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SUMMARY

This thesis studies the nature of Pseudocomplemented lattice. We can
define a lattice in two ways; (i) Set theoretically and (ii) Algebraically.
Set theoretically: A poset < L; < > is a lattice if for every a,5< L both
Sup{a,b} and Inf{a,b} exists in L.

Algebraically : A nonempty set L with two binary operations A and v is

called a lattice if V' @,b,c € L. The following conditions hold.
1) ana=a, ava=da
i) anb=bnra,avb=bva,
1ii) a/\(b/\c): (a/\b)/\c, av(bvc)z (avb)vc,
1v) a/\(avb)za,av(a/\b):a_

In this thesis, we have studied several properties of pseudocomplemented
lattices. Moreover, we give several results on pseudocomplemented
lattices which certainly extend and generalize many results in lattice
theory.

In Chapter one, we have discussed posets, lattices and Ideals of a lattice
which are explain with some examples and generalized many theorems of
them.

In chapter two, congruence of lattices, distributive lattices,
Complemented lattices and Boolean algebra have been discussed, which
are basic concept of this thesis.

In chapter three we give a description of pseudocomplemented lattices.
We have also studied distributive pseudocomplemented lattices and
algebraic lattices. Pseudocomplemented lattices have been studied by
G. Gratzer [7] and many other authors. Here we extend several results of
G. Gratzer [7] to lattices.



Chapter four introduces the concepts of stone lattices. Stone lattices have
been studied by Gratzer [7], Katrinak [1 1] and many other authors. We
have given a characterization of minimal prime ideals of
pseudocomplemented distributive lattices.

Chapter five introduces the concept of distributive and modular lattice
with n-ideals. Here we include several characterizations of n-ideals. We
have proved some interesting result which are generalizes several results
on distributive ,modular and ideals of a lattices. Latif [20] in his thesis
has introduced the concept of standard n-ideals of a lattice. We conclude

this thesis with some more properties of standard and neutral n-ideals.



CHAPTER ONE

LATTICES AND IDEALS
1. Lattices:

Introduction: The intention of this section is to outline and fix the
notation for some of the concepts of lattices which are basic to this thesis.
We also formulate some results on arbitrary /attices for later use. For the
background material in lattice theory we refer the reader to the text of G.
Birkhoff [l], G. Gratzer [7], [8], D.E. Rutherford [17] and vijay K.
Khanna [18].

Definition (Poset): A nonempty set P, together with a binary relation p

is said to form a partially ordered set or a poset of the following

conditions hold: For all a,b,ce P
1) Reflexivity : apa
ii)  Anti—symmetry: a pb and bpa imply that a =5
iii)  Transitivity: @ 0b and b pa imply that apc
We also use the partially ordering relation ‘<’ in lieu of p.
Now we give an example of a poset.
Example 1.1.1 : The set N of natural numbers form a poset under the
usual ‘<’ . Similarly, the set of integers Z, the set of rationals Q and the

set of real numbers R also form posets under usual ‘<.

Figure 1.1
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As a particular case, the poset {2,3,4,6} under divisibility is represented
by figure 1.1

Definition (Chain): If P is a poset in which every two members are
comparable it is called a totally ordered set or to set or a chain. Thus if P
is a chain and x,y € P then either x <y or ¥y < x. The poset in figure

1.2 is a chain.

&0

Figure 1.2

Let P be a poset. If there exists an element @ € P such that x < a for all
x € P then a is called greatest element, if it exists, will be comparable

with all elements of the poset. It is generally denoted by u or /.

Also an element b € P will be called least or zero element of P if
b<x,VxeP . Itis denoted by 0. Least element (if it exists) will be

unique.

Let X ={,2,3}, then P(x)=1{, {1} £} 8} {2} £3} {13} {,23}} form a
peset under usual ‘<’ with ¢ as least element and {1,2,3} as greatest
element. An element a in a poset P 1is called maximal element of P 1f
a<x forno xeP.Inthe poset {1,2,4,6} under divisibility 4 and 6
are both maximal elements. Greatest element is the unique maximal
element in figure 1.1. An element 4 in a poset P is called a minimal
element of Pif x<b forno xinP. 2 and 3 are both minimal

elements in figeure 1.1.



Theorem 1.1.2 : If Sis a nonempty finite subset of a poset P then S
has maximal and minimal elements.
Proof: Let X Xo.iiiieiiiieieen, x, be all the distinct elements of
S in any random order. If x; is maximal element, we are done. If x; 1s not
maximal then there exists some x; € S such that x; < x;. If x; is maximal.
We are done. If not, there exists some x; € .S such that x; <x;.
Continuing like this, we will reach a stage where some element will be
maximal. Similarly, we can show that S has minimal elements. &
Theorem 1.1.3: The cardinal product of two posets is a poset.
Proof : Let P; and P, be two posets then we show that
P; xP;={(x,y) /x € P;, y € P} forms a poset under the relation defined
by. (x,»,)<h x P,(x,,,) <x <P;x;in Py, y; SP;y;in Py
1) Reflexivity : (x, y) <P; xP, (x,y) ¥V (x, y) € P; xP;asx <P;in
Piandy <P,yin P, Vx e Pj, y € P;
(ii)  Anti — symmetry : Let (x;, y;) <P; x P3 (X2 y2) and (x2,y2) < P;
x P (x;, y1). Thenx; <P x5 y; <Py y,and x; <Pp x;, y2 <Py,
implies that x; = x, y; = y, implies that (x;, y;) = (x2, ).
(iii) Transitive: Let (x;, y;) <P; x P> (X, y;) and
(X3, ¥3) <P; x Py(x;, y3). Then x; <P, x5 y; <P>y;and x; <P; x;,
y2 <P,y;  implies that x;<P; x3, y;<P; y3
implies (x;, y1) SP; xP3(x3 y3).
Hence the product of two posets is a poset. H
Definition(Suprimum and Infimum): Let S be a non empty subset of

a poset P. An element a e P is called an upper bound of S if x<aVxeS§.

Further if a is an upper bound of S such that, a <'b for all upper bounds b

of S then a is called least upper bound or supremum of S. We write



Sup S for supremum of S. Then a is called least upper bound or supremum
of S. An element a € P will be called a lower bound of S if S
ifa < xVx e S and a will be called the greatest lower bound or Infimum of
Sif b<a for all lower bounds b of S.
Example : Let < Z, <> be the poset of integers under usual ‘<’

Let S={.eennn..n. -3,-2,-1,0,-2,3} then 3=Sup S.
Definition(Lattice): Lattices are defined in two ways; (i) sef

theoretically and (i1) Algebraically

Set theoretically (define a lattice): A poset < L;<> is said to form a
lattice if for every a,be L, Sup{a,b} and Inf{a,b} existin L. So we
can write Sup{a,b}=avband Infla,b}=avb

Example: 1.1.4: Let X be a non empty set, then the poser < P(X ),=>

of all subsets of X under set inclusion ‘C’ is lattice.
Here, for 4,Be P(X),AnB=4nB and Av B= AU B. As a particular
case when X={l,2, 3} then

Px)={o. 1} £23. B} 1.2} .3} 2.3} 1,233,

{1, 2, 3}

{1,2,} {2, 3}

XY

{1 {3}

¢

Figure 1.3

Now we give an example of a poset which is not a lattice. ]



Example: 1.1.5: The set {2,3,4,12} under divisibility is a poset but is
not a lattice. Since 2 A 3 = 6 does not exists.
The algebraic definition of a lattice: A nonempty set L together with
two binary operations A and v is said to form a /attice if V a,b,ce L
the following conditions hold;

1) Idempotency : @GN = A G B E=E

11)  Commutativity: aaAb=baa,avb=bva

iii) Associativity: an(bac)=(anb)ac.

av(bve)=(avb)ve

iv)  Absorption: anlavb)=a,av (@anb)=a.

Example:1.1.6: The set L =1{0,a,5,1} forms a lattice.

1

0

Figure 1.1.4

The meet table and the join table of L = {0, a,b,l} are as follows:

—
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- =T - = -

Table - 1 Table - 2



Theorem: 1.1.7: (a) Let the poset L=< L;<> be a lattice.
Set Sup{a,b} =avb andInfla,b}=anb , then the algebra
L =< L;Av >is a lattice.

(b) Let the algebra L =< L;<> be a lattice. Set a < b if and only if

anb=a,then I’ =< ;< > is a poset and the poset L 7* is a lattice.

Proof: a) We have L is non empty and A and v are two binary

operations in /.
1) a/\azlnf{a,a}=a., avazSup{a,a}:a
" ~and v satisfy idempotent law.
ii) a/\b=Inf{a,b}:[nf{b,a}=b/\a
avb=Supla,b}= Sup{h,a}=bv a
. Aand v satisfy commutative law.
i) an(bac)=an Inf{b,c}= Infla,b,c}
=Inf{a,b}n c= (@nb)ac
av(bv c)=av Sup{b,c}: Sup{a,b,c}
= Sup{a,b}vc:(a vb)ve
. A and v satisfy associative law.
iv)  anlavb)=an Supla,b}= Inf ta, Supa, bY}=a
av(anb)=avinf{a,b)= sup{a,inf{a,5}}=qa
. A and v satisfy absorption law.
So L =< L;av > is a lattice. i1}
b) Given that the algebra I =< L;<> be a lattice set a<b if and only if
anb=aj;then L' =< L;<> is a lattice.
1) a=anb set a<b if and only if a=anp. Since A is
1dempotent.

- ana=a,Implies thata<a, ael - <is reflexive.



1)  Since A is commutative then aAb=>bAa implies that

a<band b<a.
implies that a =b where a,b € L
. £1s anti -symmetric.
i) Let a<banda<bthena=anb and b=bnac
a=anb=an(barc)=(@anb)rc=anc,
Soa £ ¢ wherea,b,ce L
.. <1s transitive.
Hence L =< L;<> is a poset.
Let a,b,ce Lthenanbe L
Now (@nb)ra=an(bra)=an(anb)=(ana)rb=anb
and (@nb)Ab =an(bab)=anb
So, anb<a,b
ie (an b) is the another lower bound of @ and b.
Let ¢ be the another lower bound of aand b. ..c<a,c<b
Then chna=c and cAb=c. 1e, c<a~nb
- (@anb) is greatest lower bound of {a, b}
(a A b) =Infla,b}
By absorption law,
an(anb)=a and ba(anb)=b
i.e., aand b is lower bound of av b.
Therefore b<avb.
Then a v bis an upper bound of a and b
Let ¢ be the another upper bound of @ and b, then a<c¢, b<c .
So, avc=(a/\c)vc=c, b'vc=(b/\c)\/c=c

Thus (@vb)ac=(avb)a(avc)=(avb)a(avbvec)



=(avb)/\((avb)v c)

= (a v b)[by absorption law]
ie (avb)<c
andso av b= Sup{a,b}
Hence L” =< L;<> is a lattice. i
Theorem 1.1.8 : The cardinal product of two lattices is a lattice.
Proof: Let L; and L, be two lattices then we have already proved that
[Th-1.1.3] L;xL, = {x,y xel,ye Lz} is a poset under the relation
< define by. (x,,3,)< L, xL,(x,,,) & x,L,x, inL,y, <Ly inL,.
We shall show that L; xL, forms a lattice.
Let (xl, Y ), (xz, Y, )e L, xL,be any elements. Then x,x, €L, and
Y,Y,€L,. Since L;and L;are lattices jthen {x,,x, }and .., }
have sup and inf in 7, and L, respectively.
Let X, Ax, =inf{x,,x,} and y, Ay, =inf{y, y,}
Then X, AXy < Lix,, x AX, < L X, Ay, <Ly, yAy,<Ly,
Impliesthat(x, AX, , ¥, A Y,)< L xL, (xl,yi),(xl NXy VWAYVy))SL xL,
(xz ; yz) . Implies that (X AX, ¥, AY,) is a lower bound of
{(xl,yl ), (xz,yz) k Suppose (p,q) is any lower bound of
(EBAENN)}
then (p,q) <L, xL, (xl,yl) and (p,q) <L, xL, (xz,yz)
Implies that p< L,)x,,q < L,y,,p< Lix, q<L,y,
Implies that p< L;x,,p< Lix,, and g<L,y, ,q<L,y,
Implies that p is a lower bound of {xl A } in L.

q isa lower bound of {y,,y,} in L
Implies that p<I, x, A x, = inffx, x,}, qs Ly,AY, :inf{yl,yz}



Implies that (p,q)<L;xL; {X, AXy , Y, AV, }

impliesthat (X; A X, , ¥, A ¥,) is greatest lower bound

of {(xlayl)a (xz’yz) b

Similarly,we can say that (x, AX,,y, A y,) is least upper bound of

{(x,,yl), (xz,yz) }. Hence L; xL; is a lattice. B

Definition(Complete lattice): A lattice L is called a complement lattice

if every nonempty subset of L has its Sup and Inf exists in L.

Example: /(L) the lattice of all ideals of a lattice L is complete

if Oe /.

Definition(Meet semi lattice): A poset < P,<> is called a meet semi

lattice if for all a,be P, Inf {a,b} exists. Equivalently, a nonempty set L

together with a binary operation A is called a meet semi lattice if
Va,b,cel,

(i) ana=a (i) anb=bna, (ii)anbarc)=(arb)ac.

Definition(Sublattice): A nonempty subset S of a /attice L is called a

sublatice of L if a,b € S implies that anb,avbeS.If L is any lattice

and a € L be any element then {a}is a sublattice of L .

Theorem 1.1.9 : Union of two sublattices may not be a sublattice.

Proof: Consider the lattice L = {1,2,3,4,6,12} of factors of 12 under

divisibility. 12

Figurel.4

9



ThenS = {1,2} and 7" = {2,3} are sublattices of L.

But SuTl = {1,2,3} is not sublattice as 23S VT

but 2v3=6¢SuT. =

Theorem 1.1.10: A lattice L is a chain if and only if every non empty
subset of it is a sublattice.

Proof: Let S be a non empty subset of a chain L then a,b € S

implies that a,b € L,

implies that @,b comparable, let a < b

then anb=aeS, avb=beS, thereforeS is a sublattice.

Conversely, Let L be a lattice such that every nonempty subset of L isa
sublattice. We show that L is a chain. Let a,b € L be any elements, than
{a, b} being a non empty subset of L will be a sublattice of L. Thus by
defination of sublattice anb= {a,b} implies that anb=a or anb=>b
implies that a < b ora<b ie, a, b are comparable, Hence L 1s a
chain. |

Definition(Convex sub lattice): A sudset K of a lattice L is called a
convex if a,be K; ce L and a <c<b implies that ce K. Any interval
[a,b] in a lattice is a convex sublattice.

Now we give an example which is not convex sublattice.

In the lattice { 1,2,3,4,6,12 } under divisibility {1,6} is a sublattice

which is non-convex as 2,3 € [1,6], but2,3 ¢ {1,6} .

Thus[1,6] = {1,6}.

Definition(Bounded lattice): A /attice is called finite if it contains a
finite nuber of elements. A lattice with a largest and smallest elements is
called a bounded lattice. Smallest element is denoted by zero and the

largest element is denoted by one.

10



Let I, and L, be lattices. A mapping ¢ :L,—L, is called a meet
homomorphism if (f)(a/\b)= @(a) A (b). It is called a join homomorphism
if p(avb)=gp(a)v p(b). If ¢ is both meet as well as join homomorphism,
it is called a homomorphism.

Example: Let L, and L, be the lattices of figure 1.6(a) and 1.6(b)

respectively.

Figure 1.6 (a)

Define ¢ : L — L, such that ¢(0) = p,¢p(a) = q,0(b)= p,e(u)=q.
Then ¢ is a homomorphism for
planbd)=p(0)=p.pla)rp(b)=g A p=p
implies that ¢(a A b)=p(a) A o(b),

(0 v a)=gpla)=q,

?(0)v pla)=pvq=p

implies that (0 v a)=p(0)v ¢(a)
Similarly for all other elements.

Amap ¢:F — P, is called isotone if x <Py implies that f(x)<P,f(»).

1 >ol
i —%_;*a/
0 >o Y

Figure 1.6(b)
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Theorem 1.1.11: The algebra <L;a,v> is a lattice if and only if
<Lian>and <Lj;v> semi-lattices and a=anAb 1is equivalent to
b=avb.

Proof : Let A and v are two binary relations on L. Since <L;v> is a
lattice then A and v satisfy the following conditions : For all a,b,ce L,
ana=a,ava=a, anb=bna and <L;v> are I. Let a=a b then
avb=(anb)vb=b,

Conversely, let <L;A> and <L;v> are semi-lattices then the above three
conditions hold. So we need only to show the absorption identities hold in
ki a/\(avb)=ax\b=a and av(a/\b)=ava=a, so <L;A,v> 1S a

lattice.
&

12



2. ldeals of a lattice.

Definition(Ideal): A sub lattice I of a lattice L is called an ideal of L
if, iel and ae L implies that aniel
Equivalently,
A non empty subset / of a /attice L is an ideal if
(i) abel, avbel
(i) aeland /e Limpliesthat anlel
Let L = { 1,2,3,5,6,10,15,30} be a lattice of factors of 30 under

divisibility.
30
10 15
2 3
1
Figure 1.7

Then  {1}{1,2},{1,3},{1,5},{1,2,510}{1,3,5.15},{1,2,3,6},{1,2,3,5,6,10,15}
are all the ideals of L.

Theorem: 1.2.1: Intersection of two ideals is an ideal.

Proof: Let /, and /,are two ideals of a lattice L. Since 1,, I, are

non empty, there exists some ael,, bel,. Nowael, bel, cL
implies thataab e I,. Similarly anbel,. Thus I, NI, #¢.

Let x,yel NI, be any elements,

implies that x,ye/ and x,ye/,

implies that xv yel, and xv yel, asl, I,, are ideals,

13



So, xvyel NI, Again if xel N1, and / € Lbe any elements then
xel,xel,,leL implies that xAlel and xAlel,

implies thatx Alel N 1,.

Hence I, N1, 1s an ideal. ]

Theorem 1.2.2: Union of two ideals is an ideal if and only if
one of them is contained in the other.
Proof: Let /,,/, be two ideals of a lattice L such that either
I clorl,cl,. We have to show that I, U/, is an ideal.
Since I, #¢,l, #¢ thenl VI, = ¢ (as I,],are two ideals).
Letl =1, then L, Wl =1, . K I, cl, then I, Vi, = I,.
In this case /, U/, is an Ideal.
Conversely, let I, and I, be two ideals of L and I, &I, and
[,z ,such that [, U/, isanideal. As I, cl, and I,/
there exists xel,xel, and yel,yel,. Now x,yel Ul,
implies that xvyel U/, implies that xvyel or xvyel,
ifxvyel thenx<xvy, y<xvy implies that x,yel
which is contradiction.
If xvyel, then x<xvy, y<xvy implies that x,yel,,
which is contradiction.
Hence I.cI. or I, € L. |
Theorem 1.2.3: A nonempty subset / of a lattice L is an ideal if and
only if
(i) a,bel impliesthat avbel
(i1) ael,x<a implies that xe /.
Proof : Let / be an ideal of a lattice L. By definition of ideal given

condition a Al el . Hence [ is an ideal.

14



(1) issatisfied. Let ae/,x<a then x=aAxel .
Conversely, we need show that ae /,/ € L, implies that anle .

since a Al <aanda €[ . By given condition a Al e .

Hence / is an ideal. B

Theorem 1.2.4: The set of all ideals I(L) of a lattice I. forms a
Lattice under * <’ relation.

Proof: Let /(L), be the set of all ideals of L. We shall show that

<I(L);c > is alattice. Nowas L €I (L) then I(L)=¢.

First we show </I(L),c> is a poset.

Reflexivity : I, <1, V Iel (L)

Anti-symmetry: Let /,,/, € I(L) such that 7, c I, and I, c I,

Implies that 7, =1, .

Transitivity: Let [,,,/,€I(L) and I, c 1, c I, implics that I, c I,.
Hence <I(L),c>is a poset.

L1, el(L) then I, Al,=I,n1,eI(L).

Therefore Inf{l,,1,}=1 n1,eI(L).

Again let [

Now we claim that I, vI,={xeL/x<i vi} for some i €l i el
To prove this, let x, ye R.H.S then x< i Ai,for some i€/ ,i,€l,
and y<j v j, forsome j €/, j,€l,

So xvys(i] viz)v(j] vjz)z(il vjl)v(z'2 vjz)

(where i, vj, el i,vj,€l,,)

Which implies xvye RHS. If xeRH.S and tel with t<x then
x<ivi, for some iel, i,el,. So t<i vi, implies teRH.S.
Therefore R.H.S 1s an ideal. Obviously this contains both /, and /,.
Suppose K is an ideal containing both /, and /,, Let xeR.H.S then

x<i vi, forsome i €/, i,el,, Since K is an ideal containing /, and

15



1,. S0 i vi,eKand xeK ie, RHS < K ie, RHS is the smallest
ideals.Therefore RH.S = I, v I and so I(L) is a lattice. i.e., Sup {1, I}
= I;v 1. Hence < ](L);g>1's a lattice. ]

Definition (dual ideal): A nonempty subset D of a lattice I is called
dual ideal of L if

(1)  a,beD implies thata Abe D

(i) deD,aeL impliesthat. dvaeD.

Let I = {1, 2, 5, 10} be the lattice under divisibility. Then {10}, {5,10},
{2,10} are all dual ideals of lattice L.

10

Figure 1.8

An ideal I of L is proper if7/ # L
1

Figure 1.9



A proper ideal P of L is called a prime ideal if for any x, yeL and
xayeP implies either xePoryeP. Let L={1,2,3,4,6,12 }
factors of 12 under divisibility forms a lattice then { 1,2,4 } be a

prime ideal of L.
12

Figure 1.9

Theorem 1.2.5: Every ideal of alattice L is prime if L is chain.
Proof: Let a, beL .anb € L. Consider (aAb) by hypothesis / = (@nb)
is prime implies that either a=aAb or b=a b implies that either
a<b or b<a .Hence L is chain.

Conversely, Let L be a chain and I be an ideal of L.Suppose a nbe P,
since L is chain, either a<b or b<a implies that aelor bel,

therefore / is prime. B
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CHAPTER TWO

CONGRUENCES OF A LATTICE

1. Congruence and Distributive lattices

Introduction: Congruence of lattices, Distributive lattices, Modular
lattices and Boolean algebras has been studied by several authors
including Katrinak [10], H. Lakser [13], A. S. A. Noor & M. A. Latif
[23], W. H. Cormnish [4], A. Davey [6], G. Gratzer [7] and Vijay K.
Khanna [18]. In this chapter, we discuss congruence of lattices,
distributive lattices, modular lattices, complemented lattices and
Boolean algebras which are basic concept of this thesis.

Definition (Congruence): An equivalence relation © (that 1s, a
reflexive symmetric, and transitive binary relation) on a lattice L is called
a congruence relation of L if and only if a, =5,(®) anda, =5, (©) imply
that a, Aa, = b, Ab(®)and a,va,=b, v b (O)

Lemma.2.1.1: Let © be a congruence relation of L. Then for every
a € L ,|al® is a convex sub lattice.

Proof: Let x, y € [a]©®; then x=a(®) and y = a(®).

Therefore xAy=anra=a(@)andxv y=ava=a(®), proving that
[a] © is a sub lattice. Ifx <t <y and x,y e [a]® then x=a(®) and
y=a(®).Therefore, t=tAy=1tA a(®)

and t=tvx=(ra)vi=(tra)va=a(0),

Hence [a]® is convex. B
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Sometimes a long computation is required to prove that a given binary
relation is a congruence relation. Such computations are often facilitated
by the following lemma (G. Gratzer and E. T. Schmidt [1958¢] and F.
Maeda [1958]):

Lemma.2.1.2: A4 reflexive binary relation ® on a lattice L is a
congruence relation if and only if the following three properties are
satisfied; forall x,y,z,t €L

() x=y(©) iff xAy=xvy(0O)

(i) x<y<z,x=y and y=2z(0) imply that x=z(0).

(iii) x<y and x=y(O) imply that x nt = yAt(®) and xvi=yvi(0).
Proof: The “only if” part being trivial, assume now that a symmetric and
reflexive binary relation @ satisfies conditions (i) - (iii).Let b,c €[a,d]
and a=d(®),we claim that b= c(@) . Indeed a=d(®)and a<d by
(iii) imply that bac=av(bac)=dv(bad)=d®. Now bac<d

and (iii) imply that bAc=(bAc)A(bve)=d A(bvc)=bvdO);

Thus by (i), b=d®).

To prove that ® is transitive, let x= y(®) and y = z(®).

Then by (i), xAy=xvy (®)and

by (iii), yvz=(yVv2)V(yAX)=(yVv2)V(yVvx)=xVvyvz(0),

and similarly, x A yAz=yaz(@).

Therefore XAYAZ=YAZ=YVZ=XVYVZ(0)

and XAYNAZSYAZSYVzZ<XVYVZ Thus applying (ii) twice,

we get xAyAz=xvyvz(®). Now we apply the statement of the
previous paragraph with a=xAyAz,b=x,c=z,d=xvyvz

to conclude that x=2(6).
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Letx= y(G)); we claim that xvIi=yvV I(@).

Indeed, xAy=xVvH8) by (i); thus by (iii), (xAy)vi=xvyvi(O)

Since XVELYVEE[(XAY)VEXVYVE]. we conclude that xvi=yvi(©).
To prove the substitution Property for v, letx, = y,(®) and x, = y,(©).
Thenx, VX, =X,V ¥, = ¥, V ¥,(0),

Implying that X, VX, =), V), (G)), since ® is transitive .
The substitution property for A is similarly proved. B

Lemma 2.1.3: C(L) is a lattice . For ©, ®eC(L), OAD =0
The join ®Ov® can be described as follows:

x=){©v®D) if and only if there is a sequence 2 =AY

Boiaiing ,z,,=x Vv y of elements of L such that z, <z, <......... <z, and
foreachi, 0<i<n—-1z =z (@) or z =z,,(D).

Proof: © A® =0 @ is obvious. To prove the statement for the join

Jet ¥ be the binary relation described in this theorem . Then

OcWand dcY are obvious. If [ is a congruence
relation®c T, ®cTland x= y() and x = y(y ) ,then for eachi,
either Z, =Z,,,(0),z, = zM(F) By the transitivity of I', XA y=xV y(F)
; thus x= )/(T) Therefore, < I". this shows that if ¥ is a congruence
relation , then W= v®. Y is obviously reflexive and satisfies
Lemma 2.1.2. If xSySz,xEy(LF) andy = z(¥ ) then x= z('*P)is
established by putting together the sequences showing x= y(‘P) and
y=z (LP); this verifies Lemma 2.1.2(ii). To show lemma 2.1.2(iii),
Letx= y(‘i‘), XS Y with Zjsess z,_, establishing this, and 7 € L .Then

xant=yat(W)andxve=yvie(¥) can be shown with the
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sequences z, At,0<i<n,z vi,0<i<n,respectively. Thus the
hypotheses of Lemma 2.1.2 hold for¥ and we conclude that Wis a
congruence relation. Homomorphism and congruence relations express
two sides of the same phenomenon. To establish this fact we first define
quotient lattices (also called factor lattices). Let L be a lattice and let ¥ be
a congruence relation on L, Let L/® denote the set of blocks of the
Partition of L induced by ®, thatis L/®={[a]®:ae L}.

set [alorp]lOo=[anblO

and [alov[ple=[avb]E .

This defines A and v onLZ/®. Indeed, if [a]® =[q, |© and
[blo=[p]0, then a=q,(®) and b=4(0);

therefore, anb=a Ab(®),thatis [aAb)(@®)=[a, Ab]®. Thus A
and (dually) v are well defined on L/® .The lattice axioms are easily
verified. The lattice L/® is the quotient lattice of L modulo ©.
Example: the /attice L and a congruence sub lattice S of L that cannot be
represented as [a] O for any congruence relation ® of L.

Consider the lattice

Figure 2.1

Consider the convex sub lattice{0,a} .

Now if 0= [a]® for some congruence ©
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then cvo = cva or, cv[a]®
and cAb=cAb® or o=b®.This implies be[a]®, ie. Convex sub

lattice. {o0,a}is not a congruence class for any Congruence. i

Theorem 2.1.4: Construct a lattice that has exactly three congruence

relations.

0

Figure-2.2

Observe that only congruence of above lattice are ¢, 1 and © where
®=1{o,a b c I}, {e 1},soabove lattice has exactly three congruence.
Theorem 2.1.5: (THE HOMOMORPHISM THEOREM)

Every homomorphic image of a lattice L is isomorphic to a suitable
quotient lattice of L. In fact, if ¢p: L -L, 1sa homomorphism of L onto
L,and if © is the congruence relation of L defined by x = ¥(®) if and
only if xp=yp, then L/@= L,; an isomorphism figure 1.14 is given
by ¥:[x] ® >x¢, xel.

Proof: Since ¢ is a homomorphism and (®) is obviously a congruence
to prove that ¥ is an isomorphism we need to check

i) © is well defined: Let [x]® = [y](®). Then x=p(0); thus x@=y@
=(x]©)¥ = (]1O)¥

e, V¥ is well defined.
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(i)  To show that Wis one-one¥ ([x](19)) =¥ (), ©®)= ¢ x)=¢ ()
thenx = y(®)andso [x](®) = [y] (®).i.e., ¥isone-one.

(iii) To show that w is onto: Let xeL,. Since ¢ is onto, There is
anye L with ¢ (y) =x. Thus ([y]®) yy =x.1e., i is onto.

(iv) To show that y is a homomorphism Let [x]®, [y] ®e L/0O,
therefore  (XIOADIO) = w([XAY]O) = p(xn)) =9()
Ae®) = v (| x| ®awp( ¥y ©) And w(x]OVI[y]O)
=y (xvy]®}=p@vy)=p®V(p() = w [(x]O)v ¥ (| | ©)

i.e., 7 is homomorphism then the theorem is proved. |

Theorem: 2.1.6: L/®is a lattice under the operations Aand v defined

by [a]® A[b]®) =[arb]® and [a]® v[b]O = [aVv )] O.

Proof: Let L be a lattice and © be a congruence relation on L defined by

a =b(®)anda, =b,(®) where a, ra, =b, Ab,(©)and

a,va,=b,vb,(0®). We also define [a] (O)={xeL/x =a (©)}.

Then L/® = {[a] ®| ael}.

Now define A and von L by [a]® A[b]®= [aAb]© and [a]O v [b]© =

[avb]®.

Idempotency: [a]© A[a]® = [ana]® =[a]© and [a]O v [a]© = [aV al

O=[ad]0.

Commutativity: [a]® A[b]®=[aAab]®=[bra]® =[b]O A[a]O.

[a]© v [b]©=[av b]O=[bva]O=[b]O v[a]®.
Associativity: [d® A([6]1O A[c]®)=[a] O A([bAC]O).

=[an(brc)]|®=[(anb)nc]®

=([anb]®)A[c]O=([a]® A[b]O)A[c]O.

Similarly, [a]® v ([b)]® v[c]®) = ([a]® v [b]O)V[c]O.

Absorption: [a]® A ([a]© v[b]®) = [a]O A([avb]®).

= [an(av b)]|®O=[a]®
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[a]® Vv ([a]©® A[b]O) = [a]® v([anb]®).
=lav(anb)]® =[a]®.
Hence L/® is a lattice. ]
Definition (Modular Lattice): A lattice L is called modular lattice if all
a,b,ce L witha>b then an(bvc)=bv(anc).
Definition (Distributive Lattice): A lattice L is called distributive lattice
ifall a,b,ceL,an(bvc)=(anb)v(anc)
Lemma.2. 1.7: The following inequalities hold in any /lattice
1) EAY)V(XAZ) XA (Y V2)
i)  xVv (yaz)s(xvy)a(xvz)
i)  (xay)v(yaz)v(zax)<(xvy)a(yvz)a(zvx)
v) (xXay)v(xaz)<xa(yv(xaz))
Proof: (i) In any lattice xAy<x, XAy<Yy, y<yvz
implies that xAy<x, X Ay<yvz
implies that x Ay is a lower of { x, yvz }:
S XAYEXA(YVEZ) e (1),
Again in any lattice XAz <X, XANZ<Z, Z <Y AZ
implies that x Az < X, X AZ < yvzZ
implies that x A z is a lower hound of{ x,y vz }
% B REBXNIVE) wovsnvmnni (11) .
From (1) and (ii) we can say that x A(y Az) is upper bound of
{xAry, xanz }. Therefore x A(yVz)<(xAry)v(xaz).
(11) In any lattice, x<xvy, y<xvy, yanz<y
implies that xv y=>x, xvy>y>yaz
implies that xvy= x, Xxvy=2yaz.
Implies that x vy is upper bound of {x,yaz}.
nxvy2xv(yaz).

Implies that xv(yaz)<xvy............ (i)
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Again, X< xvz,z < Xvz, YAZ<Z

implies thatxvz>x, xvz<z z2yvz

implies that xvz>x, xvz2ynaz

implies that x vz is upperbound of {x, yaz}.......... (iv).
Form (iii) and (iv) we get xv(yaz)is a lower bound of {xvy, xvz}.
There fore xv(y az) <(xvy)a(xvz).

(1i1) Any lattice, xAy< X, x<xvy

Implies that xAy< xvy........... (v)

Again x Ay<y, y< yvz

Implies that x Ay<yvz............. (vi).

Also x Ay<x, x<zvx

Implies that xAy<zvx............. (vi1).

Form (v), (vi), (vii) we can say that

xy is lower bound of {xvy, yvz zvx},

s XAYSXVY)A(YVZIA(ZVE). e (A).

Again yAz<y, y<xvy

implies that yAz<xvy............(vii1).

Also yaz <z,z<yvz

Implies that yaz<yvz.......... (ix)

and yAnz <z, Z<zZvX.

L YRZEEYR. .. s srinmind XD

From (viii), (ix) and (x) we can say that

y az is lower hound of {xvy, yvz, zvx}.

A YAZE YIS ZIALZVY X) v sine cunivona (B).

Similarly, zAXS(XVY)A(YVZ)N(ZVX).oovnnnn e, (C).
From (A), (B) and (C) we can say that
(xvy)a(yvz)a(zvx) isupper bound of {xAy, yrz, zAX}.
S (xvy)a(yvz)a(zvx)(xay)v(yaz)v(zax)

iv) Since XAy<XAZ <X,
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So we get (XAY)V(XAZ)SXuuuveverreennn. (x1),

And xay<y<yv(xaz)and xA z <yv(xaz)

X AYIV(EARZ) QY V(XAZ) vivssnsmvsaniniss: (xii)

From (x1) and (xii) we get (xAy)v(XAz) < xA(yv(XAz).

1

M5

Figure 2.3

Example: The pentagonal lattice is not modular.

1
X

R 5
Figure-2.4

Here, xA(yvz)=xAl=x
And yv(x/\z)=yv0=y
Since xA(yvz)=yv(xaz)

Hence the pentagonal lattice is not modular. 5]
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Theorem.2.1.8: Two lattices L, and L, are modular if L xL, is
Modular
Proof: Let L, and L,be modular. Let (x,,y,), (X,,¥)
(x,,y,)e L, x L, be three elements with (x,, y,)2(X,,y ).
Then X,, X,.X el %2 Xes Vie Vo ¥Yi€logs ¥ 2 Vs
and since L,and L ,are Modular.
We get X, A(X, vX,) = (X AX,) VX, YA, VYs) = (Vi AY2) VY
Thus (x,, ¥.)AL(x,,y2)v(Xs,y5)]

= (X, YD A[X, VX5, ¥, vYs]

= (X, A(X, vX;) Y1 A (Y2 VYY)

= ((x, AX;)vX;, (Y1 AY2)VYS)

= (X, AX5, Y1 AY2)V (X5, Y5))

=[x, YD) A (X2, ¥2)lv(Xs, Ys)
Hence L, x L, is modular.
Conversely, Let L xL, be modular. Let x,, X,, x;ebl;, X=X, and
y.Y2Ys€ly,y, 2y then(xy ), (x,,y )X 50y 3)€ L x Ly
and(x,,y,)=(x,,y,). Since L, x L, is modular.
We find (x,,y,) A [(X5, ¥,) v (X5, ¥5)] = [, y) AKX, ¥l VX, ¥5)]
Or, (X1, ¥, )AL, VXS, (72,vY )] = [(X, A%,y AY2) v (X35Y5))]
Or, (x, A(X, vX;3), Y1 A (Y2 vY3)) = (%, AX,) VX (Y, AY2) VYS))
Or, X, A(X, vX;) = (X, AX, )V, YA (Y, VY3) = (V1 AY2) VY,

~.L,and L, are modular. m

Theorem.2.1.9: If a, b are any elements of a modular lattice
then [aab, a]= [b, avDb]
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Proof: We know an interval in a lattice is a sub lattice. We establish
the isomorphism define a map y: [anb, a] —>[b, avb] such that y(x)
=xvb, xe[anb, a]. Then yis well defined as x e[anb, a]
implies that anb<x <x<a

implies that (anb)vb<xvb<avb

implies that b<xvb<avb

implies that xvbe[b, avb]. also x,=x,.

implies that x, vb =x, vb

implies that y(x,) =y (x,),

w is one-one as let y (x,) = yw(x,)thenx,vb =x,vb
implies that an(x,vb) =an(x, vb)

implies that x, v(aab) =x, v(anb)

implies that x,=x,,

w is onto as let ye[b, avb] be any element.

We show that aay is the required pre-image.

ye [b,avb] implies that b< y< avb

implies that anb<any< an(avb)

implies that anb<any<a

implies that anye[anb, a].

Also, w(anb) = (any)vb, so we need show y=(any)vb
Now, y<avb implies that ya(avb) =y

Implies that y = ya(bva) =bv(ynaa).

Hence y is onto.

Again, x, <x,, implies that x, vb< x, vb

Implies that v (x,)< w(X,)

Now, x,vb<x,vb Impliesthatan(x,vb)<an(x,vb)

Implies that x, v(aab)<x, v(aab)
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Implies that x, <x,.

Thus x, € x,

Implies that y (x,)<w(X,).

Hence yis an isomorphism. ]

Theorem.2.1.10: A lattice L is modular if it does not contain a Sub
lattice isomorphic to pentagonal lattice.

Proof: Suppose a lattice L is modular, then its every sub lattice is
also modular, Since N ={0, a, b, ¢, 1}

1

Figure 2.5

Where b<a, anb=anc=brc=0 and avb=avc=bvc=1 1is
not Modular So, L does not contain any sub lattice isomorphic to N
To prove the converse, let L is not modular, then there exists
elements x,y,zelL with z<x such that xA(yvz) #(xAy)vz. But
x ~(yvz)>(xAy)vz. Then the elements xAy, Y, (xAy)V z, xA(yVv2),
y vz form a lattice

yvz
Diagram as follows: xA(yVz)

(xAy)vz
XAY

Figure-2.6
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Observe that (xA(yvz)) Ay =xa[(yvz) ay] =xny

And so, yA((XAY) vZ) =XxAYy

Again, yv((xay)vz) =[yv(yAx)] vz=yvz

And so, yv(xa(yvz)) =yvz Ify=xay then we have y< x

And so, yvz. = (XAy)vz,

Also, y< x and z< x implies that yvz < x and so xA(yvz) =yvz,

So we have xA(yvz) = (xay)vz which gives a contradiction. Since
L is not modular. So y#xay. Similarly, we can show that
(XAY)VZ# XAY, Y2YVZ, XA(YyvZ) £yvz

Hence the five elements are distinct and they form a sub lattice of L.

which is isomorphic to N,. Hence L is modular.
A lattice < L: n,v> is called distributive lattice if for all x, y, zeL,
xa(yvz) = (xay)v(xaz), dually, xv(ysz) = (xvy) A (xvz) of

course every distributive lattice is modular. &
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Figure -2.7

Theorem: 2.1.11: Two lattices L, and L, are distributive if L,xL,

is distributive.
Proof: Let L, and L, are distributive, let (x,,y,), (X,,y,),(X,,y;) be
any three elements of L, xL, then x,,x,,x,;e L, ¥,,¥,,¥;, € L,.
Now, (X,, ¥,) [(X2, ¥2) v (X5, ¥5)] = X,y ) A (X, VX5, ¥, VYS)
= (X, A(X, VX;), ¥, A (Y2 VY5))
= (%, A%;) v (%, AXe), (V1 AYS) v (Y, AY5)
= [(x, AX,,Y,1 AY ) V(X AXY, AYS)]
= [(x,, y)AXY )] VIE, YD) A (X5, Y5)]
Shows L, x L, is distributive.
Conversely, Let L, x L, be distributive.
letx,,X,,X,.eL, andy,,y, y,€ L, be any elements, then

(X,,¥,), (X5, ¥,)s (X3,¥3)eLl,,x L, and as L, x L, is distributive.

(XY )A (x5, ¥2) v (X5, 5)]
=[(x 15 Y 1) A (xzaY2) v [(x 1=y1.)"\ (xsaY3)]
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e, (X, ¥)) A (X, VX5, ¥, vY3) = (X AX,, ¥, AY,) v (X AXG, YY)
or, (( X, n (X, vX,), ¥, 4 (Y2 v ¥5))

=((x, AX,) V(X AX;), (V1 AY )V (Y1 AYS))

Which gives, x, A(x, vX, )= (X, AX,)Vv(X,AX;)

YAy, vYs) =AY ) vy AYs)

implies that L , and L , are distributive . |

Theorem: 2.1.12: A distributive lattice is always modular but
Converse is not true.

Proof: Suppose L is distributive, let a,b,c e L with c<a,

then an(bvc)=(aab)v(anrc)=(anb)ve, Thus L is modular.

Conversely, consider the /attice

0 M

Figure -2.8
It is says to check that M, is modular: an(bvc)=anl=a,
(anb)v(anc)=0v 0=10 1e, an(bvc)=(anb)v(anc).
Therefore L is not distributive. |
Theorem 2.1.13: Let L be a distributive lattice, I be an ideal. Let
D be a dual ideal of L and let InD = ® Then there exists a prime
ideal P of L such that P2 /.
Proof: Let X be the set of all ideals of L containing / that are disjoint

form D. Clearly X is non empty as [ €X.
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Let C be a chain in X and Let M = U {X| XeC}. If a ,beM then

anX, by, for some X,YeC. Since C is chain either Xc Y or Y X,
Suppose Xc Y then a, beY. Since Y is an ideal avbeYc M .

Also if ae M and b<a, then ae X for some XeC.

Since X is an ideal, so be Xc M. Therefore M is an ideal contain /.
Obviously MnD = ®. Hence MeC,

so by zorn's Lemma, X has a maximal element, say P,

We claim that p is a prime ideal.

If P is not prime, then there exists a,bel with a,beP such that
anbeP.

By the maximality of P ((a]vP)nD# ¢, (b]vP)ND # ¢

Let pvaeD and gvbe D for some p,ge P

Then x=(pvg)a(avb)=(parq)v(ang) v(ipab)anb) e P

Which implies that xe P ™ D which gives a contradiction.

Therefore ¢ must be a prime ideal. &

Theorem 2.1.14: Dual of a distributive lattice is distributive.
Proof: Let < L; A,v> be distributive and < L; A,v> be its dual.
Now for any g, b, ceL=L ,an‘ A(bv ‘c)=a(bnac)= (avb) (avc) =
(an?b) v (an?c)as L is distributive .

This implies that L is also distributive. i
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2. Complemented and Boolean lattices.

Definition (Complemented Lattice): In a bounded /attice L, a is a
complement of b if anb=0 and avb=1. A complemented lattice is a
bounded lattice in which every element has a complement.

Now, let [a, b] be an interval in a /attice L. Let x €[a,b] be any element.
If there exists ye L such that xAy=a,xvy=5b. We say y is a
complement of x relative to [a,b] or y is relative complement of x in

[a, b].In every element x of an interval [a ,b] has at least one complement
relative to [a, b], the interval [a ,b] is said to complement. Further, if
every interval in a lattice is complement, the /attice is said to relative
complemented.

Theorem 2.2.1: Two lattices L, and L, are relatively complemented if
and only if L, x L, is relatively complemented.

Proof: Let L, and L, be relatively complemented. Let [(x,,y,)(x,,),)]
be any interval of L x L, and suppose (a, b) is any element of this
interval. Then (x,,y,) <(a,b) <(x,,y,) where x,,y,,ac L and y,y,,be L,.
implies that x, <a<x,, y, <b<y,.

implies that a €[x,,x,]a an interval in L, and b €[y,, y,] be an interval in
L,. Since L,,L, are relatively complemented, a, b have complements
relative to [x,,x,] and [y,,y,] respectively.

Let a’ and b’ be these complements,

Then ana' =x,ava =x,,bab' =y,.

Now, (a,b)a(d’,b’)=(avad,bab’)=(x,x,)

(@,b)r(d,b)=(avd,bab)= (1,),)
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i.e, (a',b') is complement of (a, b) relative to [(x,,,), (x,,¥,)]. Thus any
interval in L xL, is complemented. Hence L xL, is relatively

complemented.

Conversely, Let L, x L, be relatively complemented, L let [x,,x,] and
[¥,,7,] be relatives in L and L,. Let a € [x,,x,] and b€ [y,,,] be any
elements. Then x, <a<x,,y,<bey,
implies that (x,,,) <(a,b) <(x,,¥,)
implies that (a,b) € [(x,,y,) (x,,¥,)] aninterval in L, x L,
. implies that (a, b) has a complement, say (a',b") relative to this interval.
Thus (a,b) A (a',b') = (x,),)

(a,b)v (@.b) = (x,,0)
implies that (a v d',b Ab") = (x,,¥,)
(avd,bAb)=(x,,y,) implies that and'=x,ava =x,

bab =b,bvb =y,
implies that ad’, is complement of a relative to [x,,),], b is
complement of b relative to [x,,,].
Hence L, and L, are relative complemented. B

Theorem 2.2.2: A complemented modular lattice is relatively
complemented.
Proof: Let L be a complemented modular lattice. Let [a, b] be any

interval in L and x € [a,b] be any element, Since L is complemented, x
has a complement, say x'. Then y=av (b A x')

xnx=0. %" =1L acx<bh.

Take y=av (bAax')

Then x Ay = x[av (b A X")]

35



=av(xA(barX)) [as x2a,L is modular]
=av(®bAaxbrx)

—av(bA0)

=avl

=a

xvy=.xv[av(b/\x’)]z(xva)v(b/\x')=xv(b/\x')=b/\

(xvx)=bal=b.

Hence y = a v (b A x') is relative complement of x in [, b]. [ |

Theorem 2.2.3: Let L be a distributive lattice and let a € L then the

map @:x —><XAd,x\Va> , xe L is an embedding of L into (a]x[a):

it is an isomorphism if a has a complement.

Proof: ¢:L — (a]x[a) is defined by p(x)=<xAra,xva>

forany x,yelL

p(xAny)=<(xAny)na,(xAy)ra>
=<(xrna)v(yra),(xva)r(yva)>
=<XAAXNVA>ANLYAAYVA>
= p(x) A ()

i.e. @ is a homomorphism.

Let p(x) = @(y), then <xAa,xva>=<ynAa,yva>

implies that xAa=yAa and xva=yvd

Now, x=xA(xva)=xa(yva)=(xaAy)v(xna)

=(xAaY)vyra)y=ya(xva)=yn(yva)=y
1.€. ¢ 1S one- one.
Now suppose a has a complementa’. To show on tones.

Let < r,s > (a]x[a),
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Then[(a' As)vr]laa=(a Asna)v(rana)=0v(rva)=0v(raa)
=raa="r

and [(ans)vr]lva (avrva)a(svrva)=lan(svrva)=s
ie. <r,s>=[(@ As)vrlaa,(ad As)valva=p(d As)vr
So ¢ is onto and hence L = (a]x[a).

Definition (Boolean Lattice): A complemented distributive lattice is

called a Boolean lattice.
Since complements are unique in a Boolean lattice we can regard a

Boolean lattice as an algebra with two binary operations A and v and
one unary operation ! Boolean lattices so considered are called Boolean
algebras. In other words, by a Boolean algebra, we mean a system
<L, ".01> where L is a non empty set with the binary operations
A and v and a unary operation ¢ , and nullary operations 0, 1 is called a

Boolean algebra if it satisfy the following condition:
i) ana=a,ava=a, Vael
ii) anb=bnara,avb=bva, Ya,be L
iii)  an(bac)=(@nb)ac,av(bvce)=(avb)ve,Vab,cel
v) an(avb)=a,av(anb)=a, Va,bel
v) an(bvc)=(anb)v(anc), Va,b,celL
vi)  There exists 0e L,le L suchthat av0=a,anl=aVael
vii) Each aeL,a'eL suchthat ana’'=0,ava’ =1
viii)  0'=1
ix) 1=0
x) (anb) =avb'

xi) (avb)=adnb
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Theorem 2.2.4: The infinite distributive laws hold in a complete
Boolean algebra.

Proof: We have for distributive lattice y A(vx,)=v(yAXx,), even when

there are infinitely many terms in the unions. These unions certainly exist
since the lattice is complete.

Let z=v(yAx,) then yanx, <z

and x, <y'vx =y v(yax)=yvz foreachi.

Hence vx <y'vz andso yA(vx)Sya(y'vz)=ysnz<z.

That is to say yA(vx,)=Vv(yAx,).

We there fore have by anti- symmetric property the distributive law

yA(vx)=v(yAx,).Its dual may be obtained in the same way. i

An element a of a /attice is called join irreducible if @ =bvc implies

eithera=b ora=c.

® a

®0

Figure 2.9

Here | is not join- irreducible but @, b, ¢, d all are join- irreducible.
Now zero join- irreducible element x which cover 0.
i.e. x ,0 are called atoms.

[a,b means b<a andif b<c<a theneither b=cora=c]
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®0

Figure-2.10

Theorem.2.2.5: In a Boolean lattice x#0 be join- irreducible if and
only if x 1s an atom.

Proof: Let L be a Boolean lattice and let x # 0 be join- irreducible. We
have to show that x 1s an atom.

Let t €[0,x] then there exists #' such that 1 At'=0,t At"=x. Since x is
join- irreducible, then either t=x or t'=x. If tAx then ¢'=x
t=1tAx=tAt =0 implies that x is an atom.

Conversely, Let x is an atom. We have to prove that x is join- irreducible.

Let avb=x,then 0<a<x, 0<x impliesthat 0=a or a=x;0=">

or b= x implies that x is join- irreducible. ]
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CHAPTER THREE

PSEUDOCOMPLEMENTED LATTICE.

Introduction: In lattice theory there are difference classes of lattice
knows as variety, Of course the most powerful variety. Throughout this
chapter we will be concerned with another large variety known as the
class of distributive pseudocomplemented lattice. Pseudocomplemented
lattice have been studied by several authors [9], [10], [13], [14], [15],
[16]. There are two concepts that we should be able to distinguish a
lattice <L:an > in which every element has a pseudocomplement and an

algebra, <L;a,v,x0,1>. Where <L;Av,0,1> is a bounded /attice and where,

for every a €L, the element a’ is a pseudocomplement of a. We shall call
the former a pseudocomplemented lattice and the later a lattice with
pseudocomplementation (as an operation). In this chapter we have also

studied algebraic lattice.
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Construction of pseudocomplemented lattices.

Let L be a bounded distributive lattice, let ae L, an element a*cL is
called a pseudocomplement of a in L if the following conditions hold:

(Danax=0, (ii) VxelL ,anx=0 implies that x <a*

0

Figure 3.1

a has no pseudocomplement.
A bounded lattice L is called a pseudocomplemented lattice if its every

element has a pseudocomplement.

Example :

Figure 3.2

The lattice L={0,a,b,c,]} show by the figure 3.2 is pseudocomplemented.
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An algebra, <L;a,v,*01> where A and v are binary operation, * is a
unary operation and 0, 1 are nullary operations is called a /attice with
pseudocomplementation if.
1) < L.,A,Vv,0,1> 1s bounded /attice
ii)  * is a unary operation i.e. Va € L there exists a *
such that ana*=0 and aAnx=0
implies that xAa*=x,Vxel.
A bounded distributive lattice L is called a pseudocomplemented

distributive lattice if its every element has a pseudocomplement.

Figure — 3.3
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1. Pseudocomplemented distributive lattice.

To see the difference in view point, consider the finite distributive lattice
of figure (3.3). As a distributive lattice it has twenty-five sublattice and
eight congruences; as a lattice with pseudocomplementation it has three
subalgebras and five congruencies.

L as lattice:

Sub lattice: {0},{a},{b},{c},{1},{0,a}.{0,6},{0,¢},{0,1},{0,a,b.¢}, L,

{a,c},{a,c,1},{b,c},
{a,1},{b,1},{b,c,1},{c,1},{0,a,1},{0,b,1},{0,c,1},{0,a,c},

{0,b,¢},{0,a,c,1} {0,b,c,1} =25
L as a lattice with pseudocomplementation {0,1}, L, {0,c,1}

Congruence:

As a lattice:

o ={0},{a},{b},{c}, {1}

r={0,a,b,c,1}

0={0,a},{b,c},{1}

¢ =1{0,a},{b,c,1}

v ={0,b},{a,c},{l}

1={0,b},{a,c,1}

¢ ={0,a,b,c}, {1}

n={cl},{a},{b},{0}

Congruence as a lattice with pseudocomplementation — @,7,(,1,1]
Theorem 3.1.1: Let L be a pseudocomplemented distributive lattice.
S(L)={a*/ae L} and D(L)={a/a*=0}. Then for a,b,e L:
(Hanax=0

(ii)a < b implies that a* > b*
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(iff)a < a**
(iv)ax =aq**x*
)@V b)* =a* nb*
Vi) @Ab)** =a** nb**
wii)y anb=0 iff a**Ab**=0
(viii) an(anbyx=anbx
(ix) 0x=1 and 1*=0
(x) aeS(L) iff a=a**
(xi) a,be S(L) implies that anb e S(L)
(xii) Sup sy {a,b} = (av b)**=(a*Abx)*
(xiii) 0,1 e S(L),1e D(L) and S(L)ND(L) = {1}
(xiv) a,be D(L) implies that anb e D(L)
(xv) aeD(L) and a < b implies that b € D(L)
(xvi) avare D)
(xvii) x = x** 1S a meet- homomorphism of L onto S(L)
Proof: (i) By the definition of pseudocomplement, a nax=0Nae L.
(ii) For bAb*=0and a <b=>a Ab*=0 which implies a*> b *
(111) By the definition of pseudocomplement a na*=a*ra =0
Similarly, a*A(a*)*=0=>a*aa**=0 and a*Aa=0=>a*<a**,
=>a<a** Hence a<ax**,
(iv) From (ii1) we have a <ag**
implies that g*x>a**............... (A) [by (i)]
Again a*aa**=0, ie. a*¥anax=0,
Similarly a** A (a*%)* =0, implies that a ** A a*** =0,
and a** Aa*=0 implies that ax<a*** ... (B).
From (A) and (B)

We have a*=a*** Hence a*=a***
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(v) We have (av b) A (a*abx)=(ana*nbx)v (b a*nb*)
=(0Ab*)v(a*xa0) [by(i) ]
=0vO0
=0

Let (avb)Aax=0

implies that (aAx)v(bAx)=0

implies that aAx=0 and bAx=0

implies that x<a* and x<b*

Implies that x<a*Ab*

There fore a * Ab* is the pseudocomplement of av/ b.

Hence (avb)yx=a*nbx* .

(vi) Let a,b € L implies that a*,b* e L implies that a **,b**,e S(L).

implies that a**Ab**e S(L). But a**Ab** is the smallest element

of S(L) containing a Ab. So (anb)**=a**Ab**.

(vii) If @ Ab=0 by (vi) then a**Ab**=(anb)**=0**=0.

So a**Ab**=0,

Conversely, if a**Ab**=0 by (iii) a<a**,b<b**Va,b,e L,

then anb<a**Ab**=0

.anb=0, Hence anb=0 ifand only if a**Ab**=0.

(viii) Since a Ab<b so (anb)*<b* and

80 GN(ANDY S EADE susserssmmrersomonsanes (A).

Again (a Ab) A (a Ab)*=0 implies that (an(anb)*)nb =0,

there fore an(anby<b*

implies that anaA(@Ab)*SAAD* wueeessseesessensens (B).

Form (4) and (B) an(anb)*=anb*.

Hence an(anb)*=anb*.

(ix) We have 0Ax=0Vxe L and 0A1=0.
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But x<1Vxe L. Hence 0*=1.

Again 0*=1 implies that 0**=1%

implies that 0 =1* .. 1*=0.

(x) If ae S(L) then, a=>b* for some be L.

but a* = a***  Vae L.
Now a**=h***=ht—y
Hence a**=a

Conversely if a =a** then a = b*, thus ae S(L).

Hence a € S(L) if and only if a =a**.

(xi) Let a,be S(L) then a=a** b=b**, Since anb<a
implies that (aAb)**<a**=aq,

saz{anb)*®,

Again since a Ab < b implies that (anb)**<b**=b

S (anb)** <b implies that b2 (anb)**

implies that aAb>(aAb)**................... (A).

But A B) = lrnBY*™. i (B).

From (4) and (B)anb=(anb)** implies that anbe S(L).
If xe S(L) suchthat x<a and x<b then x<anb.

i.e anb is a greatest lower bound of S(L).

Therefore a Ab=1Inf g, {a,b} e S(L).

(xii) For a,be S(L). since a*>a*nb*

implies that a ** < (a* Ab*)* [by (11)]

implies that a < (a* Ab)* [by (1)]

Again b*2> a* Ab* implies that b** < (a* Ab*)* [by (11)]
Implies that &< (a*Ab*)* [ by (i)]

(a* Ab*)* is a upper bound of {a,b} in S(L).
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Let x € S(L) such that a < x,b <x then a*2>x* b*>x* [by (11)].

Soa* Ab*2> x* implies that (a* Ab*)* <x**=x

implies that (a* Ab*)* <x

o (a* Ab*)* is a least upper bound of {a,b} in S(L)

Sup sy {a,b} = (a* Ab*)*

Again (anb)**=((anb)*)* =(a* Ab*)*

Hence Sup s) {a,b} = (av b)** = (a* Ab*)*

(xiii) From (ix) we have 0*=1,1¥*=0 then 0,1 S(L) and 1€ D(L).

Let xe S(L)n D(L) then xe S(L) and x e D(L)

such that x = x**, x* =0 then x = (x*)*=0*=1.

Hence S(L)nD(L)={1}.

(xiv) Let a,b € D(L) then a*=0,b* =0 implies that a**=b**=0*=1

Now, (anb)**=a**Ab**=1A1=1 [by (iv)]

(anb)*=(anb)***=1*=0 implies that anb e D(L).

(xv) If ae D(L) then a*=0 and a <b implies that a*>b*

implies that 6*<a*=0

implies that b*=0. Hence be D(L).

(xvi) From (v) we have (ava*)*=a*ra**=a*A(a*)*=0.

Hence ava*e D(L).

(xvii) Let ¢: L — S(L) defined by ¢(x)=x**. Then ¢p(x A y)
Z(xAp)KF == xFHp pRE
=p(X) Ap().

. @ is meet homomophism. |

An identity xA v(xl.|i el)=v(xax|iel) is called the join Infinite

Distributive Identity.
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Lemma 3.1.2: Let B be a complete Boolean lattice. Then B satisfies the
Join Infinite Distributive Identity (JID)

Proof: xAx, <x and xax <v(x|iel)

therefore xAv(x,|iel) is an upper bound for {x /\x,.\ iel}. Now let u be
any upper bound, thatis, xAx, <u forall ie/.

Then x =x A(xvx)=(x, Ax)v(x,Ax)<uvx.

Thus xAv(x,|ie)<xA@vx)=(xAu)v(xax)=xAu<u.

Showing that x Av(x|i ) is the least upper bound for {xx/|ics}. B
Theorem 3.1.3: Any complete lattice that satisfies the Join Infinity
Distributive Identity (JID) is a pseudocomplemented distributive lattice.
Proof: Let L be a complete /attice. For a€ L. set

a*=v(x/xeL anx=0),

Thenby (JID),ana*=anv(x/anx=0)=v(@arx/ anx=0)=v(0)=0.
Suppose aA x=0, then x<a* by the definition of a*; Thus a* is the

pseudocompoement of a and so L is pseudocompoemented.

Recall that a distributive lattice L is a complete distributive if A H and
v H exists in 1 for any subset / of L.

The following figure 3.4 is an example of a complete distributive lattice

which is not pseudocompoemented.

0. 2) | (1, 2)

(0,0) (1,0)

Figure 3.4
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Here L = {(o, y)| 0<y<2}ui{(l, y){ 0< y<2}, so (0,0) is the smallest and

(1,2) is the largest element. Observe that (0,2) ¢ L. This is a complete
distributive lattice, where <’ is the usual ‘<’ relation. But this is not

pseudocomplemented as (/, 0) has no pseudocompoement. m



2. Algebraic lattices.

Definition (Algebraic lattice) : A set (L;a,v) with two binary
operation A and Vv is called an algebraic lattice if it satisfy the following
properties :
(1) forallae L,ana=a,ava=a
(n) forall abel,anb=bnra,avb=bva.
(iii) for all @,b,ce L, an(bac)=(anb)ac.
av(b v c):(avb)vc.

(iv) forall a,beL,an(avb)=a.

av(anb)=a.
A complete lattice is called algebraic if every element is the join of
compact elements
Example: Let L be a with 0 then /(L), the set of all ideals of L under ‘c’
is an algebraic lattice.
In the literature, algebraic lattices are also called compactly generated
lattices. Just as for lattices, a nonvoid subset 1 of a join - semi lattice S is
an ideal if, for a,be S, we have avbeL if and only if a,a,be L. Again,
1(S) is the poset of all ideals of S partially ordered under set inclusion. If S
has a zero, then /(S) is a lattice.
Using /(S), We give a useful characterization of algebraic lattices. [
Theorem 3.2.1: A lattice L is algebraic if and only if it is isomorphic to
the lattice of all ideals of a join semi- lattice with 0.
Proof: Let S be a join semi-lattice with 0. We have to prove that /(S) is

algebraic. Since 0€S,/(S) 1s a complete lattice, We claim that

YaeS (a] is a compact in /(S).
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Let X cI(S) and (alcv(|IeX).

Now v(I|7e X)={X|Xx S,V e Ve L El T e X}
Theie fore, @ £1, ¥ nnasnnamons vt ., tel, l eX
Thus witht X = it 1}

@<vd, eX, cX).
Therefore (a/ is compact in /(S).
Now, for any 7eI(S),I =v((a] / acL) . Hence I(S) is algebraic and so
any lattice L is isomorphic to /(S) is also algebraic.
Conversely, let L be an algebraic lattice and let S be the set of all

compact element of L. Obviously 0€ S.

Moreover, clearly join of two compact elements is again a compact

element. So S is a join semi-lattice with 0. Now consider the map
@:L—> I(L) is defined by ¢(a)={xeS|x<a}.
Obviously, ¢ maps L into /(S). By the definition of an algebraic lattice
a=vg(a), and so ¢ is one- one. To prove that ¢ is onto. Let 7e(S),
,a=vI then gp(a)2 1. Now, let xe p(a), then xe §,x<a.
v 1,,By compactness of x, there exists a finite subset /, c/ such that
x<vl,. This implies x €/ and so / € ¢(a). There fore ¢ is onto.
Also p(anb)={xeS|x<anb}={xeS|x<b}

= g(a) A p(b)
Also p(avb)={xeS|xe<avb}={xeS|x<a}v{xeS|x<b}

=@(a) v p(b)

1.e. @1is a homomorphism

Therefore it is an isomorphism. B
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Corollary 3.2.2: Let L be an arbitrary lattice C(L) is an algebraic
lattice.

Proof: We already know that C(L) is a complete distributive lattice.
Suppose ® € C(L). Observe that ©=v(©(a,b)|a=5b0,a,b€L). Since every
principal congruence is compact, So C(L) is algebraic. ®

Corollary 3.2.3 : Every distributive algebraic lattice
spseudocomplement.

Proof: Let L be a distributive algebraic lattice. Then L = I(S), for some
distributive join semi lattice S with 0, I(L) is complete.

Let 1,1, € I(S), we have to show that 7 A (vI,)=v(I Al,)

Of course, VAL )CSIANI). oo, 1.

Let xeIA(vil,) then, xel and xevi,

implies that x<i,, v...... L-Aonsomes b el ot Lo i el
implies that xe 7, v ..., vi,,
implies that xe IA(/y, V.o, vi,)
(nde IV ssramnmanisis: VI AL YSUT ALY,
implies that (J AVI ) SVUI AL )i, (if)

From (/) and (if)

VU AL)=1ANI,)

implies that /(S) holds JID

implies that /(S) is pscudocomplemdnted.

implies that L is pscudocomplemented. [

Theorem 3.2.4: Let L be a pseudocomplemented meet semi-lattice.
S(L)={a*|ae L}.Then the partial ordering of L partially orders S(L)
and makes S(L) into a Boolean lattice.

For a,be S(L) we have anb e S(L) and the join in S(L) is described by

avb=(a*ab¥)*.
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Proof: The following results have already been proved in theorem 3.1.1.
() a<a**
(i)  a<b implies that a*> p*
(iii)  a*=qg***
(vi) aeS(L) iff a*=qg**
(V) a,beS(L) implies that a A b e S(L)
(vi)  For a,be S(L), Sup Syta,b} = (a* Ab¥)*
For a,be S(L) define avb=(a* AD*)*
then by (v) and (vi) we get <S(L);A,v > is a bounded /attice.
Since, for ae S(L),ana*=0 and av g* = (@*na**)* =0*=],
implies that S(1) is Complemented lattice.
Now we need only to show that S(L) is distributive.
For X,Y,2,€S(L),xAnz<.xv(yAz) and Yynzsxv(ynz);
there fore x AzA(xv(yAz)*=0
implies that x A (z A (x v (y A Z)")=0
implies that z A (x v (y A z))* < x*
Again yAza(xv(yaz)*=0
Or yA(za(xv(yaz)*)=0
LZA(Vv(PAZ))ELS p*
We can write z A (x v (y A 2))* Lx*np*
Consequently, z A (x v YAZ)D*A(x*Ay*)*¥ =0,
which implies that z A (x * A y*)* < (xv(yaz)**,
Now the left- hand side is z A (xvy) [byfora,be S(L).
Sup sa) {a, b} =(a* Ab*)¥]
and the right hand side is x v (y A 2) [by aeS(L) iff a=a**].

Thus we z A (xv y)<xv(yaz) which is distributivity. ]
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Theorem 3.2.5: Let L be a pseudocomplemented lattice.
Then a**vb**=(avb)** forall a,be L.
Proof: We know that if L is a pseudocomplemented meet semi-lattice.
then av b =(a*vb*)* where a,be S(L).
Now for a,be L, a** b**e S(L)
SO a**y b** = (g*** apxrxys
=(a*nb*)*
=(avb)**
implies that a**v b** = (g v p)**, |
Theorem 3.2.6: Let L be a pseudocomplemented meet semi-lattice and
let a,be L then (a A b)*=(a** A b)* =(q* A h**}*
Proof: Since L is a pseudocomplemented meet semi-lattice.
Then a < a** implies that a Ab< a** A b
implies that(aAb)*> (@**Ab)*................ (i)
Again b <b** implies that a** Ab < a** A ph**
implies that a** A b < (anb)**
implies that (a** A b)* > (a Ab)****
implies that (a** Ab)*>(aAb)*.........ooo (if)
Form (/) and (ii) we have (anb)*=(a**Ab)*.... ... (iii)
Again, b <b** implies that a** A b < a** A h**
Implies that (@** Ab)*> (@**Ab**)* ... @)
Again, a** < g**** jmplies that a**¥ Ab** < g**** 5 p#*
=(a** Ab)**
implies that (@** Ab**)* > (a** Ab)*** implies that
(@** AB**Y*> (@**ABY* ).
From (iv) and (v)

@*Ab)*=@** Ab*)* (v)
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From (ii1) and (vi)

(anb)*=(a** nb)*=(a** nb**)*. H
Theorem 3.2.7: Let L be a pseudocomplemented distributive lattice.
Then for each a e L,(a] is a pseudocomplement distributive lattice in fact
the pseudocomplement of x € (a] in (a] is x*Aa.
Proof: Let xe(a] then xA(x*Ad)=(x*Aa)=(xAx*)rna=0na=0.
Further if xaz=0 then 7<x* implies that 1 Aa<x*Aa implies that
1 < x* na implies that x* Aa is the pseudocomplement of x, implies that
(a] is a pseudocomplemented distributive lattice. o
Theorem 3.2.8: Let A be a binary operation on L, let * be a unary
operation on I (that is, for every ae L,a*e L) and let 0 be a nulary
operation (that is Oe L). Let us assume that the following hold for all
abceL.:anb=bna.
(@nbyrc=an(bacyana=adnra=0,an(@anby*=anb*,
an0*=a,(0¥)*=0. Show that < L;A > is a meet semi-lattice with 0 as
zero, and for all, a e L,a* is the pseudocomplement of a (R. Balbes and
A. Horn [1970a))
Proof: Let a € L,a* € L then

i) anaa=a [by given condition]

ii) ana=bAa [by given condition]

i) an(bac)=(anb)Ac [by given condition]

Define ‘<’ onLby a<b<a=anb.
~.< LA > is a meet semi-lattice.
Now 0Aa=0 Vae L implies that 0<a
So, 0 is the zero element of L.
Second part: 0=an0=an0**=an(an0¥)*=ana* and anx=0.

Then x Aa*=xA(x Aa)*=xA0*=x=xAa*=x implies that x<a*
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Hence a * is the pseudocomplement of a. B
Theorem 3.2.9: For as pseudocomplemented distributive lattice L.

Define the relation R by: x = y(R) if and only if x*=y#* ThenR is a
congruence on L and L|R = S(L).
Proof: Given that x= y(R)<x*=yx*, then x*=x* implies that
x=x(R) implies that R is reflexive.Also if x= y(R), then x*=y=*
implies that y* = x* implies that y = x(R) implies that R is symmetric.
Let x= y(R) and y=2z(R), then x*=y* and y* =z * implies that
x* =z * implies that x = z(R) implies that R is transitive.implies that R is
an equivalence relation.
Now, suppose x = J(R) and ¢ € L then x* = y* implies that x** = y**,
Now, (X Af)**=x*kAtdk=phrnthkr=(YAL)**
implies that (x At)*%=(y Al)**
implies that (x At)*x=(y Al)*
implies that x A7 = y At(R)
and (xv o)k = x* Atk = yx Atx=(pVv1)*
implies that xv=yv#(R).
So R is a congruence relation on L.
Define ¢:L/R— S(L) by ¢((a]R) =a*x,
then g([alA[b]) =p([anb])**=(anb)**=ax*xAb**

= ¢([a]) A o([0])
And p([a]v[b]) = g(lav b])=(a v b)**=(a*nb¥)*

=(a***/\b***)*

—gErvhE*

= g([a]) v o([b])

.. ¢ is a homomorphism.
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To show that ¢@ is one- one. Let a**=b**
implies that a* = b *

implies that a = b(R) implies that [a] =[],

.. (p1s one- one.

Let ae S(L) then a = ag** implies that a = q)[a]
implies that ¢ is onto.

Hence ¢:L/R— S(L) is an isomorphism.
Therefore L/R=S(L). |
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CHAPTER FOUR

STONE LATTICES

Introduction: Stone lattices have been studied by several authors
including Cornish [5], G. Gratzer & E.T. Schmidt [9], Katrinak [11],
T.P.Speed [25], J.Verlet [26]. In this chapter, we discuss the Stone
lattices, Stone algebras and some basic concepts to Stone lattices. In
section 1 of this chapter, we give some basic properties of Stone algebra
which will be needed in the next part.

In section 2 of this chapter, we have given characterization of minimal
prime ideals of a pseudocomplemented distributive lattice. Then we have
shown that every pseudocomplemented lattice is generalized Stone if and
only if every two minimal prime ideals are co-maximal.

Definition (Stone lattice): A distributive pseudocomplemented lattice

L is called a Stone lattice if foreach a€ L, ava =1,

@0

Figure 4.1
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Definition (Stone algebra): A pseudocomplemented distributive lattice

L is called a stone algebra if and only if it satisfies the condition

a” va" =1 which is called stone identity, for each ae L.

Definition (Generalized stone lattice): A lattice L with 0 is called

generalized stone lattice if (x]* v (x]** =L for each xe L.
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1. Properties of Stone Lattices.

Theorem 4.1.1: For a distributive lattice L with
pseudocomplementation,
the following conditions are equivalent.

1) L is a Stone algebra

1) (anb)*=a*vbx* forall abel

1) a,beS(L) impliesthat avbe S(L).

iv)  S(L) is a sub algebra of L.
Proof: (i) implies (ii), Let L be a Stone algebra, we shall show that
a*vb* is the pseudocomplement of a A b, Indeed.

(@anb)n(a*vb¥)=(anbna*)v(anbnb¥*)

=(0Ab)v(an0)

=0vO0

=()
If (anb)ax=0 then (bAax)ra=0.
and so b Ax<a*, Meeting both sides by a **
Yields, baxna**<a*na**=0;
that is,b A(x Aa*%) =0, implying that a**Ax<b*
We have, a*va**=1, by Stone’s identity.

s d= ¥nl=xnlad®va*™) =k na)v{xana®™) 2a%vb*.
implies that a*vb* is the pseudocomplement of a Ab
implies that (aAb)x=a*vb*.

(11) implies (ii1).
Let a,be S(L),then a=ax**, b=bxx*
navb=axxvbxx=(a* bx¥)x=(avb)**

implies that avbe S(L)

61



Also a=ax** b=5hx**
Now,avb=a**vb**x=(a*xab¥)*=(avbhb)**=avb
1e. S(L) is a sub algebra of L .
(iv) implies (i) Let S(L) is a sub algebra of L .
Then a*vax*=(anax)x=0%=1.
Hence L is a Stone algebra. &l
Theorem 4.1.2: If L is a complete Stone lattice, then so is I(L).
Proof: Let /*=(a], where a=A(x* | x e I) and let xe I I¥*, then
xel and x e [*=(a] implies that xe/ and x e (a] implies that xe/
and x < y*Vy e[ implies that x < x * implies that x=xAx*=0,
implies that 7/ A I*=(0] ,
Let / AJ,choose any jeJ,then in j=0 Viel implies that j <i*,ie/
implies that j<A(/* liel ) implies that j<a implies that je/*
implies that J < /* implies that /* is a pseudocomplemented. Since
Oe L, so (L) is complete. Finally, we have to show that 7 *v/**=L.
Now [ *vI**=(a]v(a]*=(a]**v (a]*

= (a**]v (a¥]

= (a * % \/ a*]

=L
Hence /(L) is a Sione.
Thus /(L) is a complete Stone lattice. [
Theorem 4.1.3: A distributive pseudocomplemented lattice is a Stone
lattice if and only if (av b)**=ag**vb** fora, b € L.
Proof: Let L be a Stone lattice. Then we have (aAb)*=a*vb* for

a, be L. Now (avb)**x=(avbx)x=(a*Ab¥)*=ax%v b**

62



Conversely, let (av b)**=a**yvb** fora, b € L.
Since L is a pseudocomplemented lattice. Then for ae L,an a*=0
implies that (a A a*) * % =0 * *
implies that a** Ag***=(
implies that a**Aa*=0
Now, (ava*)*=a*ara**=0
implies that (av ax)** =0 *
implies that a**v g***=1
implies that a** v a* =1

Hence L is a Stone lattice. g
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2. Minimal prime ideals.

A prime ideal P of a lattice L is called minimal if there does not exists a

prime ideal Q such that O < P.

The following lemma is a fundamental result in /attice theory;

e.f. [7], lemma 4pp. 169]. Though our proof is similar to their proof, we
include the proof for the convenience of the reader.

Theorem 4.2.1: Let L be a lattice with 0. Then every prime ideal
contains a minimal prime ideal.

Proof: Let P be a prime ideal of L and Let R denote the set of all prime
ideals O contained in P. Then R is non-void, since 0 € O and Q is an
ideal; infact, Q is prime. Indeed, if a A b € Q for some a, b € L, then
a,be X forall X eC; since X is prime, either a e X or b € X. Thus either
O=n (X:aeX) or Q= n (X:b € X) proving that aorb € Q.
Therefore, We can apply to R the dual form of Zorn’s lemma to conclude

the existence of a minimal member of R. ®@

Lemma 4.2.2: Let L be a pseudocomplemented distributive lattice and
let P be a prime ideal of L. Then the following four conditions are
equivalent.

1) P is minimal.

i) x € P implies that x*x¢ P .

1) xe€ P implies that x**xe P,

v) PnD(L)=¢.

Proof: (i) implies (i1).

Let P be minimal and (i1) fail, thatis a*e P for some a € P. Let

D =( —-P) v [a), Weclaim that 0 ¢ D. Indeed, if 0 € D, then
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qra = 0 for some gelL — P, which implies that ¢ < a € P.a
contradiction. Thus (by theorem 1.4.8) there exists a prime ideal Q
disjoint to D. Then QO c P since On(L-P) =¢,and Q0 # P.since : a
¢ Q, contradicting the minimally of P.

(ii) implies (1ii)

Indeed, x * Ax**=0¢eP for any x € L thus if x € P, then by (ii) x*€P,
implying that x ** eP.

(iii) implies (1v)

Ifa € P n D(L) for some a € L, then a*x* —]¢ P, a contradiction to
(iii), thus P nD(L) = ¢.

(iv) implies (1)

If P is not minimal, then Q c P for some prime ideal Q of L .

Let xe P—O.Then xAx*=0¢€Q andx ¢ Q :then xxeQc P,
which implies that x v x* € P. By theorem 3.1.1. (xvi), x v x* € D(L);
thus we obtain x v x*e P n D(L), contradicting (1v).

Hence P is minimal. B

Theorem 4.2.3: In a Stone algebra every prime ideal contains exactly
one minimal prime ideal.

Proof: Let L be a stone algebra and let P be a prime ideal of L. We
need prove that P contains exactly one minimal prime ideal. Suppose P
contains two distinct minimal prime ideals 0O; and Q.

Choose x € Q7 — Qz (01 @ Oz since Oz is minimal

and O, = O1, hence Q1 — 02 #4);

Since xAx¥=0€ Q0 x ¢ Oz and Q2 is prime, so xxe Oy L- O; 1s
maximal dual prime ideal, hence it is a maximal dual ideal of L.

Thus (L — Q) Vv [x) = L and s0, x A @ — ( for some a € L — 01
Therefore, x¥*=>ael — Qi implies that x*e O . Hence x € 0z Or

Similarly, x* € Q1,80 x* and x ** both contained in P.
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implies that 1= x*vx**€eP, which is a contradiction that P is a prime
ideal of L. Thus in a Stone algebra every prime ideal contains exactly one
minimal prime ideal. ]

Theorem 4.2.4: A prime ideal P of a Stone algebra L is minimal if and
onlyif P=FPnNSL))L

Proof: Suppose P is minimal, Let x € (P AS(L)]r. Then x < r for some
re P ~ S(L) implies that 7 € Pand r € S(L) implies that x € P

implies that » € P and r € S(L) implies that » € P implies that x € P.
implies that (P N S(L)]L S P coserssseuseusenseasens (1)

Again let x € P, since P, s minimal so, x** € P, Thenx € P N S(L), as
x<x** Soxe (PnSL)]

implies that P © (P O S(L)]L wesessessessussnssasensusasense (i1)

Form (i) and (ii) P = (P n S(L)/1

Conversely, let P = (P ~ S(L)/r and letx € P then x < r for some

re P N S(L), implies that x¥*<r** =r implies that x** € P.

Hence P is minimal. &

Theorem 4.2.5: A distributive lattice with pseudocomplementation is a
Stone algebra if and only if every prime ideal contains exactly one
minimal prime ideal (G. Gratzer and E. T Schmidt [1957b])

Proof: Let L be distributive lattice with pseudocomplementation. If L is
a Stone algebra, then by theorem 4.2.3 every prime ideal contains exactly
one minimal prime ideal.

Conversely, let L is not a Stone lattice and let @ € L such than a* v a** #
| Then there exist a prime ideal R such that, a*va** eR. We claim that
(L-R)v[ax)=L.1If (L - R) v[a*)# L then there exist an x € L=R
such that x A@*=0. Then a**>xe L— R implies a**e [ —R. Which

is a contradiction. So (L —R)v[ax)# L. Let F'be a minimal dual prime

ideal containing (L — R)v[a*) and let G be a minimal dual prime ideal
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containing (L — R) v[a*). WesetP =L - Fand Q = L-G. Then P and QO
are minimal prime ideals such that P, Oc R. Moreover P # O, because

axe ' =L —P and hence ax¢ P thus a**e P but a*x*¢ Q. -

Theorem 4.2.6: Let L be a distributive with 0 and 1 . For an ideal I of
L. We set [*={x | xAi=0 for all iel}. Let P be a prime ideal of L.
Then P is minimal prime ideal if and only if x € P

implies that (x]* < P (T.P. Speed).

Proof: By the definition of I (x]*={y | yAx=0} as x*Ax=0
implies that x* e (x]* implies that (x*] < (x]*, again let z € (x]*,
thenzAx=0 implies that z<x* implies that ze (x*] implies that
(x]* < (x*] implies that (x]* = (x*]. Now suppose P be a minimal prime
ideal and xe P, then by the theorem x*¢ P, implies that (x*]z P
implies that (x*]c P.

Conversely, if for x € P,(x]* < P and if possible. Let P is not minimal

then there exist a prime ideal O such that O c P. Letx € P = Q.

Now x*Ax=0e(Q implies that x*e Q implies that xe P implies that
(x*] < P implies that (x]*< P, whichis a contradiction.

Hence the proof. ]

Theorem 4.2.7: Every Boolean lattice is a Stone lattice but the
conversely is not necessary true.
Proof: Let I be a Boolean lattice. Then for each a € L, it’s complement

d is also the pseudocomplement of a.
Moreover, a*va** = d~v d =d v a=I Hence L is also Stone.

Observe that 3- elements chain is a Stone lattice.
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For a*va**=0v0%¥=0v1=1. But it is not Boolean, as a has no

complement.

Figure — 4.2

In theorem 4.2.3, we have proved that in a Stone lattice every prime ideal
contains a unique minimal prime ideal. In the following lattice, observe

that (c] is a prime ideal and it contains two minimal prime ideals (a] and

(2].

Hence it is not a Stone lattice.

0

Figure — 4.3

Also by 4.1.1. we know that in a Stone lattice L, a A be S(L) for all

a bel. In above lattice observe thata v b = ¢ ¢ S(L).

Hence L is not Stone.
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Definition(Skeleton of a lattice): Let L be a Stone lattice, then
S(L)={a*:a e L} is called skeleton of L. The elements of S(L) are called
skeletal. L is dense if S(L) = {0,1},

<S(L)A,v,*%0,1> is a Boolean algebra.

Corollary 4.2.8: A finite distributive lattice is a Stone lattice if and only
if it is the direct product of finite distributive dense lattices that is finite
distributive lattices with only one atom.
Proof: By theorem 4.1.1 a Stone lattice L has a complemented element
ae{0.1} iff S(L)={0,1}; thus the decomposition of theorem 2.1.14 can
be repeated until each factor L; satisfies S(L)={0,1}. In a direct product,
* is formed component wise: Therefore all the L; are Stone lattices; For a
finite lattice K with S(K)=1{0,1} the condition that K has one atom is

equivalent to K being a Stone lattice. B

Theorem 4.2.9: A distributive pseudocomplemented lattice is a Stone

lattice L if and only if for any two minimal prime ideals P and Q,
PvQ=1L

Proof : Suppose L is a Stone lattice and P, Q are two minimal prime

ideals. If P~ Q # L then by theorem 2.1.17 there exists a prime ideal R

containing P v Q. This means that R contains two minimal prime ideals,

which is a contradiction to theorem 4.2.5. as L is a Stone, there fore
PsrQ=L.

Conversely, suppose the given condition holds and R is a prime ideal of

L. Then R can not contain two minimal prime ideals P and Q, as other

wise R o P v QO = L, Therefore again by theorem 4.2.5. L is Stone. B
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Definition (Dense set): D(L)={aeL:ax=0},D(L) is called the
dense set. D(L) is a filter or Dual ideal, 1€ D(L).

We can easily cheek that D(L) is a dual ideal of L and that I = D(L); thus
D(L) is a distributive lattice with 1. Since a v a c D(L) foreverya € L,
we can interpret the identity a v a** A (av ax).

To mean that every a € L can be represented in the form a=bAc.
Where b e S(L), ¢ e D(L). Such an interpretation correctly suggests that
if we know S(Z) and D(L) and the relation ships between element of S(L)
and D(L),

Figure : 4.4

Then we can describe L. The relation ship is expressed by the
homomorphism @(L): S(L) —> ¢(D(L)) defined by
o(L):a—>{x | xe D(L);x = a*}
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Now we prove a theorem which givens an ideal of construction of Stone
algebra’s.

Theorem 4.2.10: (C. C. Chen and G. Gratzer [1969b] ) Let L be a Stone
algebra. Then S(I) is a Boolean algebra D(L) is a distributive lattice with
L and o(L) is a {0, 1} homomorphism of S(L) into g D(L)). The triple

<S(L). D(L)g(L)> characterizes L up to isomorphism.

Proof : The first statement is easily verified. For a € S(L),

set Fg={x:x**=a}.

The sets {Fa| a e S(L)} form a partition of L, for simple example figure
4.4, Obviously, Fy = {0} and F; = D(L); The map x — xv a*

sends F, into F; = D(L); infact the map is an isomorphism between I,

and agp(L)c D(L). Thus xel, is completely determined by a and
xva*eap(L)- that is by a pair <a,z > where ae S(L),zeap(L)- and

every such pair determines one and only one element of L. To complete
our proof we have to show how the partial ordering on L can be
determined by such pairs.

Let x € F,and y € Fp,. Then x < y implies that x ** < y*# , that is

a<b. Since x< y ifand onlyif, avx<avyand xvax<yva* and
since the first of these two conditions is trivial, we obtain: x < y iff a<b
and xva*<yva+*. Identifying x with <xva*a> and y with
< yvb* b>, we see that the preceding conditions are stated in terms of
the components of the ordered pairs, except that y v a* will have to be
expressed by the triple. Because ¢(L) is a {0,1} homomorphism and
a** is the complement of a*, we conclude that a**p(L) and a* (L)

are complementary dual ideals of D(L). Therefore, by theorem 2.2.3. for
any ze D(L),[z) is the direct product of [zv a*) and [zva* *). Thus
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every z can be written in a unique fashion in the form
z=z(a*) nz(a**), where z(ax)eap(l) and z(a**)ea*p(L). Let
yp, denoted the element (y@(L))(a*) and observe that p. is expressed
interims of the triple. Finally, y v a*=yvb*va*=(yp(L)) v a*=y P,
Thus for ue ap(L) and ve bp(L), we have <u,a> < <v,b > if and only

if a<bandu<vp,. B
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CHAPTER FIVE

MODULAR AND DISTRIBUTIVE
LATTICE WITH n-IDEAL.

Introduction: An idea of standard n-ideals of a lattice was introduced
by A.S.A.Noor and M.A. Latif in [20]. Then they studied those n-ideals
extensively and included several properties in [19] and [21]. Moreover, in
[22] Latif has generalized isomorphism theorems for standard ideals in
terms of n-ideals. In this section we give a nice idea of distributive and
modular lattice with n-ideals.
An n-ideal S of a lattice L is called a standard n-ideal if it is a standard
element of the lattice I, (L). That is, S is called standard if for all

I,Jel (L), I a(sv))=(Ins)v(INJ).
Distributive elements and ideals were studied extensively by Gratzer and
Schmidt in [9]. On the other hand [24] have studied the distributive
elements and ideals in Join semi lattices which are directed below:
An element d of a lattice L is called distributive if for all
x,yelL,dv(xny) =(dvx)A(dvy).Anideal I is called distributive if
it is a distributive element of the ideal Lattice I(L).
In [24] Talukder and Noor have given an idea of a modular element and a
modular ideal of a Lattice. According to them, an element n of a /attice L
is called modular if for all x,ye Lwithy<x, xan(nvy)=(xaAn)vy.
An ideal of L is called modular if it is a modular element of /().
An element s € L is standard if for all

x,yeL,x/\(svy)z(x/\s)v(x/\y)
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An element nel is called neutral if it is standard and for all
x,yeL,(a/\x)v(x/\ yv(yaa)=(@vx)a(xv y)A(yva) That is, n
1s dual distributive.

In section 1, we have introduced some idea of distributive lattice with n-
ideals. We have given several characterizations of distributive lattice with
n-ideals. For a distributive lattice of n-ideal I of a lattice L. we have also
given some definition of ® (/). The congruence generated by /. We have

also explained neutral element n of a lattice L, Principal n-ideal (a) or

P (L) in distributive Lattice.
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1. n-ldeal of a lattice.

A non-empty subset I of a lattice L is said be an ideal of L if

Wa,bel=>avbel

(W ael,lel =anlel.

If L is bounded then {o} is always an ideal of L and is called the zero
ideal. The n-ideal of a lattice have been studies extensively by A.S.A
Noor and M.A. Latif in [19], [20], [21], [22] and [23]. For a fixed element
n of a lattice L, a convex sub lattice containing n is called an n-ideal. If L
has "o", then replacing n by "o" an n-ideal becomes a filter by
replacing n by 1. Thus the idea of n-ideals is a kind of generalization of
both ideals and filters of lattices. So any result involving n-ideals of a
lattice L will give a generalization of both ideals and filters of lattices. So
any result involving n-ideals of a lattice I with give a generalizations of
the results on ideals if O0elL and filters if 1€L.

The set of all n-ideals of a lattice L is denoted by I, (L). Which is an

algebraic lattice under set inclusion. Moreover, {n} and L are

respectively the smallest and the largest elements of 7,(Z), while the set
theoretic intersection is the infimum. For any two n-ideals H and K, of
a lattice L, it is easy to say that HNK ={x:x=m(h,n k) for some
he H ke K}

Where m(x,y,z)=(xAy)v(yAz)v(zAXx) and

HvK={x:hnk <x<hyVvk,, forsome h,h, € H. and k,,k, e K.

The n-ideal generated by P, Py, e P, 1s denoted by
<p1!p2 """"""""" ’pm>n’
clearly, (p,, Py oo Pudn =Pa VAP Vi (P
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The n-ideal generated by a finite number of elements is called a finitely
generated n-ideal. The set of all finitely generated n-ideal is denoted by

F (L), is a lattice. The n-ideal generated by a single element is called a
principal  n-ideal. The set of all principal n-ideals of a lattice L 1s
denoted by P,(L). We have (@), ={xeL:ann<x<avny},
Standard element of a Lattice: An element s of a lattice L is called
standard if X A(SV Y)=(xAS)V (x A y)forallx,y elL.

Theorem 5.1.1: If / (L) be an n-ideal of a lattice L is distributive if
and only if (I v{(a) YN (I v (b)) =1v({a), N(b),). for a,be L.
Proof: Let J and K be two ideals of a lattice L and [ is distributive
lattice. Againlet x e (I v J)N (I v K).

Then xe I vJ and xel Vv K.

Then i A J,<x<i,vj, and i Nk, <x<i, vk,

for some i,,i,,4,,i, € I, j,,j, €J and k,,k,,€ K.

Now, n<xvn<i, Vv j, vn implies that x vnelv{j, vn),
Similarly, n< x v n £ i, v k, v n implies that

Thus, xvne({ v{J,vn),)c Vv (JNK)).

If 1 is distributive, then the condition clearly holds from the definition. To

prove the converse, suppose given equation holds for all a,be L, let J
and K be any two n-ideals of L.

Obviously, Iv(JnK)c (v J)n({ Vv K). |

Theorem.5.1.2: An element a of a lattice L is distributive if and only if
the relation @, defined by x=y6@, ifandonly if x va=yvaisa
congruence.

Theorem5.1.3: If I be n-ideal of a lattice L, is distributive if and only
if the relation ©(/) defined by y = x®(7) Vx,y e L if and any if
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xvi=yviadxAi,=ynAi, for some i ,i,€l in the
congruence generated by 1.

Proof: At first we shall show that

y=x0()if and only if (y), =(x).®, in I (L). Lety=x0(I),
Then Y Vi, =xVi and yNi,=XxN1i, forsomei,i,€l.

Now VAL =XAl, <X<XxVi =yVi implies that x €(y), v /.
Therefore, (¥), VI =(x), V1.

Which implies that (), = (x), o) in I1,(L).

Conversely, ( y )n =(x) @,in I, (L)

then (), VI =(x), VvI.

Again, ye(x), vI,andos x AnANi, Ly <XV RAVI,.

Similarlyy, XARAL<X<yVnVvi,

This y<xvnvi,<yVvnvi,Vi,

Which implies Yy VAV, Vi, =XV AV, Vi,

Similarly YARAL AL, =XARAL AL

Thatis yvi=xviandynj=xXNAJ

Where i=nVvi,Vvi,and j=nAi A,

Therefore Y =X U )

Above proof shows that ©(7) is a congruence in L if and only if ©, is
a congruence in I (L). But by lemma 5.1.2 ©,is a congruency if and
only if I is distributive in I (L) and completes the proof. W

Theorem: 5.1.4: If n be a neutral element of a lattice L and

P s ,P. Vv n are distributive in L. Then finitely generated

n-ideals (P,P,,........... ,P ), is distributive.
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Proof: Suppose P Amn,.......... ,P, Anare dual distributive and

£ B e , P,/ n are distributive in a lattice L. let J,K el (L).

Suppose x € ((£,........ WD T (0 N— W %A
Then by using distributivity of P, v n,.............. P vn.

We have,x < (P v .......... VP vav JIA(P v....... vP vnvK)

=(p,vn)V(Pp,VA)V. ... v(p,vn)v(jAk).

= (B ¥ PV cosssema vp.vu)v[(jvn)an (kv n)
But, (Jvm)a(kvn)=m(jvnnkvnelnK.

Dually using the dual distributivity of p, A n,......... P Bl
It is easy to see that,

DA Dy A Ap, ARAN((J,An)v (K, An))<x
forsome j, € J,k € K.

Moreover, (J, An)V (k, An)=m(j, An,nk An)eJ NK.
Thus by convexity, Since the reverse in inclusion is
XA D Posivisaniis sibp. i A K).

$0: L P sy By s p ., ), 1sdistributive.

It should be mentioned that the converse of above result is not necessarily

true. For example consider the following /attice.

Figure: 5.1
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Here (a, f), = L which is of course distributive in I (L) .
But neither a v n nor f v n is distributive in L.

But the converse holds for principal n-ideals. u
Definition (neutral element of a lattice): An element ne L is called

neutral if it is standard and for all x,y,e L. nA(xVv y)=(nAy). By
[15], we know that n € L is neutral if and only if for all x,y € L.
m(x,n,y)=(xAy)V(xAn)v(yAn)=(xvy)a(xva)A(yvn).

Ofcourse 0 and 1 of a lattice are always neutral, of course every

element of a distributive lattice is distributive, standard and neutral.

Theorem : 5.1.5:  Suppose n be a neutral element of / (L). Then ann

is dual distributive and avn is distributive if and only if (@), is
distributive.

Proof: Suppose {(a), is distributive and b,c € L.

Then (a), v ((8Y, "{e),) = (a), v (B),) M (@), v c),).

Thus, [a An,avn]lv([bAanbvrlnlancAn,avcvn])
=lanbarnavbvnlnlancAn,avcvn]

This implies,
annn((ban)yv(can)=(anbarn)v(ancnn)
and avav((bvr)A(cvn)=(@vbvr)a(avcvn)

Thatis (@aAnn)An(bvec)=(anbac)v(ancAn)

and (a v n)v(banc)y=(avbvn)an(avcvn),
as n 1s neutral Therefore , a N n is dual distributive and a v n is

distributive in a lattice L.

To prove the converse, suppose a A n 1s dual distributive and av n

1s distributive. Then by theorem 5.1.4 (@) , 18 distributive.
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Theorem: 5.1.6: Let I be a distributive n-ideal of a lattice L. Then I (L)

is isomorphic with the /attice of all n-ideals of L containing I, that is, with
[I,L]in 7 (L).

Proof: Let ¢ be the homomorphism x —[x]®(I) onto L ;

Q)

Then it is easily to see that the map : K — Ko™ maps I ( ) into

e)
[LLL]. To show that ¥ is onto, it is sufficient to see that [J] ©(/)=J
for all jo/. Indeed, if jeJand ael with j=a®(), then
Jvi=avi and jni for somei,iel. Thus jAi <a<jvi Since
JAI,jviej, so by convexityaeJ. Moreover, ¥is obviously an

isotone and one-one. Therefore, it is an isomorphism. |
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1. n-ldeal of a lattice.

A non-empty subset I of a /attice L is said be an ideal of L if

(Ya,b el =>avbel
(Wael,lel >anlel.

If L is bounded then {0} is always an ideal of L and is called the zero
ideal. The n-ideal of a lattice have been studies extensively by A.S.A
Noor and M.A. Latif in [19], [20], [21], [22] and [23]. For a fixed element
n of a lattice L, a convex sub lattice containing n is called an n-ideal. If L
has "o", then replacing n by "o" an n-ideal becomes a filter by
replacing n by 1. Thus the idea of n-ideals is a kind of generalization of
both ideals and filters of lattices. So any result involving n-ideals of a
lattice L will give a generalization of both ideals and filters of lattices. So
any result involving n-ideals of a lattice I with give a generalizations of
the results on ideals if 0L and filters if 1eL.

The set of all n-ideals of a lattice I is denoted by 1,(L). Which is an
algebraic lattice under set inclusion. Moreover, {n} and L are
respectively the smallest and the largest elements of 7, (L), while the set
theoretic intersection is the infimum. For any two n-ideals H and K, of
a lattice L, it is easy to say that H K ={x:x=m(h,n k) for some
he H,k e K}

Where m(x,y,z)=(xAy)V(yAz)v(zAx) and

HvK={x:hnrk <x<hyvk,, forsome h,h, € H. and k .k, K.

The n-ideal generated by P, Py, coiiviiinnnn. ,P, 1s denoted by
530 < — s P
clearly; €py;p, ocvimaisssos PoYy =P VAPV P
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2. Modular n-ideals of a lattice

Introduction: An n-ideal M of a lattice L is called a modular n-ideal if
it is a modular element of the lattice I,(L) . In other words is called
Modular if for all HKe I (L) with K < 1,

HAMvVvK)=(HnM)v K.

We know from [24] that a lattice L is modular if and only if its every
element is modular. Also from [20]. We know that for a neutral element

n of a lattice L, L is modular if and only if I (L) is so.

Thus for a neutral element n, the lattice L is modular if and only if it
every n-ideal 1s modular. Following result gives a characterization of

modular n-ideals of a lattice.

Theorem :5.2.1:_An n-ideal M of a lattice L is modular if and only if
forany J,K € P (L) withK cJ,(JNM)vK =JnNn(M vK).

Proof: Suppose M is modular lattice of I (L). The above relation

obviously holds from the definition. Conversely, Suppose

JNK)vK=JNn(MvK) for all JKeP(L) with KcJ. Let
STel(L)withTcS.

We have to show that, (SNM)vT=Sn(M v T).

Clearly, S"M)vT c Sn(M vT).

To prove the reverse inclusion let xeSN(M v 7).

Then xe Sand xe (M vT).

Then,m At < x <m v i,. forsome mm eM,ttel.

Thus, Xvn<x<m Vi Vn,

Which implies xvre(m vn) v{t, vn) < Mv{t vn),

Moreover, xvne{(xvt vn), and (xvt vn) D{tvn),.
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Hence by the given Condition,x vne(xvt vn) Nn(M v{t, vn),)
=(xvt,vn)y "M)v{t,vn), c(SNM)vT.

By a dual proof of above we can easily see that xAne (SN M)vT.
Thus by Convexity x € (S " M )v T . u

Theorem.S5.2.2: Suppose » is a neutral element of a lattice L . Then
M el, (L) is modular if and only if for and only if for any xeM v (y),
with (¥y, < (x), ,x=(xrm)v(xry)=(xvm)A(xvy) for some
m,m, € M.

Proof: Suppose M is modular and x€ M v {y) .

Then x €(x), V(M v (y),=((x), " M)V (p},.

This impels pAyAn<x<gvyvn.

for some p,qe(x) NM.

By Proposition 1.1.1, g € {(x), " M.

Implies that g =(xvq)v(xAan)v(gan)=(xA(qVvn))v(qgAn).
Thus, xVu<(xA(gVvn)vyvn<xvan,

which implies xvan=(xA(gvn))vyvn=
(xalgvn))vya(xvn)vn
=(xA(gvn))v(xnany)vmn,an n is neutral. Hence by the
neutrality of n again,x=xA(xvn)=xA[xa(gvn)) vV (x A y)Vv n]

=(xAl(xAlgvm)v(xapv(xan)

=(xAn(gvn)v((xay)v(xnan).
=(xA(gvn)v(xay),
Which is the first relation where 7, =g Vv ne M.

A dual Proof of above establishes the second relation.
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Conversely, let (¥), < (x),, By theorem 5.2.1, we need to show that
), V(M v (3),)=(x), V(M v (p,) =

Clearly R.H.S cL.H.S.

To prove the reverse inclusion let € x), "(M v {y),.

Thent e (x), and te M v (y)

Then mAy An<t<m v yvn. forsome m,m e M.

Thus, tvyvn<m vyvn, and sotvyvne Mv{(yvn)

and (yvn) c{tvyvn), .

So by the given conditiontv yvn=({tvyvn)am')v (yv n) for
some m' € M. Since f,ye(x),,
Sotvyvne(x), .

Moreover, by the neutrality of n,
((tvyvn)am')v(yvn)

= {(tvyvin)yan(m'vn)v y.
=m(tv yvnnm)vye((x) NnM)v(y).
Therefore, 1v yvre((x) NM)v(y) .

By the dual proof we can show that tA yane ((x) nM)v (y) .

Thus, by the convexity, ¢ € (<x)n NM)v < y)n.

Therefore, (x) N(M v (y) )=((x) "M)v(y)
and so by Theorem 5.2.1, M is Modular. u

n

Theorem.5.2.3: Let M is a modular n-ideal and I be any n-ideal of L

and I be only n-ideal of L and n be a neutral element of a lattice L. Then

I,(L)is principal if M v I =(a), and M N1 =(b) .
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Theorem.5.2.4: Let / and J be ideals of a join Semi-lattice then
Ivt=§ltsivyiel, jel}

Proof: Suppose a modular lattice L is distributive. Then clearly, R.H.S
<IvJ. Nowlet, telvJ.

Then we have ¢ <iv j forsome ielandjeJ.

st=ta(ivy)

feaipuling)

=i'v j'wherei'=tnieland j'=tAjeJ.

Hence t € R.H.S.

s v SRH S,

Therefore, Iv.]={z’vj/ie],je.]}

Conversely, Suppose L is not distributive.

Therefore it contains elements a,b,c is Ms or Ns.

Figure-5.2

Let I =(b] and J =(c] since a<bv ¢, Then we have ae v J.
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However a has no representation as in given theorem.For if

a=ivjiel,JeJ
Then j<a. also j<c
Therefore j<anc<b. Thus jel

Which gives a contradiction.

Hence L is distributive. -
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2. Modular n-ideals of a lattice

Introduction: An n-ideal M of a lattice L is called a modular n-ideal if
it is a modular element of the laitice I (L) . In other words is called
Modular if for all H Ke I (L) with K < I,

HAMVK) (HAM)v K.

We know from [24] that a lattice L is modular if and only if its every
element is modular. Also from [20]. We know that for a neutral element

nofalattice L, I is modular if and only if (L) IS SO.

Thus for a neutral element n, the lattice L is modular if and only if it

every n-ideal is modular. Following result gives a characterization of

modular n-ideals of a lattice.

Theorem :5.2.1:_An n-ideal M of a lattice L is modular if and only if
forany J,K € P (L) withK = J,(JNAM)VvK =J (M vK).

Proof: Suppose M is modular lattice of I (L). The above relation
obviously holds from the definition. Conversely, Suppose
NK)VK=JNn(MvK) for all JKeP(L) with KcJ. Let
ST el (L)with TS,

We have to show that, (SNM)vT=S~(M v T).

Clearly, (SNM)vT c Sn(M v T).

To prove the reverse inclusion let x €S N (M vT).

Then xe Sand xe (M v 7).

Then,m At < x <m vi,. forsome mm e M,tt eT.

Thus, xvn<x<m vt vn,

Which implies xvne(m vn), v{t vn) < Mv{tvn)

Moreover, xvne(xvi vn) and (xVv vn) D, Vvn),.
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