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Abstract 

Array based storage system is a key choice of many featured applications such as 

scientific, engineering, and financial computing applications; for their easy maintenance. 

However, the lack of scalability of the conventional approaches degrades with the 

dynamic size of data sets as they entail reallocation in order to preserve expanded data 

velocity. To maintain the velocity of data, the storage system must be scalable enough by 

allowing subjective expansion on the boundary of array dimension. Again, for an array 

based storage system, if the number of dimension and length of each dimension of the 

array is very high then the required address space overflows and hence it is impossible to 

allocate such a big array. We demonstrate a dynamic scalable array storage scheme 

namely Scalable Array Indexing (SAl) that can be an efficient choice of large volunie 

dynamic data management by removing the problems of the existing ones. The SAl 

converts an n dimensional array to 2 dimensions. Traditionally, the dynamic array models 

need indices for each dimensions. Since, SAl is a 2 dimensional dynamic model it reduces 

the index overhead significantly and compromises relatively faster data accessing. We also 

propose another scalable structure based on the SAl scheme to increase storage utilization. 

We named the structure as Segment based Scalable Array Indexing (SSAI). Using our 

SSAI structure, we also offer an efficient encoding with good comparison ratio and range 

of usability. All the operations are presented with sufficient theoretical analysis and 

experimental results. 
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CHA1TER I 

Introduction 

1.1 Introduction 

Arrays are the most popular data structures for their outstanding features in rational storing 

and swift processing. The high-volume arbitrary dimensionality feature of arrays make it 

diversely perceptible in researches, like medical imaging, geographic information system, 

environmental and astronomical surveillances, or high precision prototypes of physical 

consequence [1]. For Big Data applications, the array structures like Conventional 

Multidimensional Array (CMA) [2] model can lead other structures like Rasdaman [3], 
MonetDB [4], SQL based query language such as SciQL [5], N0SQL and NewSQL [6], 

parallel programming model like GPU based architecture [7], distributed optimization [8] 

in terms of data storage or retrieval or both [9, 10]. Array based storage system is the key 

choice of various featured applications for their easy maintenance, but the lack of 

scalability of the conventional approaches degrades with the dynamic size of data sets as 

they entail reallocation in order to preserve expanded data velocity that means the 

structure is not dynamically scalable. To maintain the velocity of data, the storage system 

must be scalable enough by allowing subjective expansion on the boundary of array 

dimension. The range in which the linearized array elements map is called address space 

which depends on the length and/or number of dimension of array. For an array based 

storage system, if the number of dimension and/or length of each dimension of the array is 

very high then tile required address space overflows quickly and hence it is impossible to 

allocate such a big array in the memory. The index array [11-13] offers a dynamic storage 

structure for preserving expanded data velocity by employing indices for each dimension. 

Indexing of array is a process of monitoring location of data record by assigning a key 

with them for the corresponding system for assisting in fast query processing [14]. 

Although the extendible array models are scalable enough but it requires indices for each 

of the dimension. Hence, the model impose high overhead to the data storage. Another 

problem is that, along with the rise in dimensionality, the effort in computing index, cache 

miss rate and data representation complexity rises [2, 15]. The traditional approaches on 



algorithms and computation are inappropriate for data models having large dimensionality 

especially for data warehouse or big data [16]. Therefore, the traditional approaches are 

unable to index structured big data proficiently. 

In this research work, we are going to propose scalable array storage structures that 

convert the n dimensions of the array into 2 dimensions; hence it involves only 2 indices. 

Using these 2 indices, we also offer a lossless encoding structure which ensures lower 

encoding cost, lower indexing cost and higher data locality. 

1.2 Problem Statement 

The Conventional Multidimensional Array (CMA) is a well-known array structure chosen 

by various applications for retrieving the array element by evaluating addressing function 

directly, but it has following limitations: 

Static allocation as the data length and dimensionality is predelined and it is not 

dynamically scalable. 

Inability to represent or visualize the large volume and large dimensionality of 

data. 

Address space overflow for large value of data length or dimensionality (or both) 

even though resource is available. 

inability to attain useful information from the huge volume applications which are 

generally sparsed. 

Let, A[11 ] [/21... [/,1] be an n dimensional CMA of size [/i, /2.....id. 1-lere l, 1..... is the 

length of each dimension dj,d2..... d,respectively. Then the total address space required for 

an array would be S,. = fl15<711L 
= I (if 1i = i for all i). If the elements of the CMA 

occupy K bytes in memory, then the allocation volume would be VT  = S. x K = I x K. 

The total address space or array volume V increases exponentially if the length of each 

dimension 1i  or the number of dimension ii (or both) increases. As a result, it accelerates to 

exceed the machine word size even though the system is highly configured such as 64 bit 

machine. The Index Array model [11-13] solves the limitation (i) above by dynamically 

allocating memory during run time as form of subarrays. The subarrays are n - 1 

dimensional and hence it can delay the overflow compared to CMA with an address space 

allocation of size SE  = fl1< I = and volume VE  = SE  x K = x K. The 

Index Array model is good compared to the CMA, but it cannot meet the expected demand 
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of memory utilization as per the demand of data velocity especially for "Big Data" 

applications [17]. Again, for an n dimensional array, the indexing requirement of an 

indexed based model is also n dimensional which reduces the capacity of storage 

utilization. Another concern is problem (iv) which can decrease the efficiency of large 

volume applications. Data encoding can be a proficient way to lessen this unintended cost 

of the system on the basis that the potential volume of data is not always interesting. It is a 

process to reserve only those data cells which are densed and significant as well. In order 

ensure data accuracy of an encoding structure, it is crucial to employ some data decoding 

structure along with the encoding structure to provide lossless information. Therefore, the 

process of ensuring data accuracy should be a two-way scheduling. The first scheduling 

generates an encoded tuple for the compressed array that resembles a memory location of 

the actual array. This scheduling is named as Data Encoding. And the rest one is named as 

Data Decoding which generates a memory location of the actual array from an encoded 

tuple of the compressed array. 

Here, we propose a scalable index array system namely Scalable Array Indexing (SAL) 

which represent an n dimensional array by 2 dimensions (towards column and row 

direction) only. As ii dimensional array requires ii dimensional indexing, hence the 

proposed structure requires 2 indices only. But the SAl structure also suffers from address 

space overflow. For this reason, we also provide another structure which can enhance the 

performance of a SAl structure named Segment based Scalable Array Indexing (SSAI). 

Likewise, SAl. the SSAI structure also converts the n dimensions (nD) into 2 dimensions 

(213). The only difference is that here the allocation is divided into segments. In our 

experiment, we have found that the SSAI does not overflow the address space and can 

utilize the available resource of the system. On the contrary, the existing indexed array 

models along with the SAl structures overflow the address space. Hence, the proposed 

SSAI structure has more memory utilization than the other structures. Using these 2 

indices of a SSAI structure, we have also recommended a lossless data encoding scheme 

named as 2 Dimensional Key Value Encoding which can outperforms the other schemes 

as it requires only 2 indices to encode n dimensional sparse data. The SSAI structure can 

be applied to scalable array database [18], distributed array storage [3], parallel and 

distributed database [19, 20] and big data storage [21]. 
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1.3 Objectives 

The traditional multidimensional approaches are unable to index big data proficiently. To 

cope with this situation, the data scientists have appreciated higher dimensional data 

linearization. The linearization is well sufficient as per secondary memory. However, the 

linearization process not only rises the retrieval time and operation cost but also reduces 

the ability for parallelization. Again, the size of data gradually expands in scale of 

terabytes and petabytes. To contract with this event, random extension on the bound of 

array dimension is entailed as typical multidimensional array structures, are incapable of 

managing (extend or shrink) their bounds devoid of rearranging existing data [11]. 

Extendible Array resolves this challenge, but consumes high memory for indexing as per 

dimension value increases. 

Therefore, main objectives of this research topic are - 

. To propose a dynamic multidimensional array structure by dimension conversion. 

• To reduce the indexing cost of an Index Array model by using two indices only for 

n dimensional structure. 

• To find an efficient solution for the problems of the existing static structure like 

CMA [2] and also for the dynamic structures like Extendible Array [13] and 

Extendible Array [11]. 

• To offer an encoding scheme for the proposed structure. 

• To analyze the performance and usability of the proposed encoding scheme. 

1.4 Scope 

The proposed scalable structures: Scalable Array Indexing (SAl) structure and Segment 

based Scalable Array Indexing (SSAl) are a new representation of scalable multi-

dimensional array model. The important scopes are: 

• The number of dimension is increased up to 16. 

• The length of dimension is increased up to 648. 

• The scaling operation is done one by one and up to 646. 

• The machine limits are: lntel(R) Xeon(R) E5620 @ 2.40GHz processor with 8 

processors, 32GB RAM, 1406 MB cache memory and I.3TB usable HDI). 
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. The program is written in C and compiled in gcc compiler on debian squeeze 6.0.5 

operating system. 

• The data limit is 64 bit integer only. 

1.5 Contribution 

The major contributions of this research topic are - 

• To offer a way to represent n dimensional array to a feasible one through 2 

dimensional representation which aid in easy visualization of large n dimensional 

array. 

To make the proposed 2 dimensional array dynamic which manages better storage 

utilization by removing reallocation of static structure. 

To decrease indexing cost of dynamic array model by utilizing 2 dimensional 

indexing of 2 dimensional proposed model. 

• To offer an efficient information retrieval paradigm by utilizing proposed 2 

dimensional dynamic array representation. 

To delay address space overflow by segmenting the proposed structure which 

increases the storage utilization. 

• To offer an efficient encoding scheme using 2 dimensional indexes of proposed 2 

dimensional structure which requires less encoding cost and higher range of 

usability. 

1.6 Organization of the Thesis 

The thesis is organized in six chapters as follows: 

• Chapter II presents Literature Review of the similar domains and finds some 

limitations of the existing works. 

• Chapter III proposes the scalable array models by dimension conversion. The 

chapter also describes different operations and algorithm with examples. 

• Chapter IV shows the experimental outcomes of different array operations over 

the SAl and SSAl structure and also the usuability of the 2DKVE scheme. 

• Chapter VI exhibits the future direction of the proposed model and outlines the 

conclusion. 
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CHAPTER II 

Literature Review 

2.1 Introduction 

The multidimensional array structures are becoming an important data structures for 

storing large scale, composite and higher order data; e.g., in Big Data. Several appliances 

encompassing accumulation of climate information by sensors, gathering digital 

multimedia records, transaction documents procuring, and OPS signals commencing cell 

phones, are frequently using Big data in order to expound their extent of data which leads 

to statistics of substantial volumes [21]. The multidimensional array yet dictates such 

applications [22, 23], Hence, several array models have been examined in order to verify 

their tremendous features. 

2.2 The Realization of Multidimensional Array Structure 

The array Computational paradigm is prevalent in most sciences and it has drawn attention 

from the database research community for many years. Some of the multidimensional 

array structures are given below: 

2.2.1 Conventional Multidimensional Array 

A Conventional Multidimensional Array (CMA) [2] or simply Array A[ll,12 .. .. .1] is an 

association between n-tuples of integer indices Xl, X2, ... ,Xn>. Consider an n dimensional 

Conventional Multidimensional Array (CMA(n)). Let, the size of a CMA(n) or A[/j] [/2]... 

[in] is [/i, /2,.. .,ln]. Then X1, x,. . .,x11> be the Real n dimensional Index; where /i, 12,...,In  is 

the length of each dimension di,d2_., dn respectively and xi = 0,1,2, ..., (l-l) (0 :~i:~n), 

where 1, is the length of dimension i. The domain from which the elements are chosen is 

immaterial and we make the assumption that only one memory location need be assigned 

to each n-tuples. Each array may be visualized as the lattice points in a rectangular region 

of n-space. The set of continuous memory locations into which the array maps is denoted 
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by A[O:D] where D = (11 13 - 1 .Any element in the multidimensional array is 

determined by an addressing function as follows, 

f(x71 , x11 _ 1 , x, 2 1...,x2, x1) = 11 12..J,_1 x, + /112..],1_2x,,_1  + ...+lx2  + x1 (2.1) 

Conventional storage of multidimensional arrays is done by linearization. In the two 

dimensional case, the linearization may be done by rows or by columns. But in general, 

for n-dimensional array there are n! possible linearization orders according to the possible 

ordering of the dimensions. An illustration of 3 dimensional TMA of dimension length 

3x4x5 is given in Figure 2.1. In the CMA scheme, a three dimensional array of size 3x4x5 

can be viewed as three 4><5 two-dimensional arrays. Here, 1i5, 124, /33. 1-lence, (see Eq. 

2.1) it can be shown that the index <x3,x2,x1  > = < 0,2,3> maps to the memory 

position <0,2,3> = Ox 5 x 4 + 5 x 2 + 3 = 13. 

/ 

d2 

0 I 2 J 4 

di 01  

Figure 2.1: A Three Dimensional CMA of Size [3x4x5]. 

2.2.2 Traditional Extendible Array 

The Traditional Extendible Array [3, 24] or simply Extendible Array is another 

representation of multidimensional array. It has the property that the indices of the 

respective dimensions can be arbitrarily extended without reorganizing previously 

allocated elements. Following is a short description of a Traditional Extendible Array. 

Sitharray (SA).The memory allocation of an Extendible Array is done by allocation a 

collection of memory called subarray (SA). A subarray SA[1i,12,. . of an n 

dimensional Array A[1h12,. . .,/,]is an association between (n - 1) tuples of integer indices 

x1,x2,...,X,> and x= 0,1,2..... (l-l) (0 <i:!~,n-1). The set of continuous memory locations 

into which the array maps is denoted by SA[O: D] where D = (fl 13 - 1 .For an 
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extension along dimension i of the nD array the SA would be (n - 1)D and the SA size, 

sz is calculated as follows: 

71 

fj I j  (i j (2.2) 

Auxiliari' Table. A Traditional Extendible Array manages its scalability by using three 

types of auxiliary tables. For each dimension these tables exist. These are required for 

monitoring dynamic extensions and also fast data retrieval. The Extendible Array can be 

extended in any direction in any dimension only by the cost of these three auxiliary tables. 

The auxiliary tables are as follows: 

• History Table: It contains the construction or extension history of an Extendible 

Array. 

• Address Table: It contains the first address of the subarray of an Extendible Array. 

• Coefficient Table: The table is required for storing the coefficients ( 

1 '2 ',i-2' .,/ ) of the addressing function (see Eq. 2.1). Coefficient table 

holds the coefficient of the n- I dimensional SA and it is n - 2 dimensional. 

Dimcn

,A- 

History GD Table 
GD Address Table 
D Coefficient Vector 

o i 12 

14  

16  

27 

30  

33  

48 

51  

54  

5769 

60 

63 

66 

23 

810 

1639 4245 

72 75 81 8487 

GD 0 1 5 7 19 110 
© 0 1 12 27 48 60 
® 1 1 1 2 3 3 3 

Dimension 2 

Figure 2.2: A Three dimensional Traditional Extendible Array of Size [5x6x4j. 



The accessing of the elements of an Extendible array is done by using these three kinds of 

auxiliary tables, the address of an array element can be computed as follows. Consider the 

element (4, 2, 0) in Fig. 2.2. Compare Hi[4] = 11, H2[2] = 5 and H3[0] = 0. Since H[4] > 

142[2], l-li[4} > I-13[0], it can be proved that the element (4, 2, 0) is involved in the extended 

subarray S beginning from the address L1[4] = 72. From the coefficient vector ofCi[4] = 

3, the offset of element (4, 2, 0) from the first address of S is computed by 3x2+0 = 6, the 

address of the element is determined as 72 ± 6 = 78. 

2.2.3 Axial Vector Extendible Array 

The Axial Vector Extendible Array [11] is another representation of Traditional 

Extendible Array (sec. 2.2.2). Here, the mapping function or the addressing function 

mentioned in Eq. 2.1 has been reorganized as the conventional array mapping function 

allows extendibility in only one dimension 0 (in the case of row major). They renamed the 

auxiliary table as axial vector that includes <starting index of the dimension, starling 

address of the suharray, multiplicative coefficients, memomy pointers>. 

Axial Vectos 
51 1_-____• IN 52 oo [o; 1 6 1 2 1 1 1S0] [3;3O;l1Ol 2 l 1 l 

.  68  

r

['.f4IN 61 So 
1 

o 

; 

[

[_

3;  18; 

 11125 

 

 

0 25
2 B3 "I

1 

S

s

i]
. 62 

4 4 
63 

 

71 

2 O 3 72 D2 o;o; , h MN 
'1 

 

3  

4 

00 

Figure 2.3: A 3-dimensionalAxial Vector Extendible Array of size [5x5x3]. 

Suppose that in a ii dimensional extendible array A[/o] [Ii]... [l], dimension d1  is extended 

by A, then then the index range increases froml1  to I + A. The idea is to allocate an-i 

dimensional block of array elements or subarray so that addresses are computed as 

displacement from the location of elernentA < 0, 0, 0, ..., Ii, ..., 0 >. The desired mapping 

function that computes the address of an element (x0,x1, x2. ... x71 ) during allocation is 

given by: 

f(x0,x1,x2 , ...x) = Z,. + (x1  - 11)C1  + >7xj C (2.3) 
j;ti 



Where, 

C.  - 7  
- Lij=0 ( j , U  

j#i  

1-lere, Z11denotes the maximum starting address of the subarray that is adjoined. i denotes 

the dimension that was extended. 1i  denotes the bound of the index range before the 

expansion. The starting address of such a contiguous sequence of locations is what is 

stored in the subarray. The values v[2]; v[3]; ... v[n - 1] are the respective multiplicative 

coefficients and v[0]  and v[t] are the starting index and the starting linear address of 

hyperslab respectively. The value -1 denotes null entries. To compute the address of a 

given n dimensional index (x0,x1, x2,...x) the subarray that contains the element needs 

to be determined fl. The subarray whose first elements ar e(x0, 0,.. .,0), (0, x1, 0 ..., 0).., 

(0, 0, ... , x11) give the candidate subarray that should contain the element whose index is 

(x0,x1, x2  .... x71). The element of (x0,x1, x2,...x11) always belongs to the subarray with the 

maximum starting address of the candidate subarrays. This is determined by comparing 

the starting addresses of the corresponding elements of the axial-vectors. Let the vector of 

records of dimension / be denoted by E'j[]. The starting addresses of the axial-vectors are 

given by r1[x], 0 < j < k. Fig. 2.3 shows the extension of a three dimensional array A of 

initial size [5x5x3],  and corresponding axial vectors. For example, suppose we desire the 

linear address of the element A[3.3,l]. Z1. = 7nax(F0 [3]v[1], F1[3]v[1], 172 [2]v[1]) = 

max(30, 18, 0) = 30. Thus, i = 0Z = Z10  = 30 and 10  = 3. Now, using Eq. 2.2 we 

have, f(3,3, 1) = 30 + lOx (3-3) + 2 x 3 + I xl = 30 + 0 + 6 + 1 = 37. 

2.2.4 Extendible Karnaugh Array 

The Extendible Karnaugh Array (EKA) [121 is a multidimensional Extendible Array 

model that utilizes the concepts of Karnaugh Map (K-map) [25]. The K-map is a well-

known depiction employed in Boolean expression minimization typically assisted by 

mapping values for each potential combinations. Fig. 2.4 (a) depicts a 4 variable K-map 

representation of a Boolean function (2 4  combinations). The row is denoted by the pair (w, 

x) and the column is denoted by the pair variables (y, z). The row and the column indicate 

the potential combinations of a Boolean function in a form of two dimensional array. The 

row pair and column pair of a K-map are re-expressed as row dimension and column 

dimension respectively of an EKA. Here, the indices of the row dimension are adjacent to 



each other and the indices of the column dimension are adjacent to each other. The 

adjacent dimensions of row is denoted as adj(z) =y or adj(y) = z and adjacent dimensions 

of column is denoted as adj(w) = x or adj(x) = it,  and. The EKA representation of Fig. 

2.4(a) is shown in Fig. 2.4(b). The EKA uses the same auxiliary table as EAI (sec. 2.2.2) 

except now the address table store the first address of the first segment of a SA as the SA 

of an EKA is divided into some segments. 

Consider the array in Fig. 2.5(a), the dimensions are di, d2, d3 and d4 and the size of the 

array is [Ii, 12, L, /41 and subscripts varies from 0 to 1,-I. In the current example 1, = 2. The 

dimension (di, di)  and (d2, d4) are adjacent dimensions respectively. The logical extension 

in di is shown in Fig. 2.5(b). The size of the extended subarray which is allocated 

dynamically is determined by [12, 13, 141 (i.e. 3 other dimensions). The number of segments 

is the length of the adjacent dimension, ad] (di) = d3 ; In this case it is 13 = 2. The size of 

each segmented subarray extended along dimension di is determined by [12, /41. After 

extending along dimension di, the length of that dimension is incremented by 1. For each 

extension the corresponding auxiliary tables are maintained accordingly. Fig. 2.5(c), 2.5(d) 

and 2.5(e) shows the extension realization along dimension d2, d3 and di 

respectively.Fig.2.6shows the extension realization along with the auxiliary table values of 

the realization Fig. 2.5(e). 

wi 4 N-iup t) Aritv rcprewntofion ('I I.-iii.ip 

Figure 2.4: Realization of Boolean function using K-map. 
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Figure 2.5: Logical extension of a 4-dimensional EKA. 
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Figure 2.6: An Extension Realization of EKA(4) 

Let the value to be retrieved is indicated by the subscript (xi, X2, X3, x4). The maximum 

history value among the subscripts Im rnax(1-1dl[x], Hd2[x21, Hd3[x3], Hd4[x4]) and the 

dimension (say dnax) that corresponds to history value hrnax is determined. hrnax is the 

subarray that contains the desired element. The adjacent dimension ai(dax) = dadj (say) 

and its subscript Xadj is found. Now the first address of the segment is found from 

Admax[xmaxi[xadj]. The offset from the first address is computed using the addressing 

function (see Eq. 2.l) the coefficient vectors are stored in Cdrnax. Then adding the offset 

with the first address, the desired array cell (XI, X2, X3. x4) is found. Let (xI, X2, X3, x4) (I, 

0, 2, I) is given (see Fig.2.6). Here hiiiax= rnax( Hd I [1], Hd2[0], 1-10[2], I1d4[ I ])= max(4. 0, 

5, 3) =5, and dimension corresponding to hax i.e. dniax = d3 whose subscript Xniax = 2 and 

adft'diiax) = adj(d3) = d 1  = dadj and Xadj = I. So the firs/A c/dress = Ad3[2][I] = 20, and offset 

is calculated using the coefficient vector stored in coefficient table CO which is 2. 1-lere, 

qffsei = Cd3[2]*x4  + X2 = 2* I + 0 = 2. Finally adding the offset with the first address the 

desired location 20 + 2 = 22 is found and circled in Fig. 2.6. 

2.2.5 Generalized Two-dimensional Array 

The Generalized Two-dimensional Array (G2A) [26] represents an algorithm to represent 

an n dimensional (nD) array by a 2 dimensional (21D) array. The nD array is converted to a 

2D array. Hence the indexes of the nD array are also converted to 2D array. 
121 

subscripts 

are converted to row direction and the rest !! columns to column direction. Hence an nD 
2 

12 



13 

array can be drawn in a 2D plane to visualize the data. In G2A, the 3 dimensions d1, d2, d3 

are converted to 2 dimensions where d1, d3 are for row and d2 are for the column. Fig. 2.7 

shows the G2A,A'[1][1] for a TMA(3) A[2][3][4] where 1 = 11 x  13 = 8 and 1 = 12  = 

3.For example an element A[1][1][2] of TMA(3) is equivalent G2A is A'[x][x] where 

Xi = x113  + x3= I x 4 + 2 = 6 and x = x2  = 1. For backward mapping, if an element in 

G2A is A'[x][x] is known then it's equivalent TMA(3) becomes A[xi]1x21[x3]  where X3 

=x%13  = 6 % 4 = 2, xi = 6/4=1 and x2=X = 1. For example. A'[6][I] is 

equivalent to A[l][1][2]. Here % indicates the 'modulus' operation and / indicates 'division' 

operation. 
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Figure 2.7: CMA(3) and It's Equivalent G2A. 

MyColl OlD 

oid 1 

metadata ott 1 ott 2 jat 

 

t Ii oid 2 

kevl .... 01(1 1 01(1 3 

kev2 I .... I oi(l 2 

lkev3l .... loid3l 

Figure 2.8: Basic Structure of a Rasdaman Array Model. 
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2.2.6 Rasdaman 

Rasdaman ("raster data manager") [3. 27] is an Array DBMS, that is: a Database 

Management System which adds capabilities for storage and retrieval of massive multi-

dimensional arrays, such as sensor, image, and statistics data. A frequently used synonym 

to arrays is raster data, such as in 2D raster graphics; this actually has motivated the name 

Rasdaman. However, Rasdaman has no limitation in the number of dimensions - it can 

serve, for example, ID measurement data, 2D satellite imagery, 3D x/y/t image time series 
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and x/y/z exploration data. 41) ocean and climate data, and even beyond spatiotemporal 

dimensions. The Rasdaman conceptual model centers around the notion of a 

multidimensional array of arbitrary dimension, extent in each dimension - whereby each 

lower and upper bound can be fixed or variable -, and base type. Usually such an array 

will be an attribute of some other object, e.g., the "raw data" accompanied by "registration 

data" within an image. In Rasdaman databases, arrays are grouped into collections. All 

elements of a collection share the same array type definition. Collections form the basis 

for array handling, just as tables do in relational database technology. All operations 

applied to a collection are applied in term to each of the array in the collection. A 

collection is essentially equivalent to a relational table with two columns: one holds the 

array values, the other holds a unique ID for each array object. Fig. 2.8 shows the basic 

structure of a Rasdaman Array Model. 

BAT 'name" 

-i - : John Waynet \O 

111-- Roger More\O 

L2 23 - Bob Fosse\0 

i.iJ !... WillSmith\O 

(memory-mapped) 
(virtual) dense simple memory array 
surrogates 

BAT "age" 

1907 

1927 

1927 

1968 LiiLJ 
% ... . ........ . 

Select (age, 1927) 

\lonetDB Backend 

Figure 2.9: Basic Structure of a MonetDB Array Model. 

2.2.7 MonetDB 

MonetDB [28, 29] is column-oriented database management system which was designed 

to provide high performance on complex queries against large databases, such as 

combining tables with hundreds of columns and millions of rows. MonetDB has been 

applied in high-performance applications for online analytical processing. data mining, 

geographic information system (GIS). Different from traditional database systems, 

MonetDB does not store all attributes of each relational tuple (together in one record), and 

instead treats a relational table as vertical fragmentations. Thus, MonetDB stores each 

column of the table in a separate (surrogate, value) table, called a BAT (Binary 

Association Table). The left column, called head column, is surrogate or OlD (object- 
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identifier), and only the right column stores the actual attribute values (called tail). As a 

result, a relation table consisting of k attributes then is represented by k BATs. With the 

help of the system generated OlD, MonetDB needs to lookup the k BATs in order to 

reconstruct the tuple. In order to perform tuple reconstructions from the k BATs, 

MonetDB adopts a tuple-order alignment across all base columns. That is, each attribute 

value belonging to a tuple (is stored in the same position of the associated BAT. Next, to 

represent the tail column, MonetDB considers two cases. (i) For fixed-width data type 

(e.g., integer, decimal and floating point numbers), MonetDB uses a C-type array. (ii) For 

variable-width data types (e.g., strings). MonetDB adopts a dictionary encoding where the 

distinct values are then store in Blob and the BAT only stores an integer pointer to the 

Blob position. The BATs "name" and "age'". Fig. 2.9 illustrate the BATs with variable-

width and fixed-width types of tails, respectively. When the data is loaded from disk to 

main memory. MonetDB uses the exactly same data structure to represent such data on 

disk and in main memory. In addition, MonctDB adopts a late tuple reconstruction to save 

the main memory size. That is, during the entire query evaluation, all intermediate data are 

still the column format (i.e., the integer format instead of the actual values), and the tuples 

with actual values are finally reconstructed before sending the tuples to the client. In this 

approach a tree-based index is used to keep track of the growth of the array in any 

dimension and even allow adding of new dimensions. An extension of a k-

dimensional array A along dimension I is viewed as appending a k dimensional 

subarray As  to it along the ith dimension. The ranges of As  are identical to those 

of A along each dimension except for dimension i whose range depends on the 

size of the extension. The length 1, of dimension i is called as the range of dimension I. 

2.2.8 Other Structures 

Several array models have also been examined in order to verily their tremendous features 

of array. [30] shows a Rasdaman Array based query processor. Another Rasdaman array 

database that offers scalability is mentioned in [18]. A MonetDB structure for managing 

an information retrieval system has been anticipated by means of raw speed, light-weight 

data compression, and distributed execution in [31]. Another query processor based on 

column-oriented in-memory storage is mentioned in [321. Array structure can also be used 

in scalable distributed system like Geoscientific Array mentioned in [33], NoSQL and 
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NewSQL [6] or distributed programming model like [8]. An array based parallel 

processing optimization has been described in [34]. 

2.3 Encoding Schemes for High Dimensional Data 

Multidimensional array is the basic data structure used in many scientific or business 

applications where large volume is a main concern. But in many cases, it becomes crucial 

to attain useful information from the huge volume which are generally sparse din nature - 

i.e. many of the array cells contain null values and consume unnecessary space. So it is 

important to device a technique, 'Encoding", to store deal with such array cells. Some 

common encoding schemes are reviewed here. 

ILI 

 

Figure 2.10: A 3-dimensional Array Partitioned into Chunks. 

2.3.1. Chunk-Offset Encoding 

To address the problems faced by applications that do not perform well with traditionally 

ordered arrays on disk, The data management libraries that support storage of 

multidimensional arrays on disk with the elements arranged in subarray chunks rather 

than in the traditional ordering is important. This allows efficient assembly of subarrays in 

multiple dimensions. In this scheme the large multidimensional arrays are broken into 

chunks for storage and processing. Consider an n dimensional array A, whose 

dimensionality is d1xd2xd3x ... xd, the chunks can be formed by breaking each d1 into 

several ranges. Within A, two positions are in the same chunk if and only it in every 
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dimension, they fall within the same range. Fig. 2.10 shows a 3 dimensional array divided 

into sixty chunks (4x5x3)  that are numbered in row-major fashion. Chunk 16 is itself 

4x2x3 array whose 24 cells are numbered in row-major order and are stored contiguously. 

In chunk-offset encoding (COE) [35, 36], for each valid array entry, a pair (Offse!lnChunk, 

data) is stored. The offset inside the chunk (Ott.etInChunk) can be computed using the 

multidimensional array linearization function described before (see Eq. 2.1). Fig. 2.11(a) 

shows a 3 dimensional array partitioned into 36 chunks each of which is 3x3x3 (Fig. 

2.11(b)). The details of a chunk with 8 data values and offset within the chunk are shown 

in Fig. 2.11(c), and Fig. 2.11(d) displays memory or disk arrangement of that chunk. Note 

that the chunks which have no nonempty elements are not physically allocated in the 

secondary storage. 

(b) 

Figure 2.11: A 3-dimensional Array Stored As Chunk-Offset Encoding. 

2.3.2. History-Offset Encoding 

The History Offset Encoding (HOE) [16] scheme is based on Extendible Array (as sec. 

2.2.2). In this technique, an element is specified using the pair of history value (h) and 

offset value (o) of the extendible array. Since a history value is unique in extendible array 

and has one to one correspondence with the corresponding subarray, the subarray 

including the specified element of an extendible array can be referred to uniquely by its 

corresponding history value Ii. Moreover, the offset value (i.e., logical location) of the 
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element in the subarray can be computed by using the addressing function and this is also 

unique in the subarray. Therefore, each element of an n-dimensional extendible array can 

be referenced by specifying the pair (history value, offset value). Like Chunk-offset 

compression, the extended sparse subarray elements are stored in memory in sorted 

fashion. Fig. 2.12 applies the HOE encoding on a 3 dimensional Extendible Array as 

mentioned in Fig. 2.2. The scheme omits the sparsed data and replaces the densed data 

with a tuple t = <h. o>,  Data>, where offset is calculated from the addressing function (Eq. 

2.1). For example, to store third data 42 in the SA number 8, the required tuple for HOE is 

t = <8,2>,42>. 

Dimension  C History Table 
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Figure 2.12: A 3-dimensional Extendible Array Encoded as History-Offset Encoding. 
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Figure 2.13: A 4-dimensional EKA Encoded as Segment-Offset Encoding. 

2.3.3. Segment-Offset Encoding 

The Segment Oriented (SOE) [37] Encoding scheme is based on EKA (as sec. 2.2.3). In 

this technique, an element is specified using the tuple of history value (h), segment 

number (s), and the offset (o) of the segment of the SA. The segment number is unique 

inside a SA. Here, history value is required to identify the SA, the segment number is 

required to identify the segment and the offset of segment is required to point cell position 

of the segment of the SA. Fig. 2.13 applies the SOE encoding on a 4 dimensional EKA as 

mentioned in Fig. 2.5. The scheme omits the sparsed data and replaces the densed data 

with a tuple i = <h, s, o>, Data>, where offset is calculated from the addressing function 

(see Eq. 2J). 

2.3.4. History-Pattern Encoding 

The History Pattern Encoding (HPE) [38, 39] is a variant of the History Offset Encoding 

(as sec 2.3.2). Many of the tuple encoding schemes, including history-offset encoding, use 

the addressing function (Eq. 2.1) of a multidimensional array to compute the position. 

However, there are two problems inherent in such encodings. First, the size of an encoded 

result may exceed the machine word size (typically 64 bits) for large-scale datasets. 

Second, the time cost of encoding/decoding in tuple retrieval may be high; more 

-., 
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specifically, such operations require multiplication and division to compute the addressing 

function, and these arithmetic operations are expensive. To resolve these two problems 

without performance degradation the History Pattern Encoding (HPE) has been 

introduced. The scheme encodes an n dimensional tuple into a pair of scalar values 

<hisloiy value, pattern> even if n is sufficiently large. An encoded tuple can be a variable 

length record; the history value represents the extended subarray in which the tuple is 

included and also represents the bit size of the pattern. Additionally, the scheme does not 

employ the addressing function, hence avoiding multiply and divide instructions. Instead, 

it encodes and decodes tuples using only shift and and/or register instructions. 

H dim. I • hieIzy counter 

va i—t—oIiI a I 5 
H2 •••Q _ ......L. 

0  o[®t[jf® [ 
12 1 S 

2 (4, 3) 
06 

logical extendible array 
boundary vector table B 

hstofyvakiI 0 1 2 3 4 5 
bounectoi] <0, o>ki. o>I<i. 1>1<2, 1>1<2, z>I<s, 2>1 

Figure 2.14: A 2-dimensional Representation of History Pattern Encoding. 

Fig. 2.14 shows a 2 dimensional representation of a History Pattern Encoding. An n 

dimensional coordinate X = (xi, x2 , x3 , ... x) can be encoded to the pair <h, p > of 

history value h and bit pattern p. The history value h is determined as the maximum value 

in {Hk[b(xk)]I1  :!~ k :!~ n), whereb(xk) is the bit size of the subscript Xk in X. For each 

history value h, the boundary vector in B[h] gives the bit pattern size of each subscript in 

X. According to this boundary vector, the coordinate bit pattern p can be obtained by 

concatenating the subscript bit pattern of each dimension in descending order (from the 

lower to the higher bits of p). The storage unit forp can be one word length, i.e., 64 bits. 

Let, <h, p>= (4,3). H1 [b(4)] = Hl [b(100(2))J = H1 [3] = 5 and H2 [b(3)] = 

Hl[b(11(2))] = H2 [2] = 4. Since, H1 [b(4)] > H2 [b(3)], h is H1 [3] = 5. So element 

(4,3) is known to be included in the subarray on dimension I at history value 5. Therefore, 

the boundary vector to be used is <3, 2> in B[5]. In (4, 3) to be encoded, the subscript 4 of 

the first dimension and the subscript 3 of the second dimension form the upper 3 bits and 

lower 2 bits of p. respectively. Therefore, p becomes 10011(2) = 19. Eventually, the 

I 
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clement (4. 3) is encoded to <5, 19>. Generally, the bit size of history value h is rather 

small compared to that of pattern p; if the storage size for the pair is assumed to be 16 bits, 

typically the upper 4 bits are for h, and the lower 12 bits are for p. Conversely, to decode 

the encoded pair <h, p>  to the original n dimensional coordinateX = (x1, x2, x3, ... x 1), the 

boundary vector in B[h] is known. Then, the subscript value of each dimension is sliced 

out from p according to the boundary vector. For example, consider the encoded pair < 

h,p >=< 5,19 >. The boundary vector B[h] is < 3,2 > sop = 100112  can be divided 

into 1002and 112 . Therefor, < 5, 19 > can be decoded to the coordinate (4, 3). 

2.3.5. Integer-Key Encoding 

Integer-Key Encoding (IKE) [40] is an encoding scheme of integer keys in a 13 tree index. 

They mainly focused in encoding 32 bit unsigned integers. Here, integers are differentially 

coded prior to encoding so that most of them are small. That is, starting from an array of 

integersx1, x2, x3, ..., they encoded the integers x1, x2  - x1, x3  - x2.....During decoding, 

given the differences (51 x1  , 82 = x2  - x1  . 83  = X3 - X2 ... we need to 

reconstructx1, x2, x3. --- .This operation requires the computation of a prefix sum (81,81  + 

(52,(51 + 82  + (53,...). The B tree node (also called a page) of IKE stores keys and values 

separately from each other. The actual in-memory layout is described in Fig. 2.1 5. Each 

node has a header structure of 32 bytes containing flags, a key counter, and pointers to the 

left and right siblings and to the child node. This header is followed by the KeyList (where 

we store the key data) and the RecordList (where we store the value's data).The 

RecordList of an internal node stores 64 bit pointers to child nodes, whereas the 

RecordList of a leaf node stores values or 64 bit pointers to external blobs if the values are 

too large. Fixed-length keys (Fig. 2.16) are always stored sequentially and without 

overhead. Variable-length keys (Fig. 2.17) use a small in-node index to manage the keys. 

Long keys are stored in separate blobs: the Btree node then points to this blob. 

KeyList I RecordList I 

Figure 2.15: Memory Layout of B Tree NodeOflKE 

[Ti 2 3 4] I 171i22 25 1 29 1 301 31 1 321 35 1 

Figure 2.16: The Keylist of Fixed Length Integer Keys 
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Figure 2.17: The KeyList of Variable Length Integer Keys 

2.3.6. Other Schemes 

Several encoding schemes have also been examined in the field data sparsity handling. 

Compressed Row Storage (CRS) and Compressed Column Storage (CCS) [36, 41] are 

used due to their simplicity and purity with a weak dependence relationship between array 

elements in a sparse array. It uses two one dimensional integer arrays RO and CO to 

compress all of the nonzero array elements along the rows (columns for CCS) of the 

sparse array. Array RO stores information about the non-zero array elements of each row 

and CO stores the column (row for CCS) indices of those elements (for two dimensional 

arrays). For higher dimensional sparse arrays more one dimensional integer arrays are 

needed. Hence compression ratio and range of usability become impractical for higher 

dimensional arrays. For an n dimensional extendible array, the EaCRS scheme requires ii 

- I auxiliary arrays for each of the (n - 1) dimensional subarray to compress it. Hence 

the compression ratio is not good enough for higher number of dimensions. A 

compression scheme, namely ECRS/ECCS for array model EKMR [15] is presented in 

[42]. The scheme is based on CRS/CCS [37, 42], and applied on EKMR. The EKMR 

represents n dimensional arrays by a set of two dimensional arrays. When applying the 

CRS/CCS scheme on EKMR the number of auxiliary arrays is always less. Hence 

compression ratio and range of usability become efficient. But the CRS/CCS and 

ECRS/ECCS schemes are applicable for statically allocated arrays. Encoding scheme 

based on history-offset parameter can also be obtained in [43 
- 

45]. Most of the index 

model mentioned above demand n dimensional indexing and requires n dimensional 

indices for run time calculation of cell position or cell offset. 
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2.4 1)iscussion 

All the array models presented in this chapter have some pros and cons. Although the 

CMA is good for random accessing, it suffers from dynamic extension. The Traditional 

Extendible Array [13, 251, EKA [12], Axial Vector Extendible Array [Ii] are good for 

dynamic extension. But they all have a concept of SA which is always (n - 1) 

dimensional and requires n dimensional indexing. For large value of length for each 

dimension or for large number of dimension value of offset grows exponentially and 

overflows the address space. 

Typical encoding schemes have some limitations in compressing data. The scheme 

Compressed Row Storage (CRS) [41] or Chunk Offset Encoding [35, 36] are effective for 

encoding large sparse arrays. But still they cannot be applied on extendible databases. The 

dynamic models like I-IOE [16], SOE [37], HPE [38, 39] etc. can improve the performance 

of an encoding scheme compared to static models, but they req uire handling the dimension 

value n. 

In this circumstances, we propose a dynamic scalable array model which will outperfonri 

the static models like CMA as well as dynamic models like Traditional Extendible Array 

or Axial Vector Extendible Array. We also provide an encoding scheme based on our 

scalable structure. The detail of the proposed structure and encoding scheme is presented 

in the next chapter. 
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CHAPTER III 

Scalable Storage Systems for Higher Order Index Array 

3.1. Introduction 

Array based storage and retrieval systems are demanded in many high dimensional systems 

like Big data for their easy maintenance. However, the lack of scalability of the conventional 

approaches degrades with the dynamic size of data sets as they entail reallocation in order 

to preserve expanded data velocity. To maintain the velocity of data, the storage system 

must be scalable enough by allowing subjective expansion on the boundary of array 

dimension. The index array offers a dynamic storage scheme for preserving expanded data 

velocity by employing indices for each dimension. Again, for an array based storage system, 

if the number of dimension and length of each dimension of the array is very high then the 

required address space overflows and hence it is impossible to allocate such a big array in 

the memory. The Index Array model is good compared to the CMA, but it cannot meet the 

expected memory utilization as per the demand of data velocity especially for "Big Data" 

applications [17] and has to face the following problems: 

I. To represent the large dimensionality of data. 

To lessen indexing cost as it requires indices for each dimension for preserving 

expanded data velocity. 

To avoid address space overflow even though resource is available. 

To conquer significant information from the large volume which has data sparsity. 

Problem (I) is an issue as easy representation makes data more meaningful for computer 

analysis and user interpretation. Nevertheless, an improper data representation will reduce 

the value of the original data and may even obstruct effective data analysis. Efficient data 

representation shall reflect data structure, class, and type, as well as integrated technologies, 

so as to enable efficient operations on different datasets. [23]. Though indexing process 

converts a static CMA to a dynamic Index Array by adding scalability, but for problem (ii) 

it has exponentially increasing indexing cost. The increase in number of dimension of the 
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array causes increase in indexing cost and thus reduces the performance of an Index Array. 

The problem (iii) involves address space overflow. The range in which the linearized array 

elements map is called address space - which depends on the length or number of dimension 

of array. For an array based storage system, if the number of dimension and length of each 

dimension of the array is very high then the required address space overflows and hence it 

is impossible to allocate such a big array in the memory. In case of address space, the Index 

Array model is good compared to the CMA, but it cannot fully utilize the available resources 

because of address space overflow. Again, we have problem (iv) which can decreases the 

storage utilization of large volume applications. 

Thus special computing techniques through comprehensive research to handle large scale 

higher dimensional data efficiently and effectively are cramming needs to data scientists. it 

emphasizes the new organization and implementation schemes on higher dimensional data. 

In this chapter we have explained two new scalable index structures that can enhance the 

capabilities of an Index Array. The first one is named as Scalable Array Indexing (SAT) that 

transform the n dimensions of an array into 2 dimension which reduces indexing cost and 

improves data locality of an Indexed Array. However, like an Index Array it also suffers 

from address space overflow. hence, we modify SAl structure and renamed as Segment 

based Scalable Array Indexing (SSAI) which segmentify the subarrays (SAs). We also 

provide an encoding scheme based on SSAI and named as 2 Dimensional Key Value 

Encoding (2DKVE). 

3.2. Realization of a Scalable Array Indexing (SAL) 

The SAl structure converts an n dimensional array with row-column abstraction [27]. Odd 

dimensions contribute along row direction and even dimensions along column direction 

which gives lower cost of index computation and higher data locality. It is a permutation on 

higher dimensional array to fit into a new 2 dimensional array. Thus the length and indices 

of new 2 dimensional array is determined based on n dimensional arrays' length and indices. 

3.2.1. Dimension Conversion 
-4 

Consider an ii dimensional Conventional Multidimensional Array (CMA(n)). Let, the size of 

a CMA(n) or A[11] [12].. [id  is [It, /2,.. Then <xi, x2,...,Xn>  be the Real n dimensional 

Index and denoted as Rnl where it, 12_ .,1n is the length of each dimension dj,d2..... cI 
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Fig. 3.1: Transformation of a CMA[2, 2,2.2,2] to a SAI[8,4] 

respectively and xi = 0,1,2, .... (li-I) (0 :~i:~n). Among the n dimensions of CMA(n), 
 121 

number of odd dimensions lit along row direction and the rest number of even dimensions 

along column direction. We convert the n dimensions of a CMA(n) into two dimensions of 

a new structure named as Converted 2 dimensional Array (C2A) A'[111 ][12 1 } of size [11'. 12 '1 
and the Converted 2 dimensional Index denoted as C21 becomes <x1', x2 '> where 11' and 12' 

are the length of dimension d1' (row dimension) and d21(column dimension) respectively; 

x1'  = 0, 1, 2,.., (1'-1) and x2' = 0, 1, 2,.., (12 '-1). The mapping function that converts xl, 

X2. ......> to <x11, x2 '> is as follows: 

x11 = x11315 
... 

+ x315 
... 111311 + +  Xr  

x21 = x21416 n-31c + x416 
... 17t-31c + + X 

Where 

(n— 1,ifnis even ( n— 1,ifnis odd 

( n, if n is odd and 
c 

= n, if n is even 

Hence the index computing ft,nction of CMA(n) becomes 

f(xi',x2') =
IX2' 

x' x 1 + x2', if d1'holds the SA 

x 1 + x1', 1fd2 'holds the SA 

Where, 

11'=11 x13 x ... x17. 

1 2, =12 x14 x ... xlc  

Example 3.1. Fig. 3.1 shows a SAl ofa CMA(5) of size [2, 2, 2, 2, 2]. The Rnl index < 1, 

0, 1, 1,0> is converted to C21 by <6, 1> and 1' = 8 and 12 = 4. The dynamic extension 

for any dimension of the CMA(n) causes corresponding extension on row or column 

direction of C2A. 

(3.1) 

(3.2) 



3.2.2. Scalable Indexing 

Scalability is an important property to store present and future dataset for big data storage 

[22]. The index array model namely extendible array inherits scalability through a process 

called indexing which preserves the dynamic extension of array [11-]3]. Indexing is a 

process of monitoring location of data record by assigning a key with them for the 

corresponding system. The process assist in fast query processing [1 1]. The indexing of a 

SAl system is done by introducing five types of Supplementary Tables (ST) which help the 

SAl in managing the scalability as well as faster accessing of the structure. 

. Histoiy Table (HF): The I-iT table stores a unique number to monitor the construction 

history of the SA. 

. The Index Table (IT): The dynamic extension can occur in any dimension of the 

CMA(n). The start index of the corresponding extended dimension is stored in index 

table. 
-91 

Extend Dimension (EDT): The SAl structure is a compressed dimension representation 

of an n dimensional array. Hence, to track the current extended dimension EDT is 

req uired. It tracks the scalable direction by assigning value I to n. 

. Multiplicative C'oefficienl Table (MCT): The MCT stores the co-efficient of the 

addressing function. As the new SAT is a 2 dimensional structure, hence MCT stores the 

co-efficient of the new index x11or x21 (Eq.1). 

. Address Table (AT): The first address of the dynamically allocated subarray is saved in 

AT. This is mainly useful when the allocated memory is not consecutive. For 

consecutive memory allocation we can avoid AT. 

The supplementary tables are the indices of the structure. For each of the 2 dimensions the 

indices are necessary. Let the indices are ST1  (for row direction) and ST2 (for column 

direction). Each of the index entry requires above tupple namely <history value, index, first 

address, coefficient  vector, extended dimension>. Extendible Array [1 3] uses 3 tupples and 

Extendible Array [11] uses 4 tupples respectively. But they need n indices to be placed for 

each dimension. By increasing one entry in the tupple we reduced the total number of indices 

to 2 only. 

27 
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Fig. 3.2: Construction and Extension of a SAl System 

3.3. Operations on a SAl System 

3.3.1. Construction and Extension 

To construct a SAl, the Rnl of a CMA is converted to its corresponding C21 pf a C2A (as 

sec 3.2.1). The supplementary tables of both dimensions (namely STI and ST2) are 

maintained. The first address of the allocated memory is preserved in AT. The extension 

history i.e the value of history counter is initialized and saved in history table, FIT. The 

initial index values of the both dimensions are stored in IT. The coefficients of the odd 

dimensions are stored in the ST1  .MCT and the coefficients of the even dimensions are stored 

in the ST2. MCT. The EDT holds null as no extension is held yet. 

Example 3.2: Consider the transformation of a CMA(5) of size[2,2,2,2,2] in Fig. 3.2(a). 

The row dimension is constructed from [Ii, 13, Is] and the column dimension is constructed 

from [12, 14]. Initially, set STI[O].IT = 0, ST1 [0].I-IT = 0 and ST1  [0].EDT = NULL. The cell 

values also represent their cell position in the actual array. Hence, set ST1  [O].AT = 0. MCT 

values are initialized to STi[0].MCT[0]=  I3xI5=4 , STi[1 ].MCT[I]= 15 =2 and 

ST1[1 ].MCT[2] 1  for x1' and ST2[01.MCT[0]/42 and ST2[0].MCT[]]=1 for x2' 

ST2[0].IT=O, ST2[0].HT=0, ST2[0].EDT=NULL and ST2[0].AT=0.  And finally 

A[2][2][2][2][2] of CMA is converted to a A'[8][ 4] of SAl. 

The dynamic extension along any arbitrary direction d 1' of the SAL is done by allotting a 

block of memory or SA (Eq. 2.2). 

Example 3.3. Let, the structure in Fig. 3.2(a) has been expanded in dimension d2 shown in 

Fig. 3.2(b). In this case, the size of the CMA(5) becomes [2,3,2,2,2]. Then a block of 

1 4 MCT IFETAT 
0I 

LUd 
71  2I 

I 1 
4 

23 sI 

131171 

Extending d 2  
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memory size (2 x 2 x 2 x 2) or 16 (see Eq. 2.2) is allotted dynamically. As the dynamic 

extension is done along d2 that contributes for x2 7 , hence ST2 is maintained. The first address 

of the memory block (i.e 32) is stored in ST2[1].AT. The history counter is incremented and 

stored in ST2[ I ].HT. The extended index of d2 (i.e 2) is stored in ST2[ 11.11'.  The value of the 

extended dimension (i.e 2) is hold by ST2[l].EDT.  Finally the multiplicative coefficient /4 

and I is stored in ST2[1].MCT[O] and ST2[l].MCT[l]  respectively. Fig. 3.2(c) depicts an 

extension along di. The supplementary tables are maintained for ST1. Finally Fig. 3.3 shows 

the SAl after extending on (/4, (/3 and d.i respectively. 

3.3.2. Dimension Transformation 

The operation of dimension transformation has been divided into two parts. The first part 

will elaborate the transformation from n dimension to 2 dimension named as Forward 

Transformation. And the second part will elaborate the transformation from 2 dimension to 

n dimension named as Backward Transformation. 

Forvard Transformation. Let the subscript of CMA (x1, x2 , x3 , x4 . ... x31 ) is to be 

transformed into 2 dimension of SAl or < x1', x2 '>. The subscripts that contribute to row 

and column direction are calculated (section 3.1). Let, the row subscripts be (x1, x3 , 

x5  .. .. x7.) and even subscript be (x2. x4, x6.. . .x). Let max() returns the maximum value 
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and fmax() returns the count of the maximum value. Now find the following 

x = 7nax(x1, x3.. . .x1) and mr  = fmax(x1, x3,. . 

And 

x = max(x2, x4. ... x) and m = fmax(x2,x4, ... x3 

Where xa  is the maximum subscript in the row direction and mr  is the count of the 

subscript that have maximum subscript value. We need to find i andj subscript from ST1  

and ST2  respectively to locate the candidate subarray that contains the element. To find I 

from Si'1 , there can be two cases based on 1r 

Case 1: if 7n7. = 1, find I such that STi[1].IT=Xa  and ST1 [i].EDT = a 

Case 2: if mr  > 1, mr  = a (say). Let 11  i, ••, i contains Xa. Among i1, 2,  ... ia  find 

u E (li, i2,  . 'k) (k :!~ a) such that STi[u].IT=x and ST1 [u].EDT = a. 

Now from i, 2,  •• i, find hinax  = max(ST1 {ji].  HT, ST1 [2].  HT, ... , ST1  [1k]. HT). Find I 

such that hinax  = ST1 [i]. HT 

To find] from ST2, there can be similar cases based on m 

Case I: if nic  = 1, find] such that ST2[j].lTx,? and ST2[/].EDT =  fl 

Case 2: ifm > 1, m = b (say). Let]1,]2, "'lb  contains Xfl. Among]1,]2, "'lb  find 

u E 01']2 ... Jk) (k :!~ b) such that ST2[u].1T=x and ST2[u].EDT = . Now from 

]1]2' lk find hniax  = max(ST2 j1]. HT, ST2 [j2].HT, ...,ST2[jk].HT) Find] such that 

hmax  = 5T2 [j].HT 

Using / and], x11, x2 ' can be re-calculated using Eq. 3.1 as follows: 

71 
x1'= x1ST1 [i]. MCT[0] + x3ST1  [1]. MCT[1]+.. + xST1[i]. MCT [[1 - i] 

x2'= x2ST2 [j].MCT[0] + x4ST2  [I]. MCT[1]+.. + xST2 [j]. MCT [ - i] 

Where, MCT[0] is the first multiplicative coefficient and so on (as Fig. 3.3). 

Example 3.4. Consider an input (xi, X2, X3, X4, x5) = (1, 2, 1, 2, 2) is to be retrieved from 

Fig. 3.3. So, row index is (x /. X3, x5) = (1. 1. 2)and column index is (x2, x4) = (2, 2). For row 

index we have maximum index value X. = max(x,, X3,  X5) = max(1, 1, 2) = 2 and 

fmax(x1,x3,x5) = m = 1 . So, we select ST1  index I = 3 (as ST1[3].IT = 2 and 
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ST1 [3].  EDT = 5)(i.e case 1). For column index, we have X=  max(x2, x4) = max(2, 2) = 2 

and finax(2, 2) = m = 2. Here, we select ST2  index .11=  1 and J2=  2 asST2 [1].IT = 2 

and ST2 [1].  EDT = 2 , ST2 [2]. IT = 2 and ST2[2]. EDT = 4 . Now, as ST2  [1]. HT < 

ST2[2]. HT or (1 < 3), hencej = 2 for ST2. And the converted 2D indices x111 x2 ' are as 

follows 

= x1  x ST1[3].MCT[O] + x3  x ST1[3].MCT[1] + x5  x ST1 [3].MCT[2] 

= 1 x 3 + 1 x 1 + 2 x 9 = 22 

= x2  x ST2 [2].MCT[O] + x4  x ST2 [2].MCT[1] = 2 xl + 2 x 3 = 8 

So, 5D (1, 2, 1,2,2) is equivalent to 2D (22, 8). 

Backward Tramforniation. Let the subscript of SAl <x11,x2 '> is to be transformed into n 

dimension of CMA or (x1, x2, x3, x4.. . .x). Let I and] are the indices of ST1  on ST2 for the 

selected SA respectively. To determine the value of i and], find largest I and] such that 

~! ST1[i].lT  X ST1 [j].MCT7nax  

~! ST2 []]. IT X ST2 [j]. MCTmax (3.3) 

Now, let there are p number of entries in S7'1 [i].MCT  and q number of entries in 

ST2 [j]. MCT. Thus the row indices (x1, x3, x5,. . .,x1) and column indices (x2, x4, x6,. . .x) 

can be calculated using the following equation: 

(((xl'%MClmax)%MCZ?nax)..%MC(p_ l )max) 
xQ = 

MC0  

(((x2  '%MC1max )%MC2max )..%MC(q_ l )7nax ) 
(3.4) xe = 

MC 

Here, x0  represents the odd indices (x1, x3, x5.. . .x) and xe represents the even indices (x2, 

X4, X6,. . .X). MCiinax  is the first largest Multiplicative Coefficient, MC2771ax  is the second 

largest Multiplicative Coefficient and MC(P _ l)fllQX  is the last largest Multiplicative 

Coefficient before x0 's coefficient, where MC0  is the Multiplicative Coefficient of x0 . 

Example 3.5. Let <x1', x2 '> be <22, 8> . As x1' ~! ST1[3]. IT x ST1[3]. MCTiIIaX  or 22 ~! 

2 x 9, hence I = 3 and x2' ~ ST2  [2].IT x ST2  [2].MCTJUaX  or 8 ~ 2 x 3, hence] = 2. 

Now, we have three entries in ST1[3]. MCT. So, using Eq. 8 the row indices are as follows: 

= (x1'%MCii7iax)/MC1 (22%9)/3 = 

((x1'%MC1771ax )%MC2?nax)/MC3  = ((220/o9) %3)/1 1 
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x5  = x1'/MC5  = 22/9 = 2 

We have two entries in ST2  [1]. MCT, hence using Eq. 8 the column indices are as follows: 

X2 = (X21010MC17nax)/MC2=(8%3)/1 = 2 

x4  = x2'/MC4  = 8/3= 2 

Finally <x1', x21> = <22, 8> maps to (x1, x2, x3, x41  x5) = (1. 2. 1, 2, 2). 

3.3.3. Point Query 

Point query is a form of data query, where all the subscripts of all the domains are known. 

In our proposed model the input of a Point Query is an n dimensional index Rn1 of form 

(x1, x2. x3, x4,. . .x) and output is an array cell value (VALUE) representing a memory cell 

(CELL). 

The first task of a point query is to generate the 2 dimensional index C21 form the given n 

dimensional index Rnl (see sec 3.2.3.2). Using I andj of supplementary table STi and ST2 

(respectively), find Hinax  =(ST1 [i].HT, ST2[j].HT). If Hinax  = STi [i].HT, then d1' is the 

SA direction that contains the desired element. The SAs can store consecutive memory 

block or non-consecutive memory block. If the SAs are in consecutive memory, then the 

value can be calculated using Eq. 3.2 as follows 

VALUE = f(x1',x2') - 
x 1' + x21, 1fd1'holds  the SA 

- x2 ' x 11' + x1', if d2'holds the SA 

If the SAs are non-consecutive, then, the required cell position CELL in the candidate SA 

is 

(ST1  [1].  AT, when SA exists on d1 
(3.5) CELL = f(x11,x21) 

- ST2 U].AT,  when SA exists on d 2' 

And the required cell value is 

ST1  [i]. AT, when SA exists on 
VALUE = CELL + 

{j].AT,wlien SA exists on d 2'
(3.6)  

IST2 

Example 3.6. Consider an Rnl input (xi, X2, X3, X4, x5) = (1, 2, 1, 2, 2) is to be retrieved from 

Fig.3.3. The corresponding C21 is (22, 8). Here, i = 3 and j = 2. Now, as ST2  [2]. HT < 

- ST1 [3]. HT or (3 <5), hence d1  holds the SA. If the SAs are consecutive then 

VALUE= x1'x12 1 + x21 =22x9+8=206 

And if the SAs are not consecutive then 
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CELL = f(x1',x2') - ST1  [i].AT = X1 X 12' + x21 — ST1[i].AT = 22 x 9 + 8— 162 

=44 

And resultant cell value is 

VALUE = ST1 [i].AT  + CELL = 162 + 44 = 206 

The resulted cell is marked in Fig. 3.3. 

3.3.4. Range Query 

A range key query [51, 52] has a single predicate of the form (column subscript < value) or 

(column subscript> value) or (column subscript between value I and value2). On the other 

hand, for a single key query predicate has the form (column subscript = value). So we can 

say that single key query is a special case of range key query with only a single range 

subscript. The rest subscripts are denoted by the sign "i"  or don't care situation. In our 

proposed 2D model, we have two types of dimensions. The first one is named as major 

dimension if the first SA selected by the given key corresponds to the same dimension as 

the SA dimension. And if the first SA selected by the given key corresponds to the opposite 

dimension as the SA dimension, then it is called minor dimension. The required code 

segments for the single range key query is as follows: 

for( i = START; ± <= END; i = i + step 

for( j = 0; j < total data; j++ 

if( major dimension 

pos = i + 

else 

05 = i + TARGET[jJ; 

retrieve - SA[pos]; 

The first task of the query is to find the first SA and corresponding history that contains the 

key (see se. 3,3.3). Then the SA is loaded from disk to main memoly. Here, START is the 

position of the SA that initiates the query and END (sz - 1) is the position of the SA that terminates 

the query on that SA. The step is the step size for the required search. The target_cells 

is the number of target cells or offsets for the required key, target_indices are the 
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number of major indices selected for the key and TARGET holds the selected major indices 

for using on minor dimension. The number of successive data block to retrieve is NOD and 

the total number of data to retrieve is total_data = NOD x target_cells. The 

pos generates the offset of the SA. The task of the function retrieve is to generate the 

cell value SA [pos I  of the SA. The key is k on the index position xa  with length 1 and 

multiplicative co-efficient MCTa  and maximum multiplicative coefficient is MCT7 . 

Single Range Query on Major Dimension. For major dimension, if d1' holds the SA then all 

the x2 ' of is the target cell or target_cells = x2' where 0 :!~ x2 ' < 1 otherwise 

target_cells =x1' where 0 -!~ x1' < 1' (see Eq. 3.2). Let, the major dimension is on 

d11. Now, there arise the following two cases: 

Case 1. If x = ST1 [i].EDT and k = ST1 [i]. IT, then the whole size of the SA or sz (Eq. 

2.2) is retrieved and NOD = step = sz. 1-lence. START = 0 and END = sz - 1. 

target indices = MCTa , start index of the SA is SI = ST1[i]. IT x MCTa  and end 

index of the SA is El = SI + MCTa l. Hence. SI :!~ TARGET:5,  El. 

Case 2. If xa #ST1[i].EDT, then NOD = MCTa , total data = NOD X 

target_cells = MCTa X12', step = total_data Xla, START = kx 

total_data and END = sz - 1, SI = ST1[i].ITx MCTinax +kX MCTa.EI 

= SI + MCTa l. Hence,SI :!!~TARGET~EI.Oneach step the Sl (SI = El + 

NOD + 1) and thus El is updated until reach END. Hence. TARGET is updated. 

Single Range Query on Minor Dimension. For minor dimension, all the selected target 

indices from the first major dimension to the last will be the candidate target cells. That 

means, if the first major dimension is on history h1, minor dimension is on h?fl j lo?. and the 

last major dimension is on history h2  < hin jnor* l'hen all the target indices from h1  to h2  

will be target cells for minor dimension. Here, NOD = 1, START = 0 and END = sz 

and step = Ifliajor' = 11' , where liflajor'  is the length of major dimension, 

target_cells = target indices. 

Example 3.7. Let, in Fig. 3.4, the data to retrieve is (*, 1, *,*,*). Here, k = I, a = 3. The 

requested query has two major candidates (case. 2) in the first SA or SAl (h = 0); two 

minor candidates in the second SA, SA2 (h = 1) and one major candidate in the third SA, 

SA3 (h = 2). For SA 1: 'a = 2,lminor  = 4,MCTa  = 2, target_cells = 1 j .'= 12 = 
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4, NOD = MCTa 22, total data = NOD X target cells = 2x4=8, 

step = total data X1a =8X2=16,END= sz-1=31, flOWi = START 

= k x total data = 1 x 8 = 8, retrieve successive positions from SA[i] = SA[O] = 

8 to SA[i +totaldata -1] = SA[7] = 15, SI = ST1[i].IT X MCT1 + k X MCTa  = Ox 

4+1X22,EI = SI + MCTa 1=2+21=3 and TARGET = {2..3};nowi = 

i ± step = 8 + 16 = 24, retrieve successive positions from SA[i] = 24 to SA[totaldata 

1132,SI = El + NOD +1 3+2+16,EI = SI + MCTa 16+21=7 

and TARGET = (2, 3, 6, 7), target_indices = 4; For SA2: START = 0, END = sz 

= 16 1 = 15, NOD = 1, step = I major' = 11' = 8 and target_cells = 

target_indices = 4, total_data = NOD X target cells =1 X44,now 

i = START = 0 and retrieve positions from SA[i + 2] = SA[2] = 34, SA[i + 3] = SA[3] = 

35, SA[i + 61 = SA[6] = 38 and SA[i + 7] = SA[7] = 39; now i = START + step = 0 + 

8 = 8 and retrieve positions from SA[i + 2] = SA[10] = 42, SA[i + 3] = SA[1 1] = 35, SA[i 

+ 6] = SA[14] = 38 and SA[i + 7] = SA[15] = 39. For SA3: Ia  = 2, Inji,01, = 6,MCTa  = 2, 

target_cells = I mj7lor'= 12' = 6, NOD = MCTa  = 2 = 2, total_data = NOD 

X target_cells = 2 x 6 = 12, step = total data x 1, = 12 X 2 = 24 

,END = sz - 1 = 24, now i = START = k x total_data = 1 x 12 = 12, 

retrieve successive positions from SA[i] = SA[12] = 60 to SA[i + totaldata -1] = SA[23] 

71,SI = ST1[i].1TXMCTniax +kXMCTa =2x4+1x2=10,EI = SI + 

MCTa I = 10 + 2 - I = 11 and target indices =6, TARGET = 12, 3,6,7. 10, 

11). 
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Fig. 3.5: Segmentation of a SAl to a SSAI 

3.4. Realization of a Segment based Scalable Array Indexing (SSAI) 

The Segment based Scalable Array Indexing (SSAI) is a segmentation of the SA ola SAL 

system. That means the SSAI is a segment based scalable array storage that also transforms 

ann dimensional (nD) array into 2 dimensional (2D) array (as sec 3.2.1). The SSAI replaces 

the SA block memory allocation of a SAT system by small segments. Thus, it not only 

delivers lower index computation cost and higher data locality but also delay the address 

space overflow which provides high storage utilization. For scalable indexing of the SSAI 

scheme, the same supplementary tables (as sec 3.2.2) as SAl are used except for AT entry 

which stores the first address of the first segment of dynamically allocated SA. 

3.4.1. Segmentation 

The SSAI divides the SA into a collection of segments. Since the SSAI is a 2D structure, 

the SA is ID, hence the segment size becomes the length of opposite dimension of SSAI. 

For example, if the row dimension d,' holds the SA then the size of the segment is the length 

of column dimension or 12 . If the SA size is sz (Eq. 2.2) and segment size is SGSZ, then 

the number of segment (nos) in a SA is calculated using the following equation 

SZ 

~11 

12 ,whenSAexistson d1' 
nos = 

SG_SZ 
SG_SZ 

= ',when SA exists on d 2' 

Example 3.8. Fig. 3.5 shows the segmentation of Fig. 3.1. The SA size is 32 and d1' holds 

the SA. As 12= 4, the nos is 
32 

 or 8. So, 8 segments of size 4 have been allocated for the 

current SA as mentioned in Fig. 3.5. 

(3.7) 
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Fig. 3.6: Construction and Extension of a SSAI System 

3.5. Operations on a SSAI System 

The SSAI structure is a modify version of SAl structure. So, the operations of SSAI slightly 

differ from the operations of SAl. For example, the dimension transformation and range key 

query ola SSAI structure is same as a SAl structure. The rest operations are slightly different 

of SAl structure as SSAI structure offers segmented SA. 

3.5.1. Construction and Extension 

The construction and extension operation of a SSAI is same as SAl (as sec. 3.2.3.1) except 

the memory allocation which is done by segmentation. 

Example 3.9. Consider the SSAI in Fig. 3.6(a). 1-lere 8 segments are determined each of 

size =12  = 12  X 14  = 4 (as sec 3.3.1). Store 1St  segment's cell position to ST1 [0].AT = 0. 

Initially, set STI[0].IT = 0, STI[0].I-IT = 0 and ST,[O].EDT = NULL. MCT values are 

initialized to ST1 [O].MCT[0] = 13 > 15=4, ST1 [0].MCT[I] = 152 and STI[01.MCT[2]  I 

for d1' and ST2[0.MCT[0} = /4=2 and ST2[0].MCT[1} = I for d 21 . Store ST2[0].IT = 0, 

ST2[0].HT = 0, ST2[01.EDT = NULL and ST2[01.AT = 0. 

The dynamic extension along any arbitrary direction d1' of the SSAI is done by allotting 

one segment at a time. 

Example 3.10. Let. the SSAI in Fig. 3.6(b) demands an extension in direction cL'. The 

extended SA size is (24 ) or 16. As the extension corresponds to d 2', hence the segment size 

is 8 (i.e 11) and number of segment, flOS is 2 (i.e ). In this extension ST2 will be preserved. 
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Fig. 3.7: Realization ofa SSAI[18,9] 

The first address of the ]SI  segment (i.e 32) is stored in ST2[1].AT. The history counter is 

incremented and stored in ST2[l].HT.  The extended start length of d2 is stored in ST2[1].IT. 

The value of the extended dimension (i.e 2) is hold by ST2[1].EDT. Finally the 

multiplicative coefficients are stored as ST2[1].MCT[O]  = 14 (for x2 ') and ST2[1].MCT[l]  = 

1 (for x41 ). Hence a SSAI[8][ 4] has been extended to SSAI'[8][ 6]. Fig. 3.6(c) shows the 

SSAI after extending the SSAI on di. Fig. 3.7 shows the SSAI after extending on d1  and d3 

respectively. 

3.5.2. Point Query 

Like a SAL the first task of the point query of a SSAI structure is to calculate the C21 index. 

Afterwards the candidate SA is determined using the supplementary index ST1  and ST2 (as 

sec 3.2.3.3). Now, calculate the start SSAI index, sx'of the subarray and fi nd the largest 

multiplicative coefficient MCTInaX  as the extended direction holds the largest coefficient of 

the SA. Then, 

(ST1[i].IT X  STi[i]. MCTmax, when SA exists on d1' 
SX 

ST2U]. IT X ST2 ]. MCTniax, when SA exists on d 2' 
(3.8) 

Now, calculate the candidate segment number, SN using following equation 
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SN = jX1 t 
- sx',when SA exists on d1' 

/ (3.9) 
x2  - sx', when SA exists on d 2  

And the required segment's first cell address, SFA is 

SFA = 
IST2 
STi[i].AT[0] + SN x 12', when SA exists on d1'

(3.10) 
[/1. AT[0] + SN x 1, when SA exists on d 2' 

And the required cell value, VALUE is 

SFA + x2 ' 
VALUE 

= 

,when SA exists on d1 
(311) 

SFA + x1', when SA exists on d 2' 

Example 3.11. Consider an input (x1, x2, x3, X4,...X11 ) = (1, 2, 2, 2, 1) is to be retrieved 

from Fig. 3.7. Now i = 2 for ST1 , j = 2 for ST2, < x1', x2' > = < 15,8 > and d1' holds the 

SA. 1-lence start SAl index sx'of the subarray is 

SX '  = ST1  [i]. IT X ST1 [1].MCTmax  = 2 X 6 = 12 

The candidate segment number, SN is 

SN = x1' —sx' = 15-12 = 3 

And the required segment's first cell address, SFA is 

SFA = ST1[i]. AT[0]  + SN X 12' = 108 + 3 x 9 = 135 

And the required cell value (marked in Fig. 3.7) is 

VALUE = SFA +x2' = 135+8= 143 
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Figure 3.8: A Sparse Representation of a SSAI[18][9] 
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3.6. 2 Dimensional Key Value Encoding (2DKVE) 

The l-Iistory Pattern Encoding scheme [42, 43] eliminates the drawbacks of runtirne 

calculation (multiplication, division) of large cell positions of 1-listory Offset Encoding 

scheme [16], but it is an n dimensional representation. The 2 Dimensional Key Value 

Encoding is an encoding scheme that encodes n dimensional data into a key that uses only 

2 dimensional indices of SSAI structure. Let the shaded cells in Fig. 3.8 represent non-empty 

cells. The 2DKVE representation of the SSAI system of Fig. 3.8 is depicted in Fig. 3.9. The 

structure eliminates the 2D Address Table (AT) entry from the supplementary table and 

creates a new individual ID First Address Table (FAT) that contains the first non-empty 

address of a SA, if the SA is not empty. Otherwise it will store the negation location value 

of the next SA. Then the last location of the SA can be found by the successive value 

(absolute) difference from the FAT table if it is not the last SA in the structure (otherwise 

the last position of the memory will be considered as the last location of the SA). The index 

of the FAT table is labeled by the history of the SSAI system. 

3.6.1 Encoding 

The 2DKVE encodes a cell of the array by the pair < x11,x2 ' > instead of the pair < x1, x2, 

x3, ..., x>. Hence the size of the encoding key becomes fixed irrespective of the value of 

n. We generate a single key for the encoded pair < x11, x2' > . In this encoding scheme, the 
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entries of the supplementary tables are same as SAt, except the AT entry which is replaced 

by the individual ID FAT table. The FAT stores the location of the first nonempty key,  of 

the SA. The FAT stores NULL if the whole SA is empty. Let the key contains b bits. Among 

b bits the x1' is stored in the most significant b bits (MSB) and x2 ' is stored in the least 

significantb bits (LSB) as shown in Fig. 3.10. Hence the keys are stored in the order of x1'. 

The x1'  is inserted to the key and successive left shift operation is applied to move it to MSB. 

Afterwards the x2 ' is added with the key. Finally the < key, value > pair is stored where 

value is the actual data in the SSAI. 

Example 3.12. Consider an Rn! index (x1, x2, x3, x4,x5) = (I, I, 0,2, I). The corresponding 

R21 is <x11 , x2 ' > = (5, 7). Let the key comprises b = 64 bits. Then MSB 32 bits are 

00.. .000101 = 327680 and LSB 32 bits are 00.. .000111 = 7 and key = 327687. Then the 

encoding value is <key, value> = (327687, 89) (as sec Fig. 3.9). 

3.6.2 Data Access 

To access an item from a 2DKVE it is necessary to determine <x11 , x2'> and Hnax as 

described in sec 3.5.2. Now, find the supplementary table index / that contains IIniax. The 

candidate SA can be found from FAT[Hmax]. Now generate the key from <x11, x21 > which 

is to be accessed. Then the subarray is loaded from disk to memory. Since the keys are stored 

in order of x11, the binary search is performed to find the key and the corresponding value 

is the desired array cell. 

Example 3.13. Consider an Rn1 index (x1, x2, x3, x4, x5)=(I, 1,0,2, 1). The value of<x11, 

x21>, H1 jjjjx  and key are <5, 7>, 3 and 327687 respectively (as Example 3.12). The location 

of the first cell of the SA is FAT[3] = 17. Now load the SA from disk to memory. And the 

binary search to find the value of key or 327687 shows that the desired value is 89 as 

encircled in Fig. 3.9. 

3.6.3 Decoding 

The aim of Decoding is to retrieve an RnI from a given <key, value> of 2DKVE. By 

successive right shift the <x11, x21> is determined. Then binary search is performed in the 

mapping table ST1  and ST2 to find their index / and] (respectively) using the conditions 

mentioned in Eq. 3.3. Now find H1 = rnax(ST1 [i].1-117, ST2[/1.HT). If FAT[Hax] = NULL, 

then the SA is empty. Otherwise find the Rn1 (x1, x2, x3, x4,. . .x7 ) using Eq. 3.4. 



42 

Example 3.14. Let KEY = 327687. 11 the key comprises 64 bits, then x1' = 327687 = 5 

- and x2 ' = 7. Now, the value of i aridj isO and 2 respectively (Eq. 3.3). And Hiiax = 3. As, 

FAT[2] ! = NULL, hence the segment is not empty. We have three entries in ST1 [0]. MCT. 

So, using Eq. 3.4 the odd indices are as follows: 

xi  = x'/MC3  - 5/4 = I 

x3  = (x11%MC11 )/MC1= (5%4)/2 = 0 

((x1'%MC1inax)%MC2max)/MC1 = ((5%4)0/o2)/1 = 

We have two entries in ST2 [2]. MCT, hence using Eq. II the even indices are as follows: 

= (X2'%MC117iax)/MC2  (7%3)/1 = I 

x4  = x 2'/MC4  = 7/3 =2 

So, KEY = 327687 maps to <x11, x21> = <5, 7> which maps to (x1, x2, x3, x4, x5) = (1, 1, 

0,2, 1). 

3.4. Conclusion 

In this chapter we elaborate our proposed models with the model structure and operations. 

We effectively convert the n dimensions of the array into 2 dimensions which helps in large 

dimensional data representation. We use the concept of segment to delay the address space 

overflow and using this concept we also provide an encoding scheme which can increase 

the storage utilization by efficiently employing only 2 indices of 2 dimensions. 
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CHAPTER IV 
11 

Results and Analysis 

4.1 Experimental Setup 

In this chapter, we present the experimental results along with the theoretical analyses of 

the proposed schemes. We have compared the proposed schemes with static CMA and 

dynamic Extendible Array [11] and Extendible Array [13]. In the following we rename the 

Extendible Array model [13] by EAI and [II] by EA2. To analyze the performances of 

the proposed structures we develop a prototype system in a machine having Iritel(R) 

Xeon(R) E5620 @ 2.40G1-lz processor with 8 processors, 32 GB RAM, 1406 MB cache 

memory and I .3TB usable HDD. The actual array was placed in the secondary storage. 

The program is written in C and compiled in gcc compiler on debian squeeze 6.0.5 

operating system with the parameter values shown in Table. 4.1. In all performance 

analysis, we have considered the index table to be stored in secondary memory. All 

lengths or sizes of storage areas are in bytes. The analyses are also represented as a 

function of bytes. 

Table 4.1. Parameters for Constructed Prototypes 

Parameter Description 
n No. of dimension in array 
1i  Length of dimension 1(1 :5 i :!~ n), let 11 = 12 =11, =  
V The array volume= 1i =  171 

he Total no. of extension or maximum history value 
y Size of an index 
Cr Size of an array ccli 

Size ofakey 
N Total no. of non-empty cells in actual array 

P Data density of actual array = . = fi', 0 ~ p ~ 1 
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4.2 Performance Analysis of the Structure 
11 

4.2.1. Index Overhead (Y) 

a) Theoretical Analysis. 

Let the number of indices is denoted by noi. The no. of index in EA1 scheme or TtOIEA1 = 

3 (<history value, first address, coeffIcient vector>). in EA2 the no. of index is noiEA2 = 

4 (<initial  index, start address, coefficient vector, start address pointer>). The no. of 

index in SM scheme or nOiSAI = 5 (<history  value, initial index, first address, coeffIcient 

vector, extended dimension>). If the totla size of index is tsi = noi x n x y and total index 

overhead is Y = (tsi x (hc + 1)). Then the index overhead of SAl (or SSAI), EA1 and 

EA2 is as follows: 

No. of index in SAl (or SSAI) scheme, nOiSAI =  5 

Total size of index in SAl (or SSAI) scheme, tSISA/ = 5 x 2 x y = lOy 

Total index overhead: YsAj = (tsi x (hc + 1)) = by x (hc + 1) 

No. of index in EAI scheme, noiEA, = 3 

Total size of index in EAI scheme, tSEA1 = 3 X n x y = 3ny 

Total index overhead: YEA1 = (tsi x (hc + 1)) = 3ny x (hc + 1) 

No. of index in EA2 scheme, nOiEA2 = 4 

Total size of index in EA2 scheme, tS1EA2 = 4 X n x y = 3ny 

Total index overhead: YEA2 = (tsi x (hc + 1)) = 4nC x (hc + 1) 

Consider index size y = 8. Let 1 = 4. Now consider two cases CASE I and CASE 2. In 

first case or CASE 1, vary n = 4-'-6 and in second case or CASE 2, vary hc = 0-2. Then, 

the index overheads of the structures can be calculated as mentioned in Table. 4.2. The 

first case is mentioned in Fig. 4.1(a). Here, it can be seen that the SAl scheme requires 

smallest and constant index overhead which does not depend on the value of n. The 

second case is depicted in Fig. 4.1(b). Here, in accordance with the dynamic extensions, 

the index overhead of SAl scheme increases but still consumes lowest overhead than the 

other schemes. 
4 

b) Experimental A naysis. 

The CMA is a static structure. It does not require any indexing. The EA I and EA2 demand 

indices for each of then dimensions. For EAI, the value of each index entry is a 3 tupple 



45 

Table 4.2. Analytical Index Overhead for Constructed Prototypes 

y CASE he n 
1SAI 

by x (hc + 1) 

1EA1 

3ny x (hc + 1) 

EA2 

4ny x (hc + 1) 

1 0 

4 80 96 128 

5 80 120 160 

6 80 144 192 

2 

0 

4 

80 96 128 

1 160 192 256 

2 240 288 384 

11 

Figure 4. 1: Analytical Result of Index Overhead 

<history value, fIrst address, coefficient vector>. For EA2, the value of each index entry 

is a 4 tupple <initial index, start address, coefficient vector, s/art address pointer>. Where 

coefficient vector has (n - 2) entries. Both the EAI and EA2 needs n indices to be 

placed. Hence the index overhead increases with the increasing n. However in SAT, the 

index entry is a 5 tupple <history value, initial index, first address, coefficient vector, 

extended dimension>. But the total number of indices are 2 irrespective of the value of ii. 

Hence, index overhead for index is very small in SAl. Fig. 4.2(a) shows the index 

overhead for SAl, EAI and EA2 for / = 4, he = 0 and varying n. As n increses, the SAT 

shows constant and small index overhead, the EA2 shows more overhead than EAI since 

it has more entry for index than EAT. Fig. 4.2(b) shows the index overhead for SAl, EAI 

and EA2 for n = 4 and varying he. As he increses, the SAT shows increasing but small 

overhead compared to EAt and EA2. The SSAI structure has same index cost as the SAl 

structure. 
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Figure 4.2: Experimental Result of Index Overhead 

4.2.2. Construction Cost (C) 

a) Theoritical Analysis. 

The construction cost involves the cost of allocating and storing data volume, cost of 

allocating indexing and cost of indexing (as sec 4.2.1). If cost of allocating indexing is r, 

then the construction cost of the schemes are follows: 

Constructin Cost of CMA, CCMA = all = aV1  

Constructin Cost ofEAl, CEA1 = aV + n X -rX YEVA1 = n X TX 3ny(hc + 1) + aV = 

3ny + a1 

Constructin Cost ofEA2, CEA2 = aV + n X -r X EA2 = n X t X 4ny(hc + 1) + aV = 

4ny + a171  

Constructin Cost of SAl (or SSAI), CSAJ = aV + 2 X r X 1SAJ = 2 x r X 

10y(hc+1)+aV=2xrx10y+aP1  

For all the above structures, the construction time directly depends on the value off and a 

or the volume (F) of the structure. But for a dynamic structure, additional cost is required 

for index overhead. Consider index size a = y = 8. Let / = 4, -r = 1000 and . Then, the 

construction cost of the structures for n = 4-6 can be calculated as mentioned in Table. 

4.3. The comparison of construction cost is shown in Fig. 4.3.The CMA requires lowest 

j construction time as it does not consume any index overhead. Among the three dynamic 

structures, as SAl (or SSAI) consumes lowest index overhead and it requires only 2 

dimensional index initialization. Hence it has the lowest construction cost amongst others. 
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Table 4.3. Analytical Construction Cost for Constructed Prototypes 

I a=y t n 
CCMA 

a1 

CSAI 

2xTx10y+a11' 

CEA1 

nxrx3ny+a111  

CEA2 

nxTx4ny+aV0  

- 

4 8 1000 

4 2048 162048 386048 514048 

5 8192 168192 488192 648192 

6 32768 192768 608768 800768 

No. of Dimension, n 

Figure 4.3: Analytical Result of Construction Cost 

b,) Experimental Analysis. 

As the CMA does not maintain any index, the construction of CMA only involves the cost 

to allocate and store data. Again, for a dynamic structure like EAlor EA2 or SAl (or 

SSAI), the construction not only involves the time to allocate and store data but also to 

initialize indexing. 1-lence, the CMA takes smallest cost for initial construction compared 

to the dynamic models. Again the dynamic models differ their construction cost from 

CMA by their indexing cost. Among the dynamic array models, as the SAL requires two 

dimensional indexing, hence it has smallest cost (except CMA) for initial construction 

compared to theother dynamic models like EA I and EA2 as 11 dimensional indexing is 

required for n dimensional Indexed Array. Fig. 4.4(a) shows the construction cost of the 

CMA along withthe dynamic schemes. Fig. 4.4(b) shows the initial construction cost of 

the dynamic models EAI, EA2 and SAl. Hence, the performance of SAl scheme has been 

validated with theoretically and experimentally. 
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4.2.3. Extension Cost (EC) 

a,) Theoritical Analysis. 

The CMA is a static structure. It requires reorganization of the array and rewrites both 

existing and new data elements. The existing elements of the initial array (ei) need to be 

tackled and recalculate the new offsets (e2) due to the extension for CMA. 

Hence the extension cost of a CMA is 

ECCMA  = e1  + e2  

The cost of tackling the existing array elements, 

ei  = V = l =  P. 

If a CMA is extended by I then a new CMA of length / +1 is to be reallocated and 

reallocation cost becomes 

e2  = (1 + 1) x In-i 

So, Total extension cost for CMA(n), 

ECCMA  = e1  + e2 = 
I"  + (I + 1) x I71  

For a dynamic model, to compare with the static structure lets ignore the indexing cost. As 

a dynamic model does not require reallocation, the cost only depends on the new extended 

data size allocation or SA allocation. If an EA is extended by I then the SA length is 

to be allocated. If, the SA allocation cost is SC, then the extension cost is follows: 

ECEA  = SC = 

48 
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Hence, the extension cost gain (ECG) of a dynamic model compared to static CMA is as 

follows: 

ECG = ECCMA - ECEA  = I + (1 + 1) x 11 - In-i =  2171 

The extension cost of CMA and EA for n = 8, 10, 12 is shown in Table 4.4. The 

performances of the EA 1, EA2 and SAl with respect to CMA are shown in Fig. 4.5(a). 

Table 4.4. Analytical Extension Cost for Static (CMA) and Dynamic (EA) 

I n 
Volume 

V = 
In 

ECCMA 

V + (I + 1) x 

ECEA  

I' 

ECG 

ECCMA - ECEA  = 2 In 

4 16 40 8 32 

2 6 64 160 32 128 

8 256 640 128 512 

Table 4.5. Analytical Extension Cost for Dynamic (EA) Prototypes 

1 y n 

SC 

I 

ECEA1  

SC+ny 

ECEAZ  

SC+(3+n)xy 

ECSAI  

SC+(4+{])xy 

8 128 192 216 192 

2 8 10 512 592 616 584 

12 2048 2144 2168 2096 
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'
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Figure 4.5: Analytical Result of Extension Cost 
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For dynamic models, the extension cost varies with respect to indexing cost. To extend a 

single dimension with a single unit (one hc) only one dimension needs indexing. If the 

indexing cost is 'EA'  then the extension cost can be re-write as follows: 

ECEA  = SC + 1EA 

But, the indexing of coefficients is different in different models. For EAt, the coefficient 

is n - 2 dimensional. For EA2, the coefficient is n dimensional and for SAl (or SSAI), the 

coefficient is
121 

dimensional. 

For EA 1, the no. of index is 3 and indexing cost for an extension is as follows: 

'EA1 =2y+(n-2)Xy=ny 

And 

ECEA1  = sc + 'EA1 
= + fly 

For EA2, the no. of index is 4 and indexing cost for an extension is as follows: 

'EA2 =3y+nxy(3+n)Xy 

And 

ECEA2  = sc + 'EA2 = I a—' + (3 + n) X y 

For SAl, the no. of index is 5 and indexing cost for an extension is as follows: 

'SAl = 4y + [1 x y = (4 + f]) x y 

And 

SC + 'SAl = in_i  + (4 + [1) x y 

The extension cost of EAI, EA2 and SAL for n = 8,10,12 is shown in Table 4.5 and the 

performances are shown in Fig. 4.5(b). From the above flgure it can be seen that the SAl 

(or SSAI) outperfoms the other dynamic models. 
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b) Experimental Analysis. 

The CMA is a static structure. CMA requires reallocation of previously stored data ilwe 

want to resize or extend it. For an index based array models, there is no need for 

reallocation. Hence, the extension cost for CMA is always higher than other dynamic 

indexed array models as mentioned in Fig. 4.6(a). The comparison of indexed based 

models is mentioned in Fig. 4.6(b). For an index based model, the extension cost involves 

allocation of SA (instead of reallocation) and updating auxiliary indexing information. For 

a single extension, among the n dimensions (for EA) or 2 dimensions (for SAl or SSAI) 

only one auxiliary table is updated. But, the coefficient allocation depends on the value of 

n. for, EAI. EA2 and SAl the co-efficient is (n - 2), n and
121 

dimensional respectively. 

In theoretical analysis we have considered that all indexing parameters are of same size 

(y). But practically the size (say ii ) of coefficients and address are same and larger than 

the the size (say 12) of parameters like history, initial index, extended dimension. 1-lence, 

for EAI the indexing size is t2  + (n - 2)t1  + t1  or t2  + (n - 1)t1  and for EA2 the 

indexing size is 2t2  + nt 1  + t1  or 2t2  + (n + 1)t1 . And the difference between the 

indexing of EAI and EA2 is t2  - t1 . For this reason, the extension cost ofEAl and EA2 

differs slightly. When the value of n is small the extension time is almost similar in case of 

SAl (or SSAI) compared to other models. However, with the increase in n, the extension 

cost of EAI and EA2 increases due to a dimensional and (n - 2) dimensional coefficient 

maintenance respectively. 

60000 - 6000 

4 6 8 10 12 4 6 8 10 12 

No. of Dimension,,, No. of Dimnsion,,s 
(a) (b) 

Figure 4.6: Experimental Result of Extension Cost 
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4.2.4. Retrieval Cost (RC) 

a) Theoritical Analysis. 

Let, n = 4, 1 = 1 = = 1 = I = 2. The form of an input for a single range key is < 

k1, k 2, k3, u4  >, wheren ki  is the known index on dimension i and 0 !!~ k !~ I - 1, 1 :!-~ 

i ii and u1  is the unknown index on dimension j and 0 :5 u3  !~ I - 1, 1 :5 j :5 n,j # i. 

Let, the difference between two successive selected block read for a query is s and S-max 

is the maximum difference between two successive blocks. The two blocks are 

consecutive if Sj = 0. 

The addressing function of the CMA (using Eq. 2.1) can be rewrite as follows: 

f(x4, x3, x2, x1) = x4  x i + x3  x 12  + x2  x I + x1  = 8x4  + 4x3  + 2x2  + x1  

Now, consider an input < 1, 1, 1,*>, where "p'  means all. Then, we have values as 14 and 

15 (s1  = 15 - 14 = 1). If the input is < 1, 1,*, 1 >, then the values are 13 and 15 

(s2  = 15 - 13 = 2 = 1). When the input is < 1,*, 1, 1 >, then the values are 11 and 15 

(s3  = 15 - 11 = 4 12).  And if the input is <*, 1, 1, 1 >, then the values are 7 and 15 

(54 = 15 - 7 = 8 = 1). Here, Smax = s4  = i. 1-lence, if the number dimension is n, 

then the value Of 5inax S 

For a dynamic model like EA, as the SA is n - 1 dimensional, hence the addressing 

function for an extension along dimension d 4  can be rewrite as follows: 

f (x3, X 2 , x1) = x3  x 12  + x2  x I + x1  = 4x3  + 2x2  + x1  

Like CMA, the value of 5inax  can be calculated as s1 = S3 = 12  when n = 4 or 5m 

53 = 171_ 2  when n = ii, which is smaller than the CMA. But for a dynamic model, the 

retrieval of an input requires to locate the SA by searching 17 dimensional supplementary 

tables. In contrast, for a static model, there is no requirement of a SA searching. It only 

genates maximum of 11  locations for a given query. If for a given input, a dynamic 

model needs to locate three SA each of which requires t unit of time, then the total time for 

generating the required cells is 1n2  + 3t. 1-lence, the static model degrades the 

performances of a dynamic model. 
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The proposed SAl is a 2 dimensional dynamic model. As 1 = 2, hence 12 '  = 12 X 14  X ... X 

77 4 77 4 

/=1=2=4, 11 1 =11 x13 x ... x111=l=2=4, 0k~l'-1,15i~ 

2, 0 :5 u 5 1/ - 1, 1 5 j :5 2,] # i and addressing function for SA on d1'is as follows: 

f (xi', x2') = xl'  X 1 + x2' = 4x1' + x2' 

Now, consider an input < 11 *>. Then the required values are 4, 5, 6, 7 (s2' 5 - 4 = 

1). If the input is <*, 1 >, then the requied values are 1, 5, 9, 13 (Si'=  5 - 1 = 4 = 12 '). 

Hence, Spiax '2 = 1. Like a dynamic model, the SAL structure also requires 

supplementary table searching, but the table is 2 dimensional. Hence, the proposed SAl 

outperforms both the static model and dynamic model. 

b) Experimental Ana/ysis. 

Fig. 4.7(a) compares the single range retrieval performances of the compared models of 

volume 29, 30, 52, 74 GB for n = 4, 6, 8, 10 respectively. A CMA model searches the 

given input among n dimensional index. If we exclude the given input's dimension, then it 

will require n - 1 dimensional index to generate the resultant cells and requires n - 1 

loops. Furthermore, EAI and EA2 search a SA of (n - 1) dimension. To find a subscript 

of dimension n - 1 of size ..., 1] they need to calculate array indices of dimension 

n - 1 (ex. A[xi ,x2,...,x,1/]). If we exclude the given input's dimension, then the indices 

calculation reduces from (n - 1) to (n - 2). Hence to calculate such (n - 2) 

dimensional indices they will need (n - 2) loops which is smaller than CMA. But for 

locating a SA, the dynamic models require n dimensional supplementary table searching 

which decreases the performances of dynamic models compared to static model. Again, as 

the EAI requires less indexing than EA2. Hence the EAI outperforms the EA2. On the 

other hand, the SAT needs 2 loops only to calculate array indices of dimension 2 by 

f(x1',x2 ') = x1' x 12' + x21( Eq. 3.2). Thus, it outperforms the dynamic models and at 

the same time static model. Fig. 4.7(b) shows the performances of large length data 

retrieval where we omit the performance of CMA as it does not support such large length. 

To compare with the dynamic models, we choose data size 103, 114 and 153 GB for 12, 

14 and 16 dimension respectively. The retrieval performance of SSAI is same as SAl. 
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Figure 4.7: Experimental Result of Retrieval Cost 

4.2.5. Storage Utilization (SU) 

a) Theoritical Analysis. 

If the SA size is sz and segment size of SSAI is sgz then the allocation requirements of the 

compared protoypes are as follows: 

Allocation requirement of CMA, ARCMA  = V = 

Allocation requirement of EA, AREA  = sz = 

Allocation requirement of SAl, ARSA!  = sz = 

Allocation requirement of SSAI, ARSSAJ  = sgz = 

Table 4.6. Analytical Result of maximum length of the compared Prototypes 

For ARCMA = For ARSA! = 1n1 
For ARSSAJ = lz 

116  = 264  115  = 264  18  = 264  

16 10921 = 1092 (264) 15 log2 1 8 log2  I = 1092 (264) 

= 64 = 1092 (264) = 64 
= 64 

1092 I = 4 =' 
10

92 I = 4.3 
1092 1 = 8 

=1=2 - =20, =I=28 =256, 

171  V=1=2016  V=1"=25616  

= 1.8x 1019  =6.6x 1020  
= 3.4x 1038 
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Figure 4.8; Analytical Result of Storage Utilization 

Let n = 16. Theoretically, for a 64 bit address space the maximum length of each 

dimension can be calculated as mentioned in Table 4.6 which shows that the SAl scheme 

requires lowest allocation space and highest usable length and hence offers maximum 

volume of data or maximum storage utilaization. Fig. 4.8(a) shows the allocation 

requirements and Fig. 4.8(b) shows the maximum usable length of CMA, EA (or SAl) and 

SSAI. 

h,) Experimental Analysis. 

In storage utilization we have discussed two types of overflow situations. First one is 

resource overflow where the structure has enough address space to allocate but the system 

has no space to store. Anothcr one is allocation overflow where we have enough space to 

store but the address space overflows. The CMA has very less memory utilization because 

an increase in ii and / causes the total address space to increase as P. Consequently, it 

overflows quickly. Again, the CMA requires 1" consecutive memory locations. In case of 

storage utilization, the SAl acts like an EA. The index array models do not require P1  

consecutive memory locations. Instead, the index array models dynamically allocate 

consecutive SA of size P''. Hence storage utilization of index array models is higher than 

CMA. But the increase in n and / triggers the address space to overflow in index array 

models too. In SSAI the allocation grows in the form of 1. This is because the dimensions 

are divided into 2 and the allocation depends on the segment size which corresponds to the 

length of either dimension from the 2 dimensions. Fig. 4.9(a) shows how the allocation for 

CMA. EA (or SAL) and SSAI increases with the increase in dimension value. For this 

reason, the maximum usable length of dimension decreases even though enough resource 
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available which is shown in Fig. 4.9(b). As SSAI demands least allocation and largest 
,. 

usable length, hence SSAI manages highest storage utilization than others as shown in Fig. 

4.9(c). From the mentioned figure it can be seen that the CMA structure always shows 

address space overflow. On the other hand, the EA (or SAl) shows resource overflow 

when n = 4--8 and shows address space overflow when n~! 10. Using our available 

resources, we have observed that the proposed SSAI scheme always faces resource 

overflow rather than address space overflow. 
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Figure 4.9: Experimental Result of Storage Utilization 

4.3 Performance Analysis of the Encoding 

In the previous section we have seen that the SSAI has better performance than SAl. 

Hence, we have applied our encoding technique on SSAI scheme named as 2DKVE 

(mentioned in chapter 3). We have compared the performance of our encoding scheme 

with the history-offset scheme [16] which is based on EA1. In rest of the section we will 

denote history-offset scheme [16] as HOE. 
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4.3.1. Index Overhead (Y) 

The structure replaces the 2D Address Table (AT) entry from the supplementary table of 

SSAI with an individual ID First Address Table (FAT) that contains the first non-empty 

address of a SA. The 1-bE is an encoding scheme based on EA I. Hence, the encoding cost 

in HOE is same as EAt. 

a) Theoretical Analysis. 

No. of index in 2DKVE scheme, noi2DKVE = 01SSAI = 5 

Total size of index in 2DKVE scheme, tSI2DKVE = (4 x 2 + 1)y = 9y 

Total index cost in 2DKVE scheme:Y2DKVE = (tsi(hc + 1)) = 9y(hc + 1) 

Total index cost in HOE: YHOE = EA1 = 3ny(hc + 1) 

Table 4.7. Analytical Index Overhead for Encoding Schemes 

y CASE hc n 
1SSA1 12DKVE 11-WE 

by x (hc + 1) bOy x (hc + 1) 3ny x (hc + 1) 

4 80 72 96 

I 0 5 80 72 120 

8 
6 80 72 144 

0 80 72 96 

2 1 4 160 144 192 

2 240 216 288 

Consider index size y = 8. Let / = 4. Now consider two cases CASE I and CASE 2. In 

first case or CASE 1, vary n = 4'6 and in second case or CASE 2, vary hc = 0--2. Then, 

the index overheads of the structures can be calculated as mentioned in Table. 4.7. The 

first case is mentioned in Fig. 4.10(a) for n = 4-'-9. Here, it can be seen that the 2DKVE 

scheme requires smallest and constant index overhead which does not depend on the value 

of n. The second case is depicted in Fig. 4.10(b) for hc = 0-5. Here, in accordance with 

the dynamic extensions, the index overhead of 2DKVE scheme increases but still 

/ consumes lowest overhead than the other schemes. 

-- 
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Figure 4. 10: Analytical Result of Index Overhead for Encoding Schemes 

b,) Experimental Analysis. 

The indexing in 2DKVE involves 2 dimensional 4 tupple <history value, initial index, 

coefficient vector, extended dimension> and one dimensional <firsl address'> and has 

small overhead compared to SSAI (sec 4.2.1). Fig. 4.11(a) shows the storage overhead for 

2DKVE, SSAI (or SAl) and HOE for I = 4. he = 0 and varying n. Fig. 4.11(b) shows the 

storage overhead for 2DKVE, SSAI (or SAl) and HOE for ii = 4 and varying he. The SAl 

or SSAI shows better perfoormance compared to HOE and the 2DKVE scheme shows 

better performance compared to SAT or SSAI. 

4.3.2. Range of Usability(s) 

/ The Compression Ratio (i) of an encoding scheme is defined as the ratio between the 
J 

compressed array and uncompressed array. The value of 77 is preferred to be 0 < 77 < 1. 

The Range of Usability() of an encoding scheme is defined as the maximum value of p 

up to which the compression ratio 77 is less than I. 
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a) Theoretical Analysis. 

The array cell size is a, key size of 2DKVE is fl , offset and history of HOE is 8 and A 

respectively. The array volume of a cells is V = a x I. Then, 

The total data size of compressed array is: a = N x a 

The total key size of compressed array in HOE is: THOE = N x 8 + N x A = N(8 + A) 

The volume of compressed array is: VHOE = Q• + TJQ. = N x (a + 8 + A) 

So, the compression ratio of the HOE scheme is as follows: 

??HOE = 
VHOE 

— 

N(a+6+.t)N x 
(a+6+A 

 =px 
) (a+S+A) (i+ +).......(4.1) 

— V axV' In a a 

The total key size of compressed array in 2DKVE is: T2DKVE = N x 

The volume of compressed array is: V2DKVE = 5 + t2IE = N x (a + ) 

So, the compression ratio of the proposed scheme is as follows: 

VZDKVE - N (a+/) N (a+j?) (a+J1) ( 
TJ2DKVE —  - - a a \ a) 

X =px =pX(1+— .....................(4.2) 
V axl'1 l 

Table 4.8. Analytical Compression Ratio of Encoding Schemes 

p a 

HOE 

/ SA\ 
pxll+ —+—) 

\ a a) 

2DKVE 

/ f? 
px{1+— 

\. Cr 

CASEI:a=6=A CASE2:a=2A CASEA:a=/:? CASEB:a=2/3 

17HOE = 17HOE 172DKVE = 112DKVE = 

0.39 8 1.17 0.975 0.78 0.56 

Table 4.9. Analytical Usable Length of Encoding Schemes 

HOE 2DKVE 

/ 6A\ 
pxll+ —+—1 

\ a a! 

/ 1? 
pxll+ - 

' a r a 
CASE 1:a= ö=A CASE2:a= 2A CASEA:a= /3 CASEB:a= 2/3 

1 11 11 77  

0.9 8 I1HOE <0.34 or I1HOE  <0.4 I12DKVE < 0.5 I12DKVE < 0.67 

4. 
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Figure 4.12: Analytical Result of Range of Usabilities of Encoding Schemes 

Now, let the value of data density or p is fixed and p = 0.39. Hence, depending on the 

value of a, f, (5 and A we have two cases for HOE denoted as CASE I and CASE 2. The 

first one is for a = S = A. As for a HOE scheme a # 28 hence, the second case CASE 2 

is for a = 21 Similary we can have two cases for 2DKVE scheme denoted as CASE A 

when a = fl and CASE B when a = 2. Then from Eq. 4.1 and Eq. 4.2 we can get some 

compression ratios such as mentioned in Table. 4.8. From the above table it can be seen 

that in every cases the 2DKVE scheme has better compression ratio than HOE. For 

determining the range of usability (u) of an encoding scheme for the cases such as CASE 

1, CASE 2, CASE A and CASE B, let usable 71H0E = 17 2DKVE =77= 0.9. Then from Eq. 

4.1 and Eq. 4.2 we can get some data density as mentioned in Table. 4.9. In every case the 

2DKVE scheme has higher usability than HOE. Hence, the 2DKVE scheme outperforms 

the HOE scheme as depicted in Fig. 4.12. 

b) Experimental Analysis. 

As the SSAI structure is an ucompessed data representation, hence value ofi is always 1. 

From the theoritical analysis we have seen that, the performances of the encoding schemes 

depend on the value of total key size 'r. The HOE scheme involves n dimensional history 

and (n - 1) dimensional offset information. The history information is a small integer to 

track the dynamic extensions. Hence, it can be assumed the the size of history is less than 

the size of array cell. For this reason, we can have two cases: a = 8 = A and a = 22.. In 

every cases, the encoding depends on the value of n for an n dimensional history and n-I 

dimensional offset. Depending on the value of a for 2DKVE, we have two possible values 

for fl, a = fl and a = 2. But in every cases of 2DKVE scheme, the encoding cost 

depends only on two parameters <x 11 ,x 2' > despite of the value of n. So, the 2DKVE 
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scheme always outperforms the HOE scheme. For every cases , the usability range of 

HOE is lower compared to 2DKVE scheme. The comparison of the range usabilities of the 

compared schemes has been depicted in Fig. 4.13(a) which is similar to the theoretical 

analysis. Fig. 4.13(b) shows the logical volume of the two schemes. From the above 

figures it can be said that the maximum usability range of HOE is 0.39 whereas the 

maximum usability range of 2DKVE is 0.66. 
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Figure 4.13: Experimental Result of Range of Usabilities 

4.3.3. Storage Cost () 

The storage cost is the cost needed to encode a given volume of data from a sparsed 

structure. This cost includes the volume of non-empty data, the cost of encoding of this 

volume and also the cost of indexing which manages the scalability of the schemes. 

a) Theoretical Analysis. 

The storage cost of an encoding scheme is as follows: 

= encoding cost + indexing cost 

=Nx(a+t)+y=pxVx(a+t)+y=pxV'x(a+r)+y 

Now, for 2DKVE scheme, the storage cost 2DKVE  is as follows: 

2DKVE = p x 171 (a + T2DKVE) + Y2DKVE = p x l(a + f) + 9y(hc + 1) 

If a = f.?, then 
A 

2DKVE = 2pa x l + Y2DKVE 

And ifcz= 2f3,then 

2DKVE = 3p? x + Y2DKVE = 1.5pz x 1' + Y2DKVE 
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Now, for HOE scheme, the storage cost HOE  is as follows: 

HOE = p x P' x (a + THOE) + YHoE = - x P'(a + f3 + A) + 3ny(hc + 1) 

Ifa= /3=A,then 

HOE = 3pa x I n  + YFIOE 

and if a = 22., then 

HOE = 5pA x 171  + Yjiog = 2.5pa x I" + Yiio 

Now, consider two cases. In first case denoted as CASE I vary n = 4, 5 and set p = 0.2. In 

second case denoted as CASE II vary p = 0.4, 0.5 and set n = 4. Let I = 12. Then, for the 

cases mentioned in sec. 4.3.2, the storage cost of the schemes can be calculated as 

mentioned in Table. 4.10. For CASE I, we can see that the encoding cost in 2DKVE 

scheme is smaller than HOE as depicted in Fig. 4.14(a) for n = 4 9. Again for CASE 11, 

the encoding cost in 2DKVE scheme is smaller than HOE as depicted in Fig. 4.14(b) for 

p = 0.1 - 0.6. 

Table 4.10. Analytical Storage Cost of Encoding Scemes 

HOE 2DKVE 

- 7ff i X fl I 7
HOE - p a-- rYHOE 

7 - If! I.'\ -I- 
',2DKVE - P kP) mY2DKVE 

CASE I CASE 2 CASE A CASE B 
a / CID 

a==A a=2A a=f3 

3pa17' 
2.5 palT7  2pa177  1.5paU 

+YHoE +YHOE +Y2DKVE +Y2DKVE 

- 

- 4 99,629 83,040 66,427 49,838 
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Figure 4. 14: Analytical Result of Storage Cost of Encoding Schemes 

So, it can be concluded that in every cases, the 2DKVE scheme outperforms the HOE 

scheme. 

b, Experimental Analysis. 

In 2DKVE scheme, the indexing cost depends only on the number of extensions (hc) of 

the SA which is constant for initial construction and lowest for varying extensions 

compared to others. The encoding of 2DKVE involves only data of size a and key of size 

fl which comprises only 2 indices. For HOE scheme the indexing cost not only depends on 

the the number of extensions (hc) of the SA, but also on the value of n. Again,the 

encoding of HOE involves data of size a, (n - 1) dimensional offset of size ö and n 

dimensional history of size A. Thus, the storage cost of HOE is always larger than the 

storage cost of 2DKVE. Again, dependending on the value of a, P, ö and A, the 

performance of HOE  and 2DKVE  varies. For example, the value of 2DKVE  and HOE  is larger 

when a = 2f and a = 2A respectively. The performances of the storage cost of the 

underlying schemes for fixed hc, p and for varying n, U' has been depicted in Fig. 4.1 5(a). 

Fig. 4.15(b) shows the storage costs for fixed n (n = 12), 170(412),  and varying p. 
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Figure 4.15: Experimental Result of Storage Cost 

4.4 Discussion 

In this chapter we present the experimental outcomes and also the theoretical analyses of 

the proposed schemes. We have compared our schemes with the static model like CMA 

and also with the dynamic models like EAI and EA2. We have also made comparison 

between compressed and uncompressed version of the proposed model. In each case we 

found relevancy with the theoretical analysis and hence we validate the theory. We have 

showed that the SAl scheme outperforms the EA1 and EA2 schemes and the SSAI 

outperforms the SAl scheme. Furthermore, our encoding scheme 2DKVE outperforms the 

conventional 1-bE scheme. 

/ 
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CHAPTER V 

Conclusion 

5.1 Summary 

Now-a-days large volume of current and future data maintenance has been a key concern in 

different aspects of data computing like Big Data. But the margin of large volume is changing day 

bay day as the required size of data is expanding gradually. On the other hand, in real world 

application the amount of effective data among the large volume is very small as the structure is 

extremely sparsed. So, it is very important to handle large volume application efficiently with 

meaningful data only. The conventional multidimensional array systems may comprise many 

advantages but they cause address space overflow with the increase in length or number of 

dimension (or both) as they demand reallocation. This consequence degrades their performance 

drastically even the system has available resources. The Extendible Array strategy can improve 

the performance of conventional systems by avoiding reallocation but they also suffer from address 

space overflow as the subarray size grows exponentially. In this research work, we have managed 

four practical problems of higher order multidimensional data namely (i) ii dimensional data 

representation (ii) extending the length or size of the array dynamically, (iii) decreasing index cost, 

(iv) dealing address space overflow, and (v) handling sparsity of array. 

We describe a new scalable array structure that represents an n dimensional array by a 2 

dimensional extendible array named as Scalable Array Indexing (SAl). But like an Extendible 

Array, the structure also shows address space overflow. For this reason, we modify the SAl 

structure and renamed the new scalable structure as Segment based Scalable Array Indexing 

(SSAI) where SAs are represented by a set of segments. The memory is allocated for individual 

small segments instead of exponential sized SAs. Therefore, the allocation requires less size 

compared to the other schemes even for large values of length of dimension and number of 

dimension. Hence, the proposed SSAI structure is able to delay address space overflow with 

smallest storage overhead. We also propose an encoding scheme based on our proposed SSAI 
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structure that can encode the sparse data that reduces the indexing cost and encoding cost 

effectively and named as 2 Dimensional Key Value Encoding (2DKVE). 

We have evaluated the proposed SAl and its variant i.e. the SSAI structure and the encoding of 

SSAI or 2DKVE scheme by theories and experiments. The experimental results confirm the theory 

for various array operations. Again we have compared our proposed schemes with the static CMA 

and also with the dynamic models EAI and EA2 and have found better results for the proposed 

model. 

5.2 Recommendation for Future Work 

Since the proposed model is a multidimensional array representation scheme, any application or 

system that uses multidimensional array to represent data can use the scheme. More specifically - 

• This scheme can be successfully applied to database applications especially for 

multidimensional database or multidimensional data warehousing system [2, 3]. 

• One important future direction of the work is that; the scheme can be easily impleniented 

in parallel platform [34]. 

• Because most of the operations described here is independent to each other. Hence it will 

be very efficient to apply this scheme in distributed array storage, parallel and distributed 

array storage [8]. 

• This scheme can be successfully applied to key value storage for big data storage. 



67 

REFERENCES 

 Florin Rusu and Yu Cheng, "A Survey on Array Storage, Query Languages, and 

Systems." arXiv preprint arXiv: 1302.0103, 2013. 

 Chun, Y. L., Jen, S.L. and Yeh, C.C., "Efficient Representation Scheme for 

Multidimensional Array Operations," IEEE Transactions on Computers, vol. 51(3), 

pp. 327-354, 2002. 

 P. Baumann, "On the management of multi-dimensional discrete data", The VLDB 

Journal, vol. 4(3), pp. 40 1-444, 1994. 

 S. Idreos, F. Groffen, N. Nes, S. Manegold. S. K. Mullender and M. L. Kersten, 

"MonetDB: Two decades of research in column-oriented database architectures," 

IEEE Data Engineering Bulletin, vol. 35(1), pp.  40-45. 2012. 

 Y. Zhang, M. L. Kersten, M. Ivanova and N. Nes, "SciQL, Bridging gap between 

science and relational DBMS". In Proceedings of the 15' Symposium on 

International Database Engineering & Applications, pp.  124-133, 2011. 

 Katarina Grolinger, Wilson A Higashino, Abhinav Tiwari and Miriam AM Capretz, 

"Data management in cloud environments: NoSQL and NewSQL data stores", 

Journal of Cloud Computing: Advances, Systems and Applications, vol.2, 2013. 

 Seyong Lee and Jeffrey S. Vetter, "Early evaluation of directive-based gpu 

programming models for productive Exascale computing", Proceedings of the 12u1i 

International Conference on High Performance Computing, Networking, Storage and 

Analysis, Article No. 23, 2012. 

 Mingxing Zhang, Yongwei Wii, Kang Chen, Teng Ma and Weimin Zheng, 

"Measuring and optimizing distributed array programs". In Proceedings of the VLDB 

Endowment, vol. 9(12), pp.  912-923, 2016. 

 D. Rotem and J. L. Zhao, "Extendible arrays for statistical databases and olap 

applications", In 811  International Conference on Scientific and Statistical Database 

Systems, pp. 108-117, 1996. 

K. M. A. Hasan, M. Kuroda, N. Azuma, T. Tsuji and K. Higuchi, "An extendible array 

based implementation of relational tables for multi-dimensional databases", 

Proceedings of the 7th  International Conference on Data Warehousing and Knowledge 

Discovery, pp: 233-242, 2005. 

II. E. Otoo, G. Nimako and D. Ohene-Kwoee, "Chunked extendible dense arrays for 

scientific data storage", Parallel Computing. vol. 39(12), pp. 802-8 18, 2013. 

12. S. M. M. Ahsan and K. M. A. Hasan. "An implementation scheme for 

multidimensional extendab Ic array operations and its evaluation", International 



L!1 

Conference on Informatics Engineering and Information Science, Part III, CCIS(253), 

pp: 136-150,2011. 

E. 0too and T. Mcrrctt, "A storage scheme for extendible arrays", Computing, vol. 

31(l),pp: 1-9, 1983. 

Daniel 0hene-Kwofie, E.J. 0too and Gideon Nirnako, "02-Tree: A Fast Memory 

Resident Index for In-Memory Databases", International Conference on Information 

and Knowledge Management, vol. 45, pp: 78-87, 2012. 

Steve Carr, Kathryn S. McKinley and Chau-Wen Tscng, "Compiler Optimizations for 

Improving Data Locality", In Proceedings of the 6th  International Conference on 

Architectural Support for Programming Languages and Operating Systems, pp.  252-

262, 1994. 

K M Azhanil 1-lasan, Tatsuo Tsuji and Ken Higuchi. "An Efficient MOLAP Basic 

Data structure and Its Evaluation", In Proceedings of 12th  International Conference on 

Database Systems for Advanced Applications. LNCS, vol. 4443, pp.  288-299, 2007. 

Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach, 

Mike Burrows, Tushar Chandra and Andrew Fikes, and Robert E. Grubcr, "Bigtable: 

A distributed storage system for structured data", ACM Transactions on Computer 

Systems, vol. 26(2), Article No. 4, pp.  1-26, 2008. 

Alex Mircea Durnitru, Vlad Merticariu and Peter Baurnann, "Array database 

scalability: intercontinental queries on petabyte datasets". In Proceedings of the 28t11 

International Conference on Scientific and Statistical Database Management, pp. 1-5, 

2016. 

Alex Dumitrii, Vlad Merticariu and Peter Baumann, "Exploring cloud opportunities 

from an array database perspective", In Proceedings of Workshop on Data analytics 

in the Cloud, pp.  1-4, 2014. 

Ben Lippnicier, Manuel M. T. Chakravarty, Gabriele Keller and Simon Peyton Jones, 

"Guiding parallel array fusion with indexed types". In Proceedings of the 2012 Haskell 

Symposium, pp. 25-36, 2012. 

Min Chen, Shiwen Mao and Yunhao Liu. "Big Data: A survey", Mobile Networks and 

Applications, vol. 19(2), pp.  171-209, 2014. 

/ 22. Kostas Zoumpatianos, Stratos Idreos and Thernis Palpanas, "Indexing for Interactive 

Exploration of Big Data Series", In Proceedings of the 2014 ACM SIGMOD 

International Conference on Management of Data, pp.  1555-1566, 2014. 

23. Michael Stonebraker and David Dewitt, "Requirements for Science Data Bases and 

SciDB", In 41h  Biennial Conference on Innovative Data System Research Perspectives, 

2009. 



69 

Rosenberg, A.L., "Allocating Storage for Extendible Arrays", Journal of the ACM 

(JACM), vol. 21, pp. 652-670, 1974. 

Mano, M.M., "Digital Logic and Computer Design", Prentice Hall, 2005. 

K. M. Azharul Hasan and Md Abu 1-lanifShaikh, "Efficient representation of higher-

dimensional arrays by dimension transformation", Journal of Supercomputing, vol. 

73(6). pp.  280 1-2822, 2017. 

P. Baumann, A. Dehmel, P. Furtado, R. Ritsch and N. Widmann. The 

multidimensional database system RasDaMan", In Proceedings of the 1998 ACM 

SIGMOD International Conference on Management of data, vol. 25(2). pp.  575-577, 

1998. 

Maarten Vermeij, Wilko Quak, Martin Kersten and Niels Nes, "MonetDB, a novel 

spatial column-store DBMS", In Academic Proceedings of the 2008 Free and Open 

Source for Geospatial Conference, OSGeo, pp.  193-199, 2008. 

Weixiong Rao, "MonetDB And The Application For JR Searches", University Of 

Helsinki. Seminar Paper. Column-Oriented Systems, 2012. 

Peter Baumann, Alex Mircea Dumitru and Vlad Merticariu, "The array database that 

is not a data-base: file based array query answering in Rasdaman", In Proceedings of 

the 3 International Conference on Advances in Spatial and Temporal Databases, pp. 

478-483, 2013. 

Sándor Héman, Marcin Zukowski, Arjen Dc Vries and Peter Boncz, "Efficient and 

flexible infor-mation retrieval using MonetDR/X 100", In Proceedings of the 3rd 

Biennial Conference on Innovative Data Systems Research, pp.  96-101, 2007. 

l-laozhou Wang, Kai Zheng, Xiaofang Zhou and Shazia Sadiq. "SharkDB: An in-

memory storage system for massive trajectory data". In Proceedings of the 23rd  ACM 

International Conference on Conference on Information and Knowledge Management, 

pp.1409-1418, 2015. 

Yaoliang Chen, Xiaomin Xu, Pohan Li, Siyuan Lu, Sheng 1-luang, Wei Lu and Kevin 

Brown, "Geo-Mix: Scalable geoscientific array data management", In Proceedings of 

the Industrial Track of the 131  ACM/IFIP/USENIX International Middleware 

Conference, Article No. 1, pp. 1-6, 2013. 

Viet-Trung Tran, Bogdan Nicolae and Gabriel Antoniu, "Towards scalable array-

oriented active storage: the pyramid approach", ACM SIGOPS Operating Systems 

Review, vol. 46(1), pp. 19-25, 2012. 

Yihong Zhao, Prasad M. Deshpande and Jeffrey F. Naughton, "An Array Based 

Algorithm for Simultaneous Multidimensional Aggregate", In Proceedings of the 



70 

1997 ACM SIGMOD International Conference on Management of data, pp.  159-170. 

41 1997. 

Tsuji, T.. Hara. A. and Higuchi, K., "An Extendible Multidimensional Array System 

for MOLAP". In Proceedings of the ACM symposium on Applied computing, pp. 23-

27, 2006. 

Sk. Md. Masudul Ahsan and K. M. Azharul Hasan, "Segment Oriented Compression 

Scheme for MOLAP Based on Extendible Multidimensional Arrays", Journal of 

Computing and Information Technology, vol. 23(2). pp: 111-121, 2015. 

Masafumi Makino, Tatsuo Tsuji and Ken Higuchi. "History-Pattern Implementation 

for Large-Scale Dynamic Multidimensional Datasets and Its Evaluations", In 

Proceedings of the 20th  International Conference on Database Systems for Advanced 

Applications, Part II, LNCS, vol. 9050, pp.  275-291, 2015. 

A. Sudoh, T. Tsuji and K. Higuchii. "A Partitioning Scheme for Big Dynamic Trees". 

In Proceedings of the 22t1i  International Conference on Database Systems for 

Advanced Applications, LNCS, vol. 10179, pp.18-34, 2017. 

D. Lemire and C. Rupp. "Upscalcdb: Efficient integer-key compression in a key-value 

store using simd instructions", Information Systems, vol. 66. pp. 13-23, 2017. 

R. Barrett, M. W. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout., 

R. Pozo, C. Romine and 1-1. van der Vorst,, "Templates for the solution of linear 

systems: Building blocks for iterative methods", SIAM Press, 1994. 

Chun-Yuan Lin, Yeh-Ching Chung and Jen-Shiuh Liu, "Efficient data compression 

methods for multidimensional sparse array operations based on the EKMR scheme", 

IEEE Transactions on Computers, vol. 52(12), pp. 1640-1646, 2003. 

Bei Li, Katsuya Kawaguchi, Tatsuo Tsuji and Ken Higuchi, "A Labeling Scheme for 

Dynamic XML Trees Based on History-offset Encoding", 2 nd  International 

Conference on Future Computer and Communication, pp: 7 1-87, 2010. 

Tsuchida, T., Tsuji, T. and Higuchi. K., "Implementing Vertical Splitting for Large 

Scale Multidimensional Datasets and Its Evaluations". In Proceedings of the I 3 

International Conference on Data warehousing and knowledge discovery, LNCS vol. 

6862, pp.  208-223, 2011. 

Tatsuo Tsuji, Keita Arnaki, Hiroomi Nishino and Ken Higuchi, "History-Offset 

Fk- Implementation Scheme of XML Documents and Its Evaluations", In Proceedings of 

the 18' International Conference on Database Systems for Advanced Applications, 

Part I, LNCS, vol. 7825, pp.  315-330, 2013. 


