
Compression Schemes for High Dimensional Data based on

Extendible Multidimensional Arrays

By

Md. Rakibul Islam

Roll No: 1007503

A thesis submitted in partial fulfillment olthe requirements for the degree of

Master of Science in Computer Science & Engineering

Department of Computer Science and Engineering

Khulna University of Engineering & Technology

Khulna 9203, Bangladesh

Ir
March, 2015

T

Declaration

This is to certifS' that the thesis work entitled "Compression Schemes for High

Dimensional Data based on Extendible Multidimensional Arrays" has been carried out by

Md. Rakibul Islam in the Department of Computer Science and Engineering, Khulna

University of Engineering & Technology, Khulna, Bangladesh. The above thesis work or

any part of this work has not been submitted anywhere for the award of any degree or

diploma.

\
iVJ R YZ

Signature of Supervisor Signature of Candidate

Approval

This is to certify that the thesis work submitted by Md. Rakibul Islam entitled

"Compression Schemes for High Dimensional Data based on Extendible Multidimensional

Arrays" has been approved by the board of examiners for the partial fulfillment of the

requirements for the degree of Master of Science in Computer Science & Engineering in

the Department of Computer Science and Engineering, Khulna University of Engineering

& Technology, Khulna, Bangladesh in March, 2015.

BOARD OF EXAMINERS

Dr. K. M. Azharul Hasan Chairman
Professor, Dept. of CSE (Supervisor)
Khulna University of Engineering & Technology, Khulna

Head of the Department Member
Department of Computer Science and Engineering
Khulna University of Engineering & Technology, Khulna

>~~-
S

Dr. Muhammad Sheikh Sadi Member
Professor, Dept. of CSE

Khulna University of Engineering & Technology, Khulna

__
 4

W14, Q1,q, " ,

Dr. Md. Aminul Haque Member
Professor, Dept. of CSE

Khulna University of Engineering & Technology, Khulna

Dr. Md. Anisur Rahman Member
Professor, CSE Discipline (External)
Khulna University, Khulna

lv

Acknowledgment

First of all, obeisance to the almighty, omnipresent Allah for giving me the strength and

capability for writing the thesis. This thesis would not have been achievable without the

instructions, unconstrained support, guidance and the help of numerous individuals. First

and foremost, my utmost gratitude goes to my supervisor, Dr. K. M. Azharul Hasan,

Professor, Department of Computer Science and Engineering, for his continuous

supervision, constructive criticism, valuable advice, instructions and encouragement at all

stages of this thesis. I would like to show my heartiest gratitude to Professor Dr. Rokibul

Alam, Head of the Department of Computer Science and Engineering, and Dr.

Muhammad Sheikh Sadi, Professor, Department of Computer Science and Engineering for

their encouragement and numerous varieties of supports. I also like to remember the

inspiration, supports and encouragement of my family.

Author

V

Abstract

Traditional Multidimensional Array (TMA) is an important data structure for handling

large scale multidimensional dataset, but they are not extendible during run time. Another

problem for representing the real life data by multidimensional arrays is that it creates high

degree of sparsity. Due to this sparsity problem and increasing size of the data structures,

it becomes necessity to develop a suitable scheme to compress the multidimensional array

in an efficient way so that it takes comparatively low memory storage. To minimize both

of these sparsity and reorganization problem novel schemes are proposed to compress high

dimensional data based on dynamically extendible array. In this research work we propose

compression schemes based on Extendible multidimensional array. The proposed

compression schemes are Extendible array based Compressed Row Storage (EaCRS)

scheme, Linearized Extendible array based Compressed Row Storage (LEaCRS) scheme

and Extendible array based Chunk Offset Compression Scheme (EaChOfJ. The main idea

of both the EaCRS and LEaCRS scheme is to compress the subarrays independently found

from the existing extendible array. LEaCRS scheme differs from EaCRS scheme only in

the way that the LEaCRS scheme needs to linearize each subarray first and then

compresses the subarray independently. EaChOJj scheme linearizes each subarray

independently and breaks a large multi dimensional extendible array into chunks for

compressing. In this scheme, a maximum size of each chunk is considered and chunks are

formed by one or more subarrays. We evaluated our proposed schemes by comparing

compression ratio, data retrieval time and extension cost with CR3 on TMA and Chunk-

OJjei Compression on TMA. Both analytical analysis and experimental tests were

conducted. The analytical analysis and experimental results show that the proposed

schemes have better range of usability and compression ratio for practical applications

than traditional schemes. Furthermore, we found that the retrieval time of the proposed

compression schemes are independent of different dimensions. The increment operation

will be efficient in the proposed compression schemes than the existing traditional

compression schemes because it increments without reorganizing the previous data.

-4.

I

Contents

PAGE
Title Page

Declaration ii
Approval iii
Acknowledgment iv
Abstract v
Contents Vi

List of Tables viii
List of Figures ix

CHAPTER I Introduction i
1.1 Introduction

1.2 Problem Statement 2
1.3 Objectives 3
1.4 Scope of the Thesis 4
1.5 Thesis Organization 4

CHAPTER II Literature Review 6

2.1 Introduction 6
2.2 The Multidimensional Array Systems 6

2.2.1 Traditional Multidimensional Array (TMA) 7
2.2.2 Extendible Multidimensional Array (EMA) 7
2.2.3 Extendible Karnaugh Array (EKA) 9
2.2.4 Extended Karnaugh Map Representation (EKMR) 10

2.3 Compression schemes for multidimensional arrays 11
2.3.1 Offset Compression for TMA 11
2.3.2 Chunk-offset compression for TMA 12
2.3.3 CRS/ CCS scheme for Multidimensional Arrays 12
2.3.4 EKA Based Compression (SCEKA) 13
2.3.5 EKMR Based Compression (ECRS or ECCS) 14

2.4 Discussion 16

CHAPTER III Compression Schemes for High Dimensional Data based on 17
EMA

3.1 Introduction 17
3.2 Extendible Aarray Based Compressed Row Storage 17

Scheme (EaCRS

3.2.1 Forward Mapping for EaCRS scheme 20

3.2.2 Backward Mapping for EacRS scheme 21

VI

VII

3.3 Linearized Extendible Array Based Compressed Row
Storage Scheme (LEaCRS
3.3.1 Forward Mapping for LEaCRS scheme
3.3.2 Backward Mapping for LEaCRS scheme

3.4 Extendible Array Based Chunk Offset Compression
Scheme (EaChOff
3.4.1 Forward Mapping for EaChOff scheme
3.4.2 Backward Mapping for EaChOJjscheme

3.5 Theoretical Analysis
3.5.1 Assumptions
3.5.2 Parameters
3.5.3 Cost Model for Compression Ratio
3.5.4 Range of usability Analysis
3.5.5 Extension Cost Analysis

3.6 Conclusion

CHAPTER IV Experimental Analysis
4.1 Experimental Setup
4.2 Experimental Parameters
4.3 Experimental Results

4.3.1 Comparison of Compression Ratio
4.3.2 Extension Cost
4.3.3 Retrieval Cost

4.4 Discussion

CHAPTER V Conclusion
5.1 Concluding Remarks
5.2 Future Recommendations

References

PAGE
22

24
25
25

28
29
31
31
32
33
39
44
53

54
54

54

55

55
57
58
61

62
62
62

64

.7

LIST OF TABLES

Table No. Description Page
3.1 Parameters Considered for theoretical analysis. 32

3.2 Total size of the VL, data, CO, RO and OffsetlnChunk arrays for 39

EaCRE, LEaCRS and EaChoff schemes.

3.3 The range of usability of the TMA based (CRS and ChOff) schemes. 41

3.4 The range of usability of the EMA based (EaCRS, LEaCRS and 44

EaChOff) schemes.

4.1 The values of the parameters considered for experimental analysis. 54

VII!

US

-Y

Ix

LIST OF FIGURES

Figure No. Description Page

2.1 A Three dimensional Extendible Multidimensional Array. 8

2.2 Extension realization of EKA (4). 10

2.3 An Example of EKMR(4). 11

2.4 The CRS/CCS schemes for a two-dimensional sparse TMA. 13

3.1 EaCRS scheme fora three dimensional EMA. 19

3.2 A subarray (SA_1_3) of the given 3-dimensional EMA at Figure 2.1. 20

3.3 LEaCRS scheme for a three dimensional EMA. 23

3.4 EaChOff scheme for a three dimensional EMA. 27

3.5 An Example of forward mapping for EaChOff scheme. 29

3.6 An Example of backward mapping for EaChOff scheme. 30

3.7 A three dimensional extendible array in which each dimension extends 36

in round robin manner and L is 4.

3.8 Extension of a 2-dimensional TMA. 45

3.9 Extension cost analysis for TMA based scheme. 45

3.10 Extension cost analysis for EMA based scheme. 48

4.1 Comparison of compression ratio for CRS, EaCRS, LEaCRS, ChOJf and 56

EaCh Off schemes.

4.2 Extension cost and Extension gain comparison of CRS, EaCRS, 58

LEaCRS, ChOff and EaChOff schemes for n = 5, p = 0.3, = 8,8 =

5 for varying L.

4.3 Retrieval cost analysis for CRS, EaCRS, LEaCRS, ChOff and EaChOff 59

schemes for different known dimensions.

4.4 Comparison of Average retrieval time for CRS, EaCRS, LEaCRS, ChOff 60

and EaChOff schemes for different dimension.

CHAPTER I

Introduction

1.1 Introduction

The process of reducing the size of data in order to save space or transmission time is

termed as data compression. Data compression is widely used in data management to save

storage space and network bandwidth [1]. The main benefit of data compression is that of

increasing the capacity of the storage medium since data compression reduces the storage

,r
requirement for the databases. Compressed information can be transferred from one place

to another in a higher effective transfer rate. This is because compressed data are encoded

using a smaller number of bytes and hence results less time for information transfer. Since

data compression reduces the loading of I/O channels, it becomes feasible to process more

I/O requests per second and hence achieve higher effective channel utilization. Most

importantly, however, is the application of data compression in reducing the cost of data

communication in distributed networks. In some applications, data compression can

reduce the average search cost and thus leads to improvement in system performance. For

example, in some index structures it is possible through compression to pack more keys

into each index block. When the database is searched for a given key value, the key is first

compressed and the search is performed against the compressed keys in the index blocks

[2] which results fewer blocks retrieval. Compression is of two types: data compression

and database compression [3]. In data compression, in order to use compressed data, it is

necessary to restore the information to its uncompressed format. Data compression

techniques (e.g. Arithmetic Coding, Lempel-ZIV, Huffman Coding etc. [4,5,6]) achieve

large compression rates that are very useful for archiving. The compressed data sets are

not directly queriable without prior decompression. But it is desirable to develop

compression techniques so that the data can be accessed in their compressed form and

operations can be performed directly on the compressed data. Such techniques are called

database compression techniques and usually provide two mapping [7]. One is forward

mapping. It computes the location in the compressed data set given a position in the

original data set. The other one is backward mapping. It computes the position in the

original data set given a location in the compressed data set. A compression method is

mapping-complete if it provides both forward mapping and backward mapping. In this

research work we are going to propose database compression schemes fbr handling

multidimensional data sets having the facility of dynamic extendibility during runtime.

The idea is based on multidimensional extendible arrays.

Arrays are among the best-understood and most widely used data structures. Few classes

of data structures are as well understood or as widely used as arrays. Large

multidimensional arrays are quite often used as the basic data structure in scientific,

statistical and engineering applications for modeling and analyzing scientific phenomena

[8,9] such as climate modeling [10], molecular dynamics [11], finite-element methods [12]

etc. Different statistical computations can be performed professionally on

multidimensional arrays due to its fast random accessing capability [6,13,14]. But this

capability depends on the fact that the size of each dimension should be fixed so that a

simple addressing function can be used to access an arbitrary element of the array.

However, in real Multidimensional Online Analytical Processing (MOLAP) [15,16]

applications data size grows incrementally. When a new data value is added, size

extension along the corresponding dimension is necessary. Except the extension along last

dimension this drawback implies reorganization of the entire array. This extendibility

problem of conventional array system can be solved using extendible array model. An

extendible array can be extended in any dimension without any repositioning of previously

stored data [17,18]. Such advantage makes it possible for an extendible array to be applied

into wide application area where required array size cannot be predicted before and I or

can vary dynamically during operating time of the system.

1.2 Problem Statement

Traditional Multidimensional Array (TMA) [19,20,21] is a good storage for storing

multidimensional data but one serious drawback is that they are not dynamically

extendible. To insert a new column value in the TMA the total reorganization of the array

is necessary. The idea of extendible array solves the problem of extendibility. Extendible

arrays, in fact, are combination of subarrays. If the array is ii dimensional then the

subarrays are n-I dimensional.

3

Multidimensional arrays are good to store dense data, but most datasets are sparse which

wastes huge memory because a large number of array cells are empty and thus are very

hard to use in actual implementation [22]. In particular, the sparsity problem increases

when the number of dimensions increases. This is because the number of all possible

combinations of dimension values exponentially increases, whereas the number of actual

data values would not increase at such a rate. For Example in an international trade data

set there are several dimensions such as importing country, exporting country, date-time,

items, measure amount of items etc. But generally a small number of items are exported

from any given country to other countries. Many of the compression schemes based on

TMA such as Compressed Row/Column Storage (CRS/CCS) 114,23] or Chunk-offset

Compression [22,24] already exist. CRS is commonly used due to its simplicity and purity

with a weak dependence relationship between array elements in a sparse array. But this

scheme is based on the TMA. Chunk-Offset compression scheme is also well studied in

the literature for multidimensional data analysis. But once again it is based on TMA. One

main problem of TMA based compressions schemes are that it is static in nature. This is

because, if there is any extension in each dimension in TMA based compression schemes,

we need to restore compressed data to its original format and perform the desired

extension for the new added data sets. Then the reorganized TMA is compressed by using

some compression schemes. So, efficient compression schemes are required to store such

sparse data for multidimensional data sets [13,25,26] without any reorganization and

relocation. In this thesis, we are going to propose and evaluate a new and efficient

compression schemes based on extendible multidimensional array (EMA) [27,28,29] to

manage the problem of extendibility without reorganization of data and apply a suitable

compression scheme on the EMA to have good compression ratio.

1.3 Objectives

Various scientific applications use multidimensional array as a basic data structure to

represent high dimensional data. This is because multidimensional array has an inherent

facility to compute aggregation operation [30]. Extendibility is an important requirement

of those applications since data grows over time. 1-lence, an array model or realization

scheme which can be extended over time is strong requirement of current era. Again

because of sparsity most datasets are very hard to use in actual implementation.

4

Therefore main objective of this research topic can be summarized as follows

• To develop compression schemes for High Dimensional Data based on EMA,

which will impose less space and the maximum range of usable data density, will be

advanced for practical applications.

• To analyze the increment operation (which is known as extension operation) along

with the basic operations on proposed compression schemes, with respect to the

existing traditional compression schemes.

• To devise both forward mapping and backward mapping techniques for the

proposed scheme i.e. perform efficient and random searching in compressed array

for a given logical position of the original array; and also provide an efficient

mapping from arbitrary positions in the compressed data back to the corresponding

logical position in the original array.

• To analyze the performance and usability of the proposed compression schemes on

sparse array.

1.4 Scope of the Thesis

This thesis deals with array system and compression schemes and proposes new and

efficient database compression scheme for high dimensional data based on EMA. Other

important scopes under this thesis are:

• Compresses the EMA by applying compression scheme on each subarray of the

extendible array independently.

• Compares the new schemes with the existing schemes in terms of space

requ irement/compress ion ratio (ii), range of usability, extension cost and retrieval

cost.

• Store the elements in the secondary storage to set the actual q.

Range key query are evaluated for the retrieval cost analysis.

1.5 Thesis Organization

• Chapter I describes the problems of TMA as well as of existing compression

schemes. Objectives and scopes of the thesis are also outlined in this chapter.

Y

5

• Chapter II presents an overview of array systems and different types of

compression schemes.

• Chapter III provides the detailed discussion about the compression schemes for

high dimensional data based on extendible array. Forward mapping and backward

mapping techniques of the proposed schemes are explained with examples in this

chapter. This chapter also describes theoretical analysis along with the cost models

for existing schemes as well as proposed schemes.

• Chapter IV shows the experimental setup, experimental results and detail analysis

of the result. Hence we validate the cost models of the proposed schemes.

• Chapter V outlines the concluding remarks and direction of future research work.

A

6

CHAPTER II

LI

Literature Review

2.1 Introduction

Large multidimensional arrays are widely used as the basic data structure in scientific,

statistical and engineering applications. Multidimensional databases such as MOLAP

databases [31,32) frequently make use of multidimensional array for handling large scale

multidimensional data. In MOLAP applications, compression is important because

database performance of MOLAP database strongly depends on the amount of available

memory [13,22]. The solid demand of those applications leads novel researches on

organization or implementation schemes for multidimensional arrays on secondary storage

and different compression schemes for this multidimensional array. Multidimensional

arrays are becoming the most popular data structure because of an inherent facility of

random accessing. But capability demands the length, and number of dimension to be

fixed - which leads problem of dynamic extension. There are many data structures already

exist to represent multidimensional data. Some of them are static in nature and some are

dynamic - i.e. resizable without reorganizing the already allocated data. Some of the well-

known and prominent data structures are discussed in this section.

2.2 The Multidimensional Array Systems

An Array A[d1 ,d2,. . .,d] is an association between n-tuples of integer indices

(11, 12, ..., 1) and the elements of a set of E such that, to each n-tuples given by the ranges

0 :!~' 1 <d1 , 0 :!~ 12 <d2 ,..., 0 :!~l <c/,, there corresponds an element of E. The domain from

which the elements are chosen is immaterial and we make the assumption that only one

memory location need to be assigned to each n-tuples. Each array may be visualized as the

lattice points in a rectangular region of n-space. The set of continuous memory locations

into which the array maps is denoted by A[0:D] where D = (fl c1) - 1. Let Ad1,

d, 1, d,,) be ann dimensional array with length of each dimension d1,d2.....d,,.

7

2.2.1 Traditional Multidimensional Array (TMA)

Traditional Multidimensional Array (TMA) [16,22,33] is a representation scheme for

multidimensional data which represent n dimensional data by n dimensional array. The

TMA represent n dimensional data by an array cell in an n dimensional array. The key to

the structure of arrays resides in the familiar coordinate system, which pictures an n-

dimensional array as being imbedded in the positive orthant of n-dimensional space, with

array positions lay on the lattice points.

The fast random accessing capability that is characteristic to multidimensional arrays

enables various statistical computations including aggregation to be performed efficiently

on stored fact data. This capability is owing to that the size of each dimension of a

multidimensional array is fixed so a simple addressing function can be used to address an

arbitrary element of the array. An element (i,, 1,7.1....., ij) in ail /1 dimensional TMA of

size fd,,, d,71....., djJ is allocated on memory using an addressing function like equation

2.1 (see section 2.3.1). Although Storage by linearization allows extension without any

movement of existing elements only in one of the dimensions, TMA suffers from the

reorganization problem; when a new data value is added only in third dimension of a

TMA(3), we can readily extend the 3D TMA in third dimension but array size extension

along other dimensions necessitates reorganization of the entire array elements.

2.2.2 Extendible Multidimensional Array (EMA)

The idea of extendible multidimensional array is described in [18,32,34]. An n

dimensional extendible array A can be extended in any dimension only by the cost of three

kinds of auxiliary tables namely history table i-I,, address table L1, and coefficient table C,

for each extendible dimension i (i=i,...,n,). See Figure 2.1. History tables and address

tables are one dimensional array. History tables memorize extension history. An n

dimensional extendible array A is the combination of n-I dimensional subarrays. If the

size of A is fd1, d2,..., d.1, d,] and the extended dimension is i, for an extension of A along

dimension i, contiguous memory area that frms an n-i dimensional subarray S of size

fd1 d2 d 1, ci 1 ,..., d.1, d,] is dynamically allocated and added to A in dimension i.

Then the history value counter h is incremented by one and the value is memorized in the

history table H,, also the first address of S is held on the address table L. Note that S is a

usual fixed size array, and the actual data is stored in these subarrays.

8

As is well known, an element <i1,i2,...,i> in an n dimensional conventional fixed size

array of size fd j,d2,..., d,j is allocated on memory using an addressing function like

equation 2.1 (see section 2.3.1) and coefficient vector (defined in section 2.3.1) <d2d3 ... d,,,

d3d4...d,,......., d,1 > is held in a coefficient table. For example, let A be a four dimensional

extendible array whose Current sizes are Id1, d2, d3, d.,J. If A is extended by one along the

dimension two, a three dimensional fixed array S of sizes fd,, 13, d4J is allocated. The

elements of S's are arranged according to the well known column wise or row wise order.

The addressing function to determine the address of the element <ij. i2, i3> is as: d1d3i1 +

d312 + i3

@H istory Table Dimension31/
®Address Table

Coef1icicnt Vector

H2

U UI 0
0111836

221 123 1 937
5 12 2 212131438
7 27 3 327282939
9 48 4 48 49 50 51 4

000 0123

0 1 4 8 n

© 0 1 8 36 L1

© 1 1 1 2 4 C

Dinension I

Figure 2.1: A Three dimensional Extendible Multidimensional Array.

Here <d1d3, d3 > is called a coefficient vector. At every extension of A, the corresponding

subarray's coefficient vector is computed and memorized in coefficient icible of the

extended dimension. In general, if A is an n dimensional extendible array where n is

greater than two, an n-2 dimensional coefficient vectors are required for each extendible

dimension.

Using these three kinds of auxiliary tables, the address of an array element can be

computed as follows. Consider the element <3,3,0> in Figure 2.4. Compare J-I1[3] = 8,
A

H2[3] = 7 and H3[0] = 0. Since H1 f3J > H2[3], H1 J > H3[0], it can be proved that the

element <3,3,0> is involved in the extended subarray S having history value 8 and

beginning address of the corresponding subarray is 36 which is stored in Ljf3J. From the

coefficient vector of Cjf3J = < 4 >, the offset of element <3,3,0> from the first address of

S is computed by 4 x 0 + 3 = 3, the address of the element is determined as 39 (See Figure

2.1).

From the above element accessing procedure it can be seen that, the cost to compare n

history values is necessary to know the maximum history value therefore to know the

extended dimension of the element containing subarray. After knowing the maximum, the

offset computation is performed using the addressing function of the corresponding n-I
>

dimensional fixed size subarray. But, the number of multiplication and addition operations

to be performed is less than that of an n dimensional fixed size array [35]. The superiority

of the extendible arrays in element accessing speed and memory utilization is shown in

[18].

2.2.3 Extendible Karnaugh Array (EKA)

The idea of EKA [35,36,37] is based on Karnaugh Map (K-map) [38,49]. A Karnaugh

representation of Extendible Array (EKA) has a history counter and three auxiliary tables,

history table, address table and coefficient table. The history table stores the extension

history and the address table stores the first address of the extended subarray. The EKA

can be extended along any dimension dynamically during runtime only by the cost of

these three auxiliary tables. Figure 2.2 shows the details of the EKA scheme for a 4-

dimensional array of size A[sL,s2, S3, 541. It also displays how the different auxiliary tables

are maintained during the extension along a particular dimension. Figure 2.2(a) shows the

initial setup with history counter 0 stored in history tables, address tables point to the first

address of the physical array, and coefficients tables entry is I, since length of each

dimension is 1. During extension along d1 or (13 the segment size is s2 xs4, so s2 is chosen as

coefficient vector. Similarly, s3 is used as coefficient vector for extension along d3 or d4.

Figure 2.2(b) shows the extension along d2 dimension, the incremented history value 1 is

stored in history table of dimension 2. Since S3 is 1, C2 stores this value and address table

points to the first address which is 1. Figure 2.2(c) shows the extension of d1 dimension

1€

considering that Figure 2.2(b) is already extended once in d3, and d4 dimension. As it is

already extended in d3, and d4 dimension, the history value reaches to 3, now for extending

in d1 the value becomes 4 which is stored in 1-I1 . Coefficient table entry is 2 because of the

s2 is 2. If the length of dimension and number of dimension of a multidimensional array is

large then the address space for the TMA and EMA overflows quickly. EKA has the

property of dynamic extension during run time and significantly delays the occurrence of

address space overflow.

>.

ri

0

loll 10 1 0 I1ololli[o]

Ad4 0
d1 C 4 I d3

Hd4 0 d4
10

9c,,
A.

01

loll 101 oLIIio loll 1101

l°l'l

0101

loll I[_I0 10111141610
8
7

1112 13 1 14 1 15 11 0
 1 g

l°l{1
hI 27

01 1
(a) lukial setup (b) Extension along d2 dimension (c) Extension along d dimension

Figure 2.2: Extension realization of EKA (4).

2.2.4 Extended Karnaugh Map Representation (EKMR)

A basic array representation scheme named Extended Karnaugh Map Representation

(EKMR) is proposed in [9,40,4 1]. In this scheme, an n-dimensional array is represented by

a set of 2 dimensional arrays. The idea of the EKMR scheme is based on the Karnaugh

map (K-map). For n= 1 and 2, the TMA and EKMR Schemes are same. Let A[l][k][ij]

denote a TMA for n=4 with a size of 2x3x4x5. The corresponding EKMR system i.e,

EKMR(4) of array A[2][3][4][5] is shown in Figure 2.3(b). Consider a 4 input K-map and

its corresponding EKMR(4) in Figure 2.3. The analogy between the EKMR(3) and the 3-

input Karnaugh map is that the index variables i, j, k and I correspond to the variables W,

X, Y, and Z, respectively. The EKMR(4) is represented by a two-dimensional array with

the size of (2 x 4)x(3 x 5). In the EKMR(4), index variable i' is used to indicate the row

direction and the index variablej' is used to indicate the column direction. The index i' is a

combination of the index variables I and i, whereas the index j' is a combination of the

WXJYZ 00 01 11 10

00

01

10

II

nilN iloun —nil nun.
i= 0

1'
2

3

>,

I

index variables j and k. Placement of elements along the direction indexed by k and I

makes the fundamental difference between TMA(4) and EKMR(4).

I,
j0 1 2 3 4

1= 0

0

0

0

k=01201 2012012012

(a) (b)

Figure 2.3: An Example of EKMR(4).

The EKMR(n) can be obtained in the similar way. Based on the EKMR(4), the EKMR(n)

for n dimensional array is represented by clxd,1j x... X d, 5 EKMR(4) and a one-

dimensional array X that links all the EKMR(4) where d1 (5 :5 I 5 a) is the length of the

corresponding dimension.

2.3 Compression schemes for multidimensional arrays

Multidimensional array are the basic data structure used in many applications such as

MOLAP. But in many cases, they are found to be sparse in nature - i.e. many of the array

cells contain null values and consume unnecessary space. Some common compression

methods are reviewed here.

2.3.1 Offset Compression for TMA

The n-dimensional TMA can be mapped into a single linearized array by an array

linearization function. The array linearization Jirnction for the multidimensional array, A

is

F(pj,p2, ..., p,) = d1d2 ... d,11p,, + d1d2d3 ... d,7.2p,, 1 + + C11P2 ± P/ (2.1)

The logical position (i.e. offset value) is calculated for the records using the above forward

mapping function F and stored on a data structure along with the measure value (if exists).

The coefficients of the addressing function namely (d1d2...dd1d2...d,,_,,...,d1) is

12

referred to as coefficient vector and stored during the construction time. 1-lence the

addressing function can be computed very fast at the element access time. The reverse

array linearization function of the multidimensional array of A(d,, d,.....dj,d) for

backward mapping is defined as follows:

R-F(Y)(q,,q2.....q,,) (2.2)

Where q = Y mod d,,

qj = [... [Y/d,J ...]/d,,1] ,nodd, for 2 :!~ i :5 n - 1

qi=[[...[[Y/d,1]/d,,1] ...]/d3J/d2J

The backward mapping algorithm R-F is used to determine the coordinates of the

corresponding multidimensional array.

2.3.2 Chunk-offset compression for TMA

In Chunk-offset compression scheme [22,24] the large multidimensional arrays are broken

into chunks for storage and processing. Consider an n-dimensional array A, whose

dimensionality is d1xd2x . . . x ci,,. The chunks can be formed by breaking each cli into

several ranges. Within A, two positions are in the same chunk if and only if, in every

dimension, they fall within the same range. In memory or disk, values within a chunk are

stored consecutively. Elements in a chunk are arranged according to the pre-specified

order of dimensions.

In this compression scheme, the pairs of (OJftetlnChunk, data Value) is physically stored

in secondary storage only for nonempty elements in a chunk. This set of pairs is sorted in

the order of the offset values. Note that the chunks which have no nonempty elements are

not physically allocated in the secondary storage. The offset inside the chunk

(OffsetlnChunk) can be computed using the multidimensional array linearization function

described in section 2.3.1. The reverse array linearization function (see equation 2.2) is

used for backward mapping to get the original coordinates of the array.

2.3.3 CRSI CCS scheme for Multidimensional Arrays

The CRS/CCS schemes [14,23,42] compress all the nonzero elements along the

rows/columns of the multidimensional sparse array by using one one-dimensional floating

point array VL and two one-dimensional integer arrays RO and CO. The base of these

01234

RO()LlI 467 ri
I N

HUM

FJDAflINU

012345

ROW
1 3 5 7T

' j2
1

//\\
flEiflhiflilul
aiuirnirn

COCJ?s CO((
VLCCS

012 1 4

>- 0

2

3

MUMMU

unman

manna

13

arrays is 0. Array VL stores the values of nonzero array elements. Array RO stores

information of nonzero array elements of each row (columns for CCS). If the number of

rows is k for the array then RO contains k+ I elements. RO[0] contains 1. RO[1] contains

the summation of the number non zero elements in row 0 of the array and R[0]. In general,

RO[i] contains the number of nonzero elements in (i-l)th row [(j-l)th column for CCS] of

the array plus the contents of RO[i-l]. The number of non zero array elements in the ith

row (jth column for CCS) can be obtained by subtracting the value of RO[i] from

RO[H-l]. Array CO stores the column (rows for CCS) indices of nonzero array elements of

each row (columns for CCS). Figure 2.4 shows an example of the CRS and CCS schemes

for a two dimensional array.

(a) A sparse array (b) The CRS Scheme (c) The CCS Scheme

Figure 2.4: The CRS/CCS schemes for a two-dimensional sparse TMA.

Figure 2.4(a) shows a 4x5 two-dimensional sparse array. Figure 2.4(b) and Figure 2.4(c)

show the corresponding CRS and CCS schemes, respectively. In Figure 2.4(b), the number

of nonzero elements of row I can be found by ROcp[2]-RO(' I [1] = 2. The column

indices of the nonzero array elements of row I are stored in COcRs[ROcJ[i]-1J and

COcfROcps [i]J i.e COcps13J and COcpsl4J, since there are 2 nonzero array elements

exist in row 1. Finally the values of the nonzero array elements of row I can be found in

VLcpsf3J, and VLcps[4]. For n-dimensional sparse array based on TMA, (n-i) numbers

one dimensional integer arrays CO are needed.

2.3.4 EKA Based Compression (SCEKA)

A compression technique is proposed based on the EKA in [35.36,37] namely Segment

based Compression scheme for Extended Karnaugh Array (SCEKA). The main idea of the

scheme is to compress each of the segments of the EKA using the position information

only. To compress the EKA, the SCEKA stores only the position information of the each

segment of the array i.e. the construction history, the segment number and the offset inside

14

the array. The data stored in the SCEKA scheme can be accessed in compressed form and

at the same time it can grow and shrink in length or number of dimensions at run time.

SCEKA stores the tuple (hisioiy value, segment number, offset) for array cell mapping

and the data is stored as well. The history value is unique and can uniquely determine the

subarray. The segment number inside the subarray is also unique and can also be

determined uniquely. The offset value inside the segment is also unique and can be

determined by the addressing function. Hence the tuple (histoiy value, segment number,

offset) can uniquely map an array cell of the EKA.

2.3.5 EKMR Based Compression (ECRS or ECCS)

The scheme is similar to CRS/ CCS scheme for Multidimensional Arrays [14,23,42] but

the structure used is EKMR. The ECRS (or ECCS) scheme compresses all the nonzero

array elements along rows (columns for ECCS). Array V stores the values of nonzero

array elements. Array R stores information of nonzero array elements of each row. R[i]

contains the number of nonzero elements in (i-l)th row of the array plus the contents of

RO[i-1] and the contents of R[O] is I. The number of non zero array elements in the ith

row can be obtained by subtracting the value of R[i] from R[i+l]. Array CK stores the

column (rows for ECCS) indices of nonzero array elements of each row (columns for

ECCS).

Some other important compression schemes that can be applied to higher dimensional data

are summerized as follows:

The header compression method [43,44] is used to suppress sequences of missing data

codes, called constants, in linearized arrays by counts. This method makes use of a header

that is a vector of counts. The odd-positioned counts are for the unsuppressecl sequences,

and the even positioned counts are for suppressed sequences. Each count contains the

cumulative number of values of one type at the point at which a series of that type

switches to a series of the other. The counts reflect accumulation from the beginning of the

linearized array to the switch points. In addition to the header file, the output of the

compression method consists of a file of compressed data items. called the physical Jile.

The original linearized array, which is not stored, is called the logical file.

In the following example, L represents the uncompressed form of a database, where 0's

are the constant to be suppressed and the V's are the unsuppressed values. H represents the

header database/file which contains the number of data or constants where odd position

represents the data and even position represents constants.

The BAP compression [43,45] method consists of three parts: Bit Vector(BV), Address

Vector(AV), Physical Vector(PV) and therefore called BAP compression method.

Let DB={xi,x2,...,x) be a logical database and c be the constants. The physical vector PV

is the vector of non-constants in DB, that is, PV=(y1 ,y2,...,y1) where y j are in DB and yOc.

The y j are arranged according to their logical order in DB. No compression algorithm is

applied on PV because it stores only non-constants values. The Bit Vector BV indicates

the locations of constants and non-constants in the database. The bit vector is

BV=(b1 ,b2,. . .,b1) where b=l if x ~c and b1=O if x1 =c for I —< i N. where BV consists of N

bits. The Address Vector AV is typically small and is used as an index for searching the

database. It is stored in main memory rather than secondary storage. In addition to

efficient compression fast forward and backward mapping between logical and physical

databases is also important. To do this, BV is divided into subvectors of D bits each. The

subvectors are compressed independently. This division of BV into subvectors makes the

Address Vector AV sufficiently small to store it in main memory. BV can be compressed

by run-length encoding method (also discussed in this chapter). The division of BV into

subvectors imposes a division of the database DB into d[N/Dl sections, each consisting

of D elements. The address vector is defined as: AV(ai,a2,a3,.
. ad); Where a1 =O and for

I? 2, ai is the relative position in PV of the last non-constant element in the (i- l)th section

of DB if such a non-constant exists, otherwise we set a1 a1 -1.

A bitmap compression [43,45] scheme consists of a bitmap and a physical database which

stores the non-constant values of a linearized array. The bitmap is employed to indicate the

presence or absence of non-constant data. The access time for both forward and backward

mapping for the bitmap scheme is 0(N), where N is the number of bits in the bitmap, or

equivalently the number of elements in the database.

The history offset compression [17,46] scheine is based on extendible array. In this

technique, an element is specified using the pair of history value and offset value of the

extendible array. Since a history value is unique in extendible array and has one to one

correspondence with the corresponding subarray, the subarray including the specified

element of an extendible array can be referred to uniquely by its corresponding history

FI1

value h. Moreover, the offset value (i.e., logical location) of the clement in the subarray

can be computed by using the addressing function and this is also unique in the subarray.

Therefore, each element of an n-dimensional extendible array can be referenced by

specifying the pair (history value, offset value). Like Chunk-offset compression, the

extended sparse subarray elements are stored in memory in sorted fashion.

2.4 Discussion

All the array systems described in this chapter have both merits and limitations. Since

TMA and EKMR have pre-specified length and dimension, they are good for random

accessing. But they suffer in case of dynamic extension; when a new data value is added,

array size extension along the corresponding dimension is necessary and this implies

reorganization of the entire array elements. EMA and Flexible resizable array [47] are

good for dynamic extension. EMA provides extension only from the surrounding of the

array where as Flexible array allows even in the middle of the array. Classical

compression schemes have some limitations in compressing data. Like Bitmap and Header

compression provide good performance in terms of removing long runs of constants, but

they have a poor forward and backward mapping capability. Also, these methods can't be

used on dynamic database environment where additions and deletions may be required.

The scheme Compressed Row Storage (c'RS) or Chunk Offset compression are effective

for compressing large sparse arrays. But still they cannot be applied on extendible

databases. So, it is important to design a compression technique that will be better than

these classical compression techniques. The scheme should be efficient enough so that

operation can be done over the compressed data. Though, there are a lot of research has

been done on compression techniques, but only a few researches have been made on

dynamic array organization. Hence we propose new compression techniques based on

dynamic array model which will outperform over TMA. The details of the proposed

schemes are presented in the next chapter.

17

CHAVI'ER III

Compression Schemes for High Dimensional Data based on

Extendible Multidimensional Array

3.1 Introduction

In this chapter, novel methodologies have been proposed to COIfl1)CSS high dimensional

data based on EMA. In these methods, the basic idea is to apply compression scheme on

each subarray of the extendible array independently. Analytical analysis of the proposed

schemes is also presented in this chapter. The details of the approaches are discussed in

the following sections.

3.2 Extendible Aarray Based Compressed Row Storage Scheme (EaCRS

Given a three dimensional EMA. The Extendible Array Based Compressed Row Storage

(EaCRS) scheme compresses each subarray independently. This scheme use one one-

dimensional floating point array VL and two one dimensional integer array RO and CO for

each subarray of the extendible array as the subarrays are two dimensional (since for an n

dimensional EMA, subarrays are n-i dimensional as described in section 2.2.2) for the

three dimensional EMA. This scheme compresses all of the nonzero array elements along

the rows of the multidimensional subarays. Array RO stores information of nonzero array

elements of each row. The dimension with the current minimum length (except the

dimension being extended) at the time of extension is considered as the row dimension. If

the number of rows is kin a subarray then RO contains k+I elements. RO[O] contains I,

RO[J] contains the summation of the number non zero elements in row 0 of the subarray

and RO[O]. in general, ROfij contains the number of nonzero elements in ('i-l)th row of

the array plus the contents of RO[i-1]. The number of non zero array elements in the ith

row can be obtained by subtracting the value of ROfij from RO[i± 1]. Array CO stores the

column indices of nonzero array elements of each row. Array VL stores the values of

nonzero array elements. For each subarray, the base of these three arrays is 0.

18

In the EaCRS scheme, for an n dimensional EMA, among the three kinds of auxiliary

tables (history table, address table, coefficient table) only the history table H1 is required

to store for each dimension. History tables are used to compute the extension dimension of

the subarray and the length of other dimension to compute the row dimension and number

of row of that subarray. An example of the EaCRS scheme for a three dimensional EMA

of Figure 2.3 is shown in Figure 3.1. For convenience here we name each subarray as

SAiJ, where i indicates the extended dimension that the subarray belongs to and j
indicates the length of that dimension. For example, SAJO, SAIl......SA_i L, are

the subarrays of dimension I, SA_2_1, SA_2_2....., SA_2_L2 are the subarrays of

dimension 2 and so on.

Physical Arrays

Logical Arrays

0 1 2 3

p148

SA_1_0 SA1_1 SA_1_2 SA_13
-4D2 1 -+D2 01 2 3D2

4'O;i 0-5 6- 0.0012 0 :
- 4................................

o 1 0 1 D3 1 :00: D3 1 :13 141516 -

Rol_1 1 ROJ 1 2 0 1 2 2: 0

ROl 1

CO 0

VLE
Col o 1 1

VL 5 6

I!"

(a) Subarrays of dimension I using EaCRS scheme.

I

RO[l
E

.,

Co
MMMMMM

MMMMMW

SA 2 3

0 1 2+Di

0 0 0 0

0 0 0

2 0 . 0 0

Ro[i

SA_2_1 SA_2_2
o 1 -$D, , 0 1 2 -+D,

03
0 2

'.
4-o: 0 0 7

0 8

: RoLl 11 1

:

 :
o ROIl 24

CO 1

VL 2
C0 1 2

0 1 2

1 2

vL r l
8 9

SA 2 4

0 1 2 3 -+01
4,0 0 0

•
 0

•
0 .

03 1 0 0 0 0

2 0 18 10 20

RO I I 1 1 1 1 4

0 1 2

CO 1 2

VL 18 19 20

0 1 2 3 4

H2

1

Subarrays of di mens ion 2 using EaC'RS scheme.

 2 7:

SA_3_1
o 1 -4D1 0 1 2—+D1

4.0 0 0 0:0 0 0
D2

1

. 4. 3 .. : 1 0 10 0

2 .

Ro[
. 11 .

0 1 RO I 1 2

CO o 1 0 1

VL[4 CO 1 1

VL 10 11

Subarrays of dimension 3 using EacRS scheme.

Figure 3. 1: EaCRS scheme for a three dimensional EMA.

Consider a subarray SA_1_3 of Figure 2.1. This subarray is extended along dimension 1

and the subarray is shown in Figure 3.2(a). Here 36, 37, 38.....47 indicates the logical

position of each of the subarray elements in the given three dimensional EMA. For

explaining the sparseness here we assign each subarray elements to some zero and nonzero

values (e.g. logical position 36 is assigned to 0, 37 is assigned to 13, 38 is assigned to 0

and so on.). Since SA_1_3 is extended along dimension l(see Figure 2.1), the other two

D2 2

3

36 37 38

39 40 41

42 43 44

45 46 47

0 1 2-4D3

20

dimensions (dimension 2 and dimension 3) are considered as the row dimension and

column dimension. For SA13, the length of dimension 3 is less than that of the

dimension 2. This is because dimension 3 is considered as the row dimension and

dimension 2 is considered as the column dimension in this EaCRS scheme (see Figure

3.2(b)).

Row Dimension

0 1 2—+D3
0 0 I 13 I H

0 14 0
I _4 Column Dimension

D22 [12 15 I
3 [0 16 17

(a) Subarray SA_1_3 showing the logical (b) Subarray SA_1_3 showing the sparseness

position of each of the subarray elements and the considered row dimension and

in a given three dimensional EMA. column dimension for the EaCRS scheme.

Figure 3.2: A subarray (SA_1_3) of the given 3-dimensional EMA at Figure 2.1.

In the subarray SA3, there are 3 rows and row 0 contains one nonzero value, 12 (see

Figure 3.1(b)). This is because RO[l] contains 2 (see Figure 3.1(a)) i.e. RO[l] = ROfOJ ±

total no. of nonzero array elements in row 0. Similarly, RO[2] = 6 (row 1 contains four

nonzero values), ROf3J = 7 (row 2 contains one nonzero value) and so on. VL array stores

all the nonzero array elements (12, 13, 14, 15, 16) of this subarray and CO stores the
4

corresponding column indices of these nonzero array elements.

Logical database and physical database refer to the uncompressed and compressed

database respectively. Forward mapping and backward mapping techniques for the Ea'RS

scheme are described as follows:

3.2.1 Forward Mapping for EaC'RS scheme

Consider the element <3,3,1> of the EMA. Compare H1 f3J = 8, 112 f3J = 7 and J-I3[1] = 3.

Since H113J > H2[3] and H1[3] > I-I3 f1J, extended dimension is 1 and the element is

involved in the subarray SA_1 — The dimension with the minimum length at the time of

subarray SA13 's extension is considered as the row dimension for the subarray SA_1_3.
'I

Since II2f3J < H1[3] < H[4] and H1[3] > 113 f2J, it can be said that the subarray's

21

(SA_I3) size is 4x3, dimension 3 is the row dimension and the number of row is 3. Since

subarrays are two dimensional, in this case dimension 2 is the only column of the subarray

SA_1_3. In Figure 3.1(a), the number of nonzero elements of row I can be found by

RO[2] - RO[1] = 6 —2 = 4. The column indices of the nonzero array elements of row 1

are stored in CO[RO[i] - I], COfRO[1]J, CO[RO[1] + 1] and CO[RO[I] + 2] i.e.

CO[I], C0121, CO[3] and COI4J, since there are 4 nonzero array elements exist in row 1.

Finally the values of the nonzero array elements of row I can be found in VL[l], VL[2],

VL[3] and VL[4].

3.2.2 Backward Mapping for EaC'RS scheme

Consider the physical position <9,4,3> of the physical database; where <9> is the history

value, <4> is the value that RO stores and <3> is the column index of a nonzero array

element i.e. <3> is the value that CO stores. We perform the binary search on the history

tables to find the given history value <9>. Since <9> is stored in H2 f4J (see Figure

3.1(b)), we need to access only the CO and RO arrays that are stored for the subarray

SA24 (i.e. subarray extended at dimension 2 at length 4). Therefore the second co-

ordinate value of the desired logical position is <4> in logical database and the other two

dimensions (dimension 1 and 3) are considered as the row dimension and column

dimension. As we described above the dimension with the minimum length at the time of

subarray (SA_2 4) 's extension is considered as the row dimension for the subarray

SA_2_4. Since H2[4] > I-11 f3J and 1-12141 > 113[2], subarray's (SA24) size is 4x3.

Dimension 3 is the row dimension because H3 f2J < 1-11[3] and the number of row is 3.

Since subarrays are two dimensional, in this case dimension I is the only column

dimension of the subarray SA_2_4 and the first co-ordinate value of the desired logical

position is <3> in logical database. As there are 3 rows in the subarray and <> is stored

in RO[3] (see Figure 3.1(b)), it can be said that column index <3> is stored for the

nonzero elements of 3' row of SA24 i.e. the third co-ordinate value of the desired

logical position is <2> in logical database. Hence the physical position <9,4,3> of

physical database is mapped to a logical position <3,4,2> in logical database.

As described above EaC'RS scheme has the ability to perform both forward mapping and

backward mapping and so EaCRS scheme is mapping complete.

22

Based on the ECtGRS scheme, an extendible multidimensional array of dimension four can

be compressed by adding one more one-dimensional integer array KO. In the EaCRS
scheme array KO stores the third dimension indices of nonzero array elements of each

row. For higher dimensions more one-dimensional integer arrays are needed.

3.3 Linearized Extendible Array Based Compressed Row Storage Scheme (LEaC'RS)

Given a 3-dimensional EMA. The Linearized Extendible Array Based Compressed Row

Storage (LEaCRS scheme compress each subarray independently. This scheme use one

one-dimensional floating point array VL and two one dimensional integer array RO and

CO for each subarray of the extendible array. This scheme linearize (see section 2.3.1)

each subarray independently and then compresses all the nonzero array elements along the

only row of each subaray. Array RO stores information of nonzero array elements of each

subarray. After linearization, as the number of row is I in a subarray. then RO contains 2

elements. RO[O] contains 1, RO[1] contains the summation of' the number non zero

elements in the subarray and RO[O]. The number of non zero array elements in each

subarray can be obtained by subtracting the value of RO[O] from RO[l]. Array CO stores

the column indices of nonzero array elements of each subarray. Array VL stores the values

of nonzero array elements. For each subarray, the base of these three arrays is 0.

In the LEaC'RS scheme, for an n dimensional EMA, among the three kinds of auxiliary

tables (histoiy table, address table, coefJIcient table) only the his/wy table H, is required

to store for each dimension. History tables are used to compute the extension dimension of

the subarray and the length of other dimension to carry out the linearization computation

for that subarray. An example of the LEaCRS scheme for a three dimensional EMA of

Figure 2.1 is shown in Figure 3.3. For convenience here we name each subarray as SA_IJ,

where i indicates the extended dimension that the subarray belongs to and j indicates the

length of that dimension. For example, SAI2 is the subarray of dimension 1 at length 2.

Similarly SA21, SA22...... SA2L are the subarrays of dimension 2 and so on.

23

SA_1_0 SA_5_1 SA_1..2 Am> indc, SA_1_3
...9..::+o, -)D, 1 ... 0 I .3 +01

0 + 0 10 I 0! 00 60 \ 0 0 0 78 0
0, D, p3..

.110 0 4.0 0 0 2 0 0 0 29

0 4. ° 0 0 I 2

00 010 01 3 00 I 2 IpOsI

0 1 2 0 2 3 Yl 4 5 ii

RO1i[/''Ii1
0:0360 0 0 28 9!1Oi1_.... RO

...3. 4.... .
L,ncI1cd CO RO 0:

Lrnc.:,:.ed—'
7 . 0 ! 3760 r : fo. 0 . 0

Srrbamy
Sob>>, 0 1

VL Co []] RO

vLJ Col :
VL

Subarrays of dimension I using LEaCRS scheme.

o.rrd oo;a1 s <41 for all rho ol>n,onrs 0
H2

SA_2_1 SA_2_2 SA_2.3 SA_2..i

.4.0 0 20

*D ..
ø0l .. 0

0,
0! 0 0 23

4.
0! 0 0 0! 0 0 0 0

0 1-).D 031 0 69 40 VO 0 0 yl 0 0 0 0

L0! 0 1 0 1 2 2! 0 0 0
Logc Ipos8o I

20 44389395!

0 1 0303132:

13 . . r;.
0 1 2-8D, rray<Iamanrsrna-.0

0r0i. Sobarmy 7 :030 7!3!

0 j

RO

0 1 2 34
0002306048 0 2 6

4. 13 4

8

014 567

ci8

0 0 1
.. ...° • 4b•• 6 2 • 3 • 4 .

CO RO
00000000000 0000000000 4489

C 2O : RO LIII Ii L:nJo?od RO [HE]
0 1 2 Sob>>>1 0 1 2

VL1 73 1 69 1 48 1
 CO

VL144 1 090 1

Subarrays of dimension 2 using LEaCRS scheme.

Figure 3.3: LEaCRS scheme for a three dimensional EMA.

Consider a subarray SA_1_3 of Figure 2.1. This subarray is extended along dimension I at

dimension length 3 and the subarray is shown in Figure 3.3(a). Here 0, 1, 2, 3, ..., 11

indicates the logical position of each of the subarray elements for a linearized subarray.
If

For explaining the sparseness here we assign each subarray elements to some zero and

24

nonzero values (e.g. logical position I is assigned to 0. 2 is assigned to 75, 3 is assigned to

0, 3 is assigned to 37 and so on.). Since SAI3 is extended along dimension I (see Figure

2.1), the other two dimensions (dimension 2 and dimension 3) are considered as the

column dimension and row dimension respectively.

In the subarray SA13, there are 6 nonzero values. This is because RO[I] contains 7 (see

Figure 3.3(a)) i.e. RO[1] = ROfOJ - total no. of nonzero array elements in the subarray.

VL array stores all the nonzero array elements (75, 37. 66, 51, 25. 79) of this subarray and

CO stores the corresponding column indices of the linearized subarray of these nonzero

array element.

Forward mapping and backward mapping techniques for the LEaCRS scheme are

described as follows:

3.3.1 Forward Mapping for LEaRS scheme

Consider the element <3,3,1> of the EMA. Compare H1 f3J = 8, 1-12131 = 7 and H3[1] = 3.

Since H01 > 1-12131 and H j f3J > 113[1], it can be said that the extended dimension is 1

and the element is involved in the subarray Sil 3. The dimension that is last in the order

is considered as the row dimension and other dimension(s) are considered as the column

dimension for each subarray. Since H2[3] < H1[3] < '-'2141 and 111[3] > H 121, subarray

SA_1_3's size is 4 x 3. Dimension 3 is the row dimension. Since subarrays are two

dimensional, in this case dimension 2 is the only column of the subarray SA_1_3. In

Figure 3.3(a), the number of nonzero elements of the subarray SA_1_3 can be found by

ROf2J - RO[1] = 7 - 1 = 6. The linearized column indices of these 6 nonzero array

elements are stored in CO array. For computing the logical position of the array element

<3,3,1>; we consider dimension 2 as d1= 4, dimension 3 as d2 = 3, second co-ordinate

value of the given array element as pj = 3, third co-ordinate value of the given array

element as P2 = 1 and the desired logical position of the given array element can be

computed as follows using the array linearization function (described in section 2.3.1):

d1 p2 + Pi = 4 X 1 + 3 = 7 [See Figure 3.3(a)]

Binary search is performed on the CO array to find logical position 7 and it can be found

that CO[4] stores the logical position 7 (since <3,3,1> array element is a nonzero array

element). Finally the values of the nonzero array element can be Ibtind in VL[4].
'I

25

3.3.2 Backward Mapping for LEaRS scheme

Consider the physical position <9,]]> of the physical database; where <9> is the history

value and <11> is the column index of a nonzero array element in the linearized subarray

i.e. <11> is the value that CO stores. We perform the binary search on the history tables

to find the given history value <9>. Since <9> is stored in 1-12[4] see Figure 3.3(b)), we

need to access only the CO and Re arrays that are stored for the subarray SA_2_4 (i.e.

subarray extended at dimension 2 at length 4). Therefore the second co-ordinate value of

the desired logical array indices is <4> in logical database and the other two dimensions

(dimension I and 3) are considered as the row dimension and column dimension. As we

described above the dimension that is last in the order is considered as the row dimension.

Since 1-12141> H1[3] and 1-1[4] > H3[2], subarray's (SA 24) size is 4x 3. Dimension 3 is

the row dimension and the number of row is 3. Since subarrays are two dimensional, in

this case dimension 1 is the only column dimension of the subarray SA_2_4. For

computing the first co-ordinate and third co-ordinate value of the desired logical array

indices in the logical database t'rom the given physical position <9,11>; we consider

dimension I as d1 = 4, dimension 3 as d2 = 3, first co-ordinate value of the desired logical

array indices as qj, third co-ordinate value of the desired logical array indices as q,
linearized column index <11> as Yand the desired logical array indices can be computed

as follows using the reverse array linearization function (described in section 2.3.1):

q2 = Y mod d2 = 11 mod 3 = 2

q1 = Y/d2 = 11/3 = 3

Hence the physical position <9,]]> of physical database is mapped to a logical position

<3,4,2> in logical database.

LEaC'RS compression scheme is mapping complete because it provides forward mapping

and backward mapping (As described above).

3.4 Extendible Array Based Chunk Offset Compression Scheme (EaCliOff)

Given a three dimensional EMA. The Extendible Array Based Chunk Offset Compression

(EaChOfj) scheme linearize each subarray independently and break a large multi

dimensional extendible array into chunks for storage and processing. In this scheme, a

maximum size of each chunk is considered and chunks can be formed by single or several

26

subarrays. This scheme use one one-dimensional auxiliary table namely ChunkNo1 for each

dimension i and one one-dimensional integer array NI?. The chunk number assigned to a

subarray is held on the ChunkNo table. Array NR stores information of nonzero array

elements of each subarray. If the number of subarrays is k in a EMA then NR contains k+1

elements. NR[O] contains I, NR[IJ contains the summation of the number of nonzero

elements in 0th subarray and NR/OJ. In general, NR/ij contains the number of nonzero

elements in ('i-l)th subarray of the EMA plus the contents of NR[i-I]. The number of non

zero array elements in the ith subarray can be obtained by subtracting the value of NR[zj

from NR/7+1]. This scheme also uses one one-dimensional floating point array data and

one dimensional integer array O/jeiInChunk for each chunk of the EMA. Array data

stores the values of nonzero array elements of each chunk. Array OffsetlnChunk stores the

offset in a chunk of nonzero array elements of each chunk. For each chunk, the base of

these two arrays is 0.

In the EaChOff scheme, for an n dimensional EMA, among the three kinds of auxiliary

tables (history table, address table, coefficient table) the hisloiy table I-I j and address table

Li are required to store for each dimension. History tables are used to compute the

extension dimension of the subarray and the length of other dimension to carry out the

linearization computation for that subarray. Address tables are used to point the starting

address of each chunk as well as the starting address of each subarray in a chunk. An

example of the EaChOff scheme for a three dimensional EMA of Figure 2.1 is shown in

Figure 3.4. For convenience here we name each subarray as SAIJ, where i indicates the

bt
extended dimension that the subarray belongs to and j indicates the length of that

dimension. For example, SA_I_2 is the subarray of dimension I at length 2. Similarly

SA21, SA_2_2....., SA
-

2
—L2 are the subarrays of dimension 2 and so on.

Consider a chunk Chunk] of Figure 3.4. In this example the maximum chunk size

considered is 16. C'hunkl comprise of subarrays SA_lO, SA_1j, SA _2 I, S11_3J and

SA_12 in sequence because these subarrays are extended in l, 2
1
id 3rd 01 and 5

01

position in order. The length of this chunk is 12 because the 6111 subarray i.e. SA_2_2's

length is 6 and 12 plus 6 is 18 which is greater than 16. Alike the length of Chunk2 is 15

and length of Chunk3 is 9 and so on.

IV I

27

Chmk Maxinmrm Size= 16

Physical Aosss
logIcalAnay

0 1 2 3
C8...kNo(11111 I I

o,j

_a • i -.
58._I_S SA_1_l SA_1_2 SA_1_3

.' P..+D 40, 012 340,
40 0: 0,0.10 40:95.00: 4 0:0 :0 700
0, 0I00 O,I37:86ol25:

2:0:0 0:79:

012

ChOfl000, l_1 I 2

ii,(0 3 6

/ SO 3 1 SA_3_2
0 ...40,

4000
D,3040

,1043 0

2:0:97:0

0 1 2 24
Chonldlool

H,J 0(210178.

.--...
SO 2_I SA_2_2 S&_2_3 SA_2_4
0 • 1. 0 .240,40,

40020 400:0:23: 0.0:0:0: 00000. 0,--------
4-------------- 4

10 948 0,1:000: D,1oo:o:0:
2:0:0:0: 2:0 :44:00:95:

.Q .40o 4 040, 0, • 0 ...+0, 0 .40, 0,240, 0 190, 01 24D, 0 1 240,
00 0,0 0 4001 00 1 2 3 Logicolposoon 400

t Is:i-0fa0T3Yclemeflts
1 00 I 2 400 I 4001 2 00 5' 1 2 00 1 2 3

2 8 10 mosobarTos.— 8 6 7 8 2 6 7 8 2 8 9 10 II

LI 011 (8 38t
Fires address of a
subanaythEA

..' 4 ..
L[

,
j 4 1181

-
101 0 1 2 11212181

.°'
0 0020 0 020406080 0 0 0 0 :23 06845 0 D 0 043 000000000 20 055 25 00 0 0 0 0 0 0 0 0 044

Ch,.nk I COres 2 COo S Chonk 4 Cl',, 45

OfOo,i,Ch,: i

012

3 e 7 1
5

8 9

._.0

0ffn0,Chnr,k 14

I

18 178.1
53

22

4

25

• •._0

OIl' InChes4 38

1

40

2

41

3
42

4

43

5 ._0 1 2

00

60 j 20 j 30 40 00 00 des 23 00 48 (43 87 rho 75 37 86 51 25 70 I 4. 44 85 55

Figure 3.4: EaChOff scheme for a three dimensional EMA.

28

Since SA_1_0 subarray is assigned to Chunki, chunkNo j foJ stores 1; likewise

chunkNo j[l] stores I for the subarray SA _1 1, chunkNo2[J] stores I for the subarray

SA2I and so on. Chunk3, Chunk4 and Chunk5 consist of a single subarray SA_2_3,
SAI3 and SA24 respectively. If the EMA is extended along any dimension then a new

chunk namely Chunk6 will be comprised of this new subarray.

Forward mapping and backward mapping techniques for the EaChOff scheme are

described as follows:

3.4.1 Forward Mapping for EaC'hOff scheme

Consider the element <3,3,1> of the EMA. Compare H1 f3J = 8, 1-12[3] = 7 and H3[1] = 3.

Since Hj f3J > H2[3] and H1 f3J > H3[1], extended dimension is I and the element is

involved in the subarray SAI3. ChunkNoi[3] = 4 indicates that we need to access only

P chunk4 for the given element. In Figure 3.5, the number of nonzero elements of the 9th

subarray SA_1_3 can be found by NR[9] - NR[8J = 7 - 1 = 6. The chunk offset of these 6

nonzero array elements are stored in Offie/InChunk array. For computing the logical

position of the array element <3,3,1>; we consider dimension 2 as d1= 4, dimension 3 as

= 3, second co-ordinate value of the given array element as pl = 3, third co-ordinate

value of the given array element as p2 = I and the desired logical position of the given

array element can be computed as follows using the arrqv imearizalion function

(described in section 2.3.1):

d1p2 + Pi = 4 x 1 + 3 = 7 [See Figure 3.5]

Addition of L j f3/ = 36 and logical position 7 give the desired chunk offset value 43 for

the given array element. Binary search is performed on the OJje1InChunk array to find

logical position 43 and it can be found that OfjetInCIiunkf4j stores the logical position 43

(since <3,3,1> array element is a nonzero array element). Finally the values of the

nonzero array element can be found in data[4.7.

'4

U'

ChunkNo i,

SA_1_1 SA_1_1 SA1_2 SA_1_3 \
+02 01+02 3+

4.0 0 : 020 : 10: 4, °: 50 60: 0: 0 : 0 :75: 0
03 02 1:0:0: D3 1376651 ®

2 : 0 :0 .. : 79

0+03 0+02 4,
o:): o 0: 0

0 1+02 0 1 2 3+
001 00123:

..............
03 12 3 D314 ..

2 : 8 :9 1011

29

. . 9. 42/44
.

0 75 0 37 _0 0 0 0 7

Chunk 2 (Chunk

0 1 4 5
OffsctlnCliunL F38 40 1 41 1 42 43 47

dat, 1 75 1 37 1 66 1 51 ('25') 1 79

LI

I

Chunk 1

Figure 3.5: An Example of forward mapping for EaCliOff scheme.

3.4.2 Backward Mapping for EaCh Off scheme

Consider the physical position <9,59> of the physical database; where <9> is the history

value and <59> is the logical index of a nonzero array element in a chunk i.e. <59> is the

value that Offsetlnchunk stores. We perform the binary search on the history tables to find

the given history value <9>. Since <9> is stored in H2[4] (see Figure 3.6), we need to

access only the Offseth-zChunk array that is stored for the subarray SA_2_4 (i.e. subarray

extended at dimension 2 at length 4). Therefbre the second co-ordinate value of the desired

logical array indices is <4> in logical database. The linearized column index of the

subarray SA_2j1 can be computed by subtracting the first address (L2[4] = 48) of the

subarray from the given logical chunk index i.e linearized column index = 59 - 48 = II.

-4
For computing the first co-ordinate and third co-ordinate value of the desired logical array

30

indices in the logical database from the given physical position <9,59>; we consider

dimension I as d, = 4, dimension 3 as d2 = 3, first co-ordinate value of the desired logical

array indices as qj, third co-ordinate value of the desired logical array indices as q,

linearized column index <11> as Y and the desired logical array indices can be computed

as follows using the reverse array linearization function (described in section 2.3.1):

q2 = Y mod d2 = 11 mod 3 = 2

q] = Y/d2 = 11/3 = 3

Hence the physical position <9, 59> of physical database is mapped to a logical position

<3,4,2> in logical database.

0
ChunkNo2

1_ • -

I
•__ - _

SA2_1 SA_2_2 SA_2_3 SA2_4
0 190, 0 1 2-ID, 0 1 290, 0 1 2 390

4.00:20: 4.0 0 :0 :23 0:0:0 . 0 : 0:0 :0 :0 0 03o..............
68: o: 00 0: 03 1 :0 00 0:

2 0 0 0 2 0 44 89(,

-*0, 01 ..-+0, 2*D,
-
0 .2 3+D'\

40012 0:0:1:2: 00123

1345 D1 34 ..:

Chunki Chunk2
: ° •° ..: .:. :. o/ . ;": 895°-

data

Figure 3.6: An Example of backward mapping for Ea(.'hOff scheme.

EaChOff compression scheme is also mapping complete because it provides forward

mapping and backward mapping (As described above).

31

3.5 Theoretical Analysis

In this section the cost model for the compression schemes is developed. The analytical

analysis is compared with the experimental implementation in chapter IV. Before starting

the theoretical analysis the following definitions are important.

Definition 3.1 (Density of Array, p). Array density is a parameter to measure the

sparsity of an array. It is the ratio of non-empty array cells with total number of cells.

Maximum value the density can be one. Formally we can write,

=
Total number of cell having non null values

p
Total number of array cells

Definition 3.2 (Compression Ratio, 17): it is defined as the proportionate size of

the compressed array with that of uncompressed one, formally
)

Compression ratio, q =
Compressed size of Array

Uncompresd size of Array

The value of 11 is preferable to be less than one.

Definition 3.3 (Range of usability). Range of usability of a compression scheme

is defined as the maximum range of data density up to which the compression ratio is less

than 1.

In this section, we model the space requirement and hence the compression ratio for the

proposed EMA based schemes that is for EQCRS, LEaCRS and EaCh Off schemes. We

analyse their range of usability for practical applications as well as their extension cost.

We also compare this model with the TMA based schemes i.e. for CRS and Chunk-Offset

(ChOff schemes.

3.5.1 Assumptions

To simplify the model we make the following assumptions.

The length of dimensions extends in round robin manner for both Traditional

multidimensional array (TMA) and Extendible multidimensional array (EMi\).

The length of each dimension is equal and when extension occurs each of the

dimensions are extended by equal length.

32

(iii) The records are uniformly distributed in the corresponding TMA or EMA.

3.5.2 Parameters

The parameters are grouped as shown in Table 3.1. Some of these parameters are provided

as input, while others are derived irom the input parameters. All lengths or sizes are in

bytes.

Table 3.1: Parameters Considered for theoretical analysis.

Parameters Description

UCTMA The uncompressed size of the Traditional Multidimensional Array(TMA)

UCEMA
The uncompressed size of the Extendible Multidimensional Array

(EMA)

hc Total number of subarrays in EMA (i.e. history counter)

n Number of dimension of both TMA and EMA

Li Length of each dimension i (0 :!~ I :5 ii) for both the TMA and EMA

/ Length of Chunk for the TMA

6 Length of extension

SEi Size of extension along dimension i

p Density of records both for TMA and EMA

a Size of subscripts for TMA and EMA

fl Size of a cell of the TMA and EMA

sz(k) Size of subarray k along dimension i

row_n01(k) Number of rows in a subarray k along dimension i

33

SCCRS Compressed size of TMA using the CRS scheme

SCcoff Compressed size of TMA using the Chunk-Offiet Compression scheme

SCEaCRS Compressed size of EMA using the EaCRS scheme

SC'LE aCRS Compressed size of EMA using the LEaCRS scheme

CRS Compression ratio for the C'RS scheme for TMA; 1lcRs
=

SCCRS

(JCTMA

Compression ratio for the Chunk-Offiet Compression scheme for TMA;
11ChOff SCChOff

C hOff = UCTMA

17EaCRS Compression ratio for the EaCRS scheme for EMA; 71EaCRS
=

SCEaCRS

 UCEMA

77LEaCRS Compression ratio for the LEaCRS scheme for EMA; 71LEaCRS
= SCLEacRS

UCEMA

Compression ratio for the Chunk-Offiel Compression scheme for EMA;
71EaChOff SCEaciloff

1 'lEaChOff =
UCEMA

3.5.3 Cost Model for Compression Ratio

In this section we will derive cost model for compression ratio of I'MA based compression

schemes i.e. for CRS and ChOff schemes as well as for EMA based compression schemes

i.e. for EaCRS, LEaCRS and EaChOff schemes.

(a) Cost Model for TMA based schemes

If the length of different dimension L, (0 :!~ i n) is known then storage requirement can

be calculated as

UCTMA= (fl L3 x /3 = I]' x /3 (assumption (ii), L1 = L = ... = L = L)

The number of nonzero array elements of spai-se array A is p x V.

Cost Mode/for CRS scheme

In the CRS scheme, for sparse array A:

A

31

34

The size of array RO is: ROCRS = (L + 1) X a

The size of VL array is: VLCRS = (p x JY) x /1

The size of each of the CO array is: COCRS = (p x L) x a. There are n-I such COCRS

exists. Hence the compressed size of the array A i.e. the space requirement of the CRS

scheme (SCCRS) is,

SCCRS = (n - 1) x COCRS + ROCRS + VLCRS

= (n - 1)pLn x a + (L + 1)a+pL71 S

((n-1)pJY+L+1)a+pLfi'(3.1)

Compression ratio for the CRS scheme (CRS) can be revealed as

1JCRS -
-

SCCRS

ULTMA

((n1)pL4L+1)a+pL'
(3.2)

L X/

cost Mode/for Chunk-Offset compression scheme

In the Chunk-Offset scheme, for sparse array A:

No of Chunk in the TMA is:

no_of _chunkC,Off =
01

-
(assumption (ii), L 1 = L2 = ... = L,1 = L)

Space required for storing the pointers of all the chunks is:

chunkPointersChQff = x cx 171

Space required for storing the nonzero element counter information for each chunk is:

L
chunkNonzeroC, Qff = x a

The size of data array is: dataC,ZQ ff = (p x L'1) x fl

The size of the OffsetlnChunk array is: OffsetlnChunkck Off = (p x L71) x a.

The compressed size of the array A i.e. the space requirement of the Chunk OJfet scheme

(SCchoff) is,

A

35

SCchoff = chunkPointersCJOff + chunkNonzeroC/ Q f f + Of[setlnChunkc/loff + datac110rt

L1'
=.- In

xa+ xa+pL?xa+pLlZ[3

=2x
 1,71

 xa+pL 1 Xa+pLn/3(3.3) In

Compression ratio for the Chunk Offset scheme (ic,o) can be revealed as

- SCC1Off
T1ChOff UCTMA

=
2X

Ln
Tn-Xu+pL'Xa+pL'[3

LIZ xfl

From equation (3.1) and (3.3) we tind that space required for storing the VLCRS and COcp

is equal to that of dataci,ojj and OffsetlnClninkc;,ojj respectively. For convenience we

ignore the space required for the ROcp, chunkPoini'ersc,,off and cllunkNonzerocj,offarrays,

since the size of most of sparse arrays in practical application is large and space required

for these arrays is negligible with respect to that of VL 5, COc, dalac,,ojj and

OffserinChunkc;,off arrays for very large sparse arrays. Therefore SCCRS > SCCIZO!f i.e.

space requirement for the Chunk-Offset scheme is less than that of the CRS scheme. This

is because, for n-dimensional TMA (n-i) nos. COCRS is required for the CRS scheme

(equation 3.1), but only one OffietlnChunk(;,Qg array is required for the C/iOff scheme

(equation 3.3).

(b) Cost Model for EMA Based schemes

Let sparse extendible array, A' be the corresponding sparse array based on the EMA. As

the length of dimension is equal for all the schemes, the uncompressed size of the array A'

will be identical to the uncompressed size of A i.e. UCEMA = Ii' x fl-

If the length of ith dimension of A' is L1, the total number olsuba rray is:

hc = - 1) + 1

= (L —1) xn+ 1 (assumption (ii), L, = L2 = ... =L,,—L)

4• I
\'?/ __Y

/
H 1 C:

iI I I
.9112121111 2 3 9 28

El1 5121 2 1 2112 131429
I I - 11 I I

°8
1,,--]

 3 36 37 38 39

O1J23

HJ 1 4 7

1 8 27

C:L I I
Dimension 1

Figure 3.7: A three dimensional extendible array in which each dimension extends in round

robin manner and L is 4.

For example, consider a three dimensional extendible array as shown in Figure 3.7; in

which the length of each dimension is extended in round robin manner and the length of

each dimension is equal (L= 4).

Therefore the total no. of subarray will be

hc = (4-1) x 3 + 1= 10.

The size of the ith subarray for extension along any arbitrary dimension k (0 !!~ k < n)

or can be calculated as:

sz(k) = fl7.. 1 L1 [I # k]

The number of nonzero array elements of ith subarray along extension-dimension k of

EMA is sz1(k) x p and the size of the ith VL j array is sz(k) x p x f.

The total numbers of nonzero array elements oiA'can be obtained by the summation of all

of the subarray's nonzero elements. Hence the size of the total VL array and dala array for

EMA based schemes becomes:

VLEA = dataEA = (i sz(k) x p) X /1 [1 :5 k n] ...(3.5)

and the size of the total CO array and Offietinchunk array for EMA based schemes will
I

be:

36

history table

address ta ble

coefficient vector

37

COEA = Of fsetinChunkEfl =
Ic (1 sz1 (/c) x p) X a (3.6)

A
Cost Mode! for EaCRS scheme

The EaCRS scheme does not linearize the subarray. Hence it requires more auxiliary

arrays. For the EaCRS scheme row dimension of the ith subarray for extension along

dimension k is the dimension with the minimum length at the time of ith subarray's

extension among the n dimensions (other than k) and the number of row will be:

row_no(k)= min(d) [1 :!~ j :!~ n and j # k]

No. of elements in the ith RO array for ith subarray = row_no(k) + 1

Since RO[O] stores I in each RO array, WC (10 not require to store RO[O] for each RO

array.

Therefore the size of the total RO array for EaCRS scheme is:

ROEaCRS = (1 row_no1 (k)) x a ...(3.7)

Compressed size of the array A' using EaCRS scheme i.e. (SGEaCRS) is,

SCEaCRS = (ii - 2) x COEA + ROE(ICRS + VLEA

= {(n - 2)(1sz (k) x p) + row (k)] x a + (1 sz(k) x p) x /3(3.8)

Compression ratio for the EaCRS scheme (flEaCRS) can be revealed as

-
SCgaCRS

11EaCRS
- UCEMA

-
[(n-2)(E 1 szi(k)xp)+fi(row no(k))I xcr+(E 1sz(k)xp)xp

(3.9)

Cost Model for LEac'RS scheme

In the LEacRS scheme, row_no(k) =1 because there is only one row for each subarray

after linearization.

Number of elements in the ith RO array for ith subarray = row-7-to(k) + 1 = 2.

Since RO[O] stores 1 in each RO array, we do not require to store RO[O] for each RO

array.

-
Therefore the size of the total RO array for LEaCRS scheme is:

38

ROLEaCRS = i) x a

11 Compressed size of the array A' using LEaCRS scheme i.e. (SC'LECl CIS) is,

SCLEaCRS = COEA + ROLEQCRS + VLEA

= [(sz (k) x p) + 11 x a + (± sz1(k) x p) x(3.10)

Compression ratio for the LEaCRS scheme ()LpaCRS) can be revealed as

17LEaCRS -
- SCLEaCRS

ULEMA

-
E(1 szi(k)xp)+f i(1)]xa+(c sz(k)xp)xp

(3.11)
L'1 x$

Cost Model for EaChOff scheme

The EaChOff scheme Stores pointers and nonzero element information for each subarray.

Therefore the size of the total chunkpointers and chunknonzero array for EaChOff scheme

is:

chunkPointersEachoff = chunkNonzeroEaChOff = hc x a

= [(L — 1) x n + 1] x a (3.12)

Compressed size of the array A' using EaChOff scheme i.e. (SCECIChOff) is,

SCEaChoff = chunkPointersEac,lo!, + chunkNonzeroE(LC/LOff + dataEA

+ Offset!nChunkE/

x = [2 x ((L —1) x n+ 1) + (1 sz1 (k) x p)] x a + (f1sz1(k) xp) x [(3.13)

Compression ratio for the EaChOff scheme (r1E(1CRS) can be revealed as

71EaC = SCEaChO!!
hOff

UCEMA

-
[2x((L_1)xn+1)+(l szi(k)xp)]xa+(f1 sz(k)xp)x/3

(3.14)

Table 3.2 shows the total size of the VL, data, CO, RO and OffsetinChunk arrays for

EaCRS, LEaCRS and EaChOff schemes for 3-dimensional. 4-dimensional and n-

dimensional EMA based on the above discussions.

39

Table 3.2: Total size of the VL, dciia, CO. RO and OffsetlnClwnk arrays for EaCPS,

LEaCRS and EaChOff schemes.

Arrays VLEA/ COEAI

rDimensions
ROEaCRS ROLEaCRS

dataEA OffsetlnChunkEl

3-D pL3 f3 pL3a L(3L - 1) (3L - 2) X a X ct
2

4-D pL4 f3 pL4a L(4L - 2) (4L-3)xa
2

n-D pLf3 pLa L(nL - (n - 2))
xa (nL—(n-1))xa

2

From equation (3.8), (3.10) and (3.13) we find that SCEaCRS > SCLEQCRS and SCEaCRS >

SCEachoff and SCLEaCRS SCE(lchoff .This is because for n-dimensional EMA,VLEA =

dataEfl = pLf3 (equation 3.5 and Table 3.2) and COEA = OffsetlnChunkEA =

pL71 a (equation 3.6 and Table 3.2). EaCRS scheme requires storage for ('11-2) nos. COEA

arrays (equation 3.8) but LEaCRS and EaChOJj' schemes require storage for only one

COEA array (equation 3.10) and only one OfJeIInChunkE array (equation 3.13)

respectively. For convenience we ignore the space required for the ROE ICPS. ROLEaCRS,

chunkPointersFA and chunkNonzeroEA arrays, since space required for these arrays is

negligible with respect to that of VLEA, COEA. clala1_4 and O/j.eiIn(hunkEA arrays.

So, 17CRS > 1lEaCRS because EaC1?S scheme requires one less CO auxiliary array for each

subarray than the CRS scheme since subarrays are n-i dimensional for n-dimensional

EMA. Similarly T1EaCRS > 71LEaCRS. because L.EaCRS scheme requires only one COEA

auxiliary array for each subarray. We also find that, 77ch0 ,,,r 77EaChOff 71LEaCRS

because ChOff scheme requires only one OffeIInChunkc,,off auxiliary array for the TMA

and EaChOff scheme requires only one OJftefJnChunkE,f auxiliary array for the EMA.

Since OffsetlnChunk array stores offset information for non zero values only;

OffsetlnChunkc,,off = OffsetlnChz!nkEA= CO1-,1 (equation 3.6).

3.5.4 Range of usability Analysis

(a) Range of usability analysis for TMA based schemes

40

Now we derive the range of usability for a three dimensional traditional multidimensional

array for the CRS and Chunk OJj*el schemes.

CRS scheme

One of the goals to use the data compression scheme is to reduce the memory space

required for sparse array. From equation (3.2) we can derive the range of usability of the

CRS scheme.

For example if we consider n = 3, from equation (3.1) we get,

SCCRS =((3 - 1)pL3 + L + 1)a+pL3 I?

= (2pL3 + L + 1)a + pL3/3

For deriving the range of usability for the CRS scheme we consider T1CRS = land n=3 in

equation (3.2) and we get,

(2pL3+L+1)a+pL3f3
- 1

L 3 J3

or, (2pL3 + L + 1)a + pL3 f3 = L3/3

or, pL3(2a+fl)= L3 f—(L+l)a

LI-i a or, p = 9-i - (-- x -i)

or, p < —

-

chunk-Offset scheme

From equation (3.4) we can derive the range of usability of the Chunk-Ojftet scheme.

For example if we consider n = 3, from equation (3.3) we get,

L3
SCchoff=2x.

13 xa+pL3xa+pL3/?

For deriving the range of usability for the Chunk-Offset scheme we consider Tichoff =

1 and n=3 in equation (3.2) and we get,

2x xa+pL3 xa+pL3

L3 x f?
=1

I

S.

41

or, 2x -a+pLa+pL/3= L3/3

or, pL3(a + /3) = L3 f3 - 2 x cx
13

f3 2 a or, p=--(—x—)
a+/3 i a+/3

or, p

Table 3.3 shows the range of usability of the CRS scheme (derived from equation (3.2))

and the ChOff scheme (derived from equation (3.4)) for 3-dimensional, 4-dimensional and

n-dimensional TMA.

Table 3.3: The range of usability of the TMA based (CRS and ChOJj) schemes

Schemes
CRS Chunk-Offset

3-D
P< +/3

4-D /3 fl
P< a+ p

n-D /3 /3
P<(nl)a+/3 P< a+fl

(b) Range of usability analysis for EMA based schemes

Now we derive the range of usability for a three dimensional extendible array (See Figure

3.7) for the EaCRS, LEaCRS and EaChOffschemes.

If we consider the length of each dimension is L, the value of hc for such an array is:

hc= (L-1)x3+1 = 3L-2.

From equation (3.5) we get,

VLEA = dataEA = (! 2 sz1 (k) x p) xl? [1 :!~; k :!~ ii]

Where, k is the extension dimension of ith subarray. Since the length of each dimension is

extended in round robin manner and length oF each dimension is equal (Assumption (i)

and (ii))

therefore, 2 sz(k) = L3 [1 :5 k n] and VLEA = dataEA = pL3,B

42

Similarly from equation (3.6) we get, COSA = Offset InChunklA = pL3 a

EaC'RS scheme

For the EaC'RS scheme, the size of the total ROE(ICRS array will be like this (Using

assumption (i) and (ii))):

ROEaCRS =[l+l+1+2+2+2+ +(L-1)+(L-1)+(L-1)+L]a

[See Figure 3]

=[3x1+2+... +(L-1))+Ljcx

(L-1)(L-1+1) =[3x +L]a
2

L(3L-1)
= a

2

From equation (3.8) we get,

SCEacRS = (3 - 2) x pL3 a +
L(3L-1)

 2
a + pL3 [.

pL3a+ a+
L(3L-1)

pL3 f3. =
2

For deriving the range of usability for the EaCRS scheme we consider 71EaCRS = 1 in

equation (3.9) and we get,

pL3 a +L(BL_i)a+PL3

= 1 0 f3

or, pL3 a +
L(3L-1)

 2
a+pL3 /3 = L3 J3

L(3L-1)
or, pL3 (a + 8) = 0 /? - a

2

or, p = -
(L(3L-1) x—) 2L, a+f

or, p <
'z +13

LEaC'RS scheme

For the LEaCR.S scheme, the size of the total ROLEaCRS array will be like this:

ROLEaCRS = (3L2(1)) X a

= (3L - 2) x a

43

From equation (3.10) we get,

SCLEacRs=pL3 a+(3L-2)a+pL3 I3

For deriving the range of usability for the LEaCRS scheme we consider 7/LEaCRS = 1 in

equation (3.11) and we get,

pL3 a +(3L-2)a+pL3 f3
- 1

L 3 C

or, pL3 a +(3L-2)a+pL3 /3 = L3 /3

or, pL3 (a +f?) = L3 /3 - (3L - 2)a

jS (3L-2) a orp= --(x—) a+I3 L3 a+fi

a+/3

EaCh Off scheme

For the EaChOff scheme, the size of the total chunkPointersE(LCh Off and

chunkNonzeroEachoff array will be like this:

chunkPointersEacjloff = chunkNonzeroEac,joff = (3L - 2) X a

From equation (3.13) we get,

SCifachoff = 2 x (3L-2)a +pL3 a+pL3 /3 .

For deriving the range of usability for the EaChOff scheme we consider 17EaChOff = 1 in

equation (3.14) and we get,

2x(3L-2)a+pL3a+pL3/3
- 1

L 3 /3

or, 2x(3L-2)a+pL3 a+pL3 /3 =L3 /3

or, pL3 (a + /3) = L3 /3 - 2 x (3L - 2)a

62X(3L-2) a or,p= (0 Cr
x—)

or, p <

Table 3.4 shows the range of usability the EaCRS scheme (derived from equation (3.7)

using Table 3.2), the LEaCRS scheme (derived from equation (3. 10) using Table 3.2) and

44

EaChOff scheme (derived from equation (3.14) using Table 3.2) for 3-dimensional, 4-

dimensional and n-dimensional EMA.

Table 3.4: The range of usability of the EMA based (EaCRS, LEaCRS and EaChOfJ

schemes

hemes EUCRS LEIiCRS EaGh Off

3-D P P P p< p<
a+8

4-D P P P p<
2a+p p<

D P
(n-2)a+/3

__
P

a+13

in Table 3.3 and Table 3.4, we can see that the range of usability of the ChOjf LEa'RS

and EaChOff schemes are almost equal and wider than that of both the CRS and EaCRS

schemes. Range of usability of the Ch0Jf LEaCRS and EaChO/j' schemes are same for

any dimensional EMA whereas the range of usability of the CRS and EaCRS schemes

decrease with the increase of dimensional ity.

3.5.4 Extension Cost Analysis

Since the volume of RO array is much smaller with respect to the volume of VL and Co

arrays in all the cases of the CRS based compression schemes and chunkPoinlers and

chunkNonzero arrays are much smaller than data and OfftetlnC/nink arrays in all the cases

of Chunk Offset based compression schemes, we ignore the extension cost for the RO,

chunkPoiniers and chunkNonzero arrays for the convenience of calculation.

(a) Extension Cost for TMA based schemes

Figure 3.9(b), 3.9(e) and Figure 3.9(c), 3.9(f) pairs show the before and after view of

extension of CRS and Chunk Offset respectively for a 2 dimensional TMA. CRS and

Chunk Offset arrays has to be reorganized to extend because the offset values are changed

when the TMA is extended in dimension 1 (shown in Figure 3.8(a) and 3.8(b)). Since the

A

0 1 2 •D -u
mmm

0 1 2

1 2

J4 5 6

8 9 10

12 3 14

3 .+D

3

7

11

15

0

D.

3

D

2

3

45

offset values are subject to change; to get the correct value of a cell we have to fetch the

5-
previously allocated data and then reorganize the arrays.

(a) Before extension (b) After extension

Figure 3.8: Extension of a 2 dimensional TMA.

0 1 2 •D

0 2 0

L602
12 5

1 0 6 0

(a) Sparse TMA

(before

extension)

0 1 2 3 4

ROt 1 2 4 6 7

'I
1 2 ai

CO
VL

(b) CRS on sparse array

(before extension)

ChuflkPointcrs I
I

2

./ l\ 2\ 4 5

Off set Inc hunk

data --uu
(c) Chunk Offset on sparse

array (before extension)

0

.Ii

2

3

0 1 2 3 4D

0 0 2 0 5

6 0 2 3 02

2 0 12 5 0

3 0 6 0 2

0 1 2 3 4

RoLl 3 6 8 110

coLill 0 j 2 3 1 2 1

VL51 6 2731121 5 6 2

0 1 2 3

ChunkPointers 1 2

OffsetInChurlkE 3 0 2

datai S = 3 I21 5 6 2

(d) Sparse TMA (e) CRS on sparse array (I) Chunk Offset on sparse

(after extension) (after extension) array (after extension)

Figure 3.9: Extension cost analysis for TMA based scheme.

46

Cost for CRS scheme

Let us consider a TMA(n), with initial volume V = L" for each dimension length L1 = L

before compression.

Initial volume of the VL array is: VV S = (p x L)

Initial volume of the CO array is: VORS
= (p x L)

Therefore initial volume of CRS is:

VCRS = VS + (n — i) x V 5 [Since (n-I) nos. CO array exist ft)r CRS scheme for
n-dimensional TMA]

= pL7 + (n - i)pL

= npL

For extending TMA, it requires to reorganize the array and rewrite both existing and new

data elements. The existing elements of the initial array need to be fetched and recalculate

the new offsets due to the extension for TMA.

Hence the cost of fetching (FC) the existing array elements of CRS becomes

i:•r

—ii
-
- in

CRS - CRS

If a TMA is extended by 8 then a new TMA of length L + 6 is to be reallocated, hence

reallocation cost of CRS is:

LtLCRS
- nr

VL
CRS + L i\

nr
CO
CRS

- '"-'

= p(L+8)1 +p(n — 1)(L+(5)

= np(L + (5)z

So, total extension cost for CRS is: ECc RS = PCCRS + RCCRS

=npL +np(L+(5)'

= npL + np(> 0 : L8L)

= npL + np("C0 L + "CJ L'61)

= 2npL1' + np L 1 81

k

47

Cost for Chunk-Offset scheme

Consider a TMA(n), with initial volume V = L' for each dimension length Li = L

Initial volume of dataChOff array is: Vdata = (p X L)

Initial volume of the OffsetinChunkCllOff array is: VOff setJ flC!w, = (p X L)

Therefore initial volume of Chunk Offset is: Vc,loff = Vacta + VOJl setinChunk

= p!]1 + p!]1

= 2pL7

For extending TMA, it requires to reorganize the array and rewrite both existing and new

data elements. The existing elements of the initial array need to be fetched and recalculate

the new offsets due to the extension for TMA.

Hence the cost of fetching (FC) the existing array elements of Chunk Offset becomes

FC11 Off = Vchoff = 2pL71

If a TMA is extended by 6 then a new TMA of length L + 8 is to be reallocated, hence

reallocation cost of Chunk Offset is: RCc,loff = RCdata + RCoffset/?I chunk

= p(L + (5) + p(L + 5)fl

= 2p(L + (5)

So, total extension cost for Chunk Offset is: Ec
0ff
 = FC hUff + RCchoff

= 2pL71 + 2p(L + 6)

= 2p!J1 + 2p(0 "C1 L81)

= 2pL11 + 2p("C0 L11 + "C, L8L)

4pL'1 + 2p'=1 "C, L1' 161

(b) Extension Cost for EMA based schemes

Figure 3.9 shows the pictorial view of 8 unit extension of EaCRS(3). By 8 unit extension

4 we mean that all dimensions of the EMA are extended a value 6. From Figure 3.10(a) and

48

3.10(b), we see that for extension of EaGRS we need to apply CRS only on the newly

.5.
extended subarray. Similarly for LEaJRS and EaChOff extension, we do not require to

process the previously allocated subarray; we need to apply compression scheme only on

the newly extended subarray.

0 1

71~1%
SA_1_0 SA_1_1

0.9D2 0.—+D2

"- °LiIII '°EIiII D3 Os
o 1 0

ROI_1 1 I ROI_1 1 2

0

co
VL H,

0 I 2
H 0

SA_I_Q

.io[]

0A_I_I
0 -9 D1

SA,I_2
0 I —PD5

0 I 0

Rol_I I RO[J_2

R0 1 I 3 3 0 CO
VLE

coro1
VL 5 6

H2 2 l

y
SA 2 1

0 1D

0 2
D3

RO

CVOL F2

Ll I

(a) Before extension EaCRS(3)

H7

0A_2_I
o I +DI
0 2

SA_2_2

_0 1 2--+0,

to: 0 0 7

0 I

ROLl 121
0

0
CO I

Ro:
0 1 2

VL 2
CO2HH
VL rT 8 9

° I I
V

SA 3 1
0 1

4°1 0 0
D2

ROL 1 1 3

0 1

col 0 1

VL3 4

0 I
-

6 -

SO_I_I
O I —+D,

0A_3.2
0 1

4. M 0

1l _ 0

o I 2

101 ¶ I

2: 0 II 0

012 3
0 I R011 1 2 1 3 -------

Co

VL

0 I 0 I

coiril 3 4

VL "10

(b) After extension EaCRS(3)

Figure 3.10: Extension cost analysis for EMA based scheme.

Cost for EaRS scheme

Let us consider EMA(n), with initial volume of the array before compression V = L

(considering length of each dimension Li = L)

Initial volume of the VL array is: V = (p x L)

49

Initial volume of the CO array is: V (p >< IP)

Therefore initial volume of EaCRS is:

VEaCRS = V + (n — 2) x V [Since (n-2) nos. CO array exist for EciCRS scheme
for ii dimensional EMA]

= pL + (n - 2)pl]1

(n — 1)pL

Now consider EMA(5), with initial volume of the array V = L5 before compression

(considering length of each dimension L1 = L)

Extending a 8 unit along dimension i, the size of extension SElL br VL array is

SE= p x 8 x L2 x L3 x L4 x L5 = p5L4 , and due to extension L 1 = L + 5

SE= p x 8 x L1 x L3 x L x L. = p8 (L + S)L VL
3, and due to extension L2 = L + (5

SEK L= p x 8 x L1 x L. x L4 x = p8 (L + 6)2L2, and due to extension L3 = L + 6

SE= p x 6 x L1 x L2 x L3 x L. = p6(L + 6)3L, and due to extension L4 = L + 6

SEr= p x 8 x L1 x L2 x L3 x L4 = p3(L ± ö), and due to extension L5 = L + 6

Total Extension Cost for VL array, 6 unit extension in each dimension, becomes

ECK L =SE1 +SE2 ±SE3 +SE4 +SE5

=p8> o L"_'(L + 8)1, where k = 4

Similarly for EMA(n), total extension Cost for VL array, for 6 unit extension in each
K dimension, can be written as

EC.'L = SE1 + SE2 + SE3 ±+ SE 1 + SE

= p8
' IJc_i(L + (5)' where k = n—I (3.15)

Expanding the summation, 1=0 L''(L + 5)1, we get

k

L 1 (L + 8)1

=Lk(L+(5)o ±Lk_l(L±(5)1 +Lk_2(L+5)2 ± ... +L1(L+(5)k_1

+ L°(L + (5)k

50

= Lk +

L('C0 L+1C(5) +

L2(2C0L2+2C18L+2C2(52) f

L 3(3C0 L3+3C1öL2+3C2(5 2 L+3C353) +

L 4 (4C0 L4 +4C1 8L3 +4C26 2 L2 +4C383 L+4C4(5)

+

LO(kCO LA +kC SLkI +kC S2 L 2 +

After multiplying and collecting the coefficients of L, p = 0, 1.....k, we get

y - Lk + L 18 'C 1 + L2c2 L'(L +ö 'C, + + + 5k 1Ck

1=0 1=1 1=2 z=kI i=k

- k+lCLk+k+ICLk_15+k+1CLk_282 + +kCALSk±4iC 8k
k+I

ince P+t(' 1
r 'r+II

[j=O

fl

= C'1 L"'5'', where n = k + 1
1=1

Putting the above value in equation (3.15), we get

ECK L = p8E C=o Lk _i(L+(5)t,wherek=n_l

= p5

= p E "C1L5' ...(3.16)

Similarly for EMA(n), total extension cost for CO array, for ö unit extension in each

dimension, can be written as

(n - 2) p " 1 L"'5' [Since (ii-2) nos. CO array exist for each subarray]

So, total extension cost for EaCRS is: ECff(ICRS = ECK L + ECç°

= p 11C,L" 1 5' + (ii - 2) p "C,L"'S'

= (n - 1) P= 1 "C,L"'5'

51

Extension Gain of EaCRS over CRS scheme

The difference of extension cost between the CRS and EaCRS schemes is referred to as

Extension Gain (EGECRS) of EaCRS over CRS scheme

1'rEaCRS = 'rCRS c'rEaCRS
-

= 2npJJ + np '= "C, L_ - (ii - 1) p

= 2npL +p 1 flC, L'8

= 2 VCRS+ Extension cost of a single CO array of EaCRS

So, EG8CRS is equal to the twice of the initial volume of CRS and extension cost for a

single CO array of EaCRS (since EaCRS scheme requires one less CO auxiliary array for

each subarray than the CRS scheme). That is the extension gain is constant (more than

twice of the initial volume) for any values ofS with a fixed initial volume.

Cost for LEaCRS scheme

Initial volume of LEaCRS is:

VLEaCRS = V + V Since (,i-2) nos. CO array exist for EaCRS scheme for
n-dimensional EMA]

= pLlL + pL

= 2pL

In the LEaCRS scheme, total extension cost for the VL array is same as equation 3.15. In

this scheme total extension cost for the CO array is: p "C, I' J', since there is only

one CO array for each subarray.

Therefore, total extension cost for LEaCRS is:

ECEaCRS
= p "C1 L" '8' + p 'II "C,L"'S' = 2p

Extension Gain of LEaCRS over CRS sc/wine

The difference of extension cost between the CRS and EaCRS schemes is referred to as

Extension Gain (E LEICR Gn,S '9) of EaCRS over CRS scheme

EGLEaCRS - - EC5 - EC,ECLCRS

52

= 2npL +npJ=1 "C, L_'8t - 2p 1 "C,L''8'

= 2npL + (n
- 2)p "C, L7 8'

= 2 VCRS + Extension cost of (n - 2) nos. CO array of LEa'RS

So, EGaCRS is equal to the twice of the initial volume of CRS and extension cost for 'n -

2 nos. CO array of LEaCRS (since LEaCRS scheme requires "n - 2) nos. less CO auxiliary

array for each subarray than the CR8 scheme). That is the extension gain is constant (more

than twice of the initial volume) for any values of S with a fixed initial volume.

Cost for EaCh Off scheme

Consider a EMA(n), with initial volume V = L' before compression for each dimension

length L1 =L

Initial volume of dataEA array is: Vca = V = (p x L?l) [from eqn. (3.5,)]

- EA 11EA - Initial volume of the Offset!nChunkEA array is: Vg/J.SCJ?C!11k
 - -

(p x L)

[from eqn. (3.6)]

Therefore initial volume of EaChOff is: VEaC!loff dczta = VEA + V/,J flC,lU?lk

= pL + pL

') ifl - - T/ - VC/Qff

In the EaChOff scheme, total extension cost for the clata array and OtfsetlnChunk array are

same as to the extension cost of VL array, and CO array ui the LEaCRS scheme

respectively.

Therefore, total extension cost for EaChOJj is:

Ec:aChoff = p>1 "C,L"'S' + p>.1 "C,L"'S' = 2p1 "C,L"'6'

Extension Gain of EaQi Off over Chunk Ojfter scheme

The difference of extension cost between the C/miik Ojjet and EaChOff schemes is

referred to as Extension Gain (EG ° ' °") of EaChOj
71,6

jover Chunk Offset scheme

EG EaC O!f - EC6 o'1' -
EaChOff

n,t5 -

53

= 4pL + 2p 1 11C1 L1 ö - 21)> "(',L' 1 8

=2x2pL

= 2Vcnoff

= 2VEachoff

EaChOff That is the extension gain (E G5) is constant (twice of the initial volume) for any

values of (5 with a fixed initial volume.

3.6 Conclusion

In this chapter we present our proposed schemes in details that are how the

multidimensional array can be compressed with the fcility of dynamic extension but

excluding the already stored data reorganization. We also describe the forward mapping

and backward mapping techniques for all the proposed schemes. The analytical analysis of

the proposed compression schemes including theoretical analysis of the traditional CRS

and Chunk-Ojftet schemes are also presented in this chapter. Analytical analysis shows

that Extension gain of the proposed EaCRS and LEaCRS scheme over CRS scheme is

more than twice of the initial volume of CRS and extension gain of EaChoff scheme over

ChOff scheme is exactly twice of the initial volume of Chunk 0/je1 for any values ofS

with a fixed initial volume. But it is worth mentioning that this gain is in theoretical aspect.

Practically, EG would be little less, because there will some cost increase due to

populating those auxiliary tables we have used. ChOfi EaChOI' and LEaCRS schemes

outperform CRS and EaCRS schemes in terms of range of usability as well as compression

ratio. As ChOff scheme is based on TMA it suffers from extendibility problem. Therefore

LEacRS and EaChOff schemes are more suitable for practical applications with higher

values of p than the CRS, ChOff and EaCRS schemes. In the next chapter we will show

the details experimental results that confirm the theoretical analysis presented here.

A

54

CHAPTER IV

-a.

Experimental Analysis

4.1 Experimental Setup

In this chapter, the experimental results for storage and retrieval cost as well as range of

usability of both the TMA based schemes (CRS and C'IiOJj) and EMA based schemes

(EaCRS, LEaCRS, EachOjñ are analyzed. We simulate the retrieval cost for range key

query and extension cost for all the TMA and EMA based schemes. To evaluate the

efficiency of the proposed schemes, the schemes were experimented on multidimensional

array systems. All lengths or sizes of storage areas are in bytes. For experimental work, all

systems are implemented in C++ language (Microsoft Visual Studio 6.0) and are run on a

machine (Intel Pentium dual core processor) of 2.7 Gllz, 1GB RAM, 4GB virtual memory

and as an operating system Windows 7 Ultimate are used. Since execution time of the

program is dependent on several system specification parameters like processor speed,

size of the primary memory and the number of thread running on the system; so extension

cost and data access time may different at different machine.

Table 4.1: The values of the parameters considered for experimental analysis.

L S p

4 40 5. 0.10 - 0.70 4 4, 8 3. 4, 5, 6

4.2 Experimental parameters

CRS, ChOff EaCRS, LEaCRS and EaC/iOjJ' schemes are implemented by placing all the

arrays in secondary storage. Among the three auxiliai-y tables of extendible array,

coefficient vector and address table are void for the EaCRS. LEaCRS and EciChOff

schemes and only the history table is required for these schemes. History table acts as an

index for locating the subarrays. Thus history tables are stored in main memory for fast

access since the sizes of the auxiliary tables are negligible comparing to the main arrays.

4"

55

Table 4.1 shows the parameter values used for experimental analysis (See Table 3.1 for

definitions of the parameters).

4.3 Experimental Results

4.3.1 Comparison of Compression Ratio

Figure 4.1 shows the Compression ratio (ii) found by experimental results of the TMA

based (CRS and ChQfJ) schemes and EMA based (EaCRS, LEaCRS and EaChOJD

schemes. It is an important metric to determine the range of uability (see deflnition 3.1)

of the compression schemes. Reorganization of the equations 3.2 and 3.4 give the

followings respectively:

77CRS + + P

pa
 hlChOff=+j— +P ...(4.2)

By reorganizing the equations 3.9. 3.11 and 3.14 and using Table 3.2, we have the

followings respectively:

(n-2)pcz (nL-n+2)a
-

71EaCRS - +
2L'f3 + ... (43)

71LEaCRS =+(h1L;;1)a +O ... (4.4)

pa
 71EaChOff = +

(2n(L-1)+1)a
 + p ... (4.5)

Figure 4.1(a), (b) and (c) shows the experimental results forfl = 8 and varying pand n =

3, n = 4 and n = 5 respectively. It is found that 'i increases with the increase of p. This is

because; from the above cost analysis (see equation 4.1. 4.2, 4.3, 4.4. 4.5), we found that r

is directly proportional to the value of p for a constant value of ii, L, a and fi. In Figure

4.] (a), for n = 3; '1c/s crosses the value I at an approximate p= 0.50 but .'7c:iog; '/EaCRS,

1/LE<iCRS, and 11E,choff cross the value 1 at an approximate p= 0.66. In Figure 4.1(b). for n =

4; 'icRs and 1/Ea(I5' crosses the value I at an approximate p= 0.40 and p= 0.50 respectively

but /ChOff, TILEaRS, and /iEaChOff cross the value 1 at an approximate p= 0.66. In Figure 4.1(c),

for n = 5; t7cid and 1 (/ crosses the value I at an approximate p= 0.33 and p= 0.40 respectively

but 1ciojj; 11.Eacps, and cross the value I at an approximate p= 0.66.

--CR5 -16-EaCRS -&--LEaCRS
ChOff -0-- EaChOff

1.4

1.2

0.6

1.6

0 0.2 0.4 0.6 0.8

Data Density

(a)i for n = 3and,Li= 8.
---CRS -*--EaCRS ---LEaCRS

ChOff -0-- EaChOff

-0-- CRS -16-- EaCRS -fr-- LEaCR5
L--choff -O---EaChOff

Cr

002 04 05 08
Data Density

(b), for n =4 and /3=8.
1-0-CRS -*-EaCRS -O--LEaCRS
I -*-- ChOff -0-- EaChOff
14

CL
OA

56

0

'V

CI
0

U
0
E
0
UI

0 0.1 0.2 0.3 0.4 0.5 0.6

Data Density

(d) ij for ii = 3 and fi = 4.
-0--CRS -16-EaCRS --LEaCRS

L-16--- ChOff-0- taChOf

1.2

08

CL

data density

(I) il for ii = 5 and /J= 4.

-16-CRS -16-ChOff -l--EaCRS
-4-- LEaCRS -h--- EaChOff

X lIt 16 16 81 81 81
0

'V

C
0

0)
0.
E
'3

0 2 4 6 8 0 5 10 15 20 25 30 35 40

Array Dimension Din3ension Length

(g) , with constant p and varying ii. (h) q with constant p and varying L.

Figure 4.1: Comparison of compression ratio for (IRS, EaCRS, LEaCRS, ChOff and

EaChOff schemes.

0 0.2 0.4 0.6 02

Data Density

(c). forn = 5and/J= 8.
ICRS -*-EaCRS -&--LEaCRSJ
I ---ChOff -O---EaChOff

1.4

1.2

€ 1
'V

2
0.6

0.. 0.4
E
3 0.2

0 0.1 02 0.3 0.4 0.5 0.6

Data Density

(e), forn =4 and 13= 4.
-e-CRS -*--EaCRS -LEaCRS

[-N.--ChOff -0--EaChOff
1.2

.2
0.8

C
.2 0.6

0.4

U
o 0.2

0

57

In all the cases, ChOff, LEaCRS and EaChOjfoutperibriii CRS and EczCRS schemes for

compression ratio as well as range of usability. This is because CRS scheme requires n

auxiliary arrays for n dimensional sparse array and EaC'RS scheme requires n-i auxiliary

arrays for the same sparse array but ChOjj, LEaCRS and EaChOjj scheme requires only 2

auxiliary arrays for any dimensional sparse array.

Figure 4.1(d), 4.1(e) and 4.1(0 shows the experimental results for / = 4 and varying p and

n = 3, n = 4 and n = 5 respectively. It is fiund that, in all the cases ?1(hoff; 'lEczcRs,

)7LEaCRS, and 7 Eac1joJJ' crosses the value I for lower value of p with respect to the value of p

in figure 4.1(a), 4.1(b) and 4.1(c). This is because; From the above cost analysis (see

equation 4.1, 4.2, 4.3, 4.4, 4.5), we found that i is inversely proportional to the value of fi
for a constant value of n, L, a and p.

Figure 4.1(g) shows the range of usability comparison among CRS, ChOfT EaCRS,

LEaCRS and EaC'hOff schemes for p = 0.30. The tests were conducted for various values

of n (3 6) and ,B = 8. ,Cjs and i/EaCPS increases with the increase of a, but Jichoff, 'lLEaCRS,

and 'lliac/?Qff remains approximately same for all the cases. This is because; from equation

4.1 and 4.3 we found that, 71CRS (n - 1) and 1/E(1C;?S (n - 2); considering values of

n, L, a and 13 constant and we can ignore the second term (see equation 4.1 and 4.3) of

both the equation for large values of L. On the other hand 11 has no effect on 11C/iOff (see

equation 4.2) and n has very small effect on 1L&iCJ?.S. and '/Eac/iOff(see equation 4.4 and 4.5)

for large values of L; since we can ignore the second term of the equation 4.4 and 4.5 for

large values of L. 1-lence range of usability of CRS and EaCJ?S schemes decreases with the

increase of a, but remains almost constant for ChOJf LEaCRS and EaChOff schemes for

any dimensional sparse array as explained in Chapter Ill.

Figure 4.1(h) shows the test results of the space requirement of the CRS, ChOjf EacRS,

LEaCRS and EaChOff schemes for varying L. 'flie tests were conducted for a = 5, fi = 8

and p = 0.3. From Figure 4.1(h) we can see that L has no effect on ij for all the schemes,

which validate the above cost analysis (see equation 4.1. 4.2, 4.3. 4.4 and 4.5).

4.3.2 Extension Cost

Figure 4.2(a) shows the extension cost for CRS, ('hO/f EaCRS. LEaCRS and EaChOff

schemes. The TMA based schemes (both CRS and C/'Off) reorganizes the array whenever

there is an extension to it. The 'I'MA based schemes need to fetch the existing elements

58

then reorganize for the extension. On the other hand the EMA based schemes namely

EaC'RS, LEaCRS and EaChOjf schemes extend the initial array with segment of subarrays

containing the new data as described in chapter III. I-fence the EMA based schemes can

reduce the cost of array extensions significantly. In figure 4.2(a), the extension times are

shown with n = 5, p = 0.3, 13 = 8 and 8 = 5. where ve find the extension times for TMA

based compression schemes are much higher than the EMA based compression schemes.

Figure 4.2(b) shows the extension gain i.e. the extension time difference between the

EaCPS and CRS, LEaCRS and C1?S and EaChO/jand ('I'iOjjschemcs.

--CRS ---ChOff —4—EaCRS

-*-- EaChOff -*-- LEaCRS

2000

1600
0)

.. 1200
0)
E
i 800
0

400

uJ
0

-400

10 15 20 25 30 35 40
Dimension Length

(a) Extension cost

-'--- LLaCRS over CItS -4-- EaCRS over CR5

-*-- EaChOft over ChOft

2000

1600

' 1200 0

E
- 800

' 400

0

-400

10 15 20 25 30 35 40

Dimension Length

(b) Extension gain

Figure 4.2: Extension cost and Extension gain comparison of CRS. EaCRS, LEaCRS,

ChOff and EaChOff schemes for a = 5, p = 0.3, /3 = 8,6 = 5 for varying L.

The extension cost as well as extension gain depends on the initial volume of the array i.e.

the values of a and L before the array is extended. 1-lence, if,i and L increase, then EMA

based schemes need less data to store than TMA based schemes without any

reorganization of data. So TMA based schemes need higher times than EMA based

schemes and thus gain increases. We can conclude that if the initial volume is large then

the extension cost for TMA based schemes are higher.

4.3.3 Retrieval Cost

Figure 4.3 shows the retrieval performance for range l'ey query of' TMA and EMA based

compression schemes for n=5, L=30 with different density and the query ranges from

dimension length 7 to dimension length 21 of"the array for the tests.

59

yr

-'--j-0 -e--chm-i -0--dim-2
Le-dim-3 -6--dim-4

1600

1400

1200

800

600

400

200

0

0 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

Data Density

(a) for CRS scheme.

-44-dim-0 -6--dim-1 -e-dim-2
-B- dim-3 -a- dim-4

1600

1400

1200

- 1000
a) In E 800

600

400

200

0

0 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55
Data Density

(c) for ChOff scheme.

-)(--dim-0 -6--dim-i -9--dim-2
-B-- dim-3 -tx--- dim-4

1800

1600

1400

1200

1000

E 800

600

400

200

0 -
I

0 0_1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55
Data Density

(b) for EaC'RS scheme.

-44---dim-0 -6--dim-i -0--dim-2
-B- dim-3 -&-- dim-4

1800

E
600

400

200
0

0 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55
Data Density

(ci) for LEaCRS scheme.

1800
1600
1400

1200
LI

I 1000

- 800

. 600

400

200

0

----dim-0 -0-- i-dim -e-- 2-dim
-B-3-dirn --4-dirn

0 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

Data Density

(e) for EaChOff scheme.

Figure 4.3: Retrieval cost analysis for CRS, EaCRS, LEaCRS, ChOff and EaChOff

schemes for different known dimensions.

In Figure 4.3(a) the retrieval performance for CRS scheme for different known dimension

is shown. It shows that, the retrieval time is lower for (hmension-0. This is because the

901

element inside the TMA can be organized as row major order or column major order. If

the elements are organized in one order (say row major) and it is searched in the same

dimension; the target elements for the query are consecutively organized. This is not true

for all other dimensions and therefore that dimensions take longer times. Similarly Figure

4.3(b) shows that the retrieval time is lower for dimension-4 for EaCRS scheme. This is

because the subarrays of EMA(n) are n-I dimensional; the elements inside the subarrays

again can be organized as row major order or column major order. Hence for EaCRS

scheme, the same situation occurs i.e. fbr one known dimension EaCRS takes lower time

than others as shown in Figure 4.3(b). Figure 4.3(c), 4.3(d) and 4.3(e) show the retrieval

performance for ChOfjç LEaCRS and EaChOif schemes respectively for different known

dimensions. In all the cases, retrieval time is almost same for different known dimensions.

This is because, in these compression schemes; the array is linearized in a single data

stream using the addressing function; therefore all the offset values of the array elements

are considered as a single row. Hence the range of candidate offset values for a query can

be determined uniquely.

3500

3000

2500

2000

E
n, 1500
E

1000

500

0

—ti-- EMA —*—'- LEaCRS —e--- EaChOff
—0.-- EaCRS —a-- ChOff .—*-- CIS

0 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 55
Odla Density

Figure 4.4: Comparison of Average retrieval time lor CR8, EaCRS, LEaCRS, ChOff and

EaChOff schemes for different dimension.

Figure 4.4 shows the average range key retrieval time of both compression schemes and

uncompressed EMA with different density for ii = 5. L = 30 and /5 = 8. Retrieval is made

for the dimension length 7 — 21, considering each dimension as known dimension and then

averaged. From Figure 4.3, we find that retrieval time increases linearly with the increase

of data density for all the compression schemes (CRS, ChOf/ EaCRS. LEaCRS and

EaChOfJ. This is because for an n-dimensional array with a particular length L and

density p the number of non empty cell IspL. So if p changes the total number changes

linearly and hence the retrieval time. 1-lowever there is no effect of data density on the

retrieval time of uncompressed EMA. The reason is, in uncompressed EMA whatever the

density, the sizes of subarrays remain same, and hence retrieval time is constant.

4.4 Discussion

In this chapter we present the experimental outcomes of the proposed scheme. We

compare space requirement and range of usability of the EacRS, LEaCRS and EaChOff

schemes with that of CRS and C/iOff schemes on TMA. Retrieval time of the CRS, ChOff,

EaC'hOff, EaC'RS and LEaCRS schemes are examined and compared with the retrieval

time of the EMA. In each case we found relevancy with the theoretical analysis what we

made in Chapter 111. Furthermore we find that, proposed compression schemes outperform

TMA based compression schemes for extension operation.

(

62

CHAPTER V

Conclusion

5.1 Concluding Remarks

The amount of information stored and analyzed in modern data sciences are very large. Since

they can be very large; must be stored and retrieved from disk in costly I/O operations. So, many

scientific applications extensively use multidimensional array to represent their data for efficient

processing. However in many cases the total number of data or dimension cannot be predicted

beforehand. Besides this, representing the real world data in multidimensional array creates a

very sparse array. Compressing the data has important advantages. The most obvious advantages

are the consequences of the smaller space usage. In this research work, we managed both

sparsity and the dynamic extension problem by presenting database compression schemes based

on EMA. We propose three new compression schemes namely EaCRS, LEUCRS and EaChOff

for multidimensional array representation. Since EaCRS, LEUCRS and EaChOff schemes are

based on an extendible multidimensional array system and compression scheme is applied for

each subarray independently, such an array can extend its size dynamically along an arbitrary

dimension without any relocation of existing data. We evaluated the proposed compression

schemes both analytically and experimentally. In all the cases experimental results confirm the

theoretical model. Hence the analytical model is validated. Again we compared the proposed

schemes with TMA based compression schemes namely CRS and ChO/jand found better results

for the proposed schemes.

5.2 Future Recommendations

The future applications and recommendations can be summarized as follows

• The proposed schemes can easily be implemented in parallel platform. Because the

subarrays of the extendible array are independent to each other, the suharrays can be

distributed among the processors [48] and hence EaCRS, LEa('RS and EaChOff schemes

63

can be applied over the subarrays in parallel. Hence it will be very efficient to apply these

schemes in parallel and multiprocessor environment.
- • The schemes can be applied to implement the compressed form of MOLAP server and

data warehouses. As the extension occurs incrementally for EMA and the proposed

schemes are based on EMA. EaCRS, LEaCRS and EaChQ/f schemes can efficiently be

applied for incremental aggregation i.e is form of velocity for big data analysis. Hence it

is applicable for big data analytics.

• The scheme can be applied to multidimensional database implementations using usual

RDBMS for multidimensional data analysis.

64

REFERENCES

Pedro Furtado and Henrique Madeira, 2000, "Data Cube Compression with
QuantiCubes", DaWaK 2000, LNCS 1874, pp. 162— 167.

D. Chatziantonian and K. Ross, 1996, "Querying Multiple Features in Relational
Databases", Proc. of 22nd International Conf. Very I.arge Databases, pp. 295-306.

M. A. Roth and S.J. Van Florn, 1993, "Database Compression", SIGMOD Record,
vol. 22, no. 3, pp. 19-29.

J. Ziv, Lempel, 1977, "A Universal algorithm for sequential data compression",
IEEE Transactions on Information Theory, Volume 23, N° 3, pp. 337-343.

Welsh, Terry, June 1984, "A Technique for High-Performance Data Compression"
IEEE Computer, Volume 17, No 6, pp. 8-19.

M. Nelson, J-L Gaily, "The Data Compression Book", 2nd edition, 1996 - M&T
Books, ISBN 1-5585 1-434-1.

M.A. Bassiouni, 1985, "Data Compression in Scientific and Statistical Databases",
IEEE Trans. Software Eng., vol. 11, no. 10, pp. 1047-1058.

Sarawagi, S. and Stonebraker, M., 1994, "Efficient Organization of Large
multidimensional Arrays", Proc. of 10th International Conference on Data
Engineering, pp. 328-336, I-louston, TX, USA.

Y. L. Chun, C. C. Yeh, and S. L. Jen, 2003, "Efficient data parallel algorithms for
multidimensional array operations based on the EKMR scheme for distributed
memory multicomputer," IEEE Parallel and Distributed Systems. 14(7). pp. 625-639.

Manuel Ujaldon, Emilio L. Zapata, Shamik D. Sharma, and Joel Saltz, 1996,
"Parallelization Techniques for Sparse Matrix Applications," Journal of parallel and
distribution computing.

J.K. Cullurn and R.A. Willoughby, 1985, "Algorithms for Large Symmetric Eigen
value Computations," vol. 1.

G.H. Golub and C.F. Van Loan, 1989, Matrix Computations, 2nd ed. (Johns Hopkins
Univ.Press, Baltimore).

Li, J. and Srivastava, J., 2002, "Efficient Aggregation Algorithms for Compressed
Data Warehouses", IEEE Transaction on Knowledge and Data Engineering, Vol. 14,
No. 3, pp. 5 15-529.

65

White J. B. and Sadayappan P., 1997, "On Improving the Performance of Sparse
Matrixvector Multiplication", Proc. of 1 nternational Con lrence on High
Performance Computing, pp. 711-725.

H. Kang and C. Chung, 2002, "Exploiting versions for On-line data warehouse
maintenance in MOLAP servers", Proc. of VLDB, pp.742-753.

Acker, R., Pieringer, R. and Bayer, R., 2005, "Towards Tru ly Extensible Database
Systems", Proc. of DEXA, LNCS, Vol. 3588, pp. 596-605.

Hasan, K.M.A., Azuma, M.N., Tsuji, T., and l-ligiichi, K.. 2005. "An Extendible
Array Based Implementation of Relational Tables l'or Multidimensional Databases",
Proc. of DaWak, LNCS, Vol. 3580, pp. 233-242.

Otoo, E. J. and Merrett, T.l-I., 1983, "A Storage Scheme for Extendible Arrays",
Computing, Vol. 31, pp. 1-9.

K. M. Azhartil Hasan, T. Tsuji, and K. Higuchi, 2007. "An Efficient Implementation
for MOLAP Basic Data Structure and Its Evaluation", Proc. of I)ASFAA , LNCS
4443, pp. 288 —299.

G. Colliat, 1996, 'OLAP, Relational and Multidimensional Databases Systems",
SIGMOD Record, vol. 25, no. 3.

Kumakiri, M., Bei, L., Tsuji, T. and Higuchi, K., 2006, "Flexibly Resizable
Multidimensional Arrays", Proc. of 22nd International Conference on Data
Engineering Workshops, pp. 83-88.

Zhao, Y., Deshpande, P.M. and Naughton, J. F., 1997, "An Array Based Algorithm
for Simultaneous Multidimensional Aggregates", i\CN4 SIGMOD. pp. 159-170.

Barret R., Berry M., Chan T.F.. Dongara J., Eljkhhout V., Pozo R., Romine C. and

'

Van H., 1994, "Templates for the Solution of Linear Systems: Building Blocks for
the Iterative Methods", SIAM, 2nd. ed.

Tsuji, T., Hara, A. and 1-liguchi, K., 2006, "An Extendible Multidimensional Array
System for MOLAP", SAC'06 April pp. 23-27,

Shimada, T., Fang, T., Tsuji, T. and Higuchi. K., 2006. "Containerization
Algorithms for Multidimensional Arrays", Asia Simulation Conference, pp.
228-232.

Tsuji, T., Jin, D. and Higuchi, K., 2008, "Data Compression for Incremental Data
Cube Maintenance", proc. of DASFAA, LNCS, Vol. 4947, pp. 682-685.

T.Tsuji, G.Mizuno, 1'.Hochin, K.l-liguchi, 2003, "A Del'erred Allocation Scheme of
Extendible Arrays", Transaction of IEICE, Vol.J86-1)-l. pp. 35 1-356.

IWO

Rosenberg, A.L., 1974, "Allocating Storage for Extendible Arrays". Journal of the
ACM (JACM), Vol. 21, pp. 652-670.

Rosenberg, L. and Stockmeyer, L. J.. 1977. "Hashing Schemes for Extendible
Arrays", JACM, Vol. 24, pp.199-221.

P. Vassiliadis, 1998, "Modeling multidimensional databases. Cubes and Cube
Operations", Proc. of SSDBM, pp. 53-62.

Pedersen, T. B. and Jensen. C. S., 2001, "Multidimensional Database Technology",
IEEE Computer, Vol. 34, No.12, pp. 40-46.

Rotem, D. and Zhao, J.L., 1996, "Extendible Arrays for Statistical Databases and
OLAP Applications", Proc. of 8th International Conference on SSDBM, pp.
108-117, Stockholm, Sweden.

K. E. Searnons and M. Winsleit, 1994, Phvsical Schemas for Large
Multidimensional Arrays in Scientific Conipuling Applications", Proc. of 7th
International Conference on Scientific and Statistical Database Management
(SSDBM), pp. 2 18-227, IEEE CS, Washington, DC. USA.

T. Tsuji, M. Kuroda, and K. l-liguchi, 2008, "1 listory offset implementation scheme
for large scale multidimensional data sets," Proc. of ACM Symposium on Applied
Computing, pp. 102 1-1028.

Sk. Md. Masudul Ahsan, "An Efficient Implementation Scheme for
Multidimensional Index Array Operations and Its Evaluation", A Thesis
- submitted to Computer Science and Engineering Department. Khulna
University of Engineering and Technology, CSER-M-12-ol, January. 2012.

Sk. Md. Masudul Ahsan and K. M. A. Hasan, 2013, "Extendible Multidimensional
Array Based Storage Scheme for Efficient Management of High Dimensional Data,"
International Journal of Next-Generation Computing, Vol 4, No 1. pp. 88-105.

Sk. Md. Masudul Ahsan and K. M. Azharul Hasan, 2013"An Efficient Encoding
Scheme to 1-landle the Address Space Overflow for Large Multidimensional Arrays",
Journal of Computers, Vol 8, No 5, pp. 1136-1144.

Halder, A.K., 2005, "Karnaugh map extended to six or more variables", Electronics
Letters, Vol. 18, No. 20, pp. 868-870.

Holder, M.E., 2005, "A modified Karnaugh map technique ', IEEE Transactions on
Education, Vol. 48, No. 1, pp. 206-207.

Chun-Yuan Lin, Yeh-Ching Chung, Jen-Shiuh Liu, December 2003, 'Efficient Data
Compression Methods for Multidimensional Sparse Array Operations Based on the
EKMR Scheme," IEEE Transactions on Computers. Vol. 52, No. 12. pp.1640-1646.

4-

67

Chun, Y. L., Jeii, S.L. and Yeh, C.C., 2002, "Efficient Representation Scheme for
Multidimensional Array Operations," IEEE Transactions on Computers, Vol. 51, No.
3, pp. 327-354.

J.B. White and P. Sadayappan. 1997, "On improving the performance of sparse
matrix vector multiplication", Proc. of Int'l Conf. I ugh Performance Computing, pp.
711-725.

J. Li, D. Rottern and U.K. Wong, 1987, "A New Compression Method with Fast
Searching on Large Databases", Proc. of 13th int'l contrence on Very large
databases, pp. 311-318.

S. Eggers and A. Shoshani, 1980, "Efficient Access oF Compressed Data", Proc. of
sixth int'l conference on Very large Databases, pp.205-211.

K. M. Azharul Hasan, 2009, "Compression Schemes or Iligh [)imcnsional Data for
MOLAP", In the Edited Book, "Evolving Application Domains of Data
Warehousing and Mining: Trends and Solutions" Chapter IV, Information Science
Reference, pp. 64-81.

Sk. Md. Masudul Ahsan, K. M. Azharul Hasan, 2013 "An Implementation Scheme
for Multidimensional Extendable Array Operations and Its [valuation", Proc. of
IClEIS 2011, pp. 136-150. Springer-Verlag.

Li, B., Tsuji, T. and Higuchi, K., 2007, "Sharin Flexibly Resizable
Multidimensional Arrays in Client/Server Environment" Proc. of the International
Workshop on Databases for Next Generation Researchers, pp. 19-24. Istanbul.

T.Tsuji, 1-I.Kawahar, K.Higuchi, T.Hochin, 2001, "Sharing [xtcndible Arrays in a
Distributed Environment", Proc. of IICS, LNCS, 2060. pp. 4 1-53.

J..

1-

