
H'

A Precise Evolutionary Approach to Solve Multivariable
Functional Optimization

by

Md. Robiul Islam

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science in Engineering in Computer Science and Engineering.

Khulna University of Engineering & Technology

Khulna 9203, Bangladesh

June, 2011

Declaration
,

This is to certify that the thesis work entitled "A Precise Evolutionary Approach to

Solve Multivariable Functional Optimization" has been carried out by Md. Robiul

Islam in the Department of Computer Science and Engineering, Khulna University of

Engineering & Technology, Khulna, Bangladesh. The above research work or any

part of the work has not been submitted anywhere for the award of any degree or

diploma.

XrofqH
-- <--~

Signature of the Supervisor

Dr. Muhammad Aminul Haque Akhand

Assistant Professor

Dept. of Computer Science and

Engineering, KUET

Signature of the Candidate

Md. Robiul Islam

Roll No. 0907552

Department of Computer

Science and Engineering, KUET

11

'trd - G t~7-

Approval

This is to certify that the thesis work submitted by Md. Robiul Islam entitled "A
Precise Evolutionary Approach to Solve Multivariable Functional Optimization" has
been approved by the Board of Examiners for partial fulfillment of the requirements
for the degree of Master of Science in Engineering in Computer Science and
Engineering, Khulna University of Engineering & Technology, Khulna, Bangladesh
in June, 2011.

BOARD OF EXAMINERS

/kmf quq I

Dr. Muhammad Aminul Haque and
Assistant Professor
Dept. of Computer Science and Engineering
Khulna University of Engineering &Technology, Khulna

Dr. K. M. Azharul 1-lasan
Head & Associate Professor
Dept. of Computer Science and Engineering
Khulna University of Engineering & Technology, Khulna

Dr. Muhammad Sheikh Sadi
Associate Professor
Dept. of Computer Science and Engineering
Khulna University of Engineering &Technology, Khulna

(26Il

Chairman
(Supervisor)

Member

Member

Dr. Kazi Md. Rokibul Alam Member
Associate Professor
Dept. of Computer Science and Engineering
Khulna University of Engineering &Technology, Khulna

Dr. Md. Mahbubur Rahman Member
Head & Professor (External)

-r Dept. of Computer Science and Engineering
Khulna University, Khulna

111

Acknowledgements

At lirst, I praise and like to thank Almighty Allah for showering all his blessings on

me whenever I needed. It is my great pleasure to express my indebtedness and deep

sense of gratitude to my Supervisor Dr. Muhammad Aminul Haque Akhand, Assistant

Professor and Coordinator, Postgraduate Program, Department of Computer Science

and Engineering (CSE), Khulna University of Engineering & Technology (KUET),

Khulna-9203, Bangladesh for his continuous encouragement, constant guidance and

keen supervision throughout the course of this study.

I am extremely grateful to all the faculty members of the Dept. of CSE, KUET to have

their privilege of intensive, in-depth interaction and suggestions for the successful

completion of my master degree. I would like to acknowledge my sense of gratitude

to Dr. K. M. Azharul Hasan, Dr. Muhammad Sheikh Sadi, Pintu Chandra Shill and

Rushdi Shams for providing me facilities and assistance to make possible to complete

the M.Sc. Engineering studies. I wish to express my sincere appreciation to Dr. Kazi

Md. Rokibul Alam, Associate Professor, Dept. of CSE, KUET and Dr. Md. Mahbubur

Rabman, Head & Professor, Dept. of CSE, Khulna University, Khulna who agreed to

be in thesis committee taking his valuable time off to serve my thesis oral

examination.

1 am highly indebted and obliged to my loving and ever respected parents Md. Abul

Hossain and Morzina Begum, my sole sister Taniya Sultana and my friend Md.

Azizur Rahman, Head, Dept. of IEM, KUET for their encouragement, patience and

moral support throughout the master course. At last, but not the least, I thank to all my

classmates and other friends those who have helped me anyway.

June, 2011 Author

Iv

Abstract

Mankind has been facing optimization problems throughout history and making the

great efforts to solve them. Optimization problems, in simple terms, are to find the

best or close to the best solutions to the problems. The task of optimization in solving

engineering problems is also crucial and the biologically motivated computing

techniques have waxed and waned over the period of time. Evolutionary approach is a

common technique that uses natural phenomena like biological genes, population,

mating etc., to solve optimization problems. In an evolutionary approach a population

of solution is maintained and tries to improve the solutions for better performance as

better fitted species survive. Among several different methods of evolutionary

approach Genetic Algorithm (GA) is the most popular due to its simplicity.

Genetic Algorithm is a stochastic search and optimization method imitating the

metaphor of natural biological evolution. It works on the population of individuals

instead of single solution. Although GA draws attention for functional optimization, it

may search same point again due to its probabilistic operations that hinder its

performance. Generally, GAs are time-consuming in computing due to the large

number of fitness function evaluations required and the implementation of many

operators and parameters, but sometimes they cannot produce the desired results. it is

always challenging for GA for functional optimization to achieve optimal solution in

acceptable time.

In this thesis, we make a novel approach of standard Genetic Algorithm (sGA) that

minimizes the shortcomings of sGA. The proposed method is called Precise Genetic

Algorithm (PGA). The primary motivation for the proposed PGA is to ensure the

successive convergence in optimization problems to reach optimal solution with a

minimal time. PGA searches the target space efficiently and it shows several potential

advantages over the conventional GA for solving both single and multivariable

functional problems. We have shown that the proposed method reveals the good

performance in the context of the quality and the time needed to reach the optimal

solutions compared to sGA.

.3-

.y.

Contents

PAGE
Title Page

Declaration
Approval
Acknowledgement iv
Abstract v
Contents vi
List of Tables x
List of Figures xi
Nomenclature xii

CHAPTER 1 Introduction 1

1.1 Preliminary

1.2 Aspects of Optimization Problems 2

1.3 Brief History of Evolutionary Computation 3

1.4 Introduction to Evolutionary and Genetic algorithms 4

1.4.1 Evolutionary Algorithms 5

1.4.2 Why Evolutionary Algorithms? 5

1.4.3 Problem Solving Using Evolutionary Algorithms 5

1.4.4 Classification of Evolutionary Algorithms 7

1.4.5 Genetic Algorithms 7

1.5 The Problems and Prospects of GA for Functional 8
Optimization

1.6 Aims of the Research 9

1.7 Organization of the Thesis 11

CHAPTER 2 Literature Review 12

2.1 Preface 12

2.2 Application of GA in Neural Network 14

2.2.1 Semi-supervised Clustering Using GA 15

2.2.2 Using Genetic Algorithms for Supervised Concept 15
Learning

2.2.3 An Evolutionary Algorithm that Constructs 16
Recurrent Neural Networks

2.2.4 Evolving Controllers for Autonomous Agents 17
Using Genetically Programmed Networks

2.2.5 Feature Selection for ANN using GA in Condition 17
Monitoring

VI

2.2.6 Application of ANNs in GAs: Odour Identification 18
Using Sensor Array.

2.2.7 Evolution of Artificial Neural Networks Using a 19
Two-dimensional Representation.

2.3 GAs for VLSI Design, Layout, and Test Automation 19
2.3.1 Parallel GA for Simulation-Based Sequential 20

Circuit Test Generation
2.3.2 Multi-Objective Design Space Exploration Using 20

Genetic Algorithms
2.3.3 A Genetic Algorithm for Mixed Macro and 21

Standard Cell Placement
2.3.4 Structure Cell-based VLSI Circuit Design Using 21

a Genetic Algorithm
2.4 Application of GA in Image Processing and Pattern 22

Recognition
2.4.1 Improving a Rule Induction System Using Genetic 24

Algorithms
2.4.2 Genetic Programming for Image Analysis 25

2.4.3 Dimensionality Reduction Using Genetic 25
Algorithms

2.4.4 Using GAs to Explore Pattern Recognition in the 26
Immune System

2.4.5 Hybrid Learning Using GAs and Decision Trees 27
for Pattern Classification

2.4.6 Bengali Character Recognition Using GA 28

2.5 Applications of GA in Function Optimization 28

CHAPTER 3 Aspects of GA as an Evolutionary Approach 31

3.1 Preliminary 31

3.2 Biological Background 31

3.3 Aspect of Genetic Algorithm 32

3.3.1 What are Genetic Algorithms? 32

3.3.2 History of Genetic Algorithm 33

3.4 Genetic Algorithm Terminology 34

3.5 The major Advantages of Genetic Algorithm 36

3.6 Areas of Application 36
3.7 Genetic Algorithms vs Other Optimization Methods 37

3.7.1 Hill Climbing 37

3.7.2 Simulated Annealing 37

3.7.3 Tabu Search 38

3.7.4 Neural Networks 38

3.8 Necessary Steps for the Application of GAs to an 38
Optimization Problem

VI I

3.9 The Simple GA for Function Optimization 40

3.10 Genetic Operators 41

3.11 Selection 41

3.11.1 Roulette Wheel Selection 42

3.11.2 Stochastic Universal Sampling / Selection 42

3.11.3 Tournament Selection 43

3.11.4 Rank Selection 44

3.11.5 Steady-State Selection 45

3.12 Crossover (Binaiy Valued Rccombination) 45

3.12.1 Single-Point Crossover 46

3.12.2 Multi-Point Crossover 46

3.12.3 Uniform Crossover 47

3.12.4 Shuftie Crossover 48

3.12.5 Arithmetic Crossover 49

3.13 Mutation 49

3.14 Parameters Selection 49

3.15 Genetic Algorithm Complexities in Research 50

3.16 Techniques for Solving Mathematical Problem 51

3.17 Differences and Signilicances of GA from other 51
Methods

3.18 Why Genetic Algorithm For Function Optimization? 52

3.19 Computer Accomplishment of GA 54

3.20 Data Structures 54

3.21 Search Space 55

3.22 Searching for a Maximum of a Function with GA 56

3.23 Coding in Computer Accomplishment 56

3.24 The Whole Procedure of Genetic Algorithm in 57
Accomplishment

3.24.1 Selection Procedure 58

3.24.2 Crossover Procedure 58

3.24.3. Mutation Procedure 59

3.25 Mathematical Background 59

'-4 • I

CHAPTER 4 Proposed PGA: An improved Evolutionary Approach 62

4.1 Introduction 62
4.2 Standard Genetic Algorithm (sGA) 63
4.3 Problems Regarding sGA for Functional Optimization 64

vfll

4.4 Significance of the Propose Approach 64
4.5 Aims of the Proposed Approach 65
4.6 The Proposed Method PGA to Solve Optimization 65

Problems

4.7 Aspects of PGA 66

4.7.1 Chromosomal Representation in PGA 68

4.7.2 Search Points Generation 69

4.7.3 Precise Crossover 69

4.7.4 Precise Mutation 70

4.7.5 Precise Selection 70

4.7.6 Fitness Function 71

4.7.7 Evaluation function and Fitness 72

4.8 Experimental Analysis 72

4.8.1 Problems Encoding 73

4.8.2 Initial Population 74

4.8.3 Evaluation Function 75

4.8.4 Genetic operators 78

4.8.5 Simulation 80

4.9 Results Analysis and Perfonuance Comparison 86
between PGA and sGA

4.10 Discussion 91

CHAPTER 5 Conc'usions and Recommendations 93
5.1 Conclusions 93

5.2 Limitations and Future Studies 94

REFERENCES 96

PUBLICATIONS RESULTING FROM THE THESIS 109

Ix

List of Tables

Table No Caption of the Table Page

2.1 Applications of Image Processing 23

3.1 Relation between Tournament Size and Selection Intensity 43

3.2 Simple Example of Coding 56

3.3 Selection Example 58

3.4 Crossover Example 58

3.5 Mutation Example 59

4.1 Results of 150 Generations [Double Variable] 84

4.2 Results of 150 Generations [Double Variable] 85

4,3 Test Functions with Range 86

4.4 Sample Result of PGA for Functionf3 87

4.5 Comparison between PGA and sGA 87

x

List of Figures

Figure No Caption of the Figure Page

1.1 Problem Solution Using Evolutionary Algorithms 6

1.2 The Family of Evolutionaiy Algorithms 7

3.1 Genetic Algorithm Application 39

3.2 The Simple Genetic Algorithm 40

3.3 Roulette Wheel Selection 42

3.4 Stochastic Universal Sampling 43

3.5 Properties of Tournament Selection 44

3.6 Situation before Ranking (Graph of Fitness) 45

3.7 Situation after Ranking (Graph of order Numbers) 45

3.8 Single-point Crossover 46

3.9 Multi-point Crossover 47

3.10 Uniform Crossover 48

3.11 Arithmetic Crossover 49

3.12 Mutation (Bit inversion) - Selected Bits are Inverted. 49

3.13 Plotofy1 53

3.14 Minimization of y1 53

3.15 Minimization for Different Case of y 53

3.16 Schematic of a String Population in a Genetic Algorithm 54

3.117 Example of a Search Space 55

3.18 A Single Iteration Step of the Implemented GA 57

4.1 Structure of a Genetic algorithm 63

4.2 PGA Scheme 67

4.3 Fitness Curve and Convergence Comparison off, 88

4.4 Fitness Curve and Convergence Comparison off2 88

4.5 Fitness Curve and Convergence Comparison off3 89

4.6 Fitness Curve and Convergence Comparison off4 89

4.7 Fitness Curve and Convergence Comparison off5 90

4.8 Fitness Curve and Convergence Comparison off6 90

4.9 Fitness Curve and Convergence Comparison of f7 91

xi

Nomenclature

GA Genetic Algorithm

sGA Standard Genetic Algorithm

PGA Precise Genetic Algorithm

EA Evolutionary Algorithm

GGGP Grammar Guided Genetic Programming

CSP Constraints Satisfaction Problem

ANN Artificial Neural Network

VLSI Very Large Scale Integration

TSP Traveling Salesman Problem

EDAC Evolutionary Divine and Conquer

SoC System on a Chip

xl'

CHAPTER 1

INTRODUCTION

1.1 Preliminary

Mankind has been faced optimization problems throughout human being history and

making a great effort to solve them. Optimization problems, in simple terms, are to

find the best or close to the best solutions to the problems. The task of optimization in

solving engineering problems is also a crucial subject. The evolutionary algorithm has

become the most promising focus for the scientists and engineers especially in the

area of simulation models, multi-objective and combinatorial optimization,

mathematical problems, image processing, engineering design and control problems,

fitting nonlinear curves to data, setting weights on neural networks and so on [1-5].

Generally, evolutionary approaches [e.g. Evolutionary programming, Evolution

strategy, Neuroevolution, Genetic Algorithm (GA), Genetic programming etc.] are

inspired by biological evolution such as reproduction, mutation, recombination,

natural selection and survival of the fittest. GA is a well known method among these

mechanisms and draws attention for solving functional optimization problems [2, 5-
10].

Genetic algorithms were developed by John Holland at the University of Michigan in

the early 1970's. Genetic algorithms are theoretically and empirically proven to

provide robust search in complex spaces [2]. The genetic algorithm [4] is an

intelligent search and optimization technique, which works based on evolutionary

principle of natural chromosomes. Specifically, the evolution of chromosomes due to

the action of crossover and mutation and natural selection of chromosomes based on

Darwin's survival-of-the-fittest principles are all artificially simulated to constitute a

robust search and optimization procedure. Genetic algorithms have been fairly

successful at solving problems of multi-objective and combinatorial optimization or

other optimization problems. But the same problems that are too ill-behaved for more

conventional hill-climbing, derivative and iterative based techniques. Genetic

algorithms (GAs), with many valuable advantages, are now widely used in various

fields, especially in solving optimization problems.

The biologically motivated computing activities have waxed and waned over the

period of time. Typically, optimization is a compound perceptual task that can be

solved by a metaheuristics mimicking biologically motivated technique. In this study,

it is given the attention with the review of standard Genetic Algorithm (sGA) and the

following type optimization problems: Maximize f(x1,x2, ... x,) where each xis a

real parameter subject to a1 :~ x1 :~ h1 for some constants a1 and b,. This research work

analyses the problems regarding GA for function optimization and proposes a new

technique called Precise Genetic Algorithm (PGA) to solve both single and

multivariable functional optimization problems. The PGA is a simple, reliable,

efficient and effective technique to achieve optimal solution faster than sGA. The

novelty in proposed approach is a new precise technique to attain better convergence,

accuracy and performance.

1.2 Aspects of Optimization Problems

Generally optimization is a process of finding best solution or close to the best

solution to a problem. Loosely speaking, optimization is the process of finding the

best way to use available resources, while at the same time not violating any of the

constraints that are imposed. More accurately, we may say that we wish to define a

system mathematically, identify its variables and the conditions they must satisfy,

define properties of the system, and then seek the state of the system (values of the

variables) that gives the most desirable (largest or smallest) properties. This general

process is referred to as optimization.

The technique in solving optimization problems have become a very popular research

topic in the last few years. Optimization problems, in simple terms, are to find the best

or close to the best solutions to the problems [5-7, 10, 11]. The term optimization

mathematically refers to the study of problems that have the form:

Given : a function f: A -4 R from some set A to the real numbers.

Sought: an element x0 in A such that f(x0) ~! f(x) for all x in A ("maximization") or

such that f(x0) :!~ f(x) for all x in A ("minimization"). Such a formulation is called a

mathematical program. A great many real-world and theoretical problems may be

modeled in this general framework. Typically, A is some subset of Euclidean space

R", often specified by a set of constraints, equalities or inequalities that the members

of A have to satisfy. The elements of A are called the feasible solutions and the

function f is called the objective function. A feasible solution that maximizes (or

minimizes, if that is the goal) the objective function is called an optimal solution. In

general there will be several local maxima and minima, where a local minimum x is

defined as a point such that for some ô > 0 and all x such that I Ix - x c the

formulaf(x,) ?f(x*) holds; that is to say on some ball around x' all of the function

values are greater than the value at that point. Local maxima are defined similarly. In

2

general, it is easy to find local minima, however additional facts about the problem

(e.g. the function being convex) are required to ensure that the solution found is a

global minimum.

Function optimization problem exists both in single and high dimensional search

space. The function having more than one independent variable is called multivariable

function which is reasonably a complex study than that of a single variable function.

Generally speaking, one can formulate any optimization problem into a single

standard of measurement a cost function or a fitness function that determines the

performance of a decision and then recursively improves the performance by selecting

from the most feasible of alternatives. Traditional deterministic optimization

techniques require the use of gradient or higher order statistical analysis of the cost

function. These methods find optimal solutions. Unfortunately, the solutions are

usually locally optimal and insufficient for applied engineering problems.

In this work, the following type optimization problems: Maximize f(x1,x2.„,)
where each x1 is a real parameter subject to a, !~ x, :~: k for some constants a and b,

have widespread application. Applications include optimizing simulation models,

fitting nonlinear curves to data, solving systems of nonlinear equations, engineering

design and control problems, and setting weights on neural networks.

1.3 Brief History of Evolutionary Computation

Biologically motivated computing activities have been growing over the years but

since the early 1980s they have all undergone resurgence in the computation research

community. The first grown into the field of neural networks, the second into machine

learning and the third into what is now called "evolutionary computation,” of which

genetic algorithms are the most prominent example.

In the 1950s and the 1960s several computer scientists independently studied

evolutionary systems with the idea that evolution could be used as an optimization

tool for engineering problems. The idea in all these systems was evolve a population

of candidate solutions to a given problem, using operators inspired by natural genetic

variation and natural selection. Evolutionary computation includes several major

branches, i.e., evolutionary strategies, evolutionary programming, genetic algorithms

(GAs), and genetic programming. At the algorithmic level, they differ mainly in their

representations of potential solutions and their operators used to modify the solutions.

Evolution strategies were first proposed by Rechenberg [12]) and Schwefel [13]) as a

numerical optimization technique. The original evolution strategy did not use

populations. A population was introduced into evolution strategies later Schwefel [14,

15].

In the 1960s, Rechenberg introduced "evolution strategies" a method he used to

optimize real-valued parameters for devices such as airfoils. This idea was further

developed by Schwefel. The field of evolution strategies has remained an active area

of research, mostly developing independently from the field of genetic algorithms.

Fogel, Owens and Walsh developed "evolutionary programming", a technique in

which candidate solutions to given tasks were represented as finite-state machines,

which were evolved by randomly mutating their state-transition diagrams and

selecting the fittest. A somewhat broader formulation of evolutionary programming

also remains an area of active research. Together evolution strategies, evolutionary

programming and genetic algorithms form the backbone of the field of evolutionary

computation.

Evolutionary programming was first proposed by Fogel et al. in the mid 1960's as one

way to solve artificial intelligence problems (Fogel et al., 1966a, b) [16, 17]. Since the

late 1980's evolutionary programming has also been applied to various combinatorial

and numerical optimization problems. The current framework of GAs was first

proposed by Holland in 1975 [4] and his student Jong [18] in 1975, and was finally

popularized by another of his students, Goldberg in 1989 [2]. It is worth noting that

some of the ideas of genetic algorithms appeared as early as 1957 in the context of

simulating genetic systems (Fraser, 1957) [19]. Genetic algorithms were first proposed

as adaptive search algorithms, although they have mostly been used as a global

optimization algorithm for combinatorial and numerical problems. A special branch of

genetic algorithms is genetic programming. The term genetic programming was first

used by Koza in 1989, 1990 [20, 21].

All evolutionary algorithms have two prominent features which distinguish themselves

from other search algorithms. First, they are all population based. Second, there is

information exchange among individuals in a population. Such information exchange

is the result of selection and recombination in evolutionary algorithms.

1.4 Introduction to Evolutionary and Genetic algorithms

Darwinian evolution is an intrinsically robust search and optimization procedure.

Evolved biota has optimized solutions to complex problems at every level of

ru

organization. A GA falls into the much broader category of evolutionary algorithms.

This algorithm attempts to simulate the processes of evolved biota in optimization.

The essence of such a simulation lies in the expression of a solution to a problem not

as a single value but as a string of fundamental building blocks (genes) that can be

manipulated in much the same way as an extant species will manipulate its gene pool

through selection and mating to produce more optimal offspring for the current

environment.

1.4.1 Evolutionary Algorithms

Evolutionary algorithms are stochastic search methods that mimic the metaphor of

natural biological evolution. Evolutionary Algorithms (EAs) have become a popular
10,

choice as the intelligent optimization techniques for many applications and they are an

interesting candidate for function optimization due to their use of population, which

allows multiple solutions to be searched simultaneously.

1.4.2 Why Evolutionary Algorithms?

Evolutionary algorithms seem particularly suitable to solve multi-objective and

combinatorial optimization problems, because they deal simultaneously with a set of

possible solutions (the so-called population). This allows us to find several members

of the Pareto optimal set in a single run of the algorithm, instead of having to perform

a series of separate runs as in the case of the traditional mathematical programming

techniques. Additionally, evolutionary algorithms are less susceptible to the shape or

continuity of the Pareto front (e.g., they can easily deal with discontinuous or concave

Pareto fronts), whereas these two issues are a real concern for mathematical

programming techniques.

1.4.3 Problem Solving Using Evolutionary Algorithms

The objectives of creating artificial intelligence and artificial life can be traced back to

the very beginnings of the computer age. The earliest computer scientists —Alan

Turing, John von Neumann, Norbert Wiener and others-were motivated in large part

by visions of imbuing computer programs with intelligence, with the life like ability

of self-replicate and with the adaptive capability to learn and to control their

environments. These early pioneers of computer science were as much interested in

biology and psychology as in electronics, and they looked to natural systems as

guiding metaphors for how to achieve their visions. It should be no surprise, then, that

5

from the earliest days computers were applied not only to calculating missile

trajectories and deciphering military codes but also to modeling the brain, mimicking

human learning and simulating biological evolution. During the last thirty years there

has been a growing interest in problem solving systems based on principles of

evolution and hereditary: such system maintain a population of potential solutions,

they have some "genetic" operators. One type of such systems is a class of Evolution

Strategies i.e., algorithms which initiate the principles of natural evolution for

parameter optimization problems. Figure 1.1 shows the problem solution using

evolutionary algorithms.

I coding of soluUons

Problem Soluon
objecfivncon

genetic operators

I

5archarCh

specc ow1edge

iA \

fitness K assiment

/ - - ----- -
selection

mutation genetic
search

I-
- replikation

- -

recombination / crossover

Figure 1.1: Problem Solution using Evolutionary Algorithms.

Procedure of evolution program is given bellow:
begin

t — O

initialize P(t)

evaluate P(t)

while (not termination-condition) do

begin

t <— t + I

select P(t) from P(t - 1)

alter P(t)

evaluate P(t)

end

end

1

6

4'

1.4.4 Classification of Evolutionary Algorithms

The family of evolutionary algorithms encompasses five members such as Genetic

Programming [includes Grammar Guided Genetic Programming (GGGP), Sequential ID

Genetic Programming (SGP), Linier Genetic Programming], Genetic Algorithm,

Evolutionary Computing, Learning Classifier Systems, Evolutionary Strategy

[includes Differential Evolution] as illustrated in Figure 1.2

Genetic Programming

SGP

LGP

Evolutionary
Genetic Programming

Algorithms

Evolution Strategy

Learning i)i ITerential
Classifier Systems Evolution

Evolutionary
Algorithms

Figure 1.2: The Family of Evolutionary Algorithms

1.4.5 Genetic Algorithms

Genetic algorithms operate on a population of potential solutions applying the

principle of survival of the fittest to produce better and better approximations to a

solution. At each generation, a new set of approximations is created by the process of

selecting individuals according to their level of fitness in the problem domain and

breeding them together using operators borrowed from natural genetics [5]. This

process leads to the evolution of populations of individuals that are better suited to

their environment than the individuals that they were created from, just as in natural

adaptation.

7

I

From the above discussion, it can be seen that evolutionary algorithms differ

substantially from more traditional search and optimization methods. The most

significant differences are:

• Evolutionary algorithms search a population of points in parallel, not a single

point.

• Evolutionary algorithms do not require derivative information or other

auxiliary knowledge; only the objective function and corresponding fitness

levels influence the directions of search.

• Evolutionary algorithms use probabilistic transition rules, not deterministic

ones.

• Evolutionary algorithms are generally more straightforward to apply.

• Evolutionary algorithms can provide a number of potential solutions to a given

problem. The final choice is left to the user.

1.5 The Problems and Prospects of GA for Functional Optimization

The Genetic Algorithm becomes the most promising fields for the scientists and

engineers nowadays. Its evolutionary principles and effectiveness to solve problems

make it versatile. The pioneer of GA is Holland, and his original goal was not to

design algorithms to solve specific problems, but rather to formally study the

phenomenon of adaptation as it nature and to develop ways in which the mechanisms

of natural adaptation might be imported into computer systems. At present, Holland's

dream becomes true and its application is almost everywhere. More and more critical

solution produced by using GA. The crux of GA is to find solutions and optimize the

search space. Its outstanding performances in Function Optimization, ANN, Pattern

Recognition, Network Design and Analysis, lmage Processing, VLSI Design etc. are

astonishing. The next sub section describes the problems and prospects regarding

genetic algorithm for function optimization.

In literatures, it is so far known that the GA performance varies depend on the nature

or type of problem domain. There are a number of different improvements techniques

have been presented in respective problem area to some extent. Traditional

optimization theories on function optimization depend on heavy programming,

statistical and mathematical knowledge. In literatures, it is found that the most

challenging problems of traditional genetic algorithms for functional optimization are

how to achieve optimal solution in acceptable time and the rate of convergence. The

rate of convergence of an optimizer and the overall computation time are critical

factors in the optimization problems. The rate of convergence of a genetic algorithm

depends on the quality of the genetic operators involved. At the same time GAs'

disadvantages have been appeared: 1) The calculating time is sometimes too long; 2)

After a long time waiting for the calculations GAs cannot assure that the solution is

optimal. However some other disadvantages of GAs have been notified from the

existing works such as premature convergence and calculation inefficiency due to

duplication. GA manages population of solutions instead of a single solution to find

an optimal solution to a given problem. Although GA draws attention for functional

optimization, it may search same point again due to its probabilistic operations that

hinder its performance. In this study, we make a novel approach of standard Genetic

Algorithm (sGA) to achieve better performance. The modification of sGA is

investigated in selection and recombination stages and proposed Precise Genetic

Algorithm (PGA). The primary motivation for the proposed PGA is to ensure the

successive convergence in optimization problems to reach optimal solution with a

minimal time. PGA searches the target space efficiently and it shows several potential

advantages over the conventional GA for solving both single and multivariable

functional problems.

1.6 Aims of the Thesis

Evolutionary approach, particularly genetic algorithms, mimic the natural selection

process to solve the problem of global maximization, just in the same way as nature

proceeds to adapt species to the environment, generation by generation. From a

mathematical perspective, many real world problems are reduced to functional

optimization tasks, maximizing a benefit or minimizing some kind of risk. In more

formal terms, it is wanted to find some value (XO) in the domain (D) of certain

objective function that verifies

x0 = arg max f(x)

xeD

If it is known how to maximize a function, then it is also known how to minimize it,

since

min {f('x)}= -max(-f(x)}

therefore in the sequel the concepts of optimization and that of maximization shall be

identified.

Maximizing a function can be a difficult task, for example when:

• The domain D of the function has a great dimensionality.

• When D can't be reduced to a numerical or vectorial set, for example if its

elements consist of complex structures.

20

• When the function I can't be expressed analytically and its evaluation requires

some simulation process.

• When f has many relative maxima, where classical optimization algorithms

can stop incorrectly.

For the global maximum then some search methods are needed, which imposes as few

as possible restrictions to the objective function f However GA is able to find the

maximum of a function. But the aim of this work is to bring out a more effective

method to determine the maximum (maximum or minimum) of a function accurately.

Moreover, the objective of this research work is the analyses of the literature review

of sGA and proposed a new technique called Precise Genetic Algorithm (PGA) to

multivariable functional optimization problems. The target is to attain better

convergence, accuracy and performance improvement. Then the constructed

algorithm is tested on a set of test functions. To sum up, this dissertation tries to show

that how and why precise genetic algorithm is more efficient for function optimization

in both single and high dimensional search space.

This study mainly carried out with the following summarized objectives:

• To find the problems regarding GA for function optimization and make

improvement.

• To have an objective to make a novel approach of standard Genetic

Algorithm (sGA) to achieve better performance.

• To show that the proposed PGA able to reply optimal solution within a

less number of generation(s) than that of sGA.

• To observe that the PGA helps to solve optimization problems without

depending on some profound mathematical and statistical optimization

theories.

• To implement PGA on a set of test functions and compare it with sGA

• To show that PGA converges rapidly in comparison with standard GAs

10

1.7 Organization of the Thesis

- • Chapter Two mainly presents literature review of GA for function

optimization. This chapter also introduces the review of GA in other

remarkable fields.

• Chapter Three provides an introduction to genetic algorithms (GAs): what

they are, where they came from, aspects of GA, how they compare to and

differ from other search procedures, and the essential steps for GA application

to an optimization problem. This chapter also provides literature review of GA

for function optimization. it is also introduces the basic types of optimization

methods, differences and significances of GA from other methods. Biological

background, GA terminology is introduced; GA operators and various

selection mechanisms, parameter of GA, complexities in research with GA

and Why GA for function optimization are also discussed. This chapter also

presents the different major points about computer implementation of GA.

• Chapter Four firstly provides briefly explanation of GA and its problems

regarding functional optimization and then describes the aspects of proposed

Precise Genetic Algorithm (PGA) as an evolutionary approach to solve several

functional optimization problems both in single and high dimensional search

space. This chapter also describes the necessary steps for constructing

- proposed Precise Genetic Algorithm (PGA) to optimize a set of test functions.

The performance comparison between PGA and sGA are also presented. All

experimental results are presented with significant performance

improvements.

• Chapter Five is the conclusion chapter. Here a brief discussion about the

thesis is presented as well as directions on possible future works are also given

here.

1

CHAPTER 2

Literature Review

This chapter prO\'idCs literature review of GA as an evolutionary approach for

functional optimization. This chapter also introduces the review of GA in other

remarkable fields.

2.1 Preface

The version of Genetic Algorithm described in the previous chapters is very simple,

but variations on the basic theme have been used in a large number of scientific and

engineering problems and models. Some examples as follows:

Optimization: Genetic Algorithms have been in a wide variety of optimization tasks,

including combinatorial optimization tasks, nunierical optimization such as function

optimization, parameter optimization, circuit layout and job-scheduling etc.

Automatic programming: GAs have been used to evolve computer programs for

specific tasks, and to design other computational structures such as cellular automata

and sorting networks.

Machine learning: GAs have been used for many machine learning application,

including classification and prediction tasks, such as the prediction of weather or

protein structure. GAs have also been used to evolve aspects of particular machine

learning systems, such as weights for neural networks, rules for learning classifier

systems or symbolic production, and sensors for robots [2].

State Assignment Problem: This State Assignment Problem (SAP) belongs to a

broader class of combinatorial optimization problems, including the Traveling

Salesman Problem (TSP). The aim is to find the best state assignment for

implementing a synchronous sequential circuit, which is crucial for reducing silicon

area or chip count in many digital designs. in TSP, it is to find the optimal routine for

visiting all cities. The mutation operator allows a highly parallel local search, while

crossover allows members of the population to share information. Thus in TSP, the

genetic search (hopefully) benefits from the good sub-tours from different members.

12

1-Jowever, this approach with permutation crossovers suffers in two aspects:

the algorithm scales poorly as the number of cities increases - time complexity

the solution quality degrades rapidly

To overcome these problems, a new approach, called Evolutionary Divide and

Conquer (EDAC) uses Genetic Algorithm to explore the space of problem

subdivisions in the range 500 - 5000 cities rather than the space of solutions

themselves. The sub-tours are then patched together to form a global tour. More

sophisticated algorithms, such as iterated Lin-Kemnighan are developed for solving

large Traveling Salesman Problems.

Economics: Genetic Algorithm is applied in game theory to find equilibrium points in

non-zero sum and non-cooperative situations, and in the game of iterated prisoner's
>

dilemma to explore the possibility of evolving cooperative behavior. Game theory is

the study of multi-person decision problems. in economics, it is relevant to oligopoly

because each rival player has to consider what the others will do. All players are

rational and choose their strategy in order to maximize their reward. In order for

Genetic Algorithm to identify multiple equilibrium points, sharing is implemented: -

to reduce the fitness of a member by a factor in relation to the number of other

members in its proximity. This results in a promotional increase in the fitness of

strings in areas of lower member clustering. In prisoner's dilemma, players tend to

defect to improve their own payoff rather than cooperate. The tit-for-tat strategy

proves to be the best. For cooperation to evolve in the long run, it is important for the

same players to meet repeatedly and to learn to cooperate.

Scheduling: Genetic Algorithm is used for inspection and repair of oil tanks and

pipelines. The implementation is built on Peter Ross' PGA test bed and the data is

taken from the Expert Systems for the Inspection of Tanks and Pipelines SITA and

SIGO. The fitness function evaluates the constraints: level of production, condition

and location of installations, type of products, human resources, the dates and costs of

inspection and repairs. A good inspection schedule for oil installations is constructed.

A good schedule ensures that repair times are kept to a minimum and faults are found

before they become too serious. An automatic way of assigning maintenance activities

to inspectors is devised in such a way as to minimize the loss in capacity, while

keeping within resource constraints.

The schedule is evaluated taking into account the following priorities:

1. A tank, which requires urgent maintenance, is checked early in the schedule

(very good).

13

A tank or pipeline requiring a periodic maintenance or inspection is included

in the schedule (good), given higher priority to the first case.

Because of several tanks in one location being out of service simultaneously,

the capacity of that location for a certain time drops significantly (very bad).

Some inspectors have more work to do than the others in the same area (bad).

The application distributes the repairs such that the available capacity is always larger

than the required minimum, then the production is not affected. Moreover, the

assignment of activities is appropriate; it reduces the cost of unbalanced distribution.

A robust schedule of activities is obtained.

Computer-Aided Design: Genetic Algorithm uses the feedback from the evaluation

process to select the fitter designs, generating new designs through the recombination

of parts of the selected designs. Eventually, a population of high performance designs

is resulted.

Ecology: GAs have been used to model ecological phenomena such as biological

arms races, host-parasite co-evolution, symbiosis, and resources flow.

Evolution and learning: GAs have been used to study how individual learning and

species evolution affect one another.

2.2 Application of GA in Neural Network

Building intelligent system that can model human behavior has captured the attention

of the world for years. For this reason Neural Networks has generated great interest.

Neural Networks are biologically motivated and statistically based. They represent

entirely different models from those related to physical symbol system. The most

dramatic difference is in the way neural network store and recall information, instead

of information being localized, the information is distributed through a network.

When a neural network model is implemented on a standard computer, it is known as

Simulated or Artificial Neural Network (ANN). ANN can be divided into two classes;

those that involve learning and those that do not. The neural networks that involve

learning and adoption are sometimes called recurrent networks. Artificial Neural

Network is a system loosely modeled on the human brain. The field goes by many

names, such as connectionism; parallel distributed processing, neuro-computing,

natural intelligent systems, machine learning algorithms, and artificial neural

14

networks. It is an attenipt to simulate within specialized hardware or sophisticated

software, the multiple layers of simple processing elements called neurons. Each

neuron is linked to certain of its neighbors with varying coefficients of connectivity

that represent the strengths of these connections. Learning is accomplished by

adjusting these strengths to cause the overall network to output appropriate results.

A neural network model is made up of the constructs defined in the following

paragraphs. The neural network connections are significantly fewer and than the

connection of human brain. Genetic Algorithms have been increasingly applied in

artificial Neural Networks design in several ways: topology optimization, genetic

training algorithms and control parameter optimization:

- In topology optimization, Genetic Algorithm is used to select a topology (number

of hidden layers, number of hidden nodes, interconnection pattern) for the artificial

Neural Network which in turn is trained using some training scheme, most commonly

back propagation.

- In genetic training algorithms, the learning of a artificial Neural Network is

formulated as a weights optimization problem, usually using the inverse mean squared

error as a fitness measure. Many of the control parameters such as learning rate,

momentum rate, tolerance level, etc., can also be optimized using Genetic Algorithms.

2.2.1 Semi-supervised Clustering Using Genetic Algorithms

In the year 1999, Ayhan Demiriz [22] worked on ANN by using Genetic Algorithm

on the above heading. They proposed a semi-supervised clustering algorithm that

combines the benefits of Supervised and unsupervised learning methods. The

approach allows unlabeled data with no known class to be used to improve

classification accuracy. The objective of an unsupervised technique, e.g. K-means

clustering, is modified to minimize both the cluster dispersion of the input attributes

and a measure of cluster impurity based on the class labels. A genetic algorithm

optimizes the objective function to produce clusters.

2.2.2 Using Genetic Algorithms for Supervised Concept Learning

In the year 2000, \Villiam M. Spears et al. [23] applied GA in supervised learning.

Genetic Algorithms (GAs) have traditionally been used for non-symbolic learning

tasks. In this dissertation, they consider the application of GA to a symbolic learning

15

task, supervised concept learning from examples. A GA concept learner (GABL) is

implemented that learns a concept from a set of positive and negative examples.

GABL is run in a batch-incremental mode to facilitate comparison with an

incremental concept learner. Supervised concept learning involves inducing concept

descriptions from a set of examples of a target concept (i.e., the concept to be

learned). Concepts are represented as subsets of points in an n-dimensional feature

space which is defined a priori and for which all the legal values of the features are

known. A concept learning program is presented with both a description of the feature

space and a set of correctly classified examples of the concepts, and is expected to

generate a reasonably accurate description of the (unknown) concepts.

In order to apply GAs to a particular problem, it is a need to select an internal
A representation of the space to be searched and define an external evaluation function

which assigns utility to candidate solutions.

For applying GA to supervised concept learning they followed fbllowing steps:

Representing the Search Space

Defining Fixed-length Classifier Rules

Evolving Sets of Classifier Rules

Choosing a Payoff Function

The GA Concept Learner

In this dissertation, a GA-based concept learner is developed and analyzed. Here

reasonable performance is achieved with minimal bias. There is no preference for

shorter rule sets, unlike most other concept learning systems. The initial results

support the view that GAs can be used as an effective concept learner although they

may not outperform algorithms specifically designed for concept learning when

simple concepts are involved.

2.2.3 An Evolutionary Algorithm that Constructs Recurrent Neural Networks

In the year 2001, Peter J. Angeline ci al. [24] worked with GA to constructs Recurrent

Neural Network. Standard methods for inducing both the structure and weight values

of recurrent neural networks fit an assumed class of architectures to every task. This

simplification is necessary because the interactions between network structure and

function are not well understood. Evolutionary computation, which includes genetic

algorithms and evolutionary programming, is a population-based search method that

has shown promise in such complex tasks. This research argues that genetic

algorithms are inappropriate for network acquisition and describes an evolutionary

16

program, called GNARL that simultaneously acquires both the structure and weights

for recurrent networks.

2.2.4 Evolving Controllers for Autonomous Agents Using genetically

Programmed Networks

In the year 1999, Arlindo Silva et al. [25] they explored Genetically Programmed

Network and use it to successfully evolve control systems with very different

architectures, by making small restrictions to the evolutionary process. Their

dissertation presents a new approach to the evolution of controllers for autonomous

agents. They proposed the evolution of a connectionist structure where each node has

an associated program, evolved using genetic programming. They call this structure a

Genetically Programmed Network and use it to successfully evolve control systems

with very different architectures, by making small restrictions to the evolutionary

process. Each GPN individual has several nodes, so its genome is a sequence of

chromosomes, each one corresponding to a program. Manipulating the function,

terminal and root set of the programs; they showed that it is possible to evolve GPNs

into controllers with very different architectures.

2.2.5 Feature Selection for ANN Using Genetic Algorithms in Condition

Monitoring

In the year 1999, L.B. Jack et al. [26] they worked on ANN using Genetic Algorithm.

They used Artificial Neural Network (ANN) successfully to detect faults in rotating

machinery, using statistical estimates of the vibration signal as input features. One of

the main problems facing the use of ANNs is the selection of the best inputs to the

ANN, allowing the creation of compact, highly accurate networks that require

comparatively little preprocessing. This dissertation examination the use of a Genetic

Algorithm (GA) to select the most significant input features from a large set of

possible features in machine condition monitoring contexts. In their research the

following two topics are the main to select the features of ANN using GA:

Feature selection & Encoding: Feature selection of the GA is controlled through the

values contained within the genomes generated by the GA. On being passed a genome

with (N+1) values to be tasted, the first N values are used to determine which rows

are selected as a subset from the input feature set matrix. Rows corresponding to the

numbers contained within the genome are copied into a new matrix containing N
,y.

17

rows. The last value of the genorne determines the number of neurons present in layer

I of the network.

Training and Simulation:

Training was carried out using three data sets; one feature set comprised all the

statistically based features (90 features). The set of 66 spectral features was used as an

individual case, and this dataset was combined with all the statistical feature sets to

from an input feature set of 156 inputs. Each feature set contained a total of 960 cases.

Using the genetic algorithm running for a total of 40 generations, each containing 10

members (meaning the training of 400 neural networks), eight separate cases were

tested using various numbers of inputs, varying from five to twelve.

The use of the Genetic Algorithm allows feature selection to be carried out in an

automatic manner, meaning that input combinations can be selected without the need

for human intervention. This technique offers great potential for use in a condition

monitoring environment, where there are often hundreds and even thousands of

different measurements available to a monitoring system, and selection of the most

relevant features is often difficult. It has been shown that the Genetic algorithm is

capable of selecting a subset of 6 inputs from a set of 156 features that allow the ANN

to perform with 100% accuracy.

2.2.6 Application of Artificial Neural Networks in GAs: Odour Identification

Using Sensor Array.

In the year 1999, A. K. Srivastava [27] worked on ANN by using GA for his Ph.D.

Thesis. His thesis work is basically an engineering effort to mimic human olfactory

system in its electronics counterpart, so called Electronic Nose (ENOSE), which

consists of Sensor Array, Signal Processing and Pattern Classification. In order to

process sensor array data for gas/ odour identification, goal was to design powerful

neural network (NN) pattern classifier with improved NN learning ability and better

classification accuracy. His investigations show that use of Genetic Algorithm (GA)

in combination with NN not only promises to be an effective Intelligent Gas Sensing

System. Novelty of his approach lies in the ability of NN to classify large number of

similar gases with an array of limited number of sensors that too without using any

pre-processing for data conditioning! transformation. For this they designed

sophisticated and advanced genetic operators such as Double-MRX and Triple-MRX

so as to accelerate the search ability of GA for unconstrained, continuous and non-

linear optimization problems like learning in Neural Network. To accomplish this

they developed an algorithm-oriented software package in high level C programming

18

language on HP9000 computing machine running HP-UX 0/S and tested the

proposed algorithms over real-world gas identification problem. His results and finds

are very useful in environmental monitoring, quality assurance, safety and security,

military, space exploration and medicine.

2.2.7 Evolution of Artificial Neural Networks Using a Two-dimensional

Representation.

In the year 1999, Joao Carlos ci al. [28] worked on ANN using evolutionary algorithm

for his Ph.D. Thesis. In this work, they proposed a new method based on a special

form of evolutionary computation called genetic algorithms for the evolution of

artificial neural networks. Their method is a general purpose procedure able to evolve

feed forward and recurrent architectures. It is based on a two-dimensional

representation, and includes operators to evolve the architecture and the connection

weights simultaneously. This new approach has shown promising results, and has

fared better than previous methods in a number of applications, including: binary

classification problems, design of neural controllers and a complex navigation task of

traversing a trail. An extension of the two-dimensional representation is also

presented in their work, which is combined with other methods, providing them with

an alternative procedure to evolve the weights of the connections.

The next sub section describes the basic of VLSI Design concept and the literature

review of it using Genetic Algorithm.

2.3 GAs for VLSI I)esign, Layout, and Test Automation

Several of the tasks involved in the VLSI design process involve optimization

problems. For example, an automatic placement tool must decide the optimal

positions in which to place each component. The specific problems are usually NP-

complete; therefore, heuristic techniques have been used to obtain solutions.

However, even if adequate approaches have been devised in the past, design

complexity continues to increase with the continuing improvements in technology.

Therefore, new approaches may be warranted over time, and GAs are often good

choice. Much research has been done in applying GAs to various tasks in the VLSI

design process. The rest of this section will provide details about some of the VLSI

applications where GAs have been used. These applications include partitioning,

automatic placement and routing, technology mapping for FPGAs, automatic test

generation, and power estimation.

19

2.3.1 Parallel Genetic Algorithms for Simulation-Based Sequential Circuit

Test Generation

In the year 1997, Dilip Krishnaswarny et al. [29] worked on Genetic Algorithm for

simulation-based circuit test generation. The problem of test generation belongs to the

class of NP-complete problems and it is becoming more and more difficult as the

complexity of VLSI circuits increases, and as long as execution times pose an

additional problem. Parallel implementations can potentially provide significant

speedups while retaining good quality results. In this research, they present three

parallel genetic algorithms for simulation-based sequential circuit test generation.

Simulation-based test generators are more capable of handling the constraints of

complex design features than deterministic test generators. The three parallel genetic

algorithm implementations are portable and scalable over a wide range of distributed

and shared memory MIMD machines. Significant speedups were obtained, and fault

coverage were similar to and occasionally better than those obtained using a

sequential genetic algorithm, due to the parallel search strategies adopted.

2.3.2 Multi-Objective 1)esign Space Exploration Using Genetic Algorithms

In the year of 2002, Maurizio Palesi Ct al. [30] worked on Multi-Objective Design

Space Exploration Using Genetic Algorithms. In this work, they provided a technique

for efficiently exploring a parameterized system-on-a-chip (SoC) architecture to find

all Pareto optimal configurations in a multi-objective design space. Globally, their

approach was used a parameter dependency model of target parameterized SoC

architecture to extensively prune non-optimal subspaces. Locally, the approach

applied Genetic Algorithms (GAs) to discover Pareto-optimal configurations within

the remaining design points. The computed Pareto-optimal configurations represented

the range of performance (e.g., timing and power) tradeoffs that are obtainable by

adjusting parameter values for a fixed application that is mapped on the parameterized

SoC architecture. They have successfully applied their technique to explore Pareto-

optimal configurations for a number of applications mapped on a parameterized SoC

architecture while taking into account multiple design objectives. Specifically, their

approach replaces the exhaustive component of the parameter interdependency based

approach called Platune by replacing it with a technique that is based on a GA

framework called SPEA2. Their experiments showed that on the average a saving of

80% in simulation time is achievable while still maintaining exploration results that

are within 1% of those generated by an exhaustive approach.

PLI

2.3.3 A Genetic Algorithm for Mixed Macro and Standard Cell Placement

In the year of 2000, Theodore W. Manikas et al. [31] worked on the VLSI Design by

using GA. The objective of mixed macro and standard cell placement is to arrange

components on a chip such that the resultant layout area and interconnection wire

lengths are minimal. A common approach is to divide the problem into separate

macro cell and standard cell placement problems. 1-lowever, this approach ignores the

relationships between the macro and standard cells, which can affect the quality of the

final solution. Their thesis described a genetic algorithm that uses the relationship

information to determine a more efficient placement solution. They developed GAP

(Genetic Algorithm for Placement) for mixed macro and standard cell placement.

Their work built upon previous efforts by expanding the genotype structures to handle

both macro cell and standard cell layout.

GAP was compared against the previous top-down, multiple-stage placement

approach. In order to provide a fair comparison, Eshensen's placement tool was used

for the block placement stage of the top-down approach, while GASP was used for

the cell placement stage. Their methods were tested on the MCNC mixed macro and

standard cell benchmark netlists a3, g2, and tl. Each netlist was partitioned into ten

domains, and ten trials were run for each method on each data set. Compared to the

top-down, multiple-stage approach, GAP yielded an average of 27% improvement in

layout area and an average of 10% improvement in layout wire length.

2.3.4 Structure Cell-based VLSI Circuit Design Using a Genetic Algorithm

In the year 1999, T. Arsian et al. [32] researched on VLSI to design Circuit using

genetic algorithm. In their research, a technique for the structural synthesis of VLSI

circuits is presented. The techniques uses Genetic Algorithms which utilizes a library

of devices for the synthesis procedure which proved successful in satisf' a multiple

output circuit criteria which, in addition to satisfy hardware-specific criteria such as

area and delay.

The next sub section describes the basic of Image processing concept and the

literature review of Image Processing and pattern recognition using Genetic

Algorithm.

21

2.4 Application of GA in Image Processing and Pattern Recognition

l)igital image processing remains a challenging domain of programming for several

reasons. First the issue of digital image processing appeared relatively late in

computer history, it had to wail for the alTival of the first graphical operating systems

to become a true matter. Secondly, digital image processing requires the most careful

optimizations and especially for real time applications. Digital image processing is by

definition a two dimensions domain; this somehow complicates things when

elaborating digital filters.

One of the first applications of digital images was in the newspaper industry, when

pictures were first sent by submarine cable between London and New York.

Introduction of the Bartlanc cable picture transmission system in the early 1920s

reduced the time required to transport a picture across the Atlantic from more than a

week to less than three hours. The printing method used to obtain image was

abandoned toward the end of 1921 in favor of a technique based on photographic

reproduction made from tapes perforated at the telegraph receiving terminal. The

early Bartlane systems were capable of coding images in five distinct levels of gray.

This capability was increased to 15 levels in 1929. The history of digital image

processing is intimately tied to the development of the digital computer. In fact,

digital images require so much storage and computational power that progress in the

field of digital image processing has been dependent on the development of digital

computers and of supporting technologies that include data storage, display, and

transmission. The first computers powerful enough to carry out meaningful image

processing tasks appeared in the early 1960s. Digital image processing techniques

began in the late 1960s and early 1970s to be used in medical imaging, remote Earth

resources observations, and astronomy. From the 1960s until the present, the field of

image processing has grown vigorously. In addition to applications in medicine and

the space program, digital image processing techniques now are used in a broad range

of applications. Computer procedures are used to enhance the contrast or code the

intensity levels into color for easier interpretation of X-rays and other images used in

industry, medicine, and the biological sciences

Today, there is almost no area of technical endeavor that is not impacted in some way

by digital image processing. We can cover only a few of these applications in the

context and space of the current discussion. The areas of application of digital image

processing are so varied that some form of organization is desirable in attempting to

capture the breadth of this field. The following are the most important fields of image

processing:

22

I. Gamma Ray Imaging

X-ray Imaging

Imaging in the Ultraviolet Band

Imaging in the Visible and Infrared Bands

Imaging in the Microwave Band

Imaging in the Radio Band

Digital image processing is a rapidly evolving field with growing applications in

science and engineering image processing holds the possibility of developing the

ultimate machine that could perform the visual functions of all living beings. A

detailed list of the application of image processing is shown in Table 2.1

Table 2.1: Applications of image processing

FIELD APPLICATION

I. Character recognition Mail sorting, label reading, supermarket product

billing, bank check processing, text reading.

Medical image analysis Tumor detection, measurement of size and shape of

internal organs, chromosome analysis, blood cell

count.

Industrial automation Parts identification of assemble lines, defect and

fault inspection.

Robotics Recognition and interpretation of objects in a scene,

motion control execution through visual feedback.

Cartography Map making from photograph, synthesis of weather

maps.

Forensics Fingerprint matching and analysis of automated

security system.

Radar imaging Target detection and identification, guidance of

helicopters and aircraft in landing, guidance of

remotely piloted vehicles(R P V), missile and

satellites from visual clues.

Remote sensing Multi spectral image analysis, weather prediction,

classification and monitoring of urban, agricultural

and marine environment from satellite images.

Pattern Recognition and classification is difficult but fundamental task in AT, depends

heavily on the particular choice of features used by the classifier. One usually starts

with a given set of features and then attempts to derive an optimal subset of features

leading to high classification performance. A standard approach involves ranking the

23

features of a candidate feature set according to some criteria involving 2nd order

statistics (ANOVA) and/or information theory based measures such as "infomax", and

then deleting lower ranked features. Ranking by itself is usually not enough because

the criteria used do not measure the effectiveness of the features selected on the actual

classification task itself, nor do they capture possible nonlinear interactions among the

features. A GA is used to search the space of all possible subsets of a large set of

candidate discrimination features.

The summery of some research work is given here for understanding the application

of GA in Image Processing.

2.4.1 Improving a Rule Induction System Using Genetic Algorithms

In the year 1999, i-IaIeh Vafaie et al. [33] worked on image pattern recognition using

GA. Their effort is to apply machine learning techniques to such problems in an

attempt to automatically generate and improve the classification rules required for

various recognition tasks. They used genetic algorithms as a "front end" to traditional

rule induction systems in order to identify and select the best subset of features to be

used by the rule induction system. The field of automatic image recognition presents a

variety of difficult classification problems involving the identification of important

scene components in the presence of noise, changing lighting conditions, and shifting

view points. Their dissertation describes part of a larger effort to apply machine

learning techniques to such problems in an attempt to automatically generate and

improve the classification rules required for various recognition tasks. The immediate

problem attacked is that of texture recognition in the presence of noise and changing

lighting conditions. In this context standard rule induction systems like AQ 15 produce

sets of classification rules which are not necessarily optimal with respect to: 1) the

need to minimize the number of features actually used for classification and 2) the

need to achieve high recognition rates with noisy data.

There are two main approaches that the image processing community has taken to

feature selection. One approach selects features independent of their effect on

classification performance. The other approach selects features based on the overall

effectiveness of the performance of the classification system. The first approach

involves transforming the original features according to procedures such as those

presented by Karhunen-Loeve or Fisher to form a new set of features. Then, it selects

a subset of these transformed features by choosing the first "n" transformed features

where the selected subset has lower dimensionality than the original one. The second

approach directly selects a subset "d" of the available "m" features based on some

24

effectiveness criteria, without significantly degrading the performance of the classifier

system. Many researchers have adopted this method and have created their own

variations on this approach. They produced a Multi-strategy Approach and GEM

system. It is assumed that an initial set of features will be provided as input as well as

a training set in the form of feature vectors extracted from actual images and

representing positive and negative examples of the various classes for which rules are

to be induced. A genetic algorithm (GA) is used to explore the space of all subsets of

the given feature set. Each of the selected feature subsets is evaluated (its fitness

measured) by invoking AQ 15 with the correspondingly reduced feature space and

training set, and measuring the recognition rate of the rules produced. The best feature

subset found is then output as the recommended set of features to be used in the actual

design of the recognition system. The result of the feature selection process was to

reduce the initial feature set consisting of 18 elements to a subset of having only 9

elements for the best performing individual. This represented a 50% reduction in the

number of features. Another advantage of using this approach is that choosing the

appropriate subset of features reduces the time required to perform rule induction on

large data sets (which are typical in the image processing world). This is a direct

result of feature selection process.

2.4.2 Genetic Programming for Image Analysis

In the year 2000, Riccardo Poli [34] analyzed and applied GA on image processing.

They described an approach to using GP for image analysis based on the idea that

image enhancement, feature detection and image segmentation can be reframed as

filtering problems. GP can discover efficient optimal filters which solve such

problems but in order to make the search feasible and effective, terminal sets, function

sets and fitness functions have to meet some requirements. Although GP could be

applied in a naive way to such a problem, they have outlined some criteria that

terminal sets, function sets and fitness functions should satisfy in order to make the

search feasible and produce efficient filters.

2.4.3 Dimensionality Reduction Using Genetic Algorithms

In the year 1999, L. A. Kuhn et al. [35] researched on pattern recognition using GA.

Pattern recognition generally requires that objects be described in terms of a set of

measurable features. The selection and quality of the features representing each

pattern have a considerable bearing on the success of subsequent pattern

classification. Feature extraction is the process of deriving new features from the

25

original features in order to reduce the cost of feature measurement, increase classifier

efficiency, and allow higher classification accuracy. In this thesis they present a new

approach to feature extraction in which feature selection, feature extraction, and

classifier training are performed simultaneously using a genetic algorithm. The

genetic algorithm optimizes a vector of feature weights, which are used to scale the

individual features in the original pattern vectors in either a linear or a nonlinear

fashion. A masking vector is also employed to perform simultaneous selection of a

subset of the features.

I. GA-based feature extractor using an objective function based on classification

accuracy. Each transformation matrix from the GA population is used to

transform the input patterns, which are then passed to a classifier. The fitness

of the matrix is based on the classification accuracy attained on the

transformed patterns.

d-dimensional binary vector, comprising a single member of the GA

population for GA-based feature selection.

Effect of scaling feature axes on k (k = 5) nearest neighbor classification. (a)

Original data. (b) Scaled data.

The GA-based feature extractor was applied in the following fields:

Biochemistry Data

Tests on Medical Data

Classification of Protein-Bound Water Molecules

For the thyroid data, the sequential floating forward selection method achieved good

classification results. The best accuracy obtained by the knn1SFFS algorithm during

feature selection was 97.99%, using 6 of the 21 available features. The best weight set

found by the GA achieved a mean bootstrap accuracy of 64.20%, with a standard

deviation of 1.42% using four of the available eight features. The second-best

performing weight set achieved a mean bootstrap accuracy of 63.32% using only two

of the eight features

2.4.4 Using Genetic Algorithms to Explore Pattern Recognition in the Immune

System

In the year 1993, Stephanie Forrest et al. [36] worked on pattern recognition using

GA. in their thesis they described an immune system model based on binary strings.

The purpose of the model is to study the pattern recognition processes and learning

that take place at both the individual and species levels in the immune system. The

genetic algorithm (GA) is a central component of the model. The thesis reports

26

simulation experiments on two pattern recognition problems that are relevant to

natural immune systems. Finally, it reviews the relation between the model and

explicit fitness sharing techniques for genetic algorithms, showing that the immune

system model implements a form of implicit fitness sharing. Their developing Binary

immune System Model showed that the GA could evolve an antibody type

(represented as a population of identical antibodies) that matched multiple antigens

through the identification of a common schema. This problem is analogous to the

problem the immune system faces in identifying bacteria that, although different in

detail, may use a similar polysaccharide in the construction of their cell walls. By

identifying this polysaccharidc, the immune system can learn to detect bacteria.

2.4.5 Hybrid Learning Using Genetic Algorithms and Decision Trees for

Pattern Classification

In the year 1995, J. Bala et al. [37] applied the GA on pattern recognition in hybrid

learning system. Their thesis introduces a hybrid learning methodology that integrates

genetic algorithms (GAs) and decision tree learning (ID3) in order to evolve optimal

subsets of discriminatory features for robust pattern classification. A GA is used to

search the space of all possible subsets of a large set of candidate discrimination

features. For a given feature subset, 11)3 is invoked to produce a decision tree. The

classification performance of the decision tree on unseen data is used as a measure of

fitness for the given feature set, which, in turn, is used by the GA to evolve better

feature sets. This GA-1133 process iterates until a feature subset is found with

satisfactory classification performance.

GA-I133 Hybrid Learning: The basic idea of their system is to use GAs to efficiently

explore the space of all possible subsets of a given feature set in order to find feature

subsets which are of low order and high discriminatory power. An initial set of

features is provided together with a training set of the measured feature vectors

extracted from raw data corresponding to examples of concepts for which the decision

tree is to be induced. Each of the selected feature subsets is evaluated (its fitness

measured) by testing the decision tree produced by [D3. The above process is iterated

along evolutionary lines and the best feature subset found is then recommended to be

used in the actual design of the pattern classification system. In order for a GA to

efficiently search such large spaces, one must give careful thought to both the

representation chosen and the evaluation function. In this case, there is a very natural

representation of the space of all possible subsets of a feature set, namely, a fixed-

length binary string representation in which the value of the ith gene {0,1) indicates

27

whether or not the ith feature from the overall feature set is included in the specified

feature subset. Thus, each individual in a GA population consists of fixed-length

binary string representing some subset of the given feature set. The advantage of this

representation is that a standard and well understood GA can be used \vithout any

modification. Experimental results are presented which illustrate the feasibility of

their approach on difficult problems involving recognizing visual concepts in satellite

and facial image data. The results also show improved classification performance and

reduced description complexity when compared against standard methods for feature

selection.

2.4.6 Bengali Character Recognition Using Genetic Algorithm

In the year 2005, Md. Robiul Islam [38] worked on Bengali Character Recognition

using GA. In this endeavor, a character recognition system using Genetic Algorithms

has been developed. The system is intended to recognize printed Bengali character.

The model proposed for the system consists of a pre processor followed by a genetic

Algorithm classifier. At preprocessor phase, projection from each active bit of a

pattern has been scaled and translated to fit the standard size. The second part of the

system compromise a Genetic algorithm classifier which generates a set of rules based

on the extracted feature of the patterns. The rules are generated in such a way that

only the distinctive features of a pattern are reflected in the rule. After being trained

using the training set of the character patterns, the system has been able to classify test

character pattern correctly. The proposed model has been tested with two complete

character sets of Bengali alphabet and rigorous experiments have been carried out to

see how the performance of genetic algorithm as a classifier varies at different

parameter settings in the context of Bengali character recognition.

The next section describes the literature review of GA for optimization problems.

2.5 Applications of GA in Function Optimization

In 1859, Darwin [1] published his book "On the Origin of Species" in which he

identified the principles of natural selection and survival of the fittest as driving forces

behind the biological evolution. During the last few decades there has been a growing

interest in algorithms which are based on the principle of evolution (survival of the

fittest). They are referred as Evolutionary Algorithms (EA) or Evolutionary

Computation methods (EC methods) [2]. EAs (genetic algorithms [3], evolution

strategies, evolution programming and genetic programming) are increasingly used to

28

great advantage in applications as diverse as computer aided design [39], optimal

design of non-linear chemical engineering processes [40], parameter estimation [41],

controller design [42] digital filter design [43] etc.

Over the years, genetic algorithms (GAs) have been proven effective in solving a

variety of search and optimization problems (Goldberg, 1989 [2]; Gen and Cheng,

1997 [43]; Parmee 1999 [44]). The GA has been employed in a wide variety of

problems related to combinatorial and mathematical optimization, and so on. A fair

amount of research work has been found in literature for the solution of mathematical

optimization using GA. Kavanagh and Kclley has solved some non-linear equations

using GA [45]. P.C. Barman and R. Ahmed have given a comparison of GA and

bisection method in the numerical optimization of transcendental equations [46]. S.

Shahid, M.N. Bhuiyan and M. M. Haque have optimized some non-linear equation

using GA with dynamic mutation rate [47]. Almost all of the papers found in

literature use GA to solve mathematical optimization in traditional way. Genetic

algorithms (GAs) also have the lucratively application to optimization problems like

routing, adaptive control, game playing, cognitive modeling, transportation, travelling

salesman problems, optimal control and functional problems, etc [5, 48]. Though,

Genetic algorithms (GAs) are now widely used in various fields with many valuable

advantages, especially in solving optimization problems. Generally, GAs are time-

consuming in computing due to the large number of fitness function evaluations

required and the implementation of many operators and parameters, but sometimes

they cannot produce the desired results.

An increasing amount of research has been carried out in the promising trend of

improving GAs by developing genetic operators such as crossover and mutation due

to their importance to GA functioning [49-104]. Bhattacharyya and Troutt [50]

developed two new crossover operators. The performances of these new methods

were examined on the problem of enforcing coherency of probability estimates for a

set of related events. Dc Falco et al. [51] gave a good overview of the research

relating to the mutation operator and confinned its important role in GAs. The

research summarized the work in both trends of developing new mutation operators

and finding optimum mutation rates for specific problems. The authors also presented

two new biologically inspired mutation operators from which a mutation-based

genetic algorithm (MGA) was then defined and had a competitive performance. A

novel GA employing multiple crossover operators and a fitness-based dynamic

crossover selection method was presented by Acan et al. [52]. In the comparison, the

proposed methods outperformed the standard GA.

29

in literature review, it is also found a nuniber of methods to improve the performance

of conventional genetic algorithms such as real-valued coding [56, 57], improved

selection of the initial population [58], better operational principles [49-60], improved

crossover operations [5, 61, 62], better mutation operations [5, 61], and automatic

adjustment of parameters for population size, code length, crossover and mutation

rates [5, 63]. In addition, Genetic algorithms have been applied to a wide range of

practical problems which involve optimization of function parameters, such as

optimization problem [56, 57], multi-modal optimization problems [2, 64-66], etc.

To avoid problems regarding GA some scientists have attempted to improve GAs in

various ways. B. Sareni [67] used fitness sharing and niching methods to avoid

premature convergence. S. Tsutsui et al. [68] introduced the concept of a bi-

population scheme for real coded GAs (b-GAs) and the goal of b-GAs have some

advantages in performing global exploration of the search space and avoiding being

trapped at local optima. Many other strategies were proposed to improve the

performance of the genetic algorithm. The modified genetic algorithm [69], the

contractive mapping genetic algorithm [70], the genetic algorithms with varying

population size [71, 72] all improved the performance of the genetic algorithm to

some extent. The elitist strategy [75], the (pt, ?) and (t±X) selection [73, 74] and the

Bolzmann tournament selection [76, 77] are all relevant strategies [2], and a number

of other researchers to improve GAs in different ways [4, 78-80] have shown that

genetic algorithms (GAs) perform well for global searching, and it occasionally

efficient in respective problem area but they usually take a relatively long time to

converge to the optimum.

After a comprehensive review, it is has come into notice that the standard GA being

faced with the usual conflict between reliability and computation time, often results in

an unsatisfactory compromise, characterized by a slow convergence, when an exact

solution is required. The key to improving the performance of GA for the

optimization problems may be a new scope by examining a mechanism which can

suggests an opportunity for performance improvement. The next chapter describes the

aspect of GA as the base for such a mechanism in detail.

30

CHAPTER 3

Aspects of GA as an Evolutionary Approach

This chapter provides an introduction to genetic algorithms (GAs): what they are,

where they came from, aspects of GA, how they compare to and differ from other

search procedures, and the essential steps for GA application to an optimization

problem. it is also introduces basic types of optimization methods, differences and

significances of GA from other methods. Biological background, GA terminology is

introduced; GA operators and various selection mechanisms, parameter of GA,

complexities in research with GA and Why GA for function optimization are also

discussed. In addition, this chapter presents the different major points about computer

implementation of GA.

3.1 Preliminary

The Genetic Algorithm (GA) is a stochastic search method based on the mechanics of

natural selection and genetics analogous to natural evolution. Genetic algorithms

originally conceived by Holland [4], represent a fairly abstract model of Darwinian

evolutionary theory and biological genetics. They evolve a population of competing

individuals using fitness-biased selection, random mating, and a gene-level

representation of individuals together with simple genetic operators (typically,

crossover and mutation) for modeling inheritance of traits. These GAs have been

successfully applied to a wide variety of problems including functional optimization,

machine learning, and the evolution of complex structures such as combinatorial

optimization, neural networks, Lisp programs and so on.

3.2 Biological Background

Biological background fundamentally related to the following facts:

Chromosome: All living organisms consist of cells. In each cell there is the same set

of chromosomes. Chromosomes are strings of DNA and serves as a model for the

whole organism. A chromosome consists of genes, blocks of DNA. Each gene

encodes a particulai- protein. Basically, it can be said, that each gene encodes a trait,

for example color of eyes. Possible settings for a trait (e.g. blue, brown) are called

alleles. Each gene has its own position in the chromosome. This position is called

31

locus. Complete set of genetic material (all chromosomes) is called genorne.

Particular set of genes in genome is called genotype. The genotype is with later

development after birth base for the organism's phenotype, its physical and mental

characteristics, such as eye color, intelligence etc.

Reproduction: During reproduction, first occurs recombination (or crossover). Genes

from parents form in some way the whole new chromosome. The new created

offspring can then be mutated. Mutation means, that the elements of DNA are a bit

changed. These changes are mainly caused by errors in copying genes from parents.

The fitness of an organism is measured by success of the organism in its life.

3.3 Aspect of Genetic Algorithm

A genetic algorithm (GA) and more generally an Evolutionary Approach mimics

natural evolution process in order to solve computational problems (usually large,

difficult and complex optimization problems). Its approach is modeled on a relatively

simple interpretation of the evolutionary process; however, it has proven to a reliable

and powerful optimization technique in a wide variety of applications. Holland [4] in

1975 was first proposed the use of genetic algorithms for problem solving. Goldberg

[2] was also a pioneer in the area of applying genetic processes to optimization.

3.3.1 What are Genetic Algorithms?

The Genetic Algorithm (GA) is a model of machine learning, which derives its

behavior from a metaphor of the processes of evolution in nature. This is done by the

creation within a machine of a population of individuals represented by chromosomes,

in essence a set of character strings that are analogous to the chromosomes that is seen

in human's DNA. The individuals in the population then go through a process of

evolution. Essentially, Genetic Algorithms (GAs) are a method of "breeding"

computer programs and solutions to optimization or search problems by means of

simulated evolution. Processes loosely based on natural selection, crossover, and

mutation are repeatedly applied to a population of binary strings which represent

potential solutions. Over time, the number of above-average individuals increases,

and better-fit individuals are created, until a good solution to the problem at hand is

found. GA also can be described as an optimization technique based on natural

genetics. GAs were developed in an attempt to simulate growth and decay of living

organisms in a natural environment. Even though originally designed as simulators

32

GAs proved to be a robust optimization technique. The term robust denotes the ability

of the GAs in finding the global optimum, or a near-optimal point, for any

optimization problem.

A set of points inside the optimization space is created by random selection of points.

Then, this set of points is transformed into a new one. Hopefully, this new set will

contain more points that are closer to the global optimum. The transformation

procedure is based only in the information of how optimal each point is in the set,

consist a very simple string of manipulations, and is repeated several times. This

simplicity in application and the fact that the only information necessary is a measure

of how optimal each point is in the optimization space.

3.3.2 History of Genetic Algorithm

Genetic algorithms (GAs) were invented by John Holland [4] in the 1960s and were

developed by Holland and his students and colleagues at the University of Michigan

in the 1960s and the 1970s. In contrast with evolution strategies and evolutionary

programming, Holland's original goal was not to design algorithms to solve specific

problems, but rather to foniially study the phenomenon of adaptation as it nature and

to develop ways in which the mechanisms of natural adaptation might be imported

into computer systems. Holland's book Adaptation in Natural and ArtfIcial Systems

presented the genetic algorithm as an abstraction of biological evolution and gave a

theoretical framework for adaptation under the GA. Holland's GA is a method for

moving from one population of "chromosomes" (e.g. strings of ones and zeros of bits)

to a new population by using a kind of natural selection together with the genetics-

inspired operators of crossover, mutation and inversion. Each chromosome consists of

genes (e.g. bits) each gene being an instance of a particular allele (e.g. 0 or 1). The

selection operation chooses chromosomes in the population that will be allowed to

reproduce, and on average the fitter chromosomes produce more offspring than the

less fit ones. Crossover exchanges subparts of two chromosomes, roughly mimicking

biological recombination between two single chromosome organisms. Mutation

randomly changes the allele values of some locations in the chromosome and

inversion reverses the order of a contiguous section of the chromosome, thus

rearranging the order in which genes are arrayed.

Holland's introduction of a population-based algorithm with crossover, inversion, and

mutation was a major innovation. Moreover, Holland was the first to attempt to put

computational evolution on a firm theoretical footing. Until recently this theoretical

33

foundation, based on the notion of "schemas", was the basis of almost all-subsequent

theoretical work on genetic algorithms.

3.4 Genetic Algorithm Terminology

All genetic algorithms work on a population or a collection of several alternative

solutions to the given problem. Each individual in the population is called a string or

chromosome, in analogy to chromosomes in natural systems. Often these individuals

are coded as binary strings, and the individual characters or symbols in the strings are

referred to as genes. In each iteration of the GA, a new generation is evolved from the

existing population in an attempt to obtain better solutions. The population size

determines the amount of information stored by the GA. The GA population is

evolved over a number of generations.

An evaluation function (or fitness function) is used to determine the fitness of each

candidate solution. The fitness is the opposite of what is generally known as the cost

in optimization problems. It is customary to describe genetic algorithms in terms of

fitness rather than cost. The evaluation function is usually user-defined, and problem-

specific.

Individuals are selected from the population for reproduction, with the selection

biased toward more highly fit individuals. Selection is one of the key operators on

GAs that ensures survival of the fittest. The selected individuals form pairs, called

parents.

Crossover is the main operator used for reproduction. It combines portions of two

parents to create two new individuals, called offspring, which inherit a combination of

the features of the parents. For each pair of parents, crossover is performed with a

high probability P, which is called the crossover probability. With probability 1- Pc,

crossover is not performed, and the offspring pair is the same as the parent pair.

Mutation is an incremental change made to each member of the population with a

very small probability. Mutation enables new features to be introduced into a

population. It is performed probabilistically such that the probability of a change in

each gene is defined as the mutation probability, P 1.

The generation gap is the fraction of individuals in the population that are replaced

from one generation to the next and is equal to 1 for the simple GA.

-q

a
.34

A schema is a specific set of values assigned to a subset of the genes in a

chromosome. It is a partial solution and represents a set of possible fully specified

solutions. A schema with in specified elements and don't-cares in the rest of the ii - in

positions can be considered to be an ('ii - in) dimensional hyperplane in the solution

space. All points on that hyperplane (i.e., all individuals that contain the given

subplacement) are instances of the schema.

For a given problem, various genes may be linked, and specific values may be

required for groups of genes in order to obtain a good solution. These schemata

represent the various features of the candidate solutions. GAs implicitly operates upon

the various schemata in parallel, which is why they are so successful in solving

complex optimization problems. The genetic operators create a new generation of

individuals by combining the schemata of parents from the current generation. Due to

the stochastic selection process, the fitter parents, which are expected to contain some

good schemata, are likely to produce more offspring. At the same time, the bad

parents, which contain some bad schemata, are likely to produce fewer offspring.

Thus, in the next generation, the number of instances of good schemata tends to

increase, and the number of the entire population is therefore improved.

In a typical, binary-coded GA, where the chromosomes are bit strings, each string in

the population is an instance of 2Lschemata, where L is the length of each individual

string. The number of different strings or possible solutions to the problem is also 2L

and the total number of different schemata contained in all these strings is 31, since

each gene in a schema may be 0,1 or don't care x. Thus the population represents a

very large number of schemata, even for relatively small population sizes. By

evaluating a new offspring, we get a rough estimate of the fitness of all of its

schemata. The numbers of these schemata present in the population is thus adjusted

according to their relative fitness values. This effect is known as the intrinsic

parallelism of the GA. As more individuals are evaluated, the relative proportions of

the various schemata in the population reflect their fitness values more and more

accurately. When a better schema is introduced into the population through one

offspring, it is inherited by others in the succeeding generation and thus its proportion

in the population increases. It starts driving out the less fit schemata, and the average

fitness of the population improves.

35

3.5 The major Advantages of Genetic Algorithm

Nevertheless, the major advantages of the GAs are the following:

• Constraints of any type can be easily implemented.

• GAs usually finds more than one near-optimal point in the

optimization space, thus permitting the use of the most applicable

solution for the optimization problem at hand.

• They are adaptive, and learn from experience.

• They have intrinsic parallelism.

• They are efficient for complex problems.

• They are easy to parallelize.

• Global Search Methods: This characteristic suggests that GAs are global

search methods.

• Blind Search Methods: They do not require knowledge of the first derivative

or any other auxiliary information.

• GAs use probabilistic transition rules during iterations, unlike the traditional

methods that use fixed transition rules.

• This makes them more robust and applicable to a large range of problems.

• GAs can be easily used in parallel machines. This reduces the overall

computational time substantially.

-11 3.6 Areas of Application

Areas of application of evolutionary algorithms at a glance (Some example with

References) are:

• Function Optimization [81, 82]

• Multi-Objective Optimization [83-86]

• Combinatorial Optimization [87]

• Engineering, Structural Optimization, and Design [3, 88-901

• Constraint Satisfaction Problems (CSP) [91, 92]

• Economics and Finance [93, 941

• Biology [95, 961

• Data Mining and Data Analysis [97- 100]

• Mathematical Problems [45-47, 101]

• Electrical Engineering and Circuit Design [102, 103]

• Chemistry, Chemical Engineering [104, 1051

36

• Scheduling [75, 106-109]

• Robotics [110]

• Image Processing [111, 112]

• Networking and Communication [113 - 118]

• Medicine[119, 120]

• Resource Minimization, Environment Surveillance/Protection [1211

• Military and Defense [122]

• Evolving Behaviors, e.g., for Agents or Game Players [123]

3.7 Genetic Algorithms vs Other Optimization Methods

Optimization algorithms can be divided into two classes:

Deterministic Methods: these methods use function and/or gradient information to

construct mathematical approximation of the functions, and then they find an optimum

point employing hill-climbing methods. These methods work normally with

continuous design variables and need a small number of function evaluations, but they

may not find a global optimum point.

Nondeterministic Methods: the most common methods in this class are random

search, genetic algorithms (GAs), evolutionary programming (EP), evolution strategies

(ES), simulated annealing (SA), Ant colony optimization (ACO) and particle swarm

optimization (PSO) etc. These methods work entirely using only function values.

These methods can work with discrete variables and (with infinite time) find a global

optimum in the presence of several local optima. However, the number of function

evaluations can be high even when a global optimum not found. Some of the

conventional optimization methods generally used are:

3.7.1 Hill Climbing

This is one of the local search techniques [124] which only accept changes that

improve the objective function. The disadvantage of the hill climbing algorithm is that

it needs to find out the neighbors of the current state before choosing to move and

that takes lot of time [125]. It can also get stuck in local optima.

3.7.2 Simulated Annealing

This is a probabilistic version of bill climbing that uses the theory of Markov chains,

which is a sequence of trials [126], where the probability of outcome of each trial

depends only on the previous trial. The disadvantages of using this method are that it

37

use,,, lots of computer time and it is slow in terms of speed when compared to other

methods.

3.7.3 Tabu Search

This is an iterative method [127] designed for solving combinatorial optimization

problems and is being used to find solutions for Traveling Salesman Problem, graph

coloring and job shop scheduling. Tabu moves are based on the short term and long

term history of the sequence of moves. One of the major disadvantages of the tabu

search is that it cannot adjust the solution parameters during the search.

3.7.4 Neural Networks

A neural network [128] consists of elements operating in parallel and is biologically

inspired. Even though a neural network outperforms most of the competitive

algorithms, it is relatively obscure, i.e., it cannot be explicitly represented in the form

of rules or by another easy representation method.

3.8 Necessary Steps for the Application of GAs to an Optimization Problem

The basic steps for the application of GA to an optimization problem may be

summarized as follows:

A coding for each of the independent variables whose optimal value is to

be calculated (optimization variables) is selected in such a way that a

string (simple array consisting of numbers) is created. The selection of the

coding should be such that the transformation from the original variable to

the string, and vice versa, is simple. A common coding of the variable to

be optimized is to use its binary form (string consisting of the values 0 and

1). This string will be used by the GA in the following steps in order to

promote the search for the optimum.

A set of strings is created randomly. This set that is transfonTled

continuously in every step of the GA is called population. More

specifically, this population that is created randomly at the start is called

initial population. The size of this population may vary from several tens

of strings to several thousands. The criterion applied in determining an

upper bond for the size of the population is that further increase does not

result in improvement of the near-optimal solution. This upper bound for

each problem is determined after some tests runs. Nevertheless, for most

38

applications the best population size lies within the limits of 10-100

strings.

The "optimality" (measure of goodness) of each string in the population is

calculated. Then on the basis of this value an objective function value, or

fitness, is assigned to each string. This fitness is usually set as the amount

of "optimality" of each string in the population divided by the average

population "optirnality". An effort should be made to see that the fitness

value is always a positive number. It is possible that a certain string does

not reflect an allowable condition. For such a string there is no

"optimality". In this case the fitness of the string is penalized with a very

low value, indicating in such a way to the GA that this is not a good string.

Similarly, other constraints may be implemented in the GA.

A set of "operators", a kind of population transformation device, is applied

to the population. These operators will be discussed in more detail later.

As a result of these operators, a new population is created, that will be

hopefully consisting of more optimal strings. The new one replaces the old

population. Steps 3-4, namely the application of GA operators on a

population in order to produce a new one and the subsequent replacement

of the old by the new population, is called a 'generation" of the GA.

A predefined stopping criterion, usually a maximum number of

generations to be performed by the GA, is checked. If this criterion is not

satisfied a new generation is started, otherwise the GA terminates.

The following Figure-3. 1 shows the genetic algorithm application. In actual fact this

following flowchart is used to construct genetic algorithm for optimization.

r_START
4

5par

Coding of
ameter space

Random creation of
Initial population

Evaluation of Application
Population Fitness of operators

............

GenerMiqn
New population
)lacernent of the old

Is number o
generations
exceeded?

Figure 3.1: Genetic Algorithm Application YES

LSTOP1

39

The basic steps behind GAs for function optimization could be described in brief as

follows.

[Start] Generate random population of n chromosomes (suitable solutions for

the problem)

[Fitness] Evaluate the fitnessf(x) of each chromosome x in the population

[New population] Create a new population by repeating following steps until

the new population is complete

• [Selection] Select two parent chromosomes from a population

according to their fitness (the better fitness, the bigger chance to be

selected)

• [Crossover] With a crossover probability cross over the parents to

form new offspring (children). If no crossover was performed,

offspring is the exact copy of parents.

• [Mutation] With a mutation probability mutate new offspring at

each locus (position in chromosome).

• [Accepting] Place new offspring in the new population

[Replace] Use new generated population for a further run of the algorithm

[Test] If the end condition is satisfied, stop, and return the best solution in

current population

[Loop] Go to step 2

3.9 The Simple GA for Function Optimization

The simple GA (also referred to as the total replacement algorithm) is illustrated in

Figure 3.2.

Generation 0 Generation I
I

2
3
4
5
6

7
8

101101100011
001011111000
100110110111
111101011000
010011101101
101111010110
110100000101
011111011101

2
3

4
I selection \ 5
I crossover) 6
I mutation / 7

000100101110
101010100101
010100010010
111110001101
100111010010
001011110100
100001000010

010001111101

selection
crossover
mutation

ii 000111000011 n I 111 101100001 I

Figure 3.2: The Simple Genetic Algorithm

The simple GA is composed of populations of strings, or chromosomes and there

evolutionary operators: selection, crossover and mutation [2].

The chromosomes may be binary-coded or they may contain characters from a larger

alphabet (Eshelman & Schaffer 1993 [129], Goldberg 1990 [2]). Each chromosome is

an encoding of a solution to the problem at hand, and each individual has an

associated fitness, which depends on the application. The initial population is

typically generated randomly, but it may also be supplied by the user. A highly fit

population is evolved through several generations by selecting two individuals,

crossing the two individuals to generate two new individuals and mUtating characters

in the new individuals with a given mutation probability. Selection is done

probabilistically but is biased toward more highly fit individuals and the population is

essentially maintained as an unordered set. Distinct generations are evolved and the

processes of selection, crossover, and mutation are repeated until all entries in a new

generation are filled. Then old generation may be discarded. New generations are

evolved until some stopping criterion is met. The GA may be limited to a fixed

number of generations or it may be terminated when all individuals in the population

converge to the same string or no improvements in fitness values are found after a

given number of generations. Since selection is biased toward more highly fit

individuals the fitness of the overall population is expected to increase in successive

generations. However, the individual may appear in any generation.

3.10 Genetic Operators

The genetic operators and their significance can now be explained. The description

will be in terms of a traditional GA without any problem-specific modifications. The

operators that will be discussed include selection, crossover and mutation.

3.11 Selection

As it is already known from the GA outline, chromosomes are selected from the

population to be parents to crossover. The problem is how to select these

chromosomes. According to I)arwin's evolution theory the best ones should survive

and create new offspring. There are many methods how to select the best

chromosomes, for example roulette wheel selection, stochastic universal selection,

tournament selection, rank selection, steady state selection and some others.

41

3.11.1 Roulette Wheel Selection

The simplest selection scheme is roulette-wheel selection, also called stochastic

sampling with replacement [130]. Roulette wheel selection is a proportionate

selection scheme in which the slots of a roulette wheel are sized according to the

fitness of each individual in the population [131]). Parents are selected according to

their fitness. The better the chromosomes are, the more chances to be selected they

have. It should be imagined a roulette wheel where are placed all chromosomes in the

population, every has its place big accordingly to its fitness function, like on the

following picture figure-3.3

o Chromosome 1

• Chromosome 2

o Chromosome 3

o Chromosome 4

Figure 3.3: Roulette Wheel Selection

Then a marble is thrown there and selects the chromosome. Chromosome with bigger

fitness will be selected more times.

This can be simulated by following algorithm:

[Sum] Calculate sum of all chromosome fitness in population - sum S.

[Selectl Generate random number from interval (O,S) - r.

[Loop] Go through the population and sum fitness from 0 - sum s. When the

sum s is greater then r, stop and return the chromosome where it is stand.

Of course, step 1 is performed only once for each population.

3.11.2 Stochastic Universal Sampling / Selection

Stochastic universal sampling (Baker 1987 [130]) provides zero bias and minimum

spread. The individuals are mapped to contiguous segments of a line, such that each

individual's segment is equal in size to its fitness exactly as in roulette-wheel

selection. Here equally spaced pointers are placed over the line, as many as there are

individuals to be selected. it is considered that NPointer, the number of individuals to

be selected, and then the distance between the pointers are 1/NPointer and the

position of the first pointer is given by a randomly generated number in the range [0,

1/NPo in/er]

EN

For selecting the mating population the appropriate number of uniformly distributed

random numbers (uniform distributed between 0.0 and 1.0) is independently
It generated.

Sample of 6 random numbers:

0.81, 0.32, 0.96, 0.01, 0.65, 0.42.

For 6 individuals to be selected, the distance between the pointers is 1/6=0.167.

Figure 3.4 shows the selection for the above example. Sample of 1 random number in

the range [0, 0.167]: 0.1.

pointer I pointer 2 pointer 3 pointer 4 pointer 5 pointer 6

inthvi ':lual 1 Ir 2 3 4 5 6 7 6 9 0

0.0 0.18 0.34 0.49 0.62 0.73 0.82 0.95 1.0

random number

Figure 3.4: Stochastic Universal Sampling

After selection the mating population consists of the individuals:

1,2, 3,4, 6, S.
Stochastic universal sampling ensures a selection of offspring, which is closer to what

is deserved, then roulette wheel selection.

3.11.3 Tournament Selection

In tournament selection (Goldberg & Deb 199 l[132]) a number tour of individuals is

chosen randomly from the population and the best individual from this group is

selected as parent. This process is repeated as often as individuals to choose. These

selected parents produce uniform at random offspring. The parameter for tournament

selection is the tournament size tour. Tour takes values ranging from 2 - Nind

(number of individuals in population). Table 3.1 and figure 3.5 show the relation

between tournament size and selection intensity [133].

Table 3.1: Relation between Tournament Size and Selection Intensity

~~nt size 5_J iojj 30]

ttSeiection intensity 0 0.56 [0.85 1L1.15 1.53 2.04 1

43

In an analysis of tournament selection [134] can be found as follows:

Selection intensity:

SellntTour(Tour) = .2 x (log(Tour) - log J(4.14 x log(Tour))) (approximation).

Loss of diversity:

LossDivrour(Tour) = Tour - Tour(T0 ITo-I)) (About 50% of the

population are lost at tournament size Tour=5).

Selection variance:

SelVarmur(Tour) = 1- 0.096x log(1 + 7.11 x (Tour —1)),

SelVarmur(2) = 1- 1/7-c (approximation).

2,5

2

- - -

1,5 -'
selection intensity

-

1 loss of diversity

-------------------- ----------------
0,5 >-.i.

- selectionvanance

0 I I I I

0 5 10 15 20 25 30

tournament size

-ç

Figure 3.5: Properties of Tournament Selection

3.11.4 Rank Selection

The previous selection will have problems when the fitness differs very much. For

example, if the best chromosome fitness is 90% of all the roulette wheel then the other

chromosomes will have very few chances to be selected. Rank selection first ranks the

population and then every chromosome receives fitness from this ranking. The worst

will have fitness I, second worst 2 etc. and the best will have fitness N (number of

chromosomes in population).

It can be seen in following picture, figure-3.6 & 3.7, how the situation changes after

changing fitness to order number.

44

4.

uctinson1

Diomn 3

ocnin4

Figure 3.6: Situation before Ranking (Graph of Fitness)

oClnuaxr I

ECliimne 2
uCIromwr 3

DCflAiW 4

Figure 3.7: Situation after Ranking (Graph of order numbers)

After this all the chromosomes have a chance to he selected. But this method can lead

to slower convergence, because the best chromosomes do not differ so much from

other ones.

3.11.5 Steady-State Selection

This is not particular method of selecting parents. Main idea of this selection is that

big part of chromosomes should survive to next generation.

GA then works in a following way. In every generations are selected a few (good -

with high fitness) chromosomes for creating a new offspring. Then some (bad - with

low fitness) chromosomes are removed and the new offspring is placed in their place.

The rest of population survives to new generation.

3.12 Crossover (Binary Valued Recombination)

Once two chromosomes are selected, the crossover operator is used to generate two

offspring. There are many types of crossover are available such as single point,

inultipoint, uniform and arithmctic crossover etc.

45

3.12.1 Single-point Crossover

In single-point crossover one crossover position k[1,2.....Nvar-1], Nvar: number of

variables of an individual, is selected uniformly at random and the variables

exchanged between the individuals about this point, then two new offspring are

produced. The illustration of this process is given below.

It could be considered the following two individuals with 11 binary variables each:

Parent! 0 1 1 1 0 0 1 1 0 1 0

Parent2 1 0 1 0 1 1 0 0 1 0 1

The randomly chosen crossover position is: Crossover position ---> 5

After crossover the new individuals are created:

Offspringl 011101100101

0ffspring2 1 0 1 0 110 1 1 0 1 0

Figure 3.8 shows graphically the single point crossover.

PB11I •);

1

Figure 3.8: Single-point Crossover

3.12.2 Multi-point Crossover

For multi-point crossover, m crossover positions ki[1,2.....lVvar-IJ, i=]:m, Nvar:

number of variables of an individual, are chosen at random with no duplicates and

sorted in ascending order. Then, the variables between successive crossover points are

exchanged between the two parents to produce two new offspring. The section

between the first variable and the first crossover point is not exchanged between

individuals. Figure 3.9 illustrates this process.

46

It could be considered the following two individuals with II binary variables each:

Parentl 0 1 1 1 0 0 1 1 0 1 0

Parent2 1 0 1 0 1 1 0 0 1 0 1

The randomly chosen crossover positions are:

Crossover position: (m=3) 2 6 10

After crossover the new individuals are created:

Offspring 1 0 11 1 0 1 ii 1 1 0 1 I 1

Offspring 2 1 011 1 0 01 0 0 1 0 0

parents offspring

5
:*"

i

Figure 3.9: Multi-point Crossover

The idea behind multi-point, and indeed many of the variations on the crossover

operator, is that parts of the chromosome representation that contribute to the most to

the performance of a particular individual may not necessarily be contained in

adjacent sub strings (Booker 1987 [135]). Further, the disruptive nature of multi-point

crossover appears to encourage the exploration of the search space, rather than

favoring the convergence to highly fit individuals early in the search, thus making the

search more robust (Spears & Dc Jong 199 l[136]).

3.12.3 Uniform Crossover

Single and multi-point crossovers define cross points as places between loci where an

individual can be split. Uniform crossover (Syswerda 1989 [137]) generalizes this

scheme to make every locus a potential crossover point. A crossover mask, the same

length as the individual structure is created at random and the parity of the bits in the

mask indicates which parent will supply the offspring with which bits.

47

f(

Ar
It could be considered the following two individuals with 11 binary variables each:

Parentl 0 1 1 1 0 0 1 1 0 1 0

Parent2 1 0 1 0 1 1 0 0 1 0 1

For each variable the parent who contributes its variable to the offspring is chosen

randomly with equal probability. Here, the offspring I is produced by taking the bit

from parent I if the corresponding mask bit is I or the bit from parent 2 if the

corresponding mask bit is 0. Offspring 2 is created using the inverse of the mask,

usually.

Parentl 01100011010

Parent2 1 0 0 1 1 1 0 0 1 0 1

Afler crossover the new individuals are created:

Offspringl 1 1 1 0 1 1 1 1 1 1 1

Offspring2 0 0 1 1 0 0 0 0 0 0 0

Briefly, during the Uniform crossover - bits are randomly copied from the first or

from the second parent. Figure 3.10 shows the uniform crossover.

Parent A Parent B Offspring

Figure 3.10: Uniform Crossover

3.12.4 Shuffle Crossover

Shuffle crossover (Caniana, Eshelmann, & Schaffer 1989 [138]) is related to uniform

crossover. A single crossover position (as in single-point crossover) is selected. But

before the variables are exchanged, they are randomly shuffled in both parents. Afler

recombination, the variables in the offspring are unshuffled. This removes positional

bias as the variables are randomly reassigned each time crossover is performed.

4-

48

3.12.5 Arithmetic Crossover

In this type crossover some arithmetic operation is performed to make a new

offspring. Figure 3.11 shows arithmetic crossover.

PrentA P&erit B Offspring
+ .

11001011 + 11011111 = 11001001 (AND)

Figure 3.11: Arithmetic Crossover

3.13 Mutation

After recombination offspring undergo mutation. As new individuals are generated,

each character is mutated with a given probability. In a binary-coded GA, mutation

may be done by flipping a bit, while in a non-binary-coded GA, mutation involves

randomly generating a new character in a specified position. Mutation produces

incremental random changes in the offspring generated through crossover. When used

by itself, without any crossover, mutation is equivalent to random search, consisting

of incremental random modification of the existing solution, and acceptance if there is

improvement. However, when used in the GA, its behavior changes radically. In the

GA, mutation serves the crucial role of replacing the genes values lost from the

population during the selection process so that they can be tried in a new context, or

of providing the gene values that were not present in the initial population. Figure

3.12 shows the mutation process.
IN

Aft.r crossover After rnuon

I

11001001 => 10001001

Figure 3.12: Mutation (Bit inversion) - Selected Bits are Inverted.

3.14 Parameters Selection

A large number of parameters and operators are used in GA such as:

1. Crossover and Mutation Probability

In this research there are two basic parameters of GA - crossover probability and

mutation probability are used.

49
4

Ir
Crossover probability says how often will be crossover performed. If there is no

crossover, offspring is exact copy of parents. If there is a crossover, offspring is made

from parts of parents' chromosome. If crossover probability is 100%, then all

offspring is made by crossover. If it is 0%, whole new generation is made from exact

Copies of chromosomes from old population (but this does not mean that the new

generation is the same!). Crossover is made in hope that new chromosomes will have

good parts of old chromosomes and maybe the new chromosomes will be better.

However it is good to leave some part of population survive to next generation.

Mutation probability says how often will be parts of chromosome mutated. If there

is no mutation, offspring is taken after crossover (or copy) without any change. If

mutation is performed, part of chromosome is changed. If mutation probability is

100%, whole chromosome is changed, if it is 0%, nothing is changed. Mutation is

made to prevent falling GA into local extreme, but it should not occur very often,

because then GA will in fact change to random search.

2. Other Parameters

There are also some other parameters of GA. One also important parameter is

population size.

Population size says how many chromosomes are in population (in one generation).

If there are too few chromosomes, GA has a few possibilities to perform crossover

and only a small part of search space is explored. On the other hand, if there are too

many chromosomes, GA slows down. Research shows that after some limit (which

depends mainly on encoding and the problem) it is not useful to increase population

size, because it does not make solving the problem faster.

3.15 Genetic Algorithm Complexities in Research

• The traditional approach to using Genetic Algorithms is to see them as

optimizers. This largely unconscious view has dominated the way GAs have

been interpreted. 1-Jowever, as this research hopefully made clear, GAs can be

used as effective tools for "Global Solver". To appreciate this point, consider

the function optimization technique using GA. The complexity of such a

problem is too great to be treated analytically, yet GA can often find a

solution. One does not care if the solution found by a GA is a global or local

optimum. Usually ones care more for the "binary" answer of whether a

50

solution can or cannot, be found at all if so, if it is adequate. It is adequacy,

rather than optimally count.

• GAs can not effectively solve problems in which there is no way to judge the

fitness of an answer other than right/wrong, as there is no way to converge on

the solution. These problems are often called "needle in a haystack" problems.

As with all current machine learning problems it is worth tuning the

parameters such as mutation probability and recombination probability to find

reasonable setting for the problem class are working on. There are theoretical

but not yet practical upper and lower bounds for these parameters that can help

guide selection

3.16 Techniques for Solving Mathematical Problem

Techniques for solving mathematical programs depend on the nature of the objective

function and constraint set. The following major sub fields exist:

• Linear programming studies the case in which the objective function f is

linear and the set A is specified using only linear equalities and inequalities

• Integer programming studies linear programs in which some or all

variables are constrained to take on integer values

• Quadratic programming allows the objective function to have quadratic

terms, while the set A must be specified with linear equalities and

inequalities

• Nonlinear programming studies the general case in which the objective or

constraints or both contain nonlinear parts

• Stochastic programming studies the case in which some of the constraints

depend on random variables

3.17 Differences and Significances of GA from Other Methods

There are five basic differences between genetic algorithms and the conventional

optimization methods [2]:

1. Direct manipulation of a coding

At the string level, GA manipulates decision variable representations to make use of

similarities among other high performance strings. The GA works with a coding of

the paralueter rather than the actual parameter. Other optimization methods deal with

functions and control variables directly.

51

Search from a population and not a single point

GAs work at the population level, whereas other methods work from a single point,

which tends to increase the probability of reaching a false peak. These mean GA

works from a population of strings instead of a single point.

Search via sampling which is a blind search

GAs use only information that is relevant; all other information is ignored, which

makes GAs a very powerful tool in search problems where the necessary information

is not available or difficult to obtain. This makes GAs applicable to virtually any

problem.

Search using stochastic operators and not on deterministic rules

The GA uses probabilistic transition rules, not deterministic rules. This means that

GAs use random choice to direct a very exploitative search instead of deterministic

transition rules. This removes dependence on any preconceived strategies.

I ndependence of function properties such as derivatives

This means that GAs are applicable in a wide range of situations. Application of GA

operators causes information from the previous generation to be carried over to the

next. These are some of the main advantages for choosing a GA over other

conventional methods for this work.

3.18 Why Genetic Algorithm For Function Optimization?

Most of the traditional search theories for function optimization are only suitable for

lmding local optimal solutions. The results depend heavily on the starting search point

when the function has a considerable amount of local optima. In many cases, the

search gets trapped in the nearest local optimal point instead of continuing its search

towards the global optimal solution.

For instance, it can be considered that y is a mathematical function with one

independent variable x.

y1 (x) = 1+ cos (x)/(l + 0.01 xx) where (0 :!~ x ~! 50)

Figure 3.13 shows the plot of equation y1

52

I \ /•\

V.

2

1.75

1.5

1.25

0.75

0.5

0.25

1.7

1.2

0.7

0.1

0 . 2

U 10 20 30 40 50

Figure 3.13: Plot of y1

In order to find its global minimum, the traditional search scheme with the starting

point at x= I is at first used. The global minimum point 0.0883634 is found after

mathematical solution at x = 3.08531. Now graphically the result is shown in figure

3.14

0 10 20 30 40 50

Figure 3.14: Minimization of yj

In this case, it is fortunate to find the global minimum, but if it is chosen the starting

point at x=50, after mathematical solution it is found that the global minimum is

0.956873 at x = 47.0833

Similarly for this case now graphically the result is shown in figure 3.15.
2

1.75

1.5

1.25

J \ r\
0.75 V
0.5

0.25

0 10 20 30 40 50

Figure 3.15: Minimization for Different Case of y

53

This simple problem demonstrates the shortcoming of many traditional search

schemes: that is needed to choose an appropriate starting point in order to get to the

global optima. But this is not possible if there is no idea what the function is like. For

some one or two dimensional search spaces, it can be simply found the solution

graphically, but when the dimension of the search space increases, visualization is

almost impossible. In that case it is needed some profound mathematical technique to

try to get some information about the required target function. This process becomes

tedious and manually time consuming. Hence, there is a need for some alternatives

when almost no information about the function is given. Genetic algorithm is one of

them.

3.19 Computer Accomplishment of GA

During the first approaching of genetic algorithm (GA) it was problem for many users

for not knowing where to start or how to begin. On the other hand, this aversive

reaction seems strange. After all in previous chapters it has been seen that how GAs

mechanically quite simple, involving nothing more than random number generation,

string copies, and partial string exchanges. In this chapter at first data structures and

algorithms necessary to implement the simple genetic algorithm are discussed. Search

space & searching a maximum of a function are also discussed. And at last why GA

works and the actions of a genetic algorithm for a simple parameter optimization

problem are also focused in this chapter.

- 3.20 Data Structures

Genetic algorithms process populations of strings. Therefore it comes as no surprise

that primary data structure for the simple genetic algorithm is a string population [2].

There are any numbers of ways to implement populations.

INDIVIDUAL
NUMBER

 INDIVIDUAL

STRING X f(X) OTHER
1 01111 15 225

2 01001 9 81

ii 00111 7 39

Figure 3.16: Schematic of a String Population in a Genetic Algorithm

54

For the simple genetic algorithm it can be chosen the simplest; a population is

constructed as an array of individuals where each individual contains the phenotype

(the decoded parameter or parameters), the genotype (the artificial chromosome or bit

string), and the fitness (objective function) value along with order auxiliary

information. A schematic of a population is shown in figure 3.16.

3.21 Search Space

If some problems are solved, some solutions are usually looked for, which will be the

best among others. The space of all feasible solutions (it means objects among those

the desired solution is) is called search space (also state space). Each point in the

search space represents one feasible solution. Each feasible solution can be "marked"

by its value or fitness for the problem. Solution is looked for some result, which is one

point (or more) among feasible solutions - that is one point in the search space.

The looking for a solution is then equal to a looking for some extreme (minimum or

maximum) in the search space. The search space can be whole known by the time of

solving a problem, but usually it is known only a few points from it and other points

are generated as the process of finding solution continues. Figure-3.17 shows example

of a search space.

Figure 3.17: Example of a Search Space

The problem is that the search can be very complicated. One does not know where to

look for the solution and where to start. There are many methods, how to find some

suitable solution (i.e. not necessarily the best solution), for example hill climbing,

taboo search, simulated annealing and genetic algorithm. The solution found by this

method is often considered as a good solution, because it is not often possible to prove

what is the real optimum.

55

3.22 Searching for a Maximum of a Function with GA

Genetic Algorithms (GAs) are counted to the adaptive random search methods. In

dealing with function optimization, the minimum/maximum of a function (y=f (x)) is

found bascd on a variation of x beginning with one or more starting points. GA

evolved with a set of points. The basic element of a GA is the artificial individual.

Similar to a natural individual an artificial individual consists of a chromosome and a

fitness value. The fitness of an individual describes how well an individual is adapted

to the nature. It determines the individual's likelihood for survival and mating. Every

changing of the chromosome leads to a changing of the individual fitness.

In this case (searching a maximum of a function) an artificial individual only consists

of a value of x and y f (x)). x play the role of a chromosome and y the role of the

fitness. 1-lowever, the implemented Genetic Algorithm works with a binary coded x

(xc), not with the x themselves.

artificial individual ::= I = {xc,f(x)}

A set of such individuals is called a population.

population P = (11,12,. ,jn)

n: number of individuals

3.23 Coding in Computer Accomplishment

The under laying GA implementation works based on coded x value. The aim of

coding is to create a representation of x, which allows any position of x to be

modified, to cut at any position and to splice two cutted parts onto a new x. A coded x

is like a chromosome in genetics, in other words a modifiable carrier of information.

Table 3.2: (Simple Example of Coding)

Examples of coding

x
'F-

xc (binary coded x)
.

113 01001110

J
F3~~IL

—
 oo"0001

56

The implemented coding method is based on a binary string representation of a

number (a string of 0 and 1). In the following some examples (Table-3.2) of binary-

coded x values are shown. For simplification a length of 8 bit and positive integer

numbers are used.

3.24 The Whole Procedure of Genetic Algorithm in Accomplishment

An initial population (parental generation) is generated at random (randomly chosen x

values, calculated y values). Based on this generation the GA creates the offspring

generation by using the genetic operators Selection, Crossover and Mutation. This

new generation of artificial individuals will be the new parental generation for the

next offspring generation. With each new generation of individuals the overall fitness

value of the population should increase. The process of creating offspring generations

based on the former generation could be repeated until the optimum is reached.

The following sketch Figure-3. 18 shows a single iteration step of the implemented

GA in order to create 2 new individuals. This step is repeated until the number of

individuals in the offspring generation is the same as that in the parental generation.

Generation V Generation V+1

Figure 3.18: A Single Iteration step of the Implemented GA

The process of creating new generations can be terminated when a predefined number

of generations is achieved or when the overall fitness value of the population is not

increased during the last generations. In the following there are brief descriptions of

genetic operators.

57

3.24.1. Selection Procedure

Selection is the process of picking out a suitable individual from the population in

order to create a new individual. Suitable individuals are individuals with a good

fitness. This operator is the implementation of the principle "survival of the fittest".

The implemented tournament selection chooses two parental individuals (father,

niother) in order to create two new individuals of the offspring generation. Suitable

parental individuals are such individuals with a high y value because the maximum of

the function has to be found.

Table 3.3: (Selection Example)

Examples: Selection

(based on the test function FO; 0.0 <x < 10)

Parents x xc binary-cedx y

P1 3 00100000 0.108

P2 8 00010000 1.22 E-08

P3 7 11100000 2.68E 031

The upper example (Table-3.3) shows three x, y-values. P1 and P3 could be selected

as "father"- and "mothcr'-individual. The fitness of these individuals is higher of P2.

3.24.2 Crossover Procedure

After the selection of the two parental individuals next step is the crossover.

Crossover is the process of creating a new coded xc by combination of two coded xc.
If a one-point (single-point) crossover algorithm is used.

Table 3.4: (Crossover Example)

Example: Crossover
(basedon function Fo,0.0<x<1O; crossover point=1) j

xc xc xc(binaiy- y-
Parents x (cutted) (twisted) xc (binary- coded x) Wert x y children

1 108 0 1 coded x)
1 PF 00100000 0

. 0100000 0100000 10100000 5 0.798 Cl
68

PM 7 11100000 :1 0 01100000 6 0.108 C2
- 1100000 1100000

Depending on a predefined probability value (pc: probability of crossover; 0 _:!~,-pc :~- 1)

the xc values of the parental individuals will be combined or not. If the xc values are

combined (crossover = true) then the binary-coded x values of the parental individuals

14,

58

(a bit-string) will be cutted at a randomly chosen crossover point into 2 parts. Two

new coded xc values are generated by an alternate combination of these parts. Table-

3.4 shows the crossover example.

3.24.3. Mutation Procedure

The last step of the Genetic Algorithm is the mutation. Mutation is a process of

changing a coded xc value randomly. A one-point mutation algorithm is implemented.

The mutation will be carried out depending on the mutation probability ('p/n; 0 !~'pm 15'

1.0). If the xc value was mutated then the value of a randomly chosen position of the

binary-coded xc is changed. That means if the value at this position is 0 it will be

changed into I and vice versa. In the following example (Table-3.5) CI should not be

mutated; Cl should be mutated. Position 3 of the binary-string xc is changed.

Table 3.5: (Mutation Example)

Example: Mutation
(based on function FO; 0.0 <x < 10; mutation position = 3)

xc (binary-
.

after
before xc (binary- coded x)

'

mutation
mutation coded x)

1fl1fl
V

A•JV UU V
78

-'

Cl (no
Cl 10100000 5 0.798 mutated)

C2 01100000 6 0.108
01000000 2

1.22 E-
 C2(mutated) 08

3.25 Mathematical Background

The mathematical foundation of genetic algorithms is the schemata theorem of J. 11.

Holland. It makes a statement about the propagation of schemata (or building blocks)

within all individuals of one generation. A schema is implicitly contained in an

individual. Like individuals, schemata consist of bit strings (1, 0) and can be as long

as the individual itself. In addition, schemata may contain "don't care" positions

where it is not specified whether the bit is I or 0, i.e. schemata Iii are made from the

alphabet {l, 0, #}. In other words, a schema is a generalization of (parts of) an

individual. As for example, the individuals:

01010010100101010101110101010101 and

01011010100101110001110111010111

can be summarized by the schema:

0101#0l0I00l0I#10#01I 101#10101#1

59

where all identical positions are retained and differing positions marked with a "fi"

which stands for "don't care". The length WOof the above schema is 31, which is

one minus the distance from the first to the last fixed symbol (i.e. I or 0 but not #).

The total number of different schemata of length I over an alphabet of cardinality k

Because each string of length I contains 21 schemata, with n individuals in

one generation there are between 0 and n 21 schemata in the population (depending

on the similarity of the n individuals). The order of a schema o(H) is the number of

fixed positions (I or 0 but not #).

The number sH, 0 [3], [2]) of occurrences of a particular schema H in a population of

n individuals at time 1. The bit string Aj of individual i gets then selected for

reproduction with probability Pj:

Pi
-

fl

i= 1

where ii is the fitness value of the i-/h individual. The expected number of

occurrences of schema H at time t+1 is:

f(Fr)
s(H,t +1)=s(H,t).n.

fi

with f (H) as the average fitness of all individuals (strings A/) that contain H.

Crossover and mutation operators can destroy schemata during reproduction. The

longer a single individual, the smaller the probability that a schema H will be

involved in a crossover event. The longer a schema, i.e. the larger otO, the more

likely is its destruction through recombination with another individual. Hence, for

crossover the lower bound for the survival probability of a schema H is:

p > 1 —
8(H)

L-1

with L as the length of one whole individual. If we perform crossover stochastically at

a frequency Pc the survival probability Ps becomes:

8(H)

— 1

Summarizing the effects of independent crossover and reproduction we arrive at the

following equation for the expected occurrence of a schema H at time 1+1:

60

1(H) (6(H)
s(H,t +i)=s(H,t).n.

" 1.)
fi

This equation tells the schemata increase over time proportional to their relative

fitness and inverse proportional to their length. - Mutation can effect a schema I-I at
each of its o(H) fixed positions with mutation probability Pm. Survival of a single

constant position in a schema is thenps = I - Pm and survival of the entire schema:

p=(1—p ,n)4'I

which for small Pm can be approximated by P 1 - 0 (H) . P m . Summarizing

the effects of independent mutation, crossover and variation get the following formula

for the expected count of a schema H:

1(H) (8(H)
s(ff,t +i) =s(H,t).n.

-1
0(H)P

Efi

Assuming a schema H could always outperform other schemata by a fraction b of the

total mean fitness then this equation can he rewritten as:

i i
+b—f1 (

n 8(ff
s(H,t +i)=s(H,t)J1 p

Efi
L-1

fl F-i

=s(H,t).(i+b).i—p 8(H)

This equation is of the form, f 1 = f0 (i + b)' g(p ,p ,,L ,6(H)) which says

that, the number of schemata better than average will exponentially increase over

time. Effectively, many different schemata are sampled implicitly in parallel and good

schemata will persist and grow. This is the basic rationale behind the genetic

algorithm. It is suggested that if the (linear) representation of a problem allows the

formation of schemata then the genetic algorithm can efficiently produce individuals

that continuously improve in terms of the fitness function.

Finally this chapter concludes with the detail view of standard GA as the base of the

proposed method. The next chapter describes the proposed method for key improving

the performance of GA for the functional optimization problems.

61

CHAPTER 4

Proposed PGA: An improved Evolutionary Approach

Since GA is the base of our proposed Precise Genetic Algorithm (PGA), this chapter

first briefly explains GA and its problems regarding functional optimization and then

describes the aspects of proposed PGA as an evolutionary approach to solve several

functional optimization problems in high dimensional search space.

4.1 Introduction

There are many diverse applications that are mathematically modeled in terms of

function optimization problems with multiple independent variablcs. The optimization

of these models is typically difficult due to their combinatorial nature and potential

existence of multiple local minima in the search space. Evolutionary algorithms are

powerful tools for solving such problems. A GA falls into the much broader category

of evolutionary approaches. This algorithm attempts to simulate the processes of

evolved biota in optimization. They are the search algorithms which are the model of

machine learning that derive their behavior from a metaphor of processes of evolution

in nature. GAs do not require gradient or Hessian information. GAs use optimization

strategies inspired by Darwin's theory of evolution and have direct application in

mathematical optimization to find the global minimum or maximum in a search space.

At every generation, GAs produces a new set of strings using the fragments of the

fittest of the old. The main advantages of the GAs are their robustness and their ability

to provide a balance between efficiency and effectiveness in different environments

which cover a variety of applications [2]. However, to reach an optimal solution with

a high degree of confidence, they typically require a large number of analyses during

the optimization search. Performance of these methods is even more of an issue for

problems that include multiple variables. The work here enhances the efficiency and

accuracy of the GA for the optimization of the objective functions having more than

one variable.

GA manages population of solutions instead of a single solution to find an optimal

solution to a given problem. Although GA draws attention for functional

optimization, it may search same point again due to its probabilistic operations that

hinder its performance. In this study, we make a novel approach of standard Genetic

Algorithm (sGA) to achieve better performance. The modification of sGA is

investigated in selection and recombination stages and proposed Precise Genetic

62

Algorithm (PGA) as an evolutionary approach. In PGA, we bring and apply an

approach with the use of precise genetic operators as powerful solution searching

mechanisms, for both single and multivariable optimization problems. Generally, it is

time-consuming for GAs to find the solutions, and sometimes they cannot find the

global optima. In order to improve their search performance, we propose the

technique which employs precise crossover, mutation and selection to generate

offspring based on the best individuals of current and past generations. It is

considered to have the effect of fast searching for the optimum solutions with the

ability to avoid the production of ineffective individuals and maintain the diversity of

the population. This research makes an effort to follow the potential trend of

enhancing the search performance of GAs by developing new methods of genetic

operators with major attention being paid to the diversity of populations and the said

modifications improves the efficiency of sGA in terms of fast convergence and

quality solution.

4.2 Standard Genetic Algorithm (sGA)

Standard GA is a stochastic search and optimization method imitating the metaphor of

natural biological evolution. Generally it is a class of evolutionary algorithms that

model natural processes, such as selection, recombination, mutation and migration [1-

5,139, 140]. The following Figure 4.1 shows the structure of a simple GA. It works on

the population of individuals instead of single solution and it may works in a parallel

manner [5, 141].

Generate Evaluate objective rAre optimization Yes I Best
Initial function 1ciieria met?

I
[ividua1s

population

no

Start 4'
Selection Result

Generate Recombination
new

population ,1r

L uta oEIIJ

Figure 4.1: Structure of a Genetic algorithm

63

At the beginning, individuals (the population) are randomly initialized that stands as

initial population. The objective function is then evaluated for these individuals. If the

optimization criteria are not met, the creation of a new generation starts [4, 5, 142].

Individuals are selected according to their fitness for the production of offspring.

Parents are recombined to produce offspring. All offspring will be mutated with a

certain probability. The fitness of the offspring is then computed. The offspring are

inserted into the population replacing the parents, producing a new generation. This

cycle is performed until the optimization criteria are reached [2, 5, 140].

4.3 Problems regarding sGA for Functional Optimization

In fact GA manages population of solutions instead of a single solution to find an

optimal solution to a given problem. Thus GAs is considered as an intelligent search

technique, which is capable of searching large search spaces with multiple peaks [143].

But conventional GAs suffers from bad initializations and it is widely accepted that the

convergence rate of conventional GAs are influenced by the initial population.

The standard GA, being faced with the usual conflict between reliability and

computation time, often results in an unsatisfactory compromise, characterized by a

slow convergence, when an exact solution is required. Although GA is performed

well in optimization problems, due to working with population of solutions it faces

computation time and slow convergence through its basic steps such as selection,

reproduction and replacement [144, 145]. The random selection in GA and repeated

identical calculation hampered its overall performance [8, 146, 147].

Fundamentally, the problems regarding GA are significantly related to the computation

time and slow convergence [144, 145]. Due to its probabilistic nature, the duplicate

selection and repetition of same searching points deteriorate the overall performance of

GA. To overcome the weakness, we have proposed a Precise Genetic Algorithm

(PGA); the next section describes the proposed method in detail.

4.4 Significance of the Propose Approach

The key to improving the performance of the GA is to reduce the time needed to

calculate the fitness. By examining the mechanisms of the GA, it is seen that the

diversity of the population decreases as the algorithm runs. The fitness values for the

same chromosomes are recalculated repeatedly. If previously calculated fitness values

can be efficiently saved, computation time will diminish significantly. This suggests

64

an opportunity for performance improvement. By efficiently storing fitness values,

GA performance can be dramatically improved.

4-

4.5 Aims of the Proposed Approach

To enhance performance, a modification of GA is investigated in selection and

recombination stages to maintain population diversity. The proposed method is called

Precise Genetic Algorithm (PGA). The primary motivation for the proposed PGA is to

ensure the successive convergence in optimization problems to reach optimal solution

with a minimal lime. Population diversity hinders premature convergence and helps to

get global optimal points in the search space. PGA also eliminates the possibility to

search in the same point that could be expensive in GA. Experimental results on a set

of sample optimization functions may reveal that PGA could be replayed optimal

solution within a less number of generation(s) than that of standard GA.

4.6 The Proposed Method PGA to Solve Optimization Problem

As an optimization technique, genetic algorithm simultaneously examines and

manipulates a set of possible solution. Over the past twenty years numerous

application and adaptation of genetic algorithms have appeared in the literature.

During each iteration of the algorithm, the processes of selection, reproduction and

mutation each take place in order to produce the next generation of solution. Genetic

Algorithm begins with a randomly selected population of chromosomes represented

by strings.

The PGA uses the current population of strings to create a new population such that

the strings in the new generation are on average better than those in current population

(the selection depends on their fitness value). The selection process determines which

string in the current will be used to create the next generation. The crossover process

determines the actual form of the string in the next generation. Here two of the

selected parents are paired. A fixed small mutation probability is set at the start of the

algorithm. This crossover and mutation processes ensures that the PGA can explore

new features that may not be in the population yet. It makes the entire search space

reachable, despite the finite population size.

65

4.7 Aspects of PGA

Precise Genetic Algorithm is an extension of the traditional genetic algorithm and

modified by a search method to further improve individual's fitness that may keep high

population diversity and reduce the likelihood premature convergence. This technique

offers a very flexible and reliable tool able to search for a solution within a global

context.

PGA effectively incorporates the global exploring ability of the genetic algorithm with

the help of population diversity and the local convergent ability of the precise

algorithm by adding new search points. Other techniques are also employed by PGA is

to ensure outperformance over standard GA (sGA). Standard GA always accepts the

newly produced individuals as offspring in the crossover and mutation. On the other

hand, PGA does not directly allow two offspring like sGA. PGA always chooses the

best chromosomes during the crossover and mutation process. In the crossover process,

two parents are chosen to produce two offspring based on the classical multipoirit

crossover. The two parents and offspring compete with each other and PGA chooses

two best chromosomes as offspring. Likewise, in the mutation process, the

chromosome chosen to mutate and the altered chromosome compete with each other

and PGA accepts the better one as offspring. With each new generation of individuals

the overall fitness value of the population should increase. The process of creating

offspring generations based on the former generation could be repeated until the

optimum is reached. The coming sections explain steps of PGA in detail considering

sGA as a base method dealing with function optimization. In PGA, the selective

pressure applied through a number of generations, the overall trend is towards higher

fitness chromosomes. Mutations are used to help preserve diversity in the population

by introducing random changes into the chromosomes. The PGA scheme is illustrated

in Figure 4.2. In each generation; two different individuals are selected as parents,

based on their fitness. Crossover is performed with a high probability, Pc, to fonri

offspring. The offspring are mutated with a low probability, PM and inverted with

probability P1, if necessary. A duplicate check may follow in which the offspring are

rejected without any evaluation if they are duplicates of some chromosomes already

in the population. The offspring that survive the duplicate check are evaluated and are

introduced into the population only it they are better than the current worst member.

Duplicate checking may be beneficial because a finite population can hold more

schemata if the population members are not duplicated. Since the offspring of two

identical parents are identical to the parents, once a duplicate individual enters the

population, it tends to produce more duplicates and individual varying by only slight

mutations. Premature convergence may then result.

66

I Generate initial population I

I Evaluate each individual I

Select two individuals without repetition, such that the probability

of selection of each individual is proportional to its fitness.

With a high probability, Pc, perform crossover on the pairs to

generate two offspring. If crossover is not performed, then the

parents are copied unchanged to the offspring.

Mutate the offspring with a small probability PM

Perform inversion on the offspring with probability P j if the

algorithm calls for it

"V

If offspring are duplicates of any other individual already in

population then reject

I Evaluate offspring I

If the offspring are better than the worst individuals in the

population, then replace the two worst individuals with the

offspring

Stopping
- Yes

Figure 4.2: PGA Scheme

Each of the above conditions reduces the duplicate checking time in comparison to the

evaluation time. If the duplicate checking time is negligible compared to the evaluation

time, then duplicate checking improves the efficiency of the GA.

67

-4

4.7.1 Chrornosornal Representation in PGA

PGA uses the similar encoding scheme like sGA for function optimization. A binary

vector is used as a chromosome to represent real values ofx1 . For instance consider the

following sample function should be optimized with PGA:

f1 (x1 ,x2) = x1 .sin(10nx1)± x2 .cos(10nx2)-i- 2 where -1:~x1 !~3 and

- I !~ x, :~ 2. We wish to optimize the function f1 with some required precision. The

length of the vector depends on the required precision. In this case, it is considered that

the desired output result should be 4 places after decimal point, i.e. the required

precision is four decimal places for each variable. The domain of variable x1 has

length 4; the precision requirement implies that the range [-1, 3] should be divided at

least 4 x 10000 equal size ranges. This means that 16 bits are required as the first part

of the chromosome:

32768 =
 15 <40000 ~: 2 16 = 65536. Similarly, the domain of variable x2 has length 3;

the precision requirement implies that the range [-1, 2] should be divided at least 3

10000 equal size ranges. This means that 15 bits are required as the second part of the

chromosome:

16384= 214 <30000!~: 215 = 32768 . The total length of a chromosome (solution

vector) is then in = (16+15) = 31 bits; the first 16 bits code x1 and rest 15 bits 117-311

codex2 . The binary string <b
15 14 13 12 11 10

b b b b b ...b
0 30 29 28 27 16
> and <b b b b ... b > map

into a real number X from the range [-1 ... 3] and [-1 ... 2] respectively is completed in

two steps:

> Convert the binary string from the base 2 to base 10

(<b15b14b13b12 ... b0>)2 =(>b1.2')10 =4
(<b30b29b28b27... b16>)2 = (b1.2')10 = x

> Find a corresponding real number x1 .

The chromosomes (0000000000000000) and (1111111111111111) represent

boundaries of the domain [-1, 3]. Each chromosome is a binary vector of several bits

and converts it into corresponding real number to evaluate function.

The minimum/maximum of a function (y = f(x1)) is found based on a variation of x

beginning with one or more starting points. The basic element of a GA is the artificial

individual consists of a chromosome and a fitness value. The every changing of the

chromosome leads to a changing of the individual fitness. In this case (searching a
-i

maximum of a function), an artificial individual only consists of a value of

x, and y = f(x,). x1 plays the role of a chromosomc and y plays the role of the fitness.

The remarkable problems regarding GA encoding are duplication selection and

searching same points again which significantly affects the performance and makes

slow convergence. The next sub sections explain PGA as a remedy which evolved with

a set of search point generation.

4.7.2 Search Points Generation

It is given the attention with the review of sGA and the following type optimization

problems: Maximize f(x 1 , x2 ,. ..x rn) where each x1 is a real parameter subject to

a1 x1 :!~ h1 for some constants a1 and b1 . The formula

x1 = left value + 4 x (right value - left value) ~ - i) is used to generate new search

points within specific ranges by means of chromosomes avoiding duplication for better

convergence. A representation having each variable xi coded as a binary string of

length rn1 clearly satisfies the precision rcquiren1ent. Additionally, the following

formula interprets each such string:

x1 = aj+ decima/(lOOlOO ... lOOl 7)x (bj _ a1)~2rn1_1),where in = no. of used bit in

chromosome. As for example, if the bit string size is 16 maps into a real number in the

range [-1 ... 3] then the search point is generated byx1 = —1 ± X1 x 4 - i) where

x is the decimal value of the corresponding bit string. Similarly

x2 = —1±x x3~.215 — i)where x is the decimal value of the corresponding bit

string.

4.7.3 Precise Crossover

This is a version of artificial mating. Individuals with high fitness should have high

probability of mating. Crossover represents a way of moving through the space of

possible solutions based on the information gained from the existing solutions. It is

the process of creating a new offspring by combination of parental individuals [7, 142].

The bits between the numbers posi and pos2 indicate the position of the crossing

points.

69

From two chromosomes

v1 = (b1 ;. ; b 01 ; b 051+1 ;. ; b 0 ; ; b,,,) and

v2 = (c1;;c1,01;c01+1;;c02;;c,,7)

two new chromosomes are generated through exchanging the corresponding bits

between positions pos! and pos2:

v1' = (b1 ;; c 01 ; c,011 ;; c 02 ;; b,) and

v = (c1 ;; b 0 ; b 01+1 ;; ; ; Cm)

PGA does not directly accept two offspring v and V2 as sGA does. We compute all the

'.4 fitness of {
V1

; }. Then we choose two best chromosomes from these four as

the offspring according to their fitness values.

4.7.4 Precise Mutation

Mutation represents innovation. Mutation is important for boosting the search; some

of evolutionary algorithms rely on this operator as the only form of search. The

probability of mutation (pm) normally sets in smaller range e.g., 0.1. For each

chromosome in the current (i.e. after crossover) population and for each bit within the

chromosome: For each integer i in [1, m], generate a random number r in the range

[0; 1]. if i; <p1, then mutate the ith bit ofv = (b1 ; ; b.; ; b) to generate a new

chromosome V (b1 ;;1 - b, ;; b) . Then we compute the fitness of v and v' and

PGA choose the better chromosome as the offspring.

4.7.5 Precise Selection

Selection is the process of picking out a suitable individual from the population in

order to create a new individual. During each successive generation, a proportion of

the existing population is selected to breed a new generation. Individual solutions are

selected through a fitness-based process, where suitable solutions (as measured by a

fitness function) are typically more likely to be selected. Suitable individuals are

individuals with a good fitness [139, 147]. Here we use precise elitist selection scheme

to select an elitist chromosome with the highest fitness value, which is copied directly

into the new population of next generation. it ensures that at least one copy of the best

individual(s) of the current generation is propagated on to the next generation. It is

70

important to prevent promising individuals from being eliminated from the population

during the application of genetic operators. The other chromosomes are selected by

"4 roulette-wheel selection process, where the selection probability of each individual is

proportional to its fitness value. Selection operator is the implementation of the

principle "survival of the fittest". Suitable parental individuals are such individuals

with a high y value because the maximum of the function has to be found.

4.7.6 Fitness Function

Fitness function is the measure of the quality of an individual. The fitness function

should be designed to provide assessment of the performance of an individual in the

current population. In selection the individuals producing offspring are chosen. The

selection step is preceded by the fitness assignment which is based on the objective

value. This fitness is used for the actual selection process. There are many types of

selection methods used in genetic algorithms, including:

N Rank-based fitness assignment

• Roulette wheel selection

• Stochastic universal sampling

• Local selection

• Truncation selection

• Tournament selection

A decision about the method of selection to be applied is one of the most important

decisions to be made. Selection is responsible for the speed of evolution and is often

cited as the main reason in cases where premature convergence halts the success of a

genetic algorithm.

4.7.7 Evaluation Function and Fitness

For the selection process (selection of a new population with respects to the probability

distribution based on fitness values), a roulette wheel with slots sized according to

fitness is used. Such a roulette wheel is constructed as follows (it can be assumed here

that the fitness values are positive, otherwise, it can be used some scaling mechanism):

Roulette Wheel Selection: Let f1 ,f2 fbe fitness values of individuals 1, 2,. .. ,p.

Then the selection probability for individual 1 is:
,.

=

fi

-I:f j
I = I

71

For the selection process (selection of a new population with respects to the probability

distribution based on fitness values), a roulette wheel with slots sized according to

fitness is used:

Calculate the fitness value eval(v) for chromosome v

= I pop size:

Find the total fitness of the population
pop - size

F= leval(vi).

Calculate the probability of a selection p for each chromosome v

(i = I pop_size):

p1 =eval(v1)/F

Calculate a cumulative probability q.for each chromosome v (i = 1......,pop_size):

q1 = =1 p

The selection process is based on spinning the roulette wheel pop_size times; each time

it selects a single chromosome for a new population in the following way:

Generate a random number r from the range [0... .1].

If r <q1 then select the first chromosome (v1); otherwise select the it/i

chromosome v1 (2:!~ i :!~ pop_size) such that q_1 <r :~ q

Obviously, some chromosomes would be selected more than once. This is in

accordance with the Schema Theorem: the best chromosomes get more copies, the

average stay even, and the worst die off.

4.8 Experimental Analysis

In a precise genetic algorithm, a gene is considered as a string of bits where the string

is coded to represent some underlying parameter set. The initial population of genes

which are called bit strings is created randomly and the length of the bit string

depends on the problem which is to be solved. A fitness function which measures how

good a solution string is must also be defined, based on the problem to be solved.

Candidate solutions are encoded as fixed length binary vectors. The initial group of

potential solutions is chosen randomly. These candidate solutions, called

"chromosomes," evolve over a number of generations. At each generation, the fitness

72

of each chromosome is calculated; this is a measure of how well the chromosome

optimizes the objective function. The subsequent generation is created through a

process of selection, recombination, and mutation. The chromosomes are

probabilistically selected for recombination based upon their fitness. General

recombination (crossover) operators merge the information contained within pairs of

selected "parents" by placing random subsets of the information from both parents

into the respective positions in a member of the subsequent generation. Although the

chromosomes with high fitness values have a higher probability of selection for

recombination than those with low fitness values, they are not guaranteed to appear in

the next generation. Due to the random factors involved in producing "children"

chromosomes, the children may, or may not, have higher fitness values than their

parents.

The constructed algorithm for two-dimensional search space is quit similar to one

dimensional search space. There are some representational difference lies between

them. Except this the rest of algorithm is similar. In this dissertation as for instance the

following two variables function should be optimized with GA:

f(xj, x 2) = 15.5 1- x 1.sin(4nx 1) + x2.sin(2Oir 2) (4.1)

where —3 :!~x j _:!M.l and 4.1 :5-x2 ~5.8.

4.8.1 Problems Encoding
)

A binary vector is used as a chromosome to represent real values of x. The length of

the vector depends on the required precision and in this case it is considered that the

desired output result should be 4 places after decimal point, i.e., the required precision

is four decimal places for each variable. The domain of variable x1 has length 15.1;

the precision requirement implies that the range [-3.0, 12.1] should be divided at least

15.1 x 10000 equal size ranges. This means that 18 bits are required as the first part of

the chromosome:

2' < 151000 < 2's.

The domain of variable x2 has length 1.7; the precision requirement implies that the

range [4.1, 5.81 should be divided at least 1.7 x 10000 equal size ranges. This means

that 15 bits are required as the second part of the chromosome:

2'< 17000 <2'.

73

The total length of a chromosome (solution vector) is then in = (18 ± 15) = 33 bits; the

first 18 bits codex j and remaining 15 bits 119-331 codex2.

To find a corresponding real number x, the formula is used as follows

x = left value -1- x 1. (right value - left value) / (2"- 1)

According to this problem the real no. is given by

x j -3+x'x (12.1 _(3))/(2I8 1)

-3±x'x 15.1 /(218_I) (4.2)

x2 =4.1 ±x'x(5.8-4.1)/(2'5 - 1)

=4.1+xx 1.7/(21 - 1)(4.3)

4.8.2 Initial Population

In this case it is assumed that there are 1 5 populations exist. A population of

chromosomes is created, where each chromosome is a binary vector of (18+15)=33

bits. All 33 bits for each chromosome are initialized randomly.

a) Total l3it=/8+I5=33

01 001101110110001001010101001100010

02 101110101100101111111101010110100

03 1101001 l000ll0lll0l0000ll0011l0ll

04 001000011100011011111111010010000

05 l000001010101I0000101I00000l 11100

06 100100100100000010111011110011011

07 111111001000111011110000111100111

08 110011101010101110111010110001001

09 0110ll0l00lll00101olollllllol000l

10 0011100000011011011110000101

11 lllll0oll0000000llololoOlo1011lol

12 010100000001111111001010001010010

13 l00llllll00l0llool0000loolll 11010

14 1011lloololoolololoollololll10101

15 100100101000000000001 101000000011

74

Similarly ---- >

XJ,2 = 8.018081

XJ,5 = 4.707628

XJ,8 = 9.190343

xi,ij = 11.716831

X/14 = 8.127180

XJ,3 = 9.452087

xj,6 = 5.626613

x /, 9 = 3.442512

X112 = 1.726083

X115 = 5.64 1244

xi,4 =-1.007714

= 11.897010

= -0.521149

XJ13 = 6.413 170

4.8.3 Evaluation Function

The first 18 bits to represent x1 from the above populations set are given by,

01 001101110110001001 (56713)

02 101110101100101111 (191279)

03 110100110001101110 (216174)

04 001000011100011011 (34587)

05 100000101010110000 (133808)

06 100100100100000010 (149762)

07 111111001000111011 (258619)

08 110011101010101110 (211630)

09 011011010011100101 (111845)

10 001010100000011010 (43034)

11 111110011000000011 (255491)

12 010100000001111111 (82047)

13 100111111001011001 (163417)

14 101111001010010101 (193173)

15 100100101000000000 (150016)

From equation (4.2) it is found that,

xj1 =-3+decimal(0011011101100010012)x 15.1/(2'-1)

= -3 + 56713 x 15.1 / 262143

= 0.266791

Again, the next 15 bits to represent x2 from the above populations set are given by,

01 010101001100010 (10850)

02 111101010110100 (31412)

03 100001100111011 (17211)

-4
04 111111010010000 (32400)

05 101100000111100 (22588)

VAI

06 111011110011011 (30619)

07 110000111100111 (25063)

08 111010110001001 (30089)

09 010111111010001 (12241)

10 101111000010011 (24083)

11 010100101011101 (10589)

12 001010001010010 (5202)

13 000010011111010 (1274)

14 001101011110101 (6901)

15 001101000000011 (6659)

Now from equation (4.3) it is found that,

x2,1 =4.1 +dccimal(0101010011000102)x 1.7/(215 1)

=4.1 + 10850x 1.7/32767

= 4.662914

X22 = 5.729701 X23 = 4.992932

X25 = 5.27 1899 x26 = 5.688559

X28 =5.661061 X29 =4.735081

X211 = 4.649373 X2,12 = 4.369887

X2,/4 = 4.45 8034 X2,15 = 4.445479

X24 = 5.780960

X27 = 5.400305

X210 = 5.349461

x213 = 4.166097

During the evaluation phase each chromosome are decoded and the fitness function

values are calculated from (x1, x2) values. So it is found from equation (4.1) that,

12

Eva! (v j) =f(x j,j,x2, j) =f(0.266791, 4.6629 14)

= 15.5 +x 1.sin (4irr11) 1- x2.sin (20'zx2 1)

= 15.5+0.266791 xsin(4irx0.266791) + 4.662914xs1n(20irx4.662914)

= 12.060122.

In the same way it is found that,

Eva! (V2) =f(x12, x2,2) = 22.788252.

Eva! (v3) =J(x13, X2,3) = 8.006900.

Eva! ('v4) =f(x14, x2, 4) = 10.2 18968.

Eva! (i'5) =f ('x), 5, X25) = 12.716375.

Eva! (vó) =f(x j,6, X26) = 17.382846.

Eva! (v7) =f(x17, X27) = 4.164 123.

Eva! (v8) =fxj,8, x2,8) = 18.13 1577.

-4 Eva! (v9) =f (xj,9, X29) = 17.038677.

76

Eva! (yb) =f(x i , jo, X2,10) = 15.813701.

Eva! (vii) =f(x jjj, x2, 11) = 20.419916.

Eva! (v12) =f(xj,12, x212) = 11.863670.

Eva! (v i) =f (x113, X2/3) = 6.278665.

Eval (vj 4) =f(x114, x 214) = 21.465508.

Eva! (v15) =f('x j, 15, x215) = 22.267111.

It is clear that the chromosome v15 is the strongest and v7 is the weakest.

Now the system constructs a roulette wheel for the selection process. Total Fitness of

the population is,
15

F= Eval(v) = 220.616410.

The probability of a selection p' for each chromosome v, (i = 1,2,3 ,15) is:

Pi = Eva! ('v j)/F = 0.054666

P2 = 0.103294 P3 = 0.036293 P4 = 0.046320

P5 =0.057640 P6 =0.078792 P7 = 0.018875

P8 = 0.082186 P9 = 0.077232 P10 =0.071680

P11 = 0.092558 P12 = 0.053775 P13 = 0.028460

P14 = 0.097298 P15 = 0.100931

The cumulative probabilities qi for each chromosome v (i = 1, 2,..., 15) are:
*

= 0.054666 q2 =0.157959 q3 = 0.194252

q4 =0.240573 qs =0.298213 q6 =0.377005

q7 = 0.395880 q8 = 0.478066 q9 = 0.555298

qio= 0.626978 qii = 0.719536 q12 = 0.773311

q13 = 0.801771 q14 = 0.899069 q 15 = 1.000000

Now to spinning the roulette wheel 15 times, each time a single chromosome for a

new population is selected. It can be assumed that a random sequence of 15 numbers

from the range [0... 1] will be generated.

If the first random number is greater than q7 and smaller then q8 meaning the

chromosome v8 is selected for new population; and so on. Finally first new set of

population is given by---------------->

77

First New Set of Populations:

01 110011101010101110111010110001001 <<8

02 100100101000000000001101000000011 <<15

03 001010100000011010101111000010011 <<10

04 011011010011100101010111111010001 <<9

05 110100110001101110100001100111011 <<3

06 101110101100101111111101010110100 <<2

07 100100100100000010111011110011011 <<6

08 110011101010101110111010110001001 <<8

09 010100000001111111001010001010010 <<12

10 100100101000000000001101000000011 <<15

11 011011010011100101010111111010001 <<9

12 010100000001111111001010001010010 <<12

13 001101110110001001010101001100010 <<1

14 101111001010010101001101011110101 <<14

15 101110101100101111111101010110100 <<2

4.8.4 Genetic Operators

There are two types of classical genetic operators in genetic algorithms such as,

crossover and mutation. The probability of crossover p=0.5. For each chromosome in

the population a random number r from the range [0... 1] are generated. If r < 0.5, a

given chromosome for crossover is selected. After this procedure it is found that the

chromosome at first v5 & v6, V7 & v10 and V/3 & v14 are selected for crossover. But in

this case the number of selected chromosomes were odd. So one extra chromosome

can be added or one selected chromosome can be removed - this choice is made

randomly as well. Through this point the selected chromosome 15 is removed. Now a

random integer number position from the range [1 .. .33] is generated. The number

position indicates the crossing point. Here crossing points are 28, 22 and 31.

Cross over = 5 & 6: crossing point = 28

Cross over = 7 & 10: crossing point = 22

Cross over = 13 & 14: crossing point = 31

Cross over = 15 (Removed)

78

Second new set of population

01 110011101010101110111010110001001

02 100100101000000000001101000000011

03 001010100000011010101111000010011
,

04 011011010011100101010111111010001

05 101110101100101111111101010111011
N • Ak

06 110100110001101110100001100110100

07 100100101000000000001111110011011

08 110011101010101 110111010110001001

09 010100000001111111001010001010010

10 100100100100000010111001000000011

11 011011010011100101010111111010001

12 010100000001111111001010001010010

13 101111001010010101001101011110110

14 101110101100101111111101001100001

15 001101110110001001010101010110100

The next operator, mutation, is performed on a bit-by-bit basis. The probability of

mutation Pin = 0.1[10%]. There are in x pop_size = 33 x 15 = 495 bits in whole

population; it should be expected (on average) 49.5 mutations per generation. Every

bit has an equal chance to be muted, so, every bit in the population, a randoni number

r from the range [0.... 1] are generated; if r <0.1, we mutate the bit.

This means that 495 random numbers in between the range [0.... 1] should be

generated. In the sample of this run, four (4) of these numbers where smaller than 0.1;

the bit number and the random number are listed below:

bit position =87: chromosome no =3: bit no = 21

bit position =241 : chromosome no =8 : bit no = 10

bit position =326: chromosome no =10 : bit no = 29

bit position =488: chromosome no =15 : bit no = 26

Final set of population (1st generation)

01 ll00ll10101010lll0ll 1010110001001

02 100100101000000000001 101000000011

03 001010100000011010100111000010011

04 011011010011100101010111111010001

05 l0lll0l0ll00l0lllll 11101010111011

06 ll0l00ll000ll0l 1101000011001 10100

79

07 l0010010l00000000000l111 110011011

08 110011101110101110111010110001001

09 010100000001111111001010001010010

10 10010010010000001O 111001000010011

11 011O1lO10011100101010111111010001

12 010100000001111111001010001010010

13 101111001010010101001101011110110

14 101110101100101111111101001100001

15 001101110110001001010101000110100

One iteration just have been completed i.e. one generation; in the genetic procedure.

4.8.5 Simulation

Similarly, the simulation of second generation (just numerical results) is given below:

Generation -2

Evaluation Function x1, x21

Xj X2

9.190343 5.661061

5.641244 4.445479

-0.521149 5.136955

3.442512 4.735081

8.018081 5.730064

9.452087 4.992569

5.641244 4.519773

9.205089 5.661061

1.726083 4.369887

5.626613 5.615094

3.442512 4.735081

1.726083 4.369887

8.127180 4.458086

8.018081 5.725394

0.266791 4.660527

Fitness of each population

18. 131577

22.267111

19.388877

17.038677

22.749012

7.904713

25.303097

16.792629

11.863670

25.690352

17.038677

11.863670

21.452779

23.031564

12.578809

-w

Total Fitness = 273.0952 12

Probability Cumulative probability

0.066393 0.066393

0.081536 0.147929

0.070997 0.218926

0.062391 0.281317

0.083301 0.364617

0.028945 0.393562

0.092653 0.486215

0.061490 0.547705

0.043442 0.591 147

0.094071 0.685218

0.062391 0.747609

0.043442 0.79 1050

0.078554 0.869605

0.084335 0.953940

0.046060 1.000000

First New Set of Population

01 100I001010000000000011010000000l 1 <<2

02 011011010011100101010111111010001 <<4

03 011011010011100101010111111010001 <<11

04 011011010011100101010111111010001 <<4

05 001010100000011010100111000010011 <<3

06 110011101010101110111010110001001 <<I

07 100100101000000000001111110011011 <<7

08 1100111011101011101110101 10001001 <<8

09 100100100100000010111001000010011 <<10

10 010100000001111111001010001010010 <<12

11 110100110001101110100001100110100 <<6

12 001010100000011010100111000010011 <<3

13 101110101100101111111101001100001 <<14

14 110011101110101110111010110001001 <<8

15 011011010011100101010111111010001 <<4

Cross over = 2 & 3 : crossing point = 7

Cross over = 6 & 7 : crossing point = 15

Cross over = 9 & 10 : crossing point = 21

Cross over = 11 & 15 : crossing point = 6

Second new set of population

01 100100101000000000001101000000011

02 011011010011100101010111111010001

03 011011010011100101010111111010001

04 011011010011100101010111111010001

05 001010100000011010100111000010011

06 100100101000000110111010110001001

07 110011101010101000001111110011011

08 110011101110101110111010110001001

09 010100000001111111001001000010011

10 100100100100000010111010001010010

11 011011110001101110100001100110100

12 001010100000011010100111000010011

13 101110101100101111111101001100001

14 110011101110101110111010110001001

15 110100010011100101010111111010001

bit position =47: chromosome no =2: bit no = 14

bit position =52: chromosome no =2 : bit no = 19

bit position =61 : chromosome no =2: bit no = 28

bit position =133 : chromosome no =5 : bit no = 1

bit position =160: chromosome no =5 : bit no = 28

bit position =254: chromosome no =8: bit no = 23

bit position =400: chromosome no = 13 : bit no = 4

bit position =431 : chromosome no = 14: bit no = 2

bit position =463 : chromosome no =15 : bit no = 1

Final set of populations

01 100100101000000000001101000000011

02 011011010011110101110111111110001

03 011011010011100101010111111010001

04 011011010011100101010111111010001

05 101010100000011010100111000110011

06 100100101000000110111010110001001

07 110011101010101000001111110011011

08 110011101110101110111000110001001

09 010100000001111111001001000010011

10 100100100100000010111010001010010

11 011011110001101110100001100110100

12 00l0l0l000000ll010100lll0000lO0ll

13 101010101100101111111101001100001

14 100011101110101110111010110001001

15 010100010011100101010111111010001

It may be noted that the total fitness of the new population (2nd generation) is

273.095212, must be higher than total fitness of the previous (1st generation)

population, 220.6 16410.

For the above particular problem (equation 4.1), the following parameters have been
used:

Population no. pop_size = 25

Probability of crossover pc = 0.5

Probability of mutation Pm = 0.05

Generation no. = 150

For the given parameters and generation number an improvement in the evaluation

function, together with the value of the function is shown in the Table-4. 1. Actually

the goal of this specific problem is to find the values for x1 and x2 to maximize the

specific function and in this case it is considered equation (4.1). The best results after

150 generation were,

= 11.625704 and x2 5.728663

The maximize value of functionf(x j, X2) is given by

f(11.625704, 5.728663) = 15.5 + 11.625704xsin(4mx11.625704) +

5.728663xsin(20itx5.728663) = 32.7017 19.

*3

Table 4.1: (Results of 150 Generations) [Double Variablel

Generation Number Evaluation Function
002 23.9257
003 24.4662
012 25.7309
014 26.1271
023 29.0057
026 28.6918
034 30.4891
042 30.7678
043 30.7678
045 30.7797
052 30.8949
056 30.9769
072 31.4993
076 31.7509
086 31.8064
087 31.8321
088 31.0383
091 32.0480
105 31.9570
112 31.7427
123 31.8037
130 32.0988
132 32.3276
138 31.9856
146 32.4721
147 32.7017
149 32.7017
150 32.7017

Figure 4.2 shows the calculation window after place the all parameters and the defined

above equation (4.1). It shows maximize value of each generation and a graph between

maximize value and generation number. It also shows the best result and

corresponding the maximization value of the function.

84

Table 4.2: (Results of 150 Generations) [Doublc Variable]

Generation Number
IF Total Fitness

001 405.5288

002 425.4716

007 478.2466

014 503.3113

019 513.3507

026 605.1747

033 620.7366

037 628.6915

041 627.0638

044 656.0603

048 627.7635

052 655.2829

062 662.7607

068 681.3807

085 707.7507

090 743.3069

095 765.2427

103 761.6516

112 712.3233

121 769.4140

127 788.8794

131 788.4897

137 791.3630

139 783.6054

145 779.6493

148 792.2330

150 792.1410

1.41

4.9 Results Analysis and Performance Comparison between PGA and sGA

To niaximize the functions with sGA and PGA model, software is developed for this

research through Microsoft Visual C++. All experimental results are obtained from

this software. This section evaluates PGA on several optimization problems. We have

implemented and tested PGA on a set of test functions and compare its performance

with sGA. Table 4.3 shows the test functions of this study.

Table 4.3: Test Functions with Range

Test Function Range

j (x1 , x2) = x1 . sin(l 0nx1) ± . cos(1 Onx,) + 2 - I :~ x1 !~ 3

-l:~x, :~2

/2(x1 ,x2)=x±x±25(sin2 x1 ±sin2 x2) -l!~x:~3

f3 (x1 ,x2) = 5.5 ± x1.sin(4nx1) ± x2 .sin(202?x2) -3:~x1 !~12.l
4.Kx2 !~5.8

f4 (x1 , x 2) = 20 + x + - 10(cos 2,x1 + cos 22 2)

- I !~ x, :~ 2

f5(x1,x2)=100(x
1 2 +x2)2 +(1-x1)2 2.048:!~

x. :!~ 2.048

f6 (x1 ,x21 x3) = 1.5 + x1 .sin(4nx1) ± x2 .sin(207?x2) -3:~x1 12.1

± x3.sin(27 3) 4.1:~x, 5.8

4.1:~x3 5.8

f7 (x1 , x 2 , x 3) = x ± x + x - 2(cos 27x1 + cos 2,v2 + cos 27 3 z zx) - I ~ x ~ 3

- I :5 x2 :~ 2

- I :5 x3 :~ 2

fj(x):=x.sin(I0x)±2 -1:!~x:!~3

l3oth sGA and PGA are tested for the test functions [Table 4.3] with same encoding

scheme. Other parameters are as follows: Population size = 50, No. of bits in each

individual = 31, Probability of mutation p, = 0.1, Probability of crossover p, = 0.6,

Total Generation = 100 and the results are the average of 50 independent runs. The aim

is to find the maximum value of the test function. For instance, the maximal value of

the function J is at x, = 2.850340, x-, = 2.000000 and the value is 6.850171.

In our proposed Precise Genetic Algorithm, the best chromosome

V 1.1 =(llllolloollolollllllllllllllllI) was found after 70 generation for a

4. sample runs which corresponds to the value x = [2.850340,2.000000] for

function J. Table 4.4 shows detail particulars of that point. On the other hand, sGA

return the maximum value 6.760506 after 80 generation. Table 4.5 shows the

comparison between maximum value of PGA and sGA for the test functions.

Table 4.4: Sample Result of PGA for Function J

Generation
No. of Best individual Value of

Eval T. fitness
individuals (V x,) niax of the pop.

(P)
(n)

v m ax Xi ax rn
=f(Ximax)

pp m
>eval(v).

1111 011 0011 01 0
2...100 50 llllllllllllll

[2.850340,
6.850171 303.608427

111
2.000000]

Table 4.5: Comparison between PGA and sGA

Test Function Max. value for PGA Max. value for sGA

6.850171 6.760506

55.140726 55.140643

32.850254 32.380927

48.54326 48.535985

f5 3897.734227 3897.734227

24.102652 23.939759

17.032379 16.949524

4.850151 4.850151

th every run of the PGA makes the better or equal result to obtain successive

convergence than that of sGA without a notable mci-ease in the computational

complexity. For both single and multivariable functional optimization, the

experimental results show that the PGA converges to the global maxima accurately

and much faster than that of sGA. Figure 4.3 compares total fitness and Max. value of

f (x , x,) in between sGA and PGA. The Figure 4.4 for test function f2 (x1 , x2), the

Figure 4.5 for test function f3 (x1 , x2), the Figure 4.6 for test function f4 (x1 , x2), the

Figure 4.7 for test function f5 (x1 , x2), the Figure 4.8 for test function f6 (x1 , x2 , x3) and

the Figure 4.9 for test function f7 (x1 , , x3) also clearly indicates the successive

convergence of PGA.

01

87

310
a

U) 250
U) --

-4-- Standard GA - - - - Prectse GA

;

Igo

70

0 20 40 60 80 100
Generation

Figure 4.3: Fitness Curve and Convergence Comparison ofj.

2600 •- /

U) 2300
U)

.'t 2000

.-

1700 I —.--StandardGA --.-- Precise GA

1400

0 20 40 60 80 100

Generation

56

.-

s
• I

0
52 ---StandardGA

- - - -

Precise GA
-

50

0 20 40 60 80 100

Generation

Figure 4.4: Fitness Curve and Convergence Comparison off2 .

U LU 40 bU 80 10

Generation

[1

A.

1600 -.

c/)
1400 '

---StandardGA --.-- Precise GA

::

800

0 40 80 120 160 200

Generation

32

-•

I :: /
-

24

22

0 40 80 120 160 200

Generation

Figure 4.5: Fitness Curve and Convergence Comparison off3 .

---------u
-

2200 -

rA 1900 —4--Standard GA --u-- Precise GA
Ii)

1500

1300 16,

1000

0 40 80 120 160 200

Generation

- - - - - -U-. -
48' /

46 • Standard GA
O

--i-- Precise GA

I 44f\

><
42

0 40 80 120 160 200

Generation

Figure 4.6: Fitness Curve and Convergence Comparison off4.

130000 A 40

100000

• Standard GA 70000 / - -
- - Precise GA

40000 .
C TTTT 10000

0 10 20 30 40 50

Generation

- -1 - -
3800

4-a
U

3600
C4- Standard GA
0 / 3400

- - - -

Precise GA

Cd
3200

0 10 20 30 40 50

Generation

Figure 4.7: Fitness Curve and Convergence Comparison off5 .

1000 - -

GO
800 •' ft /

—600:
/\•,/

-

400
Standard GA

0 Precise GA

200

0 40 80 120 160 200

Generation

i
 24

14 S Standard GA
--u-- Precise GA

V

cts 4

0 50 100 150 200

Generation

Figure 4.8: Fitness Curve and Convergence Comparison off6 .

90

-q

4

800

V.

--- --U

600
Er

--

/
400 , • Standard GA

- - a-
 - Precise GA

200

0 25 50 75 100

Generation
24

0
19

0
14

StandardGA
9 - - u- - Precise GA

4 I I

0 25 50 75 100

Generation

Figure 4.9: Fitness Curve and Convergence Comparison off7 .

It is obvious that PGA converges rapidly in comparison with standard GAs. Moreover

the PGA helps to solve optimization problems without depending on some profound

mathematical and statistical optimization theories. From the result it is found that PGA

is shown better than sGA.

4.10 Discussion

From all experimental results it is found that precise genetic algorithm is excellent for

promptly finding an approximate global maximum for any test functions. A set of

points inside the optimization space is created by search point generation formula.

Then, this set of points is transformed into a new one. Confidently, this new set will

contain more points that are closer to the global optimum. The transformation

procedure is based only on the infonnation of how optimal each point is in the set,

consist a very simple string of manipulations, and is repeated several times. This

simplicity in application and the fact that the only information necessary is a measure

of how optimal each point is in the optimization space, make PGA attractive as

optimizers. It exploits the domain space with mutation and exploits good results with

selection and crossover. To prevent repealed trend to the same solution, it uses precise

techniques to prohibit the searching again those portions of the search space that have

91

already been explored. The two major problems with creating genetic algorithms are

in converting a problem domain into genes (bit patterns) and creating an effective

evaluation function. For many problems the answers will be obvious, but for many

others it is non-trivial. Experience and creativity are both needed to solve these issues.

However PGA has an effective optimization procedure for any specific function in

terms of robustness, efficiency, convergence rate, solution accuracy etc. The

efficiency of the algorithm is tested for a set of standard test functions.

A

-fr

01

92

CHAPTER 5

Conclusions and Recommendations

This chapter concludes the thesis with a brief summary and boundary of PGA. This

chapter also gives some recommendation and directions to improve performance and

versatile of PGA.

5.1 Conclusions

In this study, we have modified standard Genetic Algorithm (sGA) for better

performance and the new technique called Precise Genetic Algorithm (PGA) is

presented. The dissertation presents the efficiency of the proposed technique. Results

are generated to demonstrate the advantages of the proposed improvements to a

standard genetic algorithm for a set of test functions. The new method performs better

and gradually increases the convergence without much cost of speed than that of

standard GA (sGA) when tested for both single and multivariable function

optimization problems.

The proposed algorithm incorporates a precise elitism strategy to conserve good

solutions, and local search methods to quickly find the local optimum of a small

region of the search space. But local are typically poor for global search. Therefore,

local search methods have been incorporated into PGA in order to improve their

-11r performance. In addition, new individuals are introduced to guarantee population

diversity and to extend the search space of the problem. The proposed algorithm is

applied to several functional optimization problems and the simulation results show

that the average performance of the proposed algorithm is better than the best results

obtained using a traditional genetic algorithm.

The experimental results indicate that the proposed method succeeds in avoiding

premature convergence by maintaining a diverse population. This method uses a

precise mutation, crossover and selection techniques to produce a legal offspring and

avoid the permutation and duplication problem of sGA. Precise elitism technique is

also implemented in PGA to decrease simulations needed to optimize a test function. it

incorporates the ideas embedded in natural selection into computation, and helps to

solve those problems without depending on some profound mathematical and

statistical optimization theories. It solves the problems in such a way nature has done

93

through evolution which searches the target space efficiently and it shows several

potential advantages over the conventional GA.

-q

PGA is shown to give better results in the context of the quality and the time needed to

reach the optimal solutions. Modifications of the standard GA to save previously

computed fitness and functional values provide significant performance improvement.

PGA just provides a simple and extended idea, which can solve some extremely,

complicated (multi-dimensional) optimization problems with dreadful precision,

efficiency and accuracy. It seems clear that precise genetic algorithm is a robust

method, which can, due to their generality, be applied to a wide range of different

optimization problems. Hence, the findings and experimental results instruct us to tell

that the PGA is excellent and awfully efficient for successively finding an approximate

global maximum in both single and high dimension search space.

5.2 Limitations and Future Studies

Existing optimization methods and algorithms generally are not capable of

confronting problems arising from the complexity of the units and the multiplicity of

the types of variables to be handled (continuous, discrete, Boolean). Several special

techniques have been developed and applied with varied access in the optimization of

the operation of industrial units, e.g. large scale sequential quadratic programming,

mixed integer nonlinear programming and pinch design.

Genetic algorithms have been developed in the last three decades in an attempt to

imitate the mechanics of the selection process in natural genetics. They also contain

many elements of expert systems. The capability of GAs to handle objective function

of any complexity with both discrete (e.g. integer) and continuous variables, as well

as any type of constraint makes GAs good candidates for these types of problems.

GAs have been applied successfully in a great variety of optimization problems. One

of the most critical phases in a Genetic Algorithm is the choice of an appropriate

selection method. Individuals for recombination are selected according to their fitness.

Various methods have been suggested by the diverse researchers, many

implementation issues have been addressed, but little work has been done towards a

more fonnal analysis and comparison of the different Selection Schemes. Basically,

the various methods can be divided in fitness scaling methods or ranking methods.

Since this is an ongoing research, there are several aspects that still have to be

94

investigated. The following topics should be addressed in the future research work

(not necessarily all of them):

• Formal analysis and comparison of selection methods

• Practical confirmation of the analytical results using DeJong's test suit

A modified Schema Theorem for various selection methods

• Selection methods for dynamic population sizes

• Interaction of selection methods and genetic operators

• Developing a fully adaptive method that is provably convergent.

• Reducing selection-sampling variance in sequential methods.

In this research, a precise genetic algorithm is constructed to solve only single and

multi variable optimization problem. Complex Multi-modal Optimization and

combinatorial problems can also be solved for better understanding of the working of

the precise genetic algorithm. Multi-Objective and Constrained Optimization

problems should be also developed by more research in future. As a whole the aim of

the future researches (with theoretical and application studies) can be to identify other

search and optimization problems in which evolutionary algorithms have a niche over

their traditional counterparts. Finally the work reported in this dissertation will

hopefully help lay the foundations for the growth of genetic algorithms in

optimization.

I

95

References

Charles Darwin (1859), "On the Origin of Species", John Murray, sixth edition,

Online available at littp://www.guteiiberg.org/etext/1228 [accessed 201 0-07-05].

D. E. Goldberg (1989), Genetic Algorithm in Search, Optimization, and

Machine Learning, Addison Wesley Publish Company, USA.

Dasgupta, D. & Michalewicz, Z. (1997), Evolutionary algorithms in

Engineering Applications, Germany, Springer.

JFT. Holland (1975), Adaptation in natural and artificial systems, Ann Arbor: The

University of Michigan Press.

Michalewicz Z. (1996), Genetic Algorithms + Data structures = Evolution

Programs, Springer-Verlag, Heidelberg, ISBN 3-540-60676-9.

Abdullah Konak, David W. Coit, Alice E. Smith (2006), Multi-objective

optimization using genetic algorithms: A tutorial, Information Sciences and

Technology, Penn State Berks, USA.

[71 Kulvinder Singh and Rakesh Kumar (2010), Optimization of Functional Testing

using Genetic Algorithms, International Journal of Innovation, Management and

Technology, Vol. l,No. 1, ISSN: 2010-0248.

David Beasley, David R. Bully and Ralph R. Martinz (1993), An Overview of

Genetic Algorithms, University of Cardi, University Computing Vol.15 (2), 58-

69.

Bhupinder Kaur and Urvashi Mittal (2010), Optimization of TSP using Genetic

Algorithm. Advances in Computational Sciences and Technology. ISSN 0973-

6107 Vol. 3, No.2, pp. 119-125.

B.V. Babu and Rakesh Angira, Optimization of non-linear functions using

evolutionary computation, Birla Institute of Technology & Science, 333 031.

[1 1] Matti Palonen, Ala Hasan, Kai Siren (2009), A genetic algorithm for

optimization of building envelope and hvac system parameters, Eleventh

international I BPSA conference, Glasgow, Scotland.

[12] Rechenberg, I. (1964), Cybernatic solution path of an experimental problem.

Royal Aircraft Establishment, Library Translation 1122, Farnborough, Hants,

English translation of the unpublished written summary of the lecture, derived at

the joint annual meeting of the WGLR and DGRR, Berlin.

96

Schwefel, H. P. (1968), Experimentelle Optimierung einer Zweiphasenduse Teil

I. Report 35 for the project MHD-Strastrahlrohr, AEG Research Institute,

Berlin.

Schwcfel, FT. P. (1981), Numerical optimization of computer models, John Wiley

& Sons, Chichester.

Schwefel, H. P. (1995), Evolution and Optimum Seeking, John Wiley & Sons,

NewYork.

Fogel, L. J., Owens, A. J., and Walsh, M. J. (1966a), Adaptation of evolutionary

programming to the prediction of solar flares, report NASA-CR-4 17, General

Dynamics-Convair, San Diego, CA.

Fogel, L. J., Owens, A. J., and Walsh, M. J. (1966b). Artificial intellegence

through simulated evolution. John Wiley & Sons, New York.

Jong, K. A. D. (1975), An Analysis of the Behavior of a Class of Genetic

Adaptive Systems, PhD thesis, University of Michigan, Ann Arbor, MI.

Department of Computer and Communication Sciences.

Fraser, A. S. (1957), Simulation of genetic systems by automatic digital

computers introduction, Australian Journal of Biological Sciences, 10:484-491.

Koza, J. R. (1989), Evolving programs using symbolic expressions, in Proc. of

the 11th Int'l Joint Conf. on Artificial Intelligence, pages 768-774, San Mateo,

CA, Morgan Kaufinann.

Koza, J. R. (1990), Genetic algorithm: a paradigm for genetically breeding

populations of computer programs to solve problems, Tech. Rep. STAN-CS-90-

1314, Department of Computer Science, Stanford University, 66-75

Ayhan Demiriz and M. J. Ernbrechts (1999), Semi-supervised Clustering using

Genetic Algorithms, Dept. of DSES, RPI, Bennett and Dept. of Math. Sci., RPI

and, Dept. of DSES in Toranto University.

William M. Spears and Kenneth A. De Jong (2000), Using Genetic Algorithms

for Supervised Concept Learning, Navy Center for Applied Research in Al

Naval Research Laboratory, Computer Science Department, George Mason

University, Fairfax, VA 22030, USA.

Peter J. Angeline, Gregory M. Saunders and Jordan B. Pollack (2001), An

Evolutionary Algorithm that Constructs Recurrent Neural Networks, Laboratory

for Artificial intelligence Research, Computer and information Science

Department, The Ohio State University, U.S.A.
97

Arlindo Silva and Ernesto Costa (1999), Evolving Controllers for Autonomous

Agents Using Genetically Programmed Networks, Escola Superior de

Tecnologia, Instituto Polilécnico de Castelo Branco, Portugal, and

Dcpartamcnto de Engenliaria Informática, Universidad de Coimbra, Portugal.

L.B. Jack et al (1999), Feature selection for ANN using Genetic Algorithms in

Condition Monitoring.

A. K. Srivastava (1999), Application of Artificial Neural Networks in GAs:

Odour identification Using Sensor Array, Ph.D. Thesis, Banaras 1-Jindu

University, Vanarasi, India.

Joao Carlos and Figucira Pujol (1999), Evolution of Artificial Neural Networks

Using a Two-dimensional Representation, Ph.D. Thesis University of

Birmingham, UK.

Dilip Krishnaswamy and Vikrain Saxena (1997), Parallel Genetic Algorithms for

Simulation-Based Sequential Circuit Test Generation, Coordinated Science

Laboratory, University of Illinois, USA.

Maurizio Palesi and Tony Givargis (2002), Multi-Objective Design Space

Exploration Using Genetic Algorithms, University of Catania, Catania, Italy and

Center for Embedded Computer Systems, Computer Science Building, Italy

Theodore W. Manikas et al (2000), A Genetic Algorithm for Mixed Macro and

Standard Cell Placement.

T. Arslan, D.H. Horrocks and E. Ozdemir (1999), Structure Cell-based VLSI

Circuit Design Using a Genetic Algorithm, Cardiff School of engineering,

University of Wales Cardiff, UK.

Haleh Vafaie and Kenneth Dc Jong (1999), Improving a rule induction system

using genetic algorithms, George Mason University.

Riccardo Poli (2000), Genetic Programming for Image Analysis, School of

Computer Science, The University of Birmingham, Birmingham, U.K.

L. A. Kuhn, M. L. Raymer, W. F. Punch, E. D. Goodman and A. K. Jam (1999),

Dimensionality Reduction Using Genetic Algorithms, Department of Computer

Science and Engineering, with the Case Center for Computer-Aided

Engineering and Manufacturing, Michigan State University, USA

Stephanie Forrest, Brenda Javornik Robert B. Smith (1993), Using Genetic

Algorithms to Explore Pattern Recognition in the Immune System, Dept. of

•1 98

Computer Science, University of New Mexico, USA, Dept. of Engineering

Mechanics, University of Alabama, USA.

J. BaJa, J. Huang, H. Vafaie, K. DeJong and H. Wechsler (1995), Hybrid

Learning Using Genetic Algorithms and Decision Trees for Pattern

Classification, School of Information Technology and Engineering, George

Mason University.

Md. Robiul Islam (2005), Bangli Character recognition using Genetic Algorithm

Dept. of Computer Science & Engineering, BUET, Dhaka.

Venkatasubramanian, V., Chan, K., & Caruthers, J. M. (1994), Computer-aided

molecular design using genetic algorithms. Computers & Chemical Engineering,

18, 833-844.

Upreti, S. R. & Deb, K. (1996), Optimal design of an ammonia synthesis reactor

using genetic algorithms. Computers & Chemical Engineering, 21, 87-93.

Babu, B. V. & Sastry, K. K. N. (1999), Estimation of heat-transfer parameters in

atrickle-bed reactor using differential evolution and orthogonal collocation.

Computers & Chemical Engineering, 23,327 - 339.

Sastry, K. K. N., Behra, L., & Nagrath, I. J. (1998), Differential evolution based

fuzzy logic controller for nonlinear process control, Fundamenta Informaticac:

Special Issue on Soft Computation.

Storn, R. (1995), Differential evolution design of an hR-filter with requirements

for magnitude and group delay. TR-95-018, International Computer Science

Institute.

Parmee, 1. C. (1999), A Review of Evolutionary/Adaptive Search in

Engineering Design, Evolutionary Optimization, Vol.1, No.1. pp13-39.

K. R. Kavanagh and C. T. Kelley (2005), Pscudotransient Contiiivation for

Nonsmooth Nonlinear Equations, SIAM J. Numer. Anal., Vol. 43, pp1385-1406.

M. J. Uddin, A. M. Mondal, M. H. Chowdhury and M. A. Bhuiyan (2003), Face

Detection using Genetic Algorithm, Proceedings of the 6th ICCIT, Dhaka,

Bangladesh, pp. 4 1-46.

M. A. I3huiyan, V. Ampornaramveth, S. Muto, H. Ueno (2003), Face Detection

and Facial Feature Localization for Human-machine Interface, Nil Journal, Vol.

5, pp. 25-38.

Z. Pan, L. Kang and Y. Chen (1998), Evolutionary Computation, Tsinghua

University Press, GuangXi Science & Technology Press.
1 99

Srinivas M, Patnaik LM (1994), Genetic algorithms: a survey, IEEE Comput,
Vol 27, Issue 6, 17-26.

Bhattacharyya S, Troutt MD (2003), Genetic search over probability spaces. Eur

J Operational Res, Vol. 144, pp.333-347.

De Falco I, Cioppa AD, Tarantino E (2002), Mutation-based genetic algorithm:

performance evaluation, Appi Soft Comput Vol.1, pp.285-299.

Acan A, Altincay 14, Tekol Y, et al. (2003), A genetic algorithm with multiple

crossover operators for an optimal frequency assignment problem, 2003

Congress on Evolutionary Computation, CEC'03, IEEE, Aus.Vol 1, pp256-263.

Rasheed K (1999), Guided crossover: a new operator for a genetic algorithm-

based optimization. Proceedings of the 1999 Congress on Evolutionary

Computation, CEC '99, IEEE, Washington, USA, Vol.2, pp 1535-1541.

Kinjo H, Oshiro N, Kurata K, ci al. (2006), Improvement of searching

performance of real-coded genetic algorithms by the use of biased probability

distribution function and mutation, Trans SICE, Vol. 42, pp.581-590.

Nakanishib H, Kinjo I-I, Oshiro N, et al. (2007), Searching performance of a real-

coded genetic algorithm using biased probability distribution functions and

mutation. Artif Life Robotics Vol.11, pp.37-41.

Y.P. Huang and C.H. Huang (1997), Real-valued genetic algorithms for fuzzy

grey prediction system, Fuzzy Sets and Systems, Vol. 87, pp.265-276.

M. Bessaou and P. Siarry (2002), A genetic algorithm with real-value coding to

Optimize multimodal continuous functions, Structural and Multi- disciplinary

Optimization, Vol. 23, pp.63-74.

E.K. Burke, R.F. Weare and J.P. Newall (1999), Initialization strategies and

diversity in evolutionary timetabling, Evolution Computation, Vol.6, pp.81-1 03.

T. Blickle and L. Thiele (1996), A comparison of selection schemes used in

evolutionary algorithm, Evolution Computation, Vol. 4, pp.3 61-394.

U. Chakraborty, K. Deb and M. Chakraborty (1996), Analysis of selection

algorithm: A Markov chain approach, Evolution Computation, Vol. 4, pp.1 33-
167.

S.T. Kazadi (1998), Conjugate schema and basis representation of crossover and

mutation operators, Evolution Computation, Vol. 6, pp.1 29-160.

100

G. Syswcrda (1989), Uniform crossover in genetic algorithms, in Proc. of the

Third hit. Conf. on Genetic Algorithms.

A. Tuson and P. Ross (1998), Adapting operator settings in genetic algorithms,

Evolution Computation, Vol. 6, pp.161-184.

C.H.B. Carlos and H.J.C. Barbosa (2000), A non-generational genetic algorithm

for multi objective optimization, Proc. of the 2000 Congress on Evolutionary

Computation, Vol. 3, pp.172-179.

A.V.V. David and G..B. Lamont (1998), Multi-objective Evolutionary Algoritlun

Research: A History and Analysis, Department of Electrical and Computer

Engineering, Air Force Institute of Technology.

J. Mao, K. Hirasawa, J. Hu and J. Murata (2001), Genetic symbiosis algorithm

for multi-objective optimization problems, Trans. of the Society of Instrument

and Control Engineering, Vol. 37, No. 9, pp.894-901.

B. Sareni and L.Krahenbuhl (1998), Fitness Sharing and Niching Methods

Revisited, IEEE Trans. On Evolutionary Computation, Vol.2, No.3, pp.97-1 06.

S. Tsutsui, A.Ghosh et al (1997), A Real Coded Genetic Algorithm with an

Explorer and an Exploiter Populations, Proc. of The Seventh International

Conference on Genetic Algorithms.

T. Black, Hoffmeister, and Schwefel (1991), A survey of evolution strategies, In

Proceedings of the Fourth International Conference on Genetic Algorithms.

Morgan Kauffman, San Matco, CA.

A. Szalas and Z. Michalewicz (1993), Contractive Mapping Genetic Algorithms

and Their Convergence, University of North Carolina at Charlotte, Technical

Report 006-1993.

R.E. Smith (1993), Adaptively resizing populations: an algorithm and analysis, in

Proceedings of the Fifth International Conference on Genetic Algorithms,

Morgan Kaufmann, San Mateo, CA.

J. Arabas, Z. Michalewicz and J. Mulawka (1994), GAVaPS-a genetic algorithm

with varying population size, in Proc. of the 1st IEEE International Conference

on Evolutionary Computation (ICEC), Florida, USA, IEEE Press.

Y. Davidor and H. P. Schwefel (1992), An introduction to adaptive optimization

algorithms based on principles of nature evolution, dynamic, genetic and chaotic

programming, John Wiley & Sons,138-202.

101

H. P. Schwefel (1981), Numerical Optimization of Computer Models, John

Wiley, Chichester, UK.

Istv'an Borgulya (2002), A cluster-based evolutionary algorithm for the single

machine total weighted tardiness-scheduling problem. Journal of Computing and

Information Technology - CIT, Vol. 10, No. 3, pp.21 1-217.

D. E. Goldberg (1990), A note on Boltzrnan Tournament Selection for genetic

algorithms and population oriented simulated annealing, Complex Systems, Vol.

4, No.4, pp. 445-460.

L. Kang, Y. Xie, S. You and Z. Luo (1994), Non-Numerical Parallel Algorithms

(1St Volume): Simulated Annealing Algorithm, Science Press, Beijing.

J.A.Vasconcelos, R.R.Saldanha,L.Krahcnbuhl, and A.Nicolas (1997), Genetic

Algorithm Coupled with a Deterministic Method For Optimization In

Electromagnetics, IEEE Trans. On Magnetics, Vol. 33, No. 2, pp.1860-1863.

Ujjwal Maulik, Sanghamitra Bandyopadhyay (2000), Genetic Algorithm-Based

Clustering Technique, Pattern Recognition, Vol. 33, pp.1455-1465.

H. Kawamura, H. Ohmori, N. Kito (2002), Truss topology optimization by a

modi lied genetic algorithm, Structural and Multidisciplinary Optimization, Vol.

23, No. 6, pp.467-473.

Mihai Oltean (2003), Evolving evolutionary algorithms for function

optimization, In Proceedings of the 5th International Workshop on Frontiers in

Evolutionary Algorithms, pp. 295-298.

Mitchell A. Potter and Kenneth Alan De Jong (1994), A cooperative

coevolutionary approach to function optimization. In Parallel Problem Solving

from Nature - PPSN, 3rd International Conference on Evolutionary

Computation, pp. 249-25 7.

Carlos M. Fonseca and Peter J. Fleming (1995), An overview of evolutionary

algorithms in multiobjective optimization, Evolutionary Computation, Vol. 3,

No.1, pp.1-16.

Carlos M. Fonseca and Peter J. Fleming (1998), Multiobjective optimization and

multiple constraint handling with evolutionary algorithms - part i: A unified

formulation. IEEE Transactions on Systems, Man, and Cybernetics, Part A.

Carlos Artemio Ceollo Coello (2001), A short tutorial on evolutionary

multiobjective optimization. In First International Conference on Evolutionary

Multi-Criterion Optimization, pp. 21-40.

102

Kalyanmoy Deb (2001), Multi-Objective Optimization Using Evolutionary

Algorithms, Wiley Interscicncc Series in Systems and Optimization, John Wiley

& Sons, Inc., New York, NY, USA, ISBN: 978-0-47187-339-6.

Peter A. N. Bosman and Dirk Thierens (2002), A thorough documentation of

obtained results on real-valued continuous and combinatorial multi-objective

optimization problems using diversity preserving mixture-based iterated density

estimation evolutionary algorithms, Technical Report UU-CS-2002-052,

Institute of Information and Computing Sciences, Utrecht University

Netherlands.

Alex S. Fukunaga and Andre D. Stechert (1997), An evolutionary optimization

system for spacecraft design, In IEAIAIE'1997: Proceedings of the 10th

international conference on Industrial and Engineering Applications of Artificial

Intelligence and Expert Systems, pp.1-6. Goose Pond Press, Atlanta, Georgia.

ISBN: 9-0569-9615-0.

Kaisa Miettinen, Marko M. MThkela, Pekka Neittaanm"aki, and Jacques Periaux,

editors (1999), Evolutionary Algorithms in Engineering and Computer Science.

John Wiley & Sons, Ltd, Chichester, UK, ISBN: 0-4719-9902-4.

Shigeru Obayashi (1998), Multidisciplinary design optimization of aircraft wing

planform based on evolutionary algorithms, In Proceedings of the 1998 IEEE

International Conference on Systems, Man, and Cybernetics. IEEE Press, La

Jolla, California, USA.

J. Koen van der Hauw (1996), Evaluating and improving steady state

evolutionary algorithms on constraint satisfaction problems, Master's thesis,

Computer Science Department of Leiden University, On-line available at

http://citeseer.ist.psu.edu/12823 [accessed 2010-08-24].

Carlos M. Fonseca and Peter J. Fleming (1998), Multiobjective optimization and

multiple constraint handling with evolutionary algorithms - part i: A unified

formulation. IEEE Transactions on Systems, Man, and Cybernetics, Part A:

Systems and Humans, Vol. 28, No.1, pp.26-37.

Shu-Heng Chen (2002), Evolutionary Computation in Economics and Finance,

volume 100 of Studies in Fuzziness and Soft Computing. Physica-Verlag

Heidelberg, ISBN: 3-7908-1476-8.

Christopher D. Clack (2008), Advanced Research Challenges in Financial

Evolutionary Computing (ARC-FEC) Workshop, Renaissance Atlanta Hotel

103

Downtown, 590 West Peachtree Street NW, Atlanta, Georgia 30308 USA. ACM,

Press, New York, NY, USA. ISBN: 978-1-60558-131-6.

Rasmus K. Ursem (2003), Models for Evolutionary Algorithms and Their

Applications in System Identification and Control Optimization, PhD thesis,

Department of Computer Science, University of Aarhus, Denmark.

Gary B. Fogel and David W. Come, editors (2002), Evolutionary Computation in

Bioinformatics, Academic Press. Elsevier LTD, Oxford, ISBN: 1-5586-0797-8,

978-1-55860-797-2.

Thomas Weise, Stefan Achier, Martin Gob, Christian Voigtmann, and Michael

Zapf (2007), Evolving Classifiers —Evolutionary Algorithms in Data Mining.

Kasseler lnformatikschriften (KIS), 4, University of Kassel.

Oscar Cord'on, Francisco 1-lerrera, and Luciano S'anchez (1998), Evolutionary

learning processes for data analysis in electrical engineering applications. In D.

Quagliarella, J. P'eriaux, C. Poloni, and G. Winter, editors, Genetic Algorithms

and Evolution Strategy in Engineering and Computer Science, chapter 10, pages

205-224. John Wiley and Sons, Chichester.

Ashish Ghosh and Lakhmi C. Jam (2005), Evolutionary Computation in Data

Mining, volume 163/2005 of Studies in Fuzziness and Soft Computing. Springer

Berlin / Heidelberg, ISBN: 978-3-54022-370-2, 3-5402-2370-3. doi: 10.1007/3-

540-32358-9.

Arthur L. Corcoran and Sandip Sen (1994), Using real-valued genetic

algorithms to evolve rule sets for classification. In Proceedings of the First IEEE

Conference on Evolutionary Computation, IEEE World Congress on

Computational Intelligence, Vol. 1, pp.120-124.

Charles L. Karr and Eric Wilson (2003), A self-tuning evolutionary algorithm

applied to an inverse partial differential equation. Applied Intelligence, Vol.19,

No. 3, pp. 147-155, ISSN: 0924-669X.

Swagatam Das, Amit Konar, and Uday K. Chakraborty (2005), An efficient

evolutionary algorithm applied to the design of two-dimensional iir filters, In

GECCO'OS: Proceedings of the 2005 conference on Genetic and evolutionary

computation, pp. 2157-2163.

D. Beasley, D. R. Bull, R, and R. Martin (1993), An overview of genetic

algorithms: part 1, fundamentals," University Computing, Vol. 15, pp. 58-69.

104

R. L. Johnston (2004), Applications of Evolutionary Computation in Chemistry,

volume 110 of Structure and Bonding. Springer, l3erlin, Germany, ISBN: 978-3-

54040-258-9, 3-5404-0258-6.

Martin Damsbo, Brian S. Kinnear, Matthew R. Hartings, Peder T. Ruhoff,

Martin F. Jarrold, and Mark A. Ratner (2004), Application of evolutionary

algorithm methods to polypeptide folding: Comparison with experimental

results for unsolvated ac-ala-gly-gly)5-lysh+. Proc. of the National Academy of

Science of the USA, Vol.101, No.19, pp.7215-7222, ISSN: 109 1-6490.

Elena Marchiori and Adri G. Steenbeek (2000), An evolutionary algorithm for

large scale set covering problems with application to airline crew scheduling. In

Proceedings of Real-World Applications of Evolutionary Computing,

EvoWorkshops 2000, pp. 367-381.
_19-

C. S. Chang and Chung Min Kwan (2004), Evaluation of evolutionary

algorithms for multi-objective train schedule optimization, In Al 2004:

Advances in Artificial Intelligence, volume 3339/2004 of Lecture Notes in

Artificial Intelligence, subseries of Lecture Notes in Computer Science (LNCS),

pp. 803-815, Springer-Verlag, ISBN: 978-3-54024-059-4.

Chung Min Kwan and C. S. Chang (2005), Application of evolutionary

algorithm on a transportation scheduling problem - the mass rapid transit, In

Proc. of the 2005 IEEE Congress on Evolutionary Computation, Vol. 2, pp.

987-994.

Pascal Cote, Tony Wong, and Robert Sabourin (2004), Application of a hybrid

multi-objective evolutionary algorithm to the uncapacitated exam proximity

problem, Proceedings of the 5th International Conference on Practice and

Theory of Automated Timetabling (PATAT 2004), pp. 151-168.

Keigo Watanabe and M. M. A. Hashem (2004), Evolutionary Computations -

New Algorithms and their Applications to Evolutionary Robots, Studies in

Fuzziness and Soft Computing. Springer, Germany, ISBN: 3-5402-0901-8

Stefano Cagnoni, Evelyne Lutton, and Gustavo Olague (2008), Genetic and

Evolutionary Computation for Image Processing and Analysis, volume 8 of

URASIP Book Series on Signal Processing and Communications, New York,

NY 10022, SA, ISBN: 978-9-77454-001 - 1.

Bertram Nickolay, Bernd Schneider, and Stefan Jacob (1997), Parameter

optimisation of an image processing system using evolutionary algorithms.

Proceedings of the 7th International Conference, CAIP'97, Vol. 1296/1997 of
-(

105

Lecture Notes in Computer Science (LNCS), pp. 637-644, Springer Berlin

Heidelberg, Germany, ISBN: 978-3-54063-460-7.

[113] Mark C. Sinclair (1999), Evolutionary telecommunications: A summary, In

Proceedings of Evolutionary Telecommunications: Past, Present and Future - A
Bird-of-a-feather Workshop at GECCO 99.

[1141 David Come, George D. Smith, Mark C. Sinclair (199), Evolutionary

telecommunications: Past, present and future, In Proceedings of Evolutionary

Telecommunications: Past, Present and Future - Workshop at GECCO 99.

Pablo Cort'es Achedad, Luis Onieva Gim'enez, Jes'us Munuzuri Sanz, and

Jos'c Guadix Mart'in (2008), A revision of evolutionary computation techniques

in telecommunications and an application for the network global planning

problem, In Success in Evolutionary Computation, pp. 239-262. Springer

Berlin, I-leidelberg.

Tadashi Nakano and Tatsuya Suda (2004), Adaptive and evolvable network

services, In Genetic and Evolutionary Computation - GECCO, pp. 15 1-162.

Alejandro Quintero and Samuel Pierre (2003), Evolutionary approach to

optimize the assignment of cells to switches in personal communication

networks, Computer Communications, Vol. 26, No. 9, pp. 927-938.

Enrique Alba, C. Cotta, J. Francisco Chicano, and Antonio Jes'us Nebro

Llrbaneja (2002), Parallel evolutionary algorithms in telecommunications: Two

case studies, In Proceedings of the Argentinean Conference of Computer

Science (CACIC'02), Buenos Aires, Argentina.

David E. Clark (2000), Evolutionary Algorithms in Molecular Design, volume

8 of Methods and Principles in Medicinal Chemistry, Wiley-VCH, Weinheim

and New York, ISBN: 3-5273-0155-0

Stephen Smith and Stefano Cagnoni (2008), Medical Applications of Genetic

and Evolutionary Computation (MedGEC) Workshop 2008, Georgia 30308

USA. ACM Press, New York, NY, USA. ISBN: 978-1-60558-131-6.

Hisashi Handa, Dan Lin, Lee Chapman, and Xin Yao (20006), Robust solution

of salting route optimisation using evolutionary algorithms, In Evolutionary

Computation, proceedings of CEC 2006, pp. 3098-3 105.

Laurence D. Merkie and Frank Moore (2008), Defense Applications of

Computational Intelligence (DACI) Workshop 2008, ACM Press, New York,

NY, USA. ISBN: 978-1-60558-131-6.

106

William Rand, Sevan C. Ficici, and Rick Riolo (2008), Evolutionary

Computation and Multi-Agent Systems and Simulation (ECoMASS) Workshop

2008, USA. ACM Press, New York, NY, USA. ISBN: 978-1-60558-13 1-6.

http ://www. lsi.upc.cs/—mallbalpublic/!ibraty/firstProposalBA/nocle8 .htrnl, 5.00

p.m, 15th August 2010.

http :I/www2 .cs.uregina.ca/mouhoubm/=postscript/r=c3 620/chap8 .pdt 3 .00p.rn,

21st July 2010.

http://iridia0.u1b.ac.be/-psmets/ I l.00p.m, 6th June, 2010

http://www.sce.carleton.ca/nctmanage/tony/ts.htrnl, 6.00p.m, 10th August 2010

http://wwv'.ru.n1/mbphysics/(http://ww'w.rnbfys.kun.nl) 11 .00p.m, 1 8th July

2010.

Eshelman, L.J. and Schaffer, J.D. (1993), Real-coded Genetic Algorithms and

Interval Schemata. In L.D. Whitley, ed., Foundations of Genetic Algorithms 2.

San Mateo, CA: Morgan Kaufman. pp. 187-202.

Baker, J. E. (1987), Reducing Bias and Inefficiency in the Selection Algorithm.

In J.J Grefenstette, Genetic Algorithms and Their Applications: Proceedings of

the Second International Conference on Genetic Algorithm, Erlbaum, pp. 14-21.

Mazumder, P. and Rudnick, E.M. (1999), Genetic Algorithm For VLSI Design,

Layout & Test Automation. Printice-Hall PTR.

Goldberg, D. E. and Deb, K. (1991), A Comparative Analysis of Selection

Schemes Used in Genetic Algorithms, In G. Rawlings, ed., Foundations of

Genetic Algorithms. Morgan Kaufmann, pp. 69-93.

Buckle, 1'., and Thiele, L. (1995), A Comparison of Selection Schemes used in

Genetic Algorithms, TIK Report Nr. 11, www.tik.ee.ethz.ch/Publications/TIK-

Reports/TIK-Report 11 abstract.html

Yasuhito Sano and Hajime Kita (2002), Optimization of Noisy Fitness functions

by means of Genetic Algorithms using History of Search with Test of

Estimation, Proceedings of the 2002 Congress on Evolutionary Computation,

Honolulu, HI , USA, pp. 360-365.

Booker, L.B. (1987), Improving search in genetic algorithms, In L. Davis, ed.,

Genetic Algorithms and Simulated Annealing. London: Pitman, pp. 6 1-73.

Spears, W.M. and Dc Jong, K. A. (1991), An Analysis of Multi-Point

Crossover, Foundations of Genetic Algorithms, pp. 301-3 15.

107

Syswerda, G. (1989), Uniform crossover in genetic algorithms, Proc. of the 3

International Conference on Genetic Algoritms. Morgan Kaufiuiann. pp. 2-9.

Caruana, R. A., Eshelmann, L. A. and Schaffer, J. D. (1989), Representation

and hidden bias II: Eliminating defining length bias in genetic search via shuffle

crossover, In Eleventh International Joint Conference on Artificial Intelligence,

Vol. 1, pp. 750-755, California, USA: Morgan Kaufmann Publishers.

Enrique Alba and Carlos Cotta (2004), Evolutionary Algorithms, Dept.

Lenguajes y Ciencias de Ia Computacion, Malaga - Spain.

Joc-Ming Yang and Cheng-Neng Hwang (2002), Optimization of corrugated

bulkhead forms by genetic algorithm, Journal of Marine Science and

Technology, Vol. 10, No. 2, pp. 146-1 53.

Mitchell, M. (1998), An Introduction to Genetic Algorithm. Prentice-Hall of

India Private Limited, New Delhi- i 10001, (Eastern Economy Edition).

Rasheed (1999), Guided crossover: a new operator for a genetic algorithm

based optimization. Proceedings Congress on Evolutionary Computation, CEC

'99, IEEE, USA, Vol.2, pp 1535-1541.

Chi-Ming Lin and Mitsuo Gen (2007), An Effective Decision-Based Genetic

Algorithm Approach to Multiobjective Portfolio Optimization Problem Applied

Mathematical Sciences, Vol. 1, No. 5, pp. 201 —210.

Z.Q. Meng (2007), Autonomous genetic algorithm for functional optimization,

Progress In Electromagnetics Research, PIER 72, 253-268.

Yang Chen, Jinglu Hu, Kotaro Hirasawa and Songnian Yu (2007), GARS: An

Improved Genetic Algorithm with Reserve Selection for Global Optimization.

GECCO'07, London, England.

G. A. Jayalakshmi, K. Srinivasan, R. Rajaram (2005), Performance Analysis of

a Multi-phase Genetic Algorithm in Function Optimization, Thiagarajar College

of Engineering, Madurai 625 015.

Kinjo, Oshiro, Kurata, et al. (2006), Improvement of searching performance of

real-coded genetic algorithms by the use of biased probability distribution

function and mutation, Trans SICE Vol. 42, pp. 58 1-590.

108

PUBLICATIONS RESULTING FROM THE THESIS

Ift

International Journal:

Md. Robiul Islam, M. A. H. Akhand and K. Murase (2011), A Precise Evolutionary

Approach to Solve Multivariable Functional Optimization, Global Science and

Technology Forum (GSTF) International Journal on Computing (JoC), ISSN: 2010-

2283, February 2011, Vol.1, Issue-2, pp. 17-22, Singapore.

International Conference:

Md. Robiul Islam, M. A. H. Akhand and K. Murase (2010), A Precise Genetic

Algorithm for Function Optimization, 2010 International Conference on Computer

and Computational Intelligence (ICCCI 2010), Nanning, China, December 25-26,

2010, Vol. 3, pp.533-537, IEEE Catalog Number: CFP1059L-PRT, ISBN: 978-I-

4244-8948-0.

109

