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Abstract 

Traditional Multidimensional Array (TMA) is an important data structure for handling 

large scale multidimensional dataset, but they are not extendible during run time. Another 

problem for representing the real life data by multidimensional arrays is that it creates high 

degree of sparsity. Due to this sparsity problem and increasing size of the data structures, 

it becomes necessity to develop a suitable scheme to compress the multidimensional array 

in an efficient way so that it takes comparatively low memory storage. To minimize both 

of these sparsity and reorganization problem novel schemes are proposed to compress high 

dimensional data based on dynamically extendible array. In this research work we propose 

compression schemes based on Extendible multidimensional array. The proposed 

compression schemes are Extendible array based Compressed Row Storage (EaCRS)  

scheme, Linearized Extendible array based Compressed Row Storage (LEaCRS) scheme 

and Extendible array based Chunk Offset Compression Scheme (EaChOfJ. The main idea 

of both the EaCRS and LEaCRS scheme is to compress the subarrays independently found 

from the existing extendible array. LEaCRS scheme differs from EaCRS scheme only in 

the way that the LEaCRS scheme needs to linearize each subarray first and then 

compresses the subarray independently. EaChOJj scheme linearizes each subarray 

independently and breaks a large multi dimensional extendible array into chunks for 

compressing. In this scheme, a maximum size of each chunk is considered and chunks are 

formed by one or more subarrays. We evaluated our proposed schemes by comparing 

compression ratio, data retrieval time and extension cost with CR3 on TMA and Chunk-

OJjei Compression on TMA. Both analytical analysis and experimental tests were 

conducted. The analytical analysis and experimental results show that the proposed 

schemes have better range of usability and compression ratio for practical applications 

than traditional schemes. Furthermore, we found that the retrieval time of the proposed 

compression schemes are independent of different dimensions. The increment operation 

will be efficient in the proposed compression schemes than the existing traditional 

compression schemes because it increments without reorganizing the previous data. 
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CHAPTER I 

Introduction 

1.1 Introduction 

The process of reducing the size of data in order to save space or transmission time is 

termed as data compression. Data compression is widely used in data management to save 

storage space and network bandwidth [1]. The main benefit of data compression is that of 

increasing the capacity of the storage medium since data compression reduces the storage 

,r 
requirement for the databases. Compressed information can be transferred from one place 

to another in a higher effective transfer rate. This is because compressed data are encoded 

using a smaller number of bytes and hence results less time for information transfer. Since 

data compression reduces the loading of I/O channels, it becomes feasible to process more 

I/O requests per second and hence achieve higher effective channel utilization. Most 

importantly, however, is the application of data compression in reducing the cost of data 

communication in distributed networks. In some applications, data compression can 

reduce the average search cost and thus leads to improvement in system performance. For 

example, in some index structures it is possible through compression to pack more keys 

into each index block. When the database is searched for a given key value, the key is first 

compressed and the search is performed against the compressed keys in the index blocks 

[2] which results fewer blocks retrieval. Compression is of two types: data compression 

and database compression [3]. In data compression, in order to use compressed data, it is 

necessary to restore the information to its uncompressed format. Data compression 

techniques (e.g. Arithmetic Coding, Lempel-ZIV, Huffman Coding etc. [4,5,6]) achieve 

large compression rates that are very useful for archiving. The compressed data sets are 

not directly queriable without prior decompression. But it is desirable to develop 

compression techniques so that the data can be accessed in their compressed form and 

operations can be performed directly on the compressed data. Such techniques are called 

database compression techniques and usually provide two mapping [7]. One is forward 

mapping. It computes the location in the compressed data set given a position in the 



original data set. The other one is backward mapping. It computes the position in the 

original data set given a location in the compressed data set. A compression method is 

mapping-complete if it provides both forward mapping and backward mapping. In this 

research work we are going to propose database compression schemes fbr handling 

multidimensional data sets having the facility of dynamic extendibility during runtime. 

The idea is based on multidimensional extendible arrays. 

Arrays are among the best-understood and most widely used data structures. Few classes 

of data structures are as well understood or as widely used as arrays. Large 

multidimensional arrays are quite often used as the basic data structure in scientific, 

statistical and engineering applications for modeling and analyzing scientific phenomena 

[8,9] such as climate modeling [10], molecular dynamics [11], finite-element methods [12] 

etc. Different statistical computations can be performed professionally on 

multidimensional arrays due to its fast random accessing capability [6,13,14]. But this 

capability depends on the fact that the size of each dimension should be fixed so that a 

simple addressing function can be used to access an arbitrary element of the array. 

However, in real Multidimensional Online Analytical Processing (MOLAP) [15,16] 

applications data size grows incrementally. When a new data value is added, size 

extension along the corresponding dimension is necessary. Except the extension along last 

dimension this drawback implies reorganization of the entire array. This extendibility 

problem of conventional array system can be solved using extendible array model. An 

extendible array can be extended in any dimension without any repositioning of previously 

stored data [17,18]. Such advantage makes it possible for an extendible array to be applied 

into wide application area where required array size cannot be predicted before and I or 

can vary dynamically during operating time of the system. 

1.2 Problem Statement 

Traditional Multidimensional Array (TMA) [19,20,21] is a good storage for storing 

multidimensional data but one serious drawback is that they are not dynamically 

extendible. To insert a new column value in the TMA the total reorganization of the array 

is necessary. The idea of extendible array solves the problem of extendibility. Extendible 

arrays, in fact, are combination of subarrays. If the array is ii dimensional then the 

subarrays are n-I dimensional. 
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Multidimensional arrays are good to store dense data, but most datasets are sparse which 

wastes huge memory because a large number of array cells are empty and thus are very 

hard to use in actual implementation [22]. In particular, the sparsity problem increases 

when the number of dimensions increases. This is because the number of all possible 

combinations of dimension values exponentially increases, whereas the number of actual 

data values would not increase at such a rate. For Example in an international trade data 

set there are several dimensions such as importing country, exporting country, date-time, 

items, measure amount of items etc. But generally a small number of items are exported 

from any given country to other countries. Many of the compression schemes based on 

TMA such as Compressed Row/Column Storage (CRS/CCS) 114,23] or Chunk-offset 

Compression [22,24] already exist. CRS is commonly used due to its simplicity and purity 

with a weak dependence relationship between array elements in a sparse array. But this 

scheme is based on the TMA. Chunk-Offset compression scheme is also well studied in 

the literature for multidimensional data analysis. But once again it is based on TMA. One 

main problem of TMA based compressions schemes are that it is static in nature. This is 

because, if there is any extension in each dimension in TMA based compression schemes, 

we need to restore compressed data to its original format and perform the desired 

extension for the new added data sets. Then the reorganized TMA is compressed by using 

some compression schemes. So, efficient compression schemes are required to store such 

sparse data for multidimensional data sets [13,25,26] without any reorganization and 

relocation. In this thesis, we are going to propose and evaluate a new and efficient 

compression schemes based on extendible multidimensional array (EMA) [27,28,29] to 

manage the problem of extendibility without reorganization of data and apply a suitable 

compression scheme on the EMA to have good compression ratio. 

1.3 Objectives 

Various scientific applications use multidimensional array as a basic data structure to 

represent high dimensional data. This is because multidimensional array has an inherent 

facility to compute aggregation operation [30]. Extendibility is an important requirement 

of those applications since data grows over time. 1-lence, an array model or realization 

scheme which can be extended over time is strong requirement of current era. Again 

because of sparsity most datasets are very hard to use in actual implementation. 
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Therefore main objective of this research topic can be summarized as follows 

• To develop compression schemes for High Dimensional Data based on EMA, 

which will impose less space and the maximum range of usable data density, will be 

advanced for practical applications. 

• To analyze the increment operation (which is known as extension operation) along 

with the basic operations on proposed compression schemes, with respect to the 

existing traditional compression schemes. 

• To devise both forward mapping and backward mapping techniques for the 

proposed scheme i.e. perform efficient and random searching in compressed array 

for a given logical position of the original array; and also provide an efficient 

mapping from arbitrary positions in the compressed data back to the corresponding 

logical position in the original array. 

• To analyze the performance and usability of the proposed compression schemes on 

sparse array. 

1.4 Scope of the Thesis 

This thesis deals with array system and compression schemes and proposes new and 

efficient database compression scheme for high dimensional data based on EMA. Other 

important scopes under this thesis are: 

• Compresses the EMA by applying compression scheme on each subarray of the 

extendible array independently. 

• Compares the new schemes with the existing schemes in terms of space 

requ irement/compress ion ratio (ii), range of usability, extension cost and retrieval 

cost. 

• Store the elements in the secondary storage to set the actual q. 

Range key query are evaluated for the retrieval cost analysis. 

1.5 Thesis Organization 

• Chapter I describes the problems of TMA as well as of existing compression 

schemes. Objectives and scopes of the thesis are also outlined in this chapter. 

Y 
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• Chapter II presents an overview of array systems and different types of 

compression schemes. 

• Chapter III provides the detailed discussion about the compression schemes for 

high dimensional data based on extendible array. Forward mapping and backward 

mapping techniques of the proposed schemes are explained with examples in this 

chapter. This chapter also describes theoretical analysis along with the cost models 

for existing schemes as well as proposed schemes. 

• Chapter IV shows the experimental setup, experimental results and detail analysis 

of the result. Hence we validate the cost models of the proposed schemes. 

• Chapter V outlines the concluding remarks and direction of future research work. 

A 
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CHAPTER II 

LI 

Literature Review 

2.1 Introduction 

Large multidimensional arrays are widely used as the basic data structure in scientific, 

statistical and engineering applications. Multidimensional databases such as MOLAP 

databases [31,32) frequently make use of multidimensional array for handling large scale 

multidimensional data. In MOLAP applications, compression is important because 

database performance of MOLAP database strongly depends on the amount of available 

memory [13,22]. The solid demand of those applications leads novel researches on 

organization or implementation schemes for multidimensional arrays on secondary storage 

and different compression schemes for this multidimensional array. Multidimensional 

arrays are becoming the most popular data structure because of an inherent facility of 

random accessing. But capability demands the length, and number of dimension to be 

fixed - which leads problem of dynamic extension. There are many data structures already 

exist to represent multidimensional data. Some of them are static in nature and some are 

dynamic - i.e. resizable without reorganizing the already allocated data. Some of the well-

known and prominent data structures are discussed in this section. 

2.2 The Multidimensional Array Systems 

An Array A[d1 ,d2,. . .,d] is an association between n-tuples of integer indices 

(11, 12, ..., 1 ) and the elements of a set of E such that, to each n-tuples given by the ranges 

0 :!~' 1 <d1 , 0 :!~ 12  <d2 ,..., 0 :!~l <c/,, there corresponds an element of E. The domain from 

which the elements are chosen is immaterial and we make the assumption that only one 

memory location need to be assigned to each n-tuples. Each array may be visualized as the 

lattice points in a rectangular region of n-space. The set of continuous memory locations 

into which the array maps is denoted by A[0:D] where D = (fl c1) - 1. Let Ad1, 

d, 1, d,,) be ann dimensional array with length of each dimension d1,d2.....d,,. 
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2.2.1 Traditional Multidimensional Array (TMA) 

Traditional Multidimensional Array (TMA) [16,22,33] is a representation scheme for 

multidimensional data which represent n dimensional data by n dimensional array. The 

TMA represent n dimensional data by an array cell in an n dimensional array. The key to 

the structure of arrays resides in the familiar coordinate system, which pictures an n-

dimensional array as being imbedded in the positive orthant of n-dimensional space, with 

array positions lay on the lattice points. 

The fast random accessing capability that is characteristic to multidimensional arrays 

enables various statistical computations including aggregation to be performed efficiently 

on stored fact data. This capability is owing to that the size of each dimension of a 

multidimensional array is fixed so a simple addressing function can be used to address an 

arbitrary element of the array. An element (i,, 1,7.1....., ij) in ail /1 dimensional TMA of 

size fd,,, d,71....., djJ is allocated on memory using an addressing function like equation 

2.1 (see section 2.3.1). Although Storage by linearization allows extension without any 

movement of existing elements only in one of the dimensions, TMA suffers from the 

reorganization problem; when a new data value is added only in third dimension of a 

TMA(3), we can readily extend the 3D TMA in third dimension but array size extension 

along other dimensions necessitates reorganization of the entire array elements. 

2.2.2 Extendible Multidimensional Array (EMA) 

The idea of extendible multidimensional array is described in [18,32,34]. An n 

dimensional extendible array A can be extended in any dimension only by the cost of three 

kinds of auxiliary tables namely history table i-I,, address table L1, and coefficient table C, 

for each extendible dimension i (i=i,...,n,). See Figure 2.1. History tables and address 

tables are one dimensional array. History tables memorize extension history. An n 

dimensional extendible array A is the combination of n-I dimensional subarrays. If the 

size of A is fd1, d2,..., d.1, d,] and the extended dimension is i, for an extension of A along 

dimension i, contiguous memory area that frms an n-i dimensional subarray S of size 

fd1 d2  .....d 1, ci 1 ,..., d.1, d,] is dynamically allocated and added to A in dimension i. 

Then the history value counter h is incremented by one and the value is memorized in the 

history table H,, also the first address of S is held on the address table L. Note that S is a 

usual fixed size array, and the actual data is stored in these subarrays. 
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As is well known, an element <i1,i2,...,i> in an n dimensional conventional fixed size 

array of size fd j,d2,..., d,j is allocated on memory using an addressing function like 

equation 2.1 (see section 2.3.1) and coefficient vector (defined in section 2.3.1) <d2d3  ... d,,, 

d3d4...d,,......., d,1 > is held in a coefficient table. For example, let A be a four dimensional 

extendible array whose Current sizes are Id1, d2, d3, d.,J. If A is extended by one along the 

dimension two, a three dimensional fixed array S of sizes fd,, 13, d4J is allocated. The 

elements of S's are arranged according to the well known column wise or row wise order. 

The addressing function to determine the address of the element <ij. i2, i3> is as: d1d3i1  + 

d312  + i3  

@H istory Table Dimension31/ 
®Address Table 

Coef1icicnt Vector 

H2 

U UI 0  
0111836 

221 123 1 937  
5  12  2 212131438 
7  27  3 327282939 
9  48  4 48 49 50 51 4 

000 0123 

0 1 4 8 n 

© 0 1 8 36 L1  

© 1 1 1 2 4 C 

Dinension I 

Figure 2.1: A Three dimensional Extendible Multidimensional Array. 

Here <d1d3, d3 > is called a coefficient vector. At every extension of A, the corresponding 

subarray's coefficient vector is computed and memorized in coefficient icible of the 

extended dimension. In general, if A is an n dimensional extendible array where n is 

greater than two, an n-2 dimensional coefficient vectors are required for each extendible 

dimension. 



Using these three kinds of auxiliary tables, the address of an array element can be 

computed as follows. Consider the element <3,3,0> in Figure 2.4. Compare J-I1[3] = 8, 
A 

H2[3] = 7 and H3[0] = 0. Since H1 f3J > H2[3], H1 J > H3[0], it can be proved that the 

element <3,3,0> is involved in the extended subarray S having history value 8 and 

beginning address of the corresponding subarray is 36 which is stored in Ljf3J. From the 

coefficient vector of Cjf3J = < 4 >, the offset of element <3,3,0> from the first address of 

S is computed by 4 x 0 + 3 = 3, the address of the element is determined as 39 (See Figure 

2.1). 

From the above element accessing procedure it can be seen that, the cost to compare n 

history values is necessary to know the maximum history value therefore to know the 

extended dimension of the element containing subarray. After knowing the maximum, the 

offset computation is performed using the addressing function of the corresponding n-I 
> 

dimensional fixed size subarray. But, the number of multiplication and addition operations 

to be performed is less than that of an n dimensional fixed size array [35]. The superiority 

of the extendible arrays in element accessing speed and memory utilization is shown in 

[18]. 

2.2.3 Extendible Karnaugh Array (EKA) 

The idea of EKA [35,36,37] is based on Karnaugh Map (K-map) [38,49]. A Karnaugh 

representation of Extendible Array (EKA) has a history counter and three auxiliary tables, 

history table, address table and coefficient table. The history table stores the extension 

history and the address table stores the first address of the extended subarray. The EKA 

can be extended along any dimension dynamically during runtime only by the cost of 

these three auxiliary tables. Figure 2.2 shows the details of the EKA scheme for a 4-

dimensional array of size A[sL,s2, S3, 541. It also displays how the different auxiliary tables 

are maintained during the extension along a particular dimension. Figure 2.2(a) shows the 

initial setup with history counter 0 stored in history tables, address tables point to the first 

address of the physical array, and coefficients tables entry is I, since length of each 

dimension is 1. During extension along d1  or (13  the segment size is s2 xs4, so s2  is chosen as 

coefficient vector. Similarly, s3  is used as coefficient vector for extension along d3  or d4. 

Figure 2.2(b) shows the extension along d2  dimension, the incremented history value 1 is 

stored in history table of dimension 2. Since S3 is 1, C2  stores this value and address table 

points to the first address which is 1. Figure 2.2(c) shows the extension of d1  dimension 
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considering that Figure 2.2(b) is already extended once in d3, and d4  dimension. As it is 

already extended in d3, and d4  dimension, the history value reaches to 3, now for extending 

in d1  the value becomes 4 which is stored in 1-I1 . Coefficient table entry is 2 because of the 

s2  is 2. If the length of dimension and number of dimension of a multidimensional array is 

large then the address space for the TMA and EMA overflows quickly. EKA has the 

property of dynamic extension during run time and significantly delays the occurrence of 

address space overflow. 

>. 

ri 

0 

loll 10 1 0  I1ololli[o] 

Ad4 0 
d1 C 4  I d3  

Hd4  0 d4  
10 

9c,, 
A. 

01  

loll 101 oLIIio loll 1101 

l°l'l 

0101  

loll I[_I0 10111141610 
8 
7
___  

1112 13 1 14 1 15 11 0 
 1 g

l°l{1 
hI 27 

01 1 
(a) lukial setup (b) Extension along d2  dimension (c) Extension along d dimension 

Figure 2.2: Extension realization of EKA (4). 

2.2.4 Extended Karnaugh Map Representation (EKMR) 

A basic array representation scheme named Extended Karnaugh Map Representation 

(EKMR) is proposed in [9,40,4 1]. In this scheme, an n-dimensional array is represented by 

a set of 2 dimensional arrays. The idea of the EKMR scheme is based on the Karnaugh 

map (K-map). For n= 1 and 2, the TMA and EKMR Schemes are same. Let A[l][k][ij] 

denote a TMA for n=4 with a size of 2x3x4x5. The corresponding EKMR system i.e, 

EKMR(4) of array A[2][3][4][5] is shown in Figure 2.3(b). Consider a 4 input K-map and 

its corresponding EKMR(4) in Figure 2.3. The analogy between the EKMR(3) and the 3-

input Karnaugh map is that the index variables i, j, k and I correspond to the variables W, 

X, Y, and Z, respectively. The EKMR(4) is represented by a two-dimensional array with 

the size of (2 x 4)x(3 x 5). In the EKMR(4), index variable i' is used to indicate the row 

direction and the index variablej' is used to indicate the column direction. The index i' is a 

combination of the index variables I and i, whereas the index j' is a combination of the 
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index variables j and k. Placement of elements along the direction indexed by k and I 

makes the fundamental difference between TMA(4) and EKMR(4). 
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1= 0 
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_____________ 
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k=01201 2012012012 
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Figure 2.3: An Example of EKMR(4). 

The EKMR(n) can be obtained in the similar way. Based on the EKMR(4), the EKMR(n) 

for n dimensional array is represented by clxd,1j x... X  d, 5  EKMR(4) and a one-

dimensional array X that links all the EKMR(4) where d1  (5 :5 I 5 a ) is the length of the 

corresponding dimension. 

2.3 Compression schemes for multidimensional arrays 

Multidimensional array are the basic data structure used in many applications such as 

MOLAP. But in many cases, they are found to be sparse in nature - i.e. many of the array 

cells contain null values and consume unnecessary space. Some common compression 

methods are reviewed here. 

2.3.1 Offset Compression for TMA 

The n-dimensional TMA can be mapped into a single linearized array by an array 

linearization function. The array linearization Jirnction for the multidimensional array, A 

is 

F(pj,p2, ..., p,) = d1d2  ... d,11p,, + d1d2d3  ... d,7.2p,, 1  + ... ... + C11P2 ± P/ (2.1) 

The logical position (i.e. offset value) is calculated for the records using the above forward 

mapping function F and stored on a data structure along with the measure value (if exists). 

The coefficients of the addressing function namely ( d1d2...dd1d2...d,,_,,...,d1  ) is 
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referred to as coefficient vector and stored during the construction time. 1-lence the 

addressing function can be computed very fast at the element access time. The reverse 

array linearization function of the multidimensional array of A(d,, d,.....dj,d) for 

backward mapping is defined as follows: 

R-F(Y)(q,,q2.....q,,) (2.2) 

Where q = Y mod d,, 

qj  = [ ... [Y/d,J ... ]/d,,1] ,nodd, for 2 :!~ i :5 n - 1 

qi=[[...[[Y/d,1]/d,,1] ... ]/d3J/d2J 

The backward mapping algorithm R-F is used to determine the coordinates of the 

corresponding multidimensional array. 

2.3.2 Chunk-offset compression for TMA 

In Chunk-offset compression scheme [22,24] the large multidimensional arrays are broken 

into chunks for storage and processing. Consider an n-dimensional array A, whose 

dimensionality is d1xd2x . . . x ci,,. The chunks can be formed by breaking each cli  into 

several ranges. Within A, two positions are in the same chunk if and only if, in every 

dimension, they fall within the same range. In memory or disk, values within a chunk are 

stored consecutively. Elements in a chunk are arranged according to the pre-specified 

order of dimensions. 

In this compression scheme, the pairs of (OJftetlnChunk, data Value) is physically stored 

in secondary storage only for nonempty elements in a chunk. This set of pairs is sorted in 

the order of the offset values. Note that the chunks which have no nonempty elements are 

not physically allocated in the secondary storage. The offset inside the chunk 

(OffsetlnChunk) can be computed using the multidimensional array linearization function 

described in section 2.3.1. The reverse array linearization function (see equation 2.2) is 

used for backward mapping to get the original coordinates of the array. 

2.3.3 CRSI CCS scheme for Multidimensional Arrays 

The CRS/CCS schemes [14,23,42] compress all the nonzero elements along the 

rows/columns of the multidimensional sparse array by using one one-dimensional floating 

point array VL and two one-dimensional integer arrays RO and CO. The base of these 
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arrays is 0. Array VL stores the values of nonzero array elements. Array RO stores 

information of nonzero array elements of each row (columns for CCS). If the number of 

rows is k for the array then RO contains k+ I elements. RO[0] contains 1. RO[ 1] contains 

the summation of the number non zero elements in row 0 of the array and R[0]. In general, 

RO[i] contains the number of nonzero elements in (i-l)th row [(j-l)th column for CCS] of 

the array plus the contents of RO[i-l]. The number of non zero array elements in the ith 

row (jth column for CCS) can be obtained by subtracting the value of RO[i] from 

RO[H-l]. Array CO stores the column (rows for CCS) indices of nonzero array elements of 

each row (columns for CCS). Figure 2.4 shows an example of the CRS and CCS schemes 

for a two dimensional array. 

(a) A sparse array (b) The CRS Scheme (c) The CCS Scheme 

Figure 2.4: The CRS/CCS schemes for a two-dimensional sparse TMA. 

Figure 2.4(a) shows a 4x5 two-dimensional sparse array. Figure 2.4(b) and Figure 2.4(c) 

show the corresponding CRS and CCS schemes, respectively. In Figure 2.4(b), the number 

of nonzero elements of row I can be found by ROcp[2]-RO( ' I [1] = 2. The column 

indices of the nonzero array elements of row I are stored in COcRs[ROcJ[i]-1J and 

COcfROcps [i]J i.e COcps13J and COcpsl4J, since there are 2 nonzero array elements 

exist in row 1. Finally the values of the nonzero array elements of row I can be found in 

VLcpsf3J, and VLcps[4]. For n-dimensional sparse array based on TMA, (n-i) numbers 

one dimensional integer arrays CO are needed. 

2.3.4 EKA Based Compression (SCEKA) 

A compression technique is proposed based on the EKA in [35.36,37] namely Segment 

based Compression scheme for Extended Karnaugh Array (SCEKA). The main idea of the 

scheme is to compress each of the segments of the EKA using the position information 

only. To compress the EKA, the SCEKA stores only the position information of the each 

segment of the array i.e. the construction history, the segment number and the offset inside 
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the array. The data stored in the SCEKA scheme can be accessed in compressed form and 

at the same time it can grow and shrink in length or number of dimensions at run time. 

SCEKA stores the tuple (hisioiy value, segment number, offset) for array cell mapping 

and the data is stored as well. The history value is unique and can uniquely determine the 

subarray. The segment number inside the subarray is also unique and can also be 

determined uniquely. The offset value inside the segment is also unique and can be 

determined by the addressing function. Hence the tuple (histoiy value, segment number, 

offset) can uniquely map an array cell of the EKA. 

2.3.5 EKMR Based Compression (ECRS or ECCS) 

The scheme is similar to CRS/ CCS scheme for Multidimensional Arrays [14,23,42] but 

the structure used is EKMR. The ECRS (or ECCS) scheme compresses all the nonzero 

array elements along rows (columns for ECCS). Array V stores the values of nonzero 

array elements. Array R stores information of nonzero array elements of each row. R[i] 

contains the number of nonzero elements in (i-l)th row of the array plus the contents of 

RO[i-1] and the contents of R[O] is I. The number of non zero array elements in the ith 

row can be obtained by subtracting the value of R[i] from R[i+l]. Array CK stores the 

column (rows for ECCS) indices of nonzero array elements of each row (columns for 

ECCS). 

Some other important compression schemes that can be applied to higher dimensional data 

are summerized as follows: 

The header compression method [43,44] is used to suppress sequences of missing data 

codes, called constants, in linearized arrays by counts. This method makes use of a header 

that is a vector of counts. The odd-positioned counts are for the unsuppressecl sequences, 

and the even positioned counts are for suppressed sequences. Each count contains the 

cumulative number of values of one type at the point at which a series of that type 

switches to a series of the other. The counts reflect accumulation from the beginning of the 

linearized array to the switch points. In addition to the header file, the output of the 

compression method consists of a file of compressed data items. called the physical Jile. 

The original linearized array, which is not stored, is called the logical file. 

In the following example, L represents the uncompressed form of a database, where 0's 

are the constant to be suppressed and the V's are the unsuppressed values. H represents the 



header database/file which contains the number of data or constants where odd position 

represents the data and even position represents constants. 

The BAP compression [43,45] method consists of three parts: Bit Vector(BV), Address 

Vector(AV), Physical Vector(PV) and therefore called BAP compression method. 

Let DB={xi,x2,...,x) be a logical database and c be the constants. The physical vector PV 

is the vector of non-constants in DB, that is, PV=(y1 ,y2,...,y1) where y j  are in DB and yOc. 

The y j  are arranged according to their logical order in DB. No compression algorithm is 

applied on PV because it stores only non-constants values. The Bit Vector BV indicates 

the locations of constants and non-constants in the database. The bit vector is 

BV=(b1 ,b2,. . .,b1) where b=l if x ~c and b1=O if x1 =c for I —< i N. where BV consists of N 

bits. The Address Vector AV is typically small and is used as an index for searching the 

database. It is stored in main memory rather than secondary storage. In addition to 

efficient compression fast forward and backward mapping between logical and physical 

databases is also important. To do this, BV is divided into subvectors of D bits each. The 

subvectors are compressed independently. This division of BV into subvectors makes the 

Address Vector AV sufficiently small to store it in main memory. BV can be compressed 

by run-length encoding method (also discussed in this chapter). The division of BV into 

subvectors imposes a division of the database DB into d[N/Dl sections, each consisting 

of D elements. The address vector is defined as: AV(ai,a2,a3,. 
. ad); Where a1 =O and for 

I? 2, ai is the relative position in PV of the last non-constant element in the (i- l)th section 

of DB if such a non-constant exists, otherwise we set a1 a1 -1. 

A bitmap compression [43,45] scheme consists of a bitmap and a physical database which 

stores the non-constant values of a linearized array. The bitmap is employed to indicate the 

presence or absence of non-constant data. The access time for both forward and backward 

mapping for the bitmap scheme is 0(N), where N is the number of bits in the bitmap, or 

equivalently the number of elements in the database. 

The history offset compression [17,46] scheine is based on extendible array. In this 

technique, an element is specified using the pair of history value and offset value of the 

extendible array. Since a history value is unique in extendible array and has one to one 

correspondence with the corresponding subarray, the subarray including the specified 

element of an extendible array can be referred to uniquely by its corresponding history 
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value h. Moreover, the offset value (i.e., logical location) of the clement in the subarray 

can be computed by using the addressing function and this is also unique in the subarray. 

Therefore, each element of an n-dimensional extendible array can be referenced by 

specifying the pair (history value, offset value). Like Chunk-offset compression, the 

extended sparse subarray elements are stored in memory in sorted fashion. 

2.4 Discussion 

All the array systems described in this chapter have both merits and limitations. Since 

TMA and EKMR have pre-specified length and dimension, they are good for random 

accessing. But they suffer in case of dynamic extension; when a new data value is added, 

array size extension along the corresponding dimension is necessary and this implies 

reorganization of the entire array elements. EMA and Flexible resizable array [47]  are 

good for dynamic extension. EMA provides extension only from the surrounding of the 

array where as Flexible array allows even in the middle of the array. Classical 

compression schemes have some limitations in compressing data. Like Bitmap and Header 

compression provide good performance in terms of removing long runs of constants, but 

they have a poor forward and backward mapping capability. Also, these methods can't be 

used on dynamic database environment where additions and deletions may be required. 

The scheme Compressed Row Storage (c'RS) or Chunk Offset compression are effective 

for compressing large sparse arrays. But still they cannot be applied on extendible 

databases. So, it is important to design a compression technique that will be better than 

these classical compression techniques. The scheme should be efficient enough so that 

operation can be done over the compressed data. Though, there are a lot of research has 

been done on compression techniques, but only a few researches have been made on 

dynamic array organization. Hence we propose new compression techniques based on 

dynamic array model which will outperform over TMA. The details of the proposed 

schemes are presented in the next chapter. 
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CHAVI'ER III 

Compression Schemes for High Dimensional Data based on 

Extendible Multidimensional Array 

3.1 Introduction 

In this chapter, novel methodologies have been proposed to COIfl1)CSS high dimensional 

data based on EMA. In these methods, the basic idea is to apply compression scheme on 

each subarray of the extendible array independently. Analytical analysis of the proposed 

schemes is also presented in this chapter. The details of the approaches are discussed in 

the following sections. 

3.2 Extendible Aarray Based Compressed Row Storage Scheme (EaCRS 

Given a three dimensional EMA. The Extendible Array Based Compressed Row Storage 

(EaCRS) scheme compresses each subarray independently. This scheme use one one-

dimensional floating point array VL and two one dimensional integer array RO and CO for 

each subarray of the extendible array as the subarrays are two dimensional (since for an n 

dimensional EMA, subarrays are n-i dimensional as described in section 2.2.2) for the 

three dimensional EMA. This scheme compresses all of the nonzero array elements along 

the rows of the multidimensional subarays. Array RO stores information of nonzero array 

elements of each row. The dimension with the current minimum length (except the 

dimension being extended) at the time of extension is considered as the row dimension. If 

the number of rows is kin a subarray then RO contains k+I elements. RO[O] contains I, 

RO[J] contains the summation of the number non zero elements in row 0 of the subarray 

and RO[O]. in general, ROfij contains the number of nonzero elements in ('i-l)th row of 

the array plus the contents of RO[i-1]. The number of non zero array elements in the ith 

row can be obtained by subtracting the value of ROfij from RO[i± 1]. Array CO stores the 

column indices of nonzero array elements of each row. Array VL stores the values of 

nonzero array elements. For each subarray, the base of these three arrays is 0. 
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In the EaCRS scheme, for an n dimensional EMA, among the three kinds of auxiliary 

tables (history table, address table, coefficient table) only the history table H1  is required 

to store for each dimension. History tables are used to compute the extension dimension of 

the subarray and the length of other dimension to compute the row dimension and number 

of row of that subarray. An example of the EaCRS scheme for a three dimensional EMA 

of Figure 2.3 is shown in Figure 3.1. For convenience here we name each subarray as 

SAiJ, where i indicates the extended dimension that the subarray belongs to and j 
indicates the length of that dimension. For example, SAJO, SAIl......SA_i L, are 

the subarrays of dimension I, SA_2_1, SA_2_2....., SA_2_L2  are the subarrays of 

dimension 2 and so on. 

Physical Arrays 

Logical Arrays 

0 1 2 3 

p148 

SA_1_0 SA1_1 SA_1_2 SA_13 
-4D2 1 -+D2 01 2 3D2  
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- 4................................ 

o 1 0 1 D3 1 :00: D3 1 :13 141516 - 
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(a) Subarrays of dimension I using EaCRS scheme. 
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Figure 3. 1: EaCRS scheme for a three dimensional EMA. 

Consider a subarray SA_1_3 of Figure 2.1. This subarray is extended along dimension 1 

and the subarray is shown in Figure 3.2(a). Here 36, 37, 38.....47 indicates the logical 

position of each of the subarray elements in the given three dimensional EMA. For 

explaining the sparseness here we assign each subarray elements to some zero and nonzero 

values (e.g. logical position 36 is assigned to 0, 37 is assigned to 13, 38 is assigned to 0 

and so on.). Since SA_1_3 is extended along dimension l(see Figure 2.1), the other two 
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dimensions (dimension 2 and dimension 3) are considered as the row dimension and 

column dimension. For SA13, the length of dimension 3 is less than that of the 

dimension 2. This is because dimension 3 is considered as the row dimension and 

dimension 2 is considered as the column dimension in this EaCRS scheme (see Figure 

3.2(b)). 

Row Dimension 

0 1 2—+D3  
0 0 I 13 I H 

0 14 0 
I _4 Column Dimension 

D22 [12 15 I 
3 [ 0 16 17 

(a) Subarray SA_1_3 showing the logical (b) Subarray SA_1_3 showing the sparseness 

position of each of the subarray elements and the considered row dimension and 

in a given three dimensional EMA. column dimension for the EaCRS scheme. 

Figure 3.2: A subarray (SA_1_3) of the given 3-dimensional EMA at Figure 2.1. 

In the subarray SA3, there are 3 rows and row 0 contains one nonzero value, 12 (see 

Figure 3.1(b)). This is because RO[l] contains 2 (see Figure 3.1(a)) i.e. RO[l] = ROfOJ ± 

total no. of nonzero array elements in row 0. Similarly, RO[2] = 6 ( row 1 contains four 

nonzero values), ROf3J = 7 ( row 2 contains one nonzero value) and so on. VL array stores 

all the nonzero array elements (12, 13, 14, 15, 16) of this subarray and CO stores the 
4 

corresponding column indices of these nonzero array elements. 

Logical database and physical database refer to the uncompressed and compressed 

database respectively. Forward mapping and backward mapping techniques for the Ea'RS 

scheme are described as follows: 

3.2.1 Forward Mapping for EaC'RS scheme 

Consider the element <3,3,1> of the EMA. Compare H1 f3J = 8, 112 f3J = 7 and J-I3[1] = 3. 

Since H113J > H2[3] and H1[3] > I-I3 f1J, extended dimension is 1 and the element is 

involved in the subarray SA_1 — The dimension with the minimum length at the time of 

subarray SA13 's extension is considered as the row dimension for the subarray SA_1_3. 
'I 

Since II2f3J < H1[3] < H[4] and H1[3] > 113  f2J, it can be said that the subarray's 
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(SA_I3) size is 4x3, dimension 3 is the row dimension and the number of row is 3. Since 

subarrays are two dimensional, in this case dimension 2 is the only column of the subarray 

SA_1_3. In Figure 3.1(a), the number of nonzero elements of row I can be found by 

RO[2] - RO[1] = 6 —2 = 4. The column indices of the nonzero array elements of row 1 

are stored in CO[RO[i] - I], COfRO[1]J, CO[RO[1] + 1] and CO[RO[I] + 2] i.e. 

CO[I], C0121, CO[3] and COI4J, since there are 4 nonzero array elements exist in row 1. 

Finally the values of the nonzero array elements of row I can be found in VL[l], VL[2], 

VL[3] and VL[4]. 

3.2.2 Backward Mapping for EaC'RS scheme 

Consider the physical position <9,4,3> of the physical database; where <9> is the history 

value, <4> is the value that RO stores and <3>  is the column index of a nonzero array 

element i.e. <3>  is the value that CO stores. We perform the binary search on the history 

tables to find the given history value <9>. Since <9> is stored in H2 f4J (see Figure 

3.1(b)), we need to access only the CO and RO arrays that are stored for the subarray 

SA24 (i.e. subarray extended at dimension 2 at length 4). Therefore the second co-

ordinate value of the desired logical position is <4> in logical database and the other two 

dimensions (dimension 1 and 3) are considered as the row dimension and column 

dimension. As we described above the dimension with the minimum length at the time of 

subarray (SA_2 4) 's extension is considered as the row dimension for the subarray 

SA_2_4. Since H2[4] > I-11 f3J and 1-12141 > 113[2], subarray's (SA24) size is 4x3. 

Dimension 3 is the row dimension because H3 f2J < 1-11[3] and the number of row is 3. 

Since subarrays are two dimensional, in this case dimension I is the only column 

dimension of the subarray SA_2_4 and the first co-ordinate value of the desired logical 

position is <3> in logical database. As there are 3 rows in the subarray and <> is stored 

in RO[3] (see Figure 3.1(b)), it can be said that column index <3> is stored for the 

nonzero elements of 3' row of SA24 i.e. the third co-ordinate value of the desired 

logical position is <2> in logical database. Hence the physical position <9,4,3> of 

physical database is mapped to a logical position <3,4,2> in logical database. 

As described above EaC'RS scheme has the ability to perform both forward mapping and 

backward mapping and so EaCRS scheme is mapping complete. 
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Based on the ECtGRS scheme, an extendible multidimensional array of dimension four can 

be compressed by adding one more one-dimensional integer array KO. In the EaCRS 
scheme array KO stores the third dimension indices of nonzero array elements of each 

row. For higher dimensions more one-dimensional integer arrays are needed. 

3.3 Linearized Extendible Array Based Compressed Row Storage Scheme (LEaC'RS) 

Given a 3-dimensional EMA. The Linearized Extendible Array Based Compressed Row 

Storage (LEaCRS scheme compress each subarray independently. This scheme use one 

one-dimensional floating point array VL and two one dimensional integer array RO and 

CO for each subarray of the extendible array. This scheme linearize (see section 2.3.1) 

each subarray independently and then compresses all the nonzero array elements along the 

only row of each subaray. Array RO stores information of nonzero array elements of each 

subarray. After linearization, as the number of row is I in a subarray. then RO contains 2 

elements. RO[O] contains 1, RO[1] contains the summation of' the number non zero 

elements in the subarray and RO[O]. The number of non zero array elements in each 

subarray can be obtained by subtracting the value of RO[O] from RO[l]. Array CO stores 

the column indices of nonzero array elements of each subarray. Array VL stores the values 

of nonzero array elements. For each subarray, the base of these three arrays is 0. 

In the LEaC'RS scheme, for an n dimensional EMA, among the three kinds of auxiliary 

tables (histoiy table, address table, coefJIcient table) only the his/wy table H, is required 

to store for each dimension. History tables are used to compute the extension dimension of 

the subarray and the length of other dimension to carry out the linearization computation 

for that subarray. An example of the LEaCRS scheme for a three dimensional EMA of 

Figure 2.1 is shown in Figure 3.3. For convenience here we name each subarray as SA_IJ, 

where i indicates the extended dimension that the subarray belongs to and j  indicates the 

length of that dimension. For example, SAI2 is the subarray of dimension 1 at length 2. 

Similarly SA21, SA22...... SA2L are the subarrays of dimension 2 and so on. 
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Figure 3.3: LEaCRS scheme for a three dimensional EMA. 

Consider a subarray SA_1_3 of Figure 2.1. This subarray is extended along dimension I at 

dimension length 3 and the subarray is shown in Figure 3.3(a). Here 0, 1, 2, 3, ..., 11 

indicates the logical position of each of the subarray elements for a linearized subarray. 
If 

For explaining the sparseness here we assign each subarray elements to some zero and 
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nonzero values (e.g. logical position I is assigned to 0. 2 is assigned to 75, 3 is assigned to 

0, 3 is assigned to 37 and so on.). Since SAI3 is extended along dimension I (see Figure 

2.1), the other two dimensions (dimension 2 and dimension 3) are considered as the 

column dimension and row dimension respectively. 

In the subarray SA13, there are 6 nonzero values. This is because RO[I] contains 7 (see 

Figure 3.3(a)) i.e. RO[1] = ROfOJ - total no. of nonzero array elements in the subarray. 

VL array stores all the nonzero array elements (75, 37. 66, 51, 25. 79) of this subarray and 

CO stores the corresponding column indices of the linearized subarray of these nonzero 

array element. 

Forward mapping and backward mapping techniques for the LEaCRS scheme are 

described as follows: 

3.3.1 Forward Mapping for LEaRS scheme 

Consider the element <3,3,1> of the EMA. Compare H1 f3J = 8, 1-12131 = 7 and H3[1] = 3. 

Since H01 > 1-12131 and H j f3J > 113[1], it can be said that the extended dimension is 1 

and the element is involved in the subarray Sil 3. The dimension that is last in the order 

is considered as the row dimension and other dimension(s) are considered as the column 

dimension for each subarray. Since H2[3] < H1[3] < '-'2141 and 111[3] > H 121, subarray 

SA_1_3's size is 4 x 3. Dimension 3 is the row dimension. Since subarrays are two 

dimensional, in this case dimension 2 is the only column of the subarray SA_1_3. In 

Figure 3.3(a), the number of nonzero elements of the subarray SA_1_3 can be found by 

ROf2J - RO[1] = 7 - 1 = 6. The linearized column indices of these 6 nonzero array 

elements are stored in CO array. For computing the logical position of the array element 

<3,3,1>; we consider dimension 2 as d1= 4, dimension 3 as d2  = 3, second co-ordinate 

value of the given array element as pj = 3, third co-ordinate value of the given array 

element as P2 = 1 and the desired logical position of the given array element can be 

computed as follows using the array linearization function (described in section 2.3.1): 

d1 p2  + Pi = 4 X 1 + 3 = 7 [See Figure 3.3(a)] 

Binary search is performed on the CO array to find logical position 7 and it can be found 

that CO[4] stores the logical position 7 (since <3,3,1> array element is a nonzero array 

element). Finally the values of the nonzero array element can be Ibtind in VL[4]. 
'I 
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3.3.2 Backward Mapping for LEaRS scheme 

Consider the physical position <9,]]> of the physical database; where <9> is the history 

value and <11> is the column index of a nonzero array element in the linearized subarray 

i.e. <11> is the value that CO stores. We perform the binary search on the history tables 

to find the given history value <9>. Since <9> is stored in 1-12[4] see Figure 3.3(b)), we 

need to access only the CO and Re arrays that are stored for the subarray SA_2_4 (i.e. 

subarray extended at dimension 2 at length 4). Therefore the second co-ordinate value of 

the desired logical array indices is <4> in logical database and the other two dimensions 

(dimension I and 3) are considered as the row dimension and column dimension. As we 

described above the dimension that is last in the order is considered as the row dimension. 

Since 1-12141> H1[3] and 1-1[4] > H3[2], subarray's (SA 24) size is 4x 3. Dimension 3 is 

the row dimension and the number of row is 3. Since subarrays are two dimensional, in 

this case dimension 1 is the only column dimension of the subarray SA_2_4. For 

computing the first co-ordinate and third co-ordinate value of the desired logical array 

indices in the logical database t'rom the given physical position <9,11>; we consider 

dimension I as d1  = 4, dimension 3 as d2  = 3, first co-ordinate value of the desired logical 

array indices as qj, third co-ordinate value of the desired logical array indices as q, 
linearized column index <11> as Yand the desired logical array indices can be computed 

as follows using the reverse array linearization function (described in section 2.3.1): 

q2  = Y mod d2  = 11 mod 3 = 2 

q1  = Y/d2  = 11/3 = 3 

Hence the physical position <9,]]> of physical database is mapped to a logical position 

<3,4,2> in logical database. 

LEaC'RS compression scheme is mapping complete because it provides forward mapping 

and backward mapping (As described above). 

3.4 Extendible Array Based Chunk Offset Compression Scheme (EaCliOff) 

Given a three dimensional EMA. The Extendible Array Based Chunk Offset Compression 

(EaChOfj) scheme linearize each subarray independently and break a large multi 

dimensional extendible array into chunks for storage and processing. In this scheme, a 

maximum size of each chunk is considered and chunks can be formed by single or several 
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subarrays. This scheme use one one-dimensional auxiliary table namely ChunkNo1 for each 

dimension i and one one-dimensional integer array NI?. The chunk number assigned to a 

subarray is held on the ChunkNo table. Array NR stores information of nonzero array 

elements of each subarray. If the number of subarrays is k in a EMA then NR contains k+1 

elements. NR[O] contains I, NR[IJ contains the summation of the number of nonzero 

elements in 0th  subarray and NR/OJ. In general, NR/ij contains the number of nonzero 

elements in ('i-l)th subarray of the EMA plus the contents of NR[i-I]. The number of non 

zero array elements in the ith subarray can be obtained by subtracting the value of NR[zj 

from NR/7+1]. This scheme also uses one one-dimensional floating point array data and 

one dimensional integer array O/jeiInChunk for each chunk of the EMA. Array data 

stores the values of nonzero array elements of each chunk. Array OffsetlnChunk stores the 

offset in a chunk of nonzero array elements of each chunk. For each chunk, the base of 

these two arrays is 0. 

In the EaChOff scheme, for an n dimensional EMA, among the three kinds of auxiliary 

tables (history table, address table, coefficient table) the hisloiy table I-I j  and address table 

Li  are required to store for each dimension. History tables are used to compute the 

extension dimension of the subarray and the length of other dimension to carry out the 

linearization computation for that subarray. Address tables are used to point the starting 

address of each chunk as well as the starting address of each subarray in a chunk. An 

example of the EaChOff scheme for a three dimensional EMA of Figure 2.1 is shown in 

Figure 3.4. For convenience here we name each subarray as SAIJ, where i indicates the 

bt 
extended dimension that the subarray belongs to and j indicates the length of that 

dimension. For example, SA_I_2 is the subarray of dimension I at length 2. Similarly 

SA21, SA_2_2....., SA
-

2
—L2  are the subarrays of dimension 2 and so on. 

Consider a chunk Chunk] of Figure 3.4. In this example the maximum chunk size 

considered is 16. C'hunkl comprise of subarrays SA_lO, SA_1j, SA _2 I, S11_3J and 

SA_12 in sequence because these subarrays are extended in l, 2
1
id 3rd 01 and 5

01 
 

position in order. The length of this chunk is 12 because the 6111  subarray i.e. SA_2_2's 

length is 6 and 12 plus 6 is 18 which is greater than 16. Alike the length of Chunk2 is 15 

and length of Chunk3 is 9 and so on. 
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Figure 3.4: EaChOff scheme for a three dimensional EMA. 
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Since SA_1_0 subarray is assigned to Chunki, chunkNo j foJ stores 1; likewise 

chunkNo j[l] stores I for the subarray SA _1 1, chunkNo2[J] stores I for the subarray 

SA2I and so on. Chunk3, Chunk4 and Chunk5 consist of a single subarray SA_2_3, 
SAI3 and SA24 respectively. If the EMA is extended along any dimension then a new 

chunk namely Chunk6 will be comprised of this new subarray. 

Forward mapping and backward mapping techniques for the EaChOff scheme are 

described as follows: 

3.4.1 Forward Mapping for EaC'hOff scheme 

Consider the element <3,3,1> of the EMA. Compare H1 f3J = 8, 1-12[3] = 7 and H3[1] = 3. 

Since Hj f3J > H2[3] and H1 f3J > H3[1], extended dimension is I and the element is 

involved in the subarray SAI3. ChunkNoi[3] = 4 indicates that we need to access only 

P chunk4 for the given element. In Figure 3.5, the number of nonzero elements of the 9th 

subarray SA_1_3 can be found by NR[9] - NR[8J = 7 - 1 = 6. The chunk offset of these 6 

nonzero array elements are stored in Offie/InChunk array. For computing the logical 

position of the array element <3,3,1>; we consider dimension 2 as d1= 4, dimension 3 as 

= 3, second co-ordinate value of the given array element as pl  = 3, third co-ordinate 

value of the given array element as p2 = I and the desired logical position of the given 

array element can be computed as follows using the arrqv imearizalion function 

(described in section 2.3.1): 

d1p2  + Pi = 4 x 1 + 3 = 7 [See Figure 3.5] 

Addition of L j f3/ = 36 and logical position 7 give the desired chunk offset value 43 for 

the given array element. Binary search is performed on the OJje1InChunk array to find 

logical position 43 and it can be found that OfjetInCIiunkf4j stores the logical position 43 

(since <3,3,1> array element is a nonzero array element). Finally the values of the 

nonzero array element can be found in data[4.7. 

'4 
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Figure 3.5: An Example of forward mapping for EaCliOff scheme. 

3.4.2 Backward Mapping for EaCh Off scheme 

Consider the physical position <9,59> of the physical database; where <9> is the history 

value and <59> is the logical index of a nonzero array element in a chunk i.e. <59>  is the 

value that Offsetlnchunk stores. We perform the binary search on the history tables to find 

the given history value <9>. Since <9> is stored in H2[4] (see Figure 3.6), we need to 

access only the Offseth-zChunk array that is stored for the subarray SA_2_4 (i.e. subarray 

extended at dimension 2 at length 4). Therefbre the second co-ordinate value of the desired 

logical array indices is <4> in logical database. The linearized column index of the 

subarray SA_2j1 can be computed by subtracting the first address ( L2[4] = 48) of the 

subarray from the given logical chunk index i.e linearized column index = 59 - 48 = II. 

-4 
For computing the first co-ordinate and third co-ordinate value of the desired logical array 



30 

indices in the logical database from the given physical position <9,59>; we consider 

dimension I as d, = 4, dimension 3 as d2  = 3, first co-ordinate value of the desired logical 

array indices as qj, third co-ordinate value of the desired logical array indices as q, 

linearized column index <11> as Y and the desired logical array indices can be computed 

as follows using the reverse array linearization function (described in section 2.3.1): 

q2  = Y mod d2  = 11 mod 3 = 2 

q ]  = Y/d2  = 11/3 = 3 

Hence the physical position <9, 59> of physical database is mapped to a logical position 

<3,4,2> in logical database. 

0 
ChunkNo2  

1_ • - 

I 
•__ - _ 
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: ° •° ..: .:. :. o/ . ;": 895°- 
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Figure 3.6: An Example of backward mapping for Ea(.'hOff scheme. 

EaChOff compression scheme is also mapping complete because it provides forward 

mapping and backward mapping (As described above). 
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3.5 Theoretical Analysis 

In this section the cost model for the compression schemes is developed. The analytical 

analysis is compared with the experimental implementation in chapter IV. Before starting 

the theoretical analysis the following definitions are important. 

Definition 3.1 (Density of Array, p). Array density is a parameter to measure the 

sparsity of an array. It is the ratio of non-empty array cells with total number of cells. 

Maximum value the density can be one. Formally we can write, 

= 
Total number of cell having non null values 

p 
Total number of array cells 

Definition 3.2 (Compression Ratio, 17): it is defined as the proportionate size of 

the compressed array with that of uncompressed one, formally 
) 

Compression ratio, q = 
Compressed size of Array 

Uncompresd size of Array 

The value of 11  is preferable to be less than one. 

Definition 3.3 (Range of usability). Range of usability of a compression scheme 

is defined as the maximum range of data density up to which the compression ratio is less 

than 1. 

In this section, we model the space requirement and hence the compression ratio for the 

proposed EMA based schemes that is for EQCRS, LEaCRS and EaCh Off schemes. We 

analyse their range of usability for practical applications as well as their extension cost. 

We also compare this model with the TMA based schemes i.e. for CRS and Chunk-Offset 

(ChOff schemes. 

3.5.1 Assumptions 

To simplify the model we make the following assumptions. 

The length of dimensions extends in round robin manner for both Traditional 

multidimensional array (TMA) and Extendible multidimensional array (EMi\). 

The length of each dimension is equal and when extension occurs each of the 

dimensions are extended by equal length. 
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(iii) The records are uniformly distributed in the corresponding TMA or EMA. 

3.5.2 Parameters 

The parameters are grouped as shown in Table 3.1. Some of these parameters are provided 

as input, while others are derived irom the input parameters. All lengths or sizes are in 

bytes. 

Table 3.1: Parameters Considered for theoretical analysis. 

Parameters Description 

UCTMA  The uncompressed size of the Traditional Multidimensional Array(TMA) 

UCEMA  
The uncompressed size of the Extendible Multidimensional Array 

(EMA) 

hc Total number of subarrays in EMA (i.e. history counter) 

n Number of dimension of both TMA and EMA 

Li  Length of each dimension i (0 :!~ I :5 ii) for both the TMA and EMA 

/ Length of Chunk for the TMA 

6 Length of extension 

SEi Size of extension along dimension i 

p Density of records both for TMA and EMA 

a Size of subscripts for TMA and EMA 

fl Size of a cell of the TMA and EMA 

sz(k)  Size of subarray k along dimension i 

row_n01(k) Number of rows in a subarray k along dimension i 
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SCCRS  Compressed size of TMA using the CRS scheme 

SCcoff  Compressed size of TMA using the Chunk-Offiet Compression scheme 

SCEaCRS  Compressed size of EMA using the EaCRS scheme 

SC'LE aCRS  Compressed size of EMA using the LEaCRS scheme 

CRS Compression ratio for the C'RS scheme for TMA; 1lcRs 
= 

SCCRS 

(JCTMA 

Compression ratio for the Chunk-Offiet Compression scheme for TMA; 
11ChOff SCChOff 

C hOff = UCTMA 

17EaCRS Compression ratio for the EaCRS scheme for EMA; 71EaCRS 
= 

SCEaCRS 

 UCEMA 

77LEaCRS Compression ratio for the LEaCRS scheme for EMA; 71LEaCRS 
= SCLEacRS 

UCEMA 

Compression ratio for the Chunk-Offiel Compression scheme for EMA; 
71EaChOff SCEaciloff 

1  'lEaChOff = 
UCEMA 

3.5.3 Cost Model for Compression Ratio 

In this section we will derive cost model for compression ratio of I'MA based compression 

schemes i.e. for CRS and ChOff schemes as well as for EMA based compression schemes 

i.e. for EaCRS, LEaCRS and EaChOff schemes. 

(a) Cost Model for TMA based schemes 

If the length of different dimension L, (0 :!~ i n) is known then storage requirement can 

be calculated as 

UCTMA= (fl L3 x /3 = I]' x /3 (assumption (ii), L1  = L = ... = L = L) 

The number of nonzero array elements of spai-se array A is p x V. 

Cost Mode/for CRS scheme 

In the CRS scheme, for sparse array A: 

A 

31 
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The size of array RO is: ROCRS  = (L + 1) X a 

The size of VL array is: VLCRS = (p x JY) x /1 

The size of each of the CO array is: COCRS = (p x L) x a. There are n-I such COCRS  

exists. Hence the compressed size of the array A i.e. the space requirement of the CRS 

scheme (SCCRS)  is, 

SCCRS  = (n - 1) x COCRS  + ROCRS  + VLCRS  

= (n - 1)pLn  x a + (L + 1)a+pL71 S 

((n-1)pJY+L+1)a+pLfi' ......................................(3.1) 

Compression ratio for the CRS scheme (CRS) can be revealed as 

1JCRS - 
- 

SCCRS 

ULTMA 

((n1)pL4L+1)a+pL'
(3.2) 

L X/ 

cost Mode/for Chunk-Offset compression scheme 

In the Chunk-Offset scheme, for sparse array A: 

No of Chunk in the TMA is: 

no_of _chunkC,Off = 
01  

- 
(assumption (ii), L 1  = L2 =  ... = L,1  = L) 

Space required for storing the pointers of all the chunks is: 

chunkPointersChQff  = x cx 171 

Space required for storing the nonzero element counter information for each chunk is: 

L 
chunkNonzeroC, Qff  = x a 

The size of data array is: dataC,ZQ ff = (p x L'1) x  fl 

The size of the OffsetlnChunk array is: OffsetlnChunkck Off =  (p x L71) x a. 

The compressed size of the array A i.e. the space requirement of the Chunk OJfet scheme 

(SCchoff ) is, 
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SCchoff = chunkPointersCJOff  + chunkNonzeroC/ Q f f  + Of[setlnChunkc/loff + datac110rt 

L1' 
=.- In 

xa+ xa+pL?xa+pLlZ[3 

=2x 
 1,71 

 xa+pL 1 Xa+pLn/3 ......................................(3.3) In 

Compression ratio for the Chunk Offset  scheme  (ic,o) can be revealed as 

- SCC1Off 
T1ChOff UCTMA 

= 
2X 

Ln 
Tn-Xu+pL'Xa+pL'[3 

LIZ xfl 

From equation (3.1) and (3.3) we tind that space required for storing the VLCRS  and COcp 

is equal to that of dataci,ojj and OffsetlnClninkc;,ojj respectively. For convenience we 

ignore the space required for the ROcp, chunkPoini'ersc,,off and cllunkNonzerocj,offarrays, 

since the size of most of sparse arrays in practical application is large and space required 

for these arrays is negligible with respect to that of VL 5, COc, dalac,,ojj and 

OffserinChunkc;,off arrays for very large sparse arrays. Therefore SCCRS  > SCCIZO!f  i.e. 

space requirement for the Chunk-Offset scheme is less than that of the CRS scheme. This 

is because, for n-dimensional TMA (n-i) nos. COCRS  is required for the CRS scheme 

(equation 3.1), but only one OffietlnChunk(;,Qg  array is required for the C/iOff scheme 

(equation 3.3). 

(b) Cost Model for EMA Based schemes 

Let sparse extendible array, A' be the corresponding sparse array based on the EMA. As 

the length of dimension is equal for all the schemes, the uncompressed size of the array A' 

will be identical to the uncompressed size of A i.e. UCEMA  = Ii' x fl- 

If the length of ith dimension of A' is L1, the total number olsuba rray is: 

hc = - 1) + 1 

= (L —1) xn+ 1 (assumption (ii), L, = L2  = ... =L,,—L) 



4• I 
\'?/ __Y 

/ 
H 1 C:  

iI I I 
.9112121111 2 3 9 28 

El1 5121 2 1 2112 131429 
I I -  11 I I 

°8 
1,,--] 

 3 36 37 38 39 

O1J23 

HJ 1 4 7 

1 8 27 

C:L I I 
Dimension 1 

Figure 3.7: A three dimensional extendible array in which each dimension extends in round 

robin manner and L is 4. 

For example, consider a three dimensional extendible array as shown in Figure 3.7; in 

which the length of each dimension is extended in round robin manner and the length of 

each dimension is equal (L= 4). 

Therefore the total no. of subarray will be 

hc = (4-1) x 3 + 1= 10. 

The size of the ith subarray for extension along any arbitrary dimension k (0 !!~ k < n) 

or can be calculated as: 

sz(k) = fl7.. 1 L1  [I # k] 

The number of nonzero array elements of ith subarray along extension-dimension k of 

EMA is sz1(k) x p and the size of the ith VL j  array is sz(k) x p x f. 

The total numbers of nonzero array elements oiA'can be obtained by the summation of all 

of the subarray's nonzero elements. Hence the size of the total VL array and dala array for 

EMA based schemes becomes: 

VLEA = dataEA = ( i sz(k) x p) X /1 [1 :5 k n] .........................................(3.5) 

and the size of the total CO array and Offietinchunk array for EMA based schemes will 
I 

be: 
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history table 

address ta ble 

coefficient vector 
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COEA  = Of fsetinChunkEfl  = 
Ic ( 1 sz1 (/c) x p) X a (3.6) 

A 
Cost Mode! for EaCRS scheme 

The EaCRS scheme does not linearize the subarray. Hence it requires more auxiliary 

arrays. For the EaCRS scheme row dimension of the ith subarray for extension along 

dimension k is the dimension with the minimum length at the time of ith subarray's 

extension among the n dimensions (other than k) and the number of row will be: 

row_no(k)= min(d) [1 :!~ j :!~ n and j # k] 

No. of elements in the ith RO array for ith subarray = row_no(k) + 1 

Since RO[O] stores I in each RO array, WC (10 not require to store RO[O] for each RO 

array. 

Therefore the size of the total RO array for EaCRS scheme is: 

ROEaCRS  = ( 1 row_no1 (k)) x a .....................................................................(3.7) 

Compressed size of the array A' using EaCRS scheme i.e. (SGEaCRS) is, 

SCEaCRS  = (ii - 2) x COEA  + ROE(ICRS  + VLEA  

= {(n - 2)( 1sz (k) x p) + row (k)] x a + ( 1 sz(k) x p) x /3 .....(3.8) 

Compression ratio for the EaCRS scheme (flEaCRS)  can be revealed as 

- 
SCgaCRS 

11EaCRS 
- UCEMA 

- 
[(n-2)(E 1  szi(k)xp)+fi(row no(k))I xcr+(E 1sz(k)xp)xp

(3.9) 

Cost Model for LEac'RS scheme 

In the LEacRS scheme, row_no(k) =1 because there is only one row for each subarray 

after linearization. 

Number of elements in the ith RO array for ith subarray = row-7-to(k) + 1 = 2. 

Since RO[O] stores 1 in each RO array, we do not require to store RO[O] for each RO 

array. 

- 
Therefore the size of the total RO array for LEaCRS scheme is: 
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ROLEaCRS = i) x a 

11 Compressed size of the array A'  using LEaCRS scheme i.e. (SC'LECl CIS) is, 

SCLEaCRS  = COEA  + ROLEQCRS  + VLEA  

= [( sz (k) x p) + 11 x a + (± sz1(k) x p)  x ...................(3.10) 

Compression ratio for the LEaCRS scheme ()LpaCRS) can be revealed as 

17LEaCRS - 
- SCLEaCRS 

ULEMA 

- 
E(1 szi(k)xp)+f i(1)]xa+( c sz(k)xp)xp

(3.11) 
L'1  x$ 

Cost Model for EaChOff scheme 

The EaChOff scheme Stores pointers and nonzero element information for each subarray. 

Therefore the size of the total chunkpointers and chunknonzero array for EaChOff scheme 

is: 

chunkPointersEachoff = chunkNonzeroEaChOff = hc x a 

= [(L — 1) x n + 1] x a ....... (3.12) 

Compressed size of the array A'  using EaChOff scheme i.e. (SCECIChOff) is, 

SCEaChoff = chunkPointersEac,lo!, + chunkNonzeroE(LC/LOff  + dataEA  

+ Offset!nChunkE/ 

x = [2 x ((L —1) x n+ 1) + ( 1 sz1 (k) x p)]  x a + (f1sz1(k) xp) x [ (3.13) 

Compression ratio for the EaChOff scheme (r1E(1CRS) can be revealed as 

71EaC = SCEaChO!! 
hOff  

UCEMA 

- 
[2x((L_1)xn+1)+( l szi(k)xp)]xa+(f1  sz(k)xp)x/3

(3.14) 

Table 3.2 shows the total size of the VL, data, CO, RO and OffsetinChunk arrays for 

EaCRS, LEaCRS and EaChOff schemes for 3-dimensional. 4-dimensional and n-

dimensional EMA based on the above discussions. 
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Table 3.2: Total size of the VL, dciia, CO. RO and OffsetlnClwnk arrays for EaCPS, 

LEaCRS and EaChOff schemes. 

Arrays VLEA/ COEAI 

rDimensions  
ROEaCRS ROLEaCRS  

dataEA OffsetlnChunkEl 

3-D pL3 f3 pL3a L(3L - 1) (3L - 2) X a X ct 
2 

4-D pL4 f3 pL4a L(4L - 2) (4L-3)xa 
2 

n-D pLf3 pLa L(nL - (n - 2)) 
xa (nL—(n-1))xa 

2 

From equation (3.8), (3.10) and (3.13) we find that SCEaCRS  > SCLEQCRS  and SCEaCRS  > 

SCEachoff  and SCLEaCRS SCE(lchoff .This is because for n-dimensional EMA,VLEA  = 

dataEfl = pLf3 (equation 3.5 and Table 3.2) and COEA  = OffsetlnChunkEA = 

pL71 a (equation 3.6 and Table 3.2). EaCRS scheme requires storage for ('11-2) nos. COEA  

arrays (equation 3.8) but LEaCRS and EaChOJj' schemes require storage for only one 

COEA  array (equation 3.10) and only one OfJeIInChunkE array (equation 3.13) 

respectively. For convenience we ignore the space required for the ROE ICPS. ROLEaCRS, 

chunkPointersFA and chunkNonzeroEA arrays, since space required for these arrays is 

negligible with respect to that of VLEA, COEA. clala1_4  and O/j.eiIn( hunkEA  arrays. 

So, 17CRS > 1lEaCRS because EaC1?S scheme requires one less CO auxiliary array for each 

subarray than the CRS scheme since subarrays are n-i dimensional for n-dimensional 

EMA. Similarly T1EaCRS > 71LEaCRS. because L.EaCRS scheme requires only one COEA  

auxiliary array for each subarray. We also find that, 77ch0 ,,,r 77EaChOff 71LEaCRS 

because ChOff scheme requires only one OffeIInChunkc,,off  auxiliary array for the TMA 

and EaChOff scheme requires only one OJftefJnChunkE,f auxiliary array for the EMA. 

Since OffsetlnChunk array stores offset information for non zero values only; 

OffsetlnChunkc,,off = OffsetlnChz!nkEA= CO1-,1  (equation 3.6). 

3.5.4 Range of usability Analysis 

(a) Range of usability analysis for TMA based schemes 
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Now we derive the range of usability for a three dimensional traditional multidimensional 

array for the CRS and Chunk OJj*el schemes. 

CRS scheme 

One of the goals to use the data compression scheme is to reduce the memory space 

required for sparse array. From equation (3.2) we can derive the range of usability of the 

CRS scheme. 

For example if we consider n = 3, from equation (3.1) we get, 

SCCRS  =((3 - 1)pL3  + L + 1)a+pL3 I? 

= (2pL3  + L + 1)a + pL3/3  

For deriving the range of usability for the CRS scheme we consider T1CRS = land n=3 in 

equation (3.2) and we get, 

(2pL3+L+1)a+pL3f3 
- 1 

L 3 J3 

or, (2pL3  + L + 1)a + pL3 f3 = L3/3  

or, pL3(2a+fl)= L3 f—(L+l)a 

LI-i a or, p = 9-i  - (-- x  -i) 

or, p < — 
 

- 

chunk-Offset scheme 

From equation (3.4) we can derive the range of usability of the Chunk-Ojftet scheme. 

For example if we consider n = 3, from equation (3.3) we get, 

L3  
SCchoff=2x. 

13  xa+pL3xa+pL3/? 

For deriving the range of usability for the Chunk-Offset scheme we consider Tichoff = 

1 and n=3 in equation (3.2) and we get, 

2x xa+pL3 xa+pL3  

L3  x f? 
=1 

I 
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or, 2x -a+pLa+pL/3= L3/3  

or, pL3(a + /3) = L3 f3 - 2 x cx 
13 

f3 2 a or, p=--(—x—) 
a+/3 i a+/3 

or, p 

Table 3.3 shows the range of usability of the CRS scheme (derived from equation (3.2)) 

and the ChOff scheme (derived from equation (3.4)) for 3-dimensional, 4-dimensional and 

n-dimensional TMA. 

Table 3.3: The range of usability of the TMA based (CRS and ChOJj) schemes 

Schemes 
CRS Chunk-Offset 

3-D 
P< +/3  

4-D /3  fl 
P< a+ p 

n-D /3 /3 
P<(nl)a+/3  P< a+fl  

(b) Range of usability analysis for EMA based schemes 

Now we derive the range of usability for a three dimensional extendible array (See Figure 

3.7) for the EaCRS, LEaCRS and EaChOffschemes. 

If we consider the length of each dimension is L, the value of hc for such an array is: 

hc= (L-1)x3+1 = 3L-2. 

From equation (3.5) we get, 

VLEA  = dataEA  = (! 2 sz1 (k) x p) xl?  [1 :!~; k :!~ ii] 

Where, k is the extension dimension of ith subarray. Since the length of each dimension is 

extended in round robin manner and length oF each dimension is equal (Assumption (i) 

and (ii)) 

therefore, 2 sz(k) = L3  [1 :5 k n] and VLEA  = dataEA  = pL3,B 
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Similarly from equation (3.6) we get, COSA  = Offset InChunklA  = pL3  a 

EaC'RS scheme 

For the EaC'RS scheme, the size of the total ROE(ICRS  array will be like this (Using 

assumption (i) and (ii))): 

ROEaCRS =[l+l+1+2+2+2+ +(L-1)+(L-1)+(L-1)+L]a 

[See Figure 3] 

=[3x1+2+... +(L-1))+Ljcx 

(L-1)(L-1+1) =[3x +L]a 
2 

L(3L-1) 
= a 

2 

From equation (3.8) we get, 

SCEacRS  = (3 - 2) x pL3  a + 
L(3L-1) 

 2 
a + pL3  [. 

pL3a+ a+ 
L(3L-1) 

pL3 f3. =  
2 

For deriving the range of usability for the EaCRS scheme we consider 71EaCRS = 1 in 

equation (3.9) and we get, 

pL3 a  +L(BL_i)a+PL3 

= 1 0 f3 

or, pL3 a + 
L(3L-1) 

 2 
a+pL3 /3 = L3 J3 

L(3L-1) 
or, pL3  (a + 8) = 0 /? - a 

2 

or, p = - 
(L(3L-1) x—) 2L, a+f 

or, p < 
'z +13  

LEaC'RS scheme 

For the LEaCR.S scheme, the size of the total ROLEaCRS array will be like this: 

ROLEaCRS = (3L2(1)) X a 

= (3L - 2) x a 
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From equation (3.10) we get, 

SCLEacRs=pL3 a+(3L-2)a+pL3 I3 

For deriving the range of usability for the LEaCRS scheme we consider 7/LEaCRS = 1 in 

equation (3.11) and we get, 

pL3  a +(3L-2)a+pL3  f3 
- 1 

L 3 C 

or, pL3 a +(3L-2)a+pL3 /3 = L3 /3  

or, pL3 (a +f?) = L3 /3  - (3L - 2)a 

jS (3L-2) a orp= --( x—) a+I3 L3 a+fi 

a+/3 

EaCh Off scheme 

For the EaChOff scheme, the size of the total chunkPointersE(LCh Off  and 

chunkNonzeroEachoff  array will be like this: 

chunkPointersEacjloff = chunkNonzeroEac,joff  = (3L - 2) X a 

From equation (3.13) we get, 

SCifachoff  = 2 x (3L-2)a +pL3 a+pL3 /3 . 

For deriving the range of usability for the EaChOff scheme we consider 17EaChOff =  1 in 

equation (3.14) and we get, 

2x(3L-2)a+pL3a+pL3/3 
- 1 

L 3 /3  

or, 2x(3L-2)a+pL3 a+pL3 /3 =L3 /3  

or, pL3  (a + /3) = L3  /3 - 2 x (3L - 2)a 

62X(3L-2) a or,p= ( 0 Cr 
x—) 

or, p < 

Table 3.4 shows the range of usability the EaCRS scheme (derived from equation (3.7) 

using Table 3.2), the LEaCRS scheme (derived from equation (3. 10) using Table 3.2) and 
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EaChOff scheme (derived from equation (3.14) using Table 3.2) for 3-dimensional, 4- 

dimensional and n-dimensional EMA. 

Table 3.4: The range of usability of the EMA based (EaCRS, LEaCRS and EaChOfJ 

schemes 

hemes EUCRS LEIiCRS EaGh Off 

3-D P P P p< p< 
a+8 

4-D P P P p< 
2a+p p< 

D P 
(n-2)a+/3 

__ 
P 

a+13 

in Table 3.3 and Table 3.4, we can see that the range of usability of the ChOjf LEa'RS 

and EaChOff schemes are almost equal and wider than that of both the CRS and EaCRS 

schemes. Range of usability of the Ch0Jf LEaCRS and EaChO/j' schemes are same for 

any dimensional EMA whereas the range of usability of the CRS and EaCRS schemes 

decrease with the increase of dimensional ity. 

3.5.4 Extension Cost Analysis 

Since the volume of RO array is much smaller with respect to the volume of VL and Co 

arrays in all the cases of the CRS based compression schemes and chunkPoinlers and 

chunkNonzero arrays are much smaller than data and OfftetlnC/nink arrays in all the cases 

of Chunk Offset based compression schemes, we ignore the extension cost for the RO, 

chunkPoiniers and chunkNonzero arrays for the convenience of calculation. 

(a) Extension Cost for TMA based schemes 

Figure 3.9(b), 3.9(e) and Figure 3.9(c), 3.9(f) pairs show the before and after view of 

extension of CRS and Chunk Offset  respectively for a 2 dimensional TMA. CRS and 

Chunk Offset arrays has to be reorganized to extend because the offset values are changed 

when the TMA is extended in dimension 1 (shown in Figure 3.8(a) and 3.8(b)). Since the 

A 
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offset values are subject to change; to get the correct value of a cell we have to fetch the 

5- 
previously allocated data and then reorganize the arrays. 

(a) Before extension (b) After extension 

Figure 3.8: Extension of a 2 dimensional TMA. 
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Figure 3.9: Extension cost analysis for TMA based scheme. 
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Cost for CRS scheme 

Let us consider a TMA(n), with initial volume V = L" for each dimension length L1 = L 

before compression. 

Initial volume of the VL array is: VV S  = (p x L) 

Initial volume of the CO array is: VORS 
= (p x L) 

Therefore initial volume of CRS is: 

VCRS = VS + (n — i) x V 5  [Since (n-I) nos. CO array exist ft)r CRS scheme for 
n-dimensional TMA] 

= pL7  + (n - i)pL 

= npL 

For extending TMA, it requires to reorganize the array and rewrite both existing and new 

data elements. The existing elements of the initial array need to be fetched and recalculate 

the new offsets due to the extension for TMA. 

Hence the cost of fetching (FC) the existing array elements of CRS becomes 

i:•r 
 

—ii 
- 
- in 

CRS - CRS  

If a TMA is extended by 8 then a new TMA of length L + 6 is to be reallocated, hence 

reallocation cost of CRS is: 

LtLCRS 
- nr

VL
CRS + L i\

nr
CO
CRS  

- '"-'  

= p(L+8)1  +p(n — 1)(L+(5) 

= np(L + (5)z 

So, total extension cost for CRS is: ECc RS  = PCCRS  + RCCRS  

=npL +np(L+(5)' 

= npL + np(> 0  : L8L) 

= npL + np("C0 L + "CJ  L'61) 

= 2npL1' + np L 1 81  

k 
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Cost for Chunk-Offset scheme 

Consider a TMA(n), with initial volume V = L' for each dimension length Li = L 

Initial volume of dataChOff array is: Vdata = (p X L) 

Initial volume of the OffsetinChunkCllOff array is: VOff setJ flC!w, = (p X L) 

Therefore initial volume of Chunk Offset is: Vc,loff = Vacta  + VOJl setinChunk 

= p!]1  + p!]1  

= 2pL7  

For extending TMA, it requires to reorganize the array and rewrite both existing and new 

data elements. The existing elements of the initial array need to be fetched and recalculate 

the new offsets due to the extension for TMA. 

Hence the cost of fetching (FC) the existing array elements of Chunk Offset becomes 

FC11 Off = Vchoff = 2pL71  

If a TMA is extended by 6 then a new TMA of length L + 8 is to be reallocated, hence 

reallocation cost of Chunk Offset is: RCc,loff  = RCdata  + RCoffset/?I chunk 

= p(L + (5) + p(L + 5)fl 

= 2p(L + (5) 

So, total extension cost for Chunk Offset is: Ec
0ff  
 = FC hUff  + RCchoff 

= 2pL71  + 2p(L + 6) 

= 2p!J1  + 2p( 0  "C1  L81) 

= 2pL11  + 2p("C0 L11  + "C, L8L) 

4pL'1  + 2p'=1  "C, L1' 161  

(b) Extension Cost for EMA based schemes 

Figure 3.9 shows the pictorial view of 8 unit extension of EaCRS(3). By 8 unit extension 

4 we mean that all dimensions of the EMA are extended a value 6. From Figure 3.10(a) and 
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3.10(b), we see that for extension of EaGRS we need to apply CRS only on the newly 

.5. 
extended subarray. Similarly for LEaJRS and EaChOff extension, we do not require to 

process the previously allocated subarray; we need to apply compression scheme only on 

the newly extended subarray. 
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Figure 3.10: Extension cost analysis for EMA based scheme. 

Cost for EaRS scheme 

Let us consider EMA(n), with initial volume of the array before compression V = L 

(considering length of each dimension Li  = L) 

Initial volume of the VL array is: V = (p x L) 
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Initial volume of the CO array is: V (p >< IP) 

Therefore initial volume of EaCRS is: 

VEaCRS = V + (n — 2) x V [Since (n-2) nos. CO array exist for EciCRS scheme 
for ii dimensional EMA] 

= pL + (n - 2)pl]1 

(n — 1)pL 

Now consider EMA(5), with initial volume of the array V = L5  before compression 

(considering length of each dimension L1  = L) 

Extending a 8 unit along dimension i, the size of extension SElL  br VL array is 

SE= p x 8 x L2  x L3  x L4  x L5  = p5L4  , and due to extension L 1  = L + 5 

SE= p x 8 x L1  x L3  x L x L. = p8 (L + S)L  VL 
3, and due to extension L2  = L + (5 

SEK L= p x 8 x L1  x L. x L4  x = p8 (L + 6)2L2, and due to extension L3  = L + 6 

SE= p x 6 x L1  x L2  x L3  x L. = p6(L + 6)3L, and due to extension L4  = L + 6 

SEr= p x 8 x L1  x L2  x L3  x L4  = p3(L ± ö), and due to extension L5  = L + 6 

Total Extension Cost for VL array, 6 unit extension in each dimension, becomes 

ECK L  =SE1 +SE2 ±SE3 +SE4 +SE5  

=p8> o L"_'(L + 8)1,  where k = 4 

Similarly for EMA(n), total extension Cost for VL array, for 6 unit extension in each 
K dimension, can be written as 

EC.'L = SE1  + SE2  + SE3  ± . . ..+ SE 1  + SE 

= p8 
' IJc_i(L + (5)' where k = n—I (3.15) 

Expanding the summation, 1=0 L''(L + 5)1,  we get 

k 

L 1 (L + 8)1 

=Lk(L+(5)o ±Lk_l(L±(5)1 +Lk_2(L+5)2 ± ... +L1(L+(5)k_1  

+ L°(L + (5)k 
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= Lk + 

L('C0 L+1C(5) + 

L2(2C0L2+2C18L+2C2(52) f 

L 3(3C0 L3+3C1öL2+3C2(5 2 L+3C353 ) + 

L 4  (4C0 L4  +4C1 8L3  +4C26 2  L2  +4C383 L+4C4(5) 

+ 

LO(kCO LA +kC SLkI +kC S2 L 2  + 

After multiplying and collecting the coefficients of L, p = 0, 1.....k, we get 

y - Lk + L 18 'C 1 + L2c2 L'(L +ö 'C, + + + 5k 1Ck 

1=0 1=1 1=2 z=kI i=k 

- k+lCLk+k+ICLk_15+k+1CLk_282 + .... +kCALSk±4iC 8k 
k+I 

ince P+t(' 1 
r 'r+II 

[ j=O 

fl 

= C'1 L"'5'', where n = k + 1 
1=1 

Putting the above value in equation (3.15), we get 

ECK L  = p8E C=o Lk _i(L+(5)t,wherek=n_l 

= p5 

= p E "C1L5' .......................................................................................................(3.16) 

Similarly for EMA(n), total extension cost for CO array, for ö unit extension in each 

dimension, can be written as 

(n - 2) p " 1 L"'5' [Since (ii-2) nos. CO array exist for each subarray] 

So, total extension cost for EaCRS is: ECff(ICRS = ECK L  + ECç°  

= p 11C,L" 1 5' + (ii - 2) p "C,L"'S' 

= (n - 1) P= 1  "C,L"'5' 
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Extension Gain of EaCRS over CRS scheme 

The difference of extension cost between the CRS and EaCRS schemes is referred to as 

Extension Gain (EGECRS) of EaCRS over CRS scheme 

1'rEaCRS = 'rCRS c'rEaCRS 
- 

= 2npJJ + np '= "C, L_ - (ii - 1) p  

= 2npL +p 1  flC, L'8 

= 2 VCRS+ Extension cost of a single CO array of EaCRS 

So, EG8CRS  is equal to the twice of the initial volume of CRS and extension cost for a 

single CO array of EaCRS (since EaCRS scheme requires one less CO auxiliary array for 

each subarray than the CRS scheme). That is the extension gain is constant (more than 

twice of the initial volume) for any values ofS with a fixed initial volume. 

Cost for LEaCRS scheme 

Initial volume of LEaCRS is: 

VLEaCRS = V + V Since (,i-2) nos. CO array exist for EaCRS scheme for 
n-dimensional EMA] 

= pLlL + pL 

= 2pL 

In the LEaCRS scheme, total extension cost for the VL array is same as equation 3.15. In 

this scheme total extension cost for the CO array is: p "C, I' J', since there is only 

one CO array for each subarray. 

Therefore, total extension cost for LEaCRS is: 

ECEaCRS 
= p "C1 L" '8' + p 'II "C,L"'S' = 2p 

Extension Gain of LEaCRS over CRS sc/wine 

The difference of extension cost between the CRS and EaCRS schemes is referred to as 

Extension Gain (E LEICR Gn,S '9) of EaCRS over CRS scheme 

EGLEaCRS - - EC5 - EC,ECLCRS 
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= 2npL +npJ=1  "C, L_'8t - 2p 1  "C,L''8' 

= 2npL + (n 
- 2)p "C, L7 8' 

= 2 VCRS + Extension cost of (n - 2) nos. CO array of LEa'RS 

So, EGaCRS  is equal to the twice of the initial volume of CRS and extension cost for 'n - 

2 nos. CO array of LEaCRS (since LEaCRS scheme requires "n - 2) nos. less CO auxiliary 

array for each subarray than the CR8 scheme). That is the extension gain is constant (more 

than twice of the initial volume) for any values of S with a fixed initial volume. 

Cost for EaCh Off scheme 

Consider a EMA(n), with initial volume V = L' before compression for each dimension 

length L1 =L 

Initial volume of dataEA  array is: Vca  = V = (p x L?l)  [from eqn. (3.5,)] 

- EA 11EA - Initial volume of the Offset!nChunkEA array is: Vg/J.SCJ?C!11k 
 - - 

(p x L) 

[from eqn. (3.6)] 

Therefore initial volume of EaChOff is: VEaC!loff dczta = VEA + V/,J flC,lU?lk 

= pL + pL 

') ifl - - T/ - VC/Qff 

In the EaChOff scheme, total extension cost for the clata array and OtfsetlnChunk  array are 

same as to the extension cost of VL array,  and CO array ui the LEaCRS scheme 

respectively. 

Therefore, total extension cost for EaChOJj is: 

Ec:aChoff = p>1 "C,L"'S' + p>.1  "C,L"'S' = 2p1 "C,L"'6' 

Extension Gain of EaQi Off over Chunk Ojfter scheme 

The difference of extension cost between the C/miik Ojjet and EaChOff schemes is 

referred to as Extension Gain (EG ° ' °") of EaChOj
71,6 

jover Chunk Offset scheme 

EG EaC O!f - EC6 o'1'  - 
EaChOff 

n,t5 - 
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= 4pL + 2p 1  11C1  L1 ö - 21)> "(',L' 1 8 

=2x2pL 

= 2Vcnoff  

= 2VEachoff  

EaChOff That is the extension gain (E G5 ) is constant (twice of the initial volume) for any 

values of (5 with a fixed initial volume. 

3.6 Conclusion 

In this chapter we present our proposed schemes in details that are how the 

multidimensional array can be compressed with the fcility of dynamic extension but 

excluding the already stored data reorganization. We also describe the forward mapping 

and backward mapping techniques for all the proposed schemes. The analytical analysis of 

the proposed compression schemes including theoretical analysis of the traditional CRS 

and Chunk-Ojftet schemes are also presented in this chapter. Analytical analysis shows 

that Extension gain of the proposed EaCRS and LEaCRS scheme over CRS scheme is 

more than twice of the initial volume of CRS and extension gain of EaChoff scheme over 

ChOff scheme is exactly twice of the initial volume of Chunk 0/je1 for any values ofS 

with a fixed initial volume. But it is worth mentioning that this gain is in theoretical aspect. 

Practically, EG would be little less, because there will some cost increase due to 

populating those auxiliary tables we have used. ChOfi EaChOI' and LEaCRS schemes 

outperform CRS and EaCRS schemes in terms of range of usability as well as compression 

ratio. As ChOff scheme is based on TMA it suffers from extendibility problem. Therefore 

LEacRS and EaChOff schemes are more suitable for practical applications with higher 

values of p than the CRS, ChOff and EaCRS schemes. In the next chapter we will show 

the details experimental results that confirm the theoretical analysis presented here. 

A 
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CHAPTER IV 

-a. 

Experimental Analysis 

4.1 Experimental Setup 

In this chapter, the experimental results for storage and retrieval cost as well as range of 

usability of both the TMA based schemes (CRS and C'IiOJj) and EMA based schemes 

(EaCRS, LEaCRS, EachOjñ are analyzed. We simulate the retrieval cost for range key 

query and extension cost for all the TMA and EMA based schemes. To evaluate the 

efficiency of the proposed schemes, the schemes were experimented on multidimensional 

array systems. All lengths or sizes of storage areas are in bytes. For experimental work, all 

systems are implemented in C++ language (Microsoft Visual Studio 6.0) and are run on a 

machine (Intel Pentium dual core processor) of 2.7 Gllz, 1GB RAM, 4GB virtual memory 

and as an operating system Windows 7 Ultimate are used. Since execution time of the 

program is dependent on several system specification parameters like processor speed, 

size of the primary memory and the number of thread running on the system; so extension 

cost and data access time may different at different machine. 

Table 4.1: The values of the parameters considered for experimental analysis. 

L S p 

4 40 5. 0.10 - 0.70 4 4, 8 3. 4, 5, 6 

4.2 Experimental parameters 

CRS, ChOff EaCRS, LEaCRS and EaC/iOjJ' schemes are implemented by placing all the 

arrays in secondary storage. Among the three auxiliai-y tables of extendible array, 

coefficient vector and address table are void for the EaCRS. LEaCRS and EciChOff 

schemes and only the history table is required for these schemes. History table acts as an 

index for locating the subarrays. Thus history tables are stored in main memory for fast 

access since the sizes of the auxiliary tables are negligible comparing to the main arrays. 

4" 
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Table 4.1 shows the parameter values used for experimental analysis (See Table 3.1 for 

definitions of the parameters). 

4.3 Experimental Results 

4.3.1 Comparison of Compression Ratio 

Figure 4.1 shows the Compression ratio (ii) found by experimental results of the TMA 

based (CRS and ChQfJ) schemes and EMA based (EaCRS, LEaCRS and EaChOJD 

schemes. It is an important metric to determine the range of uability (see deflnition 3.1)  

of the compression schemes. Reorganization of the equations 3.2 and 3.4 give the 

followings respectively: 

77CRS + + P ......................................................................... . 

pa  
 hlChOff=+j— +P .................................................................................(4.2) 

By reorganizing the equations 3.9. 3.11 and 3.14 and using Table 3.2, we have the 

followings respectively: 

(n-2)pcz (nL-n+2)a 
- 

71EaCRS - + 
2L'f3 + ................................................................... (43) 

71LEaCRS =+(h1L;;1)a +O ......................................................................... (4.4) 

pa  
 71EaChOff = + 

(2n(L-1)+1)a 
 + p ................................................................... (4.5) 

Figure 4.1(a), (b) and (c) shows the experimental results forfl = 8 and varying pand n = 

3, n = 4 and n = 5 respectively. It is found that 'i  increases with the increase of p. This is 

because; from the above cost analysis (see equation 4.1. 4.2, 4.3, 4.4. 4.5), we found that r 

is directly proportional to the value of p for a constant value of ii, L, a and fi. In Figure 

4.] (a), for n = 3; '1c/s  crosses the value I at an approximate p= 0.50 but .'7c:iog; '/EaCRS, 

1/LE<iCRS, and  11E,choff cross the value 1 at an approximate p= 0.66. In Figure 4.1(b). for n = 

4; 'icRs and 1/Ea(I5'  crosses the value I at an approximate p=  0.40 and p= 0.50 respectively 

but /ChOff, TILEaRS, and /iEaChOff  cross the value 1 at an approximate p=  0.66. In Figure 4.1(c), 

for n = 5; t7cid  and 1 ( / crosses the value I at an approximate p= 0.33 and p= 0.40 respectively 

but 1ciojj; 11.Eacps, and cross the value I at an approximate p= 0.66. 
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In all the cases, ChOff, LEaCRS and EaChOjfoutperibriii CRS and EczCRS schemes for 

compression ratio as well as range of usability. This is because CRS scheme requires n 

auxiliary arrays for n dimensional sparse array and EaC'RS scheme requires n-i auxiliary 

arrays for the same sparse array but ChOjj, LEaCRS and EaChOjj scheme requires only 2 

auxiliary arrays for any dimensional sparse array. 

Figure 4.1(d), 4.1(e) and 4.1(0 shows the experimental results for / = 4 and varying p and 

n = 3, n = 4 and n = 5 respectively. It is fiund that, in all the cases ?1(hoff; 'lEczcRs, 

)7LEaCRS, and 7 Eac1joJJ' crosses the value I for lower value of p with respect to the value of p 

in figure 4.1(a), 4.1(b) and 4.1(c). This is because; From the above cost analysis (see 

equation 4.1, 4.2, 4.3, 4.4, 4.5), we found that i is inversely proportional to the value of fi 
for a constant value of n, L, a and p. 

Figure 4.1(g) shows the range of usability comparison among CRS, ChOfT EaCRS, 

LEaCRS and EaC'hOff schemes for p = 0.30. The tests were conducted for various values 

of n (3 6) and ,B = 8. ,Cjs  and i/EaCPS increases with the increase of a, but Jichoff,  'lLEaCRS, 

and 'lliac/?Qff remains approximately same for all the cases. This is because; from equation 

4.1 and 4.3 we found that, 71CRS (n - 1) and 1/E(1C;?S (n - 2); considering values of 

n, L, a and 13 constant and we can ignore the second term (see equation 4.1 and 4.3) of 

both the equation for large values of L. On the other hand 11 has no effect on 11C/iOff  (see 

equation 4.2) and n has very small effect on 1L&iCJ?.S.  and '/Eac/iOff(see equation 4.4 and 4.5) 

for large values of L; since we can ignore the second term of the equation 4.4 and 4.5 for 

large values of L. 1-lence range of usability of CRS and EaCJ?S schemes decreases with the 

increase of a, but remains almost constant for ChOJf LEaCRS and EaChOff schemes for 

any dimensional sparse array as explained in Chapter Ill. 

Figure 4.1(h) shows the test results of the space requirement of the CRS, ChOjf EacRS, 

LEaCRS and EaChOff schemes for varying L. 'flie tests were conducted for a = 5, fi = 8 

and p = 0.3. From Figure 4.1(h) we can see that L has no effect on ij for all the schemes, 

which validate the above cost analysis (see equation 4.1. 4.2, 4.3. 4.4 and 4.5). 

4.3.2 Extension Cost 

Figure 4.2(a) shows the extension cost for CRS, ('hO/f EaCRS. LEaCRS and EaChOff 

schemes. The TMA based schemes (both CRS and C/'Off)  reorganizes the array whenever 

there is an extension to it. The 'I'MA based schemes need to fetch the existing elements 
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then reorganize for the extension. On the other hand the EMA based schemes namely 

EaC'RS, LEaCRS and EaChOjf schemes extend the initial array with segment of subarrays 

containing the new data as described in chapter III. I-fence the EMA based schemes can 

reduce the cost of array extensions significantly. In figure 4.2(a), the extension times are 

shown with n = 5, p = 0.3, 13 = 8 and 8 = 5. where ve find the extension times for TMA 

based compression schemes are much higher than the EMA based compression schemes. 

Figure 4.2(b) shows the extension gain i.e. the extension time difference between the 

EaCPS and CRS, LEaCRS and C1?S and EaChO/jand ('I'iOjjschemcs. 
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Figure 4.2: Extension cost and Extension gain comparison of CRS. EaCRS, LEaCRS, 

ChOff and EaChOff schemes for a = 5, p = 0.3, /3 = 8,6 = 5 for varying L. 

The extension cost as well as extension gain depends on the initial volume of the array i.e. 

the values of a and L before the array is extended. 1-lence, if,i and L increase, then EMA 

based schemes need less data to store than TMA based schemes without any 

reorganization of data. So TMA based schemes need higher times than EMA based 

schemes and thus gain increases. We can conclude that if the initial volume is large then 

the extension cost for TMA based schemes are higher. 

4.3.3 Retrieval Cost 

Figure 4.3 shows the retrieval performance for range l'ey query of' TMA and EMA based 

compression schemes for n=5, L=30 with different density and the query ranges from 

dimension length 7 to dimension length 21 of"the array for the tests. 
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(c) for ChOff scheme. 
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(b) for EaC'RS scheme. 
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Figure 4.3: Retrieval cost analysis for CRS, EaCRS, LEaCRS, ChOff and EaChOff 

schemes for different known dimensions. 

In Figure 4.3(a) the retrieval performance for CRS scheme for different known dimension 

is shown. It shows that, the retrieval time is lower for (hmension-0. This is because the 
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element inside the TMA can be organized as row major order or column major order. If 

the elements are organized in one order (say row major) and it is searched in the same 

dimension; the target elements for the query are consecutively organized. This is not true 

for all other dimensions and therefore that dimensions take longer times. Similarly Figure 

4.3(b) shows that the retrieval time is lower for dimension-4 for EaCRS scheme. This is 

because the subarrays of EMA(n) are n-I dimensional; the elements inside the subarrays 

again can be organized as row major order or column major order. Hence for EaCRS 

scheme, the same situation occurs i.e. fbr one known dimension EaCRS takes lower time 

than others as shown in Figure 4.3(b). Figure 4.3(c), 4.3(d) and 4.3(e) show the retrieval 

performance for ChOfjç LEaCRS and EaChOif schemes respectively for different known 

dimensions. In all the cases, retrieval time is almost same for different known dimensions. 

This is because, in these compression schemes; the array is linearized in a single data 

stream using the addressing function; therefore all the offset values of the array elements 

are considered as a single row. Hence the range of candidate offset values for a query can 

be determined uniquely. 
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Figure 4.4: Comparison of Average retrieval time lor CR8, EaCRS, LEaCRS, ChOff and 

EaChOff schemes for different dimension. 

Figure 4.4 shows the average range key retrieval time of both compression schemes and 

uncompressed EMA with different density for ii = 5. L = 30 and /5 = 8. Retrieval is made 

for the dimension length 7 — 21, considering each dimension as known dimension and then 

averaged. From Figure 4.3, we find that retrieval time increases linearly with the increase 

of data density for all the compression schemes (CRS, ChOf/  EaCRS. LEaCRS and 

EaChOfJ. This is because for an n-dimensional array with a particular length L and 



density p the number of non empty cell IspL. So if p changes the total number changes 

linearly and hence the retrieval time. 1-lowever there is no effect of data density on the 

retrieval time of uncompressed EMA. The reason is, in uncompressed EMA whatever the 

density, the sizes of subarrays remain same, and hence retrieval time is constant. 

4.4 Discussion 

In this chapter we present the experimental outcomes of the proposed scheme. We 

compare space requirement and range of usability of the EacRS, LEaCRS and EaChOff 

schemes with that of CRS and C/iOff schemes on TMA. Retrieval time of the CRS, ChOff, 

EaC'hOff, EaC'RS and LEaCRS schemes are examined and compared with the retrieval 

time of the EMA. In each case we found relevancy with the theoretical analysis what we 

made in Chapter 111. Furthermore we find that, proposed compression schemes outperform 

TMA based compression schemes for extension operation. 

( 
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CHAPTER V 

Conclusion 

5.1 Concluding Remarks 

The amount of information stored and analyzed in modern data sciences are very large. Since 

they can be very large; must be stored and retrieved from disk in costly I/O operations. So, many 

scientific applications extensively use multidimensional array to represent their data for efficient 

processing. However in many cases the total number of data or dimension cannot be predicted 

beforehand. Besides this, representing the real world data in multidimensional array creates a 

very sparse array. Compressing the data has important advantages. The most obvious advantages 

are the consequences of the smaller space usage. In this research work, we managed both 

sparsity and the dynamic extension problem by presenting database compression schemes based 

on EMA. We propose three new compression schemes namely EaCRS, LEUCRS and EaChOff 

for multidimensional array representation. Since EaCRS, LEUCRS and EaChOff schemes are 

based on an extendible multidimensional array system and compression scheme is applied for 

each subarray independently, such an array can extend its size dynamically along an arbitrary 

dimension without any relocation of existing data. We evaluated the proposed compression 

schemes both analytically and experimentally. In all the cases experimental results confirm the 

theoretical model. Hence the analytical model is validated. Again we compared the proposed 

schemes with TMA based compression schemes namely CRS and ChO/jand found better results 

for the proposed schemes. 

5.2 Future Recommendations 

The future applications and recommendations can be summarized as follows 

• The proposed schemes can easily be implemented in parallel platform. Because the 

subarrays of the extendible array are independent to each other, the suharrays can be 

distributed among the processors [48] and hence EaCRS, LEa('RS and EaChOff schemes 
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can be applied over the subarrays in parallel. Hence it will be very efficient to apply these 

schemes in parallel and multiprocessor environment. 
- • The schemes can be applied to implement the compressed form of MOLAP server and 

data warehouses. As the extension occurs incrementally for EMA and the proposed 

schemes are based on EMA. EaCRS, LEaCRS and EaChQ/f schemes can efficiently be 

applied for incremental aggregation i.e is form of velocity for big data analysis. Hence it 

is applicable for big data analytics. 

• The scheme can be applied to multidimensional database implementations using usual 

RDBMS for multidimensional data analysis. 
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