatorial optimization or 

other optimization problems. But the same problems that are too ill-behaved for more 

conventional hill-climbing, derivative and iterative based techniques. Genetic 

algorithms (GAs), with many valuable advantages, are now widely used in various 

fields, especially in solving optimization problems. 

The biologically motivated computing activities have waxed and waned over the 

period of time. Typically, optimization is a compound perceptual task that can be 

solved by a metaheuristics mimicking biologically motivated technique. In this study, 

it is given the attention with the review of standard Genetic Algorithm (sGA) and the 



following type optimization problems: Maximize f(x1,x2, ... x,) where each xis a 

real parameter subject to a1  :~ x1  :~ h1  for some constants a1  and b,. This research work 

analyses the problems regarding GA for function optimization and proposes a new 

technique called Precise Genetic Algorithm (PGA) to solve both single and 

multivariable functional optimization problems. The PGA is a simple, reliable, 

efficient and effective technique to achieve optimal solution faster than sGA. The 

novelty in proposed approach is a new precise technique to attain better convergence, 

accuracy and performance. 

1.2 Aspects of Optimization Problems 

Generally optimization is a process of finding best solution or close to the best 

solution to a problem. Loosely speaking, optimization is the process of finding the 

best way to use available resources, while at the same time not violating any of the 

constraints that are imposed. More accurately, we may say that we wish to define a 

system mathematically, identify its variables and the conditions they must satisfy, 

define properties of the system, and then seek the state of the system (values of the 

variables) that gives the most desirable (largest or smallest) properties. This general 

process is referred to as optimization. 

The technique in solving optimization problems have become a very popular research 

topic in the last few years. Optimization problems, in simple terms, are to find the best 

or close to the best solutions to the problems [5-7, 10, 11]. The term optimization 

mathematically refers to the study of problems that have the form: 

Given : a function f: A -4 R from some set A to the real numbers. 

Sought: an element x0  in A such that f(x0 ) ~! f(x) for all x in A ("maximization") or 

such that f(x0 ) :!~ f(x) for all x in A ("minimization"). Such a formulation is called a 

mathematical program. A great many real-world and theoretical problems may be 

modeled in this general framework. Typically, A is some subset of Euclidean space 

R", often specified by a set of constraints, equalities or inequalities that the members 

of A have to satisfy. The elements of A are called the feasible solutions and the 

function f is called the objective function. A feasible solution that maximizes (or 

minimizes, if that is the goal) the objective function is called an optimal solution. In 

general there will be several local maxima and minima, where a local minimum x is 

defined as a point such that for some ô > 0 and all x such that I Ix - x c the 

formulaf(x,) ?f(x*)  holds; that is to say on some ball around x' all of the function 

values are greater than the value at that point. Local maxima are defined similarly. In 

2 



general, it is easy to find local minima, however additional facts about the problem 

(e.g. the function being convex) are required to ensure that the solution found is a 

global minimum. 

Function optimization problem exists both in single and high dimensional search 

space. The function having more than one independent variable is called multivariable 

function which is reasonably a complex study than that of a single variable function. 

Generally speaking, one can formulate any optimization problem into a single 

standard of measurement a cost function or a fitness function that determines the 

performance of a decision and then recursively improves the performance by selecting 

from the most feasible of alternatives. Traditional deterministic optimization 

techniques require the use of gradient or higher order statistical analysis of the cost 

function. These methods find optimal solutions. Unfortunately, the solutions are 

usually locally optimal and insufficient for applied engineering problems. 

In this work, the following type optimization problems: Maximize f(x1,x2. ... .„,) 
where each x1  is a real parameter subject to a, !~ x, :~: k for some constants a and b, 

have widespread application. Applications include optimizing simulation models, 

fitting nonlinear curves to data, solving systems of nonlinear equations, engineering 

design and control problems, and setting weights on neural networks. 

1.3 Brief History of Evolutionary Computation 

Biologically motivated computing activities have been growing over the years but 

since the early 1980s   they have all undergone resurgence in the computation research 

community. The first grown into the field of neural networks, the second into machine 

learning and the third into what is now called "evolutionary computation,” of which 

genetic algorithms are the most prominent example. 

In the 1950s and the 1960s several computer scientists independently studied 

evolutionary systems with the idea that evolution could be used as an optimization 

tool for engineering problems. The idea in all these systems was evolve a population 

of candidate solutions to a given problem, using operators inspired by natural genetic 

variation and natural selection. Evolutionary computation includes several major 

branches, i.e., evolutionary strategies, evolutionary programming, genetic algorithms 

(GAs), and genetic programming. At the algorithmic level, they differ mainly in their 

representations of potential solutions and their operators used to modify the solutions. 



Evolution strategies were first proposed by Rechenberg [12]) and Schwefel [13]) as a 

numerical optimization technique. The original evolution strategy did not use 

populations. A population was introduced into evolution strategies later Schwefel [14, 

15]. 

In the 1960s, Rechenberg introduced "evolution strategies" a method he used to 

optimize real-valued parameters for devices such as airfoils. This idea was further 

developed by Schwefel. The field of evolution strategies has remained an active area 

of research, mostly developing independently from the field of genetic algorithms. 

Fogel, Owens and Walsh developed "evolutionary programming", a technique in 

which candidate solutions to given tasks were represented as finite-state machines, 

which were evolved by randomly mutating their state-transition diagrams and 

selecting the fittest. A somewhat broader formulation of evolutionary programming 

also remains an area of active research. Together evolution strategies, evolutionary 

programming and genetic algorithms form the backbone of the field of evolutionary 

computation. 

Evolutionary programming was first proposed by Fogel et al. in the mid 1960's as one 

way to solve artificial intelligence problems (Fogel et al., 1966a, b) [16, 17]. Since the 

late 1980's evolutionary programming has also been applied to various combinatorial 

and numerical optimization problems. The current framework of GAs was first 

proposed by Holland in 1975 [4] and his student Jong [18] in 1975, and was finally 

popularized by another of his students, Goldberg in 1989 [2]. It is worth noting that 

some of the ideas of genetic algorithms appeared as early as 1957 in the context of 

simulating genetic systems (Fraser, 1957) [19]. Genetic algorithms were first proposed 

as adaptive search algorithms, although they have mostly been used as a global 

optimization algorithm for combinatorial and numerical problems. A special branch of 

genetic algorithms is genetic programming. The term genetic programming was first 

used by Koza in 1989, 1990 [20, 21]. 

All evolutionary algorithms have two prominent features which distinguish themselves 

from other search algorithms. First, they are all population based. Second, there is 

information exchange among individuals in a population. Such information exchange 

is the result of selection and recombination in evolutionary algorithms. 

1.4 Introduction to Evolutionary and Genetic algorithms 

Darwinian evolution is an intrinsically robust search and optimization procedure. 

Evolved biota has optimized solutions to complex problems at every level of 

ru 



organization. A GA falls into the much broader category of evolutionary algorithms. 

This algorithm attempts to simulate the processes of evolved biota in optimization. 

The essence of such a simulation lies in the expression of a solution to a problem not 

as a single value but as a string of fundamental building blocks (genes) that can be 

manipulated in much the same way as an extant species will manipulate its gene pool 

through selection and mating to produce more optimal offspring for the current 

environment. 

1.4.1 Evolutionary Algorithms 

Evolutionary algorithms are stochastic search methods that mimic the metaphor of 

natural biological evolution. Evolutionary Algorithms (EAs) have become a popular 
10, 

choice as the intelligent optimization techniques for many applications and they are an 

interesting candidate for function optimization due to their use of population, which 

allows multiple solutions to be searched simultaneously. 

1.4.2 Why Evolutionary Algorithms? 

Evolutionary algorithms seem particularly suitable to solve multi-objective and 

combinatorial optimization problems, because they deal simultaneously with a set of 

possible solutions (the so-called population). This allows us to find several members 

of the Pareto optimal set in a single run of the algorithm, instead of having to perform 

a series of separate runs as in the case of the traditional mathematical programming 

techniques. Additionally, evolutionary algorithms are less susceptible to the shape or 

continuity of the Pareto front (e.g., they can easily deal with discontinuous or concave 

Pareto fronts), whereas these two issues are a real concern for mathematical 

programming techniques. 

1.4.3 Problem Solving Using Evolutionary Algorithms 

The objectives of creating artificial intelligence and artificial life can be traced back to 

the very beginnings of the computer age. The earliest computer scientists —Alan 

Turing, John von Neumann, Norbert Wiener and others-were motivated in large part 

by visions of imbuing computer programs with intelligence, with the life like ability 

of self-replicate and with the adaptive capability to learn and to control their 

environments. These early pioneers of computer science were as much interested in 

biology and psychology as in electronics, and they looked to natural systems as 

guiding metaphors for how to achieve their visions. It should be no surprise, then, that 
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from the earliest days computers were applied not only to calculating missile 

trajectories and deciphering military codes but also to modeling the brain, mimicking 

human learning and simulating biological evolution. During the last thirty years there 

has been a growing interest in problem solving systems based on principles of 

evolution and hereditary: such system maintain a population of potential solutions, 

they have some "genetic" operators. One type of such systems is a class of Evolution 

Strategies i.e., algorithms which initiate the principles of natural evolution for 

parameter optimization problems. Figure 1.1 shows the problem solution using 

evolutionary algorithms. 

I coding of soluUons 

Problem Soluon 
objecfivncon 

  

genetic operators 

I

5archarCh 

specc ow1edge 

iA \ 

fitness K assiment 

/ - - ----- - 
selection 

mutation genetic 
search 

I- 
- replikation 

- - 

recombination / crossover 

Figure 1.1: Problem Solution using Evolutionary Algorithms. 

Procedure of evolution program is given bellow: 
begin 

t — O 

initialize P(t) 

evaluate P(t) 

while (not termination-condition) do 

begin 

t <— t + I 

select P(t) from P(t - 1) 

alter P(t) 

evaluate P(t) 

end 

end 

1 
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1.4.4 Classification of Evolutionary Algorithms 

The family of evolutionary algorithms encompasses five members such as Genetic 

Programming [includes Grammar Guided Genetic Programming (GGGP), Sequential ID  

Genetic Programming (SGP), Linier Genetic Programming], Genetic Algorithm, 

Evolutionary Computing, Learning Classifier Systems, Evolutionary Strategy 

[includes Differential Evolution] as illustrated in Figure 1.2 

Genetic Programming 

SGP 

LGP 

Evolutionary 
Genetic Programming 

Algorithms 

Evolution Strategy 

Learning i)i ITerential 
Classifier Systems Evolution 

Evolutionary 
Algorithms 

Figure 1.2: The Family of Evolutionary Algorithms 

1.4.5 Genetic Algorithms 

Genetic algorithms operate on a population of potential solutions applying the 

principle of survival of the fittest to produce better and better approximations to a 

solution. At each generation, a new set of approximations is created by the process of 

selecting individuals according to their level of fitness in the problem domain and 

breeding them together using operators borrowed from natural genetics [5]. This 

process leads to the evolution of populations of individuals that are better suited to 

their environment than the individuals that they were created from, just as in natural 

adaptation. 

7 
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From the above discussion, it can be seen that evolutionary algorithms differ 

substantially from more traditional search and optimization methods. The most 

significant differences are: 

• Evolutionary algorithms search a population of points in parallel, not a single 

point. 

• Evolutionary algorithms do not require derivative information or other 

auxiliary knowledge; only the objective function and corresponding fitness 

levels influence the directions of search. 

• Evolutionary algorithms use probabilistic transition rules, not deterministic 

ones. 

• Evolutionary algorithms are generally more straightforward to apply. 

• Evolutionary algorithms can provide a number of potential solutions to a given 

problem. The final choice is left to the user. 

1.5 The Problems and Prospects of GA for Functional Optimization 

The Genetic Algorithm becomes the most promising fields for the scientists and 

engineers nowadays. Its evolutionary principles and effectiveness to solve problems 

make it versatile. The pioneer of GA is Holland, and his original goal was not to 

design algorithms to solve specific problems, but rather to formally study the 

phenomenon of adaptation as it nature and to develop ways in which the mechanisms 

of natural adaptation might be imported into computer systems. At present, Holland's 

dream becomes true and its application is almost everywhere. More and more critical 

solution produced by using GA. The crux of GA is to find solutions and optimize the 

search space. Its outstanding performances in Function Optimization, ANN, Pattern 

Recognition, Network Design and Analysis, lmage Processing, VLSI Design etc. are 

astonishing. The next sub section describes the problems and prospects regarding 

genetic algorithm for function optimization. 

In literatures, it is so far known that the GA performance varies depend on the nature 

or type of problem domain. There are a number of different improvements techniques 

have been presented in respective problem area to some extent. Traditional 

optimization theories on function optimization depend on heavy programming, 

statistical and mathematical knowledge. In literatures, it is found that the most 

challenging problems of traditional genetic algorithms for functional optimization are 

how to achieve optimal solution in acceptable time and the rate of convergence. The 

rate of convergence of an optimizer and the overall computation time are critical 

factors in the optimization problems. The rate of convergence of a genetic algorithm 



depends on the quality of the genetic operators involved. At the same time GAs' 

disadvantages have been appeared: 1) The calculating time is sometimes too long; 2) 

After a long time waiting for the calculations GAs cannot assure that the solution is 

optimal. However some other disadvantages of GAs have been notified from the 

existing works such as premature convergence and calculation inefficiency due to 

duplication. GA manages population of solutions instead of a single solution to find 

an optimal solution to a given problem. Although GA draws attention for functional 

optimization, it may search same point again due to its probabilistic operations that 

hinder its performance. In this study, we make a novel approach of standard Genetic 

Algorithm (sGA) to achieve better performance. The modification of sGA is 

investigated in selection and recombination stages and proposed Precise Genetic 

Algorithm (PGA). The primary motivation for the proposed PGA is to ensure the 

successive convergence in optimization problems to reach optimal solution with a 

minimal time. PGA searches the target space efficiently and it shows several potential 

advantages over the conventional GA for solving both single and multivariable 

functional problems. 

1.6 Aims of the Thesis 

Evolutionary approach, particularly genetic algorithms, mimic the natural selection 

process to solve the problem of global maximization, just in the same way as nature 

proceeds to adapt species to the environment, generation by generation. From a 

mathematical perspective, many real world problems are reduced to functional 

optimization tasks, maximizing a benefit or minimizing some kind of risk. In more 

formal terms, it is wanted to find some value (XO) in the domain (D) of certain 

objective function that verifies 

x0  = arg max f(x) 

xeD 

If it is known how to maximize a function, then it is also known how to minimize it, 

since 

min {f('x)}= -max(-f(x)} 

therefore in the sequel the concepts of optimization and that of maximization shall be 

identified. 

Maximizing a function can be a difficult task, for example when: 

• The domain D of the function has a great dimensionality. 

• When D can't be reduced to a numerical or vectorial set, for example if its 

elements consist of complex structures. 
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• When the function I can't be expressed analytically and its evaluation requires 

some simulation process. 

• When f has many relative maxima, where classical optimization algorithms 

can stop incorrectly. 

For the global maximum then some search methods are needed, which imposes as few 

as possible restrictions to the objective function f However GA is able to find the 

maximum of a function. But the aim of this work is to bring out a more effective 

method to determine the maximum (maximum or minimum) of a function accurately. 

Moreover, the objective of this research work is the analyses of the literature review 

of sGA and proposed a new technique called Precise Genetic Algorithm (PGA) to 

multivariable functional optimization problems. The target is to attain better 

convergence, accuracy and performance improvement. Then the constructed 

algorithm is tested on a set of test functions. To sum up, this dissertation tries to show 

that how and why precise genetic algorithm is more efficient for function optimization 

in both single and high dimensional search space. 

This study mainly carried out with the following summarized objectives: 

• To find the problems regarding GA for function optimization and make 

improvement. 

• To have an objective to make a novel approach of standard Genetic 

Algorithm (sGA) to achieve better performance. 

• To show that the proposed PGA able to reply optimal solution within a 

less number of generation(s) than that of sGA. 

• To observe that the PGA helps to solve optimization problems without 

depending on some profound mathematical and statistical optimization 

theories. 

• To implement PGA on a set of test functions and compare it with sGA 

• To show that PGA converges rapidly in comparison with standard GAs 
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1.7 Organization of the Thesis 

- • Chapter Two mainly presents literature review of GA for function 

optimization. This chapter also introduces the review of GA in other 

remarkable fields. 

• Chapter Three provides an introduction to genetic algorithms (GAs): what 

they are, where they came from, aspects of GA, how they compare to and 

differ from other search procedures, and the essential steps for GA application 

to an optimization problem. This chapter also provides literature review of GA 

for function optimization. it is also introduces the basic types of optimization 

methods, differences and significances of GA from other methods. Biological 

background, GA terminology is introduced; GA operators and various 

selection mechanisms, parameter of GA, complexities in research with GA 

and Why GA for function optimization are also discussed. This chapter also 

presents the different major points about computer implementation of GA. 

• Chapter Four firstly provides briefly explanation of GA and its problems 

regarding functional optimization and then describes the aspects of proposed 

Precise Genetic Algorithm (PGA) as an evolutionary approach to solve several 

functional optimization problems both in single and high dimensional search 

space. This chapter also describes the necessary steps for constructing 

- proposed Precise Genetic Algorithm (PGA) to optimize a set of test functions. 

The performance comparison between PGA and sGA are also presented. All 

experimental results are presented with significant performance 

improvements. 

• Chapter Five is the conclusion chapter. Here a brief discussion about the 

thesis is presented as well as directions on possible future works are also given 

here. 
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CHAPTER 2 

Literature Review 

This chapter prO\'idCs literature review of GA as an evolutionary approach for 

functional optimization. This chapter also introduces the review of GA in other 

remarkable fields. 

2.1 Preface 

The version of Genetic Algorithm described in the previous chapters is very simple, 

but variations on the basic theme have been used in a large number of scientific and 

engineering problems and models. Some examples as follows: 

Optimization: Genetic Algorithms have been in a wide variety of optimization tasks, 

including combinatorial optimization tasks, nunierical optimization such as function 

optimization, parameter optimization, circuit layout and job-scheduling etc. 

Automatic programming: GAs have been used to evolve computer programs for 

specific tasks, and to design other computational structures such as cellular automata 

and sorting networks. 

Machine learning: GAs have been used for many machine learning application, 

including classification and prediction tasks, such as the prediction of weather or 

protein structure. GAs have also been used to evolve aspects of particular machine 

learning systems, such as weights for neural networks, rules for learning classifier 

systems or symbolic production, and sensors for robots [2]. 

State Assignment Problem: This State Assignment Problem (SAP) belongs to a 

broader class of combinatorial optimization problems, including the Traveling 

Salesman Problem (TSP). The aim is to find the best state assignment for 

implementing a synchronous sequential circuit, which is crucial for reducing silicon 

area or chip count in many digital designs. in TSP, it is to find the optimal routine for 

visiting all cities. The mutation operator allows a highly parallel local search, while 

crossover allows members of the population to share information. Thus in TSP, the 

genetic search (hopefully) benefits from the good sub-tours from different members. 
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1-Jowever, this approach with permutation crossovers suffers in two aspects: 

the algorithm scales poorly as the number of cities increases - time complexity 

the solution quality degrades rapidly 

To overcome these problems, a new approach, called Evolutionary Divide and 

Conquer (EDAC) uses Genetic Algorithm to explore the space of problem 

subdivisions in the range 500 - 5000 cities rather than the space of solutions 

themselves. The sub-tours are then patched together to form a global tour. More 

sophisticated algorithms, such as iterated Lin-Kemnighan are developed for solving 

large Traveling Salesman Problems. 

Economics: Genetic Algorithm is applied in game theory to find equilibrium points in 

non-zero sum and non-cooperative situations, and in the game of iterated prisoner's 
> 

dilemma to explore the possibility of evolving cooperative behavior. Game theory is 

the study of multi-person decision problems. in economics, it is relevant to oligopoly 

because each rival player has to consider what the others will do. All players are 

rational and choose their strategy in order to maximize their reward. In order for 

Genetic Algorithm to identify multiple equilibrium points, sharing is implemented: - 

to reduce the fitness of a member by a factor in relation to the number of other 

members in its proximity. This results in a promotional increase in the fitness of 

strings in areas of lower member clustering. In prisoner's dilemma, players tend to 

defect to improve their own payoff rather than cooperate. The tit-for-tat strategy 

proves to be the best. For cooperation to evolve in the long run, it is important for the 

same players to meet repeatedly and to learn to cooperate. 

Scheduling: Genetic Algorithm is used for inspection and repair of oil tanks and 

pipelines. The implementation is built on Peter Ross' PGA test bed and the data is 

taken from the Expert Systems for the Inspection of Tanks and Pipelines SITA and 

SIGO. The fitness function evaluates the constraints: level of production, condition 

and location of installations, type of products, human resources, the dates and costs of 

inspection and repairs. A good inspection schedule for oil installations is constructed. 

A good schedule ensures that repair times are kept to a minimum and faults are found 

before they become too serious. An automatic way of assigning maintenance activities 

to inspectors is devised in such a way as to minimize the loss in capacity, while 

keeping within resource constraints. 

The schedule is evaluated taking into account the following priorities: 

1. A tank, which requires urgent maintenance, is checked early in the schedule 

(very good). 
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A tank or pipeline requiring a periodic maintenance or inspection is included 

in the schedule (good), given higher priority to the first case. 

Because of several tanks in one location being out of service simultaneously, 

the capacity of that location for a certain time drops significantly (very bad). 

Some inspectors have more work to do than the others in the same area (bad). 

The application distributes the repairs such that the available capacity is always larger 

than the required minimum, then the production is not affected. Moreover, the 

assignment of activities is appropriate; it reduces the cost of unbalanced distribution. 

A robust schedule of activities is obtained. 

Computer-Aided Design: Genetic Algorithm uses the feedback from the evaluation 

process to select the fitter designs, generating new designs through the recombination 

of parts of the selected designs. Eventually, a population of high performance designs 

is resulted. 

Ecology: GAs have been used to model ecological phenomena such as biological 

arms races, host-parasite co-evolution, symbiosis, and resources flow. 

Evolution and learning: GAs have been used to study how individual learning and 

species evolution affect one another. 

2.2 Application of GA in Neural Network 

Building intelligent system that can model human behavior has captured the attention 

of the world for years. For this reason Neural Networks has generated great interest. 

Neural Networks are biologically motivated and statistically based. They represent 

entirely different models from those related to physical symbol system. The most 

dramatic difference is in the way neural network store and recall information, instead 

of information being localized, the information is distributed through a network. 

When a neural network model is implemented on a standard computer, it is known as 

Simulated or Artificial Neural Network (ANN). ANN can be divided into two classes; 

those that involve learning and those that do not. The neural networks that involve 

learning and adoption are sometimes called recurrent networks. Artificial Neural 

Network is a system loosely modeled on the human brain. The field goes by many 

names, such as connectionism; parallel distributed processing, neuro-computing, 

natural intelligent systems, machine learning algorithms, and artificial neural 
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networks. It is an attenipt to simulate within specialized hardware or sophisticated 

software, the multiple layers of simple processing elements called neurons. Each 

neuron is linked to certain of its neighbors with varying coefficients of connectivity 

that represent the strengths of these connections. Learning is accomplished by 

adjusting these strengths to cause the overall network to output appropriate results. 

A neural network model is made up of the constructs defined in the following 

paragraphs. The neural network connections are significantly fewer and than the 

connection of human brain. Genetic Algorithms have been increasingly applied in 

artificial Neural Networks design in several ways: topology optimization, genetic 

training algorithms and control parameter optimization: 

- In topology optimization, Genetic Algorithm is used to select a topology (number 

of hidden layers, number of hidden nodes, interconnection pattern) for the artificial 

Neural Network which in turn is trained using some training scheme, most commonly 

back propagation. 

- In genetic training algorithms, the learning of a artificial Neural Network is 

formulated as a weights optimization problem, usually using the inverse mean squared 

error as a fitness measure. Many of the control parameters such as learning rate, 

momentum rate, tolerance level, etc., can also be optimized using Genetic Algorithms. 

2.2.1 Semi-supervised Clustering Using Genetic Algorithms 

In the year 1999, Ayhan Demiriz [22] worked on ANN by using Genetic Algorithm 

on the above heading. They proposed a semi-supervised clustering algorithm that 

combines the benefits of Supervised and unsupervised learning methods. The 

approach allows unlabeled data with no known class to be used to improve 

classification accuracy. The objective of an unsupervised technique, e.g. K-means 

clustering, is modified to minimize both the cluster dispersion of the input attributes 

and a measure of cluster impurity based on the class labels. A genetic algorithm 

optimizes the objective function to produce clusters. 

2.2.2 Using Genetic Algorithms for Supervised Concept Learning 

In the year 2000, \Villiam M. Spears et al. [23] applied GA in supervised learning. 

Genetic Algorithms (GAs) have traditionally been used for non-symbolic learning 

tasks. In this dissertation, they consider the application of GA to a symbolic learning 
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task, supervised concept learning from examples. A GA concept learner (GABL) is 

implemented that learns a concept from a set of positive and negative examples. 

GABL is run in a batch-incremental mode to facilitate comparison with an 

incremental concept learner. Supervised concept learning involves inducing concept 

descriptions from a set of examples of a target concept (i.e., the concept to be 

learned). Concepts are represented as subsets of points in an n-dimensional feature 

space which is defined a priori and for which all the legal values of the features are 

known. A concept learning program is presented with both a description of the feature 

space and a set of correctly classified examples of the concepts, and is expected to 

generate a reasonably accurate description of the (unknown) concepts. 

In order to apply GAs to a particular problem, it is a need to select an internal 
A representation of the space to be searched and define an external evaluation function 

which assigns utility to candidate solutions. 

For applying GA to supervised concept learning they followed fbllowing steps: 

Representing the Search Space 

Defining Fixed-length Classifier Rules 

Evolving Sets of Classifier Rules 

Choosing a Payoff Function 

The GA Concept Learner 

In this dissertation, a GA-based concept learner is developed and analyzed. Here 

reasonable performance is achieved with minimal bias. There is no preference for 

shorter rule sets, unlike most other concept learning systems. The initial results 

support the view that GAs can be used as an effective concept learner although they 

may not outperform algorithms specifically designed for concept learning when 

simple concepts are involved. 

2.2.3 An Evolutionary Algorithm that Constructs Recurrent Neural Networks 

In the year 2001, Peter J. Angeline ci al. [24] worked with GA to constructs Recurrent 

Neural Network. Standard methods for inducing both the structure and weight values 

of recurrent neural networks fit an assumed class of architectures to every task. This 

simplification is necessary because the interactions between network structure and 

function are not well understood. Evolutionary computation, which includes genetic 

algorithms and evolutionary programming, is a population-based search method that 

has shown promise in such complex tasks. This research argues that genetic 

algorithms are inappropriate for network acquisition and describes an evolutionary 
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program, called GNARL that simultaneously acquires both the structure and weights 

for recurrent networks. 

2.2.4 Evolving Controllers for Autonomous Agents Using genetically 

Programmed Networks 

In the year 1999, Arlindo Silva et al. [25] they explored Genetically Programmed 

Network and use it to successfully evolve control systems with very different 

architectures, by making small restrictions to the evolutionary process. Their 

dissertation presents a new approach to the evolution of controllers for autonomous 

agents. They proposed the evolution of a connectionist structure where each node has 

an associated program, evolved using genetic programming. They call this structure a 

Genetically Programmed Network and use it to successfully evolve control systems 

with very different architectures, by making small restrictions to the evolutionary 

process. Each GPN individual has several nodes, so its genome is a sequence of 

chromosomes, each one corresponding to a program. Manipulating the function, 

terminal and root set of the programs; they showed that it is possible to evolve GPNs 

into controllers with very different architectures. 

2.2.5 Feature Selection for ANN Using Genetic Algorithms in Condition 

Monitoring 

In the year 1999, L.B. Jack et al. [26] they worked on ANN using Genetic Algorithm. 

They used Artificial Neural Network (ANN) successfully to detect faults in rotating 

machinery, using statistical estimates of the vibration signal as input features. One of 

the main problems facing the use of ANNs is the selection of the best inputs to the 

ANN, allowing the creation of compact, highly accurate networks that require 

comparatively little preprocessing. This dissertation examination the use of a Genetic 

Algorithm (GA) to select the most significant input features from a large set of 

possible features in machine condition monitoring contexts. In their research the 

following two topics are the main to select the features of ANN using GA: 

Feature selection & Encoding: Feature selection of the GA is controlled through the 

values contained within the genomes generated by the GA. On being passed a genome 

with (N+1) values to be tasted, the first N values are used to determine which rows 

are selected as a subset from the input feature set matrix. Rows corresponding to the 

numbers contained within the genome are copied into a new matrix containing N 
,y.  
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rows. The last value of the genorne determines the number of neurons present in layer 

I of the network. 

Training and Simulation: 

Training was carried out using three data sets; one feature set comprised all the 

statistically based features (90 features). The set of 66 spectral features was used as an 

individual case, and this dataset was combined with all the statistical feature sets to 

from an input feature set of 156 inputs. Each feature set contained a total of 960 cases. 

Using the genetic algorithm running for a total of 40 generations, each containing 10 

members (meaning the training of 400 neural networks ), eight separate cases were 

tested using various numbers of inputs, varying from five to twelve. 

The use of the Genetic Algorithm allows feature selection to be carried out in an 

automatic manner, meaning that input combinations can be selected without the need 

for human intervention. This technique offers great potential for use in a condition 

monitoring environment, where there are often hundreds and even thousands of 

different measurements available to a monitoring system, and selection of the most 

relevant features is often difficult. It has been shown that the Genetic algorithm is 

capable of selecting a subset of 6 inputs from a set of 156 features that allow the ANN 

to perform with 100% accuracy. 

2.2.6 Application of Artificial Neural Networks in GAs: Odour Identification 

Using Sensor Array. 

In the year 1999, A. K. Srivastava [27] worked on ANN by using GA for his Ph.D. 

Thesis. His thesis work is basically an engineering effort to mimic human olfactory 

system in its electronics counterpart, so called Electronic Nose (ENOSE), which 

consists of Sensor Array, Signal Processing and Pattern Classification. In order to 

process sensor array data for gas/ odour identification, goal was to design powerful 

neural network (NN) pattern classifier with improved NN learning ability and better 

classification accuracy. His investigations show that use of Genetic Algorithm (GA) 

in combination with NN not only promises to be an effective Intelligent Gas Sensing 

System. Novelty of his approach lies in the ability of NN to classify large number of 

similar gases with an array of limited number of sensors that too without using any 

pre-processing for data conditioning! transformation. For this they designed 

sophisticated and advanced genetic operators such as Double-MRX and Triple-MRX 

so as to accelerate the search ability of GA for unconstrained, continuous and non-

linear optimization problems like learning in Neural Network. To accomplish this 

they developed an algorithm-oriented software package in high level C programming 

18 



language on HP9000 computing machine running HP-UX 0/S and tested the 

proposed algorithms over real-world gas identification problem. His results and finds 

are very useful in environmental monitoring, quality assurance, safety and security, 

military, space exploration and medicine. 

2.2.7 Evolution of Artificial Neural Networks Using a Two-dimensional 

Representation. 

In the year 1999, Joao Carlos ci al. [28] worked on ANN using evolutionary algorithm 

for his Ph.D. Thesis. In this work, they proposed a new method based on a special 

form of evolutionary computation called genetic algorithms for the evolution of 

artificial neural networks. Their method is a general purpose procedure able to evolve 

feed forward and recurrent architectures. It is based on a two-dimensional 

representation, and includes operators to evolve the architecture and the connection 

weights simultaneously. This new approach has shown promising results, and has 

fared better than previous methods in a number of applications, including: binary 

classification problems, design of neural controllers and a complex navigation task of 

traversing a trail. An extension of the two-dimensional representation is also 

presented in their work, which is combined with other methods, providing them with 

an alternative procedure to evolve the weights of the connections. 

The next sub section describes the basic of VLSI Design concept and the literature 

review of it using Genetic Algorithm. 

2.3 GAs for VLSI I)esign, Layout, and Test Automation 

Several of the tasks involved in the VLSI design process involve optimization 

problems. For example, an automatic placement tool must decide the optimal 

positions in which to place each component. The specific problems are usually NP-

complete; therefore, heuristic techniques have been used to obtain solutions. 

However, even if adequate approaches have been devised in the past, design 

complexity continues to increase with the continuing improvements in technology. 

Therefore, new approaches may be warranted over time, and GAs are often good 

choice. Much research has been done in applying GAs to various tasks in the VLSI 

design process. The rest of this section will provide details about some of the VLSI 

applications where GAs have been used. These applications include partitioning, 

automatic placement and routing, technology mapping for FPGAs, automatic test 

generation, and power estimation. 
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2.3.1 Parallel Genetic Algorithms for Simulation-Based Sequential Circuit 

Test Generation 

In the year 1997, Dilip Krishnaswarny et al. [29] worked on Genetic Algorithm for 

simulation-based circuit test generation. The problem of test generation belongs to the 

class of NP-complete problems and it is becoming more and more difficult as the 

complexity of VLSI circuits increases, and as long as execution times pose an 

additional problem. Parallel implementations can potentially provide significant 

speedups while retaining good quality results. In this research, they present three 

parallel genetic algorithms for simulation-based sequential circuit test generation. 

Simulation-based test generators are more capable of handling the constraints of 

complex design features than deterministic test generators. The three parallel genetic 

algorithm implementations are portable and scalable over a wide range of distributed 

and shared memory MIMD machines. Significant speedups were obtained, and fault 

coverage were similar to and occasionally better than those obtained using a 

sequential genetic algorithm, due to the parallel search strategies adopted. 

2.3.2 Multi-Objective 1)esign Space Exploration Using Genetic Algorithms 

In the year of 2002, Maurizio Palesi Ct al. [30] worked on Multi-Objective Design 

Space Exploration Using Genetic Algorithms. In this work, they provided a technique 

for efficiently exploring a parameterized system-on-a-chip (SoC) architecture to find 

all Pareto optimal configurations in a multi-objective design space. Globally, their 

approach was used a parameter dependency model of target parameterized SoC 

architecture to extensively prune non-optimal subspaces. Locally, the approach 

applied Genetic Algorithms (GAs) to discover Pareto-optimal configurations within 

the remaining design points. The computed Pareto-optimal configurations represented 

the range of performance (e.g., timing and power) tradeoffs that are obtainable by 

adjusting parameter values for a fixed application that is mapped on the parameterized 

SoC architecture. They have successfully applied their technique to explore Pareto-

optimal configurations for a number of applications mapped on a parameterized SoC 

architecture while taking into account multiple design objectives. Specifically, their 

approach replaces the exhaustive component of the parameter interdependency based 

approach called Platune by replacing it with a technique that is based on a GA 

framework called SPEA2. Their experiments showed that on the average a saving of 

80% in simulation time is achievable while still maintaining exploration results that 

are within 1% of those generated by an exhaustive approach. 
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2.3.3 A Genetic Algorithm for Mixed Macro and Standard Cell Placement 

In the year of 2000, Theodore W. Manikas et al. [31] worked on the VLSI Design by 

using GA. The objective of mixed macro and standard cell placement is to arrange 

components on a chip such that the resultant layout area and interconnection wire 

lengths are minimal. A common approach is to divide the problem into separate 

macro cell and standard cell placement problems. 1-lowever, this approach ignores the 

relationships between the macro and standard cells, which can affect the quality of the 

final solution. Their thesis described a genetic algorithm that uses the relationship 

information to determine a more efficient placement solution. They developed GAP 

(Genetic Algorithm for Placement) for mixed macro and standard cell placement. 

Their work built upon previous efforts by expanding the genotype structures to handle 

both macro cell and standard cell layout. 

GAP was compared against the previous top-down, multiple-stage placement 

approach. In order to provide a fair comparison, Eshensen's placement tool was used 

for the block placement stage of the top-down approach, while GASP was used for 

the cell placement stage. Their methods were tested on the MCNC mixed macro and 

standard cell benchmark netlists a3, g2, and tl. Each netlist was partitioned into ten 

domains, and ten trials were run for each method on each data set. Compared to the 

top-down, multiple-stage approach, GAP yielded an average of 27% improvement in 

layout area and an average of 10% improvement in layout wire length. 

2.3.4 Structure Cell-based VLSI Circuit Design Using a Genetic Algorithm 

In the year 1999, T. Arsian et al. [32] researched on VLSI to design Circuit using 

genetic algorithm. In their research, a technique for the structural synthesis of VLSI 

circuits is presented. The techniques uses Genetic Algorithms which utilizes a library 

of devices for the synthesis procedure which proved successful in satisf' a multiple 

output circuit criteria which, in addition to satisfy hardware-specific criteria such as 

area and delay. 

The next sub section describes the basic of Image processing concept and the 

literature review of Image Processing and pattern recognition using Genetic 

Algorithm. 
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2.4 Application of GA in Image Processing and Pattern Recognition 

l)igital image processing remains a challenging domain of programming for several 

reasons. First the issue of digital image processing appeared relatively late in 

computer history, it had to wail for the alTival of the first graphical operating systems 

to become a true matter. Secondly, digital image processing requires the most careful 

optimizations and especially for real time applications. Digital image processing is by 

definition a two dimensions domain; this somehow complicates things when 

elaborating digital filters. 

One of the first applications of digital images was in the newspaper industry, when 

pictures were first sent by submarine cable between London and New York. 

Introduction of the Bartlanc cable picture transmission system in the early 1920s 

reduced the time required to transport a picture across the Atlantic from more than a 

week to less than three hours. The printing method used to obtain image was 

abandoned toward the end of 1921 in favor of a technique based on photographic 

reproduction made from tapes perforated at the telegraph receiving terminal. The 

early Bartlane systems were capable of coding images in five distinct levels of gray. 

This capability was increased to 15 levels in 1929. The history of digital image 

processing is intimately tied to the development of the digital computer. In fact, 

digital images require so much storage and computational power that progress in the 

field of digital image processing has been dependent on the development of digital 

computers and of supporting technologies that include data storage, display, and 

transmission. The first computers powerful enough to carry out meaningful image 

processing tasks appeared in the early 1960s. Digital image processing techniques 

began in the late 1960s and early 1970s to be used in medical imaging, remote Earth 

resources observations, and astronomy. From the 1960s until the present, the field of 

image processing has grown vigorously. In addition to applications in medicine and 

the space program, digital image processing techniques now are used in a broad range 

of applications. Computer procedures are used to enhance the contrast or code the 

intensity levels into color for easier interpretation of X-rays and other images used in 

industry, medicine, and the biological sciences 

Today, there is almost no area of technical endeavor that is not impacted in some way 

by digital image processing. We can cover only a few of these applications in the 

context and space of the current discussion. The areas of application of digital image 

processing are so varied that some form of organization is desirable in attempting to 

capture the breadth of this field. The following are the most important fields of image 

processing: 
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I. Gamma Ray Imaging 

X-ray Imaging 

Imaging in the Ultraviolet Band 

Imaging in the Visible and Infrared Bands 

Imaging in the Microwave Band 

Imaging in the Radio Band 

Digital image processing is a rapidly evolving field with growing applications in 

science and engineering image processing holds the possibility of developing the 

ultimate machine that could perform the visual functions of all living beings. A 

detailed list of the application of image processing is shown in Table 2.1 

Table 2.1: Applications of image processing 

FIELD APPLICATION 

I. Character recognition Mail sorting, label reading, supermarket product 

billing, bank check processing, text reading. 

Medical image analysis Tumor detection, measurement of size and shape of 

internal organs, chromosome analysis, blood cell 

count. 

Industrial automation Parts identification of assemble lines, defect and 

fault inspection. 

Robotics Recognition and interpretation of objects in a scene, 

motion control execution through visual feedback. 

Cartography Map making from photograph, synthesis of weather 

maps. 

Forensics Fingerprint matching and analysis of automated 

security system. 

Radar imaging Target detection and identification, guidance of 

helicopters and aircraft in landing, guidance of 

remotely piloted vehicles(R P V), missile and 

satellites from visual clues. 

Remote sensing Multi spectral image analysis, weather prediction, 

classification and monitoring of urban, agricultural 

and marine environment from satellite images. 

Pattern Recognition and classification is difficult but fundamental task in AT, depends 

heavily on the particular choice of features used by the classifier. One usually starts 

with a given set of features and then attempts to derive an optimal subset of features 

leading to high classification performance. A standard approach involves ranking the 
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features of a candidate feature set according to some criteria involving 2nd order 

statistics (ANOVA) and/or information theory based measures such as "infomax", and 

then deleting lower ranked features. Ranking by itself is usually not enough because 

the criteria used do not measure the effectiveness of the features selected on the actual 

classification task itself, nor do they capture possible nonlinear interactions among the 

features. A GA is used to search the space of all possible subsets of a large set of 

candidate discrimination features. 

The summery of some research work is given here for understanding the application 

of GA in Image Processing. 

2.4.1 Improving a Rule Induction System Using Genetic Algorithms 

In the year 1999, i-IaIeh Vafaie et al. [33] worked on image pattern recognition using 

GA. Their effort is to apply machine learning techniques to such problems in an 

attempt to automatically generate and improve the classification rules required for 

various recognition tasks. They used genetic algorithms as a "front end" to traditional 

rule induction systems in order to identify and select the best subset of features to be 

used by the rule induction system. The field of automatic image recognition presents a 

variety of difficult classification problems involving the identification of important 

scene components in the presence of noise, changing lighting conditions, and shifting 

view points. Their dissertation describes part of a larger effort to apply machine 

learning techniques to such problems in an attempt to automatically generate and 

improve the classification rules required for various recognition tasks. The immediate 

problem attacked is that of texture recognition in the presence of noise and changing 

lighting conditions. In this context standard rule induction systems like AQ 15 produce 

sets of classification rules which are not necessarily optimal with respect to: 1) the 

need to minimize the number of features actually used for classification and 2) the 

need to achieve high recognition rates with noisy data. 

There are two main approaches that the image processing community has taken to 

feature selection. One approach selects features independent of their effect on 

classification performance. The other approach selects features based on the overall 

effectiveness of the performance of the classification system. The first approach 

involves transforming the original features according to procedures such as those 

presented by Karhunen-Loeve or Fisher to form a new set of features. Then, it selects 

a subset of these transformed features by choosing the first "n" transformed features 

where the selected subset has lower dimensionality than the original one. The second 

approach directly selects a subset "d" of the available "m" features based on some 
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effectiveness criteria, without significantly degrading the performance of the classifier 

system. Many researchers have adopted this method and have created their own 

variations on this approach. They produced a Multi-strategy Approach and GEM 

system. It is assumed that an initial set of features will be provided as input as well as 

a training set in the form of feature vectors extracted from actual images and 

representing positive and negative examples of the various classes for which rules are 

to be induced. A genetic algorithm (GA) is used to explore the space of all subsets of 

the given feature set. Each of the selected feature subsets is evaluated (its fitness 

measured) by invoking AQ 15 with the correspondingly reduced feature space and 

training set, and measuring the recognition rate of the rules produced. The best feature 

subset found is then output as the recommended set of features to be used in the actual 

design of the recognition system. The result of the feature selection process was to 

reduce the initial feature set consisting of 18 elements to a subset of having only 9 

elements for the best performing individual. This represented a 50% reduction in the 

number of features. Another advantage of using this approach is that choosing the 

appropriate subset of features reduces the time required to perform rule induction on 

large data sets (which are typical in the image processing world). This is a direct 

result of feature selection process. 

2.4.2 Genetic Programming for Image Analysis 

In the year 2000, Riccardo Poli [34] analyzed and applied GA on image processing. 

They described an approach to using GP for image analysis based on the idea that 

image enhancement, feature detection and image segmentation can be reframed as 

filtering problems. GP can discover efficient optimal filters which solve such 

problems but in order to make the search feasible and effective, terminal sets, function 

sets and fitness functions have to meet some requirements. Although GP could be 

applied in a naive way to such a problem, they have outlined some criteria that 

terminal sets, function sets and fitness functions should satisfy in order to make the 

search feasible and produce efficient filters. 

2.4.3 Dimensionality Reduction Using Genetic Algorithms 

In the year 1999, L. A. Kuhn et al. [35] researched on pattern recognition using GA. 

Pattern recognition generally requires that objects be described in terms of a set of 

measurable features. The selection and quality of the features representing each 

pattern have a considerable bearing on the success of subsequent pattern 

classification. Feature extraction is the process of deriving new features from the 
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original features in order to reduce the cost of feature measurement, increase classifier 

efficiency, and allow higher classification accuracy. In this thesis they present a new 

approach to feature extraction in which feature selection, feature extraction, and 

classifier training are performed simultaneously using a genetic algorithm. The 

genetic algorithm optimizes a vector of feature weights, which are used to scale the 

individual features in the original pattern vectors in either a linear or a nonlinear 

fashion. A masking vector is also employed to perform simultaneous selection of a 

subset of the features. 

I. GA-based feature extractor using an objective function based on classification 

accuracy. Each transformation matrix from the GA population is used to 

transform the input patterns, which are then passed to a classifier. The fitness 

of the matrix is based on the classification accuracy attained on the 

transformed patterns. 

d-dimensional binary vector, comprising a single member of the GA 

population for GA-based feature selection. 

Effect of scaling feature axes on k (k = 5) nearest neighbor classification. (a) 

Original data. (b) Scaled data. 

The GA-based feature extractor was applied in the following fields: 

Biochemistry Data 

Tests on Medical Data 

Classification of Protein-Bound Water Molecules 

For the thyroid data, the sequential floating forward selection method achieved good 

classification results. The best accuracy obtained by the knn1SFFS algorithm during 

feature selection was 97.99%, using 6 of the 21 available features. The best weight set 

found by the GA achieved a mean bootstrap accuracy of 64.20%, with a standard 

deviation of 1.42% using four of the available eight features. The second-best 

performing weight set achieved a mean bootstrap accuracy of 63.32% using only two 

of the eight features 

2.4.4 Using Genetic Algorithms to Explore Pattern Recognition in the Immune 

System 

In the year 1993, Stephanie Forrest et al. [36] worked on pattern recognition using 

GA. in their thesis they described an immune system model based on binary strings. 

The purpose of the model is to study the pattern recognition processes and learning 

that take place at both the individual and species levels in the immune system. The 

genetic algorithm (GA) is a central component of the model. The thesis reports 
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simulation experiments on two pattern recognition problems that are relevant to 

natural immune systems. Finally, it reviews the relation between the model and 

explicit fitness sharing techniques for genetic algorithms, showing that the immune 

system model implements a form of implicit fitness sharing. Their developing Binary 

immune System Model showed that the GA could evolve an antibody type 

(represented as a population of identical antibodies) that matched multiple antigens 

through the identification of a common schema. This problem is analogous to the 

problem the immune system faces in identifying bacteria that, although different in 

detail, may use a similar polysaccharide in the construction of their cell walls. By 

identifying this polysaccharidc, the immune system can learn to detect bacteria. 

2.4.5 Hybrid Learning Using Genetic Algorithms and Decision Trees for 

Pattern Classification 

In the year 1995, J. Bala et al. [37] applied the GA on pattern recognition in hybrid 

learning system. Their thesis introduces a hybrid learning methodology that integrates 

genetic algorithms (GAs) and decision tree learning (ID3) in order to evolve optimal 

subsets of discriminatory features for robust pattern classification. A GA is used to 

search the space of all possible subsets of a large set of candidate discrimination 

features. For a given feature subset, 11)3 is invoked to produce a decision tree. The 

classification performance of the decision tree on unseen data is used as a measure of 

fitness for the given feature set, which, in turn, is used by the GA to evolve better 

feature sets. This GA-1133 process iterates until a feature subset is found with 

satisfactory classification performance. 

GA-I133 Hybrid Learning: The basic idea of their system is to use GAs to efficiently 

explore the space of all possible subsets of a given feature set in order to find feature 

subsets which are of low order and high discriminatory power. An initial set of 

features is provided together with a training set of the measured feature vectors 

extracted from raw data corresponding to examples of concepts for which the decision 

tree is to be induced. Each of the selected feature subsets is evaluated (its fitness 

measured) by testing the decision tree produced by [D3. The above process is iterated 

along evolutionary lines and the best feature subset found is then recommended to be 

used in the actual design of the pattern classification system. In order for a GA to 

efficiently search such large spaces, one must give careful thought to both the 

representation chosen and the evaluation function. In this case, there is a very natural 

representation of the space of all possible subsets of a feature set, namely, a fixed-

length binary string representation in which the value of the ith gene {0,1) indicates 
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whether or not the ith feature from the overall feature set is included in the specified 

feature subset. Thus, each individual in a GA population consists of fixed-length 

binary string representing some subset of the given feature set. The advantage of this 

representation is that a standard and well understood GA can be used \vithout any 

modification. Experimental results are presented which illustrate the feasibility of 

their approach on difficult problems involving recognizing visual concepts in satellite 

and facial image data. The results also show improved classification performance and 

reduced description complexity when compared against standard methods for feature 

selection. 

2.4.6 Bengali Character Recognition Using Genetic Algorithm 

In the year 2005, Md. Robiul Islam [38] worked on Bengali Character Recognition 

using GA. In this endeavor, a character recognition system using Genetic Algorithms 

has been developed. The system is intended to recognize printed Bengali character. 

The model proposed for the system consists of a pre processor followed by a genetic 

Algorithm classifier. At preprocessor phase, projection from each active bit of a 

pattern has been scaled and translated to fit the standard size. The second part of the 

system compromise a Genetic algorithm classifier which generates a set of rules based 

on the extracted feature of the patterns. The rules are generated in such a way that 

only the distinctive features of a pattern are reflected in the rule. After being trained 

using the training set of the character patterns, the system has been able to classify test 

character pattern correctly. The proposed model has been tested with two complete 

character sets of Bengali alphabet and rigorous experiments have been carried out to 

see how the performance of genetic algorithm as a classifier varies at different 

parameter settings in the context of Bengali character recognition. 

The next section describes the literature review of GA for optimization problems. 

2.5 Applications of GA in Function Optimization 

In 1859, Darwin [1] published his book "On the Origin of Species" in which he 

identified the principles of natural selection and survival of the fittest as driving forces 

behind the biological evolution. During the last few decades there has been a growing 

interest in algorithms which are based on the principle of evolution (survival of the 

fittest). They are referred as Evolutionary Algorithms (EA) or Evolutionary 

Computation methods (EC methods) [2]. EAs (genetic algorithms [3], evolution 

strategies, evolution programming and genetic programming) are increasingly used to 
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great advantage in applications as diverse as computer aided design [39], optimal 

design of non-linear chemical engineering processes [40], parameter estimation [41], 

controller design [42] digital filter design [43] etc. 

Over the years, genetic algorithms (GAs) have been proven effective in solving a 

variety of search and optimization problems (Goldberg, 1989 [2]; Gen and Cheng, 

1997 [43]; Parmee 1999 [44]). The GA has been employed in a wide variety of 

problems related to combinatorial and mathematical optimization, and so on. A fair 

amount of research work has been found in literature for the solution of mathematical 

optimization using GA. Kavanagh and Kclley has solved some non-linear equations 

using GA [45]. P.C. Barman and R. Ahmed have given a comparison of GA and 

bisection method in the numerical optimization of transcendental equations [46]. S. 

Shahid, M.N. Bhuiyan and M. M. Haque have optimized some non-linear equation 

using GA with dynamic mutation rate [47]. Almost all of the papers found in 

literature use GA to solve mathematical optimization in traditional way. Genetic 

algorithms (GAs) also have the lucratively application to optimization problems like 

routing, adaptive control, game playing, cognitive modeling, transportation, travelling 

salesman problems, optimal control and functional problems, etc [5, 48]. Though, 

Genetic algorithms (GAs) are now widely used in various fields with many valuable 

advantages, especially in solving optimization problems. Generally, GAs are time-

consuming in computing due to the large number of fitness function evaluations 

required and the implementation of many operators and parameters, but sometimes 

they cannot produce the desired results. 

An increasing amount of research has been carried out in the promising trend of 

improving GAs by developing genetic operators such as crossover and mutation due 

to their importance to GA functioning [49-104]. Bhattacharyya and Troutt [50] 

developed two new crossover operators. The performances of these new methods 

were examined on the problem of enforcing coherency of probability estimates for a 

set of related events. Dc Falco et al. [51] gave a good overview of the research 

relating to the mutation operator and confinned its important role in GAs. The 

research summarized the work in both trends of developing new mutation operators 

and finding optimum mutation rates for specific problems. The authors also presented 

two new biologically inspired mutation operators from which a mutation-based 

genetic algorithm (MGA) was then defined and had a competitive performance. A 

novel GA employing multiple crossover operators and a fitness-based dynamic 

crossover selection method was presented by Acan et al. [52]. In the comparison, the 

proposed methods outperformed the standard GA. 
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in literature review, it is also found a nuniber of methods to improve the performance 

of conventional genetic algorithms such as real-valued coding [56, 57], improved 

selection of the initial population [58], better operational principles [49-60], improved 

crossover operations [5, 61, 62], better mutation operations [5, 61], and automatic 

adjustment of parameters for population size, code length, crossover and mutation 

rates [5, 63]. In addition, Genetic algorithms have been applied to a wide range of 

practical problems which involve optimization of function parameters, such as 

optimization problem [56, 57], multi-modal optimization problems [2, 64-66], etc. 

To avoid problems regarding GA some scientists have attempted to improve GAs in 

various ways. B. Sareni [67] used fitness sharing and niching methods to avoid 

premature convergence. S. Tsutsui et al. [68] introduced the concept of a bi-

population scheme for real coded GAs (b-GAs) and the goal of b-GAs have some 

advantages in performing global exploration of the search space and avoiding being 

trapped at local optima. Many other strategies were proposed to improve the 

performance of the genetic algorithm. The modified genetic algorithm [69], the 

contractive mapping genetic algorithm [70], the genetic algorithms with varying 

population size [71, 72] all improved the performance of the genetic algorithm to 

some extent. The elitist strategy [75], the (pt,  ?) and (t±X) selection [73, 74] and the 

Bolzmann tournament selection [76, 77] are all relevant strategies [2], and a number 

of other researchers to improve GAs in different ways [4, 78-80] have shown that 

genetic algorithms (GAs) perform well for global searching, and it occasionally 

efficient in respective problem area but they usually take a relatively long time to 

converge to the optimum. 

After a comprehensive review, it is has come into notice that the standard GA being 

faced with the usual conflict between reliability and computation time, often results in 

an unsatisfactory compromise, characterized by a slow convergence, when an exact 

solution is required. The key to improving the performance of GA for the 

optimization problems may be a new scope by examining a mechanism which can 

suggests an opportunity for performance improvement. The next chapter describes the 

aspect of GA as the base for such a mechanism in detail. 
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CHAPTER 3 

Aspects of GA as an Evolutionary Approach 

This chapter provides an introduction to genetic algorithms (GAs): what they are, 

where they came from, aspects of GA, how they compare to and differ from other 

search procedures, and the essential steps for GA application to an optimization 

problem. it is also introduces basic types of optimization methods, differences and 

significances of GA from other methods. Biological background, GA terminology is 

introduced; GA operators and various selection mechanisms, parameter of GA, 

complexities in research with GA and Why GA for function optimization are also 

discussed. In addition, this chapter presents the different major points about computer 

implementation of GA. 

3.1 Preliminary 

The Genetic Algorithm (GA) is a stochastic search method based on the mechanics of 

natural selection and genetics analogous to natural evolution. Genetic algorithms 

originally conceived by Holland [4], represent a fairly abstract model of Darwinian 

evolutionary theory and biological genetics. They evolve a population of competing 

individuals using fitness-biased selection, random mating, and a gene-level 

representation of individuals together with simple genetic operators (typically, 

crossover and mutation) for modeling inheritance of traits. These GAs have been 

successfully applied to a wide variety of problems including functional optimization, 

machine learning, and the evolution of complex structures such as combinatorial 

optimization, neural networks, Lisp programs and so on. 

3.2 Biological Background 

Biological background fundamentally related to the following facts: 

Chromosome: All living organisms consist of cells. In each cell there is the same set 

of chromosomes. Chromosomes are strings of DNA and serves as a model for the 

whole organism. A chromosome consists of genes, blocks of DNA. Each gene 

encodes a particulai-  protein. Basically, it can be said, that each gene encodes a trait, 

for example color of eyes. Possible settings for a trait (e.g. blue, brown) are called 

alleles. Each gene has its own position in the chromosome. This position is called 
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locus. Complete set of genetic material (all chromosomes) is called genorne. 

Particular set of genes in genome is called genotype. The genotype is with later 

development after birth base for the organism's phenotype, its physical and mental 

characteristics, such as eye color, intelligence etc. 

Reproduction: During reproduction, first occurs recombination (or crossover). Genes 

from parents form in some way the whole new chromosome. The new created 

offspring can then be mutated. Mutation means, that the elements of DNA are a bit 

changed. These changes are mainly caused by errors in copying genes from parents. 

The fitness of an organism is measured by success of the organism in its life. 

3.3 Aspect of Genetic Algorithm 

A genetic algorithm (GA) and more generally an Evolutionary Approach mimics 

natural evolution process in order to solve computational problems (usually large, 

difficult and complex optimization problems). Its approach is modeled on a relatively 

simple interpretation of the evolutionary process; however, it has proven to a reliable 

and powerful optimization technique in a wide variety of applications. Holland [4] in 

1975 was first proposed the use of genetic algorithms for problem solving. Goldberg 

[2] was also a pioneer in the area of applying genetic processes to optimization. 

3.3.1 What are Genetic Algorithms? 

The Genetic Algorithm (GA) is a model of machine learning, which derives its 

behavior from a metaphor of the processes of evolution in nature. This is done by the 

creation within a machine of a population of individuals represented by chromosomes, 

in essence a set of character strings that are analogous to the chromosomes that is seen 

in human's DNA. The individuals in the population then go through a process of 

evolution. Essentially, Genetic Algorithms (GAs) are a method of "breeding" 

computer programs and solutions to optimization or search problems by means of 

simulated evolution. Processes loosely based on natural selection, crossover, and 

mutation are repeatedly applied to a population of binary strings which represent 

potential solutions. Over time, the number of above-average individuals increases, 

and better-fit individuals are created, until a good solution to the problem at hand is 

found. GA also can be described as an optimization technique based on natural 

genetics. GAs were developed in an attempt to simulate growth and decay of living 

organisms in a natural environment. Even though originally designed as simulators 
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GAs proved to be a robust optimization technique. The term robust denotes the ability 

of the GAs in finding the global optimum, or a near-optimal point, for any 

optimization problem. 

A set of points inside the optimization space is created by random selection of points. 

Then, this set of points is transformed into a new one. Hopefully, this new set will 

contain more points that are closer to the global optimum. The transformation 

procedure is based only in the information of how optimal each point is in the set, 

consist a very simple string of manipulations, and is repeated several times. This 

simplicity in application and the fact that the only information necessary is a measure 

of how optimal each point is in the optimization space. 

3.3.2 History of Genetic Algorithm 

Genetic algorithms (GAs) were invented by John Holland [4] in the 1960s and were 

developed by Holland and his students and colleagues at the University of Michigan 

in the 1960s and the 1970s. In contrast with evolution strategies and evolutionary 

programming, Holland's original goal was not to design algorithms to solve specific 

problems, but rather to foniially study the phenomenon of adaptation as it nature and 

to develop ways in which the mechanisms of natural adaptation might be imported 

into computer systems. Holland's book Adaptation in Natural and ArtfIcial  Systems 

presented the genetic algorithm as an abstraction of biological evolution and gave a 

theoretical framework for adaptation under the GA. Holland's GA is a method for 

moving from one population of "chromosomes" (e.g. strings of ones and zeros of bits) 

to a new population by using a kind of natural selection together with the genetics-

inspired operators of crossover, mutation and inversion. Each chromosome consists of 

genes (e.g. bits) each gene being an instance of a particular allele (e.g. 0 or 1). The 

selection operation chooses chromosomes in the population that will be allowed to 

reproduce, and on average the fitter chromosomes produce more offspring than the 

less fit ones. Crossover exchanges subparts of two chromosomes, roughly mimicking 

biological recombination between two single chromosome organisms. Mutation 

randomly changes the allele values of some locations in the chromosome and 

inversion reverses the order of a contiguous section of the chromosome, thus 

rearranging the order in which genes are arrayed. 

Holland's introduction of a population-based algorithm with crossover, inversion, and 

mutation was a major innovation. Moreover, Holland was the first to attempt to put 

computational evolution on a firm theoretical footing. Until recently this theoretical 
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foundation, based on the notion of "schemas", was the basis of almost all-subsequent 

theoretical work on genetic algorithms. 

3.4 Genetic Algorithm Terminology 

All genetic algorithms work on a population or a collection of several alternative 

solutions to the given problem. Each individual in the population is called a string or 

chromosome, in analogy to chromosomes in natural systems. Often these individuals 

are coded as binary strings, and the individual characters or symbols in the strings are 

referred to as genes. In each iteration of the GA, a new generation is evolved from the 

existing population in an attempt to obtain better solutions. The population size 

determines the amount of information stored by the GA. The GA population is 

evolved over a number of generations. 

An evaluation function (or fitness function) is used to determine the fitness of each 

candidate solution. The fitness is the opposite of what is generally known as the cost 

in optimization problems. It is customary to describe genetic algorithms in terms of 

fitness rather than cost. The evaluation function is usually user-defined, and problem-

specific. 

Individuals are selected from the population for reproduction, with the selection 

biased toward more highly fit individuals. Selection is one of the key operators on 

GAs that ensures survival of the fittest. The selected individuals form pairs, called 

parents. 

Crossover is the main operator used for reproduction. It combines portions of two 

parents to create two new individuals, called offspring, which inherit a combination of 

the features of the parents. For each pair of parents, crossover is performed with a 

high probability P, which is called the crossover probability. With probability 1- Pc, 

crossover is not performed, and the offspring pair is the same as the parent pair. 

Mutation is an incremental change made to each member of the population with a 

very small probability. Mutation enables new features to be introduced into a 

population. It is performed probabilistically such that the probability of a change in 

each gene is defined as the mutation probability, P 1. 

The generation gap is the fraction of individuals in the population that are replaced 

from one generation to the next and is equal to 1 for the simple GA. 
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A schema is a specific set of values assigned to a subset of the genes in a 

chromosome. It is a partial solution and represents a set of possible fully specified 

solutions. A schema with in specified elements and don't-cares in the rest of the ii - in 

positions can be considered to be an ('ii - in) dimensional hyperplane in the solution 

space. All points on that hyperplane (i.e., all individuals that contain the given 

subplacement) are instances of the schema. 

For a given problem, various genes may be linked, and specific values may be 

required for groups of genes in order to obtain a good solution. These schemata 

represent the various features of the candidate solutions. GAs implicitly operates upon 

the various schemata in parallel, which is why they are so successful in solving 

complex optimization problems. The genetic operators create a new generation of 

individuals by combining the schemata of parents from the current generation. Due to 

the stochastic selection process, the fitter parents, which are expected to contain some 

good schemata, are likely to produce more offspring. At the same time, the bad 

parents, which contain some bad schemata, are likely to produce fewer offspring. 

Thus, in the next generation, the number of instances of good schemata tends to 

increase, and the number of the entire population is therefore improved. 

In a typical, binary-coded GA, where the chromosomes are bit strings, each string in 

the population is an instance of 2Lschemata,  where L is the length of each individual 

string. The number of different strings or possible solutions to the problem is also 2L 

and the total number of different schemata contained in all these strings is 31,  since 

each gene in a schema may be 0,1 or don't care x. Thus the population represents a 

very large number of schemata, even for relatively small population sizes. By 

evaluating a new offspring, we get a rough estimate of the fitness of all of its 

schemata. The numbers of these schemata present in the population is thus adjusted 

according to their relative fitness values. This effect is known as the intrinsic 

parallelism of the GA. As more individuals are evaluated, the relative proportions of 

the various schemata in the population reflect their fitness values more and more 

accurately. When a better schema is introduced into the population through one 

offspring, it is inherited by others in the succeeding generation and thus its proportion 

in the population increases. It starts driving out the less fit schemata, and the average 

fitness of the population improves. 
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3.5 The major Advantages of Genetic Algorithm 

Nevertheless, the major advantages of the GAs are the following: 

• Constraints of any type can be easily implemented. 

• GAs usually finds more than one near-optimal point in the 

optimization space, thus permitting the use of the most applicable 

solution for the optimization problem at hand. 

• They are adaptive, and learn from experience. 

• They have intrinsic parallelism. 

• They are efficient for complex problems. 

• They are easy to parallelize. 

• Global Search Methods: This characteristic suggests that GAs are global 

search methods. 

• Blind Search Methods: They do not require knowledge of the first derivative 

or any other auxiliary information. 

• GAs use probabilistic transition rules during iterations, unlike the traditional 

methods that use fixed transition rules. 

• This makes them more robust and applicable to a large range of problems. 

• GAs can be easily used in parallel machines. This reduces the overall 

computational time substantially. 

-11 3.6 Areas of Application 

Areas of application of evolutionary algorithms at a glance (Some example with 

References) are: 

• Function Optimization [81, 82] 

• Multi-Objective Optimization [83-86] 

• Combinatorial Optimization [87] 

• Engineering, Structural Optimization, and Design [3, 88-901 

• Constraint Satisfaction Problems (CSP) [91, 92] 

• Economics and Finance [93, 941 

• Biology [95, 961 

• Data Mining and Data Analysis [97- 100] 

• Mathematical Problems [45-47, 101] 

• Electrical Engineering and Circuit Design [102, 103] 

• Chemistry, Chemical Engineering [104, 1051 
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• Scheduling [75, 106-109] 

• Robotics [110] 

• Image Processing [111, 112] 

• Networking and Communication [113 - 118] 

• Medicine[119, 120] 

• Resource Minimization, Environment Surveillance/Protection [1211 

• Military and Defense [122] 

• Evolving Behaviors, e.g., for Agents or Game Players [123] 

3.7 Genetic Algorithms vs Other Optimization Methods 

Optimization algorithms can be divided into two classes: 

Deterministic Methods: these methods use function and/or gradient information to 

construct mathematical approximation of the functions, and then they find an optimum 

point employing hill-climbing methods. These methods work normally with 

continuous design variables and need a small number of function evaluations, but they 

may not find a global optimum point. 

Nondeterministic Methods: the most common methods in this class are random 

search, genetic algorithms (GAs), evolutionary programming (EP), evolution strategies 

(ES), simulated annealing (SA), Ant colony optimization (ACO) and particle swarm 

optimization (PSO) etc. These methods work entirely using only function values. 

These methods can work with discrete variables and (with infinite time) find a global 

optimum in the presence of several local optima. However, the number of function 

evaluations can be high even when a global optimum not found. Some of the 

conventional optimization methods generally used are: 

3.7.1 Hill Climbing 

This is one of the local search techniques [124] which only accept changes that 

improve the objective function. The disadvantage of the hill climbing algorithm is that 

it needs to find out the neighbors of the current state before choosing to move and 

that takes lot of time [125]. It can also get stuck in local optima. 

3.7.2 Simulated Annealing 

This is a probabilistic version of bill climbing that uses the theory of Markov chains, 

which is a sequence of trials [126], where the probability of outcome of each trial 

depends only on the previous trial. The disadvantages of using this method are that it 
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use,,, lots of computer time and it is slow in terms of speed when compared to other 

methods. 

3.7.3 Tabu Search 

This is an iterative method [127] designed for solving combinatorial optimization 

problems and is being used to find solutions for Traveling Salesman Problem, graph 

coloring and job shop scheduling. Tabu moves are based on the short term and long 

term history of the sequence of moves. One of the major disadvantages of the tabu 

search is that it cannot adjust the solution parameters during the search. 

3.7.4 Neural Networks 

A neural network [128] consists of elements operating in parallel and is biologically 

inspired. Even though a neural network outperforms most of the competitive 

algorithms, it is relatively obscure, i.e., it cannot be explicitly represented in the form 

of rules or by another easy representation method. 

3.8 Necessary Steps for the Application of GAs to an Optimization Problem 

The basic steps for the application of GA to an optimization problem may be 

summarized as follows: 

A coding for each of the independent variables whose optimal value is to 

be calculated (optimization variables) is selected in such a way that a 

string (simple array consisting of numbers) is created. The selection of the 

coding should be such that the transformation from the original variable to 

the string, and vice versa, is simple. A common coding of the variable to 

be optimized is to use its binary form (string consisting of the values 0 and 

1). This string will be used by the GA in the following steps in order to 

promote the search for the optimum. 

A set of strings is created randomly. This set that is transfonTled 

continuously in every step of the GA is called population. More 

specifically, this population that is created randomly at the start is called 

initial population. The size of this population may vary from several tens 

of strings to several thousands. The criterion applied in determining an 

upper bond for the size of the population is that further increase does not 

result in improvement of the near-optimal solution. This upper bound for 

each problem is determined after some tests runs. Nevertheless, for most 
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applications the best population size lies within the limits of 10-100 

strings. 

The "optimality" (measure of goodness) of each string in the population is 

calculated. Then on the basis of this value an objective function value, or 

fitness, is assigned to each string. This fitness is usually set as the amount 

of "optimality" of each string in the population divided by the average 

population "optirnality". An effort should be made to see that the fitness 

value is always a positive number. It is possible that a certain string does 

not reflect an allowable condition. For such a string there is no 

"optimality". In this case the fitness of the string is penalized with a very 

low value, indicating in such a way to the GA that this is not a good string. 

Similarly, other constraints may be implemented in the GA. 

A set of "operators", a kind of population transformation device, is applied 

to the population. These operators will be discussed in more detail later. 

As a result of these operators, a new population is created, that will be 

hopefully consisting of more optimal strings. The new one replaces the old 

population. Steps 3-4, namely the application of GA operators on a 

population in order to produce a new one and the subsequent replacement 

of the old by the new population, is called a 'generation" of the GA. 

A predefined stopping criterion, usually a maximum number of 

generations to be performed by the GA, is checked. If this criterion is not 

satisfied a new generation is started, otherwise the GA terminates. 

The following Figure-3. 1 shows the genetic algorithm application. In actual fact this 

following flowchart is used to construct genetic algorithm for optimization. 
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The basic steps behind GAs for function optimization could be described in brief as 

follows. 

[Start] Generate random population of n chromosomes (suitable solutions for 

the problem) 

[Fitness] Evaluate the fitnessf(x) of each chromosome x in the population 

[New population] Create a new population by repeating following steps until 

the new population is complete 

• [Selection] Select two parent chromosomes from a population 

according to their fitness (the better fitness, the bigger chance to be 

selected) 

• [Crossover] With a crossover probability cross over the parents to 

form new offspring (children). If no crossover was performed, 

offspring is the exact copy of parents. 

• [Mutation] With a mutation probability mutate new offspring at 

each locus (position in chromosome). 

• [Accepting] Place new offspring in the new population 

[Replace] Use new generated population for a further run of the algorithm 

[Test] If the end condition is satisfied, stop, and return the best solution in 

current population 

[Loop] Go to step 2 

3.9 The Simple GA for Function Optimization 

The simple GA (also referred to as the total replacement algorithm) is illustrated in 

Figure 3.2. 

Generation 0 Generation I 
I 

2 
3 
4 
5 
6 

7 
8 

101101100011 
001011111000 
100110110111 
111101011000 
010011101101 
101111010110 
110100000101 
011111011101 

2 
3 

4 
I selection \ 5 
I crossover ) 6 
I mutation / 7 

000100101110 
101010100101 
010100010010 
111110001101 
100111010010 
001011110100 
100001000010 

010001111101 

selection 
crossover 
mutation 

ii 000111000011 n I 111 101100001 I 

Figure 3.2: The Simple Genetic Algorithm 



The simple GA is composed of populations of strings, or chromosomes and there 

evolutionary operators: selection, crossover and mutation [2]. 

The chromosomes may be binary-coded or they may contain characters from a larger 

alphabet (Eshelman & Schaffer 1993 [129], Goldberg 1990 [2]). Each chromosome is 

an encoding of a solution to the problem at hand, and each individual has an 

associated fitness, which depends on the application. The initial population is 

typically generated randomly, but it may also be supplied by the user. A highly fit 

population is evolved through several generations by selecting two individuals, 

crossing the two individuals to generate two new individuals and mUtating characters 

in the new individuals with a given mutation probability. Selection is done 

probabilistically but is biased toward more highly fit individuals and the population is 

essentially maintained as an unordered set. Distinct generations are evolved and the 

processes of selection, crossover, and mutation are repeated until all entries in a new 

generation are filled. Then old generation may be discarded. New generations are 

evolved until some stopping criterion is met. The GA may be limited to a fixed 

number of generations or it may be terminated when all individuals in the population 

converge to the same string or no improvements in fitness values are found after a 

given number of generations. Since selection is biased toward more highly fit 

individuals the fitness of the overall population is expected to increase in successive 

generations. However, the individual may appear in any generation. 

3.10 Genetic Operators 

The genetic operators and their significance can now be explained. The description 

will be in terms of a traditional GA without any problem-specific modifications. The 

operators that will be discussed include selection, crossover and mutation. 

3.11 Selection 

As it is already known from the GA outline, chromosomes are selected from the 

population to be parents to crossover. The problem is how to select these 

chromosomes. According to I)arwin's evolution theory the best ones should survive 

and create new offspring. There are many methods how to select the best 

chromosomes, for example roulette wheel selection, stochastic universal selection, 

tournament selection, rank selection, steady state selection and some others. 
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3.11.1 Roulette Wheel Selection 

The simplest selection scheme is roulette-wheel selection, also called stochastic 

sampling with replacement [130]. Roulette wheel selection is a proportionate 

selection scheme in which the slots of a roulette wheel are sized according to the 

fitness of each individual in the population [131]). Parents are selected according to 

their fitness. The better the chromosomes are, the more chances to be selected they 

have. It should be imagined a roulette wheel where are placed all chromosomes in the 

population, every has its place big accordingly to its fitness function, like on the 

following picture figure-3.3 

o Chromosome 1 

• Chromosome 2 

o Chromosome 3 

o Chromosome 4 

Figure 3.3: Roulette Wheel Selection 

Then a marble is thrown there and selects the chromosome. Chromosome with bigger 

fitness will be selected more times. 

This can be simulated by following algorithm: 

[Sum] Calculate sum of all chromosome fitness in population - sum S. 

[Selectl Generate random number from interval (O,S) - r. 

[Loop] Go through the population and sum fitness from 0 - sum s. When the 

sum s is greater then r, stop and return the chromosome where it is stand. 

Of course, step 1 is performed only once for each population. 

3.11.2 Stochastic Universal Sampling / Selection 

Stochastic universal sampling (Baker 1987 [130]) provides zero bias and minimum 

spread. The individuals are mapped to contiguous segments of a line, such that each 

individual's segment is equal in size to its fitness exactly as in roulette-wheel 

selection. Here equally spaced pointers are placed over the line, as many as there are 

individuals to be selected. it is considered that NPointer, the number of individuals to 

be selected, and then the distance between the pointers are 1/NPointer and the 

position of the first pointer is given by a randomly generated number in the range [0, 

1/NPo in/er] 
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For selecting the mating population the appropriate number of uniformly distributed 

random numbers (uniform distributed between 0.0 and 1.0) is independently 
It generated. 

Sample of 6 random numbers: 

0.81, 0.32, 0.96, 0.01, 0.65, 0.42. 

For 6 individuals to be selected, the distance between the pointers is 1/6=0.167. 

Figure 3.4 shows the selection for the above example. Sample of 1 random number in 

the range [0, 0.167]: 0.1. 

pointer I pointer 2 pointer 3 pointer 4 pointer 5 pointer 6 

inthvi ':lual 1 Ir 2 3 4 5 6 7 6 9 0 

0.0 0.18 0.34 0.49 0.62 0.73 0.82 0.95 1.0 

random number 

Figure 3.4: Stochastic Universal Sampling 

After selection the mating population consists of the individuals: 

1,2, 3,4, 6, S. 
Stochastic universal sampling ensures a selection of offspring, which is closer to what 

is deserved, then roulette wheel selection. 

3.11.3 Tournament Selection 

In tournament selection (Goldberg & Deb 199 l[132]) a number tour of individuals is 

chosen randomly from the population and the best individual from this group is 

selected as parent. This process is repeated as often as individuals to choose. These 

selected parents produce uniform at random offspring. The parameter for tournament 

selection is the tournament size tour. Tour takes values ranging from 2 - Nind 

(number of individuals in population). Table 3.1 and figure 3.5 show the relation 

between tournament size and selection intensity [133]. 

Table 3.1: Relation between Tournament Size and Selection Intensity 

~~nt  size  5_J iojj 30] 

ttSeiection intensity 0 0.56 [ 0.85  1L1.15 1.53 2.04 1 
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In an analysis of tournament selection [134] can be found as follows: 

Selection intensity: 

SellntTour(Tour) = .2 x (log(Tour) - log J(4.14 x log(Tour))) (approximation). 

Loss of diversity: 

LossDivrour(Tour) = Tour - Tour(T0 ITo-I)) (About 50% of the 

population are lost at tournament size Tour=5). 

Selection variance: 

SelVarmur(Tour) = 1- 0.096x log(1 + 7.11 x (Tour —1)), 

SelVarmur(2) = 1- 1/7-c (approximation). 

2,5 

2 

- - - 

1,5 -' 
selection intensity 

- 

1 loss of diversity 

-------------------- ---------------- 
0,5 >-.i. 

- selectionvanance 

0 I I I I 

0 5 10 15 20 25 30 

tournament size 

-ç 

Figure 3.5: Properties of Tournament Selection 

3.11.4 Rank Selection 

The previous selection will have problems when the fitness differs very much. For 

example, if the best chromosome fitness is 90% of all the roulette wheel then the other 

chromosomes will have very few chances to be selected. Rank selection first ranks the 

population and then every chromosome receives fitness from this ranking. The worst 

will have fitness I, second worst 2 etc. and the best will have fitness N (number of 

chromosomes in population). 

It can be seen in following picture, figure-3.6 & 3.7, how the situation changes after 

changing fitness to order number. 
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4. 

uctinson1 

Diomn 3 

ocnin4 

Figure 3.6: Situation before Ranking (Graph of Fitness) 

oClnuaxr I 

ECliimne 2 
uCIromwr 3 

DCflAiW 4 

Figure 3.7: Situation after Ranking (Graph of order numbers) 

After this all the chromosomes have a chance to he selected. But this method can lead 

to slower convergence, because the best chromosomes do not differ so much from 

other ones. 

3.11.5 Steady-State Selection 

This is not particular method of selecting parents. Main idea of this selection is that 

big part of chromosomes should survive to next generation. 

GA then works in a following way. In every generations are selected a few (good - 

with high fitness) chromosomes for creating a new offspring. Then some (bad - with 

low fitness) chromosomes are removed and the new offspring is placed in their place. 

The rest of population survives to new generation. 

3.12 Crossover (Binary Valued Recombination) 

Once two chromosomes are selected, the crossover operator is used to generate two 

offspring. There are many types of crossover are available such as single point, 

inultipoint, uniform and arithmctic crossover etc. 
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3.12.1 Single-point Crossover 

In single-point crossover one crossover position k[1,2.....Nvar-1], Nvar: number of 

variables of an individual, is selected uniformly at random and the variables 

exchanged between the individuals about this point, then two new offspring are 

produced. The illustration of this process is given below. 

It could be considered the following two individuals with 11 binary variables each: 

Parent! 0 1 1 1 0 0 1 1 0 1 0 

Parent2 1 0 1 0 1 1 0 0 1 0 1 

The randomly chosen crossover position is: Crossover position ---> 5 

After crossover the new individuals are created: 

Offspringl 011101100101 

0ffspring2 1 0 1 0 110  1 1 0 1 0 

Figure 3.8 shows graphically the single point crossover. 

PB11I •); 

1 

Figure 3.8: Single-point Crossover 

3.12.2 Multi-point Crossover 

For multi-point crossover, m crossover positions ki[1,2.....lVvar-IJ, i=]:m, Nvar: 

number of variables of an individual, are chosen at random with no duplicates and 

sorted in ascending order. Then, the variables between successive crossover points are 

exchanged between the two parents to produce two new offspring. The section 

between the first variable and the first crossover point is not exchanged between 

individuals. Figure 3.9 illustrates this process. 
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It could be considered the following two individuals with II binary variables each: 

Parentl 0 1 1 1 0 0 1 1 0 1 0 

Parent2 1 0 1 0 1 1 0 0 1 0 1 

The randomly chosen crossover positions are: 

Crossover position: (m=3) 2 6 10 

After crossover the new individuals are created: 

Offspring 1 0 11 1 0 1 ii 1 1 0 1 I 1 

Offspring 2 1 011  1 0 01 0 0 1 0 0 

parents offspring 

5 
:*" 

i 

Figure 3.9: Multi-point Crossover 

The idea behind multi-point, and indeed many of the variations on the crossover 

operator, is that parts of the chromosome representation that contribute to the most to 

the performance of a particular individual may not necessarily be contained in 

adjacent sub strings (Booker 1987 [135]). Further, the disruptive nature of multi-point 

crossover appears to encourage the exploration of the search space, rather than 

favoring the convergence to highly fit individuals early in the search, thus making the 

search more robust (Spears & Dc Jong 199 l[136]). 

3.12.3 Uniform Crossover 

Single and multi-point crossovers define cross points as places between loci where an 

individual can be split. Uniform crossover (Syswerda 1989 [137]) generalizes this 

scheme to make every locus a potential crossover point. A crossover mask, the same 

length as the individual structure is created at random and the parity of the bits in the 

mask indicates which parent will supply the offspring with which bits. 
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It could be considered the following two individuals with 11 binary variables each: 

Parentl 0 1 1 1 0 0 1 1 0 1 0 

Parent2 1 0 1 0 1 1 0 0 1 0 1 

For each variable the parent who contributes its variable to the offspring is chosen 

randomly with equal probability. Here, the offspring I is produced by taking the bit 

from parent I if the corresponding mask bit is I or the bit from parent 2 if the 

corresponding mask bit is 0. Offspring 2 is created using the inverse of the mask, 

usually. 

Parentl 01100011010 

Parent2 1 0 0 1 1 1 0 0 1 0 1 

Afler crossover the new individuals are created: 

Offspringl 1 1 1 0 1 1 1 1 1 1 1 

Offspring2 0 0 1 1 0 0 0 0 0 0 0 

Briefly, during the Uniform crossover - bits are randomly copied from the first or 

from the second parent. Figure 3.10 shows the uniform crossover. 

Parent A Parent B Offspring 

Figure 3.10: Uniform Crossover 

3.12.4 Shuffle Crossover 

Shuffle crossover (Caniana, Eshelmann, & Schaffer 1989 [138]) is related to uniform 

crossover. A single crossover position (as in single-point crossover) is selected. But 

before the variables are exchanged, they are randomly shuffled in both parents. Afler 

recombination, the variables in the offspring are unshuffled. This removes positional 

bias as the variables are randomly reassigned each time crossover is performed. 

4- 
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3.12.5 Arithmetic Crossover 

In this type crossover some arithmetic operation is performed to make a new 

offspring. Figure 3.11 shows arithmetic crossover. 

PrentA P&erit B Offspring 
+ . 

11001011 + 11011111 = 11001001 (AND) 

Figure 3.11: Arithmetic Crossover 

3.13 Mutation 

After recombination offspring undergo mutation. As new individuals are generated, 

each character is mutated with a given probability. In a binary-coded GA, mutation 

may be done by flipping a bit, while in a non-binary-coded GA, mutation involves 

randomly generating a new character in a specified position. Mutation produces 

incremental random changes in the offspring generated through crossover. When used 

by itself, without any crossover, mutation is equivalent to random search, consisting 

of incremental random modification of the existing solution, and acceptance if there is 

improvement. However, when used in the GA, its behavior changes radically. In the 

GA, mutation serves the crucial role of replacing the genes values lost from the 

population during the selection process so that they can be tried in a new context, or 

of providing the gene values that were not present in the initial population. Figure 

3.12 shows the mutation process. 
IN 

Aft.r crossover After rnuon 

I 

11001001 => 10001001 

Figure 3.12: Mutation (Bit inversion) - Selected Bits are Inverted. 

3.14 Parameters Selection 

A large number of parameters and operators are used in GA such as: 

1. Crossover and Mutation Probability 

In this research there are two basic parameters of GA - crossover probability and 

mutation probability are used. 
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Crossover probability says how often will be crossover performed. If there is no 

crossover, offspring is exact copy of parents. If there is a crossover, offspring is made 

from parts of parents' chromosome. If crossover probability is 100%, then all 

offspring is made by crossover. If it is 0%, whole new generation is made from exact 

Copies of chromosomes from old population (but this does not mean that the new 

generation is the same!). Crossover is made in hope that new chromosomes will have 

good parts of old chromosomes and maybe the new chromosomes will be better. 

However it is good to leave some part of population survive to next generation. 

Mutation probability says how often will be parts of chromosome mutated. If there 

is no mutation, offspring is taken after crossover (or copy) without any change. If 

mutation is performed, part of chromosome is changed. If mutation probability is 

100%, whole chromosome is changed, if it is 0%, nothing is changed. Mutation is 

made to prevent falling GA into local extreme, but it should not occur very often, 

because then GA will in fact change to random search. 

2. Other Parameters 

There are also some other parameters of GA. One also important parameter is 

population size. 

Population size says how many chromosomes are in population (in one generation). 

If there are too few chromosomes, GA has a few possibilities to perform crossover 

and only a small part of search space is explored. On the other hand, if there are too 

many chromosomes, GA slows down. Research shows that after some limit (which 

depends mainly on encoding and the problem) it is not useful to increase population 

size, because it does not make solving the problem faster. 

3.15 Genetic Algorithm Complexities in Research 

• The traditional approach to using Genetic Algorithms is to see them as 

optimizers. This largely unconscious view has dominated the way GAs have 

been interpreted. 1-Jowever, as this research hopefully made clear, GAs can be 

used as effective tools for "Global Solver". To appreciate this point, consider 

the function optimization technique using GA. The complexity of such a 

problem is too great to be treated analytically, yet GA can often find a 

solution. One does not care if the solution found by a GA is a global or local 

optimum. Usually ones care more for the "binary" answer of whether a 
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solution can or cannot, be found at all if so, if it is adequate. It is adequacy, 

rather than optimally count. 

• GAs can not effectively solve problems in which there is no way to judge the 

fitness of an answer other than right/wrong, as there is no way to converge on 

the solution. These problems are often called "needle in a haystack" problems. 

As with all current machine learning problems it is worth tuning the 

parameters such as mutation probability and recombination probability to find 

reasonable setting for the problem class are working on. There are theoretical 

but not yet practical upper and lower bounds for these parameters that can help 

guide selection 

3.16 Techniques for Solving Mathematical Problem 

Techniques for solving mathematical programs depend on the nature of the objective 

function and constraint set. The following major sub fields exist: 

• Linear programming studies the case in which the objective function f is 

linear and the set A is specified using only linear equalities and inequalities 

• Integer programming studies linear programs in which some or all 

variables are constrained to take on integer values 

• Quadratic programming allows the objective function to have quadratic 

terms, while the set A must be specified with linear equalities and 

inequalities 

• Nonlinear programming studies the general case in which the objective or 

constraints or both contain nonlinear parts 

• Stochastic programming studies the case in which some of the constraints 

depend on random variables 

3.17 Differences and Significances of GA from Other Methods 

There are five basic differences between genetic algorithms and the conventional 

optimization methods [2]: 

1. Direct manipulation of a coding 

At the string level, GA manipulates decision variable representations to make use of 

similarities among other high performance strings. The GA works with a coding of 

the paralueter rather than the actual parameter. Other optimization methods deal with 

functions and control variables directly. 
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Search from a population and not a single point 

GAs work at the population level, whereas other methods work from a single point, 

which tends to increase the probability of reaching a false peak. These mean GA 

works from a population of strings instead of a single point. 

Search via sampling which is a blind search 

GAs use only information that is relevant; all other information is ignored, which 

makes GAs a very powerful tool in search problems where the necessary information 

is not available or difficult to obtain. This makes GAs applicable to virtually any 

problem. 

Search using stochastic operators and not on deterministic rules 

The GA uses probabilistic transition rules, not deterministic rules. This means that 

GAs use random choice to direct a very exploitative search instead of deterministic 

transition rules. This removes dependence on any preconceived strategies. 

I ndependence of function properties such as derivatives 

This means that GAs are applicable in a wide range of situations. Application of GA 

operators causes information from the previous generation to be carried over to the 

next. These are some of the main advantages for choosing a GA over other 

conventional methods for this work. 

3.18 Why Genetic Algorithm For Function Optimization? 

Most of the traditional search theories for function optimization are only suitable for 

lmding local optimal solutions. The results depend heavily on the starting search point 

when the function has a considerable amount of local optima. In many cases, the 

search gets trapped in the nearest local optimal point instead of continuing its search 

towards the global optimal solution. 

For instance, it can be considered that y is a mathematical function with one 

independent variable x. 

y1 (x) = 1+ cos (x)/(l + 0.01 xx) where (0 :!~ x ~! 50) 

Figure 3.13 shows the plot of equation y1  
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Figure 3.13: Plot of y1  

In order to find its global minimum, the traditional search scheme with the starting 

point at x= I is at first used. The global minimum point 0.0883634 is found after 

mathematical solution at x = 3.08531. Now graphically the result is shown in figure 

3.14 

0 10 20 30 40 50 

Figure 3.14: Minimization of  yj 

In this case, it is fortunate to find the global minimum, but if it is chosen the starting 

point at x=50, after mathematical solution it is found that the global minimum is 

0.956873 at x = 47.0833 

Similarly for this case now graphically the result is shown in figure 3.15. 
2 
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Figure 3.15: Minimization for Different Case of y 
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This simple problem demonstrates the shortcoming of many traditional search 

schemes: that is needed to choose an appropriate starting point in order to get to the 

global optima. But this is not possible if there is no idea what the function is like. For 

some one or two dimensional search spaces, it can be simply found the solution 

graphically, but when the dimension of the search space increases, visualization is 

almost impossible. In that case it is needed some profound mathematical technique to 

try to get some information about the required target function. This process becomes 

tedious and manually time consuming. Hence, there is a need for some alternatives 

when almost no information about the function is given. Genetic algorithm is one of 

them. 

3.19 Computer Accomplishment of GA 

During the first approaching of genetic algorithm (GA) it was problem for many users 

for not knowing where to start or how to begin. On the other hand, this aversive 

reaction seems strange. After all in previous chapters it has been seen that how GAs 

mechanically quite simple, involving nothing more than random number generation, 

string copies, and partial string exchanges. In this chapter at first data structures and 

algorithms necessary to implement the simple genetic algorithm are discussed. Search 

space & searching a maximum of a function are also discussed. And at last why GA 

works and the actions of a genetic algorithm for a simple parameter optimization 

problem are also focused in this chapter. 

- 3.20 Data Structures 

Genetic algorithms process populations of strings. Therefore it comes as no surprise 

that primary data structure for the simple genetic algorithm is a string population [2]. 

There are any numbers of ways to implement populations. 

INDIVIDUAL 
NUMBER 

 INDIVIDUAL  

STRING X f(X) OTHER 
1 01111 15 225  

2 01001 9 81  

ii 00111 7 39  

Figure 3.16: Schematic of a String Population in a Genetic Algorithm 
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For the simple genetic algorithm it can be chosen the simplest; a population is 

constructed as an array of individuals where each individual contains the phenotype 

(the decoded parameter or parameters), the genotype (the artificial chromosome or bit 

string), and the fitness (objective function) value along with order auxiliary 

information. A schematic of a population is shown in figure 3.16. 

3.21 Search Space 

If some problems are solved, some solutions are usually looked for, which will be the 

best among others. The space of all feasible solutions (it means objects among those 

the desired solution is) is called search space (also state space). Each point in the 

search space represents one feasible solution. Each feasible solution can be "marked" 

by its value or fitness for the problem. Solution is looked for some result, which is one 

point (or more) among feasible solutions - that is one point in the search space. 

The looking for a solution is then equal to a looking for some extreme (minimum or 

maximum) in the search space. The search space can be whole known by the time of 

solving a problem, but usually it is known only a few points from it and other points 

are generated as the process of finding solution continues. Figure-3.17 shows example 

of a search space. 

Figure 3.17: Example of a Search Space 

The problem is that the search can be very complicated. One does not know where to 

look for the solution and where to start. There are many methods, how to find some 

suitable solution (i.e. not necessarily the best solution), for example hill climbing, 

taboo search, simulated annealing and genetic algorithm. The solution found by this 

method is often considered as a good solution, because it is not often possible to prove 

what is the real optimum. 
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3.22 Searching for a Maximum of a Function with GA 

Genetic Algorithms (GAs) are counted to the adaptive random search methods. In 

dealing with function optimization, the minimum/maximum of a function (y=f (x)) is 

found bascd on a variation of x beginning with one or more starting points. GA 

evolved with a set of points. The basic element of a GA is the artificial individual. 

Similar to a natural individual an artificial individual consists of a chromosome and a 

fitness value. The fitness of an individual describes how well an individual is adapted 

to the nature. It determines the individual's likelihood for survival and mating. Every 

changing of the chromosome leads to a changing of the individual fitness. 

In this case (searching a maximum of a function) an artificial individual only consists 

of a value of x and y f (x)). x play the role of a chromosome and y the role of the 

fitness. 1-lowever, the implemented Genetic Algorithm works with a binary coded x 

(xc), not with the x themselves. 

artificial individual ::= I = {xc,f(x)} 

A set of such individuals is called a population. 

population P = (11,12,. ,jn) 

n: number of individuals 

3.23 Coding in Computer Accomplishment 

The under laying GA implementation works based on coded x value. The aim of 

coding is to create a representation of x, which allows any position of x to be 

modified, to cut at any position and to splice two cutted parts onto a new x. A coded x 

is like a chromosome in genetics, in other words a modifiable carrier of information. 

Table 3.2: (Simple Example of Coding) 

Examples of coding 

x
'F- 

xc (binary coded x) 
. ..... 

113 01001110 

J
F3~~IL

— 
 oo"0001 

56 



The implemented coding method is based on a binary string representation of a 

number (a string of 0 and 1). In the following some examples (Table-3.2) of binary-

coded x values are shown. For simplification a length of 8 bit and positive integer 

numbers are used. 

3.24 The Whole Procedure of Genetic Algorithm in Accomplishment 

An initial population (parental generation) is generated at random (randomly chosen x 

values, calculated y values). Based on this generation the GA creates the offspring 

generation by using the genetic operators Selection, Crossover and Mutation. This 

new generation of artificial individuals will be the new parental generation for the 

next offspring generation. With each new generation of individuals the overall fitness 

value of the population should increase. The process of creating offspring generations 

based on the former generation could be repeated until the optimum is reached. 

The following sketch Figure-3. 18 shows a single iteration step of the implemented 

GA in order to create 2 new individuals. This step is repeated until the number of 

individuals in the offspring generation is the same as that in the parental generation. 

Generation V Generation V+1 

Figure 3.18: A Single Iteration step of the Implemented GA 

The process of creating new generations can be terminated when a predefined number 

of generations is achieved or when the overall fitness value of the population is not 

increased during the last generations. In the following there are brief descriptions of 

genetic operators. 
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3.24.1. Selection Procedure 

Selection is the process of picking out a suitable individual from the population in 

order to create a new individual. Suitable individuals are individuals with a good 

fitness. This operator is the implementation of the principle "survival of the fittest". 

The implemented tournament selection chooses two parental individuals (father, 

niother) in order to create two new individuals of the offspring generation. Suitable 

parental individuals are such individuals with a high y value because the maximum of 

the function has to be found. 

Table 3.3: (Selection Example) 

Examples: Selection 

(based on the test function FO; 0.0 <x < 10) 

Parents x xc binary-cedx y 

P1 3 00100000 0.108 

P2 8 00010000 1.22 E-08 

P3 7 11100000 2.68E 031 

The upper example (Table-3.3) shows three x, y-values. P1 and P3 could be selected 

as "father"- and "mothcr'-individual. The fitness of these individuals is higher of P2. 

3.24.2 Crossover Procedure 

After the selection of the two parental individuals next step is the crossover. 

Crossover is the process of creating a new coded xc by combination of two coded xc. 
If a one-point (single-point) crossover algorithm is used. 

Table 3.4: (Crossover Example) 

Example: Crossover 
(basedon function Fo,0.0<x<1O; crossover point=1) j 

xc xc xc(binaiy- y- 
Parents x (cutted) (twisted) xc (binary- coded x) Wert x y children 

1 108 0 1 coded x) 
1 PF 00100000 0 

. 0100000 0100000 10100000 5 0.798 Cl 
68 

PM 7 11100000 :1 0 01100000 6 0.108 C2 
- 1100000 1100000 

Depending on a predefined probability value (pc: probability of crossover; 0 _:!~,-pc :~- 1) 

the xc values of the parental individuals will be combined or not. If the xc values are 

combined (crossover = true) then the binary-coded x values of the parental individuals 

14,  
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(a bit-string) will be cutted at a randomly chosen crossover point into 2 parts. Two 

new coded xc values are generated by an alternate combination of these parts. Table-

3.4 shows the crossover example. 

3.24.3. Mutation Procedure 

The last step of the Genetic Algorithm is the mutation. Mutation is a process of 

changing a coded xc value randomly. A one-point mutation algorithm is implemented. 

The mutation will be carried out depending on the mutation probability ('p/n; 0 !~'pm 15' 

1.0). If the xc value was mutated then the value of a randomly chosen position of the 

binary-coded xc is changed. That means if the value at this position is 0 it will be 

changed into I and vice versa. In the following example (Table-3.5) CI should not be 

mutated; Cl should be mutated. Position 3 of the binary-string xc is changed. 

Table 3.5: (Mutation Example) 

Example: Mutation 
(based on function FO; 0.0 <x < 10; mutation position = 3) 

xc (binary- 
. 

after 
before xc (binary- coded x) 

'  

mutation 
mutation coded x) 

1fl1fl
V 

A•JV UU V 
78 

-' 

Cl (no 
Cl 10100000 5 0.798 mutated) 

C2 01100000 6 0.108 
01000000 2 

1.22 E- 
 C2(mutated) 08 

3.25 Mathematical Background 

The mathematical foundation of genetic algorithms is the schemata theorem of J. 11. 

Holland. It makes a statement about the propagation of schemata (or building blocks) 

within all individuals of one generation. A schema is implicitly contained in an 

individual. Like individuals, schemata consist of bit strings (1, 0) and can be as long 

as the individual itself. In addition, schemata may contain "don't care" positions 

where it is not specified whether the bit is I or 0, i.e. schemata Iii are made from the 

alphabet {l, 0, #}. In other words, a schema is a generalization of (parts of) an 

individual. As for example, the individuals: 

01010010100101010101110101010101 and 

01011010100101110001110111010111 

can be summarized by the schema: 

0101#0l0I00l0I#10#01I 101#10101#1 
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where all identical positions are retained and differing positions marked with a "fi" 

which stands for "don't care". The length WOof the above schema is 31, which is 

one minus the distance from the first to the last fixed symbol (i.e. I or 0 but not #). 

The total number of different schemata of length I over an alphabet of cardinality k 

Because each string of length I contains 21  schemata, with n individuals in 

one generation there are between 0 and n 21  schemata in the population (depending 

on the similarity of the n individuals). The order of a schema o(H) is the number of 

fixed positions (I or 0 but not #). 

The number sH, 0 [3], [2]) of occurrences of a particular schema H in a population of 

n individuals at time 1. The bit string Aj of individual i gets then selected for 

reproduction with probability Pj: 

Pi 
- 

fl 

i= 1 

where ii  is the fitness value of the i-/h individual. The expected number of 

occurrences of schema H at time t+1 is: 

f(Fr) 
s(H,t +1)=s(H,t).n. 

fi 

with f (H) as the average fitness of all individuals (strings A/) that contain H. 

Crossover and mutation operators can destroy schemata during reproduction. The 

longer a single individual, the smaller the probability that a schema H will be 

involved in a crossover event. The longer a schema, i.e. the larger otO, the more 

likely is its destruction through recombination with another individual. Hence, for 

crossover the lower bound for the survival probability of a schema H is: 

p > 1 — 
8(H) 

L-1 

with L as the length of one whole individual. If we perform crossover stochastically at 

a frequency Pc the survival probability Ps becomes: 

8(H) 

— 1 

Summarizing the effects of independent crossover and reproduction we arrive at the 

following equation for the expected occurrence of a schema H at time 1+1: 
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1(H) ( 6(H) 
s(H,t +i)=s(H,t).n. 

" 1.)  
fi 

This equation tells the schemata increase over time proportional to their relative 

fitness and inverse proportional to their length. - Mutation can effect a schema I-I at 
each of its o(H) fixed positions with mutation probability Pm. Survival of a single 

constant position in a schema is thenps = I - Pm and survival of the entire schema: 

p=(1—p ,n)4'I 

which for small Pm can be approximated by P 1 - 0 (H ) . P m . Summarizing 

the effects of independent mutation, crossover and variation get the following formula 

for the expected count of a schema H: 

1(H) ( 8(H) 
s(ff,t +i) =s(H,t).n. 

-1 
0(H)P

Efi 

 

Assuming a schema H could always outperform other schemata by a fraction b of the 

total mean fitness then this equation can he rewritten as: 

i i 
+b—f1 ( 

n 8(ff 
s(H,t +i)=s(H,t)J1 p 

Efi 
L-1 

fl F-i 

=s(H,t).(i+b).i—p 8(H)  

This equation is of the form, f 1  = f0 (i + b)' g(p ,p ,,L ,6(H)) which says 

that, the number of schemata better than average will exponentially increase over 

time. Effectively, many different schemata are sampled implicitly in parallel and good 

schemata will persist and grow. This is the basic rationale behind the genetic 

algorithm. It is suggested that if the (linear) representation of a problem allows the 

formation of schemata then the genetic algorithm can efficiently produce individuals 

that continuously improve in terms of the fitness function. 

Finally this chapter concludes with the detail view of standard GA as the base of the 

proposed method. The next chapter describes the proposed method for key improving 

the performance of GA for the functional optimization problems. 
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CHAPTER 4 

Proposed PGA: An improved Evolutionary Approach 

Since GA is the base of our proposed Precise Genetic Algorithm (PGA), this chapter 

first briefly explains GA and its problems regarding functional optimization and then 

describes the aspects of proposed PGA as an evolutionary approach to solve several 

functional optimization problems in high dimensional search space. 

4.1 Introduction 

There are many diverse applications that are mathematically modeled in terms of 

function optimization problems with multiple independent variablcs. The optimization 

of these models is typically difficult due to their combinatorial nature and potential 

existence of multiple local minima in the search space. Evolutionary algorithms are 

powerful tools for solving such problems. A GA falls into the much broader category 

of evolutionary approaches. This algorithm attempts to simulate the processes of 

evolved biota in optimization. They are the search algorithms which are the model of 

machine learning that derive their behavior from a metaphor of processes of evolution 

in nature. GAs do not require gradient or Hessian information. GAs use optimization 

strategies inspired by Darwin's theory of evolution and have direct application in 

mathematical optimization to find the global minimum or maximum in a search space. 

At every generation, GAs produces a new set of strings using the fragments of the 

fittest of the old. The main advantages of the GAs are their robustness and their ability 

to provide a balance between efficiency and effectiveness in different environments 

which cover a variety of applications [2]. However, to reach an optimal solution with 

a high degree of confidence, they typically require a large number of analyses during 

the optimization search. Performance of these methods is even more of an issue for 

problems that include multiple variables. The work here enhances the efficiency and 

accuracy of the GA for the optimization of the objective functions having more than 

one variable. 

GA manages population of solutions instead of a single solution to find an optimal 

solution to a given problem. Although GA draws attention for functional 

optimization, it may search same point again due to its probabilistic operations that 

hinder its performance. In this study, we make a novel approach of standard Genetic 

Algorithm (sGA) to achieve better performance. The modification of sGA is 

investigated in selection and recombination stages and proposed Precise Genetic 
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Algorithm (PGA) as an evolutionary approach. In PGA, we bring and apply an 

approach with the use of precise genetic operators as powerful solution searching 

mechanisms, for both single and multivariable optimization problems. Generally, it is 

time-consuming for GAs to find the solutions, and sometimes they cannot find the 

global optima. In order to improve their search performance, we propose the 

technique which employs precise crossover, mutation and selection to generate 

offspring based on the best individuals of current and past generations. It is 

considered to have the effect of fast searching for the optimum solutions with the 

ability to avoid the production of ineffective individuals and maintain the diversity of 

the population. This research makes an effort to follow the potential trend of 

enhancing the search performance of GAs by developing new methods of genetic 

operators with major attention being paid to the diversity of populations and the said 

modifications improves the efficiency of sGA in terms of fast convergence and 

quality solution. 

4.2 Standard Genetic Algorithm (sGA) 

Standard GA is a stochastic search and optimization method imitating the metaphor of 

natural biological evolution. Generally it is a class of evolutionary algorithms that 

model natural processes, such as selection, recombination, mutation and migration [1-

5,139, 140]. The following Figure 4.1 shows the structure of a simple GA. It works on 

the population of individuals instead of single solution and it may works in a parallel 

manner [5, 141]. 

Generate Evaluate objective rAre optimization Yes I Best 
Initial function 1ciieria met? 

I 
[ividua1s 

population 

no 

Start 4' 
Selection Result 

Generate Recombination 
new 

population ,1r 

L uta oEIIJ 

Figure 4.1: Structure of a Genetic algorithm 
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At the beginning, individuals (the population) are randomly initialized that stands as 

initial population. The objective function is then evaluated for these individuals. If the 

optimization criteria are not met, the creation of a new generation starts [4, 5, 142]. 

Individuals are selected according to their fitness for the production of offspring. 

Parents are recombined to produce offspring. All offspring will be mutated with a 

certain probability. The fitness of the offspring is then computed. The offspring are 

inserted into the population replacing the parents, producing a new generation. This 

cycle is performed until the optimization criteria are reached [2, 5, 140]. 

4.3 Problems regarding sGA for Functional Optimization 

In fact GA manages population of solutions instead of a single solution to find an 

optimal solution to a given problem. Thus GAs is considered as an intelligent search 

technique, which is capable of searching large search spaces with multiple peaks [143]. 

But conventional GAs suffers from bad initializations and it is widely accepted that the 

convergence rate of conventional GAs are influenced by the initial population. 

The standard GA, being faced with the usual conflict between reliability and 

computation time, often results in an unsatisfactory compromise, characterized by a 

slow convergence, when an exact solution is required. Although GA is performed 

well in optimization problems, due to working with population of solutions it faces 

computation time and slow convergence through its basic steps such as selection, 

reproduction and replacement [144, 145]. The random selection in GA and repeated 

identical calculation hampered its overall performance [8, 146, 147]. 

Fundamentally, the problems regarding GA are significantly related to the computation 

time and slow convergence [144, 145]. Due to its probabilistic nature, the duplicate 

selection and repetition of same searching points deteriorate the overall performance of 

GA. To overcome the weakness, we have proposed a Precise Genetic Algorithm 

(PGA); the next section describes the proposed method in detail. 

4.4 Significance of the Propose Approach 

The key to improving the performance of the GA is to reduce the time needed to 

calculate the fitness. By examining the mechanisms of the GA, it is seen that the 

diversity of the population decreases as the algorithm runs. The fitness values for the 

same chromosomes are recalculated repeatedly. If previously calculated fitness values 

can be efficiently saved, computation time will diminish significantly. This suggests 
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an opportunity for performance improvement. By efficiently storing fitness values, 

GA performance can be dramatically improved. 

4- 

4.5 Aims of the Proposed Approach 

To enhance performance, a modification of GA is investigated in selection and 

recombination stages to maintain population diversity. The proposed method is called 

Precise Genetic Algorithm (PGA). The primary motivation for the proposed PGA is to 

ensure the successive convergence in optimization problems to reach optimal solution 

with a minimal lime. Population diversity hinders premature convergence and helps to 

get global optimal points in the search space. PGA also eliminates the possibility to 

search in the same point that could be expensive in GA. Experimental results on a set 

of sample optimization functions may reveal that PGA could be replayed optimal 

solution within a less number of generation(s) than that of standard GA. 

4.6 The Proposed Method PGA to Solve Optimization Problem 

As an optimization technique, genetic algorithm simultaneously examines and 

manipulates a set of possible solution. Over the past twenty years numerous 

application and adaptation of genetic algorithms have appeared in the literature. 

During each iteration of the algorithm, the processes of selection, reproduction and 

mutation each take place in order to produce the next generation of solution. Genetic 

Algorithm begins with a randomly selected population of chromosomes represented 

by strings. 

The PGA uses the current population of strings to create a new population such that 

the strings in the new generation are on average better than those in current population 

(the selection depends on their fitness value). The selection process determines which 

string in the current will be used to create the next generation. The crossover process 

determines the actual form of the string in the next generation. Here two of the 

selected parents are paired. A fixed small mutation probability is set at the start of the 

algorithm. This crossover and mutation processes ensures that the PGA can explore 

new features that may not be in the population yet. It makes the entire search space 

reachable, despite the finite population size. 
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4.7 Aspects of PGA 

Precise Genetic Algorithm is an extension of the traditional genetic algorithm and 

modified by a search method to further improve individual's fitness that may keep high 

population diversity and reduce the likelihood premature convergence. This technique 

offers a very flexible and reliable tool able to search for a solution within a global 

context. 

PGA effectively incorporates the global exploring ability of the genetic algorithm with 

the help of population diversity and the local convergent ability of the precise 

algorithm by adding new search points. Other techniques are also employed by PGA is 

to ensure outperformance over standard GA (sGA). Standard GA always accepts the 

newly produced individuals as offspring in the crossover and mutation. On the other 

hand, PGA does not directly allow two offspring like sGA. PGA always chooses the 

best chromosomes during the crossover and mutation process. In the crossover process, 

two parents are chosen to produce two offspring based on the classical multipoirit 

crossover. The two parents and offspring compete with each other and PGA chooses 

two best chromosomes as offspring. Likewise, in the mutation process, the 

chromosome chosen to mutate and the altered chromosome compete with each other 

and PGA accepts the better one as offspring. With each new generation of individuals 

the overall fitness value of the population should increase. The process of creating 

offspring generations based on the former generation could be repeated until the 

optimum is reached. The coming sections explain steps of PGA in detail considering 

sGA as a base method dealing with function optimization. In PGA, the selective 

pressure applied through a number of generations, the overall trend is towards higher 

fitness chromosomes. Mutations are used to help preserve diversity in the population 

by introducing random changes into the chromosomes. The PGA scheme is illustrated 

in Figure 4.2. In each generation; two different individuals are selected as parents, 

based on their fitness. Crossover is performed with a high probability, Pc,  to fonri 

offspring. The offspring are mutated with a low probability, PM and inverted with 

probability P1, if necessary. A duplicate check may follow in which the offspring are 

rejected without any evaluation if they are duplicates of some chromosomes already 

in the population. The offspring that survive the duplicate check are evaluated and are 

introduced into the population only it they are better than the current worst member. 

Duplicate checking may be beneficial because a finite population can hold more 

schemata if the population members are not duplicated. Since the offspring of two 

identical parents are identical to the parents, once a duplicate individual enters the 

population, it tends to produce more duplicates and individual varying by only slight 

mutations. Premature convergence may then result. 
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I Generate initial population I 

I Evaluate each individual I 

Select two individuals without repetition, such that the probability 

of selection of each individual is proportional to its fitness. 

With a high probability, Pc,  perform crossover on the pairs to 

generate two offspring. If crossover is not performed, then the 

parents are copied unchanged to the offspring. 

Mutate the offspring with a small probability PM 

Perform inversion on the offspring with probability P j  if the 

algorithm calls for it 

"V 

If offspring are duplicates of any other individual already in 

population then reject 

I Evaluate offspring I 

If the offspring are better than the worst individuals in the 

population, then replace the two worst individuals with the 

offspring 

Stopping 
- Yes 

Figure 4.2: PGA Scheme 

Each of the above conditions reduces the duplicate checking time in comparison to the 

evaluation time. If the duplicate checking time is negligible compared to the evaluation 

time, then duplicate checking improves the efficiency of the GA. 
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4.7.1 Chrornosornal Representation in PGA 

PGA uses the similar encoding scheme like sGA for function optimization. A binary 

vector is used as a chromosome to represent real values ofx1 . For instance consider the 

following sample function should be optimized with PGA: 

f1 (x1 ,x2 ) = x1 .sin(10nx1 )± x2 .cos(10nx2 )-i- 2 where -1:~x1 !~3 and 

- I !~ x, :~ 2. We wish to optimize the function f1 with some required precision. The 

length of the vector depends on the required precision. In this case, it is considered that 

the desired output result should be 4 places after decimal point, i.e. the required 

precision is four decimal places for each variable. The domain of variable x1  has 

length 4; the precision requirement implies that the range [-1, 3] should be divided at 

least 4 x 10000 equal size ranges. This means that 16 bits are required as the first part 

of the chromosome: 

32768 = 
 15  <40000 ~: 2 16 = 65536. Similarly, the domain of variable x2  has length 3; 

the precision requirement implies that the range [-1, 2] should be divided at least 3 

10000 equal size ranges. This means that 15 bits are required as the second part of the 

chromosome: 

16384= 214  <30000!~: 215 = 32768 . The total length of a chromosome (solution 

vector) is then in = (16+15) = 31 bits; the first 16 bits code x1  and rest 15 bits 117-311 

codex2 . The binary string <b 
15 14 13 12 11 10 

b b b b b ...b 
0 30 29 28 27 16 
> and <b b b b ... b > map 

into a real number X from the range [-1 ... 3] and [-1 ... 2] respectively is completed in 

two steps: 

> Convert the binary string from the base 2 to base 10 

(<b15b14b13b12  ... b0>)2  =(>b1.2')10 =4 
(<b30b29b28b27... b16>)2  = (b1.2')10  = x 

> Find a corresponding real number x1 . 

The chromosomes (0000000000000000) and (1111111111111111) represent 

boundaries of the domain [-1, 3]. Each chromosome is a binary vector of several bits 

and converts it into corresponding real number to evaluate function. 

The minimum/maximum of a function (y = f(x1 )) is found based on a variation of x 

beginning with one or more starting points. The basic element of a GA is the artificial 

individual consists of a chromosome and a fitness value. The every changing of the 

chromosome leads to a changing of the individual fitness. In this case (searching a 
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maximum of a function), an artificial individual only consists of a value of 

x, and y = f(x,). x1 plays the role of a chromosomc and y plays the role of the fitness. 

The remarkable problems regarding GA encoding are duplication selection and 

searching same points again which significantly affects the performance and makes 

slow convergence. The next sub sections explain PGA as a remedy which evolved with 

a set of search point generation. 

4.7.2 Search Points Generation 

It is given the attention with the review of sGA and the following type optimization 

problems: Maximize f(x 1  , x2 ,. ..x rn ) where each x1  is a real parameter subject to 

a1 x1  :!~ h1 for some constants a1 and b1 . The formula 

x1  = left value + 4 x (right value - left value) ~ - i) is used to generate new search 

points within specific ranges by means of chromosomes avoiding duplication for better 

convergence. A representation having each variable xi  coded as a binary string of 

length rn1  clearly satisfies the precision rcquiren1ent. Additionally, the following 

formula interprets each such string: 

x1  = aj+ decima/(lOOlOO ... lOOl 7 )x (bj _ a1)~2rn1_1),where in = no. of used bit in 

chromosome. As for example, if the bit string size is 16 maps into a real number in the 

range [-1 ... 3] then the search point is generated byx1  = —1 ± X1  x 4 - i) where 

x is the decimal value of the corresponding bit string. Similarly 

x2  = —1±x x3~.215  — i)where x is the decimal value of the corresponding bit 

string. 

4.7.3 Precise Crossover 

This is a version of artificial mating. Individuals with high fitness should have high 

probability of mating. Crossover represents a way of moving through the space of 

possible solutions based on the information gained from the existing solutions. It is 

the process of creating a new offspring by combination of parental individuals [7, 142]. 

The bits between the numbers posi and pos2 indicate the position of the crossing 

points. 
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From two chromosomes 

v1  = (b1  ;. ; b 01  ; b 051+1  ;. ; b 0  ; ; b,,,) and 

v2  = (c1;;c1,01;c01+1;;c02;;c,,7) 

two new chromosomes are generated through exchanging the corresponding bits 

between positions pos! and pos2: 

v1' = (b1  ; ....; c 01  ; c,011  ;; c 02  ;; b,) and 

v = (c1  ;; b 0  ; b 01+1  ;; ; .......... ; Cm ) 

PGA does not directly accept two offspring v and V2  as sGA does. We compute all the 

'.4 fitness of { 
V1 

; }. Then we choose two best chromosomes from these four as 

the offspring according to their fitness values. 

4.7.4 Precise Mutation 

Mutation represents innovation. Mutation is important for boosting the search; some 

of evolutionary algorithms rely on this operator as the only form of search. The 

probability of mutation (pm) normally sets in smaller range e.g., 0.1. For each 

chromosome in the current (i.e. after crossover) population and for each bit within the 

chromosome: For each integer i in [1, m], generate a random number r in the range 

[0; 1]. if i; <p1, then mutate the ith bit ofv = (b1  ; ; b.; ; b) to generate a new 

chromosome V (b1  ;;1 - b, ;; b) . Then we compute the fitness of v and v' and 

PGA choose the better chromosome as the offspring. 

4.7.5 Precise Selection 

Selection is the process of picking out a suitable individual from the population in 

order to create a new individual. During each successive generation, a proportion of 

the existing population is selected to breed a new generation. Individual solutions are 

selected through a fitness-based process, where suitable solutions (as measured by a 

fitness function) are typically more likely to be selected. Suitable individuals are 

individuals with a good fitness [139, 147]. Here we use precise elitist selection scheme 

to select an elitist chromosome with the highest fitness value, which is copied directly 

into the new population of next generation. it ensures that at least one copy of the best 

individual(s) of the current generation is propagated on to the next generation. It is 
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important to prevent promising individuals from being eliminated from the population 

during the application of genetic operators. The other chromosomes are selected by 

"4 roulette-wheel selection process, where the selection probability of each individual is 

proportional to its fitness value. Selection operator is the implementation of the 

principle "survival of the fittest". Suitable parental individuals are such individuals 

with a high y value because the maximum of the function has to be found. 

4.7.6 Fitness Function 

Fitness function is the measure of the quality of an individual. The fitness function 

should be designed to provide assessment of the performance of an individual in the 

current population. In selection the individuals producing offspring are chosen. The 

selection step is preceded by the fitness assignment which is based on the objective 

value. This fitness is used for the actual selection process. There are many types of 

selection methods used in genetic algorithms, including: 

N Rank-based fitness assignment 

• Roulette wheel selection 

• Stochastic universal sampling 

• Local selection 

• Truncation selection 

• Tournament selection 

A decision about the method of selection to be applied is one of the most important 

decisions to be made. Selection is responsible for the speed of evolution and is often 

cited as the main reason in cases where premature convergence halts the success of a 

genetic algorithm. 

4.7.7 Evaluation Function and Fitness 

For the selection process (selection of a new population with respects to the probability 

distribution based on fitness values), a roulette wheel with slots sized according to 

fitness is used. Such a roulette wheel is constructed as follows (it can be assumed here 

that the fitness values are positive, otherwise, it can be used some scaling mechanism): 

Roulette Wheel Selection: Let f1 ,f2  .... fbe fitness values of individuals 1, 2,. .. ,p. 

Then the selection probability for individual 1 is: 
,. 

=

fi 

-I:f j  
I = I 
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For the selection process (selection of a new population with respects to the probability 

distribution based on fitness values), a roulette wheel with slots sized according to 

fitness is used: 

Calculate the fitness value eval(v) for chromosome v 

= I ......... pop size: 

Find the total fitness of the population 
pop - size 

F= leval(vi ). 

Calculate the probability of a selection p for each chromosome v 

(i = I ....... pop_size): 

p1  =eval(v1 )/F 

Calculate a cumulative probability q.for each chromosome v (i = 1......,pop_size): 

q1 = =1  p 

The selection process is based on spinning the roulette wheel pop_size times; each time 

it selects a single chromosome for a new population in the following way: 

Generate a random number r from the range [0... .1]. 

If r <q1  then select the first chromosome (v1 ); otherwise select the it/i 

chromosome v1  (2:!~ i :!~ pop_size) such that q_1  <r :~ q 

Obviously, some chromosomes would be selected more than once. This is in 

accordance with the Schema Theorem: the best chromosomes get more copies, the 

average stay even, and the worst die off. 

4.8 Experimental Analysis 

In a precise genetic algorithm, a gene is considered as a string of bits where the string 

is coded to represent some underlying parameter set. The initial population of genes 

which are called bit strings is created randomly and the length of the bit string 

depends on the problem which is to be solved. A fitness function which measures how 

good a solution string is must also be defined, based on the problem to be solved. 

Candidate solutions are encoded as fixed length binary vectors. The initial group of 

potential solutions is chosen randomly. These candidate solutions, called 

"chromosomes," evolve over a number of generations. At each generation, the fitness 
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of each chromosome is calculated; this is a measure of how well the chromosome 

optimizes the objective function. The subsequent generation is created through a 

process of selection, recombination, and mutation. The chromosomes are 

probabilistically selected for recombination based upon their fitness. General 

recombination (crossover) operators merge the information contained within pairs of 

selected "parents" by placing random subsets of the information from both parents 

into the respective positions in a member of the subsequent generation. Although the 

chromosomes with high fitness values have a higher probability of selection for 

recombination than those with low fitness values, they are not guaranteed to appear in 

the next generation. Due to the random factors involved in producing "children" 

chromosomes, the children may, or may not, have higher fitness values than their 

parents. 

The constructed algorithm for two-dimensional search space is quit similar to one 

dimensional search space. There are some representational difference lies between 

them. Except this the rest of algorithm is similar. In this dissertation as for instance the 

following two variables function should be optimized with GA: 

f(xj, x 2) = 15.5 1- x 1.sin(4nx 1) + x2.sin(2Oir 2) ................. (4.1) 

where —3 :!~x j  _:!M.l and 4.1 :5-x2  ~5.8. 

4.8.1 Problems Encoding 
) 

A binary vector is used as a chromosome to represent real values of x. The length of 

the vector depends on the required precision and in this case it is considered that the 

desired output result should be 4 places after decimal point, i.e., the required precision 

is four decimal places for each variable. The domain of variable x1  has length 15.1; 

the precision requirement implies that the range [-3.0, 12.1] should be divided at least 

15.1 x 10000 equal size ranges. This means that 18 bits are required as the first part of 

the chromosome: 

2' < 151000 < 2's. 

The domain of variable x2  has length 1.7; the precision requirement implies that the 

range [4.1, 5.81 should be divided at least 1.7 x 10000 equal size ranges. This means 

that 15 bits are required as the second part of the chromosome: 

2'< 17000 <2'. 
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The total length of a chromosome (solution vector) is then in = (18 ± 15) = 33 bits; the 

first 18 bits codex j  and remaining 15 bits 119-331 codex2. 

To find a corresponding real number x, the formula is used as follows 

x = left value -1- x 1. (right value - left value) / (2"- 1) 

According to this problem the real no. is given by 

x j  -3+x'x (12.1 _(3))/(2I8  1) 

-3±x'x 15.1 /(218_I) (4.2) 

x2 =4.1 ±x'x(5.8-4.1)/(2'5 - 1) 

=4.1+xx 1.7/(21 - 1) ....................................(4.3) 

4.8.2 Initial Population 

In this case it is assumed that there are 1 5 populations exist. A population of 

chromosomes is created, where each chromosome is a binary vector of (18+15)=33 

bits. All 33 bits for each chromosome are initialized randomly. 

a) Total l3it=/8+I5=33 

01 001101110110001001010101001100010 

02 101110101100101111111101010110100 

03 1101001 l000ll0lll0l0000ll0011l0ll 

04 001000011100011011111111010010000 

05 l000001010101I0000101I00000l 11100 

06 100100100100000010111011110011011 

07 111111001000111011110000111100111 

08 110011101010101110111010110001001 

09 0110ll0l00lll00101olollllllol000l 

10 0011100000011011011110000101 

11 lllll0oll0000000llololoOlo1011lol 

12 010100000001111111001010001010010 

13 l00llllll00l0llool0000loolll 11010 

14 1011lloololoolololoollololll10101 

15 100100101000000000001 101000000011 
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Similarly ---- > 

XJ,2 = 8.018081 

XJ,5 = 4.707628 

XJ,8 = 9.190343 

xi,ij = 11.716831 

X/14 = 8.127180 

XJ,3 = 9.452087 

xj,6 = 5.626613 

x /, 9  = 3.442512 

X112 = 1.726083 

X115 = 5.64 1244 

xi,4 =-1.007714 

= 11.897010 

= -0.521149 

XJ13 = 6.413 170 

4.8.3 Evaluation Function 

The first 18 bits to represent x1  from the above populations set are given by, 

01 001101110110001001 (56713) 

02 101110101100101111 (191279) 

03 110100110001101110 (216174) 

04 001000011100011011 (34587) 

05 100000101010110000 (133808) 

06 100100100100000010 (149762) 

07 111111001000111011 (258619) 

08 110011101010101110 (211630) 

09 011011010011100101 (111845) 

10 001010100000011010 (43034) 

11 111110011000000011 (255491) 

12 010100000001111111 (82047) 

13 100111111001011001 (163417) 

14 101111001010010101 (193173) 

15 100100101000000000 (150016) 

From equation (4.2) it is found that, 

xj1 =-3+decimal(0011011101100010012)x 15.1/(2'-1) 

= -3 + 56713 x 15.1 / 262143 

= 0.266791 

Again, the next 15 bits to represent x2 from the above populations set are given by, 

01 010101001100010 (10850) 

02 111101010110100 (31412) 

03 100001100111011 (17211) 

-4 
04 111111010010000 (32400) 

05 101100000111100 (22588) 
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06 111011110011011 (30619) 

07 110000111100111 (25063) 

08 111010110001001 (30089) 

09 010111111010001 (12241) 

10 101111000010011 (24083) 

11 010100101011101 (10589) 

12 001010001010010 (5202) 

13 000010011111010 (1274) 

14 001101011110101 (6901) 

15 001101000000011 (6659) 

Now from equation (4.3) it is found that, 

x2,1 =4.1 +dccimal(0101010011000102)x 1.7/(215 1) 

=4.1 + 10850x 1.7/32767 

= 4.662914 

X22 = 5.729701 X23 = 4.992932 

X25 = 5.27 1899 x26 = 5.688559 

X28 =5.661061 X29 =4.735081 

X211 = 4.649373 X2,12 = 4.369887 

X2,/4 = 4.45 8034 X2,15 = 4.445479 

X24 = 5.780960 

X27 = 5.400305 

X210 = 5.349461 

x213  = 4.166097 

During the evaluation phase each chromosome are decoded and the fitness function 

values are calculated from (x1, x2) values. So it is found from equation (4.1) that, 

12 

Eva! (v j) =f(x j,j,x2, j) =f(0.266791, 4.6629 14) 

= 15.5 +x 1.sin (4irr11) 1-  x2.sin (20'zx2 1) 

= 15.5+0.266791 xsin(4irx0.266791) + 4.662914xs1n(20irx4.662914) 

= 12.060122. 

In the same way it is found that, 

Eva! (V2) =f(x12, x2,2) = 22.788252. 

Eva! (v3) =J(x13, X2,3) = 8.006900. 

Eva! ('v4) =f(x14, x2, 4) = 10.2 18968. 

Eva! (i'5) =f ('x ), 5, X25) = 12.716375. 

Eva! (vó) =f(x j,6, X26) = 17.382846. 

Eva! (v7) =f(x17, X27) = 4.164 123. 

Eva! (v8) =fxj,8, x2,8) = 18.13 1577. 

-4 Eva! (v9) =f (xj,9, X29) = 17.038677. 
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Eva! (yb) =f(x i , jo, X2,10) =  15.813701. 

Eva! (vii) =f(x jjj, x2, 11) = 20.419916. 

Eva! (v12) =f(xj,12, x212) = 11.863670. 

Eva! (v i) =f (x113, X2/3) = 6.278665. 

Eval (vj 4) =f(x114, x 214) = 21.465508. 

Eva! (v15) =f('x j, 15, x215) = 22.267111. 

It is clear that the chromosome v15  is the strongest and v7  is the weakest. 

Now the system constructs a roulette wheel for the selection process. Total Fitness of 

the population is, 
15 

F= Eval(v) = 220.616410. 

The probability of a selection p'  for each chromosome v, (i = 1,2,3 ....... ,15) is: 

Pi  = Eva! ('v j)/F = 0.054666 

P2  = 0.103294 P3  = 0.036293 P4  = 0.046320 

P5  =0.057640 P6  =0.078792 P7  = 0.018875 

P8  = 0.082186 P9  = 0.077232 P10 =0.071680 

P11  = 0.092558 P12  = 0.053775 P13  = 0.028460 

P14  = 0.097298 P15  = 0.100931 

The cumulative probabilities qi for each chromosome v (i = 1, 2,..., 15) are: 
* 

= 0.054666 q2  =0.157959 q3 = 0.194252 

q4 =0.240573 qs =0.298213 q6  =0.377005 

q7 = 0.395880 q8  = 0.478066 q9 = 0.555298 

qio= 0.626978 qii = 0.719536 q12 = 0.773311 

q13 = 0.801771 q14 = 0.899069 q 15  = 1.000000 

Now to spinning the roulette wheel 15 times, each time a single chromosome for a 

new population is selected. It can be assumed that a random sequence of 15 numbers 

from the range [0... 1] will be generated. 

If the first random number is greater than q7  and smaller then q8  meaning the 

chromosome v8  is selected for new population; and so on. Finally first new set of 

population is given by----------------> 
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First New Set of Populations: 

01 110011101010101110111010110001001 <<8 

02 100100101000000000001101000000011 <<15 

03 001010100000011010101111000010011 <<10 

04 011011010011100101010111111010001 <<9 

05 110100110001101110100001100111011 <<3 

06 101110101100101111111101010110100 <<2 

07 100100100100000010111011110011011 <<6 

08 110011101010101110111010110001001 <<8 

09 010100000001111111001010001010010 <<12 

10 100100101000000000001101000000011 <<15 

11 011011010011100101010111111010001 <<9 

12 010100000001111111001010001010010 <<12 

13 001101110110001001010101001100010 <<1 

14 101111001010010101001101011110101 <<14 

15 101110101100101111111101010110100 <<2 

4.8.4 Genetic Operators 

There are two types of classical genetic operators in genetic algorithms such as, 

crossover and mutation. The probability of crossover p=0.5.  For each chromosome in 

the population a random number r from the range [0... 1] are generated. If r < 0.5, a 

given chromosome for crossover is selected. After this procedure it is found that the 

chromosome at first v5  & v6, V7 & v10  and V/3 & v14  are selected for crossover. But in 

this case the number of selected chromosomes were odd. So one extra chromosome 

can be added or one selected chromosome can be removed - this choice is made 

randomly as well. Through this point the selected chromosome 15 is removed. Now a 

random integer number position from the range [1 .. .33] is generated. The number 

position indicates the crossing point. Here crossing points are 28, 22 and 31. 

Cross over = 5 & 6: crossing point = 28 

Cross over = 7 & 10: crossing point = 22 

Cross over = 13 & 14: crossing point = 31 

Cross over = 15 (Removed) 
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Second new set of population 

01 110011101010101110111010110001001 

02 100100101000000000001101000000011 

03 001010100000011010101111000010011 
, 

04 011011010011100101010111111010001 

05 101110101100101111111101010111011 
N • Ak 

06 110100110001101110100001100110100 

07 100100101000000000001111110011011 

08 110011101010101 110111010110001001 

09 010100000001111111001010001010010 

10 100100100100000010111001000000011 

11 011011010011100101010111111010001 

12 010100000001111111001010001010010 

13 101111001010010101001101011110110 

14 101110101100101111111101001100001 

15 001101110110001001010101010110100 

The next operator, mutation, is performed on a bit-by-bit basis. The probability of 

mutation Pin = 0.1[10%]. There are in x pop_size = 33 x 15 = 495 bits in whole 

population; it should be expected (on average) 49.5 mutations per generation. Every 

bit has an equal chance to be muted, so, every bit in the population, a randoni number 

r from the range [0.... 1] are generated; if r <0.1, we mutate the bit. 

This means that 495 random numbers in between the range [0.... 1] should be 

generated. In the sample of this run, four (4) of these numbers where smaller than 0.1; 

the bit number and the random number are listed below: 

bit position =87: chromosome no =3: bit no = 21 

bit position =241 : chromosome no =8 : bit no = 10 

bit position =326: chromosome no =10 : bit no = 29 

bit position =488: chromosome no =15 : bit no = 26 

Final set of population (1st  generation) 

01 ll00ll10101010lll0ll 1010110001001 

02 100100101000000000001 101000000011 

03 001010100000011010100111000010011 

04 011011010011100101010111111010001 

05 l0lll0l0ll00l0lllll 11101010111011 

06 ll0l00ll000ll0l 1101000011001 10100 
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07 l0010010l00000000000l111 110011011 

08 110011101110101110111010110001001 

09 010100000001111111001010001010010 

10 10010010010000001O 111001000010011 

11 011O1lO10011100101010111111010001 

12 010100000001111111001010001010010 

13 101111001010010101001101011110110 

14 101110101100101111111101001100001 

15 001101110110001001010101000110100 

One iteration just have been completed i.e. one generation; in the genetic procedure. 

4.8.5 Simulation 

Similarly, the simulation of second generation (just numerical results) is given below: 

Generation -2 

Evaluation Function x1, x21  

Xj X2 

9.190343 5.661061 

5.641244 4.445479 

-0.521149 5.136955 

3.442512 4.735081 

8.018081 5.730064 

9.452087 4.992569 

5.641244 4.519773 

9.205089 5.661061 

1.726083 4.369887 

5.626613 5.615094 

3.442512 4.735081 

1.726083 4.369887 

8.127180 4.458086 

8.018081 5.725394 

0.266791 4.660527 

Fitness of each population 

18. 131577 

22.267111 

19.388877 

17.038677 

22.749012 

7.904713 

25.303097 

16.792629 

11.863670 

25.690352 

17.038677 

11.863670 

21.452779 

23.031564 

12.578809 



-w 

Total Fitness = 273.0952 12 

Probability Cumulative probability 

0.066393 0.066393 

0.081536 0.147929 

0.070997 0.218926 

0.062391 0.281317 

0.083301 0.364617 

0.028945 0.393562 

0.092653 0.486215 

0.061490 0.547705 

0.043442 0.591 147 

0.094071 0.685218 

0.062391 0.747609 

0.043442 0.79 1050 

0.078554 0.869605 

0.084335 0.953940 

0.046060 1.000000 

First New Set of Population 

01 100I001010000000000011010000000l 1 <<2 

02 011011010011100101010111111010001 <<4 

03 011011010011100101010111111010001 <<11 

04 011011010011100101010111111010001 <<4 

05 001010100000011010100111000010011 <<3 

06 110011101010101110111010110001001 <<I 

07 100100101000000000001111110011011 <<7 

08 1100111011101011101110101 10001001 <<8 

09 100100100100000010111001000010011 <<10 

10 010100000001111111001010001010010 <<12 

11 110100110001101110100001100110100 <<6 

12 001010100000011010100111000010011 <<3 

13 101110101100101111111101001100001 <<14 

14 110011101110101110111010110001001 <<8 

15 011011010011100101010111111010001 <<4 



Cross over = 2 & 3 : crossing point = 7 

Cross over = 6 & 7 : crossing point = 15 

Cross over = 9 & 10 : crossing point = 21 

Cross over = 11 & 15 : crossing point = 6 

Second new set of population 

01 100100101000000000001101000000011 

02 011011010011100101010111111010001 

03 011011010011100101010111111010001 

04 011011010011100101010111111010001 

05 001010100000011010100111000010011 

06 100100101000000110111010110001001 

07 110011101010101000001111110011011 

08 110011101110101110111010110001001 

09 010100000001111111001001000010011 

10 100100100100000010111010001010010 

11 011011110001101110100001100110100 

12 001010100000011010100111000010011 

13 101110101100101111111101001100001 

14 110011101110101110111010110001001 

15 110100010011100101010111111010001 

bit position =47: chromosome no =2: bit no = 14 

bit position =52: chromosome no =2 : bit no = 19 

bit position =61 : chromosome no =2: bit no = 28 

bit position =133 : chromosome no =5 : bit no = 1 

bit position =160: chromosome no =5 : bit no = 28 

bit position =254: chromosome no =8: bit no = 23 

bit position =400: chromosome no = 13 : bit no = 4 

bit position =431 : chromosome no = 14: bit no = 2 

bit position =463 : chromosome no =15 : bit no = 1 

Final set of populations 

01 100100101000000000001101000000011 

02 011011010011110101110111111110001 

03 011011010011100101010111111010001 

04 011011010011100101010111111010001 

05 101010100000011010100111000110011 



06 100100101000000110111010110001001 

07 110011101010101000001111110011011 

08 110011101110101110111000110001001 

09 010100000001111111001001000010011 

10 100100100100000010111010001010010 

11 011011110001101110100001100110100 

12 00l0l0l000000ll010100lll0000lO0ll 

13 101010101100101111111101001100001 

14 100011101110101110111010110001001 

15 010100010011100101010111111010001 

It may be noted that the total fitness of the new population (2nd  generation) is 

273.095212, must be higher than total fitness of the previous (1st  generation) 

population, 220.6 16410. 

For the above particular problem (equation 4.1), the following parameters have been 
used: 

Population no. pop_size = 25 

Probability of crossover pc  = 0.5 

Probability of mutation Pm = 0.05 

Generation no. = 150 

For the given parameters and generation number an improvement in the evaluation 

function, together with the value of the function is shown in the Table-4. 1. Actually 

the goal of this specific problem is to find the values for x1  and x2  to maximize the 

specific function and in this case it is considered equation (4.1). The best results after 

150 generation were, 

= 11.625704 and x2 5.728663 

The maximize value of functionf(x j, X2)  is given by 

f(11.625704, 5.728663) = 15.5 + 11.625704xsin(4mx11.625704) + 

5.728663xsin(20itx5.728663) = 32.7017 19. 
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Table 4.1: (Results of 150 Generations) [Double Variablel 

Generation Number Evaluation Function 
002 23.9257 
003 24.4662 
012 25.7309 
014 26.1271 
023 29.0057 
026 28.6918 
034 30.4891 
042 30.7678 
043 30.7678 
045 30.7797 
052 30.8949 
056 30.9769 
072 31.4993 
076 31.7509 
086 31.8064 
087 31.8321 
088 31.0383 
091 32.0480 
105 31.9570 
112 31.7427 
123 31.8037 
130 32.0988 
132 32.3276 
138 31.9856 
146 32.4721 
147 32.7017 
149 32.7017 
150 32.7017 

Figure 4.2 shows the calculation window after place the all parameters and the defined 

above equation (4.1). It shows maximize value of each generation and a graph between 

maximize value and generation number. It also shows the best result and 

corresponding the maximization value of the function. 
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Table 4.2: (Results of 150 Generations) [Doublc Variable] 

Generation Number
IF  Total Fitness 

001 405.5288 

002 425.4716 

007 478.2466 

014 503.3113 

019 513.3507 

026 605.1747 

033 620.7366 

037 628.6915 

041 627.0638 

044 656.0603 

048 627.7635 

052 655.2829 

062 662.7607 

068 681.3807 

085 707.7507 

090 743.3069 

095 765.2427 

103 761.6516 

112 712.3233 

121 769.4140 

127 788.8794 

131 788.4897 

137 791.3630 

139 783.6054 

145 779.6493 

148 792.2330 

150 792.1410 

1.41 



4.9 Results Analysis and Performance Comparison between PGA and sGA 

To niaximize the functions with sGA and PGA model, software is developed for this 

research through Microsoft Visual C++. All experimental results are obtained from 

this software. This section evaluates PGA on several optimization problems. We have 

implemented and tested PGA on a set of test functions and compare its performance 

with sGA. Table 4.3 shows the test functions of this study. 

Table 4.3: Test Functions with Range 

Test Function Range 

j (x1 , x2 ) = x1  . sin(l 0nx1 ) ± . cos(1 Onx,) + 2 - I :~ x1  !~ 3 

-l:~x, :~2 

/2(x1 ,x2)=x±x±25(sin2 x1 ±sin2 x2) -l!~x:~3 

f3 (x1 ,x2 ) = 5.5 ± x1.sin(4nx1) ± x2 .sin(202?x2 ) -3:~x1 !~12.l 
4.Kx2  !~5.8 

f4 (x1  , x 2 ) = 20 + x + - 10(cos 2,x1  + cos 22 2 )  

- I !~ x, :~ 2 

f5(x1,x2)=100(x 
1 2 +x2 )2  +(1-x1 )2  2.048:!~ 

x. :!~ 2.048 

f6 (x1 ,x21 x3 ) = 1.5 + x1 .sin(4nx1 ) ± x2 .sin(207?x2 ) -3:~x1 12.1 

± x3.sin(27 3 ) 4.1:~x, 5.8 

4.1:~x3 5.8 

f7 (x1  , x 2  , x 3 ) = x ± x + x - 2(cos 27x1  + cos 2,v2  + cos 27 3 z zx ) - I ~ x ~ 3 

- I :5 x2  :~ 2 

- I :5 x3  :~ 2 

fj(x):=x.sin(I0x)±2 -1:!~x:!~3 

l3oth sGA and PGA are tested for the test functions [Table 4.3] with same encoding 

scheme. Other parameters are as follows: Population size = 50, No. of bits in each 

individual = 31, Probability of mutation p, = 0.1, Probability of crossover p,  = 0.6, 

Total Generation = 100 and the results are the average of 50 independent runs. The aim 

is to find the maximum value of the test function. For instance, the maximal value of 

the function J is at x,  = 2.850340, x-, = 2.000000 and the value is 6.850171. 

In our proposed Precise Genetic Algorithm, the best chromosome 

V 1.1 =(llllolloollolollllllllllllllllI) was found after 70 generation for a 

4. sample runs which corresponds to the value x = [2.850340,2.000000] for 



function J. Table 4.4 shows detail particulars of that point. On the other hand, sGA 

return the maximum value 6.760506 after 80 generation. Table 4.5 shows the 

comparison between maximum value of PGA and sGA for the test functions. 

Table 4.4: Sample Result of PGA for Function J 

Generation 
No. of Best individual Value of 

Eval T. fitness 
individuals (V x,) niax  of the pop. 

(P) 
(n) 

v m ax Xi ax  rn  
=f(Ximax) 

pp m 
>eval(v). 

1111 011 0011 01 0 
2...100 50 llllllllllllll 

[2.850340, 
6.850171 303.608427 

111 
2.000000] 

Table 4.5: Comparison between PGA and sGA 

Test Function Max. value for PGA Max. value for sGA 

6.850171 6.760506 

55.140726 55.140643 

32.850254 32.380927 

48.54326 48.535985 

f5 3897.734227 3897.734227 

24.102652 23.939759 

17.032379 16.949524 

4.850151 4.850151 

th every run of the PGA makes the better or equal result to obtain successive 

convergence than that of sGA without a notable mci-ease in the computational 

complexity. For both single and multivariable functional optimization, the 

experimental results show that the PGA converges to the global maxima accurately 

and much faster than that of sGA. Figure 4.3 compares total fitness and Max. value of 

f (x , x,) in between sGA and PGA. The Figure 4.4 for test function f2 (x1  , x2 ), the 

Figure 4.5 for test function f3 (x1  , x2 ), the Figure 4.6 for test function f4 (x1  , x2 ), the 

Figure 4.7 for test function f5 (x1  , x2 ), the Figure 4.8 for test function f6 (x1  , x2  , x3 ) and 

the Figure 4.9 for test function f7 (x1  , , x3 ) also clearly indicates the successive 

convergence of PGA. 
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It is obvious that PGA converges rapidly in comparison with standard GAs. Moreover 

the PGA helps to solve optimization problems without depending on some profound 

mathematical and statistical optimization theories. From the result it is found that PGA 

is shown better than sGA. 

4.10 Discussion 

From all experimental results it is found that precise genetic algorithm is excellent for 

promptly finding an approximate global maximum for any test functions. A set of 

points inside the optimization space is created by search point generation formula. 

Then, this set of points is transformed into a new one. Confidently, this new set will 

contain more points that are closer to the global optimum. The transformation 

procedure is based only on the infonnation of how optimal each point is in the set, 

consist a very simple string of manipulations, and is repeated several times. This 

simplicity in application and the fact that the only information necessary is a measure 

of how optimal each point is in the optimization space, make PGA attractive as 

optimizers. It exploits the domain space with mutation and exploits good results with 

selection and crossover. To prevent repealed trend to the same solution, it uses precise 

techniques to prohibit the searching again those portions of the search space that have 
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already been explored. The two major problems with creating genetic algorithms are 

in converting a problem domain into genes (bit patterns) and creating an effective 

evaluation function. For many problems the answers will be obvious, but for many 

others it is non-trivial. Experience and creativity are both needed to solve these issues. 

However PGA has an effective optimization procedure for any specific function in 

terms of robustness, efficiency, convergence rate, solution accuracy etc. The 

efficiency of the algorithm is tested for a set of standard test functions. 

A 
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CHAPTER 5 

Conclusions and Recommendations 

This chapter concludes the thesis with a brief summary and boundary of PGA. This 

chapter also gives some recommendation and directions to improve performance and 

versatile of PGA. 

5.1 Conclusions 

In this study, we have modified standard Genetic Algorithm (sGA) for better 

performance and the new technique called Precise Genetic Algorithm (PGA) is 

presented. The dissertation presents the efficiency of the proposed technique. Results 

are generated to demonstrate the advantages of the proposed improvements to a 

standard genetic algorithm for a set of test functions. The new method performs better 

and gradually increases the convergence without much cost of speed than that of 

standard GA (sGA) when tested for both single and multivariable function 

optimization problems. 

The proposed algorithm incorporates a precise elitism strategy to conserve good 

solutions, and local search methods to quickly find the local optimum of a small 

region of the search space. But local are typically poor for global search. Therefore, 

local search methods have been incorporated into PGA in order to improve their 

-11r performance. In addition, new individuals are introduced to guarantee population 

diversity and to extend the search space of the problem. The proposed algorithm is 

applied to several functional optimization problems and the simulation results show 

that the average performance of the proposed algorithm is better than the best results 

obtained using a traditional genetic algorithm. 

The experimental results indicate that the proposed method succeeds in avoiding 

premature convergence by maintaining a diverse population. This method uses a 

precise mutation, crossover and selection techniques to produce a legal offspring and 

avoid the permutation and duplication problem of sGA. Precise elitism technique is 

also implemented in PGA to decrease simulations needed to optimize a test function. it 

incorporates the ideas embedded in natural selection into computation, and helps to 

solve those problems without depending on some profound mathematical and 

statistical optimization theories. It solves the problems in such a way nature has done 
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through evolution which searches the target space efficiently and it shows several 

potential advantages over the conventional GA. 

-q 

PGA is shown to give better results in the context of the quality and the time needed to 

reach the optimal solutions. Modifications of the standard GA to save previously 

computed fitness and functional values provide significant performance improvement. 

PGA just provides a simple and extended idea, which can solve some extremely, 

complicated (multi-dimensional) optimization problems with dreadful precision, 

efficiency and accuracy. It seems clear that precise genetic algorithm is a robust 

method, which can, due to their generality, be applied to a wide range of different 

optimization problems. Hence, the findings and experimental results instruct us to tell 

that the PGA is excellent and awfully efficient for successively finding an approximate 

global maximum in both single and high dimension search space. 

5.2 Limitations and Future Studies 

Existing optimization methods and algorithms generally are not capable of 

confronting problems arising from the complexity of the units and the multiplicity of 

the types of variables to be handled (continuous, discrete, Boolean). Several special 

techniques have been developed and applied with varied access in the optimization of 

the operation of industrial units, e.g. large scale sequential quadratic programming, 

mixed integer nonlinear programming and pinch design. 

Genetic algorithms have been developed in the last three decades in an attempt to 

imitate the mechanics of the selection process in natural genetics. They also contain 

many elements of expert systems. The capability of GAs to handle objective function 

of any complexity with both discrete (e.g. integer) and continuous variables, as well 

as any type of constraint makes GAs good candidates for these types of problems. 

GAs have been applied successfully in a great variety of optimization problems. One 

of the most critical phases in a Genetic Algorithm is the choice of an appropriate 

selection method. Individuals for recombination are selected according to their fitness. 

Various methods have been suggested by the diverse researchers, many 

implementation issues have been addressed, but little work has been done towards a 

more fonnal analysis and comparison of the different Selection Schemes. Basically, 

the various methods can be divided in fitness scaling methods or ranking methods. 

Since this is an ongoing research, there are several aspects that still have to be 
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investigated. The following topics should be addressed in the future research work 

(not necessarily all of them): 

• Formal analysis and comparison of selection methods 

• Practical confirmation of the analytical results using DeJong's test suit 

A modified Schema Theorem for various selection methods 

• Selection methods for dynamic population sizes 

• Interaction of selection methods and genetic operators 

• Developing a fully adaptive method that is provably convergent. 

• Reducing selection-sampling variance in sequential methods. 

In this research, a precise genetic algorithm is constructed to solve only single and 

multi variable optimization problem. Complex Multi-modal Optimization and 

combinatorial problems can also be solved for better understanding of the working of 

the precise genetic algorithm. Multi-Objective and Constrained Optimization 

problems should be also developed by more research in future. As a whole the aim of 

the future researches (with theoretical and application studies) can be to identify other 

search and optimization problems in which evolutionary algorithms have a niche over 

their traditional counterparts. Finally the work reported in this dissertation will 

hopefully help lay the foundations for the growth of genetic algorithms in 

optimization. 

I 
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