Compression Schemes for High Dimensional Data based on

Extendible Multidimensional Arrays

By
Md. Rakibul Islam

Roll No: 1007503

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science & Engineering

Department of Computer Science and Engineering
Khulna University of Engineering & Technology
Khulna 9203, Bangladesh
March, 2015

ii

Declaration

This is to certify that the thesis work entitled "Compression Schemes for High
Dimensional Data based on Extendible Multidimensional Arrays" has been carried out by
Md. Rakibul Islam in the Department of Computer Science and Engineering, Khulna
University of Engineering & Technology, Khulna, Bangladesh. The above thesis work or

any part of this work has not been submitted anywhere for the award of any degree or

diploma.

e’

Signature of Supervisor Signature of Candidate

Approval

This is to certify that the thesis work submitted by Md. Rakibul Islam entitled
“Compression Schemes for High Dimensional Data based on Extendible Multidimensional
Arrays” has been approved by the board of examiners for the partial fulfillment of the
requirements for the degree of Master of Science in Computer Science & Engineering in
the Department of Computer Science and Engineering, Khulna University of Engineering

& Technology, Khulna, Bangladesh in March, 2015,

BOARD OF EXAMINERS

1. \%”‘(S‘O% \S”

Dr. K. M. Azharul Hasan Chairman
Professor, Dept. of CSE (Supervisor)
Khulna University of Engineering & Technology, Khulna

2. % 0315

Head of the Department Member
Department of Computer Science and Engineering
Khulna University of Engineering & Technology, Khulna

. M’ 09/\5

Dr. Muhammad Sheikh Sadi Member
Professor, Dept. of CSE
Khulna University of Engineering & Technology, Khulna

4 743774’31%}1 573475~

Dr. Md. Aminul Haque Member
Professor, Dept. of CSE
Khulna University of Engineering & Technology, Khulna

5. =3)9
Dr. Md. Anisur Rahman Member
Professor, CSE Discipline (External)

Khulna University, Khulna

iv

Acknowledgment

First of all, obeisance to the almighty, omnipresent Allah for giving me the strength and
capability for writing the thesis. This thesis would not have been achievable without the
instructions, unconstrained support, guidance and the help of numerous individuals. First
and foremost, my utmost gratitude goes to my supervisor, Dr. K. M. Azharul Hasan,
Professor, Department of Computer Science and Engineering, for his continuous
supervision, constructive criticism, valuable advice, instructions and encouragement at all
stages of this thesis. I would like to show my heartiest gratitude to Professor Dr. Rokibul
Alam, Head of the Department of Computer Science and Engineering, and Dr.
Muhammad Sheikh Sadi, Professor, Department of Computer Science and Engineering for
their encouragement and numerous varieties of supports. I also like to remember the

inspiration, supports and encouragement of my family.

Author

Abstract

Traditional Multidimensional Array (TMA) is an important data structure for handling
large scale multidimensional dataset, but they are not extendible during run time. Another
problem for representing the real life data by multidimensional arrays is that it creates high
degree of sparsity. Due to this sparsity problem and increasing size of the data structures,
it becomes necessity to develop a suitable scheme to compress the multidimensional array
in an efficient way so that it takes comparatively low memory storage. To minimize both
of these sparsity and reorganization problem novel schemes are proposed to compress high
dimensional data based on dynamically extendible array. In this research work we propose
compression schemes based on Extendible multidimensional array. The proposed
compression schemes are Extendible array based Compressed Row Storage (EaCRS)
scheme, Linearized Extendible array based Compressed Row Storage (LEaCRS) scheme
and Extendible array based Chunk Offset Compression Scheme (EaChOff). The main idea
of both the ZaCRS and LEaCRS scheme is to compress the subarrays independently found
from the existing extendible array. LEaCRS scheme differs from EaCRS scheme only in
the way that the LEaCRS scheme needs to linearize each subarray first and then
compresses the subarray independently. EaChOff scheme linearizes each subarray
independently and breaks a large multi dimensional extendible array into chunks for
compressing. In this scheme, a maximum size of each chunk is considered and chunks are
formed by one or more subarrays. We evaluated our proposed schemes by comparing
compression ratio, data retrieval time and extension cost with CRS on TMA and Chunk-
Offset Compression on TMA. Both analytical analysis and experimental tests were
conducted. The analytical analysis and experimental results show that the proposed
schemes have better range of usability and compression ratio for practical applications
than traditional schemes. Furthermore, we found that the retrieval time of the proposed
compression schemes are independent of different dimensions. The increment operation
will be efficient in the proposed compression schemes than the existing traditional

compression schemes because it increments without reorganizing the previous data.

Contents

Title Page
Declaration
Approval
Acknowledgment
Abstract
Contents

List of Tables
List of Figures

CHAPTERI Introduction
1.1 Introduction
1.2 Problem Statement
1.3 Objectives
1.4 Scope of the Thesis
1.5 Thesis Organization

CHAPTERII Literature Review
2.1 Introduction
2.2 The Multidimensional Array Systems
2.2.1 Traditional Multidimensional Array (TMA)
2.2.2 Extendible Multidimensional Array (EMA)
2.2.3 Extendible Karnaugh Array (EKA)
2.2.4 Extended Karnaugh Map Representation (EKMR)
2.3 Compression schemes for multidimensional arrays
2.3.1 Offset Compression for TMA
2.3.2 Chunk-offset compression for TMA
2.3.3 CRS/ CCS scheme for Multidimensional Arrays
2.3.4 EKA Based Compression (SCEKA)
2.3.5 EKMR Based Compression (ECRS or ECCS)
2.4 Discussion

CHAPTER III Compression Schemes for High Dimensional Data based on
EMA
3.1 Introduction
3.2 Extendible Aarray Based Compressed Row Storage
Scheme (EaCRS)
3.2.1 Forward Mapping for EaCRS scheme
3.2.2 Backward Mapping for EaCRS scheme

vi

17
17

20
21

vii

PAGE
3.3 Linearized Extendible Array Based Compressed Row 22
Storage Scheme (LEaCRS)
3.3.1 Forward Mapping for LEaCRS scheme 24
3.3.2 Backward Mapping for LEaCRS scheme 25
3.4 Extendible Array Based Chunk Offset Compression 25
Scheme (EaChOff)
3.4.1 Forward Mapping for EaChOff scheme 28
3.4.2 Backward Mapping for EaChOff scheme 29
3.5 Theoretical Analysis 31
3.5.1 Assumptions 31
3.5.2 Parameters 32
3.5.3 Cost Model for Compression Ratio 33
3.5.4 Range of usability Analysis 39
3.5.5 Extension Cost Analysis 44
3.6 Conclusion 33
CHAPTER IV Experimental Analysis 54
4.1 Experimental Setup 54
4.2 Experimental Parameters 54
4.3 Experimental Results 55
4.3.1 Comparison of Compression Ratio 55
4.3.2 Extension Cost 57
4.3.3 Retrieval Cost 58
4.4 Discussion 61
CHAPTER V Conclusion 62
5.1 Concluding Remarks 62
5.2 Future Recommendations 62

References 64

Table No.
3.1
32

3.3
34

4.1

LIST OF TABLES

Description
Parameters Considered for theoretical analysis.
Total size of the VL, data, CO, RO and Of fsetInChunk arrays for
EaCRS, LEaCRS and EaChOﬁ’ schemes.

The range of usability of the TMA based (CRS and ChOff) schemes.

The range of usability of the EMA based (EaCRS, LEaCRS and
EaChOff) schemes.

The values of the parameters considered for experimental analysis.

viii

Page
32
39

41
44

54

Figure No.
2:1
2:2
23
24
3.1
3.2
3.3
3.4
3.5
3.6
3.0

3.8
3.9
3.10
4.1

4.2

43

4.4

LIST OF FIGURES

Description
A Three dimensional Extendible Multidimensional Array.
Extension realization of EKA (4).
An Example of EKMR(4).
The CRS/CCS schemes for a two-dimensional sparse TMA.
EaCRS scheme for a three dimensional EMA.
A subarray (SA_/_3) of the given 3-dimensional EMA at Figure 2.1.
LEaCRS scheme for a three dimensional EMA.
EaChOff scheme for a three dimensional EMA.
An Example of forward mapping for EaChOff scheme.
An Example of backward mapping for EaChOff scheme.

A three dimensional extendible array in which each dimension extends

in round robin manner and L is 4.

Extension of a 2-dimensional TMA.

Extension cost analysis for TMA based scheme.
Extension cost analysis for EMA based scheme.

Comparison of compression ratio for CRS, EaCRS, LEaCRS, ChOff and
EaChOff schemes.

Extension cost and Extension gain comparison of CRS, EaCRS,
LEaCRS, ChOff and EaChOff schemes forn =35,p =0.3,8 = 8,§ =
5 for varying L.

Retrieval cost analysis for CRS, EaCRS, LEaCRS, ChOff and EaC hOff

schemes for different known dimensions.

Comparison of Average retrieval time for CRS, EaCRS, LEaCRS, ChOff
and EaChOff schemes for different dimension.

ix

Page

10
11
13
19

23
27
29
30
36

45
45
48
56

59

60

CHAPTER I

Introduction

1.1 Introduction

The process of reducing the size of data in order to save space or transmission time is
termed as data compression. Data compression is widely used in data management to save
storage space and network bandwidth [1]. The main benefit of data compression is that of
increasing the capacity of the storage medium since data compression reduces the storage
requirement for the databases. Compressed information can be transferred from one place
to another in a higher effective transfer rate. This is because compressed data are encoded
using a smaller number of bytes and hence results less time for information transfer. Since
data compression reduces the loading of I/O channels, it becomes feasible to process more
I/O requests per second and hence achieve higher effective channel utilization. Most
importantly, however, is the application of data compression in reducing the cost of data
communication in distributed networks. In some applications, data compression can
reduce the average search cost and thus leads to improvement in system performance. For
example, in some index structures it is possible through compression to pack more keys
into each index block. When the database is searched for a given key value, the key is first
compressed and the search is performed against the compressed keys in the index blocks
[2] which results fewer blocks retrieval. Compression is of two types: data compression
and database compression [3]. In data compression, in order to use compressed data, it is
necessary to restore the information to its uncompressed format. Data compression
techniques (e.g. Arithmetic Coding, Lempel-ZIV, Huffman Coding etc. [4,5,6]) achieve
large compression rates that are very useful for archiving. The compressed data sets are
not directly queriable without prior decompression. But it is desirable to develop
compression techniques so that the data can be accessed in their compressed form and
operations can be performed directly on the compressed data. Such techniques are called
database compression techniques and usually provide two mapping [7]. One is forward

mapping. It computes the location in the compressed data set given a position in the

original data set. The other one is backward mapping. It computes the position in the
original data set given a location in the compressed data set. A compression method is
mapping-complete if it provides both forward mapping and backward mapping. In this
research work we are going to propose database compression schemes for handling
multidimensional data sets having the facility of dynamic extendibility during runtime.

The idea is based on multidimensional extendible arrays.

Arrays are among the best-understood and most widely used data structures. Few classes
of data structures are as well understood or as widely used as arrays. Large
multidimensional arrays are quite often used as the basic data structure in scientific,
statistical and engineering applications for modeling and analyzing scientific phenomena
[8.9] such as climate modeling [10], molecular dynamics [11], finite-element methods [12]
etc. Different statistical computations can be performed professionally on
multidimensional arrays due to its fast random accessing capability [6,13,14]. But this
capability depends on the fact that the size of each dimension should be fixed so that a
simple addressing function can be used to access an arbitrary element of the array.
However, in real Multidimensional Online Analytical Processing (MOLAP) [15,16]
applications data size grows incrementally. When a new data value is added, size
extension along the corresponding dimension is necessary. Except the extension along last
dimension this drawback implies reorganization of the entire array. This extendibility
problem of conventional array system can be solved using extendible array model. An
extendible array can be extended in any dimension without any repositioning of previously
stored data [17,18]. Such advantage makes it possible for an extendible array to be applied
into wide application area where required array size cannot be predicted before and / or

can vary dynamically during operating time of the system.

1.2 Problem Statement

Traditional Multidimensional Array (TMA) [19,20,21] is a good storage for storing
multidimensional data but one serious drawback is that they are not dynamically
extendible. To insert a new column value in the TMA the total reorganization of the array
is necessary. The idea of extendible array solves the problem of extendibility. Extendible
arrays, in fact, are combination of subarrays. If the array is » dimensional then the

subarrays are n-/ dimensional.

Multidimensional arrays are good to store dense data, but most datasets are sparse which
wastes huge memory because a large number of array cells are empty and thus are very
hard to use in actual implementation [22]. In particular, the sparsity problem increases
when the number of dimensions increases. This is because the number of all possible
combinations of dimension values exponentially increases, whereas the number of actual
data values would not increase at such a rate. For Example in an international trade data
set there are several dimensions such as importing country, exporting country, date-time,
items, measure amount of items etc. But generally a small number of items are exported
from any given country to other countries. Many of the compression schemes based on
TMA such as Compressed Row/Column Storage (CRS/CCS) [14,23] or Chunk-offset
Compression [22,24] already exist. CRS is commonly used due to its simplicity and purity
with a weak dependence relationship between array elements in a sparse array. But this
scheme is based on the TMA. Chunk-Offset compression scheme is also well studied in
the literature for multidimensional data analysis. But once again it is based on TMA. One
main problem of TMA based compressions schemes are that it is static in nature. This is
because, if there is any extension in each dimension in TMA based compression schemes,
we need to restore compressed data to its original format and perform the desired
extension for the new added data sets. Then the reorganized TMA is compressed by using
some compression schemes. So, efficient compression schemes are required to store such
sparse data for multidimensional data sets [13,25,26] without any reorganization and
relocation. In this thesis, we are going to propose and evaluate a new and efficient
compression schemes based on extendible multidimensional array (EMA) [27,28,29] to
manage the problem of extendibility without reorganization of data and apply a suitable

compression scheme on the EMA to have good compression ratio.

1.3 Objectives

Various scientific applications use multidimensional array as a basic data structure to
represent high dimensional data. This is because multidimensional array has an inherent
facility to compute aggregation operation [30]. Extendibility is an important requirement
of those applications since data grows over time. Hence, an array model or realization
scheme which can be extended over time is strong requirement of current era. Again

because of sparsity most datasets are very hard to use in actual implementation.

Therefore main objective of this research topic can be summarized as follows

To develop compression schemes for High Dimensional Data based on EMA,
which will impose less space and the maximum range of usable data density, will be
advanced for practical applications.

To analyze the increment operation (which is known as extension operation) along
with the basic operations on proposed compression schemes, with respect to the
existing traditional compression schemes.

To devise both forward mapping and backward mapping techniques for the
proposed scheme i.e. perform efficient and random searching in compressed array
for a given logical position of the original array; and also provide an efficient
mapping from arbitrary positions in the compressed data back to the corresponding
logical position in the original array.

To analyze the performance and usability of the proposed compression schemes on

sparse array.

1.4 Scope of the Thesis

This thesis deals with array system and compression schemes and proposes new and

efficient database compression scheme for high dimensional data based on EMA. Other

important scopes under this thesis are:

Compresses the EMA by applying compression scheme on each subarray of the

extendible array independently.
Compares the new schemes with the existing schemes in terms of space

requirement/compression ratio (77), range of usability, extension cost and retrieval

cost.
Store the elements in the secondary storage to set the actual 7.

Range key query are evaluated for the retrieval cost analysis.

1.5 Thesis Organization

e Chapter I describes the problems of TMA as well as of existing compression

schemes. Objectives and scopes of the thesis are also outlined in this chapter.

Chapter II presents an overview of array systems and different types of

compression schemes.

Chapter III provides the detailed discussion about the compression schemes for
high dimensional data based on extendible array. Forward mapping and backward
mapping techniques of the proposed schemes are explained with examples in this
chapter. This chapter also describes theoretical analysis along with the cost models

for existing schemes as well as proposed schemes.

Chapter IV shows the experimental setup, experimental results and detail analysis

of the result. Hence we validate the cost models of the proposed schemes.

Chapter V outlines the concluding remarks and direction of future research work.

CHAPTER II

Literature Review

2.1 Introduction

Large multidimensional arrays are widely used as the basic data structure in scientific,
statistical and engineering applications. Multidimensional databases such as MOLAP
databases [31,32] frequently make use of multidimensional array for handling large scale
multidimensional data. In MOLAP applications, compression is important because
database performance of MOLAP database strongly depends on the amount of available
memory [13,22]. The solid demand of those applications leads novel researches on
organization or implementation schemes for multidimensional arrays on secondary storage
and different compression schemes for this multidimensional array. Multidimensional
arrays are becoming the most popular data structure because of an inherent facility of
random accessing. But capability demands the length, and number of dimension to be
fixed — which leads problem of dynamic extension. There are many data structures already
exist to represent multidimensional data. Some of them are static in nature and some are

dynamic — i.e. resizable without reorganizing the already allocated data. Some of the well-

known and prominent data structures are discussed in this section.

2.2 The Multidimensional Array Systems

An Array Ald\,d,....d;] is an association between n-tuples of integer indices
(I3, 13, ..., L) and the elements of a set of £ such that, to each n-tuples given by the ranges
0</, <d,, 0<1, <d,,..., 0=/, <d, there corresponds an element of E. The domain from
which the elements are chosen is immaterial and we make the assumption that only one
memory location need to be assigned to each n-tuples. Each array may be visualized as the
lattice points in a rectangular region of n-space. The set of continuous memory locations
into which the array maps is denoted by A[0:D] where D = ([TL, d;) — 1. Let A(d;, d>,...,

dp.1, dy) be an n dimensional array with length of each dimension d,,d, .., d,,.

2.2.1 Traditional Multidimensional Array (TMA)

Traditional Multidimensional Array (TMA) [16,22,33] is a representation scheme for
multidimensional data which represent » dimensional data by » dimensional array. The
TMA represent n dimensional data by an array cell in an # dimensional array. The key to
the structure of arrays resides in the familiar coordinate system, which pictures an n-
dimensional array as being imbedded in the positive orthant of n-dimensional space, with

array positions lay on the lattice points.

The fast random accessing capability that is characteristic to multidimensional arrays
enables various statistical computations including aggregation to be performed efficiently
on stored fact data. This capability is owing to that the size of each dimension of a
multidimensional array is fixed so a simple addressing function can be used to address an
arbitrary element of the array. An element (i, iy,, i;) in an n dimensional TMA of
size [dy, dy.y,, dj] is allocated on memory using an addressing function like equation
2.1 (see section 2.3.1). Although Storage by linearization allows extension without any
movement of existing elements only in one of the dimensions, TMA suffers from the
reorganization problem; when a new data value is added only in third dimension of a
TMA(3), we can readily extend the 3D TMA in third dimension but array size extension

along other dimensions necessitates reorganization of the entire array elements.

2.2.2 Extendible Multidimensional Array (EMA)

The idea of extendible multidimensional array is described in [18,32,34]. An n
dimensional extendible array 4 can be extended in any dimension only by the cost of three
kinds of auxiliary tables namely history table H;, address table L,, and coefficient table C;
for each extendible dimension i (i=1,...,n). See Figure 2.1. History tables and address
tables are one dimensional array. History tables memorize extension history. An »n
dimensional extendible array 4 is the combination of n-/ dimensional subarrays. If the
size of 4 is [d}, d,,..., dy.;, d,] and the extended dimension is 7, for an extension of 4 along
dimension 7, contiguous memory area that forms an n-/ dimensional subarray S of size
[dids, ..., diy, disyp,..., dyy, d,] is dynamically allocated and added to 4 in dimension i.
Then the history value counter % is incremented by one and the value is memorized in the
history table Hj, also the first address of S is held on the address table L;. Note that S is a

usual fixed size array, and the actual data is stored in these subarrays.

As is well known, an element <i,,i3,...,i,> in an » dimensional conventional fixed size
array of size [d)d,..., d,] is allocated on memory using an addressing function like
equation 2.1 (see section 2.3.1) and coefficient vector (defined in section 2.3.1) <d>dy...dy
datlsidain.. , dy> is held in a coefficient table. For example, let 4 be a four dimensional
extendible array whose current sizes are [d;, d, ds, d]. If 4 is extended by one along the
dimension two, a three dimensional fixed array S of sizes [d;, ds, d,] is allocated. The
elements of S’s are arranged according to the well known column wise or row wise order.

The addressing function to determine the address of the element <i; is, i3> is as: ddsi; +
dsi; + i

(1 History Table
@Address Table

@ Coefficient Vector

Dimension 3

0/0]1 0lof1]8]36
2(2]1 112 3(9]37
50122 2|12 13 14|38
1]27]3 | 5[27 28 29[39)
9[48]4| 4| 48 49 50 51

@@@ 01 2 3

O[o]1]4]8n
@0 1]8]36]u
®

11 1[(2]|4]|c

Dimension 2

Dimension 1

>

Figure 2.1: A Three dimensional Extendible Multidimensional Array.

Here < d,d, d3> is called a coefficient vector. At every extension of 4, the corresponding
subarray’s coefficient vector is computed and memorized in coefficient table of the
extended dimension. In general, if 4 is an » dimensional extendible array where » is
greater than two, an #-2 dimensional coefficient vectors are required for each extendible

dimension.

Using these three kinds of auxiliary tables, the address of an array element can be
computed as follows. Consider the element <3,3,0> in Figure 2.4. Compare H;[3] = 8,
Hy[3] = 7 and H;[0] = 0. Since H,[3] > H,[3], H;[3] > H;[0], it can be proved that the
element <3,3,0> is involved in the extended subarray S having history value 8 and
beginning address of the corresponding subarray is 36 which is stored in L;/3]. From the
coefficient vector of C;/3] = < 4 >, the offset of element <3,3,0> from the first address of

S is computed by 4 x 0 + 3 = 3, the address of the element is determined as 39 (See Figure
2.1).

From the above element accessing procedure it can be seen that, the cost to compare n
history values is necessary to know the maximum history value therefore to know the
extended dimension of the element containing subarray. After knowing the maximum, the
offset computation is performed using the addressing function of the corresponding n-/
dimensional fixed size subarray. But, the number of multiplication and addition operations
to be performed is less than that of an » dimensional fixed size array [35]. The superiority

of the extendible arrays in element accessing speed and memory utilization is shown in

[18].

2.2.3 Extendible Karnaugh Array (EKA)

The idea of EKA [35,36,37] is based on Karnaugh Map (K-map) [38,49]. A Karnaugh
representation of Extendible Array (EKA) has a history counter and three auxiliary tables,
history table, address table and coefficient table. The history table stores the extension
history and the address table stores the first address of the extended subarray. The EKA
can be extended along any dimension dynamically during runtime only by the cost of
these three auxiliary tables. Figure 2.2 shows the details of the EKA scheme for a 4-
dimensional array of size A[s),s, s3, s4]. It also displays how the different auxiliary tables
are maintained during the extension along a particular dimension. Figure 2.2(a) shows the
initial setup with history counter 0 stored in history tables, address tables point to the first
address of the physical array, and coefficients tables entry is 1, since length of each
dimension is 1. During extension along d; or d; the segment size is sy*s, so s, is chosen as
coefficient vector. Similarly, s; is used as coefficient vector for extension along ds or d4.
Figure 2.2(b) shows the extension along d, dimension, the incremented history value 1 is
stored in history table of dimension 2. Since s3 is 1, C; stores this value and address table

points to the first address which is 1. Figure 2.2(c) shows the extension of d; dimension

10

considering that Figure 2.2(b) is already extended once in ds, and d,; dimension. As it is
already extended in ds, and d4 dimension, the history value reaches to 3, now for extending
in d; the value becomes 4 which is stored in H;. Coefficient table entry is 2 because of the
s is 2. If the length of dimension and number of dimension of a multidimensional array is
large then the address space for the TMA and EMA overflows quickly. EKA has the

property of dynamic extension during run time and significantly delays the occurrence of

address space overflow.

0|1
_— -
0 | He d; 0 1—|Ha1 1.1a
1| Ca 111 |Ca - A 01
T el (1] 01 |Ag =S < 01 6 1
Tod 5 0 1 oftfo] J[ofi]4fs]o [o]t]o
[o]tTo]o [o] o[o]t]0] Lo+ o] o[o] x]o [o]r o] Lo Ehlsle) e
0 0 P Y
A K 12 819 10(11)0
Au[0] 0 hz[1a[1a] 13)1
d; Cau| 1 ds 1 0
Hu |0 dy 0 0|4|6
— 1 2
0| 3
(a) Initial setup (b) Extension along d; dimension (c) Extension along d; dimension

Figure 2.2: Extension realization of EKA (4).

2.2.4 Extended Karnaugh Map Representation (EKMR)

A basic array representation scheme named Extended Karnaugh Map Representation
(EKMR) is proposed in [9,40,41]. In this scheme, an n-dimensional array is represented by
a set of 2 dimensional arrays. The idea of the EKMR scheme is based on the Karnaugh
map (K-map). For n= 1 and 2, the TMA and EKMR Schemes are same. Let A[I][K][i][j]
denote a TMA for n=4 with a size of 2x3x4x5. The corresponding EKMR system i.e,
EKMR(4) of array A[2][3][4][5] is shown in Figure 2.3(b). Consider a 4 input K-map and
its corresponding EKMR(4) in Figure 2.3. The analogy between the EKMR(3) and the 3-
input Karnaugh map is that the index variables i, j, k and 1 correspond to the variables W,
X, Y, and Z, respectively. The EKMR(4) is represented by a two-dimensional array with
the size of (2 x 4)x(3 x 5). In the EKMR(4), index variable i' is used to indicate the row
direction and the index variable j' is used to indicate the column direction. The index i' is a

combination of the index variables | and i, whereas the index j' is a combination of the

index variables j and k. Placement of elements along the direction indexed by k and |

makes the fundamental difference between TMA(4) and EKMR(4).

J
j= 0 | 2 3 4
WX/YZ 00 01 11 10 : =0
= 0
olo|1]1]o0 : ‘
B S 0
oL a2 | @ |t [1 7 |
o B T 1 2 0
1
1|11 1/101|o0 | 0
|
k=01 2i0 &1 201 201 20 12
(a) (b)

Figure 2.3: An Example of EKMR(4).

The EKMR(n) can be obtained in the similar way. Based on the EKMR(4), the EKMR(n)
for n dimensional array is represented by d,Xd, ;X..X d,.; EKMR(4) and a one-
dimensional array X that links all the EKMR(4) where d; (5 < i < n) is the length of the

corresponding dimension.

2.3 Compression schemes for multidimensional arrays

Multidimensional array are the basic data structure used in many applications such as
MOLAP. But in many cases, they are found to be sparse in nature — i.e. many of the array

cells contain null values and consume unnecessary space. Some common compression

methods are reviewed here.

2.3.1 Offset Compression for TMA

The n-dimensional TMA can be mapped into a single linearized array by an array

linearization function. The array linearization function for the multidimensional array, A
is
Fpupz, ..., pn) = didz...dyipn + didods...dyopuy + tdip2tpr 20

The logical position (i.e. offset value) is calculated for the records using the above forward

mapping function F' and stored on a data structure along with the measure value (if exists).

The coefficients of the addressing function namely (dd,..d, ,dd,..d, ,.....d,) is

referred to as coefficient vector and stored during the construction time. Hence the
addressing function can be computed very fast at the element access time. The reverse
array linearization function of the multidimensional array of A(d,, >, ...,dy.1,dy) for

backward mapping is defined as follows:

R-F(Y)=(0192 - 1@n) oo (2.2)
Where g, =Y mod d,

qi=[..[Y/dy]...] /di;] mod d for2<i<n-1
G1 = [[..[[¥/dy]/dy1]..] /ds] /s]

The backward mapping algorithm R-F is used to determine the coordinates of the

corresponding multidimensional array.

2.3.2 Chunk-offset compression for TMA

In Chunk-offset compression scheme [22,24] the large multidimensional arrays are broken
into chunks for storage and processing. Consider an n-dimensional array A, whose
dimensionality is d;xdyx . . . x d,. The chunks can be formed by breaking each d; into
several ranges. Within A, two positions are in the same chunk if and only if, in every
dimension, they fall within the same range. In memory or disk, values within a chunk are

stored consecutively. Elements in a chunk are arranged according to the pre-specified

order of dimensions.

In this compression scheme, the pairs of (OffsetlnChunk, dataValue) is physically stored
in secondary storage only for nonempty elements in a chunk. This set of pairs is sorted in
the order of the offset values. Note that the chunks which have no nonempty elements are
not physically allocated in the secondary storage. The offset inside the chunk
(OffsetInChunk) can be computed using the multidimensional array linearization function
described in section 2.3.1. The reverse array linearization function (see equation 2.2) is

used for backward mapping to get the original coordinates of the array.

2.3.3 CRS/ CCS scheme for Multidimensional Arrays

The CRS/CCS schemes [14,23,42] compress all the nonzero elements along the
rows/columns of the multidimensional sparse array by using one one-dimensional floating

point array VL and two one-dimensional integer arrays RO and CO. The base of these

arrays is 0. Array VL stores the values of nonzero array elements. Array RO stores
information of nonzero array elements of each row (columns for CCS). If the number of
rows is k for the array then RO contains k+1 elements. RO[0] contains 1, RO[1] contains
the summation of the number non zero elements in row 0 of the array and R[0]. In general,
RO[i] contains the number of nonzero elements in (i-1)th row [(-1)th column for CCS] of
the array plus the contents of RO[i-1]. The number of non zero array elements in the ith
row (jth column for CCS) can be obtained by subtracting the value of RO[i] from
RO[i+1]. Array CO stores the column (rows for CCS) indices of nonzero array elements of

each row (columns for CCS). Figure 2.4 shows an example of the CRS and CCS schemes

for a two dimensional array.

0 1 @2 3 i 0 1 28 3 4 5
0id 23 ROcrs|1]4]6]7]8 ROcs[1]2]3]5]7]38]
ofoJ2T9[5]0
1[6|o]o[3]0 // lr \
2(0l0l8lol0 COcps|1]2(3|0(3[2]4 COccs|1]0|0]2]|0[1]3
3folofoo]7 Viers |2(9|5]6[3]8]7 Viees |6 |219(|8(5(3(7
(a) A sparse array (b) The CRS Scheme (c) The CCS Scheme

Figure 2.4: The CRS/CCS schemes for a two-dimensional sparse TMA.

Figure 2.4(a) shows a 4x5 two-dimensional sparse array. Figure 2.4(b) and Figure 2.4(c)
show the corresponding CRS and CCS schemes, respectively. In Figure 2.4(b), the number
of nonzero elements of row 1 can be found by ROcrs/2]-ROcps/1] = 2. The column
indices of the nonzero array elements of row 1 are stored in COcgrs/ROcps/1]-1 / and
COcrs[ROcgs [1]] i.e COcps/3] and COcgs/4], since there are 2 nonzero array elements
exist in row 1. Finally the values of the nonzero array elements of row | can be found in
VLcrs[3], and VLcgs[4]. For n-dimensional sparse array based on TMA, (n-1) numbers

one dimensional integer arrays CO are needed.

2.3.4 EKA Based Compression (SCEKA)

A compression technique is proposed based on the EKA in [35,36,37] namely Segment
based Compression scheme for Extended Karnaugh Array (SCEKA). The main idea of the
scheme is to compress each of the segments of the EKA using the position information
only. To compress the EKA, the SCEKA stores only the position information of the each

segment of the array i.e. the construction history, the segment number and the offset inside

the array. The data stored in the SCEKA scheme can be accessed in compressed form and
at the same time it can grow and shrink in length or number of dimensions at run time.
SCEKA stores the tuple (history value, segment number, offset) for array cell mapping
and the data is stored as well. The history value is unique and can uniquely determine the
subarray. The segment number inside the subarray is also unique and can also be
determined uniquely. The offset value inside the segment is also unique and can be
determined by the addressing function. Hence the tuple (history value, segment number,

offset) can uniquely map an array cell of the EKA.

2.3.5 EKMR Based Compression (ECRS or ECCS)

The scheme is similar to CRS/ CCS scheme for Multidimensional Arrays [14,23,42] but
the structure used is EKMR. The ECRS (or ECCS) scheme compresses all the nonzero
array elements along rows (columns for ECCS). Array V stores the values of nonzero
array elements. Array R stores information of nonzero array elements of each row. RJi]
contains the number of nonzero elements in (i-1)th row of the array plus the contents of
RO[i-1] and the contents of R[0] is 1. The number of non zero array elements in the ith
row can be obtained by subtracting the value of R[i] from R[i+1]. Array CK stores the

column (rows for ECCS) indices of nonzero array elements of each row (columns for
ECCS).

Some other important compression schemes that can be applied to higher dimensional data

are summerized as follows:

The header compression method [43,44] is used to suppress sequences of missing data
codes, called constants, in linearized arrays by counts. This method makes use of a header
that is a vector of counts. The odd-positioned counts are for the unsuppressed sequences,
and the even positioned counts are for suppressed sequences. Each count contains the
cumulative number of values of one type at the point at which a series of that type
switches to a series of the other. The counts reflect accumulation from the beginning of the
linearized array to the switch points. In addition to the header file, the output of the
compression method consists of a file of compressed data items, called the physical file.

The original linearized array, which is not stored, is called the logical file.

In the following example, L represents the uncompressed form of a database, where 0’s

are the constant to be suppressed and the V’s are the unsuppressed values. H represents the

15

header database/file which contains the number of data or constants where odd position

represents the data and even position represents constants.

The BAP compression [43,45] method consists of three parts: Bit Vector(BV), Address
Vector(AV), Physical Vector(PV) and therefore called BAP compression method.

Let DB={xy,xs,...,Xn) be a logical database and ¢ be the constants. The physical vector PV

is the vector of non-constants in DB, that s, PV=(y1,y2,....yn) Where y; are in DB and y#c.

The y; are arranged according to their logical order in DB. No compression algorithm is
applied on PV because it stores only non-constants values. The Bit Vector BV indicates
the locations of constants and non-constants in the database. The bit vector is
BV=(b,,b,,...,b,;) where bi=1 if x; #c and b=0 if x;=c for 1<i < N. where BV consists of N
bits. The Address Vector AV is typically small and is used as an index for searching the
database. It is stored in main memory rather than secondary storage. In addition to
efficient compression fast forward and backward mapping between logical and physical
databases is also important. To do this, BV is divided into subvectors of D bits each. The
subvectors are compressed independently. This division of BV into subvectors makes the
Address Vector AV sufficiently small to store it in main memory. BV can be compressed
by run-length encoding method (also discussed in this chapter). The division of BV into
subvectors imposes a division of the database DB into dZ[NiD] sections, each consisting
of D elements. The address vector is defined as: AV=(aj,az,as,...a4); Where a;=0 and for
i 2, ai is the relative position in PV of the last non-constant element in the (i-1)th section

of DB if such a non-constant exists, otherwise we set aj=a;-1.

A bitmap compression [43,45] scheme consists of a bitmap and a physical database which
stores the non-constant values of a linearized array. The bitmap is employed to indicate the
presence or absence of non-constant data. The access time for both forward and backward
mapping for the bitmap scheme is O(N), where N is the number of bits in the bitmap, or

equivalently the number of elements in the database.

The history offset compression [17,46] scheme is based on extendible array. In this
technique, an element is specified using the pair of history value and offset value of the
extendible array. Since a history value is unique in extendible array and has one to one
correspondence with the corresponding subarray, the subarray including the specified

element of an extendible array can be referred to uniquely by its corresponding history

-r

16

value h. Moreover, the offset value (i.e., logical location) of the element in the subarray
can be computed by using the addressing function and this is also unique in the subarray.
Therefore, each element of an n-dimensional extendible array can be referenced by
specifying the pair (history value, offset value). Like Chunk-offset compression, the

extended sparse subarray elements are stored in memory in sorted fashion.

2.4 Discussion

All the array systems described in this chapter have both merits and limitations. Since
TMA and EKMR have pre-specified length and dimension, they are good for random
accessing. But they suffer in case of dynamic extension; when a new data value is added,
array size extension along the corresponding dimension is necessary and this implies
reorganization of the entire array elements. EMA and Flexible resizable array [47] are
good for dynamic extension. EMA provides extension only from the surrounding of the
array where as Flexible array allows even in the middle of the array. Classical
compression schemes have some limitations in compressing data. Like Bitmap and Header
compression provide good performance in terms of removing long runs of constants, but
they have a poor forward and backward mapping capability. Also, these methods can’t be
used on dynamic database environment where additions and deletions may be required.
The scheme Compressed Row Storage (CRS) or Chunk Offset compression are effective
for compressing large sparse arrays. But still they cannot be applied on extendible
databases. So, it is important to design a compression technique that will be better than
these classical compression techniques. The scheme should be efficient enough so that
operation can be done over the compressed data. Though, there are a lot of research has
been done on compression techniques, but only a few researches have been made on
dynamic array organization. Hence we propose new compression techniques based on
dynamic array model which will outperform over TMA. The details of the proposed

schemes are presented in the next chapter.

-

17

CHAPTER III

Compression Schemes for High Dimensional Data based on

Extendible Multidimensional Array

3.1 Introduction

In this chapter, novel methodologies have been proposed to compress high dimensional
data based on EMA. In these methods, the basic idea is to apply compression scheme on
each subarray of the extendible array independently. Analytical analysis of the proposed
schemes is also presented in this chapter. The details of the approaches are discussed in

the following sections.

3.2 Extendible Aarray Based Compressed Row Storage Scheme (EaCRS)

Given a three dimensional EMA. The Extendible Array Based Compressed Row Storage
(EaCRS) scheme compresses each subarray independently. This scheme use one one-
dimensional floating point array V'L and two one dimensional integer array RO and CO for
each subarray of the extendible array as the subarrays are two dimensional (since for an n
dimensional EMA, subarrays are »-/ dimensional as described in section 2.2.2) for the
three dimensional EMA. This scheme compresses all of the nonzero array elements along
the rows of the multidimensional subarays. Array RO stores information of nonzero array
elements of each row. The dimension with the current minimum length (except the
dimension being extended) at the time of extension is considered as the row dimension. If
the number of rows is & in a subarray then RO contains k+1 elements. RO/0] contains 1,
RO[1] contains the summation of the number non zero elements in row 0 of the subarray
and RO[0]. In general, RO[i] contains the number of nonzero elements in (i-/)th row of
the array plus the contents of RO/i-1]. The number of non zero array elements in the ith
row can be obtained by subtracting the value of RO/i] from RO[i+1]. Array CO stores the
column indices of nonzero array elements of each row. Array VL stores the values of

nonzero array elements. For each subarray, the base of these three arrays is 0.

18

In the EaCRS scheme, for an n dimensional EMA, among the three kinds of auxiliary
tables (history table, address table, coefficient table) only the history table H; is required
to store for each dimension. History tables are used to compute the extension dimension of
the subarray and the length of other dimension to compute the row dimension and number
of row of that subarray. An example of the EaCRS scheme for a three dimensional EMA
of Figure 2.3 is shown in Figure 3.1. For convenience here we name each subarray as
SA_i_j, where i indicates the extended dimension that the subarray belongs to and j
indicates the length of that dimension. For example, S4 I 0, S4 11, ..., S4_1 L;are
the subarrays of dimension 1, S4 2 1, S4 2 2, .., S4 2 L, are the subarrays of

dimension 2 and so on.

Physical Arrays

----- Logical Arrays

VL| 12 13 14 15 16 17

(a) Subarrays of dimension 1 using EaCRS scheme.

19

(b) Subarrays of dimension 2 using EaCRS scheme.

0 1 2
AR EY

SA_3_1
0 1”._.}01
$o:o0 o !
[121 ,,,,,,,, 4
0 1 2
Ro[+ [+]s] L
0 1 RO{ 1 i 1 ‘ 2 | 3 |
CO| o 1 0 1
VL| 3 4 COo| 1 1

VL | 10 11

(c) Subarrays of dimension 3 using EaCRS scheme.

Figure 3.1: EaCRS scheme for a three dimensional EMA.

Consider a subarray SA4_I_3 of Figure 2.1. This subarray is extended along dimension 1
and the subarray is shown in Figure 3.2(a). Here 36, 37, 38, ..., 47 indicates the logical
position of each of the subarray elements in the given three dimensional EMA. For
explaining the sparseness here we assign each subarray elements to some zero and nonzero
values (e.g. logical position 36 is assigned to 0, 37 is assigned to 13, 38 is assigned to 0

and so on.). Since S4_I_3 is extended along dimension 1(see Figure 2.1), the other two

20

dimensions (dimension 2 and dimension 3) are considered as the row dimension and
column dimension. For S4_/ 3, the length of dimension 3 is less than that of the
dimension 2. This is because dimension 3 is considered as the row dimension and

dimension 2 is considered as the column dimension in this E«CRS scheme (see Figure
3.2(b)).

Row Dimension

—_——
0 1 2 —’ 03 0 1 2 __’ D3
0| 36 | 37 | 38 e Ble
i l 1 (o] 14 0
39 40 41 Column Dimension
Dyz2| 12 | 15 0
Dy2| 42 | 43 | 44
2 | o 16 | 17
3 45 46 47

(a) Subarray SA_I_3 showing the logical (b) Subarray S4 7 3 showing the sparseness
position of each of the subarray elements and the considered row dimension and

in a given three dimensional EMA. column dimension for the EaCRS scheme.
Figure 3.2: A subarray (S4_I 3) of the given 3-dimensional EMA at Figure 2.1.

In the subarray SA_/_3, there are 3 rows and row 0 contains one nonzero value, 12 (see
Figure 3.1(b)). This is because RO/I] contains 2 (see Figure 3.1(a)) i.e. RO[1] = RO[0] +
total no. of nonzero array elements in row (. Similarly, RO[2] = 6 (row 1 contains four
nonzero values), RO[3] = 7 (row 2 contains one nonzero value) and so on. VL array stores
all the nonzero array elements (12, 13, 14, 15, 16) of this subarray and CO stores the

corresponding column indices of these nonzero array elements.

Logical database and physical database refer to the uncompressed and compressed

database respectively. Forward mapping and backward mapping techniques for the EaCRS

scheme are described as follows:

3.2.1 Forward Mapping for EaCRS scheme

Consider the element <3,3,/> of the EMA. Compare H,/3] = 8, H>/3] = 7 and H3[1] = 3.
Since H,[3] > H»/3] and H,[3] > Hs[1], extended dimension is 1 and the element is
involved in the subarray S4_/_3. The dimension with the minimum length at the time of
subarray S4_I_3’s extension is considered as the row dimension for the subarray S4 1 3.

Since H»[3] < H;[3] < Hy[4] and H;[3] > H;[2], it can be said that the subarray’s

21

(SA_1_3) size is 4x3, dimension 3 is the row dimension and the number of row is 3. Since
subarrays are two dimensional, in this case dimension 2 is the only column of the subarray
S4_1_3. In Figure 3.1(a), the number of nonzero elements of row 1 can be found by
RO[2] — RO[1] = 6 — 2 = 4. The column indices of the nonzero array elements of row 1
are stored in CO[RO[1] - 1], CO[RO[1]], CO[RO[1] + 1] and CO[RO[I] + 2] ie.
CO[1], CO[2], CO[3] and CO[4], since there are 4 nonzero array elements exist in row 1.
Finally the values of the nonzero array elements of row 1 can be found in VL[1], VL[2],
VL[3] and VL[4].

3.2.2 Backward Mapping for EaCRS scheme

Consider the physical position <9,4,3> of the physical database; where <9> is the history
value, <4> is the value that RO stores and <3> is the column index of a nonzero array
element i.e. <3> is the value that CO stores. We perform the binary search on the history
tables to find the given history value <9>. Since <9> is stored in H/4] (see Figure
3.1(b)), we need to access only the CO and RO arrays that are stored for the subarray
SA_2 4 (i.e. subarray extended at dimension 2 at length 4). Therefore the second co-
ordinate value of the desired logical position is <4> in logical database and the other two
dimensions (dimension 1 and 3) are considered as the row dimension and column
dimension. As we described above the dimension with the minimum length at the time of
subarray (S4_2_4)’s extension is considered as the row dimension for the subarray

SA_2_4.Since Hy[4] > H,[3] and H,[4] > H3[2], subarray’s (SA_2 4) size is 4x3.

Dimension 3 is the row dimension because H;/2] < H;/3] and the number of row is 3.
Since subarrays are two dimensional, in this case dimension 1 is the only column
dimension of the subarray S4 2 4 and the first co-ordinate value of the desired logical
position is <3> in logical database. As there are 3 rows in the subarray and <4> is stored
in RO[3] (see Figure 3.1(b)), it can be said that column index <3> is stored for the
nonzero elements of 3" row of SA_2 4 i.e. the third co-ordinate value of the desired
logical position is <2> in logical database. Hence the physical position <9,4,3> of

physical database is mapped to a logical position <3,4,2> in logical database.

As described above EaCRS scheme has the ability to perform both forward mapping and

backward mapping and so EaCRS scheme is mapping complete.

22

Based on the EaCRS scheme, an extendible multidimensional array of dimension four can
be compressed by adding one more one-dimensional integer array KO. In the EaCRS
scheme array KO stores the third dimension indices of nonzero array elements of each

row. For higher dimensions more one-dimensional integer arrays are needed.

3.3 Linearized Extendible Array Based Compressed Row Storage Scheme (LEaCRS)

Given a 3-dimensional EMA. The Linearized Extendible Array Based Compressed Row
Storage (LEaCRS) scheme compress each subarray independently. This scheme use one
one-dimensional floating point array VL and two one dimensional integer array RO and
CO for each subarray of the extendible array. This scheme linearize (see section 2.3.1)
each subarray independently and then compresses all the nonzero array elements along the
only row of each subaray. Array RO stores information of nonzero array elements of each
subarray. After linearization, as the number of row is 1 in a subarray, then RO contains 2
elements. RO/0] contains 1, RO[I] contains the summation of the number non zero
elements in the subarray and RO/0]. The number of non zero array elements in each
subarray can be obtained by subtracting the value of RO/0] from RO[1]. Array CO stores
the column indices of nonzero array elements of each subarray. Array VL stores the values

of nonzero array elements. For each subarray, the base of these three arrays is 0.

In the LEaCRS scheme, for an » dimensional EMA, among the three kinds of auxiliary
tables (history table, address table, coefficient table) only the history table H, is required
to store for each dimension. History tables are used to compute the extension dimension of
the subarray and the length of other dimension to carry out the linearization computation
for that subarray. An example of the LEaCRS scheme for a three dimensional EMA of
Figure 2.1 is shown in Figure 3.3. For convenience here we name each subarray as SA4 i j,
where / indicates the extended dimension that the subarray belongs to and j indicates the
length of that dimension. For example, SA_ [2 is the subarray of dimension 1 at length 2.

Similarly S4 2 1,54 2 2, ..., SA_2 L, are the subarrays of dimension 2 and so on.

23

I R
il n + Logieal Array
7 m Physical Array
4

1

SA_1. 0 SA_1.1 Sayﬂnns index
s ites 21 1-»0,

Logical position ol
array clemants in a
Subarray

T
n12345q@sg1n11

@fojojo]

Lincarized —
Subaray

(a) Subarrays of dimension 1 using LEaCRS scheme.

0. 1. 2 3.4 : y ;
2" co-ordinate value is <4 for all the elements in
Ha|loi (2| & |7 @ the subarray SA_2 4

_ =

SA_2.1 SA_2_2 SA_2.3 SA_2_4
0 1 2_pp U1 2-pp, 0% t..20 3 p,
0 23 cioioio oioioiao
48 Yiioioio B'v ioiojioio
' R "2 s
o 0 ;44
Lo 29D il e e Logical position of :
2 0 1 2-pp oy elemants ina o 1 2 (3Alyp
A Subarray H i
5 oioj1iz2) 0i 17 Ea
f i e Ll e
A A e yii3iais Dyti4isieir
pedri® Dy
23i0 |59§4n§ 2:6i71i8 @ Bi9iw0
0 2 3 4 5 6 7 8 9 0 1 2
oiofajoioioiojoioiofo: oiojfololai
1]]] L] 1
co[2] 5] ro[iTe] gk ro[1]<]
0 1 2 Subarray o 1 2
w [=]e]e] co[s [[]

w
(b) Subarrays of dimension 2 using LEaCRS scheme.

Figure 3.3: LEaCRS scheme for a three dimensional EMA.

Consider a subarray S4_I_3 of Figure 2.1. This subarray is extended along dimension 1 at
dimension length 3 and the subarray is shown in Figure 3.3(a). Here 0, 1, 2, 3, ..., 11
indicates the logical position of each of the subarray elements for a linearized subarray.

For explaining the sparseness here we assign each subarray elements to some zero and

24

nonzero values (e.g. logical position 1 is assigned to 0, 2 is assigned to 75, 3 is assigned to
0, 3 is assigned to 37 and so on.). Since S4 / 3 is extended along dimension 1(see Figure
2.1), the other two dimensions (dimension 2 and dimension 3) are considered as the

column dimension and row dimension respectively.

In the subarray SA_1_3, there are 6 nonzero values. This is because RO[1] contains 7 (see
Figure 3.3(a)) i.e. RO[1] = RO[0] + total no. of nonzero array elements in the subarray.
VL array stores all the nonzero array elements (75, 37, 66, 51, 25, 79) of this subarray and
CO stores the corresponding column indices of the linearized subarray of these nonzero

array element.

Forward mapping and backward mapping techniques for the LEaCRS scheme are

described as follows:

3.3.1 Forward Mapping for LEaCRS scheme

Consider the element <3,3,/> of the EMA. Compare H,/3] = 8, H>/3] = 7 and H;[1] = 3.
Since H;[3] > H[3] and H,[3] > H;[1], it can be said that the extended dimension is 1
and the element is involved in the subarray S4 / 3. The dimension that is last in the order
is considered as the row dimension and other dimension(s) are considered as the column
dimension for each subarray. Since H>/3] < H;[3] < H>[4] and H,[3] > H3[2], subarray
SA_I_3's size is 4 x 3. Dimension 3 is the row dimension. Since subarrays are two
dimensional, in this case dimension 2 is the only column of the subarray SA 1 3. In
Figure 3.3(a), the number of nonzero elements of the subarray S4 / 3 can be found by
RO[2] — RO[1] = 7 — 1 = 6. The linearized column indices of these 6 nonzero array
elements are stored in CO array. For computing the logical position of the array element
<3,3,1>; we consider dimension 2 as d;= 4, dimension 3 as d> = 3, second co-ordinate
value of the given array element as p; = 3, third co-ordinate value of the given array
element as p, = / and the desired logical position of the given array element can be

computed as follows using the array linearization function (described in section 2.3.1):
dip, +p1 = 4 X 1+ 3 = 7 [See Figure 3.3(a)]

Binary search is performed on the CO array to find logical position 7 and it can be found
that CO[4] stores the logical position 7 (since <3,3,/> array element is a nonzero array

element). Finally the values of the nonzero array element can be found in VL/4].

25

3.3.2 Backward Mapping for LEa«CRS scheme

Consider the physical position <9,//> of the physical database; where <9> is the history
value and <1/> is the column index of a nonzero array element in the linearized subarray
i.e. </I> is the value that CO stores. We perform the binary search on the history tables
to find the given history value <9>. Since <9> is stored in H>/4] see Figure 3.3(b)), we
need to access only the CO and RO arrays that are stored for the subarray S4 2 4 (i.e.
subarray extended at dimension 2 at length 4). Therefore the second co-ordinate value of
the desired logical array indices is <4> in logical database and the other two dimensions
(dimension 1 and 3) are considered as the row dimension and column dimension. As we
described above the dimension that is last in the order is considered as the row dimension.
Since H[4] > H,[3] and H[4] > H;[2], subarray’s (SA_2 4) size is 4x 3. Dimension 3 is
the row dimension and the number of row is 3. Since subarrays are two dimensional, in
this case dimension 1 is the only column dimension of the subarray S4 2 4. For
computing the first co-ordinate and third co-ordinate value of the desired logical array
indices in the logical database from the given physical position <9,//>; we consider
dimension 1 as d; = 4, dimension 3 as d> = 3, first co-ordinate value of the desired logical
array indices as ¢, third co-ordinate value of the desired logical array indices as qz,
linearized column index </7/> as ¥ and the desired logical array indices can be computed

as follows using the reverse array linearization function (described in section 2.3.1):
gz =Ymodd, =11mod 3 =2
qu=Y/d; =11/3 =3

Hence the physical position <9,77> of physical database is mapped to a logical position

<3,4,2> in logical database.

LEaCRS compression scheme is mapping complete because it provides forward mapping

and backward mapping (As described above).

3.4 Extendible Array Based Chunk Offset Compression Scheme (EaChOff)

Given a three dimensional EMA. The Extendible Array Based Chunk Offset Compression
(EaChOff) scheme linearize each subarray independently and break a large multi
dimensional extendible array into chunks for storage and processing. In this scheme, a

maximum size of each chunk is considered and chunks can be formed by single or several

26

subarrays. This scheme use one one-dimensional auxiliary table namely ChunkNo; for each
dimension 7 and one one-dimensional integer array NR. The chunk number assigned to a
subarray is held on the ChunkNo table. Array NR stores information of nonzero array
elements of each subarray. If the number of subarrays is k in a EMA then NR contains k+/
elements. NR/0] contains 1, NR/1] contains the summation of the number of nonzero
elements in 0" subarray and NR/0]. In general, NR/i] contains the number of nonzero
elements in (i-/)th subarray of the EMA plus the contents of NR[i-1]. The number of non
zero array elements in the ith subarray can be obtained by subtracting the value of NR/i]
from NR/i+1]. This scheme also uses one one-dimensional floating point array data and
one dimensional integer array OffsetlnChunk for each chunk of the EMA. Array data
stores the values of nonzero array elements of each chunk. Array OffsetInChunk stores the
offset in a chunk of nonzero array elements of each chunk. For each chunk, the base of

these two arrays is 0.

In the EaChOff scheme, for an n dimensional EMA, among the three kinds of auxiliary
tables (history table, address table, coefficient table) the history table H; and address table
L; are required to store for each dimension. History tables are used to compute the
extension dimension of the subarray and the length of other dimension to carry out the
linearization computation for that subarray. Address tables are used to point the starting
address of each chunk as well as the starting address of each subarray in a chunk. An
example of the EaChOff scheme for a three dimensional EMA of Figure 2.1 is shown in
Figure 3.4. For convenience here we name each subarray as S4 i j, where i indicates the
extended dimension that the subarray belongs to and j indicates the length of that
dimension. For example, S4_I_2 is the subarray of dimension 1 at length 2. Similarly

SA_2 1,84 2 2, ..., SA_2 L, are the subarrays of dimension 2 and so on.

Consider a chunk Chunkl of Figure 3.4. In this example the maximum chunk size
considered is 16. Chunkl comprise of subarrays SA_/ 0, SA_1 1, S4 2 1, S4 3 I and
SA_1_2 in sequence because these subarrays are extended in 1%, 2™ 3™ 4" apnd 5%
position in order. The length of this chunk is 12 because the 6" subarray i.e. S4 2 2’s
length is 6 and 12 plus 6 is 18 which is greater than 16. Alike the length of Chunk2 is 15
and length of Chunk3 is 9 and so on.

Chunk Maximum Size = 16
——— Physical Amay
— — — - Logical Array

Logical position
i —of array elements D7y
in a subarray

w ;7
Dll'l:

i Chunk 2

» Chunk1 | :
ceq O 14 2 344 s e 01 Ba 3 4
ot [117 R O EIEY
dua [10 f20 [30 | %0 dua [23 | 68 [48 [42 [o7 |

Figure 3.4: EaChOff scheme for a three dimensional EMA.

27

28

Since SA4_I 0 subarray is assigned to Chunkl, chunkNo,;[0] stores 1: likewise
chunkNo,[1] stores 1 for the subarray SA / I, chunkNo[1] stores 1 for the subarray
SA4 2 1 and so on. Chunk3, Chunk4 and Chunk5 consist of a single subarray S4 2 3,
SA_1_3and S4_2_4 respectively. If the EMA is extended along any dimension then a new

chunk namely Chunk6 will be comprised of this new subarray.

Forward mapping and backward mapping techniques for the EaChOff scheme are

described as follows:

3.4.1 Forward Mapping for EaChOff scheme

Consider the element <3,3,7> of the EMA. Compare H,/3] = 8, H5/3] = 7 and Hif1] = 3.
Since H;[3] > Hy[3] and H,[3] > H;[1], extended dimension is 1 and the element is
involved in the subarray SA_I 3. ChunkNo,;[3] = 4 indicates that we need to access only
chunk4 for the given element. In Figure 3.5, the number of nonzero elements of the 9
subarray S4_1_3 can be found by NR/9] — NR[8] = 7 — I = 6. The chunk offset of these 6
nonzero array elements are stored in Offset/nChunk array. For computing the logical
position of the array element <3,3,/>; we consider dimension 2 as d;= 4, dimension 3 as
d; = 3, second co-ordinate value of the given array element as p; = 3, third co-ordinate
value of the given array element as p, = / and the desired logical position of the given
array element can be computed as follows using the array linearization function

(described in section 2.3.1):
dip, +p; = 4 X 1+ 3 = 7 [See Figure 3.5]

Addition of L;/3] = 36 and logical position 7 give the desired chunk offset value 43 for
the given array element. Binary search is performed on the OffsetInChunk array to find
logical position 43 and it can be found that OffsetInChunk/[4] stores the logical position 43
(since <3,3,/> array element is a nonzero array element). Finally the values of the

nonzero array element can be found in dara/4].

29

i] 1 2 3
e, [1 T 1 N
P S

o

Sy : 43 I 38 3 4 41 42 b_ff. 46 a7
¥y \ v, 3 w0 a1 w2 (@) 45 s

0101751 0137 68 ET . 0400 -'79'\
L e e T S T T T T T ’,;" Y
Chunk 1 Chunk 2 Chunk
UL 2 @ 5

OffsetinChunk | 38 | 40 | 41 42‘"@ 47

datn | 75 | 37 | 66 | 51 I252 ?’9_’_/

Figure 3.5: An Example of forward mapping for EaChOff scheme.

3.4.2 Backward Mapping for EaChOff scheme

Consider the physical position <9,59> of the physical database; where <9> is the history
value and <59> is the logical index of a nonzero array element in a chunk i.e. <59> is the
value that OffsetInChunk stores. We perform the binary search on the history tables to find
the given history value <9>. Since <9> is stored in H,/4] (see Figure 3.6), we need to
access only the OffsetInChunk array that is stored for the subarray S4 2 4 (i.e. subarray
extended at dimension 2 at length 4). Therefore the second co-ordinate value of the desired
logical array indices is <4> in logical database. The linearized column index of the
subarray SA_2_4 can be computed by subtracting the first address (Ly/4] = 48) of the
subarray from the given logical chunk index i.e linearized column index = 59 — 48 = 11.

For computing the first co-ordinate and third co-ordinate value of the desired logical array

30

indices in the logical database from the given physical position <9,59>; we consider
dimension 1 as d; = 4, dimension 3 as d> = 3, first co-ordinate value of the desired logical
array indices as g;, third co-ordinate value of the desired logical array indices as g,
linearized column index </7> as ¥ and the desired logical array indices can be computed

as follows using the reverse array linearization function (described in section 2.3.1):
q; =Ymodd, =11mod3 =2
g1 =Y/d, =11/3 =3

Hence the physical position <9, 59> of physical database is mapped to a logical position

<3,4,2> in logical database.

0 1 2 3 4
ChunkNo; [1 [2 2 [3 [(5)]
oanno R

Chunk 1

OffsetlnChunk | 57
data | 44

Figure 3.6: An Example of backward mapping for EaChOff scheme.

EaChOff compression scheme is also mapping complete because it provides forward

mapping and backward mapping (As described above).

31

3.5 Theoretical Analysis

In this section the cost model for the compression schemes is developed. The analytical
analysis is compared with the experimental implementation in chapter IV. Before starting

the theoretical analysis the following definitions are important.

Definition 3.1 (Density of Array, p). Array density is a parameter to measure the
sparsity of an array. It is the ratio of non-empty array cells with total number of cells.

Maximum value the density can be one. Formally we can write,

_ Total number of cell having non null values

Total number of array cells

Definition 3.2 (Compression Ratio, 7): it is defined as the proportionate size of

the compressed array with that of uncompressed one, formally

/| , Compressedsize of Arra
Compression ratio, 7= P oA

Uncompressed size of Array

The value of 1 is preferable to be less than one.

Definition 3.3 (Range of usability). Range of usability of a compression scheme
is defined as the maximum range of data density up to which the compression ratio is less
than 1.

In this section, we model the space requirement and hence the compression ratio for the
proposed EMA based schemes that is for £aCRS, LEaCRS and EaChOff schemes. We
analyse their range of usability for practical applications as well as their extension cost.
We also compare this model with the TMA based schemes i.e. for CRS and Chunk-Offset
(ChOff) schemes. |

3.5.1 Assumptions
To simplify the model we make the following assumptions.

(i) The length of dimensions extends in round robin manner for both Traditional

multidimensional array (TMA) and Extendible multidimensional array (EMA).

(i) The length of each dimension is equal and when extension occurs each of the

dimensions are extended by equal length.

32

(iii) The records are uniformly distributed in the corresponding TMA or EMA.

3.5.2 Parameters

The parameters are grouped as shown in Table 3.1. Some of these parameters are provided

as input, while others are derived from the input parameters. All lengths or sizes are in

bytes.
Table 3.1: Parameters Considered for theoretical analysis.
Parameters Description
UCrpma The uncompressed size of the Traditional Multidimensional Array(TMA)
U, The uncompressed size of the Extendible Multidimensional Array
(EMA)
hc Total number of subarrays in EMA (i.e. history counter)
n Number of dimension of both TMA and EMA
L; Length of each dimension i (0 < i < n) for both the TMA and EMA
/ Length of Chunk for the TMA
6 Length of extension
SE; Size of extension along dimension i
p Density of records both for TMA and EMA
a Size of subscripts for TMA and EMA
B Size of a cell of the TMA and EMA
szi(k) Size of subarray & along dimension i
row_no;(k) | Number of rows in a subarray k along dimension i

33

SCcrs Compressed size of TMA using the CRS scheme

SCcrorf Compressed size of TMA using the Chunk-Offset Compression scheme

SCeacrs Compressed size of EMA using the EaCRS scheme

SCiracrs Compressed size of EMA using the LEaCRS scheme

. oo o SCcrs
flens Compression ratio for the CRS scheme for TMA; 7jcps = — -2
TMA

Compression ratio for the Chunk-Offset Compression scheme for TMA;

Mchorf Henofs = Sockors
ChOSE ™ “Uerma
n Compression ratio for the EaCRS scheme for EMA; f)pacrs = —L2CRS
EaCRS UCEmA
. - " sc
Hiians Compression ratio for the LEaCRS scheme for EMA; 0, z4crs = %
EMA

Compression ratio for the Chunk-Offset Compression scheme for EMA:

NEeachoff SCeachoff

NEachoff = UCenta

3.5.3 Cost Model for Compression Ratio

In this section we will derive cost model for compression ratio of TMA based compression
schemes i.e. for CRS and ChOff schemes as well as for EMA based compression schemes
i.e. for EaCRS, LEaCRS and EaChOff schemes.

(a) Cost Model for TMA based schemes

If the length of different dimension L; (0 < i < n) is known then storage requirement can

be calculated as
UCTMA: (HF’=1 Ll) X ﬁ =% X ﬁ (assumption {Il), L; =T L} e L” = L)

The number of nonzero array elements of sparse array 4 is p x L".

Cost Model for CRS scheme

In the C'RS scheme, for sparse array A4:

34

The size of array RO is: RO¢cps = (L + 1) X «
The size of VL array is: VLcgs = (p X L™) X 8

The size of each of the CO array is: COcps = (p X L") X @. There are n-I such COcgs

exists. Hence the compressed size of the array A4 i.e. the space requirement of the CRS

scheme (SCcgs) is,
SCcrs = (n — 1) X COcgs + ROcgs + VLcgs
=m-Dpl"xa+ L+ 1a+pl'p
= (- Dt et Dediglil e 3)

Compression ratio for the CRS scheme (¢gs) can be revealed as

SCcrs
UCrpma

Mcrs =

_ ((n-DpLM+L+1)a+plMp

T s [B2)
Cost Model for Chunk-Offset Compression scheme
In the Chunk-Offset scheme, for sparse array A:
No of Chunk in the TMA is:
no_of_chunkcpops = (assumption (ii), L, = Ly= ... = L, = L)

Space required for storing the pointers of all the chunks is:

i "
chunkPointerscporr = = X

Space required for storing the nonzero element counter information for each chunk is:

Lﬂ
ChunkNonZQTOChoff = I_n X o

The size of data array is: datacporyr = (p X L) X f8
The size of the Of fsetInChunk array is: Of fsetinChunkcporr = (p X L) X .

The compressed size of the array A4 i.e. the space requirement of the Chunk Offset scheme

(SCchofr) is,

3

SCenosr = chunkPointerscyosr + chunkNonzerocpoy + Of fsetinChunkcposs + datacposs

T

L L
=@ Xato Xa+pl" xa+pl"f

L‘J‘l

e 2 ® .E;. X o + an X a + anB T T T O T Ty T T T (3.3}

Compression ratio for the Chunk Offset scheme (1¢po) can be revealed as

SCchoff

ChOFF = erma

n
2x L xar L xa+pL"
= i P

cvvssnsensenn (3.4)
L%

From equation (3.1) and (3.3) we find that space required for storing the VL8crs and COcps
is equal to that of datacyoy and OffsetInChunkcnoy respectively. For convenience we
ignore the space required for the ROcgs, chunkPointerscpoy and chunkNonzerocyogarrays,
since the size of most of sparse arrays in practical application is large and space required
for these arrays is negligible with respect to that of VLggs, COcrss datacyoy and
OffsetInChunkcnoy arrays for very large sparse arrays. Therefore SCops > SCehofr 1.
space requirement for the Chunk-Offset scheme is less than that of the CRS scheme. This
is because, for n-dimensional TMA (n-1) nos. COcgs is required for the CRS scheme

(equation 3.1), but only one OffsetInChunkcyoy array is required for the ChOff scheme
(equation 3.3).
(b) Cost Model for EMA Based schemes

Let sparse extendible array, A’ be the corresponding sparse array based on the EMA. As
the length of dimension is equal for all the schemes, the uncompressed size of the array 4’

will be identical to the uncompressed size of 4 i.e. UCgyy = L™ X 3.
[f the length of ith dimension of A'is L;, the total number of subarray is:
he=Yr,(Li-1)+1

=(L—=1)xn+1 (assumption (i), L;=L;= .. = L,= L)

36

(D history table
@ address table

@coefficientvector
8|27
™~ S
=
2319128
% 2|z |1 & -
g 5112{ 2| 2]12:13 14]29
8 .
3136:37 38 35

8 |36 3

o 1312 3
®®® 0 u¥ 4 ?@
Lilo|1] 8 n@
eda 1|3 3@

Dimension1
_—— oy

T

Figure 3.7: A three dimensional extendible array in which each dimension extends in round

robin manner and L is 4.

For example, consider a three dimensional extendible array as shown in Figure 3.7; in

which the length of each dimension is extended in round robin manner and the length of

each dimension is equal (L= 4).
Therefore the total no. of subarray will be
hc=(4-1)x3+1=10.

The size of the ith subarray for extension along any arbitrary dimension k(0 < k < n)

can be calculated as;
SZi(k) = ?=1 Lj [] F k]

The number of nonzero array elements of ith subarray along extension-dimension k of

EMA is sz;(k) X p and the size of the ith VL, array is sz;(k) X p x [3 .

The total numbers of nonzero array elements of A’ can be obtained by the summation of all
of the subarray’s nonzero elements. Hence the size of the total VL array and data array for

EMA based schemes becomes:

VLgs = datag, = (he sz;(k) X p)xp [1<k<n] s e mssonserners (300

and the size of the total CO array and OffsetInChunk array for EMA based schemes will
be:

37

COzy = 0ffsetinChunkcy = (T SZi(R) X D)X asssismasmiisissinmmin (36)

Cost Model for EaCRS scheme

The EaCRS scheme does not linearize the subarray. Hence it requires more auxiliary
arrays. For the EaCRS scheme row dimension of the ith subarray for extension along
dimension £ is the dimension with the minimum length at the time of ith subarray’s

extension among the n dimensions (other than &) and the number of row will be:
row_noi(k)=min(d;) [1<j<nandj+ k]
No. of elements in the ith RO array for ith subarray = row_no;(k) + 1

Since RO[0] stores 1 in each RO array, we do not require to store RO[0] for each RO

array.
Therefore the size of the total RO array for EaCRS scheme is:

RUgaens =1 (Bl rowanoilk)) i sossmmninsmmmasmasmmsiisisssiss (367)
Compressed size of the array 4’ using EaCRS scheme i.e. (SCgacps) is,
SCpacrs = (N — 2) X COgy + ROgqcps + Vigy
= [(n = 2)(TE; s52; (k) X p) + The, row_no; (k)] X a + (Zhey szy(k) x p) X B+ (3.8)
Compression ratio for the EaCRS scheme (ng4czs) can be revealed as

n __ SCEacrs
EaCRS U CE_-_M..-I

. [(n~2)(2§‘§1 szi(k)xp)-iz?:cl(m w_noi(k)J]xcH(E?:"‘l sz; (k)xp)xﬁ
= i

s [959)

Cost Model for LEaCRS scheme

In the LEaCRS scheme, row_no;(k) =1 because there is only one row for each subarray

after linearization.
Number of elements in the ith RO array for ith subarray = row_no;(k) + 1 = 2.

Since RO/[0] stores 1 in each RO array, we do not require to store RO/0] for each RO

array,

Therefore the size of the total RO array for LEaCRS scheme is:

38

RO gacrs = (2?51 1) xa

Compressed size of the array 4’ using LEaCRS scheme i.e. (SCreacgs) is

]

SCieacrs = COga + ROy pacrs + Vigy
= [(ZFe, sz; (k) x P) + 31 xa +(e sz;(k) % p) X B e (3.10)

Compression ratio for the LEaCRS scheme (1), z4crs) can be revealed as

SCLEacRs

NLEacRS UCEMA

(28, szi00xp)+ 2R (1) xa+ (B, sz,(k)xp)xB
L%

R (340

Cost Model for EaChOff scheme

The EaChOff scheme stores pointers and nonzero element information for each subarray.
Therefore the size of the total chunkpointers and chunknonzero array for EaChOff scheme

is:
chunkPointersEachaff = chunkNonzerog,cnorr = he X
=[L-Dxn+1]Xa ... (3.12)
Compressed size of the array 4’ using EaChOff scheme i.e. (SCgachorr) is,

SCeachofs = chunkPointersgacnoss + chunkNonzerogacnoss + datag,

+ Of fsetinChunkg,
=[2x{L - 1) xn+1}+ (B, sz, (k) X p)] X @ + (T, sz,(k) X p) X B+ (3.13)
Compression ratio for the EaChOff scheme (1g,crs) can be revealed as

SCEachoff

NEachoff = UCanri

B [Zx{(L~-1)>':1f1+1}+(§,'f‘:'71 sz;(k)xp)]xa+(2f_fl S‘Z[(k)xp)xﬁ

Ltxp

Table 3.2 shows the total size of the VL, data, CO, RO and Of fsetinChunk arrays for
EaCRS, LEaCRS and EaChOff schemes for 3-dimensional, 4-dimensional and n-

dimensional EMA based on the above discussions.

39

Table 3.2: Total size of the VL, data, CO, RO and O f fsetInChunk arrays for EaCRS,
LEaCRS and EaChOff schemes.

Arrays VLga/ COga/
i ROgqcrs RO gacrs
Dimensions datag, | Of fsetInChunkg,
3-D pL3B plia LBL-1) o (BL-2)xa
2
4-D pL*p pLlta L(4L -2) S (4L -3) x a
2
n-D pL"B plta L(nL ‘én) | L-@m-D)xa

From equation (3.8), (3.10) and (3.13) we find that SCyqcps > SCrpacrs and SCeqcps >
SCgacnorf and SCrpacrs = SCgacnogy-This is because for n-dimensional EMA,VLg, =
datagy = pL"f (equation 3.5 and Table 3.2) and COpy = Of fsetinChunkg, =
pL"a (equation 3.6 and Table 3.2). EaCRS scheme requires storage for (#-2) nos. COpy
arrays (equation 3.8) but LEaCRS and EaChOff schemes require storage for only one
COgs array (equation 3.10) and only one Offset/nChunkg, array (equation 3.13)
respectively. For convenience we ignore the space required for the ROgucrs. ROpgacks,
chunkPointersgy and chunkNonzerog, arrays, since space required for these arrays is

negligible with respect to that of VLz,, COg,, datag and OffsetInChunkg, arrays.

50, Mcrs > MEacrs because EaCRS scheme requires one less CO auxiliary array for each
subarray than the CRS scheme since subarrays are n-/ dimensional for n-dimensional
EMA. Similarly ngacrs > Nigacrs. because LEaCRS scheme requires only one COgy
auxiliary array for each subarray. We also find that, Nenosf = Neachoff = NMLEacRS
because ChOff scheme requires only one OffsetInChunkcnog auxiliary array for the TMA
and EaChOff scheme requires only one OffsetInChunkg, auxiliary array for the EMA.
Since OffsetInChunk array stores offset information for non zero values only;

OffsetInChunkcioy = OffsetInChunkgs= COp, (equation 3.6).

3.5.4 Range of usability Analysis

(a) Range of usability analysis for TMA based schemes

40

Now we derive the range of usability for a three dimensional traditional multidimensional

array for the CRS and Chunk Offset schemes.

CRS scheme

One of the goals to use the data compression scheme is to reduce the memory space

required for sparse array. From equation (3.2) we can derive the range of usability of the
CRS scheme.

For example if we consider n =3, from equation (3.1) we get,
SCers = (B3 — DpL® + L + 1)a + pL3B
= (2oL% + L + Ve + pI3p

For deriving the range of usability for the CRS scheme we consider Ners = land n=3 in

equation (3.2) and we get,

(2pL3+L+1)a+pl’p 1
L3B -
or, 2pL*+L+ Va+plPp = L33

or, pLPQa+p) = I*f— (L + Da
T L a
s 2a+p L3 2a+,8)
B
s 2a+pB

Chunk-Offset scheme
From equation (3.4) we can derive the range of usability of the Chunk-Offset scheme.

For example if we consider n = 3, from equation (3.3) we get,

3
B

S'Cchoff=2>< XC(+,DL3 ><a’+pL3ﬁ

For deriving the range of usability for the Chunk-Ojfset scheme we consider ncpors =
1 and n=3 in equation (3.2) and we get,

3
2x—%xa+pL3><a+pL3ﬁ

L3x B

Py

41

3
or, 2 X % a+plPa+pl3f = 3B

3 3 L3
or, pL*(a+ B) = L’ — 2 x 5
B e o
% p_cr+,8 (I3xa+ﬁ)
or, p<a:;ﬁ

Table 3.3 shows the range of usability of the CRS scheme (derived from equation (3.2))

and the ChOff scheme (derived from equation (3.4)) for 3-dimensional, 4-dimensional and

n-dimensional TMA.

Table 3.3: The range of usability of the TMA based (CRS and ChOff) schemes

W Gk Ch u’lk'oﬁSEf
Dimensions

3-D B B
P<oa+p P<Z+E

4-D B B
’O<3a+ﬁ p<a+ﬁ

n-D .—B_ p< ﬁ

P<tm—Da+p

(b) Range of usability analysis for EMA based schemes

Now we derive the range of usability for a three dimensional extendible array (See Figure

3.7) for the EaCRS, LEaCRS and EaChOff schemes.

[f we consider the length of each dimension is L, the value of hc for such an array is:
hc= (L—-1)x3+1 =3L—-2.

From equation (3.5) we get,

VLgs = datagy = (%% szi(k) xp) X B [1 <k <n]

Where, £ is the extension dimension of ith subarray. Since the length of each dimension is

extended in round robin manner and length of each dimension is equal (Assumption (i)

and (ii))

therefore, Y727%sz;(k) =L® [1 <k <n]andVLg, = datag, = pL® B

Y

42

Similarly from equation (3.6) we get, €Oz, = Of fsetinChunk;, = pL®

EaCRS scheme
For the EaCRS scheme, the size of the total ROg,cxs array will be like this (Using
assumption (i) and (ii))):
ROpacps = [1+14+1+4+2+42+2+ - +(L-D+L-1D+(L—-1)+L]a
[See Figure 3]

=[Bx{1+24 - +(L—-D}+L]a

= [3 S (L—l)(;.—-1+1)

+ L]

_ L(3L-1)
S

From equation (3.8) we get,

SCeacks = 3 —2) x pLlP a +L(Sz—_l)a+pL3ﬁ.

L(3L-1)

a3
=plPa + =

a+pl3p.

For deriving the range of usability for the EaCRS scheme we consider ng,cps = 1 in

equation (3.9) and we get,

L(3L-1)
2

L3 g

pLia+ a+pl3

=1

or, pL3a +@a+pL3B= 3B

or, pL3 (@ + B) = L3ﬁ—;“(—32_—1—)a

SRS L(3L-1) «
O RS g ST xa+ﬁ)
B
or, p < -a—+—ﬁ
LEaCRS scheme

For the LEaCRS scheme, the size of the total RO, g,crs array will be like this:
ROpgacrs = (TET2(D) x a

=(BL-2)Xa

43

From equation (3.10) we get,
SCLEG.CRS = pL3 a + (3L = 2)0.' + pLB S :

For deriving the range of usability for the LEaCRS scheme we consider Nieacrs = 1in

equation (3.11) and we get,

pL:a +(3L-2)a+pl3 p _
138 =1

or,pl’a + (3L —2)a+plPf = 138

or,pLl? (@ +B) = LB — (3L —2)a

_ B BL-2)_ «a
o= s G
B
or, p < a:_-i-ﬁ
EaChOff scheme

For the EaChOff scheme, the size of the total chunkPointersEaChoff and
chunkNonzeroggcnorf array will be like this:

chunkPointersgacnoss = chunkNonzerogachorr = (3L —2) X a
From equation (3.13) we get,
SCeachorf =2X BL—2)a +pLlPa+pl3p.
For deriving the range of usability for the EaChOff scheme we consider Neachorr = 11n
equation (3.14) and we get,

2x(3L-2)a+pL® a+pld B
L3

=1
or,2x BL—2)a+plia +pl*f = I3

or,pl3 (@ +) = I*f -2 x (3L —2)a

_ B ol 2x(3L-2) a
or: 9 = a+f (L3 xaﬂ?)
or, p < ;f_—ﬁ

Table 3.4 shows the range of usability the £aCRS scheme (derived from equation (3.7)
using Table 3.2), the LEaCRS scheme (derived from equation (3.10) using Table 3.2) and

44

EaChOjff scheme (derived from equation (3.14) using Table 3.2) for 3-dimensional, 4-

dimensional and n-dimensional EMA.

Table 3.4: The range of usability of the EMA based (EaCRS, LEaCRS and LaChOff)

schemes
Schemes EaCRS LEaCRS | EaChOff
Dimensions '
(= p<25rﬁ+5 p<af—6 _ p<af—ﬁ
. P<GreTE | "<ueE Py

In Table 3.3 and Table 3.4, we can see that the range of usability of the ChOff, LEaCRS
and EaChOff schemes are almost equal and wider than that of both the CRS and EaCRS
schemes. Range of usability of the ChOff, LEaCRS and EaChOjf schemes are same for
any dimensional EMA whereas the range of usability of the CRS and EaCRS schemes

decrease with the increase of dimensionality.

3.5.4 Extension Cost Analysis

Since the volume of RO array is much smaller with respect to the volume of VL and CO
arrays in all the cases of the CRS based compression schemes and chunkPointers and
chunkNonzero arrays are much smaller than dara and OffsetInChunk arrays in all the cases
of Chunk Offset based compression schemes, we ignore the extension cost for the RO,

chunkPointers and chunkNonzero arrays for the convenience of calculation.

(a) Extension Cost for TMA based schemes

Figure 3.9(b), 3.9(e) and Figure 3.9(c), 3.9(f) pairs show the before and after view of
extension of CRS and Chunk Offset respectively for a 2 dimensional TMA. CRS and
Chunk Offset arrays has to be reorganized to extend because the offset values are changed

when the TMA is extended in dimension 1 (shown in Figure 3.8(a) and 3.8(b)). Since the

45

offset values are subject to change; to get the correct value of a cell we have to fetch the

previously allocated data and then reorganize the arrays.

1 2 +0,;
0 1
3
D, 1 3 4 5
2 5] 7 8
3 g 10 11

(a) Before extension

0 1 2 =D
0 0 2 0
+
Rl 6 0 2
2 0 12 5
3 0 6 0

(a) Sparse TMA
(before

extension)

(d) Sparse TMA

(after extension)

0 1 2 3 +0,
0 1 2 <
4 5: 3] ?

8 9 10 11

12 13 14 15

(b) After extension

Figure 3.8: Extension of a 2 dimensional TMA.

0 1 2 3
o N
1
.:'Jf >\ ‘\\.
S0n A 2 e e e
Cco 1 0 2 1 1
VL 2 6 2 12 5 5

(b) CRS on sparse array

(betore extension)

0 1 2 3 4
RO[1|3|5‘3[10|

.--"''_'_'_'_‘-‘-‘-""‘-\-__ s -
E s\’s"“ﬁ‘
3

|
VLE'”;'_I[AE |3| 2]5]6]2

(e) CRS on sparse array

(after extension)

Q 1 2

ChunkPuointers m

OffsetinChunk| 1 3 1 3 0 2

data| 2 [1 12 5 B

(¢) Chunk Offset on sparse

array (before extension)

0 1 2 3

ChunkPointers nn“n

/

/
fo 1
Oﬁsetlncrmunkm' a

|
iz
o]

3 5

2|3'_|1

() Chunk Offset on sparse

array (after extension)

Figure 3.9: Extension cost analysis for TMA based scheme.

B 7
[2]1]

welz] s [1]2] s [2][3]5]

8
3:

46

Cost for CRS scheme

Let us consider a TMA(n), with initial volume ¥ = L" for each dimension length Z;= L

before compression.

Initial volume of the VL array is: ViSRS = (p x L™)
Initial volume of the CO array is: VSRS = (p x L")
Therefore initial volume of CRS is:

R

Vers = Vit + (n — 1) x VEES [Since (n-1) nos. CO array exist for CRS scheme for

n-dimensional TMA]
= pL™ + (n — 1)pL"
=nplL"*

For extending TMA, it requires to reorganize the array and rewrite both existing and new
data elements. The existing elements of the initial array need to be fetched and recalculate

the new offsets due to the extension for TMA.
Hence the cost of fetching (FC) the existing array elements of CRS becomes
FCcrs = Vers = npL"

If a TMA is extended by & then a new TMA of length L + & is to be reallocated, hence

reallocation cost of CRS is:
RCans = RCFES + RCEE®
=p(L+&)"+pn—1DL+H"
=np(L+)"

So, total extension cost for CRS is: EC§®® = FCrs + RCegs

=npL" + np(L + 8)"

=nplt +np(Y L "C, IV4Y

= npLl™ + np("C,L" + Y-, "C, I""t6Y)

=2npL" +np ¥, "C, L"'8

47

Cost for Chunk-Offset scheme

Consider a TMA(n), with initial volume ¥ = L" for each dimension length Li= L
Initial volume of datacposys array is: Vggeq = (p X L™)

Initial volume of the Of fsetInChunkcpo sy array is: Vorfsetmenunk = (p X L™)

Therefore initial volume of Chunk Offset is: Veyporr = Vyara + Vofrsetinchunk

- an + an
= 2pL*

For extending TMA, it requires to reorganize the array and rewrite both existing and new
data elements. The existing elements of the initial array need to be fetched and recalculate

the new offsets due to the extension for TMA.
Hence the cost of fetching (FC) the existing array elements of Chunk Offset becomes
FCenofs = Venoss = 2pL7"

If a TMA is extended by & then a new TMA of length L + § is to be reallocated, hence
reallocation cost of Chunk Offset is: RCchofr = RCyqra + RCosfsetmchunk

= p(L+8)" + p(L + &)™

= 2p(L + &)™

So, total extension cost for Chunk Offset is: EC‘SCMH = FCcnosy + RCenosy
=2pL" + 2p(L+ &))"
= 2pL" +2p(¥, "C, L*6Y)
=201+ 2p("CyL™ + Ty "C, LF8H)
=4pl® H2o 3y 0 I

(b) Extension Cost for EMA based schemes

Figure 3.9 shows the pictorial view of § unit extension of EaCRS(3). By & unit extension

we mean that all dimensions of the EMA are extended a value §. From Figure 3.10(a) and

48

3.10(b), we see that for extension of EaCRS we need to apply CRS only on the newly
extended subarray. Similarly for LEaCRS and EaChOff extension, we do not require to

process the previously allocated subarray; we need to apply compression scheme only on

the newly extended subarray.

o 1
bl & /[N H=
|
A
SA_1_0 SA_1_1 SAYZJ SA_3_1
X 0= n 0 =D, T o 1 =D, ks 2 ; =+ D,
B. By’ Ds’ = e
o 1

A
o
A
o
ﬂ
a
(o]
a
(o]
lo
HN

o o 5
col o col 1 cole T 5
VL] 1 VL 2 VL a 4
(a) Before extension EaCRS(3)
0 LWL a Yioaph [LN
Wiy o] o [z]s] o 3]
\
Al
sA 21 A22
SA10 SA11 sA12 o 1-D, 2 2 2 =D, SA 31 5432 -
04D, 0 D, b ol G e it i 44 j=be LUR J2 SRDy
+0 +o al s et D, P el S $ulofo N
ﬂ:lzl Dsm g‘% 01 T R 2 e J"!Tm.u:
LI RS ool L sl o D "
RO et ond 2 . 2 2 MLt e
EBECI}: ERITISS s 1 ; ke o] .
0 s R e o 3
X222 0.1 2 sy
f,f e ME col s w[o] 1)
E4] Lttt wiz s wls 4]
b S s R
(b) After extension EaCRS(3)
Figure 3.10: Extension cost analysis for EMA based scheme.
Cost for EaCRS scheme

Let us consider EMA(n), with initial volume of the array before compression V = L"

(considering length of each dimension L; = L)

Initial volume of the VL array is: VEA = (p x L")

49

Initial volume of the CO array is: V& = (p x L")

Therefore initial volume of EaCRS is:

Veacrs = Vi + m —2) x VE4 [Since (n-2) nos. CO array exist for EaCRS scheme
for n dimensional EMA]
=pLl"+ (n—2)pl"
= (n—1)pL"

Now consider EMA(S), with initial volume of the array V = L° before compression

(considering length of each dimension L; = L)
Extending a & unit along dimension i, the size of extension SE}* for VL array is
SEYE=p X 8§ x L, X Ly X Ly X Ls=pdL" and due to extension L, =L + &
SEY*=p X 8 X Ly X Ly X Ly X Ls = p6 (L + &)L, and due to extension L, =L + &
SEY'=p X8 % Li XL XLyX Ls = p& (L + 8)°L? and due to extension Ly=L + &
SE{*=px 8§ X Ly X Ly X Ly X Ls = p8(L + 8)°L, and due to extension Ly= L +§
SES*=p X § X Ly X Ly X L3 x L, = p8(L + 8)*, and due to extension Ls=L + &
Total Extension Cost for VL array, § unit extension in each dimension, becomes
EC§" = SE, + SE, + SE; + SE4 + SE;
=p8 XK L*H(L + 6)!, where k=4
Similarly for EMA(n), total extension cost for VL array, for & unit extension in each
dimension, can be written as
EC{"* = SE; + SEy + SE3 + ...+ SE,_, + SE,
=p8 o LN L + &), where k=n—1 oo (3.15)

Expanding the summation, Y_, L*7{(L + &), we get

k

Z LEH(L + 6)*

i=0
=L+ 8+ LI+) + L2 (L +)2 + -+ LY(L + 8)F 1
+LO(L + 6)*

50

= I+
LHCC LY)+
L2 CC I CoL+Ci %) +
L7ZCC, LY C o1 +°C, 82 L+C,0°%) +
LH(C L+ C oD+ C, 0 P +*C,6° L+C,8%) +

-+

L(“C, L' +* C oL+ C, 0 [+..... +C, 6" L+4C.8%)
After multiplying and collecting the coefficients of L”, p=0, 1, ..., k, we get
k) | k ko K 25 k.
YINELRY SDY G +ITSY ‘G LY. G+t LE Y G + 8431,
i=0 i=0 i=1 i=2 i=k=1 i=k

= k+1C1L|fr+k+lC2Lk—16+k+1C3Lk—2§2 4 ““+k+leL5k—l +R‘+Ick+15k

{Since i e ="+1Cr+,:|

=0

=Y "C.L™'6"", where n=k+1

i=1
Putting the above value in equation (3.15), we get

ECSt = pS Tl o LML + 8)!, where k= n-1

1l

,05 E'El=1 nchn-u‘é-i—l

Similarly for EMA(n), total extension cost for CO array, for § unit extension in each

dimension, can be written as
ECS° = (n—2) pXt, "C,L™'5" [Since (n-2) nos. CO array exist for each subarray]
So, total extension cost for EaCRS is: EC§°“*S = Ecft + ECf°
=pXi, "CL7S' +(n—-2)p X, e Lo

=m-1)pXk, "CL"5

51

Extension Gain of EaCRS over CRS scheme

The difference of extension cost between the CRS and EaCRS schemes is referred to as

Extension Gain (EGEG®S) of EaCRS over CRS scheme

EGEaCRS ECERS — ECEacRS

= 2npL™ +mp T, 'C, U8 = (n— 1) p XL, "C, L'

= zann oL pz?:l "Cr Ln—ié‘i

= 2V¢gst Extension cost of a single CO array of EaCRS
So, EGE“CRS is equal to the twice of the initial volume of CRS and extension cost for a
single CO array of EaCRS (since EaCRS scheme requires one less CO auxiliary array for
each subarray than the CRS scheme). That is the extension gain is constant (more than
twice of the initial volume) for any values of § with a fixed initial volume.
Cost for LEaCRS scheme
Initial volume of LEaCRS is:
EA
co

Vieacrs = VEA +V, [Since (n-2) nos. CO array exist for EaCRS scheme for

n-dimensional EMA]
= pL" + pL™
= 2pL"
In the LEaCRS scheme, total extension cost for the VL array is same as equation 3.15. In

this scheme total extension cost for the CO array is: p Xi, "C,L""8", since there is only

one CO array for each subarray.

Therefore, total extension cost for LEaCRS is:

ECé;EaCRS = pZ}‘LI "C‘-Ln_iisi + p Z?;l uC‘rLy—r(Sr' = 2p Z;Ll ncwf Lu—;é,;.

Extension Gain of LEaCRS over CRS scheme

The difference of extension cost between the CRS and EaCRS schemes is referred to as

Extension Gain (EGLEGCRS) of EaCRS over CRS scheme

LEGCRS _ p~CRS _ 1 LEGCRS
EG;s ECs ECs

52

S anLTl + np :]:—_-.1 uci L‘n—f.é‘l’: 1N 2,0 ':1:1 ”C-‘J-L”_JCS'I
= 2npL" + (n — 2)p Tk, "C, L16"
= 2V¢grs + Extension cost of (n - 2) nos. CO array of LEaCRS

So, EG#E“CRS is equal to the twice of the initial volume of CRS and extension cost for (7 -
2) nos. CO array of LEaCRS (since LEaCRS scheme requires (# - 2) nos. less CO auxiliary
array for each subarray than the CRS scheme). That is the extension gain is constant (more

than twice of the initial volume) for any values of § with a fixed initial volume.

Cost for EaChOff scheme

Consider a EMA(n), with initial volume V = L" before compression for each dimension
length Li= L

Initial volume of datag, array is: Vid, = VEA = (p X L) [from eqn. (3.5)]

Initial volume of the Of fsetInChunkg, array is: VoZysermenunk = V&S = (p X L)

[from eqn. (3.6)]

Therefore initial volume of EaChOff is: Vgachosr = Vigata + Vi rrsetmchunk

= pL" + pL
= 2pL" = Veposys

In the EaChOff scheme, total extension cost for the data array and OffsetinChunk array are

same as to the extension cost of VL array and CO array of the LEaCRS scheme

respectively.

Therefore, total extension cost for EaChOff is:

ECgaChoff = p ?:1 "C‘-L”_ilsf 4 p Z?:l n(:an—i(sJ = 2}9 Zn ”t‘l. Ln—a’(sa’

=1

Extension Gain of EaChOff over Chunk Offset schene

The difference of extension cost between the Chunk Offset and EaChOff schemes is

referred to as Extension Gain (E Gi gmof f) of EaChOff over Chunk Offset scheme

Egigcno,ff: ECaChoff— ECéE'aChOff

33

— 4pL?’l + sz?zl Jrcvr Ln—id‘i = Zp ZE'[::L ”(_.YJ-L”_JES.I

=2 X 2pL"
= 2Venogy
= ZVEaChOff
That is the extension gain (EGT‘igmoff) is constant (twice of the initial volume) for any

values of & with a fixed initial volume.

3.6 Conclusion

In this chapter we present our proposed schemes in details that are how the
multidimensional array can be compressed with the facility of dynamic extension but
excluding the already stored data reorganization. We also describe the forward mapping
and backward mapping techniques for all the proposed schemes. The analytical analysis of
the proposed compression schemes including theoretical analysis of the traditional CRS
and Chunk-Offset schemes are also presented in this chapter. Analytical analysis shows
that Extension gain of the proposed EaCRS and LEaCRS scheme over CRS scheme is
more than twice of the initial volume of CRS and extension gain of EaChOff scheme over
ChOJff scheme is exactly twice of the initial volume of Chunk Offset for any values of §
with a fixed initial volume. But it is worth mentioning that this gain is in theoretical aspect.
Practically, EG would be little less, because there will some cost increase due to
populating those auxiliary tables we have used. ChOff, EaChOff and LEaCRS schemes
outperform CRS and EaCRS schemes in terms of range of usability as well as compression
ratio. As ChOff scheme is based on TMA it suffers from extendibility problem. Therefore
LEaCRS and EaChOff schemes are more suitable for practical applications with higher
values of p than the CRS, ChOff and EaCRS schemes. In the next chapter we will show

the details experimental results that confirm the theoretical analysis presented here.

54

CHAPTER 1V

Experimental Analysis

4.1 Experimental Setup

In this chapter, the experimental results for storage and retrieval cost as well as range of
usability of both the TMA based schemes (CRS and ChOff) and EMA based schemes
(EaCRS, LEaCRS, EaChOff) are analyzed. We simulate the retrieval cost for range key
query and extension cost for all the TMA and EMA based schemes. To evaluate the
efficiency of the proposed schemes, the schemes were experimented on multidimensional
array systems. All lengths or sizes of storage areas are in bytes. For experimental work, all
systems are implemented in C++ language (Microsoft Visual Studio 6.0) and are run on a
machine (Intel Pentium dual core processor) of 2.7 GHz, 1GB RAM, 4GB virtual memory
and as an operating system Windows 7 Ultimate are used. Since execution time of the
program is dependent on several system specification parameters like processor speed,
size of the primary memory and the number of thread running on the system; so extension

cost and data access time may different at different machine.

Table 4.1: The values of the parameters considered for experimental analysis.

L J p a i p n
4 ~ 40 5. 0.10 ~ 0.70 4 I 4,8 3.4,5.6

32
|

4.2 Experimental parameters

CRS, ChOff, EaCRS, LEaCRS and EaChOff schemes are implemented by placing all the
arrays in secondary storage. Among the three auxiliary tables of extendible array,
coefficient vector and address table are void for the EaCRS. LEaCRb_' and EaChOff
schemes and only the history table is required for these schemes. History table acts as an
index for locating the subarrays. Thus history tables are stored in main memory for fast

access since the sizes of the auxiliary tables are negligible comparing to the main arrays.

55

Table 4.1 shows the parameter values used for experimental analysis (See Table 3.1 for

definitions of the parameters).

4.3 Experimental Results

4.3.1 Comparison of Compression Ratio

Figure 4.1 shows the compression ratio () found by experimental results of the TMA
based (CRS and ChOff) schemes and EMA based (EaCRS, LEaCRS and EaChOff)
schemes. It is an important metric to determine the range of usability (see definition 3.1)
of the compression schemes. Reorganization of the equations 3.2 and 3.4 give the

followings respectively:

- (n-1)pa (L+D)a

yiirs : AT e e ()
2
nCthf —) I“; + Eﬁii + 2 B T A P S N (42)

By reorganizing the equations 3.9, 3.11 and 3.14 and using Table 3.2, we have the

followings respectively:

(n-=2) (nL—-n+2
NEackrs = ﬁpa ZLn_lﬁ)a +p R s WA R e e R T AR A e R R T R s R (43)

_pa | (mL-ntl)a 4.4
NLEaCRS = 5 +_L"ﬁ o ¢ s e POV 1)

p_;_ + (Zn(L-1)+Da

Neachoff =

Figure 4.1(a), (b) and (c) shows the experimental results for # = § and varying p and n =
3,n =4 and n = 5 respectively. It is found that 5 increases with the increase of p. This is
because; from the above cost analysis (see equation 4.1, 4.2, 4.3, 4.4, 4.5), we found that n
is directly proportional to the value of p for a constant value of », L, « and f. In Figure
4.1(a), for n = 3; ncgs crosses the value 1 at an approximate p= 0.50 but NChofs N EaCRS,
NLEacrs, and #gacnop cross the value 1 at an approximate p= (.66. In Figure 4.1(b), for n =
4; ncrs and 7gacrs crosses the value 1 at an approximate p= 0.40 and p= 0.50 respectively
but 5crog; NrEears, and Heacnoy cross the value | at an approximate p= (.66. In Figure 4.1(c),
forn=15; neps and ngcps crosses the value 1 at an approximate p= (.33 and p= 0.40 respectively

but #ewom Mieacks; and Nacnoy cross the value 1 at an approximate p= 0.66.

—o—CRS —m— EaCRS —A—LEaCRS
—¥—ChOff —e— EaChOff

16
14
Sz
L
r]
c
S o8
@ 06
(=8
E 04
=]
J 02
0
(1] 0.2 04 0.6 0.8
Data Density
(a) » forn=3and g = 8.
—6— CRS —#—EaCRS —aA—LEaCRS
—¥—ChOff —@— EaChOff
14
12
21
m
o
= 08
k=]
306
&
Eo.a
o
O o2
0 .
0 0.2 0.4 06 0.8
Data Density

(¢)pforn=>35and f=8.

—o— CRS —»—EaCRS —A—LEaCRS
—¥— ChOff —e— EaChOff

14

12 2
] ./
= 1
&
c 08 1
g
@ 06
g Z
o 04
5
S o2

0

o 0.1 0.2 0.3 0.4 05 0.6
Data Density

(e)nforn=4andp = 4.

—o— CRS —%—EaCRS ———— LEaCRS |
—»— ChOff —e—EaChOff

12

) i x

o
LY

Compression Ratio
o [=] [=]
E-l o L]
ﬁ\

o

Array Dimension

(g) n with constant p and varying n.

EaChOff schemes.

Compression Ratio Compression Ratio

Compression Ratio

Compresson Ratio

56

—6—CRS —w—EaCRS —&— LEaCRS
—»¥—ChOff —o— EaChOff
1.4
12
1
0.6
0.6
0.4
0.2
]
0 0.2 0.4 06 0.8
Data Density
(b)yforn=4and g =8.
—6—CRS —w—EaCRS —&— LEaCRS
—*—ChOff —o— EaChOff
14
12
1
o8 =
0.6
0.4
0.2
A Ho
0 01 0.2 03 0.4 05 0.6
Data Density
(d) p forn=3and = 4.
—o— CRS —¥— EaCRS —a&— LEaCRS
—»—ChOff —o— EaChOff
14
1:2
1
0.8
0.6
04
0.2
5
o 0.1 0.2 03 0.4 0.5 0.6
data density
(Dnforn=>5and g =4.
—#— CRS —¥#— ChOff —+— EaCRS
——0—LEaCRS —A— EaChOff
17
09 1T—
e P e
ol I . — S S S—
06 -
05 e —
PR o - - S
0.3
0.2
01
o 3 : e

0 5 10 15 20 25 30 35 40
Dimension Length

(h) # with constant p and varying L.
Figure 4.1: Comparison of compression ratio for CRS, EaCRS, LEaCRS, ChOff and

57

In all the cases, ChOff, LEaCRS and EaChOff outperform CRS and EaCRS schemes for
compression ratio as well as range of usability. This is because CRS scheme requires »
auxiliary arrays for » dimensional sparse array and EaCRS scheme requires n-/ auxiliary
arrays for the same sparse array but ChOff. LEaCRS and EaChOff scheme requires only 2

auxiliary arrays for any dimensional sparse array.

Figure 4.1(d), 4.1(e) and 4.1(f) shows the experimental results for f} = 4 and varying p and
n=3,n=4and n =3 respectively. It is found that, in all the cases NCRS, HChogs MEaCRS,
NLEacks, and neacnof crosses the value 1 for lower value of p with respect to the value of p
in figure 4.1(a), 4.1(b) and 4.1(c). This is because; from the above cost analysis (see
equation 4.1, 4.2, 4.3, 4.4, 4.5), we found that 7 is inversely proportional to the value of B

for a constant value of n, L, a and p.

Figure 4.1(g) shows the range of usability comparison among CRS, ChOff, EaCRS,
LEaCRS and EaChOff schemes for p = 0.30. The tests were conducted for various values
of n (3 ~6) and § = 8. ncrs and yracrs increases with the increase of », but NChogs NLEaCRS,
and ngachoy remains approximately same for all the cases. This is because; from equation
4.1 and 4.3 we found that, ¢gs ® (n — 1) and fgeeps ~ (1 — 2); considering values of
n, L, a and f constant and we can ignore the second term (see equation 4.1 and 4.3) of
both the equation for large values of L. On the other hand n has no effect on Nenogr (see
equation 4.2) and » has very small effect on #;z,crs, and Neachog (See equation 4.4 and 4.5)
for large values of L, since we can ignore the second term of the equation 4.4 and 4.5 for
large values of L. Hence range of usability of CRS and EaCRS schemes decreases with the
increase of », but remains almost constant for ChOff, LEaCRS and EaChOff schemes for

any dimensional sparse array as explained in Chapter I11.

Figure 4.1(h) shows the test results of the space requirement of the CRS, ChOff, EaCRS,
LEaCRS and EaChOff schemes for varying L. The tests were conducted for n =15, = 8
and p = 0.3. From Figure 4.1(h) we can see that L has no effect on 5 for all the schemes,

which validate the above cost analysis (see equation 4.1, 4.2, 4.3, 4.4 and 4.5).

4.3.2 Extension Cost

Figure 4.2(a) shows the extension cost for CRS, ChOff, EaCRS, LEaCRS and EaChOff
schemes. The TMA based schemes (both CRS and ChOJff) reorganizes the array whenever

there is an extension to it. The TMA based schemes need to fetch the existing elements

58

then reorganize for the extension. On the other hand the EMA based schemes namely
EaCRS, LEaCRS and EaChOff schemes extend the initial array with segment of subarrays
containing the new data as described in chapter I1I. Hence the EMA based schemes can
reduce the cost of array extensions significantly. In figure 4.2(a), the extension times are
shown with n =5, p = 0.3, # = § and & = 5. where we find the extension times for TMA
based compression schemes are much higher than the EMA based compression schemes.
Figure 4.2(b) shows the extension gain i.e. the extension time difference between the

EaCRS and CRS, LEaCRS and CRS and EaChOff and ChOff schemes.

——CRS —&— ChOft ——EaCRS —&— LEaCRS over CRS —#—EaCRS over CRS

—#— EaChOff —#— LEaCRS —#— EaChOff over ChOff

2000 2000

|
1600 / 1600 4

s
v
£ 1200 ; T 1200 /o5
g A |
E E _
= 800 | < a0 :
5 g
: / / = ' / /
E 400 X 400 — - -
0 A — | 0 -;— .
-400 -400
10 15 20 25 a0 35 40 10 15 20 25 30 35 40
Dimension Length Bimension Length
(a) Extension cost (b) Extension gain

Figure 4.2: Extension cost and Extension gain comparison of CRS, EaCRS, LEaCRS,
ChOff and EaChOff schemes forn=35,p =03, 8 = 8,6 = 5 for varying L.

The extension cost as well as extension gain depends on the initial volume of the array i.e.
the values of n and L before the array is extended. Hence, if # and L increase, then EMA
based schemes need less data to store than TMA based schemes without any
reorganization of data. So TMA based schemes need higher times than EMA based
schemes and thus gain increases. We can conclude that if the initial volume is large then

the extension cost for TMA based schemes are higher.

4.3.3 Retrieval Cost

Figure 4.3 shows the retrieval performance for range key query of TMA and EMA based
compression schemes for n=3, L=30 with different density and the query ranges from

dimension length 7 to dimension length 21 of the array for the tests.

59

—K—d!m—O —Q—dim-l —e—dim-2 ¥—dim0 e—aim-1 e—dim3
—&—dim-3 —A—dim-4 —H—dim-3 —aA—dim-4
1600 1800 -
1200 = 1400
T 1000 X 1200 +—
& _”/x/ —
E 800 = g 1000
£ 600 o £ so0 -
400 = = e
200
200
0 T T T T T T T = 3 T O
0 0.1 015 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 , '
_ 0 0. 015 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55
Data Density Data Density
(a) for CRS scheme. (b) for EaCRS scheme.
| —¥—dim-0 —6e—dim-1 —e—dim-2 —»—dim-0 —e—dim-1 —o—dim-2
—B—dim-3 _—&—dim-4 —8—dim-3 —aA—dim-4
1600 1800
1400 1600
1200 1400
5 1000 7 1200
v
2 a0 £ 1000
< o 800
£ 600 E 600
400 400 A
200 200 -
] — 0 ———————————
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0 0. 015 0.2 025 03 0.35 0.4 0.45 0.5 0.55
Data Density Data Density
(¢) for ChOff scheme. (d) for LEaCRS scheme.
——dim-0 —&—1-dim —o— 2-dim
—8—3-dim —A— 4-dim
1800 -
1600
1400
__ 1200
o
2 1000
£ 500
a
E 600
=
400
200 -
0 ——— —

0 0101502 025 0.3 035 0.4 0.45 0.5 0.55
Data Density

(e) for EaChOff scheme.
Figure 4.3: Retrieval cost analysis for CRS, EaCRS, LEaCRS, ChOff and EaChOff

schemes for different known dimensions,

In Figure 4.3(a) the retrieval performance for CRS scheme for different known dimension

is shown. It shows that, the retrieval time is lower for dimension-0. This is because the

60

element inside the TMA can be organized as row major order or column major order. If
the elements are organized in one order (say row major) and it is searched in the same
dimension; the target elements for the query are consecutively organized. This is not true
for all other dimensions and therefore that dimensions take longer times. Similarly Figure
4.3(b) shows that the retrieval time is lower for dimension-4 for EaCRS scheme. This is
because the subarrays of EMA(n) are #-/ dimensional; the elements inside the subarrays
again can be organized as row major order or column major order. Hence for EaCRS
scheme, the same situation occurs i.e. for one known dimension EaCRS takes lower time
than others as shown in Figure 4.3(b). Figure 4.3(c), 4.3(d) and 4.3(e) show the retrieval
performance for ChOff, LEaCRS and EaChOff schemes respectively for different known
dimensions. In all the cases, retrieval time is almost same for different known dimensions.
This is because, in these compression schemes; the array is linearized in a single data
stream using the addressing function; therefore all the offset values of the array elements

are considered as a single row. Hence the range of candidate offset values for a query can

be determined uniquely.

—2r— EMA —¥— LEaCRS —&— EaChOff
—%— EaCRS —B— ChOff —H— CR5

3500

3000 +——

2500 - = =

T 2000 +— —
wvi
E
@ 1500
15
B
1000 —
500 -
e e e L
0 01 015 02 025 03 035 04 045 05 055

Data Density

Figure 4.4: Comparison of Average retrieval time for CRS, EaCRS, LEaCRS, ChOff and
EaChOff schemes for different dimension.

Figure 4.4 shows the average range key retrieval time of both compression schemes and
uncompressed EMA with different density for n = 5, L = 30 and § = 8. Retrieval is made
for the dimension length 7 — 21, considering each dimension as known dimension and then
averaged. From Figure 4.3, we find that retrieval time increases linearly with the increase
of data density for all the compression schemes (CRS, ChOff. EaCRS, LEaCRS and

EaChOff). This is because for an n-dimensional array with a particular length L and

61

density p the number of non empty cell is pL". So if p changes the total number changes
linearly and hence the retrieval time. However there is no effect of data density on the
retrieval time of uncompressed EMA. The reason is, in uncompressed EMA whatever the

density, the sizes of subarrays remain same, and hence retrieval time is constant.

4.4 Discussion

In this chapter we present the experimental outcomes of the proposed scheme. We
compare space requirement and range of usability of the EaCRS. LEaCRS and EaChOff
schemes with that of CRS and ChOff schemes on TMA. Retrieval time of the CRS, ChOff,
EaChOff; EaCRS and LEaCRS schemes are examined and compared with the retrieval
time of the EMA. In each case we found relevancy with the theoretical analysis what we
made in Chapter I11. Furthermore we find that, proposed compression schemes outperform

TMA based compression schemes for extension operation.

62

CHAPTER V

Conclusion

5.1 Concluding Remarks

The amount of information stored and analyzed in modern data sciences are very large. Since
they can be very large; must be stored and retrieved from disk in costly /0 operations. So, many
scientific applications extensively use multidimensional array to represent their data for efficient
processing. However in many cases the total number of data or dimension cannot be predicted
beforehand. Besides this, representing the real world data in multidimensional array creates a
very sparse array. Compressing the data has important advantages. The most obvious advantages
are the consequences of the smaller space usage. In this research work, we managed both
sparsity and the dynamic extension problem by presenting database compression schemes based
on EMA. We propose three new compression schemes namely EaCRS, LEaCRS and EaChOff
for multidimensional array representation. Since EaCRS, LEaCRS and EaChOff schemes are
based on an extendible multidimensional array system and compression scheme is applied for
each subarray independently, such an array can extend its size dynamically along an arbitrary
dimension without any relocation of existing data. We evaluated the proposed compression
schemes both analytically and experimentally. In all the cases experimental results confirm the
theoretical model. Hence the analytical model is validated. Again we compared the proposed
schemes with TMA based compression schemes namely CRS and ChOff and found better results

for the proposed schemes.

5.2 Future Recommendations
The future applications and recommendations can be summarized as follows

® The proposed schemes can easily be implemented in parallel platform. Because the
subarrays of the extendible array are independent to cach other, the subarrays can be

distributed among the processors [48] and hence £aCRS, LEaCRS and EaChOff schemes

63

can be applied over the subarrays in parallel. Hence it will be very efficient to apply these
schemes in parallel and multiprocessor environment.

The schemes can be applied to implement the compressed form of MOLAP server and
data warehouses. As the extension occurs incrementally for EMA and the proposed
schemes are based on EMA. EaCRS, LEaCRS and EaChO/f schemes can efficiently be
applied for incremental aggregation i.e is form of velocity for big data analysis. Hence it
is applicable for big data analytics.

The scheme can be applied to multidimensional database implementations using usual

RDBMS for multidimensional data analysis.

10.

11;

13

64

REFERENCES

Pedro Furtado and Henrique Madeira, 2000, “Data Cube Compression with
QuantiCubes”, DaWaK 2000, LNCS 1874, pp. 162—-167.

D. Chatziantonian and K. Ross, 1996, “Querying Multiple Features in Relational
Databases”, Proc. of 22nd International Conf. Very Large Databases, pp. 295-306.

M. A. Roth and S.J. Van Horn, 1993, “Database Compression”, SIGMOD Record,
vol. 22, no. 3, pp. 19-29.

J. Ziv, Lempel, 1977, “A Universal algorithm for sequential data compression”,
IEEE Transactions on Information Theory, Volume 23, N° 3, pp. 337-343.

Welsh, Terry, June 1984, “A Technique for High-Performance Data Compression”
IEEE Computer, Volume 17, N° 6, pp. 8-19.

M. Nelson, J-L Gaily, “The Data Compression Book”, 2nd edition, 1996 - M&T
Books, ISBN 1-55851-434-1.

M.A. Bassiouni, 1985, “Data Compression in Scientific and Statistical Databases”,
IEEE Trans. Software Eng., vol. 11, no. 10, pp. 1047-1058.

Sarawagi, S. and Stonebraker, M., 1994, “Efficient Organization of Large
multidimensional Arrays”, Proc. of 10th International Conference on Data
Engineering, pp. 328-336, Houston, TX , USA.

Y. L. Chun, C. C. Yeh, and S. L. Jen, 2003, “Efficient data parallel algorithms for
multidimensional array operations based on the EKMR scheme for distributed
memory multicomputer,” IEEE Parallel and Distributed Systems, 14(7), pp. 625-639.

Manuel Ujaldon, Emilio L. Zapata, Shamik D. Sharma, and Joel Saltz, 1996,
“Parallelization Techniques for Sparse Matrix Applications,” Journal of parallel and
distribution computing.

J.K. Cullum and R.A. Willoughby, 1985, “Algorithms for Large Symmetric Eigen
value Computations,” vol. 1.

G.H. Golub and C.F. Van Loan, 1989, Matrix Computations, 2nd ed. (Johns Hopkins
Univ.Press, Baltimore).

Li, J. and Srivastava, J., 2002, “Efficient Aggregation Algorithms for Compressed
Data Warehouses”, IEEE Transaction on Knowledge and Data Engineering, Vol. 14,
No. 3, pp. 515-529.

14.

13:

16.

18.

20.

21.

22.

23,

24,

23,

26.

27.

65

White J. B. and Sadayappan P., 1997, “On Improving the Performance of Sparse
Matrixvector Multiplication”, Proc. of International Conference on High
Performance Computing, pp. 711-725.

H. Kang and C. Chung, 2002, “Exploiting versions for On-line data warehouse
maintenance in MOLAP servers”, Proc. of VLDB, pp.742-753.

Acker, R., Pieringer, R. and Bayer, R., 2005, “Towards Truly Extensible Database
Systems”, Proc. of DEXA, LNCS, Vol. 3588, pp- 596-605.

Hasan, K.M.A., Azuma, M.N., Tsuji, T., and Higuchi, K., 2005, “An Extendible
Array Based Implementation of Relational Tables for Multidimensional Databases”,
Proc. of DaWak, LNCS, Vol. 3580, pp.233-242.

Otoo, E. J. and Merrett, T.H., 1983, “A Storage Scheme for Extendible Arrays”,
Computing, Vol. 31, pp. 1-9.

K. M. Azharul Hasan, T. Tsuji, and K. Higuchi, 2007, “An Efficient Implementation
for MOLAP Basic Data Structure and Its Evaluation”, Proc. of DASFAA , LNCS
4443, pp. 288 —299.

G. Colliat, 1996, “OLAP, Relational and Multidimensional Databases Systems”,
SIGMOD Record, vol. 25, no. 3.

Kumakiri, M., Bei, L., Tsuji, T. and Higuchi, K., 2006, “Flexibly Resizable
Multidimensional Arrays”, Proc. of 22nd International Conference on Data
Engineering Workshops, pp. 83-88.

Zhao, Y., Deshpande, P.M. and Naughton, J. F., 1997, “An Array Based Algorithm
for Simultaneous Multidimensional Aggregates”, ACM SIGMOD, pp. 159—170.

Barret R., Berry M., Chan T.F., Dongara J., Eljkhhout V., Pozo R., Romine C. and
Van H., 1994, “Templates for the Solution of Linear Systems: Building Blocks for
the Iterative Methods”, SIAM, 2nd. ed.

Tsuji, T., Hara, A. and Higuchi, K., 2006, “An Extendible Multidimensional Array
System for MOLAP”, SAC’06 April pp. 23-27.

Shimada, T., Fang, T. Tsuji, T. and Higuchi, K., 2006, “Containerization
Algorithms for Multidimensional Arrays”, Asia Simulation Conference, pp.
228-232.

Tsuji, T., Jin, D. and Higuchi, K., 2008, “Data Compression for Incremental Data
Cube Maintenance”, proc. of DASFAA, LNCS, Vol. 4947, pp. 682-685.

T.Tsuji, G.Mizuno, T.Hochin, K.Higuchi, 2003, “A Deferred Allocation Scheme of
Extendible Arrays”, Transaction of [EICE, Vol.J86-D-I, pp. 351-356.

28.

29.

30.

31

32

33.

34,

33.

36.

3

38.

39,

40.

66

Rosenberg, A.L., 1974, “Allocating Storage for Extendible Arrays”. Journal of the
ACM (JACM), Vol. 21, pp. 652—670.

Rosenberg, L. and Stockmeyer, L. J., 1977. “Hashing Schemes for Extendible
Arrays”, JACM, Vol. 24, pp.199-221.

P. Vassiliadis, 1998, “Modeling multidimensional databases, Cubes and Cube
Operations”, Proc. of SSDBM, pp. 53-62.

Pedersen, T. B. and Jensen, C. S., 2001, “Multidimensional Database Technology™,
IEEE Computer, Vol. 34, No.12, pp. 40—46.

Rotem, D. and Zhao, J.L., 1996, “Extendible Arrays for Statistical Databases and
OLAP Applications™, Proc. of 8th International Conference on SSDBM, pp.
108-117, Stockholm, Sweden.

K. E. Seamons and M. Winslett, 1994, “Physical Schemas for Large
Multidimensional Arrays in Scientific Computing Applications”, Proc. of 7th
International Conference on Scientific and Statistical Database Management
(SSDBM), pp. 218-227, IEEE CS, Washington, DC. USA.

T. Tsuji, M. Kuroda, and K. Higuchi, 2008, “History offset implementation scheme
for large scale multidimensional data sets,” Proc. of ACM Symposium on Applied
Computing, pp. 1021-1028.

Sk. Md. Masudul Ahsan, “An Efficient Implementation Scheme for
Multidimensional Index Array Operations and Its Evaluation”, A Thesis
- submitted to Computer Science and Engineering Department, Khulna
University of Engineering and Technology, CSER-M-12-01, January, 2012.

Sk. Md. Masudul Ahsan and K. M. A, Hasan, 2013, “Extendible Multidimensional
Array Based Storage Scheme for Efficient Management of High Dimensional Data,”
International Journal of Next-Generation Computing, Vol 4, No 1, pp. 88-105.

Sk. Md. Masudul Ahsan and K. M. Azharul Hasan, 2013“An Efficient Encoding
Scheme to Handle the Address Space Overflow for Large Multidimensional Arrays”,
Journal of Computers, Vol 8, No 5, pp. 1136—1144.

Halder, A.K., 2005, “Karnaugh map extended to six or more variables”, Electronics
Letters, Vol. 18, No. 20, pp. 868-870.

Holder, M.E., 2005, “A modified Karnaugh map technique ”, IEEE Transactions on
Education, Vol. 48, No. 1, pp. 206-207.

Chun-Yuan Lin, Yeh-Ching Chung, Jen-Shiuh Liu, December 2003, "Efficient Data
Compression Methods for Multidimensional Sparse Array Operations Based on the
EKMR Scheme," IEEE Transactions on Computers, Vol. 52, No. 12, pp.1640-1646.

~

41.

42,

43.

44,

45.

46.

47.

48.

67

Chun, Y. L., Jen, S.L. and Yeh, C.C., 2002, “Efficient Representation Scheme for
Multidimensional Array Operations,” IEEE Transactions on Computers, Vol. 51, No.
3, pp. 327-354.

J.B. White and P. Sadayappan, 1997, “On improving the performance of sparse

matrix vector multiplication”, Proc. of Int’l Conf. | ligh Performance Computing, pp.
711-725.

J. Li, D. Rottem and H.K. Wong, 1987, “A New Compression Method with Fast
Searching on Large Databases”, Proc. of 13th int’l conference on Very large
databases, pp. 311-318.

S. Eggers and A. Shoshani, 1980, “Efficient Access of Compressed Data”, Proc. of
sixth int’l conference on Very large Databases, pp. 205-211.

K. M. Azharul Hasan, 2009, “Compression Schemes of I ligh Dimensional Data for
MOLAP”, In the Edited Book, "Evolving Application Domains of Data
Warehousing and Mining: Trends and Solutions” Chapter IV, Information Science
Reference, pp. 64-81.

Sk. Md. Masudul Ahsan, K. M. Azharul Hasan, 2013 “An Implementation Scheme
for Multidimensional Extendable Array Operations and Its Evaluation”, Proc. of
ICIEIS 2011, pp. 136-150, Springer-Verlag.

Li, B., Tsuji, T. and Higuchi, K., 2007, “Sharing Flexibly Resizable
Multidimensional Arrays in Client/Server Environment” Proc. of the International
Workshop on Databases for Next Generation Researchers, pp. 19-24, Istanbul.

T.Tsuji, H.Kawahar, K.Higuchi, T.Hochin, 2001, “Sharing Extendible Arrays in a
Distributed Environment”, Proc. of IICS, LNCS, 2060, pp. 41-53.

