
Thesis No: CSER-M-17-02

A SCALABLE STORAGE SYSTEM FOR STRUCTURED DATA

Mehnuma Tabassum Omar

Department of Computer Science and Engineering

Khulna University of Engineering & Technology

Khulna 9203, Bangladesh

December, 2017

A Scalable Storage System for Structured Data

VA

Mehnuma Tabassum Omar

Roll No: 1307505

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science and Engineering

Department of Computer Science and Engineering

Khu ma University of Engineering & Technology

Khulna 9203, Bangladesh

December, 2017

Declaration

This is to certify that the thesis work entitled "A Scalable Storage System for Structured

Data" has been carried out by Mehnuma Tabassum Omar in the Department of Computer

Science and Engineering, Khulna University of Engineering & Technology, Khulna,

Bangladesh. The above thesis work or any part of this work has not been submitted

anywhere for the award of any degree or diploma.

r ~,06~
Ature ej Sign andate Signature of Supervisor

Approval

This is to ccrtif' that the thesis work submitted by Mehnuma Tabassum Ornar entitled "A

Scalable Storage System for Structured Data" has been approved by the board of

examiners for the partial fulfillment of the requirements for the degree of Master of

Science in Computer Science and Engineering in the Department of Computer Science

and Engineering, Khulna University of Engineering & Technology, Khulna, Bangladesh in

December, 2017.

BOARD OF EXAMINERS

2-, \1, k I-
Dr. K. M. Azharul Hasan Chairman
Professor, Department of Computer Science and Engineering (Supervisor)
Khulna University of Engineering & Technology, Khulna

KT-1-
Head of the Department Member
Department of Computer Science and Engineering
Khu lna University of Engineering & Technology, Khulna

Dr. M. M. A. Hashe6 Member
Professor, Department of Computer Science and Engineering
Khulna University of Engineering & Technology, Khulna

Dr. Kazi Md. Rokibul Alam Member
Professor, Department of Computer Science and Engineering
Khulna University of Engineering & Technology, Khulna

Dr. Md. Anisur Rahman Member
Professor, Computer Science and Engineering Discipline (External)
Khulna University

it

iv

Acknowledgment

All the praise to the almighty Allah, whose blessing and mercy succeeded me to complete

this thesis work fairly. I gratefully acknowledge the valuable suggestions, advice and

sincere co-operation of Dr. K. M. Azharul Hasan, Professor, Department of Computer

Science and Engineering, Khulna University of Engineering & Technology, under whose

supervision this work was carried out. His open-minded way of thinking, encouragement

and trust makes me feel confident to go through different research ideas. From him, I have

learned that scientific endeavor means much more than conceiving nice algorithm sand to

have a much broader view at problems from different perspectives. I would like to convey

my heartily ovation to all the faculty members, officials and staffs of the Department of

Computer Science and Engineering as they have always extended their co-operation to

complete this work. I would also like to thank my parents for their wise counsel. Last but

not least, I wish to thank my friends for their constant support.

Author

V

Abstract

Array based storage system is a key choice of many featured applications such as

scientific, engineering, and financial computing applications; for their easy maintenance.

However, the lack of scalability of the conventional approaches degrades with the

dynamic size of data sets as they entail reallocation in order to preserve expanded data

velocity. To maintain the velocity of data, the storage system must be scalable enough by

allowing subjective expansion on the boundary of array dimension. Again, for an array

based storage system, if the number of dimension and length of each dimension of the

array is very high then the required address space overflows and hence it is impossible to

allocate such a big array. We demonstrate a dynamic scalable array storage scheme

namely Scalable Array Indexing (SAl) that can be an efficient choice of large volunie

dynamic data management by removing the problems of the existing ones. The SAl

converts an n dimensional array to 2 dimensions. Traditionally, the dynamic array models

need indices for each dimensions. Since, SAl is a 2 dimensional dynamic model it reduces

the index overhead significantly and compromises relatively faster data accessing. We also

propose another scalable structure based on the SAl scheme to increase storage utilization.

We named the structure as Segment based Scalable Array Indexing (SSAI). Using our

SSAI structure, we also offer an efficient encoding with good comparison ratio and range

of usability. All the operations are presented with sufficient theoretical analysis and

experimental results.

Contents

PAGE
Title Page
Declaration ii
Approval iii
Acknowledgment iv

Abstract v
Contents vi
List of Abbreviations viii
List of Tables ix
List of Figures x

CHAPTER I Introduction 1
1.1 Introduction I
1.2 Problem Statement 2
1.3 Objectives 4
1.4 Scope 4
1.5 Contribution 5
1.6 Organization of the Thesis 5

CHAPTER II Literature Review 6
2.1 Introduction 6
2.2 The Realization of Multidimensional Array Structure 6

2.2.1 Conventional Multidimensional Array 6
2.2.2 Traditional Extendible Array 7
2.2.3 Axial VectorExtendible Array 9
2.2.4 Extendible Karnaugh Array 10
2.2.5 Generalized Two-dimensional Array 12
2.2.6 Rasdaman 13
2.2.7 MonetDB 14
2.2.8 Other Structures 1 5

2.3 Encoding Schemes for High Dimensional Data 16

2.3.1 Chunk-Offset Encoding 16
2.3.2 History-Offset Encoding 17
2.3.3 Segment-Offset Encoding 19
2.3.4 1-listory Pattern Encoding 19
2.3.5 Integer-Key Encoding 21
2.3.6 Other Schemes 22

2, 4 Discussion 23

vi

!Ai

PAGE

CHAPTER III Scalable Storage Systems for Higher Order Index Array 24
3.1 Introduction 24
3.2 Realization of a Scalable Array Indexing (SAl) 25

3.2.1 Dimension Conversion 25
3.2.2 Scalable Indexing 27

3.3 Operations on a SAT System 28
3.3.1 Construction and Extension 28
3.3.2 Dimension Transformation 29
3.3.3 Point Query 32
3.3.4 Range Query 33

3.4 Realization of a Segment based Scalable Array Indexing 36
(SSAI)

3.4.1 Segmentation 36
3.5 Operations on a SSAI System 37

3.5.1 Construction and Extension 37
3.5.2 Point Query 38

3.6 2 Dimensional Key Value Encoding (2DKVE) 40
3.6.1 Encoding 40
3.6.2 Data Access 41
3.6.3 Decoding 41

3.7 Conclusion 42

CHAPTER IV Experimental Analysis 43
4.1 Experimental Setup 43
4.2 Performance Analysis of the Structure 44

4.2.1 Index Overhead 44
4.2.2 Construction Cost 46
4.2.3 Extension Cost 48
4.2.4 Retrieval Cost 52
4.2.5 Storage Utilization 54

4.3 Performance Analysis of the Encoding 56
4.3.1 Index Overhead 57
4.3.2 Range of Usability 58
4.3.3 Storage Cost 61

4.4 Discussion 64

CHAPTER V Conclusion 65
5.1 Summary 65
5.2 Future Scope of Work 66

References 67

LIST OF ABBREVIATIONS

Abbreviation Description

CCS Compressed Column Storage

CMA Conventional Multidimensional Array

COE Chunk-Offset Encoding

CRS Compressed Row Storage

EAt Traditional Extendible Array

EA2 Axial Vector Extendible Array

EaCRS Extendible CRS

ECCS Extendible CCS

EKA Extendible Karnaugh Array

EKMR Extended Karnaugh Map Representation

G2A Generalized Two-dimensional Array

HOE History-Offset Encoding

HPE History-Pattern Encoding

IKE Integer-Key Encoding

SA Subarray

SAl Scalable Array Indexing

SSAI Segment based Scalable Array Indexing

SOE Segment-Offset Encoding

2DKVE Two Dimensional Key value Encoding

VIII

LIST OF TABLES

Table No. Title Page

4.1 Parameters for Constructed Prototypes 43

4.2 Analytical Index Overhead for Constructed Prototypes 45

4.3 Analytical Construction Cost for Constructed Prototypes 47

4.4 Analytical Extension Cost for Static (CMA) and Dynamic (EA) 49

4.5 Analytical Extension Cost for Dynamic (EA) Prototypes 49

4.6 Analytical Result of maximum length of the compared Prototypes 54

4.7 Analytical Index Overhead of Encoding Schemes 57

4.8 Analytical Compression Ratio of Encoding Schemes 59

4.9 Analytical Usable Length of Encoding Schemes 59

4.10 Analytical Storage Cost Values for Encoding Scheme 62

ix

7

LIST OF FIGURES

Figure No. Title Page

2.1 A Three Dimensional CMA of Size [3x4x5]. 7

2.2 A Three dimensional Traditional Extendible Array of Size [5x6x4]. 8

2.3 A 3-dimensional Axial Vector Extendible Array of size [5x5x3]. 9

2.4 Realization of Boolean function using K-map. 11

2.5 Logical extension of a 4-dimensional EKA. 11

2.6 An Extension Realization of EKA(4) 12

2.7 CMA(3) and It's Equivalent G2A. 13

2.8 Basic Structure of a Rasdaman Array Model. 13

2.9 Basic Structure of a MonetDB Array Model. 14

2.10 A 3-dimensional Array Partitioned into Chunks. 16

2.11 A 3-dimensional Array Stored As Chunk-Offset Encoding. 17

2.12 A 3-dimensional Extendible Array Encoded as History-Offset Encoding. 18

2.13 A 4-dimensional EKA Encoded as Segment-Offset Encoding. 19

2.14 A 2-dimensional Representation of History Pattern Encoding. 20

2.15 Memory Layout of B+ Tree Node of IKE. 21

2.16 The Keylist of Fixed Length Integer Keys. 21

2.17 The KeyLisi of Variable Length Integer Keys 22

3.1 Transformation of a CMA[2, 2, 2, 2, 2] to a SAI[8,4] 26

3.2 Construction and Extension of a SAl System. 28

3.3 Realization of a SAI[27.9]. 29

3.4 Range Key Operation on SAl. 35

3.5 Segmentation of a SAL to a SSAI. 36

3.6 Construction and Extension of a SSAI System. 37

3.7 Realization ofa SSAI[18,9]. 38

x

xl

Figure No. Title Page

3.8 A Sparse Representation of a SSAI[18][9]. 39

3.9 A Realization of a 2DKVE System 40

3.10 Key Structure of a 2DKVE System. 40

4.1 Analytical Result of Index Overhead 45

4.2 Experimental Result of Index Overhead 46

4.3 Analytical Result of Construction Cost 47

4.4 Experimental Result of Construction Cost 48

4.5 Analytical Result of Extension Cost 49

4.6 Experimental Result of Extension Cost 51

4.7 Experimental Result of Retrieval Cost 54

4.8 Analytical Result of Storage Utilization 55

4.9 Experimental Result of Storage Utilization 56

4.10 Analytical Result of Index Overhead for Encoding Schemes 58

4.11 Experimental Result of Index Overhead for Encoding Schemes 58

4.12 Analytical Result of Range of Usabilities of Encoding Schemes 60

4.13 Experimental Result of Range of Usabilities of Encoding Schemes 61

4.14 Analytical Result of Storage Cost of Encoding Schemes 63

4.15 Experimental Result of Storage Cost of Encoding Schemes 64

1

CHA1TER I

Introduction

1.1 Introduction

Arrays are the most popular data structures for their outstanding features in rational storing

and swift processing. The high-volume arbitrary dimensionality feature of arrays make it

diversely perceptible in researches, like medical imaging, geographic information system,

environmental and astronomical surveillances, or high precision prototypes of physical

consequence [1]. For Big Data applications, the array structures like Conventional

Multidimensional Array (CMA) [2] model can lead other structures like Rasdaman [3],
MonetDB [4], SQL based query language such as SciQL [5], N0SQL and NewSQL [6],

parallel programming model like GPU based architecture [7], distributed optimization [8]

in terms of data storage or retrieval or both [9, 10]. Array based storage system is the key

choice of various featured applications for their easy maintenance, but the lack of

scalability of the conventional approaches degrades with the dynamic size of data sets as

they entail reallocation in order to preserve expanded data velocity that means the

structure is not dynamically scalable. To maintain the velocity of data, the storage system

must be scalable enough by allowing subjective expansion on the boundary of array

dimension. The range in which the linearized array elements map is called address space

which depends on the length and/or number of dimension of array. For an array based

storage system, if the number of dimension and/or length of each dimension of the array is

very high then tile required address space overflows quickly and hence it is impossible to

allocate such a big array in the memory. The index array [11-13] offers a dynamic storage

structure for preserving expanded data velocity by employing indices for each dimension.

Indexing of array is a process of monitoring location of data record by assigning a key

with them for the corresponding system for assisting in fast query processing [14].

Although the extendible array models are scalable enough but it requires indices for each

of the dimension. Hence, the model impose high overhead to the data storage. Another

problem is that, along with the rise in dimensionality, the effort in computing index, cache

miss rate and data representation complexity rises [2, 15]. The traditional approaches on

algorithms and computation are inappropriate for data models having large dimensionality

especially for data warehouse or big data [16]. Therefore, the traditional approaches are

unable to index structured big data proficiently.

In this research work, we are going to propose scalable array storage structures that

convert the n dimensions of the array into 2 dimensions; hence it involves only 2 indices.

Using these 2 indices, we also offer a lossless encoding structure which ensures lower

encoding cost, lower indexing cost and higher data locality.

1.2 Problem Statement

The Conventional Multidimensional Array (CMA) is a well-known array structure chosen

by various applications for retrieving the array element by evaluating addressing function

directly, but it has following limitations:

Static allocation as the data length and dimensionality is predelined and it is not

dynamically scalable.

Inability to represent or visualize the large volume and large dimensionality of

data.

Address space overflow for large value of data length or dimensionality (or both)

even though resource is available.

inability to attain useful information from the huge volume applications which are

generally sparsed.

Let, A[11] [/21... [/,1] be an n dimensional CMA of size [/i, /2.....id. 1-lere l, 1..... is the

length of each dimension dj,d2..... d,respectively. Then the total address space required for

an array would be S,. = fl15<711L
= I (if 1i = i for all i). If the elements of the CMA

occupy K bytes in memory, then the allocation volume would be VT = S. x K = I x K.

The total address space or array volume V increases exponentially if the length of each

dimension 1i or the number of dimension ii (or both) increases. As a result, it accelerates to

exceed the machine word size even though the system is highly configured such as 64 bit

machine. The Index Array model [11-13] solves the limitation (i) above by dynamically

allocating memory during run time as form of subarrays. The subarrays are n - 1

dimensional and hence it can delay the overflow compared to CMA with an address space

allocation of size SE = fl1< I = and volume VE = SE x K = x K. The

Index Array model is good compared to the CMA, but it cannot meet the expected demand

3

of memory utilization as per the demand of data velocity especially for "Big Data"

applications [17]. Again, for an n dimensional array, the indexing requirement of an

indexed based model is also n dimensional which reduces the capacity of storage

utilization. Another concern is problem (iv) which can decrease the efficiency of large

volume applications. Data encoding can be a proficient way to lessen this unintended cost

of the system on the basis that the potential volume of data is not always interesting. It is a

process to reserve only those data cells which are densed and significant as well. In order

ensure data accuracy of an encoding structure, it is crucial to employ some data decoding

structure along with the encoding structure to provide lossless information. Therefore, the

process of ensuring data accuracy should be a two-way scheduling. The first scheduling

generates an encoded tuple for the compressed array that resembles a memory location of

the actual array. This scheduling is named as Data Encoding. And the rest one is named as

Data Decoding which generates a memory location of the actual array from an encoded

tuple of the compressed array.

Here, we propose a scalable index array system namely Scalable Array Indexing (SAL)

which represent an n dimensional array by 2 dimensions (towards column and row

direction) only. As ii dimensional array requires ii dimensional indexing, hence the

proposed structure requires 2 indices only. But the SAl structure also suffers from address

space overflow. For this reason, we also provide another structure which can enhance the

performance of a SAl structure named Segment based Scalable Array Indexing (SSAI).

Likewise, SAl. the SSAI structure also converts the n dimensions (nD) into 2 dimensions

(213). The only difference is that here the allocation is divided into segments. In our

experiment, we have found that the SSAI does not overflow the address space and can

utilize the available resource of the system. On the contrary, the existing indexed array

models along with the SAl structures overflow the address space. Hence, the proposed

SSAI structure has more memory utilization than the other structures. Using these 2

indices of a SSAI structure, we have also recommended a lossless data encoding scheme

named as 2 Dimensional Key Value Encoding which can outperforms the other schemes

as it requires only 2 indices to encode n dimensional sparse data. The SSAI structure can

be applied to scalable array database [18], distributed array storage [3], parallel and

distributed database [19, 20] and big data storage [21].

4

1.3 Objectives

The traditional multidimensional approaches are unable to index big data proficiently. To

cope with this situation, the data scientists have appreciated higher dimensional data

linearization. The linearization is well sufficient as per secondary memory. However, the

linearization process not only rises the retrieval time and operation cost but also reduces

the ability for parallelization. Again, the size of data gradually expands in scale of

terabytes and petabytes. To contract with this event, random extension on the bound of

array dimension is entailed as typical multidimensional array structures, are incapable of

managing (extend or shrink) their bounds devoid of rearranging existing data [11].

Extendible Array resolves this challenge, but consumes high memory for indexing as per

dimension value increases.

Therefore, main objectives of this research topic are -

. To propose a dynamic multidimensional array structure by dimension conversion.

• To reduce the indexing cost of an Index Array model by using two indices only for

n dimensional structure.

• To find an efficient solution for the problems of the existing static structure like

CMA [2] and also for the dynamic structures like Extendible Array [13] and

Extendible Array [11].

• To offer an encoding scheme for the proposed structure.

• To analyze the performance and usability of the proposed encoding scheme.

1.4 Scope

The proposed scalable structures: Scalable Array Indexing (SAl) structure and Segment

based Scalable Array Indexing (SSAl) are a new representation of scalable multi-

dimensional array model. The important scopes are:

• The number of dimension is increased up to 16.

• The length of dimension is increased up to 648.

• The scaling operation is done one by one and up to 646.

• The machine limits are: lntel(R) Xeon(R) E5620 @ 2.40GHz processor with 8

processors, 32GB RAM, 1406 MB cache memory and I.3TB usable HDI).

5

. The program is written in C and compiled in gcc compiler on debian squeeze 6.0.5

operating system.

• The data limit is 64 bit integer only.

1.5 Contribution

The major contributions of this research topic are -

• To offer a way to represent n dimensional array to a feasible one through 2

dimensional representation which aid in easy visualization of large n dimensional

array.

To make the proposed 2 dimensional array dynamic which manages better storage

utilization by removing reallocation of static structure.

To decrease indexing cost of dynamic array model by utilizing 2 dimensional

indexing of 2 dimensional proposed model.

• To offer an efficient information retrieval paradigm by utilizing proposed 2

dimensional dynamic array representation.

To delay address space overflow by segmenting the proposed structure which

increases the storage utilization.

• To offer an efficient encoding scheme using 2 dimensional indexes of proposed 2

dimensional structure which requires less encoding cost and higher range of

usability.

1.6 Organization of the Thesis

The thesis is organized in six chapters as follows:

• Chapter II presents Literature Review of the similar domains and finds some

limitations of the existing works.

• Chapter III proposes the scalable array models by dimension conversion. The

chapter also describes different operations and algorithm with examples.

• Chapter IV shows the experimental outcomes of different array operations over

the SAl and SSAl structure and also the usuability of the 2DKVE scheme.

• Chapter VI exhibits the future direction of the proposed model and outlines the

conclusion.

6

CHAPTER II

Literature Review

2.1 Introduction

The multidimensional array structures are becoming an important data structures for

storing large scale, composite and higher order data; e.g., in Big Data. Several appliances

encompassing accumulation of climate information by sensors, gathering digital

multimedia records, transaction documents procuring, and OPS signals commencing cell

phones, are frequently using Big data in order to expound their extent of data which leads

to statistics of substantial volumes [21]. The multidimensional array yet dictates such

applications [22, 23], Hence, several array models have been examined in order to verify

their tremendous features.

2.2 The Realization of Multidimensional Array Structure

The array Computational paradigm is prevalent in most sciences and it has drawn attention

from the database research community for many years. Some of the multidimensional

array structures are given below:

2.2.1 Conventional Multidimensional Array

A Conventional Multidimensional Array (CMA) [2] or simply Array A[ll,121] is an

association between n-tuples of integer indices Xl, X2, ... ,Xn>. Consider an n dimensional

Conventional Multidimensional Array (CMA(n)). Let, the size of a CMA(n) or A[/j] [/2]...

[in] is [/i, /2,.. .,ln]. Then X1, x,. . .,x11> be the Real n dimensional Index; where /i, 12,...,In is

the length of each dimension di,d2_., dn respectively and xi = 0,1,2, ..., (l-l) (0 :~i:~n),

where 1, is the length of dimension i. The domain from which the elements are chosen is

immaterial and we make the assumption that only one memory location need be assigned

to each n-tuples. Each array may be visualized as the lattice points in a rectangular region

of n-space. The set of continuous memory locations into which the array maps is denoted

7

by A[O:D] where D = (11 13 - 1 .Any element in the multidimensional array is

determined by an addressing function as follows,

f(x71 , x11 _ 1 , x, 2 1...,x2, x1) = 11 12..J,_1 x, + /112..],1_2x,,_1 + ...+lx2 + x1 (2.1)

Conventional storage of multidimensional arrays is done by linearization. In the two

dimensional case, the linearization may be done by rows or by columns. But in general,

for n-dimensional array there are n! possible linearization orders according to the possible

ordering of the dimensions. An illustration of 3 dimensional TMA of dimension length

3x4x5 is given in Figure 2.1. In the CMA scheme, a three dimensional array of size 3x4x5

can be viewed as three 4><5 two-dimensional arrays. Here, 1i5, 124, /33. 1-lence, (see Eq.

2.1) it can be shown that the index <x3,x2,x1 > = < 0,2,3> maps to the memory

position <0,2,3> = Ox 5 x 4 + 5 x 2 + 3 = 13.

/

d2

0 I 2 J 4

di 01

Figure 2.1: A Three Dimensional CMA of Size [3x4x5].

2.2.2 Traditional Extendible Array

The Traditional Extendible Array [3, 24] or simply Extendible Array is another

representation of multidimensional array. It has the property that the indices of the

respective dimensions can be arbitrarily extended without reorganizing previously

allocated elements. Following is a short description of a Traditional Extendible Array.

Sitharray (SA).The memory allocation of an Extendible Array is done by allocation a

collection of memory called subarray (SA). A subarray SA[1i,12,. . of an n

dimensional Array A[1h12,. . .,/,]is an association between (n - 1) tuples of integer indices

x1,x2,...,X,> and x= 0,1,2..... (l-l) (0 <i:!~,n-1). The set of continuous memory locations

into which the array maps is denoted by SA[O: D] where D = (fl 13 - 1 .For an

8

extension along dimension i of the nD array the SA would be (n - 1)D and the SA size,

sz is calculated as follows:

71

fj I j (i j (2.2)

Auxiliari' Table. A Traditional Extendible Array manages its scalability by using three

types of auxiliary tables. For each dimension these tables exist. These are required for

monitoring dynamic extensions and also fast data retrieval. The Extendible Array can be

extended in any direction in any dimension only by the cost of these three auxiliary tables.

The auxiliary tables are as follows:

• History Table: It contains the construction or extension history of an Extendible

Array.

• Address Table: It contains the first address of the subarray of an Extendible Array.

• Coefficient Table: The table is required for storing the coefficients (

1 '2 ',i-2' .,/) of the addressing function (see Eq. 2.1). Coefficient table

holds the coefficient of the n- I dimensional SA and it is n - 2 dimensional.

Dimcn

,A-

History GD Table
GD Address Table
D Coefficient Vector

o i 12

14

16

27

30

33

48

51

54

5769

60

63

66

23

810

1639 4245

72 75 81 8487

GD 0 1 5 7 19 110
© 0 1 12 27 48 60
® 1 1 1 2 3 3 3

Dimension 2

Figure 2.2: A Three dimensional Traditional Extendible Array of Size [5x6x4j.

The accessing of the elements of an Extendible array is done by using these three kinds of

auxiliary tables, the address of an array element can be computed as follows. Consider the

element (4, 2, 0) in Fig. 2.2. Compare Hi[4] = 11, H2[2] = 5 and H3[0] = 0. Since H[4] >

142[2], l-li[4} > I-13[0], it can be proved that the element (4, 2, 0) is involved in the extended

subarray S beginning from the address L1[4] = 72. From the coefficient vector ofCi[4] =

3, the offset of element (4, 2, 0) from the first address of S is computed by 3x2+0 = 6, the

address of the element is determined as 72 ± 6 = 78.

2.2.3 Axial Vector Extendible Array

The Axial Vector Extendible Array [11] is another representation of Traditional

Extendible Array (sec. 2.2.2). Here, the mapping function or the addressing function

mentioned in Eq. 2.1 has been reorganized as the conventional array mapping function

allows extendibility in only one dimension 0 (in the case of row major). They renamed the

auxiliary table as axial vector that includes <starting index of the dimension, starling

address of the suharray, multiplicative coefficients, memomy pointers>.

Axial Vectos
51 1_-____• IN 52 oo [o; 1 6 1 2 1 1 1S0] [3;3O;l1Ol 2 l 1 l

. 68

r

['.f4IN 61 So
1

o

;

[

[_

3; 18;

 11125

0 25
2 B3 "I

1

S

s

i]
. 62

4 4
63

71

2 O 3 72 D2 o;o; , h MN
'1

3

4

00

Figure 2.3: A 3-dimensionalAxial Vector Extendible Array of size [5x5x3].

Suppose that in a ii dimensional extendible array A[/o] [Ii]... [l], dimension d1 is extended

by A, then then the index range increases froml1 to I + A. The idea is to allocate an-i

dimensional block of array elements or subarray so that addresses are computed as

displacement from the location of elernentA < 0, 0, 0, ..., Ii, ..., 0 >. The desired mapping

function that computes the address of an element (x0,x1, x2. ... x71) during allocation is

given by:

f(x0,x1,x2 , ...x) = Z,. + (x1 - 11)C1 + >7xj C (2.3)
j;ti

Where,

C. - 7
- Lij=0 (j , U

j#i

1-lere, Z11denotes the maximum starting address of the subarray that is adjoined. i denotes

the dimension that was extended. 1i denotes the bound of the index range before the

expansion. The starting address of such a contiguous sequence of locations is what is

stored in the subarray. The values v[2]; v[3]; ... v[n - 1] are the respective multiplicative

coefficients and v[0] and v[t] are the starting index and the starting linear address of

hyperslab respectively. The value -1 denotes null entries. To compute the address of a

given n dimensional index (x0,x1, x2,...x) the subarray that contains the element needs

to be determined fl. The subarray whose first elements ar e(x0, 0,.. .,0), (0, x1, 0 ..., 0)..,

(0, 0, ... , x11) give the candidate subarray that should contain the element whose index is

(x0,x1, x2 x71). The element of (x0,x1, x2,...x11) always belongs to the subarray with the

maximum starting address of the candidate subarrays. This is determined by comparing

the starting addresses of the corresponding elements of the axial-vectors. Let the vector of

records of dimension / be denoted by E'j[]. The starting addresses of the axial-vectors are

given by r1[x], 0 < j < k. Fig. 2.3 shows the extension of a three dimensional array A of

initial size [5x5x3], and corresponding axial vectors. For example, suppose we desire the

linear address of the element A[3.3,l]. Z1. = 7nax(F0 [3]v[1], F1[3]v[1], 172 [2]v[1]) =

max(30, 18, 0) = 30. Thus, i = 0Z = Z10 = 30 and 10 = 3. Now, using Eq. 2.2 we

have, f(3,3, 1) = 30 + lOx (3-3) + 2 x 3 + I xl = 30 + 0 + 6 + 1 = 37.

2.2.4 Extendible Karnaugh Array

The Extendible Karnaugh Array (EKA) [121 is a multidimensional Extendible Array

model that utilizes the concepts of Karnaugh Map (K-map) [25]. The K-map is a well-

known depiction employed in Boolean expression minimization typically assisted by

mapping values for each potential combinations. Fig. 2.4 (a) depicts a 4 variable K-map

representation of a Boolean function (2 4 combinations). The row is denoted by the pair (w,

x) and the column is denoted by the pair variables (y, z). The row and the column indicate

the potential combinations of a Boolean function in a form of two dimensional array. The

row pair and column pair of a K-map are re-expressed as row dimension and column

dimension respectively of an EKA. Here, the indices of the row dimension are adjacent to

each other and the indices of the column dimension are adjacent to each other. The

adjacent dimensions of row is denoted as adj(z) =y or adj(y) = z and adjacent dimensions

of column is denoted as adj(w) = x or adj(x) = it, and. The EKA representation of Fig.

2.4(a) is shown in Fig. 2.4(b). The EKA uses the same auxiliary table as EAI (sec. 2.2.2)

except now the address table store the first address of the first segment of a SA as the SA

of an EKA is divided into some segments.

Consider the array in Fig. 2.5(a), the dimensions are di, d2, d3 and d4 and the size of the

array is [Ii, 12, L, /41 and subscripts varies from 0 to 1,-I. In the current example 1, = 2. The

dimension (di, di) and (d2, d4) are adjacent dimensions respectively. The logical extension

in di is shown in Fig. 2.5(b). The size of the extended subarray which is allocated

dynamically is determined by [12, 13, 141 (i.e. 3 other dimensions). The number of segments

is the length of the adjacent dimension, ad] (di) = d3 ; In this case it is 13 = 2. The size of

each segmented subarray extended along dimension di is determined by [12, /41. After

extending along dimension di, the length of that dimension is incremented by 1. For each

extension the corresponding auxiliary tables are maintained accordingly. Fig. 2.5(c), 2.5(d)

and 2.5(e) shows the extension realization along dimension d2, d3 and di

respectively.Fig.2.6shows the extension realization along with the auxiliary table values of

the realization Fig. 2.5(e).

wi 4 N-iup t) Aritv rcprewntofion ('I I.-iii.ip

Figure 2.4: Realization of Boolean function using K-map.

kmcndd MH,f ?

I
Ii:L

Figure 2.5: Logical extension of a 4-dimensional EKA.

o 1 11d2

Cd2
d 2

Ad2

0101

1

1 0 11 ' 1LJ L2J[JJ 46 O 1 lii It o lo

4 2
8 235f71 2 2 2 11d3

121314151 I

16 17 18 19
I, 7:

1202123

0 I

0 4 6 Ad4

III 2 Cd4

0 3 Hd4

Figure 2.6: An Extension Realization of EKA(4)

Let the value to be retrieved is indicated by the subscript (xi, X2, X3, x4). The maximum

history value among the subscripts Im rnax(1-1dl[x], Hd2[x21, Hd3[x3], Hd4[x4]) and the

dimension (say dnax) that corresponds to history value hrnax is determined. hrnax is the

subarray that contains the desired element. The adjacent dimension ai(dax) = dadj (say)

and its subscript Xadj is found. Now the first address of the segment is found from

Admax[xmaxi[xadj]. The offset from the first address is computed using the addressing

function (see Eq. 2.l) the coefficient vectors are stored in Cdrnax. Then adding the offset

with the first address, the desired array cell (XI, X2, X3. x4) is found. Let (xI, X2, X3, x4) (I,

0, 2, I) is given (see Fig.2.6). Here hiiiax= rnax(Hd I [1], Hd2[0], 1-10[2], I1d4[I])= max(4. 0,

5, 3) =5, and dimension corresponding to hax i.e. dniax = d3 whose subscript Xniax = 2 and

adft'diiax) = adj(d3) = d 1 = dadj and Xadj = I. So the firs/A c/dress = Ad3[2][I] = 20, and offset

is calculated using the coefficient vector stored in coefficient table CO which is 2. 1-lere,

qffsei = Cd3[2]*x4 + X2 = 2* I + 0 = 2. Finally adding the offset with the first address the

desired location 20 + 2 = 22 is found and circled in Fig. 2.6.

2.2.5 Generalized Two-dimensional Array

The Generalized Two-dimensional Array (G2A) [26] represents an algorithm to represent

an n dimensional (nD) array by a 2 dimensional (21D) array. The nD array is converted to a

2D array. Hence the indexes of the nD array are also converted to 2D array.
121

subscripts

are converted to row direction and the rest !! columns to column direction. Hence an nD
2

12

13

array can be drawn in a 2D plane to visualize the data. In G2A, the 3 dimensions d1, d2, d3

are converted to 2 dimensions where d1, d3 are for row and d2 are for the column. Fig. 2.7

shows the G2A,A'[1][1] for a TMA(3) A[2][3][4] where 1 = 11 x 13 = 8 and 1 = 12 =

3.For example an element A[1][1][2] of TMA(3) is equivalent G2A is A'[x][x] where

Xi = x113 + x3= I x 4 + 2 = 6 and x = x2 = 1. For backward mapping, if an element in

G2A is A'[x][x] is known then it's equivalent TMA(3) becomes A[xi]1x21[x3] where X3

=x%13 = 6 % 4 = 2, xi = 6/4=1 and x2=X = 1. For example. A'[6][I] is

equivalent to A[l][1][2]. Here % indicates the 'modulus' operation and / indicates 'division'

operation.

1 2

1 / ,'
- j I

\o
0

cfrrm j 1± i,i r.
2r::Tt/ 1
/ I - --+--1-- X3

0 1 2 r l

XZ'

Figure 2.7: CMA(3) and It's Equivalent G2A.

MyColl OlD

oid 1

metadata ott 1 ott 2 jat

t Ii oid 2

kevl 01(1 1 01(1 3

kev2 I I oi(l 2

lkev3l loid3l

Figure 2.8: Basic Structure of a Rasdaman Array Model.

oi(14 W

oid5 i

2.2.6 Rasdaman

Rasdaman ("raster data manager") [3. 27] is an Array DBMS, that is: a Database

Management System which adds capabilities for storage and retrieval of massive multi-

dimensional arrays, such as sensor, image, and statistics data. A frequently used synonym

to arrays is raster data, such as in 2D raster graphics; this actually has motivated the name

Rasdaman. However, Rasdaman has no limitation in the number of dimensions - it can

serve, for example, ID measurement data, 2D satellite imagery, 3D x/y/t image time series

14

and x/y/z exploration data. 41) ocean and climate data, and even beyond spatiotemporal

dimensions. The Rasdaman conceptual model centers around the notion of a

multidimensional array of arbitrary dimension, extent in each dimension - whereby each

lower and upper bound can be fixed or variable -, and base type. Usually such an array

will be an attribute of some other object, e.g., the "raw data" accompanied by "registration

data" within an image. In Rasdaman databases, arrays are grouped into collections. All

elements of a collection share the same array type definition. Collections form the basis

for array handling, just as tables do in relational database technology. All operations

applied to a collection are applied in term to each of the array in the collection. A

collection is essentially equivalent to a relational table with two columns: one holds the

array values, the other holds a unique ID for each array object. Fig. 2.8 shows the basic

structure of a Rasdaman Array Model.

BAT 'name"

-i - : John Waynet \O

111-- Roger More\O

L2 23 - Bob Fosse\0

i.iJ !... WillSmith\O

(memory-mapped)
(virtual) dense simple memory array
surrogates

BAT "age"

1907

1927

1927

1968 LiiLJ
%

Select (age, 1927)

\lonetDB Backend

Figure 2.9: Basic Structure of a MonetDB Array Model.

2.2.7 MonetDB

MonetDB [28, 29] is column-oriented database management system which was designed

to provide high performance on complex queries against large databases, such as

combining tables with hundreds of columns and millions of rows. MonetDB has been

applied in high-performance applications for online analytical processing. data mining,

geographic information system (GIS). Different from traditional database systems,

MonetDB does not store all attributes of each relational tuple (together in one record), and

instead treats a relational table as vertical fragmentations. Thus, MonetDB stores each

column of the table in a separate (surrogate, value) table, called a BAT (Binary

Association Table). The left column, called head column, is surrogate or OlD (object-

15

identifier), and only the right column stores the actual attribute values (called tail). As a

result, a relation table consisting of k attributes then is represented by k BATs. With the

help of the system generated OlD, MonetDB needs to lookup the k BATs in order to

reconstruct the tuple. In order to perform tuple reconstructions from the k BATs,

MonetDB adopts a tuple-order alignment across all base columns. That is, each attribute

value belonging to a tuple (is stored in the same position of the associated BAT. Next, to

represent the tail column, MonetDB considers two cases. (i) For fixed-width data type

(e.g., integer, decimal and floating point numbers), MonetDB uses a C-type array. (ii) For

variable-width data types (e.g., strings). MonetDB adopts a dictionary encoding where the

distinct values are then store in Blob and the BAT only stores an integer pointer to the

Blob position. The BATs "name" and "age'". Fig. 2.9 illustrate the BATs with variable-

width and fixed-width types of tails, respectively. When the data is loaded from disk to

main memory. MonetDB uses the exactly same data structure to represent such data on

disk and in main memory. In addition, MonctDB adopts a late tuple reconstruction to save

the main memory size. That is, during the entire query evaluation, all intermediate data are

still the column format (i.e., the integer format instead of the actual values), and the tuples

with actual values are finally reconstructed before sending the tuples to the client. In this

approach a tree-based index is used to keep track of the growth of the array in any

dimension and even allow adding of new dimensions. An extension of a k-

dimensional array A along dimension I is viewed as appending a k dimensional

subarray As to it along the ith dimension. The ranges of As are identical to those

of A along each dimension except for dimension i whose range depends on the

size of the extension. The length 1, of dimension i is called as the range of dimension I.

2.2.8 Other Structures

Several array models have also been examined in order to verily their tremendous features

of array. [30] shows a Rasdaman Array based query processor. Another Rasdaman array

database that offers scalability is mentioned in [18]. A MonetDB structure for managing

an information retrieval system has been anticipated by means of raw speed, light-weight

data compression, and distributed execution in [31]. Another query processor based on

column-oriented in-memory storage is mentioned in [321. Array structure can also be used

in scalable distributed system like Geoscientific Array mentioned in [33], NoSQL and

EI

NewSQL [6] or distributed programming model like [8]. An array based parallel

processing optimization has been described in [34].

2.3 Encoding Schemes for High Dimensional Data

Multidimensional array is the basic data structure used in many scientific or business

applications where large volume is a main concern. But in many cases, it becomes crucial

to attain useful information from the huge volume which are generally sparse din nature -

i.e. many of the array cells contain null values and consume unnecessary space. So it is

important to device a technique, 'Encoding", to store deal with such array cells. Some

common encoding schemes are reviewed here.

ILI

Figure 2.10: A 3-dimensional Array Partitioned into Chunks.

2.3.1. Chunk-Offset Encoding

To address the problems faced by applications that do not perform well with traditionally

ordered arrays on disk, The data management libraries that support storage of

multidimensional arrays on disk with the elements arranged in subarray chunks rather

than in the traditional ordering is important. This allows efficient assembly of subarrays in

multiple dimensions. In this scheme the large multidimensional arrays are broken into

chunks for storage and processing. Consider an n dimensional array A, whose

dimensionality is d1xd2xd3x ... xd, the chunks can be formed by breaking each d1 into

several ranges. Within A, two positions are in the same chunk if and only it in every

18 119 ~20
I d6 I

Al21 122 23
9 IIid7i M MI24 125 26
12 13 14 I l ___ d8V

Id4Id5L/1
117 11 15 16

I dI L_
_

v
5 II

d2[/1
7

_
8 II

d3
_
_V (C)

(a)

I I
I I --4 --------

rn
0 dl
5 d2
7 d3

13 d4
14 d5
18 d6
21 d7
26 d8

(d)

17

dimension, they fall within the same range. Fig. 2.10 shows a 3 dimensional array divided

into sixty chunks (4x5x3) that are numbered in row-major fashion. Chunk 16 is itself

4x2x3 array whose 24 cells are numbered in row-major order and are stored contiguously.

In chunk-offset encoding (COE) [35, 36], for each valid array entry, a pair (Offse!lnChunk,

data) is stored. The offset inside the chunk (Ott.etInChunk) can be computed using the

multidimensional array linearization function described before (see Eq. 2.1). Fig. 2.11(a)

shows a 3 dimensional array partitioned into 36 chunks each of which is 3x3x3 (Fig.

2.11(b)). The details of a chunk with 8 data values and offset within the chunk are shown

in Fig. 2.11(c), and Fig. 2.11(d) displays memory or disk arrangement of that chunk. Note

that the chunks which have no nonempty elements are not physically allocated in the

secondary storage.

(b)

Figure 2.11: A 3-dimensional Array Stored As Chunk-Offset Encoding.

2.3.2. History-Offset Encoding

The History Offset Encoding (HOE) [16] scheme is based on Extendible Array (as sec.

2.2.2). In this technique, an element is specified using the pair of history value (h) and

offset value (o) of the extendible array. Since a history value is unique in extendible array

and has one to one correspondence with the corresponding subarray, the subarray

including the specified element of an extendible array can be referred to uniquely by its

corresponding history value Ii. Moreover, the offset value (i.e., logical location) of the

18

element in the subarray can be computed by using the addressing function and this is also

unique in the subarray. Therefore, each element of an n-dimensional extendible array can

be referenced by specifying the pair (history value, offset value). Like Chunk-offset

compression, the extended sparse subarray elements are stored in memory in sorted

fashion. Fig. 2.12 applies the HOE encoding on a 3 dimensional Extendible Array as

mentioned in Fig. 2.2. The scheme omits the sparsed data and replaces the densed data

with a tuple t = <h. o>, Data>, where offset is calculated from the addressing function (Eq.

2.1). For example, to store third data 42 in the SA number 8, the required tuple for HOE is

t = <8,2>,42>.

Dimension C History Table
©Address Table
® Coefficient Vector

0 1 12

1430

1633

27

5163

57169
7

 fifi-
2 3

810

36 39 i1

72 75 78 81 84 87

CCC 0 1 2 3 4 5

0 1 5 7 9 10
0 1 12 27 48 60
112333

Dimension 2
10

Figure 2.12: A 3-dimensional Extendible Array Encoded as History-Offset Encoding.

I

I

C
C
C

19

0 1 lId2

d 2 1 1 Cd2

0 1 Ad2

0101

IOIUjOI
0 2 3 5 7 I i

,
d 3

0 1 4 60 Il0l

I OiI

1 12 13 14 15 1 20

16 17 18 19

0 1

0 4 6 Ad4 d 4
Ii 2 ICd4

o 3 1 Hd4

<<h, s, o>,Data>

<<5,1, 2>, 22>

Figure 2.13: A 4-dimensional EKA Encoded as Segment-Offset Encoding.

2.3.3. Segment-Offset Encoding

The Segment Oriented (SOE) [37] Encoding scheme is based on EKA (as sec. 2.2.3). In

this technique, an element is specified using the tuple of history value (h), segment

number (s), and the offset (o) of the segment of the SA. The segment number is unique

inside a SA. Here, history value is required to identify the SA, the segment number is

required to identify the segment and the offset of segment is required to point cell position

of the segment of the SA. Fig. 2.13 applies the SOE encoding on a 4 dimensional EKA as

mentioned in Fig. 2.5. The scheme omits the sparsed data and replaces the densed data

with a tuple i = <h, s, o>, Data>, where offset is calculated from the addressing function

(see Eq. 2J).

2.3.4. History-Pattern Encoding

The History Pattern Encoding (HPE) [38, 39] is a variant of the History Offset Encoding

(as sec 2.3.2). Many of the tuple encoding schemes, including history-offset encoding, use

the addressing function (Eq. 2.1) of a multidimensional array to compute the position.

However, there are two problems inherent in such encodings. First, the size of an encoded

result may exceed the machine word size (typically 64 bits) for large-scale datasets.

Second, the time cost of encoding/decoding in tuple retrieval may be high; more

-.,

20

specifically, such operations require multiplication and division to compute the addressing

function, and these arithmetic operations are expensive. To resolve these two problems

without performance degradation the History Pattern Encoding (HPE) has been

introduced. The scheme encodes an n dimensional tuple into a pair of scalar values

<hisloiy value, pattern> even if n is sufficiently large. An encoded tuple can be a variable

length record; the history value represents the extended subarray in which the tuple is

included and also represents the bit size of the pattern. Additionally, the scheme does not

employ the addressing function, hence avoiding multiply and divide instructions. Instead,

it encodes and decodes tuples using only shift and and/or register instructions.

H dim. I • hieIzy counter

va i—t—oIiI a I 5
H2 •••Q _L.

0 o[®t[jf® [
12 1 S

2 (4, 3)
06

logical extendible array
boundary vector table B

hstofyvakiI 0 1 2 3 4 5
bounectoi] <0, o>ki. o>I<i. 1>1<2, 1>1<2, z>I<s, 2>1

Figure 2.14: A 2-dimensional Representation of History Pattern Encoding.

Fig. 2.14 shows a 2 dimensional representation of a History Pattern Encoding. An n

dimensional coordinate X = (xi, x2 , x3 , ... x) can be encoded to the pair <h, p > of

history value h and bit pattern p. The history value h is determined as the maximum value

in {Hk[b(xk)]I1 :!~ k :!~ n), whereb(xk) is the bit size of the subscript Xk in X. For each

history value h, the boundary vector in B[h] gives the bit pattern size of each subscript in

X. According to this boundary vector, the coordinate bit pattern p can be obtained by

concatenating the subscript bit pattern of each dimension in descending order (from the

lower to the higher bits of p). The storage unit forp can be one word length, i.e., 64 bits.

Let, <h, p>= (4,3). H1 [b(4)] = Hl [b(100(2))J = H1 [3] = 5 and H2 [b(3)] =

Hl[b(11(2))] = H2 [2] = 4. Since, H1 [b(4)] > H2 [b(3)], h is H1 [3] = 5. So element

(4,3) is known to be included in the subarray on dimension I at history value 5. Therefore,

the boundary vector to be used is <3, 2> in B[5]. In (4, 3) to be encoded, the subscript 4 of

the first dimension and the subscript 3 of the second dimension form the upper 3 bits and

lower 2 bits of p. respectively. Therefore, p becomes 10011(2) = 19. Eventually, the

I

21

clement (4. 3) is encoded to <5, 19>. Generally, the bit size of history value h is rather

small compared to that of pattern p; if the storage size for the pair is assumed to be 16 bits,

typically the upper 4 bits are for h, and the lower 12 bits are for p. Conversely, to decode

the encoded pair <h, p> to the original n dimensional coordinateX = (x1, x2, x3, ... x 1), the

boundary vector in B[h] is known. Then, the subscript value of each dimension is sliced

out from p according to the boundary vector. For example, consider the encoded pair <

h,p >=< 5,19 >. The boundary vector B[h] is < 3,2 > sop = 100112 can be divided

into 1002and 112 . Therefor, < 5, 19 > can be decoded to the coordinate (4, 3).

2.3.5. Integer-Key Encoding

Integer-Key Encoding (IKE) [40] is an encoding scheme of integer keys in a 13 tree index.

They mainly focused in encoding 32 bit unsigned integers. Here, integers are differentially

coded prior to encoding so that most of them are small. That is, starting from an array of

integersx1, x2, x3, ..., they encoded the integers x1, x2 - x1, x3 - x2.....During decoding,

given the differences (51 x1 , 82 = x2 - x1 . 83 = X3 - X2 ... we need to

reconstructx1, x2, x3. --- .This operation requires the computation of a prefix sum (81,81 +

(52,(51 + 82 + (53,...). The B tree node (also called a page) of IKE stores keys and values

separately from each other. The actual in-memory layout is described in Fig. 2.1 5. Each

node has a header structure of 32 bytes containing flags, a key counter, and pointers to the

left and right siblings and to the child node. This header is followed by the KeyList (where

we store the key data) and the RecordList (where we store the value's data).The

RecordList of an internal node stores 64 bit pointers to child nodes, whereas the

RecordList of a leaf node stores values or 64 bit pointers to external blobs if the values are

too large. Fixed-length keys (Fig. 2.16) are always stored sequentially and without

overhead. Variable-length keys (Fig. 2.17) use a small in-node index to manage the keys.

Long keys are stored in separate blobs: the Btree node then points to this blob.

KeyList I RecordList I

Figure 2.15: Memory Layout of B Tree NodeOflKE

[Ti 2 3 4] I 171i22 25 1 29 1 301 31 1 321 35 1

Figure 2.16: The Keylist of Fixed Length Integer Keys

-, r1_11,
1 2 3 4 5 Key! Key2 KeyS

Figure 2.17: The KeyList of Variable Length Integer Keys

2.3.6. Other Schemes

Several encoding schemes have also been examined in the field data sparsity handling.

Compressed Row Storage (CRS) and Compressed Column Storage (CCS) [36, 41] are

used due to their simplicity and purity with a weak dependence relationship between array

elements in a sparse array. It uses two one dimensional integer arrays RO and CO to

compress all of the nonzero array elements along the rows (columns for CCS) of the

sparse array. Array RO stores information about the non-zero array elements of each row

and CO stores the column (row for CCS) indices of those elements (for two dimensional

arrays). For higher dimensional sparse arrays more one dimensional integer arrays are

needed. Hence compression ratio and range of usability become impractical for higher

dimensional arrays. For an n dimensional extendible array, the EaCRS scheme requires ii

- I auxiliary arrays for each of the (n - 1) dimensional subarray to compress it. Hence

the compression ratio is not good enough for higher number of dimensions. A

compression scheme, namely ECRS/ECCS for array model EKMR [15] is presented in

[42]. The scheme is based on CRS/CCS [37, 42], and applied on EKMR. The EKMR

represents n dimensional arrays by a set of two dimensional arrays. When applying the

CRS/CCS scheme on EKMR the number of auxiliary arrays is always less. Hence

compression ratio and range of usability become efficient. But the CRS/CCS and

ECRS/ECCS schemes are applicable for statically allocated arrays. Encoding scheme

based on history-offset parameter can also be obtained in [43
-

45]. Most of the index

model mentioned above demand n dimensional indexing and requires n dimensional

indices for run time calculation of cell position or cell offset.

23

2.4 1)iscussion

All the array models presented in this chapter have some pros and cons. Although the

CMA is good for random accessing, it suffers from dynamic extension. The Traditional

Extendible Array [13, 251, EKA [12], Axial Vector Extendible Array [Ii] are good for

dynamic extension. But they all have a concept of SA which is always (n - 1)

dimensional and requires n dimensional indexing. For large value of length for each

dimension or for large number of dimension value of offset grows exponentially and

overflows the address space.

Typical encoding schemes have some limitations in compressing data. The scheme

Compressed Row Storage (CRS) [41] or Chunk Offset Encoding [35, 36] are effective for

encoding large sparse arrays. But still they cannot be applied on extendible databases. The

dynamic models like I-IOE [16], SOE [37], HPE [38, 39] etc. can improve the performance

of an encoding scheme compared to static models, but they req uire handling the dimension

value n.

In this circumstances, we propose a dynamic scalable array model which will outperfonri

the static models like CMA as well as dynamic models like Traditional Extendible Array

or Axial Vector Extendible Array. We also provide an encoding scheme based on our

scalable structure. The detail of the proposed structure and encoding scheme is presented

in the next chapter.

24

CHAPTER III

Scalable Storage Systems for Higher Order Index Array

3.1. Introduction

Array based storage and retrieval systems are demanded in many high dimensional systems

like Big data for their easy maintenance. However, the lack of scalability of the conventional

approaches degrades with the dynamic size of data sets as they entail reallocation in order

to preserve expanded data velocity. To maintain the velocity of data, the storage system

must be scalable enough by allowing subjective expansion on the boundary of array

dimension. The index array offers a dynamic storage scheme for preserving expanded data

velocity by employing indices for each dimension. Again, for an array based storage system,

if the number of dimension and length of each dimension of the array is very high then the

required address space overflows and hence it is impossible to allocate such a big array in

the memory. The Index Array model is good compared to the CMA, but it cannot meet the

expected memory utilization as per the demand of data velocity especially for "Big Data"

applications [17] and has to face the following problems:

I. To represent the large dimensionality of data.

To lessen indexing cost as it requires indices for each dimension for preserving

expanded data velocity.

To avoid address space overflow even though resource is available.

To conquer significant information from the large volume which has data sparsity.

Problem (I) is an issue as easy representation makes data more meaningful for computer

analysis and user interpretation. Nevertheless, an improper data representation will reduce

the value of the original data and may even obstruct effective data analysis. Efficient data

representation shall reflect data structure, class, and type, as well as integrated technologies,

so as to enable efficient operations on different datasets. [23]. Though indexing process

converts a static CMA to a dynamic Index Array by adding scalability, but for problem (ii)

it has exponentially increasing indexing cost. The increase in number of dimension of the

25

array causes increase in indexing cost and thus reduces the performance of an Index Array.

The problem (iii) involves address space overflow. The range in which the linearized array

elements map is called address space - which depends on the length or number of dimension

of array. For an array based storage system, if the number of dimension and length of each

dimension of the array is very high then the required address space overflows and hence it

is impossible to allocate such a big array in the memory. In case of address space, the Index

Array model is good compared to the CMA, but it cannot fully utilize the available resources

because of address space overflow. Again, we have problem (iv) which can decreases the

storage utilization of large volume applications.

Thus special computing techniques through comprehensive research to handle large scale

higher dimensional data efficiently and effectively are cramming needs to data scientists. it

emphasizes the new organization and implementation schemes on higher dimensional data.

In this chapter we have explained two new scalable index structures that can enhance the

capabilities of an Index Array. The first one is named as Scalable Array Indexing (SAT) that

transform the n dimensions of an array into 2 dimension which reduces indexing cost and

improves data locality of an Indexed Array. However, like an Index Array it also suffers

from address space overflow. hence, we modify SAl structure and renamed as Segment

based Scalable Array Indexing (SSAI) which segmentify the subarrays (SAs). We also

provide an encoding scheme based on SSAI and named as 2 Dimensional Key Value

Encoding (2DKVE).

3.2. Realization of a Scalable Array Indexing (SAL)

The SAl structure converts an n dimensional array with row-column abstraction [27]. Odd

dimensions contribute along row direction and even dimensions along column direction

which gives lower cost of index computation and higher data locality. It is a permutation on

higher dimensional array to fit into a new 2 dimensional array. Thus the length and indices

of new 2 dimensional array is determined based on n dimensional arrays' length and indices.

3.2.1. Dimension Conversion
-4

Consider an ii dimensional Conventional Multidimensional Array (CMA(n)). Let, the size of

a CMA(n) or A[11] [12].. [id is [It, /2,.. Then <xi, x2,...,Xn> be the Real n dimensional

Index and denoted as Rnl where it, 12_ .,1n is the length of each dimension dj,d2..... cI

'ii

0

2
3
4
5
6
7

0 1 2 34 X2'

X2 —.. 0
10

o 0
0 1

x3
x

26

Fig. 3.1: Transformation of a CMA[2, 2,2.2,2] to a SAI[8,4]

respectively and xi = 0,1,2, (li-I) (0 :~i:~n). Among the n dimensions of CMA(n),
 121

number of odd dimensions lit along row direction and the rest number of even dimensions

along column direction. We convert the n dimensions of a CMA(n) into two dimensions of

a new structure named as Converted 2 dimensional Array (C2A) A'[111][12 1 } of size [11'. 12 '1
and the Converted 2 dimensional Index denoted as C21 becomes <x1', x2 '> where 11' and 12'

are the length of dimension d1' (row dimension) and d21(column dimension) respectively;

x1' = 0, 1, 2,.., (1'-1) and x2' = 0, 1, 2,.., (12 '-1). The mapping function that converts xl,

X2.> to <x11, x2 '> is as follows:

x11 = x11315
...

+ x315
... 111311 + + Xr

x21 = x21416 n-31c + x416
... 17t-31c + + X

Where

(n— 1,ifnis even (n— 1,ifnis odd

(n, if n is odd and
c

= n, if n is even

Hence the index computing ft,nction of CMA(n) becomes

f(xi',x2') =
IX2'

x' x 1 + x2', if d1'holds the SA

x 1 + x1', 1fd2 'holds the SA

Where,

11'=11 x13 x ... x17.

1 2, =12 x14 x ... xlc

Example 3.1. Fig. 3.1 shows a SAl ofa CMA(5) of size [2, 2, 2, 2, 2]. The Rnl index < 1,

0, 1, 1,0> is converted to C21 by <6, 1> and 1' = 8 and 12 = 4. The dynamic extension

for any dimension of the CMA(n) causes corresponding extension on row or column

direction of C2A.

(3.1)

(3.2)

3.2.2. Scalable Indexing

Scalability is an important property to store present and future dataset for big data storage

[22]. The index array model namely extendible array inherits scalability through a process

called indexing which preserves the dynamic extension of array [11-]3]. Indexing is a

process of monitoring location of data record by assigning a key with them for the

corresponding system. The process assist in fast query processing [1 1]. The indexing of a

SAl system is done by introducing five types of Supplementary Tables (ST) which help the

SAl in managing the scalability as well as faster accessing of the structure.

. Histoiy Table (HF): The I-iT table stores a unique number to monitor the construction

history of the SA.

. The Index Table (IT): The dynamic extension can occur in any dimension of the

CMA(n). The start index of the corresponding extended dimension is stored in index

table.
-91

Extend Dimension (EDT): The SAl structure is a compressed dimension representation

of an n dimensional array. Hence, to track the current extended dimension EDT is

req uired. It tracks the scalable direction by assigning value I to n.

. Multiplicative C'oefficienl Table (MCT): The MCT stores the co-efficient of the

addressing function. As the new SAT is a 2 dimensional structure, hence MCT stores the

co-efficient of the new index x11or x21 (Eq.1).

. Address Table (AT): The first address of the dynamically allocated subarray is saved in

AT. This is mainly useful when the allocated memory is not consecutive. For

consecutive memory allocation we can avoid AT.

The supplementary tables are the indices of the structure. For each of the 2 dimensions the

indices are necessary. Let the indices are ST1 (for row direction) and ST2 (for column

direction). Each of the index entry requires above tupple namely <history value, index, first

address, coefficient vector, extended dimension>. Extendible Array [1 3] uses 3 tupples and

Extendible Array [11] uses 4 tupples respectively. But they need n indices to be placed for

each dimension. By increasing one entry in the tupple we reduced the total number of indices

to 2 only.

27

28

IIHDHI
1E1E1LIU
__UEIUJIIII

13E1L1E1
I---.

-Ui—

iTm 7gin i m = III —

-I

Jfl ILJJtZlLJ
EMM

'oIcIDcMMM 11J

F •

X2 —* 0

0101
°irn

1.
16
20

0 24
1 28

(a) (b) (c)
Fig. 3.2: Construction and Extension of a SAl System

3.3. Operations on a SAl System

3.3.1. Construction and Extension

To construct a SAl, the Rnl of a CMA is converted to its corresponding C21 pf a C2A (as

sec 3.2.1). The supplementary tables of both dimensions (namely STI and ST2) are

maintained. The first address of the allocated memory is preserved in AT. The extension

history i.e the value of history counter is initialized and saved in history table, FIT. The

initial index values of the both dimensions are stored in IT. The coefficients of the odd

dimensions are stored in the ST1 .MCT and the coefficients of the even dimensions are stored

in the ST2. MCT. The EDT holds null as no extension is held yet.

Example 3.2: Consider the transformation of a CMA(5) of size[2,2,2,2,2] in Fig. 3.2(a).

The row dimension is constructed from [Ii, 13, Is] and the column dimension is constructed

from [12, 14]. Initially, set STI[O].IT = 0, ST1 [0].I-IT = 0 and ST1 [0].EDT = NULL. The cell

values also represent their cell position in the actual array. Hence, set ST1 [O].AT = 0. MCT

values are initialized to STi[0].MCT[0]= I3xI5=4 , STi[1].MCT[I]= 15 =2 and

ST1[1].MCT[2] 1 for x1' and ST2[01.MCT[0]/42 and ST2[0].MCT[]]=1 for x2'

ST2[0].IT=O, ST2[0].HT=0, ST2[0].EDT=NULL and ST2[0].AT=0. And finally

A[2][2][2][2][2] of CMA is converted to a A'[8][4] of SAl.

The dynamic extension along any arbitrary direction d 1' of the SAL is done by allotting a

block of memory or SA (Eq. 2.2).

Example 3.3. Let, the structure in Fig. 3.2(a) has been expanded in dimension d2 shown in

Fig. 3.2(b). In this case, the size of the CMA(5) becomes [2,3,2,2,2]. Then a block of

1 4 MCT IFETAT
0I

LUd
71 2I

I 1
4

23 sI

131171

Extending d 2

29

memory size (2 x 2 x 2 x 2) or 16 (see Eq. 2.2) is allotted dynamically. As the dynamic

extension is done along d2 that contributes for x2 7 , hence ST2 is maintained. The first address

of the memory block (i.e 32) is stored in ST2[1].AT. The history counter is incremented and

stored in ST2[I].HT. The extended index of d2 (i.e 2) is stored in ST2[11.11'. The value of the

extended dimension (i.e 2) is hold by ST2[l].EDT. Finally the multiplicative coefficient /4

and I is stored in ST2[1].MCT[O] and ST2[l].MCT[l] respectively. Fig. 3.2(c) depicts an

extension along di. The supplementary tables are maintained for ST1. Finally Fig. 3.3 shows

the SAl after extending on (/4, (/3 and d.i respectively.

3.3.2. Dimension Transformation

The operation of dimension transformation has been divided into two parts. The first part

will elaborate the transformation from n dimension to 2 dimension named as Forward

Transformation. And the second part will elaborate the transformation from 2 dimension to

n dimension named as Backward Transformation.

Forvard Transformation. Let the subscript of CMA (x1, x2 , x3 , x4 x31) is to be

transformed into 2 dimension of SAl or < x1', x2 '>. The subscripts that contribute to row

and column direction are calculated (section 3.1). Let, the row subscripts be (x1, x3 ,

x5 x7.) and even subscript be (x2. x4, x6.. . .x). Let max() returns the maximum value

7(4 .,

0 0

x D

:__ 1

x
I
0
I

1

0
-

I 20
1

2 2 0
1

02
8 1 2

7 2
02

II 2
22
02

X-.0 I
0 I 0 2

2
0

0
2

1
2

2 x
3 IT

0 -

2

4
9
6
7 -

9

II

2
13
4

15
IC'
Il

20
29
20
2 1

2.3
21

1115

7

MCT

-

-

-

It]'

-

-

11121

-

AT

-

0 1 7 3 32 40 77 64 96

01412 6 / 3741 73 95 9 / 1
8 9 IC 12 34 42 74 66 90

121 3 *4 15 3) 43 75 0/ 99
16117 IS 19 36 4-1 '/0 60 190
20 I 21 D. 23 37 45 77 09 101
24 I 25 29 27 38 40 78 99 102

29 30 31 39 47 119 91 193

0 8 1 49'fIiIi SO 92 11140

-

'T 21 03 05

61 62 11[64J65 02 94 10619
66

100

1 67

ISO.

1 011

,,

1 69

III

[70

II?

J 72

119

03

124

99

III

197

16 ,

-

- -

-

-

II? 123 19 120 171 122 23 174 29

126 127 2711 229 130 171 232. 133 34

135 136 *7/ 38 *39 140 41 141 143
144 345 149 147 1 146 149 150 151 192
153

262

94

163

153

164

ISO

1 285

157

1 166

158

*67

99

168

90

169

SI

I/O

-

-

OS

171 272 71 2/4 175 276 172 73 79

200 18, 182 SI 1114 *85 1116 0/ 88
jT3 91 /2 193 194 293 1
198 9 210 202 202 207 2114
207
216

297
21/

200

218
'10
219

?1I
220

222
221

223
222

224
223 224

2223423)276237231129924024*24226

• ----

Fig. 3.3: Realization of a SAI[27,9]

rr

MCI

in
lIly

Al

30

and fmax() returns the count of the maximum value. Now find the following

x = 7nax(x1, x3.. . .x1) and mr = fmax(x1, x3,. .

And

x = max(x2, x4. ... x) and m = fmax(x2,x4, ... x3

Where xa is the maximum subscript in the row direction and mr is the count of the

subscript that have maximum subscript value. We need to find i andj subscript from ST1

and ST2 respectively to locate the candidate subarray that contains the element. To find I

from Si'1 , there can be two cases based on 1r

Case 1: if 7n7. = 1, find I such that STi[1].IT=Xa and ST1 [i].EDT = a

Case 2: if mr > 1, mr = a (say). Let 11 i, ••, i contains Xa. Among i1, 2, ... ia find

u E (li, i2, . 'k) (k :!~ a) such that STi[u].IT=x and ST1 [u].EDT = a.

Now from i, 2, •• i, find hinax = max(ST1 {ji]. HT, ST1 [2]. HT, ... , ST1 [1k]. HT). Find I

such that hinax = ST1 [i]. HT

To find] from ST2, there can be similar cases based on m

Case I: if nic = 1, find] such that ST2[j].lTx,? and ST2[/].EDT = fl

Case 2: ifm > 1, m = b (say). Let]1,]2, "'lb contains Xfl. Among]1,]2, "'lb find

u E 01']2 ... Jk) (k :!~ b) such that ST2[u].1T=x and ST2[u].EDT = . Now from

]1]2' lk find hniax = max(ST2 j1]. HT, ST2 [j2].HT, ...,ST2[jk].HT) Find] such that

hmax = 5T2 [j].HT

Using / and], x11, x2 ' can be re-calculated using Eq. 3.1 as follows:

71
x1'= x1ST1 [i]. MCT[0] + x3ST1 [1]. MCT[1]+.. + xST1[i]. MCT [[1 - i]

x2'= x2ST2 [j].MCT[0] + x4ST2 [I]. MCT[1]+.. + xST2 [j]. MCT [- i]

Where, MCT[0] is the first multiplicative coefficient and so on (as Fig. 3.3).

Example 3.4. Consider an input (xi, X2, X3, X4, x5) = (1, 2, 1, 2, 2) is to be retrieved from

Fig. 3.3. So, row index is (x /. X3, x5) = (1. 1. 2)and column index is (x2, x4) = (2, 2). For row

index we have maximum index value X. = max(x,, X3, X5) = max(1, 1, 2) = 2 and

fmax(x1,x3,x5) = m = 1 . So, we select ST1 index I = 3 (as ST1[3].IT = 2 and

31

ST1 [3]. EDT = 5)(i.e case 1). For column index, we have X= max(x2, x4) = max(2, 2) = 2

and finax(2, 2) = m = 2. Here, we select ST2 index .11= 1 and J2= 2 asST2 [1].IT = 2

and ST2 [1]. EDT = 2 , ST2 [2]. IT = 2 and ST2[2]. EDT = 4 . Now, as ST2 [1]. HT <

ST2[2]. HT or (1 < 3), hencej = 2 for ST2. And the converted 2D indices x111 x2 ' are as

follows

= x1 x ST1[3].MCT[O] + x3 x ST1[3].MCT[1] + x5 x ST1 [3].MCT[2]

= 1 x 3 + 1 x 1 + 2 x 9 = 22

= x2 x ST2 [2].MCT[O] + x4 x ST2 [2].MCT[1] = 2 xl + 2 x 3 = 8

So, 5D (1, 2, 1,2,2) is equivalent to 2D (22, 8).

Backward Tramforniation. Let the subscript of SAl <x11,x2 '> is to be transformed into n

dimension of CMA or (x1, x2, x3, x4.. . .x). Let I and] are the indices of ST1 on ST2 for the

selected SA respectively. To determine the value of i and], find largest I and] such that

~! ST1[i].lT X ST1 [j].MCT7nax

~! ST2 []]. IT X ST2 [j]. MCTmax (3.3)

Now, let there are p number of entries in S7'1 [i].MCT and q number of entries in

ST2 [j]. MCT. Thus the row indices (x1, x3, x5,. . .,x1) and column indices (x2, x4, x6,. . .x)

can be calculated using the following equation:

(((xl'%MClmax)%MCZ?nax)..%MC(p_ l)max)
xQ =

MC0

(((x2 '%MC1max)%MC2max)..%MC(q_ l)7nax)
(3.4) xe =

MC

Here, x0 represents the odd indices (x1, x3, x5.. . .x) and xe represents the even indices (x2,

X4, X6,. . .X). MCiinax is the first largest Multiplicative Coefficient, MC2771ax is the second

largest Multiplicative Coefficient and MC(P _ l)fllQX is the last largest Multiplicative

Coefficient before x0 's coefficient, where MC0 is the Multiplicative Coefficient of x0 .

Example 3.5. Let <x1', x2 '> be <22, 8> . As x1' ~! ST1[3]. IT x ST1[3]. MCTiIIaX or 22 ~!

2 x 9, hence I = 3 and x2' ~ ST2 [2].IT x ST2 [2].MCTJUaX or 8 ~ 2 x 3, hence] = 2.

Now, we have three entries in ST1[3]. MCT. So, using Eq. 8 the row indices are as follows:

= (x1'%MCii7iax)/MC1 (22%9)/3 =

((x1'%MC1771ax)%MC2?nax)/MC3 = ((220/o9) %3)/1 1

32

x5 = x1'/MC5 = 22/9 = 2

We have two entries in ST2 [1]. MCT, hence using Eq. 8 the column indices are as follows:

X2 = (X21010MC17nax)/MC2=(8%3)/1 = 2

x4 = x2'/MC4 = 8/3= 2

Finally <x1', x21> = <22, 8> maps to (x1, x2, x3, x41 x5) = (1. 2. 1, 2, 2).

3.3.3. Point Query

Point query is a form of data query, where all the subscripts of all the domains are known.

In our proposed model the input of a Point Query is an n dimensional index Rn1 of form

(x1, x2. x3, x4,. . .x) and output is an array cell value (VALUE) representing a memory cell

(CELL).

The first task of a point query is to generate the 2 dimensional index C21 form the given n

dimensional index Rnl (see sec 3.2.3.2). Using I andj of supplementary table STi and ST2

(respectively), find Hinax =(ST1 [i].HT, ST2[j].HT). If Hinax = STi [i].HT, then d1' is the

SA direction that contains the desired element. The SAs can store consecutive memory

block or non-consecutive memory block. If the SAs are in consecutive memory, then the

value can be calculated using Eq. 3.2 as follows

VALUE = f(x1',x2') -
x 1' + x21, 1fd1'holds the SA

- x2 ' x 11' + x1', if d2'holds the SA

If the SAs are non-consecutive, then, the required cell position CELL in the candidate SA

is

(ST1 [1]. AT, when SA exists on d1
(3.5) CELL = f(x11,x21)

- ST2 U].AT, when SA exists on d 2'

And the required cell value is

ST1 [i]. AT, when SA exists on
VALUE = CELL +

{j].AT,wlien SA exists on d 2'
(3.6)

IST2

Example 3.6. Consider an Rnl input (xi, X2, X3, X4, x5) = (1, 2, 1, 2, 2) is to be retrieved from

Fig.3.3. The corresponding C21 is (22, 8). Here, i = 3 and j = 2. Now, as ST2 [2]. HT <

- ST1 [3]. HT or (3 <5), hence d1 holds the SA. If the SAs are consecutive then

VALUE= x1'x12 1 + x21 =22x9+8=206

And if the SAs are not consecutive then

33

CELL = f(x1',x2') - ST1 [i].AT = X1 X 12' + x21 — ST1[i].AT = 22 x 9 + 8— 162

=44

And resultant cell value is

VALUE = ST1 [i].AT + CELL = 162 + 44 = 206

The resulted cell is marked in Fig. 3.3.

3.3.4. Range Query

A range key query [51, 52] has a single predicate of the form (column subscript < value) or

(column subscript> value) or (column subscript between value I and value2). On the other

hand, for a single key query predicate has the form (column subscript = value). So we can

say that single key query is a special case of range key query with only a single range

subscript. The rest subscripts are denoted by the sign "i" or don't care situation. In our

proposed 2D model, we have two types of dimensions. The first one is named as major

dimension if the first SA selected by the given key corresponds to the same dimension as

the SA dimension. And if the first SA selected by the given key corresponds to the opposite

dimension as the SA dimension, then it is called minor dimension. The required code

segments for the single range key query is as follows:

for(i = START; ± <= END; i = i + step

for(j = 0; j < total data; j++

if(major dimension

pos = i +

else

05 = i + TARGET[jJ;

retrieve - SA[pos];

The first task of the query is to find the first SA and corresponding history that contains the

key (see se. 3,3.3). Then the SA is loaded from disk to main memoly. Here, START is the

position of the SA that initiates the query and END (sz - 1) is the position of the SA that terminates

the query on that SA. The step is the step size for the required search. The target_cells

is the number of target cells or offsets for the required key, target_indices are the

34

number of major indices selected for the key and TARGET holds the selected major indices

for using on minor dimension. The number of successive data block to retrieve is NOD and

the total number of data to retrieve is total_data = NOD x target_cells. The

pos generates the offset of the SA. The task of the function retrieve is to generate the

cell value SA [pos I of the SA. The key is k on the index position xa with length 1 and

multiplicative co-efficient MCTa and maximum multiplicative coefficient is MCT7 .

Single Range Query on Major Dimension. For major dimension, if d1' holds the SA then all

the x2 ' of is the target cell or target_cells = x2' where 0 :!~ x2 ' < 1 otherwise

target_cells =x1' where 0 -!~ x1' < 1' (see Eq. 3.2). Let, the major dimension is on

d11. Now, there arise the following two cases:

Case 1. If x = ST1 [i].EDT and k = ST1 [i]. IT, then the whole size of the SA or sz (Eq.

2.2) is retrieved and NOD = step = sz. 1-lence. START = 0 and END = sz - 1.

target indices = MCTa , start index of the SA is SI = ST1[i]. IT x MCTa and end

index of the SA is El = SI + MCTa l. Hence. SI :!~ TARGET:5, El.

Case 2. If xa #ST1[i].EDT, then NOD = MCTa , total data = NOD X

target_cells = MCTa X12', step = total_data Xla, START = kx

total_data and END = sz - 1, SI = ST1[i].ITx MCTinax +kX MCTa.EI

= SI + MCTa l. Hence,SI :!!~TARGET~EI.Oneach step the Sl (SI = El +

NOD + 1) and thus El is updated until reach END. Hence. TARGET is updated.

Single Range Query on Minor Dimension. For minor dimension, all the selected target

indices from the first major dimension to the last will be the candidate target cells. That

means, if the first major dimension is on history h1, minor dimension is on h?fl j lo?. and the

last major dimension is on history h2 < hin jnor* l'hen all the target indices from h1 to h2

will be target cells for minor dimension. Here, NOD = 1, START = 0 and END = sz

and step = Ifliajor' = 11' , where liflajor' is the length of major dimension,

target_cells = target indices.

Example 3.7. Let, in Fig. 3.4, the data to retrieve is (*, 1, *,*,*). Here, k = I, a = 3. The

requested query has two major candidates (case. 2) in the first SA or SAl (h = 0); two

minor candidates in the second SA, SA2 (h = 1) and one major candidate in the third SA,

SA3 (h = 2). For SA 1: 'a = 2,lminor = 4,MCTa = 2, target_cells = 1 j .'= 12 =

0 1 2 3 IL.. 40
45 1 S

Tft 42
12 13 14 1511 3
16
20

F
21

is
22

is 36 44

36 24 25 2 77
28 28 303I
48149 5051152 531

- -1 59

60 61 62 1 63 04 651
66] 6 OS 69 0

I -

I -

0

12

= = 0

-

:9

10
-

-

- 11

Major SA

Minor SA
-

X:* 0 1 2 X,
• 0 1 0 1 0 1 , IT KT HT EDT AT

0 0

(p

IT

MCT
HI

EDT

AT

-' 4

35

U I

Fig. 3.4: Range Key Operation on SAl

4, NOD = MCTa 22, total data = NOD X target cells = 2x4=8,

step = total data X1a =8X2=16,END= sz-1=31, flOWi = START

= k x total data = 1 x 8 = 8, retrieve successive positions from SA[i] = SA[O] =

8 to SA[i +totaldata -1] = SA[7] = 15, SI = ST1[i].IT X MCT1 + k X MCTa = Ox

4+1X22,EI = SI + MCTa 1=2+21=3 and TARGET = {2..3};nowi =

i ± step = 8 + 16 = 24, retrieve successive positions from SA[i] = 24 to SA[totaldata

1132,SI = El + NOD +1 3+2+16,EI = SI + MCTa 16+21=7

and TARGET = (2, 3, 6, 7), target_indices = 4; For SA2: START = 0, END = sz

= 16 1 = 15, NOD = 1, step = I major' = 11' = 8 and target_cells =

target_indices = 4, total_data = NOD X target cells =1 X44,now

i = START = 0 and retrieve positions from SA[i + 2] = SA[2] = 34, SA[i + 3] = SA[3] =

35, SA[i + 61 = SA[6] = 38 and SA[i + 7] = SA[7] = 39; now i = START + step = 0 +

8 = 8 and retrieve positions from SA[i + 2] = SA[10] = 42, SA[i + 3] = SA[1 1] = 35, SA[i

+ 6] = SA[14] = 38 and SA[i + 7] = SA[15] = 39. For SA3: Ia = 2, Inji,01, = 6,MCTa = 2,

target_cells = I mj7lor'= 12' = 6, NOD = MCTa = 2 = 2, total_data = NOD

X target_cells = 2 x 6 = 12, step = total data x 1, = 12 X 2 = 24

,END = sz - 1 = 24, now i = START = k x total_data = 1 x 12 = 12,

retrieve successive positions from SA[i] = SA[12] = 60 to SA[i + totaldata -1] = SA[23]

71,SI = ST1[i].1TXMCTniax +kXMCTa =2x4+1x2=10,EI = SI +

MCTa I = 10 + 2 - I = 11 and target indices =6, TARGET = 12, 3,6,7. 10,

11).

0
x1__.. o

0 1

x3
0

01 2

xt' 0
.

1110 oF
_11

° IL
uoL

xs

4 x3

1
FXI 1-&

 0 I —
0

 1
3+-; 0

I'

36

—J o
2 1
22

I1

20
UIE
3d- X2'

Fig. 3.5: Segmentation of a SAl to a SSAI

3.4. Realization of a Segment based Scalable Array Indexing (SSAI)

The Segment based Scalable Array Indexing (SSAI) is a segmentation of the SA ola SAL

system. That means the SSAI is a segment based scalable array storage that also transforms

ann dimensional (nD) array into 2 dimensional (2D) array (as sec 3.2.1). The SSAI replaces

the SA block memory allocation of a SAT system by small segments. Thus, it not only

delivers lower index computation cost and higher data locality but also delay the address

space overflow which provides high storage utilization. For scalable indexing of the SSAI

scheme, the same supplementary tables (as sec 3.2.2) as SAl are used except for AT entry

which stores the first address of the first segment of dynamically allocated SA.

3.4.1. Segmentation

The SSAI divides the SA into a collection of segments. Since the SSAI is a 2D structure,

the SA is ID, hence the segment size becomes the length of opposite dimension of SSAI.

For example, if the row dimension d,' holds the SA then the size of the segment is the length

of column dimension or 12 . If the SA size is sz (Eq. 2.2) and segment size is SGSZ, then

the number of segment (nos) in a SA is calculated using the following equation

SZ

~11

12 ,whenSAexistson d1'
nos =

SG_SZ
SG_SZ

= ',when SA exists on d 2'

Example 3.8. Fig. 3.5 shows the segmentation of Fig. 3.1. The SA size is 32 and d1' holds

the SA. As 12= 4, the nos is
32

 or 8. So, 8 segments of size 4 have been allocated for the

current SA as mentioned in Fig. 3.5.

(3.7)

37

X1—' 0 1 X, * 0 1 2 X1' X0—. 0 3
0 1 0 1 3 I j 01 kin 101 1101 AT

Y --# 0 1 0 1 TI Jfl 131 FflT AT Y. ...-. 0 L 0 I 0 1 iT MCI III EDT AT & -

I I I 0
u l I 4 , 5 11 1 6 1 7 1

--- 0 0 l[11 9 I1oIuI2 0

0

—4 Xl 0

I2'3 I '0I

X S IIFnTLl14Il5I
I
II I6 1 I7 I IS I 19 I4i

I

IøII
I I

I x, o

xS lI2eI1I I H
\IoIIUI25l2aIZ7I 6! I_i I I I \i

' 1 l 2BI 29 j 36 I 3II 7 l 1

fluilfi
uuue

DO'
DO

DUUEI DO
DUUEI
EIUUEJ
DEIEID

DO
DD
DO
DO DUDU

DDDEI DO

ol I I I I I
'IE

l

I I I

3 II
IIe

4 I I
6 j
7

- rIOT

I-

032 34 X2' _- j

iT' I IT 0 I i

k',zding d2 MCI 2 I 2 I Exe,idi,zg d1

M

M
Ex

ffr
 1 2

EDT I 2
un o

NULL E::>Loll

AT AT I o
0 0

(a) (h) (c)

Fig. 3.6: Construction and Extension of a SSAI System

3.5. Operations on a SSAI System

The SSAI structure is a modify version of SAl structure. So, the operations of SSAI slightly

differ from the operations of SAl. For example, the dimension transformation and range key

query ola SSAI structure is same as a SAl structure. The rest operations are slightly different

of SAl structure as SSAI structure offers segmented SA.

3.5.1. Construction and Extension

The construction and extension operation of a SSAI is same as SAl (as sec. 3.2.3.1) except

the memory allocation which is done by segmentation.

Example 3.9. Consider the SSAI in Fig. 3.6(a). 1-lere 8 segments are determined each of

size =12 = 12 X 14 = 4 (as sec 3.3.1). Store 1St segment's cell position to ST1 [0].AT = 0.

Initially, set STI[0].IT = 0, STI[0].I-IT = 0 and ST,[O].EDT = NULL. MCT values are

initialized to ST1 [O].MCT[0] = 13 > 15=4, ST1 [0].MCT[I] = 152 and STI[01.MCT[2] I

for d1' and ST2[0.MCT[0} = /4=2 and ST2[0].MCT[1} = I for d 21 . Store ST2[0].IT = 0,

ST2[0].HT = 0, ST2[01.EDT = NULL and ST2[01.AT = 0.

The dynamic extension along any arbitrary direction d1' of the SSAI is done by allotting

one segment at a time.

Example 3.10. Let. the SSAI in Fig. 3.6(b) demands an extension in direction cL'. The

extended SA size is (24) or 16. As the extension corresponds to d 2', hence the segment size

is 8 (i.e 11) and number of segment, flOS is 2 (i.e). In this extension ST2 will be preserved.

-'.4

0
0

O Q

'3 0

XI •' O
0

II

a
o i

0

12 0

22 0

IT
MCT

ITT
EDT

AT

1 0 1 1 1 2 1 3 1 32

141516171 33

I 19 l'°I"l 34

I12I13II4l1SI 35

II6I17I18l19I 36

I20I21Ifll. i37

39
I24l2SI26I27I

1281291301311

40 72

74

75

76

77

84 96

8597

42 86 98

43 - -99

44 88 100

89 101

.Z

.

60 61

!

13{1 iL[138]i!
52

1411

• _p_ i—

J

X —*o 1 0 1 2
v0 I 0 I 2 2 2 ITMCTUTTAT

38

U I L

Fig. 3.7: Realization ofa SSAI[18,9]

The first address of the]SI segment (i.e 32) is stored in ST2[1].AT. The history counter is

incremented and stored in ST2[l].HT. The extended start length of d2 is stored in ST2[1].IT.

The value of the extended dimension (i.e 2) is hold by ST2[1].EDT. Finally the

multiplicative coefficients are stored as ST2[1].MCT[O] = 14 (for x2 ') and ST2[1].MCT[l] =

1 (for x41). Hence a SSAI[8][4] has been extended to SSAI'[8][6]. Fig. 3.6(c) shows the

SSAI after extending the SSAI on di. Fig. 3.7 shows the SSAI after extending on d1 and d3

respectively.

3.5.2. Point Query

Like a SAL the first task of the point query of a SSAI structure is to calculate the C21 index.

Afterwards the candidate SA is determined using the supplementary index ST1 and ST2 (as

sec 3.2.3.3). Now, calculate the start SSAI index, sx'of the subarray and fi nd the largest

multiplicative coefficient MCTInaX as the extended direction holds the largest coefficient of

the SA. Then,

(ST1[i].IT X STi[i]. MCTmax, when SA exists on d1'
SX

ST2U]. IT X ST2]. MCTniax, when SA exists on d 2'
(3.8)

Now, calculate the candidate segment number, SN using following equation

39

SN = jX1 t
- sx',when SA exists on d1'

/ (3.9)
x2 - sx', when SA exists on d 2

And the required segment's first cell address, SFA is

SFA =
IST2
STi[i].AT[0] + SN x 12', when SA exists on d1'

(3.10)
[/1. AT[0] + SN x 1, when SA exists on d 2'

And the required cell value, VALUE is

SFA + x2 '
VALUE

=

,when SA exists on d1
(311)

SFA + x1', when SA exists on d 2'

Example 3.11. Consider an input (x1, x2, x3, X4,...X11) = (1, 2, 2, 2, 1) is to be retrieved

from Fig. 3.7. Now i = 2 for ST1 , j = 2 for ST2, < x1', x2' > = < 15,8 > and d1' holds the

SA. 1-lence start SAl index sx'of the subarray is

SX ' = ST1 [i]. IT X ST1 [1].MCTmax = 2 X 6 = 12

The candidate segment number, SN is

SN = x1' —sx' = 15-12 = 3

And the required segment's first cell address, SFA is

SFA = ST1[i]. AT[0] + SN X 12' = 108 + 3 x 9 = 135

And the required cell value (marked in Fig. 3.7) is

VALUE = SFA +x2' = 135+8= 143

I 2 0
0 I 0 I 0 II MCI III CDI .0

0

N,

.I 0

Wrntll DO
E1rnII DO

DO
iiuriwI DO
m.DI DO
DEJEI DO

DO
mjsiliaEil DO

UEJLJ

ODD
ODD
ODD
ODD
ODD
ODD
ODD
ODD
ODD.
ODD

111
DOD
DOD 0

EIJflEUJ
I 1Ij
IItJ

• -.--- --
•

Figure 3.8: A Sparse Representation of a SSAI[18][9]

40

3.6. 2 Dimensional Key Value Encoding (2DKVE)

The l-Iistory Pattern Encoding scheme [42, 43] eliminates the drawbacks of runtirne

calculation (multiplication, division) of large cell positions of 1-listory Offset Encoding

scheme [16], but it is an n dimensional representation. The 2 Dimensional Key Value

Encoding is an encoding scheme that encodes n dimensional data into a key that uses only

2 dimensional indices of SSAI structure. Let the shaded cells in Fig. 3.8 represent non-empty

cells. The 2DKVE representation of the SSAI system of Fig. 3.8 is depicted in Fig. 3.9. The

structure eliminates the 2D Address Table (AT) entry from the supplementary table and

creates a new individual ID First Address Table (FAT) that contains the first non-empty

address of a SA, if the SA is not empty. Otherwise it will store the negation location value

of the next SA. Then the last location of the SA can be found by the successive value

(absolute) difference from the FAT table if it is not the last SA in the structure (otherwise

the last position of the memory will be considered as the last location of the SA). The index

of the FAT table is labeled by the history of the SSAI system.

3.6.1 Encoding

The 2DKVE encodes a cell of the array by the pair < x11,x2 ' > instead of the pair < x1, x2,

x3, ..., x>. Hence the size of the encoding key becomes fixed irrespective of the value of

n. We generate a single key for the encoded pair < x11, x2' > . In this encoding scheme, the

IT MCI III LDT

I 13102 1 13144 1 13105, 393217 393218 393210 514288

: :

824289 1 524290 1 524291 1 $89525 $89826 6553l 695305 1 720901 1 0 - - - -

49 1 50 1 SI 1 95 56 64 65 I 72 -

9 10 Ii II 13 14 iS 16 (1) -

65542 13108 262151 3200 458•58 824201 589830 SSI04 85195

3 N 85 (9 80 SI 123 124

IS IS 20 21 21 23 14

8519N 0199.I 91505 9100 9150 01508 91509 01510 INIL
- FAT

125

:

12 US LI 2 113

IT, 151-21
HT—.o 1 2 4

Figure 3.9: A Realization of a 2DKVE System

0

IX1, I
1 0

Figure 3.10: Key Structure of a 2DKVE System

IT

MCI

Ill
lIlT

-4

o 2 2

2 I I 2 1 1 1 I
o 1 CrI

4 NULL 2

41

entries of the supplementary tables are same as SAt, except the AT entry which is replaced

by the individual ID FAT table. The FAT stores the location of the first nonempty key, of

the SA. The FAT stores NULL if the whole SA is empty. Let the key contains b bits. Among

b bits the x1' is stored in the most significant b bits (MSB) and x2 ' is stored in the least

significantb bits (LSB) as shown in Fig. 3.10. Hence the keys are stored in the order of x1'.

The x1' is inserted to the key and successive left shift operation is applied to move it to MSB.

Afterwards the x2 ' is added with the key. Finally the < key, value > pair is stored where

value is the actual data in the SSAI.

Example 3.12. Consider an Rn! index (x1, x2, x3, x4,x5) = (I, I, 0,2, I). The corresponding

R21 is <x11 , x2 ' > = (5, 7). Let the key comprises b = 64 bits. Then MSB 32 bits are

00.. .000101 = 327680 and LSB 32 bits are 00.. .000111 = 7 and key = 327687. Then the

encoding value is <key, value> = (327687, 89) (as sec Fig. 3.9).

3.6.2 Data Access

To access an item from a 2DKVE it is necessary to determine <x11 , x2'> and Hnax as

described in sec 3.5.2. Now, find the supplementary table index / that contains IIniax. The

candidate SA can be found from FAT[Hmax]. Now generate the key from <x11, x21 > which

is to be accessed. Then the subarray is loaded from disk to memory. Since the keys are stored

in order of x11, the binary search is performed to find the key and the corresponding value

is the desired array cell.

Example 3.13. Consider an Rn1 index (x1, x2, x3, x4, x5)=(I, 1,0,2, 1). The value of<x11,

x21>, H1 jjjjx and key are <5, 7>, 3 and 327687 respectively (as Example 3.12). The location

of the first cell of the SA is FAT[3] = 17. Now load the SA from disk to memory. And the

binary search to find the value of key or 327687 shows that the desired value is 89 as

encircled in Fig. 3.9.

3.6.3 Decoding

The aim of Decoding is to retrieve an RnI from a given <key, value> of 2DKVE. By

successive right shift the <x11, x21> is determined. Then binary search is performed in the

mapping table ST1 and ST2 to find their index / and] (respectively) using the conditions

mentioned in Eq. 3.3. Now find H1 = rnax(ST1 [i].1-117, ST2[/1.HT). If FAT[Hax] = NULL,

then the SA is empty. Otherwise find the Rn1 (x1, x2, x3, x4,. . .x7) using Eq. 3.4.

42

Example 3.14. Let KEY = 327687. 11 the key comprises 64 bits, then x1' = 327687 = 5

- and x2 ' = 7. Now, the value of i aridj isO and 2 respectively (Eq. 3.3). And Hiiax = 3. As,

FAT[2] ! = NULL, hence the segment is not empty. We have three entries in ST1 [0]. MCT.

So, using Eq. 3.4 the odd indices are as follows:

xi = x'/MC3 - 5/4 = I

x3 = (x11%MC11)/MC1= (5%4)/2 = 0

((x1'%MC1inax)%MC2max)/MC1 = ((5%4)0/o2)/1 =

We have two entries in ST2 [2]. MCT, hence using Eq. II the even indices are as follows:

= (X2'%MC117iax)/MC2 (7%3)/1 = I

x4 = x 2'/MC4 = 7/3 =2

So, KEY = 327687 maps to <x11, x21> = <5, 7> which maps to (x1, x2, x3, x4, x5) = (1, 1,

0,2, 1).

3.4. Conclusion

In this chapter we elaborate our proposed models with the model structure and operations.

We effectively convert the n dimensions of the array into 2 dimensions which helps in large

dimensional data representation. We use the concept of segment to delay the address space

overflow and using this concept we also provide an encoding scheme which can increase

the storage utilization by efficiently employing only 2 indices of 2 dimensions.

43

CHAPTER IV
11

Results and Analysis

4.1 Experimental Setup

In this chapter, we present the experimental results along with the theoretical analyses of

the proposed schemes. We have compared the proposed schemes with static CMA and

dynamic Extendible Array [11] and Extendible Array [13]. In the following we rename the

Extendible Array model [13] by EAI and [II] by EA2. To analyze the performances of

the proposed structures we develop a prototype system in a machine having Iritel(R)

Xeon(R) E5620 @ 2.40G1-lz processor with 8 processors, 32 GB RAM, 1406 MB cache

memory and I .3TB usable HDD. The actual array was placed in the secondary storage.

The program is written in C and compiled in gcc compiler on debian squeeze 6.0.5

operating system with the parameter values shown in Table. 4.1. In all performance

analysis, we have considered the index table to be stored in secondary memory. All

lengths or sizes of storage areas are in bytes. The analyses are also represented as a

function of bytes.

Table 4.1. Parameters for Constructed Prototypes

Parameter Description
n No. of dimension in array
1i Length of dimension 1(1 :5 i :!~ n), let 11 = 12 =11, =
V The array volume= 1i = 171

he Total no. of extension or maximum history value
y Size of an index
Cr Size of an array ccli

Size ofakey
N Total no. of non-empty cells in actual array

P Data density of actual array = . = fi', 0 ~ p ~ 1

44

4.2 Performance Analysis of the Structure
11

4.2.1. Index Overhead (Y)

a) Theoretical Analysis.

Let the number of indices is denoted by noi. The no. of index in EA1 scheme or TtOIEA1 =

3 (<history value, first address, coeffIcient vector>). in EA2 the no. of index is noiEA2 =

4 (<initial index, start address, coefficient vector, start address pointer>). The no. of

index in SM scheme or nOiSAI = 5 (<history value, initial index, first address, coeffIcient

vector, extended dimension>). If the totla size of index is tsi = noi x n x y and total index

overhead is Y = (tsi x (hc + 1)). Then the index overhead of SAl (or SSAI), EA1 and

EA2 is as follows:

No. of index in SAl (or SSAI) scheme, nOiSAI = 5

Total size of index in SAl (or SSAI) scheme, tSISA/ = 5 x 2 x y = lOy

Total index overhead: YsAj = (tsi x (hc + 1)) = by x (hc + 1)

No. of index in EAI scheme, noiEA, = 3

Total size of index in EAI scheme, tSEA1 = 3 X n x y = 3ny

Total index overhead: YEA1 = (tsi x (hc + 1)) = 3ny x (hc + 1)

No. of index in EA2 scheme, nOiEA2 = 4

Total size of index in EA2 scheme, tS1EA2 = 4 X n x y = 3ny

Total index overhead: YEA2 = (tsi x (hc + 1)) = 4nC x (hc + 1)

Consider index size y = 8. Let 1 = 4. Now consider two cases CASE I and CASE 2. In

first case or CASE 1, vary n = 4-'-6 and in second case or CASE 2, vary hc = 0-2. Then,

the index overheads of the structures can be calculated as mentioned in Table. 4.2. The

first case is mentioned in Fig. 4.1(a). Here, it can be seen that the SAl scheme requires

smallest and constant index overhead which does not depend on the value of n. The

second case is depicted in Fig. 4.1(b). Here, in accordance with the dynamic extensions,

the index overhead of SAl scheme increases but still consumes lowest overhead than the

other schemes.
4

b) Experimental A naysis.

The CMA is a static structure. It does not require any indexing. The EA I and EA2 demand

indices for each of then dimensions. For EAI, the value of each index entry is a 3 tupple

45

Table 4.2. Analytical Index Overhead for Constructed Prototypes

y CASE he n
1SAI

by x (hc + 1)

1EA1

3ny x (hc + 1)

EA2

4ny x (hc + 1)

1 0

4 80 96 128

5 80 120 160

6 80 144 192

2

0

4

80 96 128

1 160 192 256

2 240 288 384

11

Figure 4. 1: Analytical Result of Index Overhead

<history value, fIrst address, coefficient vector>. For EA2, the value of each index entry

is a 4 tupple <initial index, start address, coefficient vector, s/art address pointer>. Where

coefficient vector has (n - 2) entries. Both the EAI and EA2 needs n indices to be

placed. Hence the index overhead increases with the increasing n. However in SAT, the

index entry is a 5 tupple <history value, initial index, first address, coefficient vector,

extended dimension>. But the total number of indices are 2 irrespective of the value of ii.

Hence, index overhead for index is very small in SAl. Fig. 4.2(a) shows the index

overhead for SAl, EAI and EA2 for / = 4, he = 0 and varying n. As n increses, the SAT

shows constant and small index overhead, the EA2 shows more overhead than EAI since

it has more entry for index than EAT. Fig. 4.2(b) shows the index overhead for SAl, EAI

and EA2 for n = 4 and varying he. As he increses, the SAT shows increasing but small

overhead compared to EAt and EA2. The SSAI structure has same index cost as the SAl

structure.

400

350

300

- 250

200

150

100

50

0

650

600

550

500

450

' 400

350

. 300

250

. 200

150

100

50

46

4 6 8 10 12 14 16 0 1 2 3 4 5 6

No. of Dimension, n No. of Extension, 1w
(a) (b)

Figure 4.2: Experimental Result of Index Overhead

4.2.2. Construction Cost (C)

a) Theoritical Analysis.

The construction cost involves the cost of allocating and storing data volume, cost of

allocating indexing and cost of indexing (as sec 4.2.1). If cost of allocating indexing is r,

then the construction cost of the schemes are follows:

Constructin Cost of CMA, CCMA = all = aV1

Constructin Cost ofEAl, CEA1 = aV + n X -rX YEVA1 = n X TX 3ny(hc + 1) + aV =

3ny + a1

Constructin Cost ofEA2, CEA2 = aV + n X -r X EA2 = n X t X 4ny(hc + 1) + aV =

4ny + a171

Constructin Cost of SAl (or SSAI), CSAJ = aV + 2 X r X 1SAJ = 2 x r X

10y(hc+1)+aV=2xrx10y+aP1

For all the above structures, the construction time directly depends on the value off and a

or the volume (F) of the structure. But for a dynamic structure, additional cost is required

for index overhead. Consider index size a = y = 8. Let / = 4, -r = 1000 and . Then, the

construction cost of the structures for n = 4-6 can be calculated as mentioned in Table.

4.3. The comparison of construction cost is shown in Fig. 4.3.The CMA requires lowest

j construction time as it does not consume any index overhead. Among the three dynamic

structures, as SAl (or SSAI) consumes lowest index overhead and it requires only 2

dimensional index initialization. Hence it has the lowest construction cost amongst others.

A
0

J.
0

35000

30000

25000

20000

15000

10000

5000

WIN

47

Table 4.3. Analytical Construction Cost for Constructed Prototypes

I a=y t n
CCMA

a1

CSAI

2xTx10y+a11'

CEA1

nxrx3ny+a111

CEA2

nxTx4ny+aV0

-

4 8 1000

4 2048 162048 386048 514048

5 8192 168192 488192 648192

6 32768 192768 608768 800768

No. of Dimension, n

Figure 4.3: Analytical Result of Construction Cost

b,) Experimental Analysis.

As the CMA does not maintain any index, the construction of CMA only involves the cost

to allocate and store data. Again, for a dynamic structure like EAlor EA2 or SAl (or

SSAI), the construction not only involves the time to allocate and store data but also to

initialize indexing. 1-lence, the CMA takes smallest cost for initial construction compared

to the dynamic models. Again the dynamic models differ their construction cost from

CMA by their indexing cost. Among the dynamic array models, as the SAL requires two

dimensional indexing, hence it has smallest cost (except CMA) for initial construction

compared to theother dynamic models like EA I and EA2 as 11 dimensional indexing is

required for n dimensional Indexed Array. Fig. 4.4(a) shows the construction cost of the

CMA along withthe dynamic schemes. Fig. 4.4(b) shows the initial construction cost of

the dynamic models EAI, EA2 and SAl. Hence, the performance of SAl scheme has been

validated with theoretically and experimentally.

50000 45000 -

45000 40000
• SAJ

40000 35000 A EA1
35000-

CMA

-

30000 EA2

25000 - ' EA2
- -

E 25000

20000
E 20000

I-. - - - 15005
15000 . - -

- -I -

10000
10000

- ::-- - -:--------
5000 5000

10 1,2 4

No. of Dimension, n No. of Dimension, u

(a) (b)
Figure 4.4: Experimental Result of Construction Cost

4.2.3. Extension Cost (EC)

a,) Theoritical Analysis.

The CMA is a static structure. It requires reorganization of the array and rewrites both

existing and new data elements. The existing elements of the initial array (ei) need to be

tackled and recalculate the new offsets (e2) due to the extension for CMA.

Hence the extension cost of a CMA is

ECCMA = e1 + e2

The cost of tackling the existing array elements,

ei = V = l = P.

If a CMA is extended by I then a new CMA of length / +1 is to be reallocated and

reallocation cost becomes

e2 = (1 + 1) x In-i

So, Total extension cost for CMA(n),

ECCMA = e1 + e2 =
I" + (I + 1) x I71

For a dynamic model, to compare with the static structure lets ignore the indexing cost. As

a dynamic model does not require reallocation, the cost only depends on the new extended

data size allocation or SA allocation. If an EA is extended by I then the SA length is

to be allocated. If, the SA allocation cost is SC, then the extension cost is follows:

ECEA = SC =

48

49

Hence, the extension cost gain (ECG) of a dynamic model compared to static CMA is as

follows:

ECG = ECCMA - ECEA = I + (1 + 1) x 11 - In-i = 2171

The extension cost of CMA and EA for n = 8, 10, 12 is shown in Table 4.4. The

performances of the EA 1, EA2 and SAl with respect to CMA are shown in Fig. 4.5(a).

Table 4.4. Analytical Extension Cost for Static (CMA) and Dynamic (EA)

I n
Volume

V =
In

ECCMA

V + (I + 1) x

ECEA

I'

ECG

ECCMA - ECEA = 2 In

4 16 40 8 32

2 6 64 160 32 128

8 256 640 128 512

Table 4.5. Analytical Extension Cost for Dynamic (EA) Prototypes

1 y n

SC

I

ECEA1

SC+ny

ECEAZ

SC+(3+n)xy

ECSAI

SC+(4+{])xy

8 128 192 216 192

2 8 10 512 592 616 584

12 2048 2144 2168 2096

6000

—.—CMA 503 -

0000 -OEA1
EA2 / 400

4000

'

400. - 5;:- SAl

 350

3000 15 300

250-

:00
1000 _-'

- 100

0 --
-Q 503

50 -
IN 4 6 8 8 10

No, of Dimension, ,, No, of Dimension,,:

(a) (b)
Figure 4.5: Analytical Result of Extension Cost

50

For dynamic models, the extension cost varies with respect to indexing cost. To extend a

single dimension with a single unit (one hc) only one dimension needs indexing. If the

indexing cost is 'EA' then the extension cost can be re-write as follows:

ECEA = SC + 1EA

But, the indexing of coefficients is different in different models. For EAt, the coefficient

is n - 2 dimensional. For EA2, the coefficient is n dimensional and for SAl (or SSAI), the

coefficient is
121

dimensional.

For EA 1, the no. of index is 3 and indexing cost for an extension is as follows:

'EA1 =2y+(n-2)Xy=ny

And

ECEA1 = sc + 'EA1
= + fly

For EA2, the no. of index is 4 and indexing cost for an extension is as follows:

'EA2 =3y+nxy(3+n)Xy

And

ECEA2 = sc + 'EA2 = I a—' + (3 + n) X y

For SAl, the no. of index is 5 and indexing cost for an extension is as follows:

'SAl = 4y + [1 x y = (4 + f]) x y

And

SC + 'SAl = in_i + (4 + [1) x y

The extension cost of EAI, EA2 and SAL for n = 8,10,12 is shown in Table 4.5 and the

performances are shown in Fig. 4.5(b). From the above flgure it can be seen that the SAl

(or SSAI) outperfoms the other dynamic models.

4000

3000

2000

C

1000

50000

40000

17 30000
S

20000

C

i0000

-.- SAl p
0- CMA
tEA1

-v-EA2

-o

0• - -

51

b) Experimental Analysis.

The CMA is a static structure. CMA requires reallocation of previously stored data ilwe

want to resize or extend it. For an index based array models, there is no need for

reallocation. Hence, the extension cost for CMA is always higher than other dynamic

indexed array models as mentioned in Fig. 4.6(a). The comparison of indexed based

models is mentioned in Fig. 4.6(b). For an index based model, the extension cost involves

allocation of SA (instead of reallocation) and updating auxiliary indexing information. For

a single extension, among the n dimensions (for EA) or 2 dimensions (for SAl or SSAI)

only one auxiliary table is updated. But, the coefficient allocation depends on the value of

n. for, EAI. EA2 and SAl the co-efficient is (n - 2), n and
121

dimensional respectively.

In theoretical analysis we have considered that all indexing parameters are of same size

(y). But practically the size (say ii) of coefficients and address are same and larger than

the the size (say 12) of parameters like history, initial index, extended dimension. 1-lence,

for EAI the indexing size is t2 + (n - 2)t1 + t1 or t2 + (n - 1)t1 and for EA2 the

indexing size is 2t2 + nt 1 + t1 or 2t2 + (n + 1)t1 . And the difference between the

indexing of EAI and EA2 is t2 - t1 . For this reason, the extension cost ofEAl and EA2

differs slightly. When the value of n is small the extension time is almost similar in case of

SAl (or SSAI) compared to other models. However, with the increase in n, the extension

cost of EAI and EA2 increases due to a dimensional and (n - 2) dimensional coefficient

maintenance respectively.

60000 - 6000

4 6 8 10 12 4 6 8 10 12

No. of Dimension,,, No. of Dimnsion,,s
(a) (b)

Figure 4.6: Experimental Result of Extension Cost

52

4.2.4. Retrieval Cost (RC)

a) Theoritical Analysis.

Let, n = 4, 1 = 1 = = 1 = I = 2. The form of an input for a single range key is <

k1, k 2, k3, u4 >, wheren ki is the known index on dimension i and 0 !!~ k !~ I - 1, 1 :!-~

i ii and u1 is the unknown index on dimension j and 0 :5 u3 !~ I - 1, 1 :5 j :5 n,j # i.

Let, the difference between two successive selected block read for a query is s and S-max

is the maximum difference between two successive blocks. The two blocks are

consecutive if Sj = 0.

The addressing function of the CMA (using Eq. 2.1) can be rewrite as follows:

f(x4, x3, x2, x1) = x4 x i + x3 x 12 + x2 x I + x1 = 8x4 + 4x3 + 2x2 + x1

Now, consider an input < 1, 1, 1,*>, where "p' means all. Then, we have values as 14 and

15 (s1 = 15 - 14 = 1). If the input is < 1, 1,*, 1 >, then the values are 13 and 15

(s2 = 15 - 13 = 2 = 1). When the input is < 1,*, 1, 1 >, then the values are 11 and 15

(s3 = 15 - 11 = 4 12). And if the input is <*, 1, 1, 1 >, then the values are 7 and 15

(54 = 15 - 7 = 8 = 1). Here, Smax = s4 = i. 1-lence, if the number dimension is n,

then the value Of 5inax S

For a dynamic model like EA, as the SA is n - 1 dimensional, hence the addressing

function for an extension along dimension d 4 can be rewrite as follows:

f (x3, X 2 , x1) = x3 x 12 + x2 x I + x1 = 4x3 + 2x2 + x1

Like CMA, the value of 5inax can be calculated as s1 = S3 = 12 when n = 4 or 5m

53 = 171_ 2 when n = ii, which is smaller than the CMA. But for a dynamic model, the

retrieval of an input requires to locate the SA by searching 17 dimensional supplementary

tables. In contrast, for a static model, there is no requirement of a SA searching. It only

genates maximum of 11 locations for a given query. If for a given input, a dynamic

model needs to locate three SA each of which requires t unit of time, then the total time for

generating the required cells is 1n2 + 3t. 1-lence, the static model degrades the

performances of a dynamic model.

53

The proposed SAl is a 2 dimensional dynamic model. As 1 = 2, hence 12 ' = 12 X 14 X ... X

77 4 77 4

/=1=2=4, 11 1 =11 x13 x ... x111=l=2=4, 0k~l'-1,15i~

2, 0 :5 u 5 1/ - 1, 1 5 j :5 2,] # i and addressing function for SA on d1'is as follows:

f (xi', x2') = xl' X 1 + x2' = 4x1' + x2'

Now, consider an input < 11 *>. Then the required values are 4, 5, 6, 7 (s2' 5 - 4 =

1). If the input is <*, 1 >, then the requied values are 1, 5, 9, 13 (Si'= 5 - 1 = 4 = 12 ').

Hence, Spiax '2 = 1. Like a dynamic model, the SAL structure also requires

supplementary table searching, but the table is 2 dimensional. Hence, the proposed SAl

outperforms both the static model and dynamic model.

b) Experimental Ana/ysis.

Fig. 4.7(a) compares the single range retrieval performances of the compared models of

volume 29, 30, 52, 74 GB for n = 4, 6, 8, 10 respectively. A CMA model searches the

given input among n dimensional index. If we exclude the given input's dimension, then it

will require n - 1 dimensional index to generate the resultant cells and requires n - 1

loops. Furthermore, EAI and EA2 search a SA of (n - 1) dimension. To find a subscript

of dimension n - 1 of size ..., 1] they need to calculate array indices of dimension

n - 1 (ex. A[xi ,x2,...,x,1/]). If we exclude the given input's dimension, then the indices

calculation reduces from (n - 1) to (n - 2). Hence to calculate such (n - 2)

dimensional indices they will need (n - 2) loops which is smaller than CMA. But for

locating a SA, the dynamic models require n dimensional supplementary table searching

which decreases the performances of dynamic models compared to static model. Again, as

the EAI requires less indexing than EA2. Hence the EAI outperforms the EA2. On the

other hand, the SAT needs 2 loops only to calculate array indices of dimension 2 by

f(x1',x2 ') = x1' x 12' + x21(Eq. 3.2). Thus, it outperforms the dynamic models and at

the same time static model. Fig. 4.7(b) shows the performances of large length data

retrieval where we omit the performance of CMA as it does not support such large length.

To compare with the dynamic models, we choose data size 103, 114 and 153 GB for 12,

14 and 16 dimension respectively. The retrieval performance of SSAI is same as SAl.

54

1600

1400 —.— SAl

0-' EA1
' 1200
U

EA2

1000

A
000 - - -

nO 600 - -

400 :
200

14
17

12
-.-CMA
-0-SAl

EA1 / A

-v-EA2
8

U

:

A
Q

2-

A
 - - 0 O

-k

4 6 8 10 12 14 16

No, of Dimension No. of Dimension, n

(a) (b)

Figure 4.7: Experimental Result of Retrieval Cost

4.2.5. Storage Utilization (SU)

a) Theoritical Analysis.

If the SA size is sz and segment size of SSAI is sgz then the allocation requirements of the

compared protoypes are as follows:

Allocation requirement of CMA, ARCMA = V =

Allocation requirement of EA, AREA = sz =

Allocation requirement of SAl, ARSA! = sz =

Allocation requirement of SSAI, ARSSAJ = sgz =

Table 4.6. Analytical Result of maximum length of the compared Prototypes

For ARCMA = For ARSA! = 1n1
For ARSSAJ = lz

116 = 264 115 = 264 18 = 264

16 10921 = 1092 (264) 15 log2 1 8 log2 I = 1092 (264)

= 64 = 1092 (264) = 64
= 64

1092 I = 4 ='
10

92 I = 4.3
1092 1 = 8

=1=2 - =20, =I=28 =256,

171 V=1=2016 V=1"=25616

= 1.8x 1019 =6.6x 1020
= 3.4x 1038

55

350
-e--- CMA • 1600

300 EA
SSAI -

1400

' 250 g 1200

200 1000

S so
/

7' 800

,/ .O .600

50 /__- 400

0 - ---------— -
200

12 14 16

No. of Dimension, n

F.

12 14 16
No. of Dimension, n

7- -r

(a) (b)

Figure 4.8; Analytical Result of Storage Utilization

Let n = 16. Theoretically, for a 64 bit address space the maximum length of each

dimension can be calculated as mentioned in Table 4.6 which shows that the SAl scheme

requires lowest allocation space and highest usable length and hence offers maximum

volume of data or maximum storage utilaization. Fig. 4.8(a) shows the allocation

requirements and Fig. 4.8(b) shows the maximum usable length of CMA, EA (or SAl) and

SSAI.

h,) Experimental Analysis.

In storage utilization we have discussed two types of overflow situations. First one is

resource overflow where the structure has enough address space to allocate but the system

has no space to store. Anothcr one is allocation overflow where we have enough space to

store but the address space overflows. The CMA has very less memory utilization because

an increase in ii and / causes the total address space to increase as P. Consequently, it

overflows quickly. Again, the CMA requires 1" consecutive memory locations. In case of

storage utilization, the SAl acts like an EA. The index array models do not require P1

consecutive memory locations. Instead, the index array models dynamically allocate

consecutive SA of size P''. Hence storage utilization of index array models is higher than

CMA. But the increase in n and / triggers the address space to overflow in index array

models too. In SSAI the allocation grows in the form of 1. This is because the dimensions

are divided into 2 and the allocation depends on the segment size which corresponds to the

length of either dimension from the 2 dimensions. Fig. 4.9(a) shows how the allocation for

CMA. EA (or SAL) and SSAI increases with the increase in dimension value. For this

reason, the maximum usable length of dimension decreases even though enough resource

56

available which is shown in Fig. 4.9(b). As SSAI demands least allocation and largest
,.

usable length, hence SSAI manages highest storage utilization than others as shown in Fig.

4.9(c). From the mentioned figure it can be seen that the CMA structure always shows

address space overflow. On the other hand, the EA (or SAl) shows resource overflow

when n = 4--8 and shows address space overflow when n~! 10. Using our available

resources, we have observed that the proposed SSAI scheme always faces resource

overflow rather than address space overflow.

350 14
U

300 I 12
/ -3

iF 250 —.—CMA
10

'o-EA I 200
rs SSAI /

ISO

8

/ 6
•100 / p
.2 I"

50

0 2

.50 0
4 6 8 10 12 14 16

No. of Dimension,,,

(a)

10 12 14 16

No. of i)imension,,,
(b)

4 6 8 10 12 14 16
No. of Dimension,,,

(C)

Figure 4.9: Experimental Result of Storage Utilization

4.3 Performance Analysis of the Encoding

In the previous section we have seen that the SSAI has better performance than SAl.

Hence, we have applied our encoding technique on SSAI scheme named as 2DKVE

(mentioned in chapter 3). We have compared the performance of our encoding scheme

with the history-offset scheme [16] which is based on EA1. In rest of the section we will

denote history-offset scheme [16] as HOE.

1400

1200

1000

800

600

400

.2 200

0

57

4.3.1. Index Overhead (Y)

The structure replaces the 2D Address Table (AT) entry from the supplementary table of

SSAI with an individual ID First Address Table (FAT) that contains the first non-empty

address of a SA. The 1-bE is an encoding scheme based on EA I. Hence, the encoding cost

in HOE is same as EAt.

a) Theoretical Analysis.

No. of index in 2DKVE scheme, noi2DKVE = 01SSAI = 5

Total size of index in 2DKVE scheme, tSI2DKVE = (4 x 2 + 1)y = 9y

Total index cost in 2DKVE scheme:Y2DKVE = (tsi(hc + 1)) = 9y(hc + 1)

Total index cost in HOE: YHOE = EA1 = 3ny(hc + 1)

Table 4.7. Analytical Index Overhead for Encoding Schemes

y CASE hc n
1SSA1 12DKVE 11-WE

by x (hc + 1) bOy x (hc + 1) 3ny x (hc + 1)

4 80 72 96

I 0 5 80 72 120

8
6 80 72 144

0 80 72 96

2 1 4 160 144 192

2 240 216 288

Consider index size y = 8. Let / = 4. Now consider two cases CASE I and CASE 2. In

first case or CASE 1, vary n = 4'6 and in second case or CASE 2, vary hc = 0--2. Then,

the index overheads of the structures can be calculated as mentioned in Table. 4.7. The

first case is mentioned in Fig. 4.10(a) for n = 4-'-9. Here, it can be seen that the 2DKVE

scheme requires smallest and constant index overhead which does not depend on the value

of n. The second case is depicted in Fig. 4.10(b) for hc = 0-5. Here, in accordance with

the dynamic extensions, the index overhead of 2DKVE scheme increases but still

/ consumes lowest overhead than the other schemes.

--

. 200

150

0

. 100
0

Figure 4.11

300

250

50

0
4 6

400 -.

2DKVE
400] EM 2DKVE

____SSAI
SSAI HOE
HOE

7-

5$

., 2DKVE

I $M

-
0 I 2 3 4 6

No. of I)imension,n No. of Extension, he
(a) (b)

Figure 4. 10: Analytical Result of Index Overhead for Encoding Schemes

b,) Experimental Analysis.

The indexing in 2DKVE involves 2 dimensional 4 tupple <history value, initial index,

coefficient vector, extended dimension> and one dimensional <firsl address'> and has

small overhead compared to SSAI (sec 4.2.1). Fig. 4.11(a) shows the storage overhead for

2DKVE, SSAI (or SAl) and HOE for I = 4. he = 0 and varying n. Fig. 4.11(b) shows the

storage overhead for 2DKVE, SSAI (or SAl) and HOE for ii = 4 and varying he. The SAl

or SSAI shows better perfoormance compared to HOE and the 2DKVE scheme shows

better performance compared to SAT or SSAI.

4.3.2. Range of Usability(s)

/ The Compression Ratio (i) of an encoding scheme is defined as the ratio between the
J

compressed array and uncompressed array. The value of 77 is preferred to be 0 < 77 < 1.

The Range of Usability() of an encoding scheme is defined as the maximum value of p

up to which the compression ratio 77 is less than I.

59

a) Theoretical Analysis.

The array cell size is a, key size of 2DKVE is fl , offset and history of HOE is 8 and A

respectively. The array volume of a cells is V = a x I. Then,

The total data size of compressed array is: a = N x a

The total key size of compressed array in HOE is: THOE = N x 8 + N x A = N(8 + A)

The volume of compressed array is: VHOE = Q• + TJQ. = N x (a + 8 + A)

So, the compression ratio of the HOE scheme is as follows:

??HOE =
VHOE

—

N(a+6+.t)N x
(a+6+A

 =px
) (a+S+A) (i+ +).......(4.1)

— V axV' In a a

The total key size of compressed array in 2DKVE is: T2DKVE = N x

The volume of compressed array is: V2DKVE = 5 + t2IE = N x (a +)

So, the compression ratio of the proposed scheme is as follows:

VZDKVE - N (a+/) N (a+j?) (a+J1) (
TJ2DKVE — - - a a \ a)

X =px =pX(1+—(4.2)
V axl'1 l

Table 4.8. Analytical Compression Ratio of Encoding Schemes

p a

HOE

/ SA\
pxll+ —+—)

\ a a)

2DKVE

/ f?
px{1+—

\. Cr

CASEI:a=6=A CASE2:a=2A CASEA:a=/:? CASEB:a=2/3

17HOE = 17HOE 172DKVE = 112DKVE =

0.39 8 1.17 0.975 0.78 0.56

Table 4.9. Analytical Usable Length of Encoding Schemes

HOE 2DKVE

/ 6A\
pxll+ —+—1

\ a a!

/ 1?
pxll+ -

' a r a
CASE 1:a= ö=A CASE2:a= 2A CASEA:a= /3 CASEB:a= 2/3

1 11 11 77

0.9 8 I1HOE <0.34 or I1HOE <0.4 I12DKVE < 0.5 I12DKVE < 0.67

4.

60

3.0 SSAI

—0— KOEa2

2.5
HOE, a = 2 .

0
-v- 2DKVE, afi .

2.0 -
2DKVE, a 2/1 -

A a'

A• ,° ,,v - to
E

.1)

00

0.0 0.2 0.4 0.6 0.6 1:0

Data DensHy, p

Figure 4.12: Analytical Result of Range of Usabilities of Encoding Schemes

Now, let the value of data density or p is fixed and p = 0.39. Hence, depending on the

value of a, f, (5 and A we have two cases for HOE denoted as CASE I and CASE 2. The

first one is for a = S = A. As for a HOE scheme a # 28 hence, the second case CASE 2

is for a = 21 Similary we can have two cases for 2DKVE scheme denoted as CASE A

when a = fl and CASE B when a = 2. Then from Eq. 4.1 and Eq. 4.2 we can get some

compression ratios such as mentioned in Table. 4.8. From the above table it can be seen

that in every cases the 2DKVE scheme has better compression ratio than HOE. For

determining the range of usability (u) of an encoding scheme for the cases such as CASE

1, CASE 2, CASE A and CASE B, let usable 71H0E = 17 2DKVE =77= 0.9. Then from Eq.

4.1 and Eq. 4.2 we can get some data density as mentioned in Table. 4.9. In every case the

2DKVE scheme has higher usability than HOE. Hence, the 2DKVE scheme outperforms

the HOE scheme as depicted in Fig. 4.12.

b) Experimental Analysis.

As the SSAI structure is an ucompessed data representation, hence value ofi is always 1.

From the theoritical analysis we have seen that, the performances of the encoding schemes

depend on the value of total key size 'r. The HOE scheme involves n dimensional history

and (n - 1) dimensional offset information. The history information is a small integer to

track the dynamic extensions. Hence, it can be assumed the the size of history is less than

the size of array cell. For this reason, we can have two cases: a = 8 = A and a = 22.. In

every cases, the encoding depends on the value of n for an n dimensional history and n-I

dimensional offset. Depending on the value of a for 2DKVE, we have two possible values

for fl, a = fl and a = 2. But in every cases of 2DKVE scheme, the encoding cost

depends only on two parameters <x 11 ,x 2' > despite of the value of n. So, the 2DKVE

61

scheme always outperforms the HOE scheme. For every cases , the usability range of

HOE is lower compared to 2DKVE scheme. The comparison of the range usabilities of the

compared schemes has been depicted in Fig. 4.13(a) which is similar to the theoretical

analysis. Fig. 4.13(b) shows the logical volume of the two schemes. From the above

figures it can be said that the maximum usability range of HOE is 0.39 whereas the

maximum usability range of 2DKVE is 0.66.

3.0 —.—SSAI 9
0 HOE,a0

8
25 HOE, a = 2d

.
-.- SAl

- V— 2DKVE, a = -
- 0 HOE

4 2.0 - 2DKVE, a = 22 6
2DKVE

a . ,• _c_ ••

5 0 1.5 i o . =
.___v

' ,,~
-

1.0 •_u_
,

O17I._*_U_U_U
.

E ._o_Z?.e' 3
b

0.5 •. 2
' 'o.

0.0
1

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.10.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Data Densuy. p Data t)ensity, p
(a) (b)

Figure 4.13: Experimental Result of Range of Usabilities

4.3.3. Storage Cost ()

The storage cost is the cost needed to encode a given volume of data from a sparsed

structure. This cost includes the volume of non-empty data, the cost of encoding of this

volume and also the cost of indexing which manages the scalability of the schemes.

a) Theoretical Analysis.

The storage cost of an encoding scheme is as follows:

= encoding cost + indexing cost

=Nx(a+t)+y=pxVx(a+t)+y=pxV'x(a+r)+y

Now, for 2DKVE scheme, the storage cost 2DKVE is as follows:

2DKVE = p x 171 (a + T2DKVE) + Y2DKVE = p x l(a + f) + 9y(hc + 1)

If a = f.?, then
A

2DKVE = 2pa x l + Y2DKVE

And ifcz= 2f3,then

2DKVE = 3p? x + Y2DKVE = 1.5pz x 1' + Y2DKVE

62

Now, for HOE scheme, the storage cost HOE is as follows:

HOE = p x P' x (a + THOE) + YHoE = - x P'(a + f3 + A) + 3ny(hc + 1)

Ifa= /3=A,then

HOE = 3pa x I n + YFIOE

and if a = 22., then

HOE = 5pA x 171 + Yjiog = 2.5pa x I" + Yiio

Now, consider two cases. In first case denoted as CASE I vary n = 4, 5 and set p = 0.2. In

second case denoted as CASE II vary p = 0.4, 0.5 and set n = 4. Let I = 12. Then, for the

cases mentioned in sec. 4.3.2, the storage cost of the schemes can be calculated as

mentioned in Table. 4.10. For CASE I, we can see that the encoding cost in 2DKVE

scheme is smaller than HOE as depicted in Fig. 4.14(a) for n = 4 9. Again for CASE 11,

the encoding cost in 2DKVE scheme is smaller than HOE as depicted in Fig. 4.14(b) for

p = 0.1 - 0.6.

Table 4.10. Analytical Storage Cost of Encoding Scemes

HOE 2DKVE

- 7ff i X fl I 7
HOE - p a-- rYHOE

7 - If! I.'\ -I-
',2DKVE - P kP) mY2DKVE

CASE I CASE 2 CASE A CASE B
a / CID

a==A a=2A a=f3

3pa17'
2.5 palT7 2pa177 1.5paU

+YHoE +YHOE +Y2DKVE +Y2DKVE

-

- 4 99,629 83,040 66,427 49,838
-

0.2

1,194,514 995,448 796,334 597,269
8 12

0.4 199,162 165,984 132,782 99,605
II 4

0.5 248,928 207,456 165,960 124,488

-r

A

63

26000 300,

24000 7 22000

20000
—•— 2DKVE a=2fi

.

250
EM 2DKVE a2fl Is

18000 --O- 2DKVE a=fi
2DKVEa=fl

56000
L HOE a= 2A 200

HOEa2A
- V- HOE a = A

HOE a
52000 °

as 10000 54
C
: 8000

C 100
6000

C
54 4000 as

2000 50

0

-2000 0
4 5 6 7 8 9 0.1 0.2 0.3 0.4 0,5 0.6

No. of dimension n Data Density, p
(a) (b)

Figure 4. 14: Analytical Result of Storage Cost of Encoding Schemes

So, it can be concluded that in every cases, the 2DKVE scheme outperforms the HOE

scheme.

b, Experimental Analysis.

In 2DKVE scheme, the indexing cost depends only on the number of extensions (hc) of

the SA which is constant for initial construction and lowest for varying extensions

compared to others. The encoding of 2DKVE involves only data of size a and key of size

fl which comprises only 2 indices. For HOE scheme the indexing cost not only depends on

the the number of extensions (hc) of the SA, but also on the value of n. Again,the

encoding of HOE involves data of size a, (n - 1) dimensional offset of size ö and n

dimensional history of size A. Thus, the storage cost of HOE is always larger than the

storage cost of 2DKVE. Again, dependending on the value of a, P, ö and A, the

performance of HOE and 2DKVE varies. For example, the value of 2DKVE and HOE is larger

when a = 2f and a = 2A respectively. The performances of the storage cost of the

underlying schemes for fixed hc, p and for varying n, U' has been depicted in Fig. 4.1 5(a).

Fig. 4.15(b) shows the storage costs for fixed n (n = 12), 170(412), and varying p.

64

40

35 —.-2DKVE 2
140 122DKVE,a2fi

30

25

- c- 2DKVEafi
A HOE =22

- - HOE,a=A /

120

Ej2DKVE,a/3
HOE,a22
HOEa=/J=A

/ ISO
20 -

10.

I

No. of Dimension,,, Data Density, p

(a) (b)

Figure 4.15: Experimental Result of Storage Cost

4.4 Discussion

In this chapter we present the experimental outcomes and also the theoretical analyses of

the proposed schemes. We have compared our schemes with the static model like CMA

and also with the dynamic models like EAI and EA2. We have also made comparison

between compressed and uncompressed version of the proposed model. In each case we

found relevancy with the theoretical analysis and hence we validate the theory. We have

showed that the SAl scheme outperforms the EA1 and EA2 schemes and the SSAI

outperforms the SAl scheme. Furthermore, our encoding scheme 2DKVE outperforms the

conventional 1-bE scheme.

/

65

CHAPTER V

Conclusion

5.1 Summary

Now-a-days large volume of current and future data maintenance has been a key concern in

different aspects of data computing like Big Data. But the margin of large volume is changing day

bay day as the required size of data is expanding gradually. On the other hand, in real world

application the amount of effective data among the large volume is very small as the structure is

extremely sparsed. So, it is very important to handle large volume application efficiently with

meaningful data only. The conventional multidimensional array systems may comprise many

advantages but they cause address space overflow with the increase in length or number of

dimension (or both) as they demand reallocation. This consequence degrades their performance

drastically even the system has available resources. The Extendible Array strategy can improve

the performance of conventional systems by avoiding reallocation but they also suffer from address

space overflow as the subarray size grows exponentially. In this research work, we have managed

four practical problems of higher order multidimensional data namely (i) ii dimensional data

representation (ii) extending the length or size of the array dynamically, (iii) decreasing index cost,

(iv) dealing address space overflow, and (v) handling sparsity of array.

We describe a new scalable array structure that represents an n dimensional array by a 2

dimensional extendible array named as Scalable Array Indexing (SAl). But like an Extendible

Array, the structure also shows address space overflow. For this reason, we modify the SAl

structure and renamed the new scalable structure as Segment based Scalable Array Indexing

(SSAI) where SAs are represented by a set of segments. The memory is allocated for individual

small segments instead of exponential sized SAs. Therefore, the allocation requires less size

compared to the other schemes even for large values of length of dimension and number of

dimension. Hence, the proposed SSAI structure is able to delay address space overflow with

smallest storage overhead. We also propose an encoding scheme based on our proposed SSAI

66

structure that can encode the sparse data that reduces the indexing cost and encoding cost

effectively and named as 2 Dimensional Key Value Encoding (2DKVE).

We have evaluated the proposed SAl and its variant i.e. the SSAI structure and the encoding of

SSAI or 2DKVE scheme by theories and experiments. The experimental results confirm the theory

for various array operations. Again we have compared our proposed schemes with the static CMA

and also with the dynamic models EAI and EA2 and have found better results for the proposed

model.

5.2 Recommendation for Future Work

Since the proposed model is a multidimensional array representation scheme, any application or

system that uses multidimensional array to represent data can use the scheme. More specifically -

• This scheme can be successfully applied to database applications especially for

multidimensional database or multidimensional data warehousing system [2, 3].

• One important future direction of the work is that; the scheme can be easily impleniented

in parallel platform [34].

• Because most of the operations described here is independent to each other. Hence it will

be very efficient to apply this scheme in distributed array storage, parallel and distributed

array storage [8].

• This scheme can be successfully applied to key value storage for big data storage.

67

REFERENCES

 Florin Rusu and Yu Cheng, "A Survey on Array Storage, Query Languages, and

Systems." arXiv preprint arXiv: 1302.0103, 2013.

 Chun, Y. L., Jen, S.L. and Yeh, C.C., "Efficient Representation Scheme for

Multidimensional Array Operations," IEEE Transactions on Computers, vol. 51(3),

pp. 327-354, 2002.

 P. Baumann, "On the management of multi-dimensional discrete data", The VLDB

Journal, vol. 4(3), pp. 40 1-444, 1994.

 S. Idreos, F. Groffen, N. Nes, S. Manegold. S. K. Mullender and M. L. Kersten,

"MonetDB: Two decades of research in column-oriented database architectures,"

IEEE Data Engineering Bulletin, vol. 35(1), pp. 40-45. 2012.

 Y. Zhang, M. L. Kersten, M. Ivanova and N. Nes, "SciQL, Bridging gap between

science and relational DBMS". In Proceedings of the 15' Symposium on

International Database Engineering & Applications, pp. 124-133, 2011.

 Katarina Grolinger, Wilson A Higashino, Abhinav Tiwari and Miriam AM Capretz,

"Data management in cloud environments: NoSQL and NewSQL data stores",

Journal of Cloud Computing: Advances, Systems and Applications, vol.2, 2013.

 Seyong Lee and Jeffrey S. Vetter, "Early evaluation of directive-based gpu

programming models for productive Exascale computing", Proceedings of the 12u1i

International Conference on High Performance Computing, Networking, Storage and

Analysis, Article No. 23, 2012.

 Mingxing Zhang, Yongwei Wii, Kang Chen, Teng Ma and Weimin Zheng,

"Measuring and optimizing distributed array programs". In Proceedings of the VLDB

Endowment, vol. 9(12), pp. 912-923, 2016.

 D. Rotem and J. L. Zhao, "Extendible arrays for statistical databases and olap

applications", In 811 International Conference on Scientific and Statistical Database

Systems, pp. 108-117, 1996.

K. M. A. Hasan, M. Kuroda, N. Azuma, T. Tsuji and K. Higuchi, "An extendible array

based implementation of relational tables for multi-dimensional databases",

Proceedings of the 7th International Conference on Data Warehousing and Knowledge

Discovery, pp: 233-242, 2005.

II. E. Otoo, G. Nimako and D. Ohene-Kwoee, "Chunked extendible dense arrays for

scientific data storage", Parallel Computing. vol. 39(12), pp. 802-8 18, 2013.

12. S. M. M. Ahsan and K. M. A. Hasan. "An implementation scheme for

multidimensional extendab Ic array operations and its evaluation", International

L!1

Conference on Informatics Engineering and Information Science, Part III, CCIS(253),

pp: 136-150,2011.

E. 0too and T. Mcrrctt, "A storage scheme for extendible arrays", Computing, vol.

31(l),pp: 1-9, 1983.

Daniel 0hene-Kwofie, E.J. 0too and Gideon Nirnako, "02-Tree: A Fast Memory

Resident Index for In-Memory Databases", International Conference on Information

and Knowledge Management, vol. 45, pp: 78-87, 2012.

Steve Carr, Kathryn S. McKinley and Chau-Wen Tscng, "Compiler Optimizations for

Improving Data Locality", In Proceedings of the 6th International Conference on

Architectural Support for Programming Languages and Operating Systems, pp. 252-

262, 1994.

K M Azhanil 1-lasan, Tatsuo Tsuji and Ken Higuchi. "An Efficient MOLAP Basic

Data structure and Its Evaluation", In Proceedings of 12th International Conference on

Database Systems for Advanced Applications. LNCS, vol. 4443, pp. 288-299, 2007.

Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach,

Mike Burrows, Tushar Chandra and Andrew Fikes, and Robert E. Grubcr, "Bigtable:

A distributed storage system for structured data", ACM Transactions on Computer

Systems, vol. 26(2), Article No. 4, pp. 1-26, 2008.

Alex Mircea Durnitru, Vlad Merticariu and Peter Baurnann, "Array database

scalability: intercontinental queries on petabyte datasets". In Proceedings of the 28t11

International Conference on Scientific and Statistical Database Management, pp. 1-5,

2016.

Alex Dumitrii, Vlad Merticariu and Peter Baumann, "Exploring cloud opportunities

from an array database perspective", In Proceedings of Workshop on Data analytics

in the Cloud, pp. 1-4, 2014.

Ben Lippnicier, Manuel M. T. Chakravarty, Gabriele Keller and Simon Peyton Jones,

"Guiding parallel array fusion with indexed types". In Proceedings of the 2012 Haskell

Symposium, pp. 25-36, 2012.

Min Chen, Shiwen Mao and Yunhao Liu. "Big Data: A survey", Mobile Networks and

Applications, vol. 19(2), pp. 171-209, 2014.

/ 22. Kostas Zoumpatianos, Stratos Idreos and Thernis Palpanas, "Indexing for Interactive

Exploration of Big Data Series", In Proceedings of the 2014 ACM SIGMOD

International Conference on Management of Data, pp. 1555-1566, 2014.

23. Michael Stonebraker and David Dewitt, "Requirements for Science Data Bases and

SciDB", In 41h Biennial Conference on Innovative Data System Research Perspectives,

2009.

69

Rosenberg, A.L., "Allocating Storage for Extendible Arrays", Journal of the ACM

(JACM), vol. 21, pp. 652-670, 1974.

Mano, M.M., "Digital Logic and Computer Design", Prentice Hall, 2005.

K. M. Azharul Hasan and Md Abu 1-lanifShaikh, "Efficient representation of higher-

dimensional arrays by dimension transformation", Journal of Supercomputing, vol.

73(6). pp. 280 1-2822, 2017.

P. Baumann, A. Dehmel, P. Furtado, R. Ritsch and N. Widmann. The

multidimensional database system RasDaMan", In Proceedings of the 1998 ACM

SIGMOD International Conference on Management of data, vol. 25(2). pp. 575-577,

1998.

Maarten Vermeij, Wilko Quak, Martin Kersten and Niels Nes, "MonetDB, a novel

spatial column-store DBMS", In Academic Proceedings of the 2008 Free and Open

Source for Geospatial Conference, OSGeo, pp. 193-199, 2008.

Weixiong Rao, "MonetDB And The Application For JR Searches", University Of

Helsinki. Seminar Paper. Column-Oriented Systems, 2012.

Peter Baumann, Alex Mircea Dumitru and Vlad Merticariu, "The array database that

is not a data-base: file based array query answering in Rasdaman", In Proceedings of

the 3 International Conference on Advances in Spatial and Temporal Databases, pp.

478-483, 2013.

Sándor Héman, Marcin Zukowski, Arjen Dc Vries and Peter Boncz, "Efficient and

flexible infor-mation retrieval using MonetDR/X 100", In Proceedings of the 3rd

Biennial Conference on Innovative Data Systems Research, pp. 96-101, 2007.

l-laozhou Wang, Kai Zheng, Xiaofang Zhou and Shazia Sadiq. "SharkDB: An in-

memory storage system for massive trajectory data". In Proceedings of the 23rd ACM

International Conference on Conference on Information and Knowledge Management,

pp.1409-1418, 2015.

Yaoliang Chen, Xiaomin Xu, Pohan Li, Siyuan Lu, Sheng 1-luang, Wei Lu and Kevin

Brown, "Geo-Mix: Scalable geoscientific array data management", In Proceedings of

the Industrial Track of the 131 ACM/IFIP/USENIX International Middleware

Conference, Article No. 1, pp. 1-6, 2013.

Viet-Trung Tran, Bogdan Nicolae and Gabriel Antoniu, "Towards scalable array-

oriented active storage: the pyramid approach", ACM SIGOPS Operating Systems

Review, vol. 46(1), pp. 19-25, 2012.

Yihong Zhao, Prasad M. Deshpande and Jeffrey F. Naughton, "An Array Based

Algorithm for Simultaneous Multidimensional Aggregate", In Proceedings of the

70

1997 ACM SIGMOD International Conference on Management of data, pp. 159-170.

41 1997.

Tsuji, T.. Hara. A. and Higuchi, K., "An Extendible Multidimensional Array System

for MOLAP". In Proceedings of the ACM symposium on Applied computing, pp. 23-

27, 2006.

Sk. Md. Masudul Ahsan and K. M. Azharul Hasan, "Segment Oriented Compression

Scheme for MOLAP Based on Extendible Multidimensional Arrays", Journal of

Computing and Information Technology, vol. 23(2). pp: 111-121, 2015.

Masafumi Makino, Tatsuo Tsuji and Ken Higuchi. "History-Pattern Implementation

for Large-Scale Dynamic Multidimensional Datasets and Its Evaluations", In

Proceedings of the 20th International Conference on Database Systems for Advanced

Applications, Part II, LNCS, vol. 9050, pp. 275-291, 2015.

A. Sudoh, T. Tsuji and K. Higuchii. "A Partitioning Scheme for Big Dynamic Trees".

In Proceedings of the 22t1i International Conference on Database Systems for

Advanced Applications, LNCS, vol. 10179, pp.18-34, 2017.

D. Lemire and C. Rupp. "Upscalcdb: Efficient integer-key compression in a key-value

store using simd instructions", Information Systems, vol. 66. pp. 13-23, 2017.

R. Barrett, M. W. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout.,

R. Pozo, C. Romine and 1-1. van der Vorst,, "Templates for the solution of linear

systems: Building blocks for iterative methods", SIAM Press, 1994.

Chun-Yuan Lin, Yeh-Ching Chung and Jen-Shiuh Liu, "Efficient data compression

methods for multidimensional sparse array operations based on the EKMR scheme",

IEEE Transactions on Computers, vol. 52(12), pp. 1640-1646, 2003.

Bei Li, Katsuya Kawaguchi, Tatsuo Tsuji and Ken Higuchi, "A Labeling Scheme for

Dynamic XML Trees Based on History-offset Encoding", 2 nd International

Conference on Future Computer and Communication, pp: 7 1-87, 2010.

Tsuchida, T., Tsuji, T. and Higuchi. K., "Implementing Vertical Splitting for Large

Scale Multidimensional Datasets and Its Evaluations". In Proceedings of the I 3

International Conference on Data warehousing and knowledge discovery, LNCS vol.

6862, pp. 208-223, 2011.

Tatsuo Tsuji, Keita Arnaki, Hiroomi Nishino and Ken Higuchi, "History-Offset

Fk- Implementation Scheme of XML Documents and Its Evaluations", In Proceedings of

the 18' International Conference on Database Systems for Advanced Applications,

Part I, LNCS, vol. 7825, pp. 315-330, 2013.

