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Summary
i

This thesis studies extensively the nature of modular lattices and Boolean
algebras. The modular lattices have been study by several authors
including Abbott [ 2 ], Birkhoff[ 3 ] and Rutherford [ 19 ]. A poset is
said to form a lattice if forevery a,be L, avband aAnb existsinL,
where Vv , A are two binary operation .A lattice L is called modular
lattice if forall a,b,ce Lwitha>b,aAn(bvc) =[bv(aanc)].In
this thesis we give several results on modular lattices which certainly
extend and generalized many result in lattice theory .
In chapter one we discuss ideals , complete lattices , relatively
complemented lattices and other results on lattices which are basic to this
thesis . If every interval in a lattice is complemented the lattice is said to
be relatively complemented .
Chapter two discusses Embeddings , Kernels and dual homomorphisms .
If L , M be two lattices , a one-one homomorphism 6 : L——> M is
called an embedding mapping . Also in that case we say L is embedded
in M . We prove that the definition of dual meet homomorphism and dual
join homomorphism are equivalent .
In chapter three we discuss on modular lattices and distributive lattices .
Distributive lattices have been studied by sever author including Cignoli
[4], Cornish [ 5], Cornish and Hicman [ 6 | and Evans [ 7 ],
Nieminen [ 15 ], [ 16 ] . Hence we prove a lattice L is distributive if and
only if
(avb)a(bvc)a(cva)=(anb)v(bac)v(caa)

V a,b,celL
In chapter four we discuss Boolean algebras and Boolean functions .
Previously Boolean algebras , Disjunctive Normal forms and Conjunctive

Normal forms have studied by Abbott [ 1 ] . Here we extend several



Summary
ii

result on Boolean Algebras and also find the DN form of the function
whose CN form is
f=(xvyvza) Axvyvz )A(XVvyVZ)A(XVYVZ)A

x'vyvz).
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“Lattices , Sublattices and Complete lattices

1.1 Introduction

In this chapter we discuss Ideals , Complete lattices and Relatively
Complemented lattices .Complete lattices and semilattices have been
studied by several authors Papert [ 18 ], Rozen [ 20 ], Varlet [22].A
lattice L is called complete lattice if for every non empty subset of L
has its Sup and Inf in L . In this chapter we also proved in any lattice the
distributive inequalities

(i) an(bvc)> (anb)v(anc)

(ii) av(bac)<(avb)a(anac).

1.2 Relations , Lattices , Complete Lattices .
Definition (Relation) : A relation R from A to B is a subset of AXB .
Example 1.2.1: Let A={x,y}
B={2,4,6}
ThenR = { (x, 2),(x, 6),(y, 4) } is a relation from Ato B .
Definition (Reflexive Relation) : Let R = (A,A P(x, y)) be a relation in a
set A, i.e., let R be a subset of AXA . Then R is called a
reflexive relation if, for every a €A,
(a,a)eA.
In other words, R is reflexive if for every element in A is related
to itself .
Example 1.2.2 : Let Y = {1,2,3,4,5} and
R = {(1,1),(2,2),(2,3),(3,3),(4,4),(3.4).(5,5)}.
Then R is a reflexive relation .
Definition (Symmetric Relation) : Let R be a subset of A XA i.e. let R

be a relation of in A . Then R is called a symmetric relation if
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(a,b) e R implies (b,a)e R

Example 1.2.3 : Let S={1,2,3} and let

R = {(1,2),(1,3),(2,3),(2,1),(3,1),(3,2)}
Then R is a symmetric relation .
Definition (Anti-Symmetric Relation) : A relation Rinaset A i.e. a
subset of AXA is called an anti-symmetric relation if
(a,b)e Rand (b,a)e R implies a=b
In other words , if a# b then possibly a is related to b or
possibly b is related to a but never both .

Example 1.2.4 : Let A be a family of sets, and let R be the relation in A
defined by “ x is a sub set of y”. Then R is anti-symmetric since
CcDandDc Cimplies C=D.

Definition (Transitive Relation): A relation R in a set A is called a
transitive relation if (a, b) € Rand (b, c¢) € R implies
(a,c)eR

In other words, if a is related to b and b is related to ¢, then a

is related to c .
Example 1.2.5: LetB={a,b,c } and let
R={(a,b)(c,b)(b,a)(,c)}
Then R is not a transitive relation since
(c,b) eRand (b, a) eRbut(c, a) gR.
Definition (Equivalence Relation) : A relation R in a set A is an
equivalence relation if
( 1) R is reflexive, that is, for every a €A, (a,a) €R.
(2) R is symmetric, that is, (a, b) €R implies (b, a) eR .
(3 ) R s transitive, that is, (a, b) eR and (b, ¢) eR
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implies (a, c) eR.

Example 1.2.6 : Let X={a,b,c } beasetand let
R={(a,a)(a,b)(a,c)(b,a)(b,b)(b,c)(c,a)(c,b)c.c)}
be arelation of AxA then the relation R is an equivalence
relation, since

(1) Risreflexive, (a,a),(b,b),(c,c) e R
(2 )R is symmetric, (a, b),(b, a),(a, c),(c, a) € Rand
( 3) R is transitive, (a, ¢),(c, b),(a, b) € R.

Definition (Partially ordered set) : A non empty set P, together with a
binary relation R is said to form a partially ordered set or a poset
if the following conditions hold :

P1: Reflexivity : (a,a) e R forallae P.
P2: Anti-Symmetry : If (a,b) € R, (b,a) € Rthen a=b
(a,b e P).
P3: Transitivity : If (a,b) e R,(b,c) e Rthen(a,c) e R
(a,b,ceP).

Example 1.2.7 : The set N of natural numbers under divisibility forms a
poset .Thus here a < b means al| b (a divides b) .

Definition (Greatest element) : Let P be a poset . If 3 an element ae P
such that x <a forall x € P then a is called greatest or unity
element of P .Greatest element if it exists , will be unique .

Definition (Least element) : An element b € P will be called least or
zero element of Pif b<x V x € P.Itis de noted by 0. Least
element if it exists , will be unique .

Example 1.2.8 : Let A = {1,2,3}. Then ( P(A), <) is a poset .

Let B={¢, {1,2},{2},{3}}
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Then (B, < ) is a poset with ¢ as least element .B has no greatest
element .
Let C={{1,2}.42}.,13}.{1,2.,3}}.
Then C has greatest element {1,2,3}, but no least element .
If D= {¢,{1},{2},{1.2}}.
Then D has both least and greatest elements namely ¢ and
{12} .
Again E = {{1},{2},{1,3}} has neither least nor greatest
element .
Definition (Bounded poset) : If a poset P has least and greatest elements
we call it a Bounded poset . Indeed 0<x<u VxeP.
Definition (Upper bound) : Let S be non empty subset of a poset P .
An element a € P is called an upper bound of S if x<a
VxeSs.
Definition (Least upper bound) : If a is an upper bound of S s.t.,
a <b for all upper bounds b of S then a is called least upper
bound (l.u.b) or supremum of S . We write Sup S for
supremum S .
It is clear that there can be more than one upper bound of a set.
But Sup, if it exists, will be unique.
Definition (Lower bound) : An element a € P will be call a lower
boundof Sif a <x VxeS.
Definition (Greatest lower bound) : If a is a lower bound of S then a
will called greatest lower bound (g.1.b) or Infimum S (/nf'S) if
b < a for all lower bounds bof S.

Example 1.2.9 : Let (Z, <) be the poset of integers
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Let S={ -3,-2,-1,0,1,2,3 } then SupS=3.
Again in the poset (R, <) of real numbers if
S={x eR lx<0,x;é0} then Sup S =0 (and it does not
belong to S) .
Definition (Chain) : If P is a poset in which every two members are
comparable it is called a totally ordered set or a toset or a chain .

Thus if P isachainand x,y € P then either x<y or y<x.

Fig. 1.1
Definition (Lattice) : A poset (L, <) is said to form a lattice if for every
a,bel Sup{a,b}and Inf {a,b} existinL.
In that case, we write
Sup {a,b}=avb (read a join b)
Inf {a,b}=anb (read a meet b)
Other notation like a+band a'b or auband anb are also
used for Sup {a, b} and Inf{a,b}.
Examplel.2.10: Let A be a non empty set, then the post ( P(A), <) of all
subset of A is a lattice .Here for X .Y € P(A).
XAY=XNYand
XvY=XuUY
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As a particular case, when A= {a, b}
P(A)={¢, {a}, {b}, {a,b}}

{a,b}

{a}
{b}

¢
Fig. 1.2

Example 1.2.11 : The set N of all natural numbers under divisibility
forms a lattice .Here
anb=g.c.d(a,b)
avb=l.c.m(a,b) forall a,beN.
Example 1.2.12 : The set L = {1,2,4,5,10,20,25,50,100} of factors of
100 forms a lattice under divisibility .It is represented by the
following diagram.

100

20 50

Fig. 1.3
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Example 1.2.13 : Every chain is a lattice .Since any two elements X,y
of chain are comparable , say x <y we find
X AY=Inf{x,y}=x, xvy=Sup {x.,y}=vy.
Definition (Meet-Semi Lattice) : A poset (P, <) is called a meet-semi
lattice if forall a,b eP Inf{a,b} exists.
or
A non-empty set P together with a binary operation A is

called a meet-semi latticeif V a,b,ceP

(i)ana=a
(jj)anb=baa
(jinan(bac)=(aanb)ac.
Definition (Join-Semi Lattice) : A poset (P, <) is called a join-semi
lattice if forall a,b e P Sup{a, b} exists.
or
A non-empty set P together with a binary operation v is
called a join-semi lattice if Va,b,ce P
(i)ava=a
(javb=bva
(jilav(bvc)=(avb)vec.
Definition (Sublattice) : A non-empty subset S of a lattice L is called a
sublattice of L if a,be S=aAb,avbeS.
Example 1.2.14 : Let L = {1,2,3,4,6,12} of factors of 12 under
divisibility forms a lattice. Then A = {1,2} and
B = {1,3} are sublattice of L.
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Fig. 1.4

Definition (Convex sublattice) : The subset D of the lattice L is called
convex, ifa,beD,cel and a<c<b implythat ce D.
Example 1.2.15: For a,be L a<b theinterval [a,b]=
{x | a < x < b} is an important example of a convex sublattice .

Example 1.2.16 : ForachainC a,b e C,a<b we can also define the

half-open intervals : (a,b] = {x |a<x <b} and
[a,b)={x|a<x<b} and the open interval :
(a,b)= {x]a<x <b}. These are also examples of
convex sublattices.
Example 1.2.17 : In the lattice {1,2,3,4,6,12} under divisibility {1,6} is

a sublattice which is not convex as 2,3 € [1,6] but 2,3 ¢ {1,6}.

Thus [1,6] & {1,6}.
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12

Fig. 1.5

Definition (Complete Lattice) : A lattice L is called a complete lattice
if every non-empty subset of L has its Sup and /nfin L .
or
A lattice L is called a complete lattice if for any subset H of L,
Sup H and Inf H exists in L.
Example 1.2.18 : Every finite lattice is complete.
Example 1.2.19 : The real interval [0,1] with usual < form a complete

lattice.
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1.3 Ideals, Binary Operations , Dual Ideals .
Definition (Ideal) : A non-empty subset I of a lattice L is called an ideal
of L if
(i) i,jel > ivjel
(j)i el,aeL=>aniel
Example 1.3.1 : Let L = {1,2,4,8} be lattice of factors of 8 under
divisibility. Then {1}, {1,2}, {1,4},{1,2,4,8} are all the ideals
of L.

Fig. 1.6

Definition (Dual Ideal) : A non-empty subset I of a lattice L is called a
dual ideal (or filter) of L if
(i) i,jel > injel
(jiel,aelL=>aviel
Example 1.3.2 : Let L = {1,2,4,8} be the lattice under divisibility.
Then A = {1,2} and {1,4} are ideals but not dual ideals.
B = {2,8} and {4,8} are dual ideals but not ideals.

C = {2,4} is neither an ideal nor a duel ideal.
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Definition (Principal Ideal) : Let L be a lattice and a € L be any
element. Let (a] = {x|x<a }, then (a] forms an ideal of L. It is
called principal ideal generated by a .

Definition (Principal dualideal) : Let L be a lattice and a € L be any
element. The set [a) = {x € L |a<x } forms a dual ideal of L ,
called the principal dualideal generated by a.

Definition (Prime ideal) : An ideal P of a lattice L is called a prime
ideal of L if P is properly contained in L and whenever aAb € P
theneither a€ P or beP.

or
An ideal P of a lattice L is called a prime ideal if forall a,b €L,
aAb e P implies either a € P or be P.

Definition (Binary operation) : If a is a non-empty set then a map
f: Ax A—> A is called a binary composition (or binary
operation) on A .

Thus binary composition is a rule by which we combine any
two member of the same set .

Multiplication is another familiar example of a binary
operation on naturals or reals .

We use different symbols like ., 0, @ etc. for binary
compositions.

If . is abinary operation onaset A and a,b € A then by
definition a . b € A. We sometimes express this by saying that

A is closed under .
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Example 1.3.3 : Let A = {0,1,2,3,4}. Define @ onA by for a,be A,
a @ b means the remainder got by dividing a+bby 5. Then ©
will be a binary composition on A .The following table gives us
all the values and since all the values of a® b for any a, b lie in

A , we find A is closed under this composition .

AlwN|~ol@
hlwln|—lolo

— O || W
R =IO W w
W= O

[==] = =N LY S e

In fact, the above is called addition modulo 5. One could
generalize this on a set A = {0,1,2,~-------- n-1} addition
modulo n.

Definition (Algebraic Lattice) : A non-empty set L. together with two
binary compositions (operations) A and v is said to form a
lattice if Va,b, c € L the following conditions hold :

L1 :Idempotency: a Aa=a, ava=a

L2 : Commutativity :anb=baa, avb=bva

L3 : Associativity:aAn(bAac)=(aanb)Ac,
av(bvec)=(avb)vc

L4 : Absorption: a A(avb)=a, av(aanb)=a.

Definition (Duality) : Let O be a relation defined on a set A. Then
converse of O (denoted by 0)is defined aOb < bOa,
abeA.
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Definition (Dual) : If (A, O) be a poset then the poset ( A, O), where
A= A and 0 is converse of O is called dual of A.
Problem 1.3.1 : If we consider the two chains with diagram

C:=1{0,1,2} and C, = {0,1} then C;X C, is a lattice .

2.1

(L1

0,1) (2,0)

(1,0)
(0,0)

Fig. 1.7

Proof : C,=1{0,1,2}
C,={0,1}
~CixX G ={(0,0), (0,1), (1,0), (1,1), (2,0) , (2,1)}.
Inf and Sup of any two elements of C;X C; liein C X C,.
So C X C, satisfy the conditions of lattice . Hence C;X C, isa
lattice .
Example 1.3.4 :
(0,1) A (2,0)=(0,0) e C1 X G,
0,1H)v(2,00=2,1)e C X G,
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Theorem 1.3.2 : If L is any lattice, then forany a,b,c € L, the
following results hold .
(1) ana=a, ava=a ( Idempotency )
(2) anb=baa, avb=bva ( Commutativity )
(3) an(bac)=(anb)ac ( Associativity )
av(bvcec)=(avb)ve
(4) anb<a, b<avb
(5) If 0,u € L, then
Ohna=0, Ova=a
wAa=8, WA=
(6) an(avb)=a ( Absorption)
av(anb)=a
Proof :
(1) ana=Inf{a,a}= Infla}=a.
ava=Sup{a,a}= Supla}=a.
(2) anb=Inf{a,b}= Inf{b,a}=bAaa.
avb= Sup{a,b}= Sup{b,a}=bva.
(3) Let bAc=d, thend = Inf{b, c}
=>d<b, d<c
Lete=Inf{a,d} then e<a, e<d
Thus e<a; &<b. ex¢. (using transitivity)
Hence e=and=an(bac)=Inf{a,b,c}
Therefore aa(bAac)=Inf{a,b,c}
Similarly, we can show that (aAb)Ac= Inf{a,b,c}
Hence aAn(bAac)=(aAb)ac.

Again let bvc=d,then d=Sup{b, c}
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= d2b, d>c
Let e= Sup{a,d} then e>a, exd
Thus e>a, e>b, eZe (using transitivity)
Hence e=avd=av(bvc)= Supf{a,b,c}
Similarly, we can show that (avb)vc=Sup{a,b,c}
Hence av(bvc)=(avb)ve
(4) Follows by definitions of meet and join .
(5)Since 0<x<u,forall x € L, the results are trivial for meet

and join .

(6) a<avb By@#4)
~an(avb)=a [Since a<b<aab=a
&avb=b
Again anb<a By(4)
s (anb)va=a
Hence av(anb)=a.
Problem 1.3.3 : Show that idempotent laws follow from the absorption
laws .
Proof : Wehave an(avb)=a and av(aanb)=a
Take b=aAb infirstandweget an(av(aanb))=a
or ana=a.
Similarly we can show ava=a. o

Theorem 1.3.4 : In any lattice the distributive inequalities

(i) aan(bve)=z(aab)v(anc)

(i) av(bac)<(avb)a(ave)
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hold forany a,b,c.

Proof: (i) anb<a

anbsb<bvc
= anab islowerboundof {a,bvc}
= aanb<aan(bvec) (1)
Again anc<a
anc<cs<bvece
=5 anc<aan(bvec) (2)

(1) and (2) show that aA (b v c) is an upper bound of

{anb,anc}
= (aanb)v(anc)<ana(bve)
Hence an(bvec)z(aab)v(anac) ®
(ii) avb>a

avbbxbac
= avb isanupper bound of {a,bAc}
= avb=>av(bac) (D)
Again ave=a

ave2cbac
= avc=av(bac) (2)
(1) and (2) show that av (b A ¢) is a lower bound of
{avb,avc}
=av(bac)<(avb)a(avec) [}

Theorem 1.3.5 : In any lattice L,

(aanb)v(bac)v(cana)<(avb)a(bvc)a(cva),

foralla,b,ce L.
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Proof: Since aanb<avb
anb<b<bvec

anb<a<cva

We find

(anb)<(avb)a(bvc)Aa(cva)
Similarly, (bac)<(avb)a(bvec)a(cva)
and (crna)<(avb)a(bvec)a(cva)

Hence (aanb)v(bac)v(cana)<(avb)a(bvc)a(cva) B
Theorem 1.3.6 : The dual of a lattice is also a lattice .
Proof: Let (L, R) bealatticeand let ( L, R)be its dual . Then L =L
and R is converse of R.Let x,y € L be any elements,

then x,y € Land L isa lattice, Sup{x,y} existsin L. Let it

be xvy.
Then xRxvy)
YRxvVY)
= (xvy) Rx
(xvy) Ry
o x vy is alower bound of {x,y}in L.

If z is any lower bound of {x, y} in L then

zRx, z Ry
= XRzZ; YRz
=5 z is an upper bound of {x,y} in L
= (xvy)Rz as xvy= Sup{x,y}in L

= ZI_{(xvy)

or that x vy is greatest lower bound of {x,y} in L. Similarly
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we can show x Ay will be Sup{x,y} in L.
Hence L is a lattice . -
Definition (Complete Lattice) : A lattice A is called a complete lattice if

every non-empty subset of A has its Sup and Inf in A .

Example 1.3.5 : Every finite lattice is complete .

Example 1.3.6 : The real interval [0 ,1] with usual < forms a complete

lattice .

Example 1.3.7 : The lattice (Z, <) of integers is not complete as the

subset
K={xeZ | x> 0} does not have an upper bound and therefore a
SupinZ.
Theorem 1.3.7 : The dual of a complete lattice is a complete lattice .
Proof : Let (A, 0) be a complete lattice and let ( A, O) be its dual .
Then ( A, O) s a lattice .
Let ¢ # S A be any subset of A . Since A is complete, Sup S
and InfS exists in A .
Let a=1InfS in A
Then a0Ox VxeA
=5 xOa VxeA
= a is an upper bound of S in A.
Let b be any other upper bound of S inA .
Then xOb VxeA
= bOx VxeA
=5 bOa as a=InfS in A

= aOb orthat a isl.ub.of S inA.
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Similarly, we can show that Sup S in A will be /nfS in A .
Hence ( A, Q) is complete . [
Theorem 1.3.8 : If A and B are two lattices . Then the product A x B
isa lattice .
Proof : Given A and B be two lattices then we have
AxB={(a,b) |ac A,be B}
is a poset under the relation < defined by
(aj,b)<(az,by))e=a <a, in A
b;<b, in B.
We show A x B forms a lattice .
Let (a;,by), (a2, by) € A x B be any elements .
Then a;,a € A and b;,b, € B.
Since A and B are lattices, { a;,a, } and { by, b, } have Sup
and /nfin A and B respectively .
Let ayna =Inf{a;,a}, byAby=Inf{b;,by}
then a;Aa <a;, aAa <a
biAby <b;, bjaby <b,
=5 (ajAay,byAby)<(a;, b))
(a3nay,byaby)<(ay, by)
=> (ajAay,byAby) isalower bound of
{1, b1), (22, b2)}
Suppose (c, d) is any lower bound of {(a;, bi), (az, bs)}
Then (c,d)<(a;,by)
(c,d)<(a, by)
=3 c<a,c<a,d<b,d<b,

= ¢ is a lower bound of {a;, a,} in A.
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d is a lower bound of {b;, b,} in B.

=4 c<a;Aa=Inf{a, a}
d< b1 N bz :Iﬂf{bl, bg}
= (c,d)<(ajnay, b Aby)

orthat (ajana;, byaby) is g.1.b. {(a;,by), (a,by)}.
Similarly ( by duality) we can say that
(arvay, byvby)is l.u.b. {(a,by), (a,b2)}.
Hence A x B is a lattice.
Also (a, b)) A(az,b)=(ajana;,biAaby)

(a, b)) v(a,b))=(ajvay,bivby). =

Theorem 1.3.9 : If (P, <) is a poset with least element 0 such that

Proof :

every non empty subset S of P has Sup then P is a complete
lattice.
Let S be any non empty subset of P. We need prove that Inf'S
exists.
Since 0 isthe leastelementof P, 0<x VxeP

andthus 0<s VseS

= 0is alower bound of S.
subset of P and, therefore, by given condition Sup T exists .
Let T = set of all lower bounds of S, then T is a non empty
subset of P and therefore, by given condition Sup T exists .

Let k=SupT

Now seS=>x<s, VxeT
=> each element of S is an upper bound of T
= kxs Vses

= k is a lower bound of S.But k being an upper bound of T
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means X<k VxeT 1ie, x<k V lowerboundsof S
= k=InfS
Hence P is a poset in which every non empty subset has Sup
and Inf and thus P is a complete lattice . L
Theorem 1.3.10 : A lattice L is a chain if and only if every non empty
subset of L is a sublattice .
| Proof : If the lattice is a chain then we have already shown that every non
empty subset of L is a sublattice.
Conversely, let L be a lattice s.t., every non empty subset of
L is a sublattice. We show L is a chain.
1 Let a,beL be any elements.
Then {a, b} being a non empty subset of L. will be a sub lattice
of L . Thus by definition of sublattice aAnb e {a,b}
= anb=a or aanb=b
= a<b or b<a
i.e., a,b are comparable.
Hence L is a chain. B
Theorem 1.3.11 : Intersection of two ideals is an ideal.
Proof : Let X, Y be two ideals of a lattice L.
Since X,Y arenonempty, 3some xe€ X, ye Y.

Now xeX, yeYcL=>xAyeX.

Similarly xAyeY

Thus XNnY#0o.

Let u,ve XNY beany elements .
= u,veX and u,veyY

=5 uvveX and uvveY asX,Y areideals.
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= uvveXNnY.

Again,if ae XNY and [ € L be any elements thena € X,
aeY,l eL

=>anl €X and anl €Y

= anl eXnY

Hence XNY isanideal. |
&7 The result can clearly be extended to intersection of more than two
ideals .
Problem 1.3.12 : Show that union of two ideals may not be an ideal .

Solution :

12

Fig. 1.8

Take A={1,2}, B={1,3}.Then A,B areideals of
the lattice L= {1,2,3 ,4, 6, 12} under divisibility, but AU B
isnotanideal.2,3 e AuUB but 2v3i=6¢AuUB. N
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Theorem 1.3.13 : Union of two ideals is an ideal if and only if one of
them is contained in the other .

Proof : One side of the theorem follows trivially . Let now A and B be

two ideals of a lattice L s.t., AU B is also an ideal of L .

Suppose AEB and BZ A
=> dxeA st, x¢B
dyeB st, ygA

= X,yeAuUB

= xvyeAuUB as AUB isanideal.

= XVyeAorxvyeB.

If xvyeA, thenas yeBcL

yA(xvy)e A orthat y € A, acontradiction .
Similarly x vy € B would lead us to the result that x € B which
is not true .

Hence either AcB or BcA. =n

Theorem 1.3.14 : A non empty subset I of a lattice L is an ideal if and

only if

(i) i,jel @>ivjel
(i) iel, x<i =2>xel.
Proof: Let I be an ideal of a lattice L.
By definition of ideal (i) is satisfied .
Letiel, x<i,then x=iAx el (bydef ofideal).

Conversely, we need toshow that iel, aeL=aniel

Since aani<iand iel
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By given condition anie€l
Hence [ is an ideal . B

Theorem 1.3.15 : The set of all ideals of a lattice L forms an ideal under

relation .

Proof : Let I (L )=setofall ideals of a lattice L, then [ (L )# ¢ as
Lel(L).

Clearly also (I (L), <) isaposet. Toshowthat I(L) isa
lattice we need find Sup and Infof {A,B} forany A,B e I(L).
Since intersection of two ideals is an ideal and A N B is the
largest set contained in A and B it is obvious that

AAB=Inf {A,B}=ANB

Again, A U B is the smallest set containing A and B . But then
A U B may not be an ideal , so it cannot work as our A v B. We
consider the set

X={xeL | x<avb forsome ae A,be B}

Weclaim X=AvB
Forany ae A, a<avb forany beB
=5 aeX DDAcX
Similarly, BcX
Thus X=#¢ and AUBCcX.
We show X is anideal of L.

Let x,y € X be any elements .

Then x<a;vb

y<a,vb forsome a;,aae€ A, b;,b,eB
= xvy<(ajvb)v(aavhby)

=% xvyeX as ajvaeA, bvb,eB.
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Again, forany x e X and 1 e L, Since x<avb,aec A, beB
wehave xaAl<x<avb.
=5 xAleX  which then is an ideal of L .
If C beany ideal of L containing A and B then X cC
as xe X
= x<avb, forsome aeA, beB.
Again ae AcC beBcC gives avbeC and x<avb
then yields x € C.
Hence X is the smallest ideal of L containing A U B,
ie., X=8Sup{A,B}=AVB
and we have established that (1 (L), <) is a lattice , It is called
the ideal lattice of L . L
Problem1.3.16 : Show that an ideal of a lattice L which is also a dual
ideal is the lattice itself .
Solution : Let A be an ideal as well as a dual ideal of L, then Ac L.
Weshow LcC A.
Let lel, xe A beanyelementsthen 1Aaxe A.
Again, 1A x<I and, therefore, | € A
= LcA
Hence A=L.
Thus no proper subset of a lattice can be an ideal as well as a
dual ideal of the lattice . w
Theorem 1.3.17: Every convex sublattice of a lattice L is the intersection
of an ideal and a dual ideal .
Proof : Let S be a convex sublattice of L

Let A={xeL|5‘seS,x£s}.'Ihen A+ as SCA.
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Notice s<s VseS.
We show A is anideal of L.
Let x,y € A be any elements .
Then 3 s;,5€S st, x<s51, yYy<8
= XVVSS8 VS
= XvyeA as s5vseS
Again,let x € A and 1 € L be any elements .
Then x <s forsome s € S
Now xAl<x<s
= xaAleA
Hence A isanideal of L.
Let A‘={xeL|3seS, s<x},thenby duality it
follows that A “ is a dual ideal of L . Weshow S=ANA".
ScANnA" (bydefinitionof A and A")

let teANnA’.

Then te A and te A’
=% dsl1,s2e€eS st, tes2, sl<t
ie, sl<t<s2 orthat te[sl,s2]
Since S is convex sublattice, s;,8; € S

[s1.52] €S =>teS
=ANA'c S
Hence S= AnA". |
Theorem 1.3.18 : A lattice L is a chain if and only if all ideals in L are
prime .
Proof : Let L be achain.Let A be any proper ideal of L . If
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anb e Athen asa,b are in a chain, they are comparable .
Let a<b. Then anb=a.
Thus anbe A = ae A = Aisprime.
Conversely, let every ideal in A be prime. To show that L
is a chain, let a,b € L be any elements.
Let A={xeL|x<aab} thenA is easily seen to be an ideal
of L. Thus A is a prime ideal.
Now aAnbe A, Ais prime,thus ae A or be A
= a<aab or b<aab
—=> aAb<gac<aab
or aanb<b<anab
—=>a=aAb or b=aab
—>a<b or b<a
= L isachain. ]
Definition (Dual Prime Ideal) : A proper dual ideal I of a lattice is
called a dual prime idealif avbel >aelorbel
Problem 1.3.19 : Let I be a prime ideal of lattice L. Show that L. -1 is
a dual prime ideal.
Solution : Since I is not empty, L —1I is a proper subset of L.
lLet a,beL-1.Then a,bel, a,bgl
= anbel, anbegl
(as anbel > ael or bel aslisprime)
= anbelL-I
Again, let aelL-1 1€L
Then ael,agel, lelL

= avlel, agl
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=% avlelL, avlgl
(as avlel >ael as a<avl)
Thus avleL-1I
ie, L—1I isdualideal.
Letnow avbeL-I, then avbel, avbegl
=> a,bel, a¢l or bel
(as a,bel = avbel)
=5 aeL-1 or beL-I

or that L -1 is a dual prime ideal. [ |
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1.4 Complemented and Relatively Complemented Lattices .
Definition (Complements) : Let [a, b] be an interval inaset L.
Let x € [a,b] beanyelements. If 3y e L s.t,
XAY=8, XVvy=b.
We say vy is a complement of x relativeto[a,bl,or y isa
relative complement of x in[a, b].
Observations :
(i) Ifsucha y existsthen y liesin[a,b]
as a=xAy<y<xvy=b
(ii) If y is relative complement of x , x will be relative
complement of y .
(iii) Anelement X may or may not have a relative complement .
A relative complement may or may not be unique .

Consider the pentagonal lattice given by the figure (1.9) .

Fig. 1.9

b has no complement relative to [o, a]
a, b are both complement of ¢ relative to [0, u]

b has only one complement ¢ relative to [o, u]
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(iv) a, b are unique complements of each

other relative to [a, b]
anb=a , avb=b
Thus a,b are each other complements .
Let x be any other complement of a
relative to [a, b]
Then anb=a=anAx
avb=b=avx
Now b=avx=(a@aAXx)vx=x
Definition (Complemented) : If every element x of an interval [a, b]
has at least one complement relative to [a, b], the interval
[a, b] is said to be complemented.
Definition (Relatively Complemented) : If every interval in a lattice is

complemented the lattice is said to be relatively complemented.

Suppose now L is a bounded lattice. If forany x e L,
dyeLst, xAy=o0, xvy=u, Yy iscalled complement of x
( we need not say relative to [0, u] ). Further, if every element of
L has a complement, we say lattice is complemented.

Thus a bounded lattice is complemented if the interval [o,u]=L

is complemented.
If L is a bounded lattice and is relatively complemented then

L is complemented but not conversely.

Consider the pentagonal lattice,
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Fig. 1.10

[0, u] is complemented as a, ¢ are each other complements
b, ¢ are each other complements
and of course, 0, u are each other complements. This lattice is
not relatively complemented as b has no complement relative to
[o,a]and so [0, a] is not complemented.
The lattice given by the adjacent diagram is not

complemented as a has no complement (relative to [o, ul).

Fig. 1.11

The lattice given by the figure below is both relatively
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complemented as well as complemented.

Fig. 1.12

Definition (Uniquely Complemented Lattice) : If every element of a
bounded lattice . has a unique complement, we say L is
uniquely complemented.

Theorem 1.4.1 : Let A be a non-empty finite set. Then ( P(A), ©) is
uniquely complemented lattices.

Proof : Let A # ¢ finite set and P(A) be the power set of A .We know
( P(A), ©) forms a lattice with least element ¢ and greatest
element A. Also forany X,Y € P(A)

XAY=XNY and XvY=XUY
since XAA-X)=XnNn(A-X)=¢
XvA-X)=XuU(A-X)=A
We find A —X is complement of X relativeto [¢, A ]
Thus P(A) is complemented.
Suppose Y is any complement of X, then

XAY=XNY=¢
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XvY=XUY=A

ie., XNnY=XNn(A-X)
XuY=XuU(A-X)
=D Y=A-X

or that A — X is uniquely complemented of X.
So (P(A), ©) is an uniquely complemented lattice.
Now we prove P(A) is also relatively complemented.

Consider any interval [ X, Y ] in P(A).

Let Z € [ X, Y ] be any member. Then
ZN(XU(Y-Z)=(ZNnX)Uu(ZNn(Y-Z)=Xuvp=X
ZO(Xu(Y-Z))=(ZuX)u(Y-Z)=Zw(Y-2Z)=Y
Showing that X U (Y —Z) is complemented of Z relative to
[ X, Y].Since C was any element of any interval of P(A).
Hence P(A) is relatively complemented. W

Theorem 1.4.2 : Two bounded lattices A and B are complemented if
and only if A x B is complemented.

Proof : Let A and B be complemented and suppose o,u and o', u’
are the universal bonds of A and B respectively.
Then (0,0") and (u,u”) will be least and greatest elements
of A xB.

Let (a,b) € A x B be any element.

Then ac€ A,be B andas A, B are complemented,
da'eA,b’eB
st, ana’ =0, ava'=u, bAab =0, bvb =1u".

Now
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(a,b)a(a’,b’)=(ana’,bab’)=(0,0")

(a,b)v(a’,b’)=(ava’,bvb’)=(u,u’)
shows that (a’,b") is complement of (a,b) in A xB.
Hence A x B is complemented.

Conversely, let A x B be complemented.
Let a € A,b € B be any elements.
Then (a,b) € A x B and thus has a complement, say (a’,b")
Then (a,b)a(a’,b")=(0,0"), (a,b)v(a’,b")=(u,u’)
= (aana’,bab’)= (0,0"), (ava’,bvb’)= (u,u’)
=5 ana’=o0 ava'=u
bab"=0 bvb'=u’
i.e, a’ and b’ are complements of a & b respectively.
Hence A and B are complemented. ]
Theorem 1.4.3 : Two lattices A and B are relatively complemented if

and only if A x B is relatively complemented.

Proof : Let A, B be relatively complemented.

Let [(a;, by), (a2, by)] be any interval of A x B and suppose

( x,y) is any element of this interval.

Then
(a.b)<(x,y)<(a,by) a;,a,Xx €A
b;,b,,yeB
=% a < X <a
by <b

= X €[a;,a] anintervalin A
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y € [b;,b;] aninterval in B
Since A, B are relatively complemented, x,y have
complements relativeto [a;,a] and [b;,by] respectively.
Let x" and y’ be these complements. Then
XAX =8, YyAY =b
XVX =a, yvy =b
Now
(X, y)A (X", y)=(xAXx", yay')=(a,b)
(x,y)v(x",y)=(xvx’, yvy )=(a,by)
= (x’,y") iscomplement of (x,y) relative to
[(ai,b1),(a,b,)]
Thus any interval in A x B is complemented.
Hence A x B is relatively complemented.
Conversely, let A x B be relatively complemented.
Let [a;,a,] and [ by, by ] be any interval in A & B.
Let xe[aj,a], ye[b;,by] beanyelements.
Then
a1 < x <a , by <b,
= (a;,b)<(x,y)<(ay,by)
=5 (x,y) €[(a;,by),(az,by)], aninterval in A x B.
= (x,y) hasacomplement, say (x",y") relative to
this interval.
Thus
(x,y)A(X",y)=(a, b))
(x,y)v(x",y)=(a, b))
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= (xAx", yay')=(a, by
(xvx', yvy' )=(a,by)

== XAX' =8, XVX' =a
yAy =b, yvy =b

= x ' is complement of x relativeto [ a;, a; ]

y” is complement of x relativeto [ by, b, |

which is turn imply that A , B are relatively complemented. W
Theorem 1.4.4 : Dual of a complemented lattice is complemented.
Proof : Let (L, p) be a complemented lattice with o, u as least and

greatest elements. Let ( L, p) bethe dual of (L, p). Then
u, o are least and greatest elements of 1
Let ae L = L beany element.
Since ael, L iscomplemented, 3 a”" € L s.t.,
ana’=o0,ava’=u in L
1.8 o=Inf{a,a’} in L.
= opa,opa’
= apo,a po in L
— o isanupperboundof {a,a’} in L
If k is any upper bound of {a,a’} in L then a pk, a’ pk
=5 kpa, kpa’
= kpo as o is Inf.
=2 o pk
ie., ois Lub.{a,a’} in L

Le, ava'=oin L
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similarly, ana’=uin L
or that a’ is complement of a in

Hence L is complemented.

L
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1.5 Atoms and Covers.

Definition ( Atom ) : An element a in a lattice L is called an atom if it
is covers 0.

In other words a is an atom if and only if a# 0 and
xana=aor xva=0 V¥V x eL.

Definition ( Dual atom ) : Anelement b is called dual atom, if u, the
greatest element of the lattice covers b.

Definition ( Length ) : A finite chain with n elements is said to have
length n— 1, (i.e., length is the number of ‘links ° that the chain
has. )

Definition ( Cover ) : We say a covers b if b<a and there exists
no ¢ s.t, b<c<a.

Definition ( Height or dimension) : Let L be a lattice of finite length

with least element o . An element x € L is said to have height

or dimension n if / [o0,x]=n and, in that case we write
hi{x)=n.

Problem 1.5.1 : Show that no ideal of a complemented lattice which is a
proper sublattice can contain both an element and its
complement.

Solution : Let L be a complemented lattice. Then o,u e L. Let 1 an
ideal of L such that I is a proper sub lattice of L. Suppose 3 an
element x in I such that its complement x” is also in L

Then
XxnX'=0, Xvi=n

since I is sublattice, x Ax’, xvx’ arein I i.e.,, o,u €l
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Now if 1 € L be any element then as u € I
l Auel
2 lel =3Lcl
= I =L, acontradiction. i
Problem 1.5.2 : Let L be uniquely complemented lattice and let a be an
atom in L . Show that a’ the complement of a is a dual atom
of L.

Solution : Since L is uniquely complemented lattice, every element has

a unique complement.

Suppose a’ is not a dual atom, then 3 at least one x

8.1, 8 X<

sl a vasxva
o= usxwvacs<u
= u=xva.

Now if a<x then xva=x

= x=u, nottrue. Againif a £ x, then
aAnXx=o0 (note a is an atom )

thus aAx=o0, avx=u

= x=a’, againa contradiction.

Hence a’ is a dual atom. [ |
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“Homomorphisms and Isomorphisms”
2.1 Introduction.
Here we discuss Homomorphisms , Isomorphisms , Meet
homomorphisms and Join homomorphisms . We have prove the
following problem .If L, L, , M, , M, are lattices such that L;= M, and
L, =M, then show that L;x L,=M, x M= M, x M,.

Let ©: L ——> M be an onto homomorphism . The set
{xeL|0(x)=0"}) where 0 is the least element of M is called the
Kernel of 0 and is denoted by Kerf . If M does not have the zero
element , Ker® does not exist .

2.2 Meet and Join Homomorphisms , Isomorphisms .

Definition ( Meet & Join homomorphism ) : Let L and M be lattices.
A mapping 6: L ——> M is called a meet homomorphism if
0(aanb)=0(a)A0(b).
It is called a join homomorphism if
O(avb)=0(a)vO(b).
Definition ( Homomorphism ) : If 6 is both meet as well as join
homomorphism, it is called a homomorphism .
A homomorphism is also sometimes called a morphism.
Definition ( Isomorphism ) : The map 0 is also 1-1 and onto we call
0 to be an isomorphism.
If © is an isomorphism from L to L we call it an

automorphism.

A homomorphism from L to L is called endomorphism.
If 0: L ——> M is onto homomorphism, we say M

homomorphic image of L.
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Example 2.2.1: Let L. and M be lattices
L M

u

Fig. 2.1

Define 6: L — M,s. t.,
8(o)=p 0(a) =q
6(b)=p O(u) =g
Then 6 is a homomorphism .
6(anb)=0(0)=p, 0(a)ab(b)=qap=p
O(avb)=0(u)=q,0(a)vo(b)=qvp=q.
Problem 2.2.1: If L,, L,, M, , M, are lattices such that L, = M, and
L,=M, thenshowthat L, xL,=M; x M, =M, x M.
Solution : Let f:L; ——> M; and g:L, —> M, be the given
isomorphisms . Define
0:LixL, —> M; xM,,s.t,
0((a,b))=(f(a),g(b))
Then 0((a,b))=06((c,d))
< (f(a),g(b))=(f(c),g(d))
— f(a)=f(c), g(b)=g(d)
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= =g , b=d
< (a,b)=(c.d)

Shows that 0 is well defined 1-1 map.

Again, 6 ((a,b)A(c,d))=0((anc,bad))
=(f(anc),g(bad))
=(f(a)af(c),g(b)rg(d))
=(f(a),g(b))A(f(c),g(d))
=0((a,b))A0((c.d))

Similarly, 6 ((a,b)v(c,d))=06((a,b))vO((c,d))
Showing thereby that 0 is a homomorphism.
Finally, forany (m;,m;) € M; x M, , sincemye M; & m; € M,
and f, g are onto,
dLhel,hely,s.t,f(li)=my,g(h)=m
and O((lLi,L))=(f(L).g(L))=(m,my)
shows that 6 is onto and hence an isomorphism.
To show M; x M, =M, x M;, we can define
o.M xM;, —> M x M, s.t,
¢ (my,m))=(my,m)

It is now easy to verify that ¢ is an isomorphism. =

Theorem 2.2.2 : If 6 : L ——> M is onto homomorphism and
X,yeMs.t, x<ythen 3a,bel s.t,0(a)=x,
O(b)=y and a<bh.

Proof : Since 0 isontoand x,ye M, Ja,c inL s.t,

O(a)=x, 0(¢)=y
Wehave ©O(avcec)=0(a)vO(c)=xvy=y as x<y.
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And aavce

If a=avc then 0(a)=0(a)vO(c)=y

—2 x=y which is not true .

Thus a<avec.

Take b=avc and we have the result proved. |

Theorem 2.2.3 : Homomorphic image of a relatively complemented

lattice is relatively complemented .
Proof: Let 6 :L —> M be an onto homomorphism and suppose L

is relatively complemented.

Let [a’,b’] be any interval in M, since O is onto
homomorphism , 3 pre images a and b for a’, b’ respectively
suchthat® (a)=a’, 6(b)=b" and a<b (as a’<b’).

Thus [a,b] isanintervalin L.

Let ye[a’,b']=[06(a),0(b)] beany element then as
before 3 apreimage x of y s.t., 6(x)=y and
a<x<bh.

Now L relatively complemented implies that x has a
complement x’ relativeto[a,b ],

1.6, XAX =a, Xvx =b
= O(x)a0(x")y=8(a), 8(x)vO(x")=08(b)
= yAOG(x")=a",yve(x")=b"
= 0(x") iscomplement of y relativeto[a",b" ].

Thus each element in any interval in M has a complement,

giving us the required result. |
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2.3 Embeddings , Kernels and Dual homomorphisms .

Definition ( Embedding) : Let L, M be lattices. A one — one
homomorphism 6 : L ——> M is called an imbedding
( embedding ) mapping . Also in that case we say L is
imbedded in M.

Theorem 2.3.1 : Any lattice can be imbedded into its ideal lattice.

Proof: Let 1 ( L) be the ideal lattice of L.

Define 8L —> I (L )5 .¢L,

0 (a)=(a], the principal ideal generated by a.

0 is then clearly well defined.

Also 0(a)=0(b)

= (a] = (b]

and ae(a] >ae(b] = a<b

Similarly b<a andthus a=b ie., O isone-one.

Again O(anb)=(aanb]=(a]Aa(b]=06(a)AaB(b)
O(avb)=(avb]=(a]Jv(b]=0(a)vO(b)

Hence 0 is one-one homomorphism. ]

Definition ( Kernel ) : Let 6 : L. ——> M be an onto homomorphism .
Theset {xelL |9(x)=0’ } where o’ is least element of M
is called Kernel of 0 and is denoted by Ker 6. If M does not
have the zero element, Ker 6 does not exist.

Theorem 2.3.2:If 0 : L —> M is an onto homomorphism, where
L ,M are lattices and o’ is the least element of M, then Ker 0
is an ideal of L.

Proof : Since 0 isonto,0’e M, thus Ker 0 # ¢ as pre image of o’

exists in L.
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Now x,yeKer0
= 0(x)=0"=0(y)
B(xvy)=0(x)vO(y)=o"vo =0’

= xVvy € Ker0.

Again xeKer0, leL, gives 8(x) =0".

Also 0(xAl)=0(x)A0B(1)=0"Al=0"

= x Al e Kerb.

Hence Ker 0 is an ideal of L. L
Theorem 2.3.3:1f 6 : L —> L be a homomorphism, where L isa

complete lattice then 3 some ae L, s.t, 0(a)=a.
Proof:Let S={xel | x<0(x)}.

Then S#¥¢@ as oS as 0<0(0) (Note ©(0) e L).

Thus S is a non empty subset of a complete lattice and therefore

Sup S exists. Let Sup S =a.

Now x<a VxeS

=5 0(x)<0(a) VxeS

=3 x<0(x)<0(a) VxeSs
= 0 (a) is an upper bound of S

= a<0(a) ( Def. of Sup )

U

aeS bydef of S and hence a is greatest

element of S.

Also a<0(a) >0(a)<0(0(a)
=0(a)eS ( Def. of S)

a being greatest element of S thengives 6(a)<a

1. & a<0(a)<a.
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Hence 0 ( a ) = a, which proves our assertion. ®

Definition ( Dual meet & Dual join homomorphism ) : A mapping

0:L —> M is called dual meet homomorphism if
6(anb)=0(a)vO(b).
and is a called dual join homomorphism if

O(avb)=0(a)Aa6(b).

Definition ( Dual homomorphism ) : It is called a dual homomorphism

if it satisfies both the above conditions.

Definition ( Dual Isomorphism ) : A 1-1 onto dual homomorphism is

called a dual isomorphism.

The reader would recall that under posets we define a dual
isomorphism to be a 1-1 onto map which satisfies aRb <

O(b)R"0(a )where R and R’ are the relations is L and M.

Theorem 2.3.4 : The definition of dual meet homomorphism & dual join

homomorphism are equivalent.

Proof : To show the equivalence of two definitions,

Let 6:L ——> M be 1-1 onto s.t.,
0(anb)=0(a)vo(b)
O(avb)=0(a)ab(b)

Let aRb inL

= a=anb

= 0(a)=6(a)vO(b) in M

= B(b)R'O(a)

Again O(b)R6(a) = 06(a)=0(a)vo(b)=

B(anb).

= a=anb as 0 is 1-1
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= aRb mL

Conversely, let a,b € L be any elements.
Then (anb)Ra, (aanb)RD
o 0(a)R"6(anb),0(b)R"6(anb)
orthat 8 (aAb) isanupperboundof {6(a),0(b) }
Suppose y € M is any upper boundof {6(a),0(b)} then
since O isonto, 3 xelL s.t, 0O(x)=y.

Now O (x) isanupperboundof {6 (a),0(b)} gives

0(a)R'0(x), 6(b)R"O(x)

= xRa, xRb

= x is a lower bound of {a,b}

= xR(aab), anb=Inf{a,b}
= B(aanb)R'B(x)=y

LB 0(anb) isaleastupperboundof {0 (a),0(b)}
1.8 B(anb)=0(a)vO(b).
Similarly we can show 0(a)A6(b)=6(avb).

Hence the two definitions are equivalent. 2
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“Modular Lattices and Distributive Lattices”
3.1 Introduction .
Modular lattices and Distributive lattices have been studied extensively
by many authors including Cigonli- [ 4 ], Comish [ 5], Evans[7],[ 8]
and Nieminen [ 15],[ 16 ]. A lattice L is called a modular lattice if
forall a,b,ce L with a>b
an(bve)=[bv(aac)]

In this chapter we also prove any non modular lattice L contains a sub-
isomorphic with the pentagonal lattice . Two intervals [a,b]and [c, d ]
of a lattice are called transposed if bAc=a and bvc=d.
3.2 Modular Lattices .
Definition ( Modular lattice ) : A lattice L is called a modular lattice if

Ya,b,ceL,withaz=>b

an(bvc) =[bv(anc)]

( Dual of a modularity will read as

Fora,b,ceL with a<b, av(bac)=ba(avec)

Hence dual of a modular lattice is modular )

Example 3.2.1 : The lattice given by the following diagram are modular .

Fig. 3.1 Fig.3.2
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Example 3.2.2 : A chain is a modular lattice .
Theeorem 3.2.1 : A sublattice of a modular lattice is modular.
Proof : Let S be a sublattice of a modular lattice L. If a.b,ce S
with a>bthenas Scl, a,b,cel and, therefore,
an(bvec)=bv(anac).
Since S is closed under A and v this result holdsin S and
hence S is modular. |
Problem 3.2.2 : Show that a lattice of length two is modular.
Solution : If a lattice L has length 2, then 1[o,u] = 2 and thus
I[a,b] <2forany a,bel, a<bh.
Let a,b,ce L bethreeelements s.t, a>b and ¢ is
not comparable with a or b.Then bac<b<a<ave (at
no place equality holds ) . Which shows 1[bAc, avc] = 3,
which is not possible. Thus we cannot find any triplet a,b,c in
L s.t, a>Db andc is not comparable with a or b.Hence
L is modular . n
Theorem 3.2.3 : Homomorphic image of a modular lattice is modular.
Proof: Let 6:L. ——> M be an onto homomorphism and suppose
L is modular. Let x,y,z € M be three elements with x>y.
Since O is onto homomorphism, 3 a,b,ce L s.t.0(a)=x,
O(b)=y, 6(c)=z, where a>b.
Now L ismodular, a,b,cel, a>b, thuswe get
an(bvc)=bv(anac)
Now xA(yvz)=0(a)a(0(b)vo(c))
=0(a)Aa(B(bvec))
=0(an(bvec))
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=0(bv(anc))
=0(b)vO(anc)
=0(b)v[B(a)aB(c)]
=yVv(XAz)
Hence M is modular. |
Theorem 3.2.4 : Two lattices L and M are modular if and only if
L x M is modular.
Proof : Let L and M be modular.
Let (a;,by),(a,by),(as,bs) e L xM be three elements
with (a;,b;)=(a,by).
Then a,a,a €L, a;> a
by,by,b3eM, bi=b,
and since L and M are modular, we get
ain(aavay)=av(a Aa;z)
bia(byvbs)=byv(byab;)
Thus
(a;,by)Aa[(a,by)v(as,bs)]|=(ai,bi)Aa(axvas,byvbs)
=(ain(avay),bia(bavbs))
=(aav(ajras),byv(b Absy))
=(a,by)v(arnas,byAabs)
=(a,b)v[(a,b1)A(a3,b3)]
Hence L xM  ismodular.
Conversely, let L xM be modular .
Lt aj,a,a € L, a; = a
by,by,b; €M, b; = b,
then (a;,b;),(a,by),(a3,b3)elLxM and
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(aj,b;)>(ay,by).

Since L x M is modular , we fiend
(ar,bi)A[(a,b)v(a;,bs)]=(a,b2)v[(a,bi)A(as3,bs)]
or (a;,bj)A(ava;,byvbs)=(a,by)v(a Aaz,b Abs)
or (ajan(ava3).bia(byvby)=(ayv(aAaz),bpv(bAabs))

= ain(aavas)=av(ana)

byA(byvbs)=byv (b Abs)

=5 L and M are modular. B
Theorem 3.2.5 : A lattice L is modular if and only if 1 (L ), the ideal

lattice of L is modular.
Proof : Let L be modular .

Let A,B,Cel(L) bethree members s.t., BcA.

Weshow An(BvC)=Bv(AnC)

Let xe An(BvC) beanyelement.

Then x€e A and xe BvC.

= xeA and x<bvc forsome beB,ceC

Since beBcA, xvbeA. Let xvb=a

Now x<bvec, x<a = x<aan(bvc)

= x<bv(aanc) as a >b & L ismodular.
Again, aAc<a, a€A = anceA
ancsg; ce€C = ancel
Thus ance ANnC andas be B wefind xe BVv(ANC)
1.6€, ANn(BvC)cBv(ANC)
BVv(ANC)cAn(BvC) follows by modular inequality,
or to prove independently, let ye Bv(ANC).
Then y<bvk where beB, ke AnC
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Thus y<bvk ,(beBcA,keA=bvkeA)
=t yeA
Also y<bvk, beB,keC =yeBvC
8 yeAn(BvC()
Showing that BVv(ANC)cAn(BvC(C)
Hence AA(BUC)=BVv(ANC) orthat I (L) is modular.
Conversely, let I (L) be modular. Since L. can be imbedded
into I ( L), it is isomorphic to a sublattice of 1 (L ). This
sublattice must be modular as 1 (L ) is modular. Hence L is

modular. W

Theorem 3.2.6 : If a,b are any elements of a modular lattice L. then
[anb,a]z[b,avb].
Proof : We know that an interval in a lattice is a sublattice . We establish
the isomorphism .
Defineamap y:[aanb,a] —> [b,avb], s.t,
v(x)=xvb, xel[aanb,al.
Then v is well defined as
xe[aanb,a] >aAab<x<a
=>(anb)vb<xvb<avb
=bL<xvbLavb
=>xvb e€[b,avb]
Also X =xX=>x3vb=xVvb
=2y (x1)=y(x).
\/ iS one — one as
Lt y(x)=y(x2) [So x;,xxe[anb,al]]

Then xvb=xvb
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=5 an(x;vb)=aan(x;vb)
= x3v(aab)=x3v(aab) using modularity, a>x;, X,
=5 X1 =Xy as aAnb< x1,x
y is onto as
Let ye[b,avb] beanyelement. We show a Ay is the
required pre image.
yel|[b,avb] =>b<y<avb
—anb<aany<an(avb)
—>anye|[anb,a]
Also v(any)=(any)vh.
So we need show y=(aAay)vh.
Now y<avb =>yaA(avb)=y
=>y=yA(bva)=bv(yaa) (using modularity )
Hence v is onto.
Again, x;<x; =>x;vb<x,vb
=y (x)<y(x)
And y(x)Sy(x2)

=5 x;vb< x,vb

= an(xyvb)<aan(x;vb)
= x3v(aab)< x;v(aab)
=5 X1 < Xp

Thus X1 X © y(x)Sy(xp).
Hence W is an isomorphism. |
Definition ( Transposed ) : Two intervals [a,b] and [¢,d] ofa

lattice are called transposed if baAc=a and bvec=d.
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Theorem 3.2.7 : Any non modular lattice L. contains a sublattice

isomorphic with the pentagonal lattice.

Proof : Since L. is non modular 3 at least three elements a,b,c a>=b

s.t, an(bvc)#bv(anac).

In view of the remarks of definition, we must have a> b,
and as in any lattice the modular lattice inequality
(a=b,an(bvc)=2bv(anc))holds,
weget an(bvc)>bv(anac).

Consider the chain

anc<bv(aanc)<aan(bvc)<bvec —(1)
We show at all place, strict inequality holds.

Suppose anc=bv(anc)

Then b<anac (X=yVX=>y<X)

== bvec<(anc)ve

= bvec<c <bvec

= bwve= e

=5 an(bvc)=anc, a contradictionto (1)

Thus aanc<bv(aac). Similarly an(bvc)<bve.
Hence chain (1) becomes .
anc<bv(aanc)<aan(bvec)<bvec e ee——((2)
Consider now the chain
anc<e<hbve
As seen above b v c=c leads to a contradiction and similarly
a A ¢ =c would give a contradiction.
Hence ascg ec<bve mmmmmmmmmmeeeeee (3 )

We thus have two chains (2 ) and (3 ) with same end points.
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We show ¢ does not lie in chain (2 ). For this it is sufficient to
prove that ¢ is not comparable with aA(bvc).

Suppose an(bvec)<c

Then an(an(bvc))<anc

=% an(bvc)<anac a contradictionto (2)
Again, if an(bvc)>c
then as a>an(bvc)

We find a>c whichgives aAc=c, acontradictionto (3 ).
Hence the chain (2) and (3) form a pentagonal subset

S={aanc, bv(aac),an(bve),bvec,c} of L.

an(bvec) i
c
bv(anac)
anc
Fig. 3.3

We show now this pentagonal subset is a sublattice. For that
meet and join of any two elements of S should lie inside S.
Meet and join of any two comparable elements being one of
them is clearly in S.

Now [aan(bvc)]ac=an[(bvec)ac]=aanceS

Also [an(bvc)]ve=[bv(aanc)]ve by (2)
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=bv[(aanc)vc]=bvec
and an(bvc)<bvec gives
(an(bvec))ve<(bvc)vec=bve
Thus [an(bvc)]ve=bvceS.
Similarly, we canshow [bv(aAc)lve=bvceS§
[bv(aac)lac=anceSsS
Hence S forms a sublattice of L . -

Theorem 3.2.8 : A lattice L is modular ifand only if for a,b.,c e L,
the three relations a>b, anc=baAac, ave=bwvc imply
a=b.

Proof : Let L. be modular and suppose a,b,c € L are such that
a>b,anc=bAc, avc=bvec.

Then a=aaA(avc)=aan(bvc)=bv(anac)
=bv(bac)=b. (using modularity and absorption )
Conversely, suppose the condition holds. We want to show
that L is modular. Suppose L is not modular. Then by above
theorem 3 a pentagonal sublattice
{anc,bv(anc),an(bvc),bvc,c} in L
where aAn(bvc)>bv(anac)
Put aan(bvc)=x and bv(aanc)=y then x>y.
Thus we have the three relations
XZ¥, XAC=YAC(=anc)
xve=yve(= avc)
Thus by given condition, we must have x=y which implies
an(bvc)=bv(aac) acontradiction.

Hence L must be modular. ]
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Theorem 3.2.9 : A lattice L is modular if and only if no interval [ x,y ]
of L contains an element which has two different comparable
complements relative to [ x,y ].

Proof : Suppose L is modular. Suppose [ x,y ] isaninterval in L
such that an element ¢ in [ x.y ] has two comparable
complements a,b (a >b) relativeto [x,y].

Then cAna=iecanb (=x)
cva=cvb (=y)
Thus a=aan(avc)=an(bvc)=bv(anc)
=bv(bac)
=b..
i. €., no interval can contain an element which has two different
comparable complements relative to the interval.
Conversely, let the given condition hold. Suppose L is not
modular.
Then L contains a pentagonal sublattice
{anc,bv(anc),an(bvc).bvc,c}
Put an(bve)=t,
bv(aanc)=r, then t>r
Also tACSTAt=anc=X (say)
tve=rvit=bve=y (say)
t=tAacs tvc=y
= X<y
i.e, 3 aninterval [x,y] in L which has an element ¢
[x=tAacscLtve=Y]

with two different comparable complements t and r relative to
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[x,y] acontradiction.
Hence L is modular . ]
Theorem 3.2.10 : A complemented modular lattice is relatively
complemented.
Proof : Let L be a complemented modular lattice.
Let [a,b] beanyintervalin L and x € [a, b ] be any
element. Since L is complemented, x has a complement, say, X".

Then xAXx =0, xvx =u, a<x<hbh.

Take y=av(bax’)

Then xAy=xaAlav(bax’)]
=av(xa(bax’))[asx>a,L ismodular |
=av(bAaxax’)
=av(bao)=avo=a.

xvy =xv[av(bax’)]
=(xva)v(bax’)
=xv(bax’)
=bA(xVvX") [as b>x, L is modular |
=bAu
=h.
Hence y=av (bAax") isrelative complementof x in [a,b]

proving our assertion. |
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3.3 Distributive Lattice .
Definition ( Distributive Lattice ) : A lattice L is called a distributive

lattice if
an(bvc)=(aanb)v(anc) YV a,b,e ek
Example 3.3.1 : The lattice (P (X),c) isadistributive lattice as
An(BuC)=(ANnB)U(ANC).
Example 3.3.2 : A chain is a distributive lattice .
Let a,b,c be anythree members of a chain , then any
two of these are comparable .
Suppose a<b,a>c,b<c
then a<hbs<scsa = a=b=¢,.

Thus an(bvc)=a=(aab)v(anc)

If a<b,a=>c,c<b
then c<a,a<b,c<b
thus an(bvc)=anb=a

(anb)v(aanc)=avc=a.
* * A distributive lattice is always modular . Converse is not true
as the lattice

Ms given by

Fig. 3.4
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is not distributive , but modular . Notice
an(bvc)=a, whereas
(aanb)v(aanc)=o
Theorem 3.3.1: A lattice L is distributive if and only if
av(bac)=(avb)a(avec), VYV a,b,c eL.
Proof : Let L be distributive .

Now (avb)a(avc)=[(avb)aa]v|[(avb)ac]
=av|[(avb)ac] [ absorption |
=av|[(aanc)v(bac)]
=[av(aanc)]v(bac)
=av(bac)

Conversely, let a,b,c € L be any three elements , then

(anb)v(anc)=[(aanb)va]a[(aanb)vec]
=an[(anb)vc]
=aAn[(cva)a(cvb)]
= [aan(cva)]a(cvb)
=an(cvb)
=an(bvec)

Hence L is distributive . 5!

Theorem 3.3.2 : A lattice L is distributive if and only if
(avb)a(bvec)a(ecva)=(aab)v(bac)v(caa)
Y a,b,ceL
Proof : Let L be a distributive lattice .
(avb)Aa(bvc)a(cva)={aan[(bvc)a(cva)]}vVv
{bAa[(bvec)a(cva)]}.
=[{aan(cva)}a(bve)]v[{ba(bvec)}a(cva)]
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=lan(bvc)]v][ba(cva)]
=(aanb)v(aanc)v(bac)v(bnaa)
=(aanb)v(bac)v(caa).

Conversely, we first show that L is modular .

Let x,y,z beany three elements of L, with x>y.

Then xA(yvz)=[xa(xvz)]a(yvz) (absorption)
=(xvy)a(xvz)a(yvz) (x2y)
= (xvy)A(yvz)A(zVX)
=(xAy)v(yaz)v(zax)
=(yv(yaz))v(zax) (x2y)
=yVv(xAz)

i. €; L. is modular .

Now forany a,b,c €L
an(bvc)=[an(avc)]a(bve)
=[aan(avb)a(ave)]a(bve)
=an[(avb)Aa(bvec)a(cva)]
=an[(aanb)v(bac)v(caa)]
=an[(bac)v((anb)v(cnaa))]
Now using modularity, a>aAb,a>cAa gives
a>(anb)v(caa) weget
an(bvec)=[(aab)v(caa)]v|[(bac)ana]
=(aanb)v][(caa)v[(cara)ab]]
=(aanb)v(caa)
Hence L is distributive . Wi
Theorem 3.3.3 : Homomorphic image of a distributive lattice is

distributive .
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Proof:Let 6: L —> M be an onto homomorphism where L
is a distributive lattice .

Let x,y,z € M be any elements . Since 0 is onto, 3
a,b,celL s.t, 6(a)=x,0(b)=y, 06(c)=z
Now xA(yvz)=0(a)a[B(b)vO(c)]

=0(a)Aa(B(bvec))

=0(an (bvec))
=0((anb)v(anac))
=0(anb)vO(anc)
=(8(a)A0(b))v(6(a)rb(c))
=(xAy)Vv(xAz).

Shows M is distributive . [ ]
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“Boolean Algebras and Boolean Functions”

4.1 Introduction .
A complemented distributive lattice is called a Boolean lattice . Let
(A, A,Vv, )beaBoolean algebra . Expressions involving members of
A and the operations A , v and complementation are called Boolean
expressions . Any function specifying these Boolean expressions is called
a Boolean function . A Boolean function is said to be in disjunctive
normal form ( DN form ) in n variables X, X, X3, =-=-=-========, X; if it
can be written as join of terms of the type

fi(x1) A fo(x3) A £3(x3) A ===-mmmmmmmm A fi(%,) . where f; (%) =x;
forall i=1,2,3, —=mmmmmmmmmeme ,n and no two terms are same .
4.2 Boolean Lattices , Boolean Subalgebras .
Definition ( Boolean lattice ) : A complemented distributive lattice is

called a Boolean lattice .

Since compliments are unique in a Boolean lattice we can
regard a Boolean lattice as an Boolean algebra with two binary
operations A and v and one unary operation “ . Boolean
lattices so considered are called Boolean algebras . In other
words, by a Boolean Algebra , we mean a system consisting of a
non empty set L together with two binary operations A and v
and a unary operation °, satisfying(Va,b,ceL)

(1) ana=a, ava=a

(ii) aanb=baa,avb=bva

(iii) aan(bac)=(anb)ac,av(bvc)=(avb)ve
(iv) aan(avb)=a, av(aanb)=a

(v) aan(bvc)=(aanb)v(anc)
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(vi) VaeL,3a" €L ,s.t, ana’'=o0,ava’ =u
where o, u are elements of L satisfying
o0 <x<u VxelL
(a” will be unique and is the complement of a )

Example 4.2.1 : Let S be a non empty set , then (P (S ), < ) we know

from a distributive lattice and each element has a complement.
Thus
(P(S), c)is aBoolean lattice .

Example 4.2.2 : Let S = Set of factors of 30, then L forms a Boolean
lattice under divisibility .

Example 4.2.3:Let A ={o0,a,b,u}.Define A,v and

complementation " by

Alo|la|b]|u e 2 (R I b | u
i b olo|lo|lo|o o| o al|b | u o
alo|a|o|a a|laf|la|u]|u a
- blof(o[b| b b b u b u b|a
ulo|al|b|u u | u | u|u|u ulo
Fig. 4.1

Then A forms a Boolean algebra under these operations
Wy NE 5 F
Definition ( Boolean subalgebra ) : A sub algebra ( or a Boolean sub
algebra ) is a non empty subset S of a Boolean algebra L s.t.,

a,beS = aanb, avb, a’ e€S.
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We thus realize that a sub algebra differs from a sublattice in as
much as it is closed under complementation also . Notice that if
[a,b] bean interval in a Boolean algebra L, where a>o,
then [a, b ] is asub lattice of L, but is not a sub algebra as
acl[a,b] >a"€[a,b]
—>ana €[a,b]
=>o0ef[a,b]
which is not possible as a>o.
Hence a Boolean sublattice may not be a Boolean sub algebra .
( The converse being , of course , true )
Problem 4.2.1 : Show that a non empty subset S of a Boolean algebra
is a sub algebra if it is closed under v and complementation .
Solution : We need prove that forany a,be S, aanbeS
Now (anb) ' =a"vb' €S

= (anb)=((anb) ) €S

similarly , one can show that S would be a sub algebra if it is

closed under A and complementation . |

Theorem 4.2.2 : In a Boolean algebra , the following results hold

(1) (a')'=a
(11) (aAanb) =a"wvb” [ De Morgan's law ]
(ii) (avb) =a"A b’ [ De Morgan's law ]

(iv) a<b & a'>b’

(¥) agh & anb"'=ea&a"vb=u
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Proof: (i) et (a*)"=a"" ihen
ana’'=o, ava’'=y
a'/\a"=0,a’va"=u
=% ax\a'=a"/\a',ava'=a”va’
= a''=a
(i1) We have (aab)a(a’ vb)
=[(aAb)/\a']v[(aAb)Ab']
=[(a/\a’)/\b]v[a/\(b/\b’)]
=[oab]v[ano]
=0Vo
=a
(aAb)v(a'vb’)=(a'vb')v(a/\b)
=[(a’vb')va]/\[(a'vb')vb]-
=[(a'va)vb']/\[a'v(b'vb)]
=(uvb)a(a'vu)
=uAu
=u
Hence (aab) =a’vb”
(1ii) Similar as (ii)
(iv) a<b = a=anab
=a'=(aAb) =a’'vb’
=>b"<a’
b'<a’=>b’'sar”

=>b>a
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(v) a<b = aAb’_<_b/\b’:osaAb’Sosa/\b’=0.
Againlet aAb =o0.
Then a=a/\u=ax\(bvb’)=(ax\b)v(ax\b')
=(anb)vo=(anab)
= a<anab.
Second result follows similarly. [ |
Problem 4.2.3:If A, B, C lattices such that B = C , then
AxBz=AxC
Solution : Let f:B —> C  be the given isomorphism .
Define 0: AxB——> AxC,s.t,
0((a,b))=(a,f(b))
then since 0((a,b))=0((c,d))
< (a,f(b))=(c,f(d))
= =c, f(b)=1(d)
< a=c, b=d(fbeingwelldeﬁnedl—lmap)
< (a,b)=(c,d)
We find 0 is a well defined 1 — 1 map .
Again , for any (x,y)e AxC, as ¥yelC,L:B—>C
isonto , 3 beB,s.t., f(b)=y.
Now 6((x,b))=(x,f(b))=(x,y) and thus 0 is
onto .
Finally ,
9((a,b)A(c,d))=9(aAc,bAd)=(aAc,f(bAd))
=(anc,f(b)af(d))
=(a,f(b)) a(c,f(d))
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=06((a,b))A0((c,d))
Similarly, 0 ((a,b)v(c,d))=6((a,b)vO((c,d)).
Hence 0 is an isomorphism . [ |

Theorem 4.2.4 : Let L be a relatively complemented lattice with least
element o . Then any ideal of L can equal the Kernel
corresponding to at most one congruence relation .

Proof : Let C be any congruence relationon L .Let a,b € L be any
two elements .Then aAbe[o,avb] andas L isrelatively
complemented , a A b has a complement , say p, relative to
[o,avDb]. Thus

anbap=o, (aab)vp=avbor p<avb
Let K. be the kernel corresponding to C, then
Kﬂ={xeL|xC0}
Weclaim (avb)C(aab) ifandonlyif p e K.
Let (avb)C(aab) thenas pCp
pAa(avb)Cpa(aanb)=pCo =>pek.
Again peK. =>pCo
= pv(aanb)Cov(aab) as(anb)v(aab)
= (avb)Clanh).
Hence (avb)C(aab)eopek
Then aCb & pe K,
Suppose now I is any ideal of L such that it equals the

Kemels K. and K, corresponding to two congruence relations
C,and C, over L.

Then [=K,,I=Ko =K, =Ka.

Let a,b e L beany elements, then p exists and
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aCib©opeKg ©@pekKy ©alb
i.e., C;=C; which proves our assertion . &
Theorem 4.2.5 : If L is a Boolean algebra then any ideal of L equals
the Kernel corresponding to one and only one congruence
relation over L .
Proof : Since L is distributive and has zero , then any ideal equals the
Kernel corresponding to at least one congruence relation .
Again , since L is relatively complemented the ideal cannot
equal Kernels corresponding to more than one congruence
relation . Hence any ideal will equal Kernel corresponding to just

one congruence relation . [ |
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4.3 Rings , Boolean Rings , Boolean Functions .
Definition ( Ring ) : A non-empty set R together with two binary
operations , additions ( denoted “+ ™) and multiplication
( denoted by “- ") is called a ring if it is satisfied the following
laws :
1.  Associative law of addition :
(a+b)+c=a+(b+c) Va,b,ceR
2. Existence of additive identity zero :
4 ek =at0=0+a, V aeR
3.  Existence of additive inverse :
aeR =>d-aeR =>a+(-a)=(-a)ta=0, VaeR
4.  Commutative law of addition :
atb=b+a YV a,beR
5.  Associative law of multiplication :
(a.b).e=a.(b.¢) VY a,b,ceR
6.  Distributive laws :
(1) Leff: a.(b+c)=a.b+a.c Va,;b,ceR
(11) Right: (a+b).c=a.c+b.c Va,b,ceR
Definition ( Ring with unity ) : A ring R is called a ring with unity if
there exists anelement 1 #0 € R suchthat a.1=1.a=a,
V a e R where 1 is called the multiplicative identity or
multiplicative unity .
Definition ( Commutative ring ) : A ring R is called commutative ring
if under the binary operation of multiplication a.b=b.a
vV a,beR.

Definition ( Ring with zero divisor ) : A ring R is called with zero
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divisors if there exists at least two elements a and b of R
suchthat a.b=0 where a#0 and b#0.
Definition ( Boolean ring ) : A ring R is called a Boolean ring if
a’=a vV aekR.
Theorem 4.3.1 : Every Boolean algebra is a Boolean ring with unity .

Proof : A Boolean ring is a ring is which x*=x Vx.
Let (A,A,v, ) beaBoolean algebra .
Define two operations + and . on A by
a.b=anab
atb=(aanb’)v(a’Ab) a,be A
Then + and - are clearly binary compositions on A .
To show that <A , +, - > forms a Boolean ring , we verify all
the conditions in the definitions .
Let a,b,c e A be any members .
atb=(aanb’)v(a’Ab)=(baa’)v(b"Aa)=b+t+a
(a+b)+c=[(atb)ac’]v][(at+tb) Ac]
=[{(aanb’)v(a"Ab)}Aac’]Jv[{(aanb’)v(a"Ab)} Ac]
=[(aab’Ac’)v(a"Abac’)]v[(aab’) A(a’Ab) Ac]
=[(aab’Ac’)v(a"Abac’)]Vv][(a"vb)Aa(avb' )Aac]
=[(aab’Ac’)v(a’Abac’)]Vv[{(@" vb)Aaa}
vi{a’vb)ab'} ac]
=[(aab’Ac”)v(a’"Abac’)]
vi{(a’Aa)v(baa)v(a aAb)v(bAab’)} Ac]
=(aanb’Ac’)v(a’Aabac’)v[{(baa)v(a"aAb" )} Aac]

=(aab’Ac’)v(a’Abac’)v[(baraac)v(a"Ab'Ac)]
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=(anb’Ac’)v(a’aAbac’)v(baraanc)v(a Ab'ac)
Since the resulting value is symmetric in a, b, ¢ it will also be
equalto(b+c)+ta=a+(b+c) (bycommutativity of + )
Hence + is associative .
Again a+0=(aAu)v(a’'aAl0)=a=0+a.
Also a+a=(ana’)v(a ' ana)=0.
Thus (A,+) forms an abelian group .
Since a-b=aAb and A is commutative and associative .
We find - is also commutative and associative .
Again, a(b+c)=aan(b+c)=aan[(bac’)v(b Ac)]
=(anbac’)v(aanb’Ac)
abtac=(aab)+(anc)
=[(aanb)a(anc) Jv[(anb) A(anc)]
=[(aanb)a(a’'ac’)]v[(a'vb )a(anc)]
=[(aanbaa’)v(aanbac’)v(aancana’)
v(aancab’)]
=(aanbac’)v(anb ac)
Hence a(bt+tc)=ab+ac
Similarly, (b+c)a=ba-+ca.
Finally ,since a-u=aAu =a =uaAa=u-a.
We find (A, +,- ) forms a commutative ring with unity u.
Alsoas a-a =ana=a Va
we gather that A forms a Boolean ring . &
Theorem 4.3.2 : Every Boolean ring with unity is a Boolean algebra .

Proof : Let <A ,+,-> be a Boolean ring with unity .
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We defined two operations A and v on A by
anb=a-b
avb=a+b+ab
Then since - is commutative (a Boolean ring is
commutative ) and associative we find A is commutative and
associative .
Again ava=atataa=(ata)a=0+a
(InaBoolean Ring a+a=0 ¥ a, where 0 is zero of the ring )
Also avb=at+b+ab=b+a+ba=bva
(avb)ve=(avb)tc+(avb)-c
=(a+b+ab)+c+{at+b+ab)ec
=at+b+ab+c+ac+bct+abc
Since, av(bvc)=(bvc)va ( by commutativity of v )
By symmetry ,(bvc)va=b+c+bc+ta+batcatabc
Hence v is associative .
Finally to check absorption , we find
an(avb)=a(at+b+ab)
=a’+ab+a’b
=a+ab+ab
=a+2ab
=a
(as x+x=0 V x)
av(anb)=avab=atabt+aab
=at+2ab
=a

Thus A is a lattice .
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We leave distributively for the reader to verify . Let now a € A
be any element . We show it has a complement , namely , a+ 1
( where 1 isunity ofring A)
Now aan(at+l)=a(a+1l)
=a’+a
=ga+a
=0
av(at+l)=ata+tl+a(at+l)
=2a+1+a+a
=2
=l
Showing that a“"=a+1
Notice ,inthering A, 0-a=0 V aeA
(0 being zero of ring )
= 0hna=0 V aeA.
Again l-a=a Va
Lae lna=a VaeA
Thus 0 and 1 are least and greatest elements of the lattice A . ®
Definition ( Boolean function ) : Let (A, A, Vv, ") be a Boolean
algebra . Expressions involving members of A and the
operations A,V and complementation are called Boolean
expressions or Boolean polynomials. For example, x vy’ ,x,x
A 0 etc. are all Boolean expressions . Any function specifying
these Boolean expressions is called a Boolean function. Thus if
f(x,y)=xAy then f isthe Boolean functionand x Ay is

the Boolean expression ( or value of the function { ) . Since it is



Chapter 4 Page no 75

normally the functional value ( and not the function ) that we are

interested in , we call these expressions the Boolean functions .



Chapter 4 Page no 76

4.4 Disjunctive normal forms , Complete Disjunctive normal forms

Definition ( Disjunctive normal form ) : A Boolean function

( expression ) is said to be in disjunctive normal form
( DN form ) in n variables x;,X;, X 3 ,~-=------ , X, ifitcan
be written as join of terms of the type

fi(x ))Ah(x2)Af(X3) A —mmmmmemms A (Xa)

where f;i(x;)=x; or x';, forall i=1,2,3, -—--mmmmmmv n
and no two terms are same . Also, 1 and 0 are said to be in

disjunctive normal form .

Definition ( Minterms or minimal polynomials ) : The terms of type

fi(x DAL (X2)AHB(X3)A—mmmmemmmee A (Xa)
are called minterms or minimal polynomials . ( A normal form

is also called a canonical form ) .
Forinstance , (XAYAZ )V(X'AY AZ)V(X'AYAZ)
is in disjunctive normal form ( in three variables ) and each of the

brackets is a minterms .

Problem 4.4.1 : Put the function

f=[(xAy’) vz ' ]A(Xx"vz) inthe DN form.

Solution : We have

F=1 Cx vy "y’ Twls® nx™")
=(x"vyvz' )a(z AXx)
=(X"AZ ' AX)IVI(YAZ AX)V(Z AZ AX)
=0Vv(XAyAaz' )v(xaz')
=(xAyAaz’)v[(xaz")a(yvy’ )] (Note this step )
=(XAYAZ)VI(XAZ"AY)IV(XAZ " AY )]

SRAFARE YVE(EAY AZ" ). =
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Definition ( Complete disjunctive normal form ) : If a disjunctive
normal form in n variables contains all the 2" minterms then it

is called the complete disjunctive normal form in n variables .
Example 4.4.1 : Forexample,, (X Ay ) V(X ' AYy)V(XAY )V
(x'Ay ") is the complete disjunctive normal form in two variables.
Problem 4.4.2 : Write the function x vy in the disjunctive normal form

in three variables x,y, z.

Solution : We have
xvy =[xa(yvy )alzvzg' Y] vy alxvx")
A(zvz')]
=[{(xAay)v(xay )in(zvz)]
VIL(Y AX)V(Y'AX )} A(2AZ")
=(XAYAZ)V(XAYAZ )V(XAY ' AZ)
vi{x Ay Kz Yy AXAZ IN(Y AXAZ )
VIy AX"AZ)V(Iy Ax"Az").
=(XAYAZ)V(XAYAZ )V(XAY AZ)
V(XAY AZ)V(X'AY AzZ)V(X'AYy ' AZ").N

Problem 4.4.3 : Find the Boolean expression for the function f given by

1 When x=z=1y=0

f(%,3,2) = ¥=ly=z=0

0 otherwise

Proof : The function is specified by the minterms

(xAy ' Az)and (XAY ' AZ")
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i.e., the function in the DN form is
(xAy ' Az)v(xay Az") [ |
Example 4.4.2: Let A={ 0,1 } and f: A> —> A, be defined by

f(x,y)=(xAy) V(X AYy)V(XAY ) V(X AY")

1.e., f isin complete DN form . We calculate all values of

f(x,y), x,yeA.

Now f(0,0)=(0A0)Vv(1AO0)V(0OAL)V(1Al)=1
f(1,0)=(1A0)V(0AO0)V(IAT)V(OALl)=1
f(0,1)=(0A1)Vv(IAL)V(OAOD)V(IAD)=1
f(1,1)=(1A1)Vv(0ALl)V(1IAOD)V(OAD)=1
(Note x=0 & x"=1)

We thus notice that in each case , one mintermis 1A 1=1
and all others are zero . Also the resulting value of f(x,y) is

always 1.

If we go through similar process , with a function f which
is in complete DN form in three variables x,y, z we will get
the same result . we can generalize this result .

Example 4.4.3:Let A={0,1} and f:A> ———> A bethe
function definedbyf(x,y,z)= xA(yvz),thenthe
functional values of f are given by

£(0,0,0)=0A(0v0)=0
f(1,0,0)=1A(0v0)=0
f(0,1,0)=0A(1v0)=0
f(0,0,1)=0A(0Vv1)=0
E(L,1,00~1all wl)=1
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£(1,0,1)=1A(0v1)=1
£(0,1,1)=0A(1v1)=0
£(1,1,1)=1A(1v1)=1

which we sometimes write in the tabular form as

f(x,y,2)

—_— e OO O k3
—_——0 = O =0 D <«
—_—— = O -0 O D N
—_—0 -0 00O

Problem 4.4.4.: Find the Boolean expression that defines the function f

given by
160, 40.,0) =8
f(0,1,0) =1
£(0;0,1) =0
1(0; 1.1) =0
f(1,0,0) =1
£(1,0,1) =1
f(1,1,0) =0
f(1,1,1) =1

Solution : We consider those values of f(x,y,z) which are equal
to 1. The minterms correspondingto £(0,1,0),f(1,0,0),
f(1,0,1)andf(1,1,1) willbe
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(X"AYAZ ) (XAY ' AZ" ) (XAY ' AZ),(XAYAZ)
Hence the function in DN form is
F(%:9:2)= (X" KYAZ IV(XAY AZ" IV
(XAY ' AZ)V(XAYAZ)
which can be simplified
=(X"AYAZ )VXA[(Y AZ )V(Y AZ)V(yAzZ)]
=(X'AYAZ )VXA[{Y A(2' vZ)Iv(yAz)]
=(x"Ayanz’)vxaly'v(yaz)]
=(xX"AyAz")VvXA[(Yy vy)Aa(y vz)]
=X NYBE VveXn(y Vvz)
=(x"'Ayanz’)v[(xay’ )v(ixaz)]. [
Example 4.4.4 : Complete DN form in 2 variable is
(XAY)V(X AY)V(XAY ) V(X AY")
Let I=(xAY) [ any one DN form |
then " =(xAy) =x "vy°’
=[x "A(yvy)Iviy "(xvx’)]
=(x"AY)VETAY V(Y TAX)V(Y TAXT)
={® " KYIV(ENY " )X Ay " )s
Thus what we gather form here is that if we pick up any DN form

from the compete DN form then complement of that DN form

will contain the © left out * terms in the complete DN form .
Take for instance, p=(xAy)V(X AYy)
then p=lxAy)v(x"Ay)]
=(xAy) A(X AY)’
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=(x" vy )Aa(xvy’)

={XAX“)vyY"

=y’

=y & ( xvx")

=(y'Ax)v(y Ax")
the © left out ’ terms in the complete DN form .

Problem 4.4.5 : In a Boolean algebra , show that

f(x,y)=[xAt(l,y)IvIxX"A{(0,y)]
Solution : We know that any function f (in 2 variables ) in complete

DN form is
f(x,y)=(XAY) V(X AY)V(XAY ) V(X AY")
=[xa(yvy }u[x" a(yay” )] ==(1)
Put x=1, x"=0 and we get
(1)1 alyvy ) IV I0ALY XY )]
=y vy
Again , by putting x=0,x"=1 we get
FC0 3=y vy
Thus (1) gives
f(x.y)=[xAat(1,y)IvIx'A{(0,y)] .
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4.5 Conjunctive Normal Forms .

Definition ( Conjunctive Normal Form ) : A Boolean function f is said
to be in conjunctive normal form ( CN form ) in n variables
X),X7,X3,———X,

if f is meet of terms of the type
fi(x1)vH (X3 )V —mmememeee fa(Xn)
where f;(x;)=x; or x; forall I1=1, 2,3 —-emememv n
and no two terms are same . Also 0 and 1 are said to be in CN
form .
Problem 4.5.1 : Put the function
f=[(xAy" )vz ]Aa(x"vz) inthe CN form.
Solution : We have
f=[(x"vy)vz' ]a(xAz")
=(x"vyvz )al(xaz )v(yAay')]
=(x"vyvz' )A{[(xAaz")vy]a[(xaz")vy']}
=(x"vyvz' )A[(xvy)a(z' vy)Aa
(xvy )a(z'vy’)
=(x"vyvz' )an[{xvyv(zaz’)}n
{(z7vy)v(xax)ja{(xvy )v(zaz')}na
{(z'vy )v(xax')}
=(x"vyvz ' )A(xvyVv z)A(xvyvz' )Aa
(z'vyvx)Aa(z'vyvx' )a(xvy ' vz)Aa
(xvy vz )a(z' vy vx)a(z'vy vx’')
=(xvyVv z)A(x'vyvz' )a(xvyvz’')

AxXvy vZ)A(xvy vz )A(x"vy' vz ). &
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Problem 4.5.2 : Put the function xA(yvz) inthe CN form .
Solution: xA(yvz)=[xv(yay )]al(yvz)v(xax')]
=(xvy)a(xvy )Aa(yvzvx)Aa(yvzvx')
=(xvy)v(zaz')Aa(xvy )v(zaz ' )A(yVvzZvVvXx)
ANX"'Vvyvz)
=(xVvyVvVz)A(xvyvz' )A(xvy vz)a(xvy'vz')
A(Xvyvz)Aa(x'vyvz)
=(xvyvz)a(xvyvz )a(xvy vz)a(xvy'vz')
A(X"vyvz). ]
Problem 4.5.3 : Find the DN form of the function whose CN form is
F=(xVyVZ)A(XVvYVZ YAy VZ)A
(xvey ezl Yalx" vyve)
Solution : We know f=( f" )" . Thus
f=[{(xvyvz)Aa(xvyvz )A(XVvy Vvz)A
(xvy' vz ' )A(x"vyvz)}' ]’
=[(xvyvz) vixvyvsz' ) vixvy vz) v
(xvy' vz ) v(x"vyvz) ]| (by De Morgan’s law )
=[(X"AY AZ )V(X'AY AZ)V(X"AYAZ )V
(x"Ayanz)v(xay Az" )] (byDe Morgan’s law )
=(XAYAZ)V(XAY AZ)V(XAYAZ ). [
Note : By similar steps we can find the CN form of a function from
its DN form
Problem 4.5 4 : Find the CN form of the function
f=(xA(y"vz))vz’ andthen find its DN form from it .
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Solution : f=(xaA(y'vz))vz’
=(xvz' )Ny vz)vz")
= XVZ’
=(xvz')v(yay’)
=(xvyvz )A(xvy vz)
Now f=(f") =[{(xvyvz )Aa(xvy vz )}T
=[(xvyvz )Yv(xvy vz)]
=l(x" Ay Az)vx Aynz)]
=(XAYVAZ)V(X'AYyAZ )V(XAYAZ')
VI(XAY AZ)V(XAY'AZ )V(X"'AY ' AZ")
If we wish , we can get DN form independently , as
f=xvz' =[xA(yvy' )]v[z ' A(xvx')]
=(xAy)Vv(xay )v(z' Ax)v(z ' AXx")
=(xAy)a(zvz ' )v(xay )a(zvz')v
(zAx)A(yvy ) v(z'AX )A(yVvy')
=(XAYAZ)V(XAYAZ )V(XAY AZ)
VI(XAY "AZ)V(Z ' AXAY)V(Z AXAY')
V(Z'AX"AY)V(Z AX" AY)
=(XAYAZ)V(XAYAZ )V(XAY AZ)V

(XAY ' AZ)V(X"'AYyAZ )V(X'AyAzZ). R
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