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Abstract 

The present study is concerned with the study of steady MHD free convection and mass 

transfer flow past an impulsively started infinite vertical porous plate with thermal 

diffusion when a strong magnetic field of uniform strength is applied transversely to the 

direction of flow. The Hall and ion slip currents are taken into account. The effects of 

rotation on the flow are also considered. Similarity transformations are used to transform 

the governing partial differential equations into a system of ordinary differential 

equations. The ordinary differential equations are then solved by perturbation technique 

based on large suction. The velocity and temperature profiles are shown graphically and 

results are discussed in terms of Hall parameter f3, ion slip parameter Di and other 

established parameters. 
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- Introduction 

The aim of this dissertation is to make some calculations, both analytical and numerical, 
on Magnetohydrodynamic heat and mass transfer flow that have been of interest to the 
engineering community and to the investigators dealing with the problem in geophysics 
and astrophysics. The thermal diffusion effect, which is often neglected in heat and mass 
transfer processes, has also been included in the analyses for the above mentioned 
calculations. 

The natural convection processes involving the combined mechanism of heat and mass 
transfer are encountered in many natural processes, in many industrial applications and in 
many chemical processing systems. In these processes the total energy and material 
transfer resulting from the combined buoyancy mechanisms are the main features to be 
determined. In our analyses the combined buoyancy effect arising from the simultaneous 
diffusion of thermal energy and chemical species are considered on the MHD flow of 
electrically conducting fluid under the action of a transversely applied magnetic field. 

When the magnetic field is very strong the effect of Hall current and ion slip current 
becomes significant. In our analyses we have therefore taken into account these effects. 
Further in studying the different aspects of astrophysical and geophysical problems the 
Coriolis force is necessary to include to the momentum equations. Considering its 
significance compared to viscous inertia forces, it is generally admitted that the Coriolis 
force due to Earth's rotation has a strong effect on the hydromagnetic flow in the Earth's 
liquid core. In our analyses we have therefore taken into account the effect of this 
Coriolis force on a hydromagnetic heat and mass transfer flow. 

The whole thesis consists of 3 chapters. In the first chapter, available information 
regarding MHD heat and mass transfer flows along with various effects are summarized 
and discussed. The various non-dimensional parameters occurring in the problem are also 
discussed. A brief review of the past researches related to the topic has been given. In 
chapter 2, a specific problem of the MI-ID free convection and mass transfer flow past an 
infinite vertical porous plate taking into account the thermal diffusion, Hall and ion slip 
currents with large suction is considered. The partial differential equations governing the 
problem under consideration have been transformed by a similarity transformation into a 
system of ordinary differential equations that are then solved by perturbation technique 
based on large suction. The influences of the different parameters on the velocity and 
temperature fields have been discussed with the help of graphs and tables. 

The problem considered in the 3 rd chapter is an extension of the problem considered in 
chapter 2. Here we have taken into account the effect of rotation on the flow. 
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Chapter 1 

Available information regarding MHD heat and mass transfer flows 

In this chapter some fundamental topics related to Magnetohydrodynamics (MHD) 
and mass transfer flows, viz, fundamental equations of fluid dynamics, MHD 
approximations, MHD equations, dimensionless parameters, free convections, mass 
transfer, suction etc. have been presented. 

1.1 Magnetohydrodynamics 

Magnetohydrodynamics is that branch of continuum mechanics that deals with the 
flow of electrically conducting fluids in presence of electric and magnetic fields. 

10. 
Many natural phenomena and engineering problems are susceptible to MHD analysis. 

Faraday (1832) carried out experiments with the flow of mercury in glass tubes placed 
between poles of a magnet, and discovered that a voltage was induced across the tube 
due to the motion of the mercury across the magnetic field, perpendicular to the 
direction of flow and to the magnetic field. He observed that the current generated by 
this induced voltage interacted with the magnetic field to slow down the motion of the 
fluid, and this current produced its own magnetic field that obeyed Ampere's right 
hand rule and thus, in tum distorted the magnetic field. 

The first astronomical application of the MHD theory occurred in 1899 when Bigalow 
suggested that the sun was a gigantic magnetic system. Alfven (1942) discovered 
MHD waves in the sun. These waves are produced by disturbance that propagates 
simultaneously in the conducting fluid and the magnetic field. 

The current trend for the application of magnetofluiddynamics is toward a strong 
magnetic field (so that the influence of the electromagnetic force is noticeable) and 
toward a low density of the gas (such as in space flight and in nuclear fusion 
research). Under these conditions the Hall current and ion slip current become 
important. 

1.2 Electromagnetic Equations 

Magnetohydrodynamic equations are the ordinary electromagnetic and hydrodynamic 
equations modified to take account of the interaction between the motion of the fluid 
and electromagnetic field. Formulation of the electromagnetic theory in mathematical 
form is know as Ma.xwell's equations. Maxwell's basic equations show the relation of 
basic field quantities and their production. The basic laws of electromagnetic theory 
are all contained in special theory of relativity. But here we will always assume that 
all velocities are small in comparison to the speed of light. 

Before writing down the MHD equations we will first of all notice the ordinary 
electromagnetic equations and hydromagnetic equations (Cramer and Pai, 1973). 



First, we give the electromagnetic equations: 

Charge continuity V.D = Pc  

Current continuity V.J = - äc /ät (1.2) 

Magnetic field continuity V.B = 0 (1.3) 

Ampere's law VAHJ+8D/ät (1.4) 

Faraday's law VAE=-0B/3t (1.5) 

Constitutive equations for D and B D = e'E (1.6) 

B=pH (1.7) 

Lorentz force on a change F= q'(E + qp AB) (1.8) 

Total current density flow J (E + qAB) + Pc q (1.9) 

The equations (1.1)- (1.5) are the Maxwell's equations where D is the displacement 

current, Pc  is the charge density, J is the current density, B is the magnetic induction, 
H is the magnetic field, E is the electric field, c' is the electrical permeability of the 
medium, p, is the magnetic permeability of medium, qp velocity of the charge, o is the 
electrical conductivity, q is the velocity of the fluid and pcq  is the convection current 

due to charges moving with the fluid. 

1.3 Fundamental Equations of Fluid Dynamics of Viscous Fluids 

In the study of fluid flow one determines the velocity distribution as well as the state 
of the fluid over the whole space for all time. There are six unknowns namely, the 

three components (u, v, w) of velocity q, the temperature T, the pressure p and the 
density p of the fluid, which are functions of spatial co-ordinates and time. In order to 
determine these unknown we have the following equations: 

Equation of state, which connects the temperature, the pressure and the 
density of the fluid. 

ppRT (1.10) 

For an incompressible fluid the equation of state is simply 

p= constant (1.11) 

Equation of continuity, which gives relation of conservation of mass of the 
fluid. The equation of continuity for a viscous incompressible fluid is 

V.q= 0 (1.12) 
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(c) Equation of motion, also known as the Navier-Stokes equations, which give 
the relations of the conservation of momentum of the fluid. For a viscous 
incompressible fluid the equation of motion is 

pDq/Dt = F - Vp + iV2q (1.13) 

where F is the body force per unit volume and the last term on the right 
hand side represents the force per unit volume due to viscous stresses and p 
is the pressure. The operator, 

D/Dt a/at + uä/8x +vä/3y +wa/az 

This is known as the material derivative or total derivative with respect to 
time, and it gives the variation of a certain quantity of the fluid particle with 

respect to time. 

V2  is the Laplacian operator. 
). 

The equation of energy, which gives the relation of conservation of energy of 
the fluid. For an incompressible fluid with constant viscosity and heat 
conductivity the energy equation is 

pC DT/Dt = aQ/at + kV2T+ (1.14) 

C, is the specific heat at constant pressure, 

aQlat is the rate of heat produced per unit volume by external agencies, 

k is the thermal conductivity of the fluid, 

(D is the viscous dissipation function for an incompressible fluid 

D 2t [(8u18x)2  + (3v/äy)2  + (aw/az)2  + 1/2(Y2  + Y 2 Y7 + Y)] 

where 
Yxy = 8u/3 y+av/ax 

Yyz = 3v/3z+3w/3y 

= 3w/3x+ au/az 

The concentration equation for viscous incompressible fluid is 

DC/Dt = D 1V2  C (1.15) 

C is the concentration and 

DM is the chemical molecular diffusivity. 
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1.4 MHD Approximations 

The electromagnetic equations as given in 1.1- 1.9 are not usually applied in their 
present form and require interpretation and several assumptions to provide the set to 
be used in MHD. In MHD we consider a fluid that is grossly neutral. The charge 

density Pc in Maxwell's equations must then be interpreted as an excess charge 
density which is generally not large. If we disregard the excess charge density then we 
must disregard the displacement current. In most problems the displacement current, 
the excess charge density and the current due to convection of the excess charge are 
small (Cramer and Pai,1973). 

The electromagnetic equations to be used are then the following: 

V .D=0 (1.16) 

V.J=0 (1.17) 

V.B=0 (1.18) 

VAH=J (1.19) 

VAE = 3BI8t (1.20) 

D=c'E (1.21) 

B=pH (1.22) 

J=o(E+qAB) (1.23) 

1.5 MHD Equations 

We will now modify the equations of fluid dynamics suitably to take account of the 

electromagnetic phenomena 

The MHD equation of continuity for viscous incompressible electrically 
conducting fluid remains the same 

V.q0 (1.24) 

The MHD momentum equation for a viscous incompressible and electrically 

conducting fluid is 

pDq/Dt = F- VP+ p.V2q + JAB (1.25) 

where F is the body force term per unit volume corresponding to the usual 
viscous fluid dynamics equations and the new term JAB is the force on the fluid 
per unit volume produced by the interaction of the current and magnetic field 

(called a Lorentz force) 
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The MHD energy equation for a viscous incompressible electrically conducting 

- fluid is 

pC DT/Dt = 3Q/at + kV2T+IH-J2/ (1.26) 

The new term J2  Ic is the Joule heating term and is due to the resistance of the 

fluid to the flow of current. 

The MHD equation of concentration for viscous incompressible electrically 
conducting fluid remains the same as 

DCIDt = D 1  V2C (1.27) 

1.6 Some important dimensionless parameters of Fluid Dynamics and 

Magnetohydrodynamics 

(1) Reynolds number, Re: 

It is the most important parameter of the fluid dynamics of a viscous fluid. It 
represents the ratio of the inertia force to viscous force and is defined as 

Re = inertia force /viscous force = pU2  L2/p.UL=ULIv 

where U, L, p and .t are the characteristic values of velocity, length, density and 
coefficient of viscosity of the fluid respectively. When the Reynolds number of the 
system is small the viscous force is predominant and the effect of viscosity is 
important in the whole velocity field. When the Reynolds number is large the inertia 
force is predominant, and the effects of viscosity is important only in a narrow region 
near the solid wall or other restricted region which is known as boundary layer. If the 
Reynolds number is enormously large, the flow becomes turbulent. 

Prandtl number, Pr: 

The Prandtl number is the ratio of kinematic viscosity to thermal diffusivity and may 
be written as follows 

Pr = (kinematic viscosity)/ (thermal diffusivity) = v I (k / pC) 

The value of v shows the effect of viscosity of the fluid. The smaller the value of v the 
narrower is the region which is affected by viscosity and which is known as the 
boundary layer region when v is very small. The value of kl (pC) shows the thermal 
diffusivity due to heat conduction. The smaller the value of k / (pC) is the narrower 
is the region which is affected by the heat conduction and which is known as thermal 
boundary layer when k / (pC) is small. Thus the Prandtl number shows the relative 
importance of heat conduction and viscosity of a fluid. For a gas the Prandtl number is 
of order of unity. 
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Schmidt number, Sc: 

This is the ratio of the kinematic viscosity to the chemical molecular diffusivity and is 
defined as 

Sc = v/D 1  = (kinematic viscosity)! (chemical molecular diffusivity) 

Grashof number, Gr: 

This is defined as 

Gr = g0f3'(LXT)L3  !v2  

and is a measure of the relative importance of the buoyancy force and viscous force. 
The larger it is the stronger is the convective current. In the above g0  is the 
acceleration due to gravity, 0' is the co-efficient of volume expansion and T is the 
temperature of the flow field. 

Modified Grashof number, Gm: 

This is defined as 

Gm = gof*(c)L3  !v2  

where 0* is the co-efficient of expansion with concentration and C is the species 
concentration. 

Ekman number, R (rotation parameter): 

This is the ratio of the viscous force and the Coriolis force and is defined as 

R=vU!(L2 nU) 

where n is the rotational velocity. 

So ret number, So: 

This is defined as 

So = Dc  (Tw -Too)! (v(C -Coo)) 

where DT is the thermal diffusivity, Tw is the temperature at the plate, Too is the 
temperature of the fluid at infinity, C is the concentration at the plate and Coo is the 
species concentration at infinity. 

Magnetic force number, M: 

This is obtained from the ratio of the magnetic force to the inertia force and is defined 
as 

M = B0  a L ! (pU) 

where B0  is applied magnetic field. 
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1.7 Free Convection 

In the studies related to heat transfer, considerable effort has been directed towards 
the convective mode, in which the relative motion of the fluid provides an additional 
mechanism for the transfer of energy and of material, the latter being a more 
important consideration in cases where mass transfer, due to a concentration 
difference, occurs. Convection is inevitably coupled with the conductive mechanisms, 
since, although the fluid motion modifies the transport process, the eventual transfer 
of energy from one fluid element to another in its neighborhood is through 
conduction. Also at the surface, the process is predominantly that of conduction 
because the relative fluid motion is brought to zero at the surface. A study of the 
convective heat transfer therefore involves the mechanisms of conduction and 
solutions, those of radiative processes as well, coupled with those of fluid flow. This 
makes the study of this mode of heat or mass transfer very complex. The convective 
mode of heat transfer is divided into two basic processes. If the motion of the fluid is 
caused by an external agent, such as the externally imposed, flow of a fluid stream 
over a heated object, the process is termed as forced convection. The fluid flow may 
be the result of, for instance, a fan, a blower, wind or the motion of the heated object 
itself. Such problems are very frequently encountered in technology where the heat 
transfers to or from a body is often due to an imposed flow of a fluid at a different 
temperature from that of the body. If on the other hand, no such externally induced 
flow is provided and flow arises naturally simply owing to the effect of a density 
difference, resulting from a temperature or concentration difference in a body force 
field, such as the gravitational field, the process is termed as natural convection. The 
density difference gives rise to buoyancy effects owing to which the flow is 
generated. A heated body cooling in ambient air generates such a flow in the region 
surrounding it. Similarly the buoyant flow arising from heat rejection to the 
atmosphere and to other ambient media, circulations arising in heated rooms, in the 
atmosphere, and in bodies of water, rise of buoyant flow to cause thermal 
stratification of the medium, as in temperature inversion, and many other such heat 
transfer processes in our natural environment, as well as in many technological 
applications, are included in the area, of natural convection. The flow may also arise 
owing to concentration differences such as those caused by salinity differences in the 
sea and by composition differences in chemical processing units, and these cause a 
natural convection mass transfer. Another classical natural convection problem is the 
thermal instability that occurs in a liquid heated from below. This subject is of natural 
interest to geophysicists and astrophysicists, although some applications might arise 
in boiling heat transfer. 

The basic concepts involved in employing the boundary layer approximation 
to natural convection flows are very similar to those in forced flows. The main 
difference lies in the fact that the pressure in the region beyond the boundary layer is 
hydrostatic instead of being imposed by an external flow, and that the velocity outside 
the layer is zero. However, the basic treatment and analysis remain the same. The 
book by Schlichting (1968) is an excellent collection of information on the boundary 
layer analysis. There are several methods for the solution of boundary layer equations, 
namely the similarity variable method, the perturbation method, analytical method 
and numerical method etc., details of them are discussed by Rosenberg (1969), 
Gosman etal. (1969), Patanker and Spalding (1970), Spalding (1977) and Jaluria 



(1980). With a parameter associated with the body shapes a similarity on the natural 
convection flow has also been studied by Pop and Takhar (1993). 

In free convection a body forces term viz. F =g0  pf3' (T-T0) appears in the equations 

of motion where g0  is the acceleration due to gravity, 3' is the coefficient of thermal 

expansion and T-T0  be the excess temperature of the heated parts of the fluid over the 
parts which remain cold. The nondimensional parameter characterizing free 
convection is known as Grashoff number and may be defined as 

Gr = vg43'(T-T0  )/U0  

where T. is some representative temperature and U. is some characteristic velocity. 

The continuity and energy equations remain the same in cases of free and forced 
convection. In free convection flow we have a body force term in the momentum 

equation. 

The two dimensional boundary layer momentum equation of MHD steady free 
convection flow in absence of pressure gradient is 

uau/ax+vau/t3y = v a2u/8y2+ g4f3(T - Tco) - B02  u/p (1.28) 

where the flow is in the x direction and magnetic field is acting along y direction. 

1.8 Mass Transfer 

When a system contains one or more components whose concentration vary from 
point to point, there is a natural tendency for mass to be transferred, minimizing the 
concentration differences within the system. The transport of one constituent from a 
region of higher concentration to that of lower concentration is called mass transfer. 

Combined heat and mass transfer problems (Jaluria 1980) are of importance in many 
processes and have therefore received a considerable amount of attention. In many 
mass transfer processes heat transfer consideration arise owing to chemical reaction 
and often due to the nature of the process. In processes such as drying, evaporation at 
the surface of water body, energy transfer in a wet cooling tower and the flow in a 
desert cooler, heat and mass transfer occur simultaneously. In many of these processes 
the interest lies in the determination of the total energy transfer, although in process 
such as drying, the interest lies mainly in the overall mass transfer for moisture 
removal. Natural convection processes involving the combined mechanisms are also 
encountered in many natural processes, such as evaporation, condensation and 
agricultural drying, in many industrial applications involving solutions and mixtures 
in the absence of an externally induced flow and in many chemical processing 
systems. 

Agrawal et al (1977,1980) have studied the combined buoyancy effect on the thermal 
and mass diffusion on MHD natural convection flows and it is observed that for the 
fixed Grashof number and Prandtl number the value of dimensionless length 
parameter decreases as the strength of the magnetic parameter increases. 
Georgantopoulos et al (1981) discussed the effects of free convection and mass 
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transfer in a conducting liquid, when the fluid is subjected to a transverse magnetic 
field. Haldavenker and Soundalgekar (1977) studied the effects of mass transfer on 
free convective flow of an electrically conducting viscous fluid past an infinite porous 
plate with constant suction and transversely applied magnetic field. An exact analysis 
was made by Soundalgekar et al. (1979) of the effects of mass transfer and the free 
convection currents on the MHD Stokes (Rayleigh) problem for the flow of an 
electrically conducting in compressible viscous fluid past an impulsively started 
vertical plate under the action of a transversely applied magnetic field. The heat due 
to viscous dissipation and Joule heating were neglected. 

1.9 Thermal Diffusion 

Mass fluxes created by temperature gradients are called the Soret or thermal diffusion 
effect. in general, when the thermal-diffusion effects are of smaller order of 
magnitude then the effects are described by Fourier's or Fick's laws and is often 
neglected in heat and mass transfer process. There are, however, exceptions. The 
thermal-diffusion effect (commonly known as Soret effect), for instance, has been 
utilized for isotope separation and in mixtures between gases with very light 
molecular weight (He, H2) and of medium molecular weight (N21  air). The diffusion-
thermo effect was found to be of such a magnitude that it cannot be neglected (Eckert 
and Drake, 1972). In view of the importance of this diffusion-thermo effect, Tha and 
Singh (1990) presented an analytical study for free convection and mass transfer flow 
for an infinite vertical plate moving impulsively in its own plane taking into account 
the Soret effect. Kafoussias (1992) studied the MHD free convection and mass 
transfer flow, past an infinite vertical plate moving on its own plane taking into 
account the thermal diffusion effect when (1) the boundary surface is impulsively 
started moving in its own plane (ISP) and (2) it is uniformly accelerated (UAP). For 
the ISP and UAP cases, it is seen that the effect of magnetic parameter M is to 
decrease the fluid (water) velocity inside the boundary layer. This influence of the 
magnetic field on the velocity field is more evident in the presence of thermal 
diffusion. It is also concluded that the fluid velocity rises due to general thermal 
diffusion. Hence, the velocity field is considerably affected by the magnetic field and 
the thermal diffusion. Nanousis (1992) extended the work of Kafoussias (1992) to the 
case of rotating fluid taken into account the Soret effect. 

1.10 Hall Current 

The electrical current density J represents the relative motion of charged particles in a 
fluid. The equation of electric current density may be derived in the flow direction 
and pressure from the diffusion velocities of the charged particles (Cramer and Pai, 
1973; Hughes and Young, 1966; Pai, 1962; Shercliff, 1965). The major forces on 
charged particles are electromagnetic forces. If we consider only the electro-magnetic 
forces, we may obtain the generalized Ohm's law. However the deduction from the 
diffusion velocities of charged particles is more complicated than the generalized 
Ohm's law. When we apply an electric field E, there will be an electrical current in 
the direction of E. If the magnetic field B is perpendicular to E, there will be an 
electro magnetic force J A B which is perpendicular to both E and B. Such a force 
will cause the charged particles to move in the direction perpendicular to both E and 
B. We have a new component of electric current density in the direction perpendicular 
to both E and B, which is known as Hall current and which was first discovered by 
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Hall. Due to the presence of this current the efficiency of the MI-ID generator or 
accelerator is reduced. Cowling (1957) has discussed the generalized Ohm's law 
taking Hall current into account in the absence of electric field and is of the form 

J+ (.)4 T (JAB)/B0  = o(qAB+ V pe /en) (1.29) 

The generalized Ohm's law taking Hall current into account in presence of electric 

field should be written in the following form. 

J+ (j)  T (JAB)/B0  = a(E+ qAB+Vp0/en) (1.30) 

where 
w T = Hall parameter 
E = (Er, E )  E,) the electric field, 

(OC = the cyclotron frequencies of electron, 

Te = the collision frequencies of electrons with ions, 
= the electrical conductivity of the fluid, 

J = (J, J, J) the current density, 
B = the magnetic field, 
B0 = the applied magnetic field, 

q = (u,v,w) velocity of the fluid, 

e = the electric charge, 
ne = the number density of electrons, 

Pc = the electron pressure. 

1.11 Ion slip current 

The masses of ions and electrons are different. For the same electro magnetic force, 
the motion of ions is different from that of electrons. Usually the diffusion velocity of 
electrons is much larger than that of ions. As a first approximation, we may consider 
that the electric current density is determined mainly by the diffusion velocity of the 
electrons in a plasma. However when the electro magnetic force is very large (such as 
in the case of very strong magnetic field), the diffusion velocity of ions may not be 
negligible. If we include the diffusion velocity of ions as well as that of electrons, we 
have the phenomena of ion slip. When we include the Hall current, ion slip, and 
collisions between electrons and neutral particles, the generalized Ohm's law should 
be written in the following form; 

J+ lIe  (JAB)/B0 - (Ic  (Ii (JAB)AB/B02  o(E + qAB) (1.31) 

where 0. = We  T 

(I, = (Oi Ti 
o, T1  = ion slip parameter, 

= the ion cyclotron frequencies, 
Ti = the collision frequencies of ion, 

CDC = the cyclotron frequencies of electron, 

T = the collision frequencies of electrons with ions, 



Let the induced magnetic field be negligible and B = (0, B, 0). The equation of 
conservation of electric charge V.J = 0 gives J,,, constant, where 

J (J, J.,, Jr). If the plate is electrically non conducting this constant is zero and hence J 
= 0 every where within the flow.  

Spliting (1.31) in its component form and then solving we get 

J a [E + B. ul a —13 [E - B. wj j (1.32) 

Jxa[Ex-B0 w] a+(3[E+B0 uJ (1.33) 

where a (1 f3j3)/ ((1 131J3) 2 +J32) 
(1.34) 

and 13 = 13e/((1+J31 J3c)2  f3 2 ) 
(1.35) 

1.12 Suction and Large Suction 

For ordinary boundary layer flows with adverse pressure gradients, the flow will 
eventually separate from the surface. Separation of the flow causes many undesirable 
features over the whole field; for instance if separation occurs on 

the surface of an airfoil, the lift of the airfoil will decrease and the drag will enormously increase. In 
some problem we wish to maintain laminar flow without separation. Various means 
have been proposed to prevent the separation of boundary layer flows, suction is one 
of them. The retarded fluid in the boundary layer is sucked into the body. 

The stabilizing effect of the boundary layer development has been well known for 
several years and till to date it is still the most of efficient, simple and common 
method of boundarycontrol Hence the effect of suction on hydromagnetic boundary 
layer is of great interest in astrophysics. It is often necessary to prevent separation of 
the boundary layer to reduce the drag and attain high lift values. 

Many authors have made mathematicai studies on this problem, especiaily in the case 
of steady flow. Among them the name of Cobble (1977) maybe cited who obtained 
the conditions under which similarity solution exists for hydromagnetic boundary 
layer flow past a semi-infinite flat plate with or without Suction. Following this, 
Sundalgekar and Ramanamurthy(1 980) analyzed the thermal boundary layer. For 
large values of suction velocity employing asymptotic analysis, in the spirit of 
Nanbu(1971) Bestman (1990) studied the boundary layer flow past a semi-infinite 
heated porous plate for two component plasma Suction or blowing causes a double 
effect with respect to the heat transfer. The boundary layer suction was first applied 
by Prandtl (1904) in his fundamental works on boundary layer on a circular cylinder. 

When the rate of suction is very high then it is called large suction. Singh (1985) 
studied the problem of Soundelgeker and Ramanamurthy (1980) for large value of 
suction parameter by making use of the perturbation technique, as has been done by 
Nanbu (1971). Later Singh and Dikshit (1988) studied the hydromagnetic flow past a 
continuously moving semi-infinite porous plate employing the same perturbation 
technique. They also derived similarity solutions for large suction. The large suction 
in fact enabled them to obtain analytical solutions and indeed these analytical 
solutions are of immense value that compliments various numerical solutions 
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1.13 Effect of Rotation and Equation of Motion in a Rotating Co-ordinate 

system 

In the last decade, considerable progress has been made in the general theory of 
rotating fluids because of its application in cosmic and geophysical sciences. The 
steady and unsteady Ekman layers of an incompressible fluid have been investigated 
as basic boundary layers in a rotating fluid appearing in the oceanic, atmospheric, 
cosmic fluid dynamics and solar physics or geophysical problems. It is well known 
that in a rotating fluid near a flat plate, an Ekman layer exists where the viscous and 
coriolis force are of the same order of magnitude. The Ekman layer flow on a 
horizontal plate has been studied by Batchelor (1970). The effect of a uniform 
transverse magnetic field on such a layer has been investigated by Gupta (1972). 
Mazumder et al. (1976a, b) have studied the flow and heat transfer in a hydromagnetic 
Ekman layer on a porous plate with Hall effects. Debnath (1974) has investigated the 
unsteady boundary layer flow in the semi-infinite expanse of an electrically 
conducting rotating viscous fluid bounded by an infinite non-conducting porous plate 
with uniform suction or blowing in the presence of a transverse uniform magnetic 
field. 

If one takes a body of fluid and rotates its boundaries at a constant angular velocity Q 
then at any time sufficiently long after starting the rotation, the whole body will rotate 
with this angular velocity, moving as if it were a rigid body. There are no viscous 
stresses acting within the fluid. Any disturbance i.e. any thing that would produce a 
motion in a non-rotating system, will produce motion relative to this rigid body 
rotation. This relative motion can be considered as the flow pattern; it is the pattern 
that will be observed by an observer fixed to the rotating boundaries. 

The effect of using a rotating frame of reference is well known form the mechanics of 
solid systems, where there are accelerations associated with the use of a non-inertial 
frame that can be taken into account by introducing centrifugal and Conolis force. 
The statement may be expressed in a form appropriate to fluid system by 

(DqiDt)1  = (Dq/Dt)R+12A(QAr)+22AqR - (l/p) VP+vVq (1.36) 

The subscripts I and R refer to inertial and rotating frames of reference. (Dq/Dt )i  is 
thus the acceleration that the fluid particle is experiencing and so p(DqiDt)i is the 
quantity to be equated with the sum of the various forces acting on the fluid particle. 
(Dq/Dt)R is the acceleration relative to the rotating frame and can thus be expanded in 
the usual way 

(Dq/Dt)R = aqR /at +(q. V)qR (1.37) 

Dropping the subscript R as all velocities will be referred to the rotating frame the 
equation of motion is 

ôq / at+(q. V)q = - (lip)(Vp)- A(QAr) - 2QAq + vV2  q (1.38) 
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The second and third terms on the right hand side of equation (1.38) are respectively 
the centrifugal and Coriolis forces. In many problems the centrifugal force is 
unimportant. This is because it can be expressed as gradient of scalar quantity. 

QA(flAr) = - V(1/2Q2  r2) (1.39) 

where r is the distance from the axis of rotation. Hence replacing pressure P considering 

p - 1/2 (p  c22r2) = P (say) (1.40) 

in the equation (1.38). Then the equation (1.38) reduces to 

Dq / Dt = - (1/ p)(VP) - 2QA q + vV2q (1.41) 

Two important dimensionless parameters appearing in rotating fluid are the Ekman 

number E = v / (921,2) and the Rossby number c = U/ 9L where L is some 

characteristic length and U is some characteristic velocity. 

1.14: Relevant equations 

We will consider the following equations to solve the relevant problem: 

The continuity equation: 

ôu/öx+v/Dy = 0 (1.42) 

The momentum equation : Taking convection as a result of combined buoyancy 
effects of thermal and mass diffusion the equations of motion reduce to 

uu/ô+vôu/ôx = vo2ulay2  +g0  f3'(T-Tco)+g0  3*(C - Cco) - B0  J /p (1.43) 

and u aw/x+vaw/oy = v0,2  w/0,y2  + 1/pB0  i, (1.44) 

with the values of Jx  and J as follows 

(1.45) 

Jx  = a - B0  vJ c +f [E1  + B. u] (1.46) 

where a = (1+4)/ l3'l3 2  +i3 2) (1.47) 

and l33/((1+3(30)2.1j302 ) (1.48) 

The energy equation: 

uöT/E3x +vôT/ôy = kI(pC )ô T/ay2 (1.49) 

The concentration equation : Taking thermal diffusion into account the concentration 
equation reduces to 

6C/ôx +v ÔC/öv = DN4 U2  ClUy2  +D 1  U2 T/Uy2 (1.50) 
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Chapter 2 

Steady MHD free convection and mass transfer flow 
with thermal diffusion, Hall current, ion slip current 
and large suction. 

Hall effect on unsteady MHD free convection and mass transfer flow near an infinite 
vertical porous plate with variable suction has been studied by Sattar and Alam 
(1995). When the conducting fluid is a partially ionized gas e.g. water gas seeded with 
potassium the effect of Hall and ion slip currents are also significant. Ram and Thakar 
(1993) studied the effect of Hall and ion slip currents on MHD free convection flow 
in a rotating fluid. They used the finite difference method to solve the problem. 
Steady MHD free convection and mass transfer flow with thermal diffusion and large 
suction, both in fixed and rotating system, was demonstrated by Alam and Sattar 
(1999, 2001). They have employed the perturbation technique based on large suction, 
as has been demonstrated by Singh and Dikshit (1988) and Bestman (1990), to obtain 
the similarity solutions of the governing equations of their problem. It may be 
mentioned that Alam and Satter have neglected the effect of Hall current and ion slip 
current. 

In view of the above studies in the present work we have studied the MHD free 
convection and mass transfer flow with thermal diffusion, Hall and ion slip currents 
and large suction of a viscous incompressible electrically conducting partially ionized 
fluid past an impulsively started infinite vertical plate. 

2.1. Governing Equations 

For this problem let us consider a steady free convection and mass transfer flow of a 
viscous incompressible and electrically conducting partially ionized fluid past an 
impulsively started semi-infinite vertical porous plate with large suction under the 
influence of a transversely applied magnetic field. Let the x and y-axis be along and 
normal to the plate respectively. Let u and v be the velocity components along x and y 
axis respectively. Initially the plate as well as the fluid was at rest and the temperature 
of the fluid and the plate were also same. The plate temperature and the fluid 
concentration are instantly raised from T. and C to T and C(x) respectively, where 
T, and C., are the temperature and concentration of the uniform flow. A uniform 
strong magnetic field of magnitude B. is taken to be acting along the y axis as shown 
in Fig 1. The induced magnetic field is assumed to be negligible so that B = (0, B0, 
0) where B0  is the constant transversely applied magnetic field. If J = (J, J, J) is the 
current density, the equation of conservation of electric charge V.J= 0 gives J 
=constant. Since the plate is electrically non conducting, this constant is zero and 
hence, J =0 every where with in the flow. 

When the electromagnetic force is very large (such as in the case of very strong 
magnetic field), the diffusion velocity of ions may not be negligible. If we include the 
diffusion velocity of ions as well as that of electrons, we have the phenomenon of ion 



Vertical flat plate 

Fig 2. 1 The flow configuration with the coordinate 

slip. When we include the Hall current, ion slip current and collisions between 
electrons and neutral particles, the generalized Ohm's law should be written in the 
following form 

J+ 13 (JAB)/B0 
- 

(JAB)AB/B02  =(E + qAB) (2.1) 

where i —xe Te and t3i = (oi T 
co T = Hall parameter 
w1  Ti = ion slip parameter 
E = (Es, E, Ei,) the electric field, 

= the electron cyclotron frequencies, 
= the ion cyclotron frequencies, 

Te = the collision frequencies of electron, 
Ti  = the collision frequencies of ion, 

= the electrical conductivity of the fluid, 
q = (u,v,w) fluid velocity, 
J = (J, J,,, J) the current density, 
B = the magnetic induction, 
B0  = the applied magnetic field. 

Spliting (2.1) in its component form and then solving we get 

J7[Ez+Bou]of3[ExBoW]Y (2.2) 

J=a[E-B0 wk5+f3[Ez +BouI (2.3) 

where a = (l+1)/ ((l+13I13)2 + 2) (2.4) 

and = I((1+)2  + 2 ) (2.5) 

The basic equations relevant to the problem are: 
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continuity equation 
au/ax +ôv/ôy = 0 (2.6) 

momentum equations 

uôu/ôx +vE3u/ôy= vô2  u/ôy2  +g0 fY(T-T ) +g0  I3  (C- C) - B0  J1  /p (2.7) 

uâw/Ux +vôw/ôy =vô2  w/ôy2  +130  i, /p (2.8) 

energy equation 

u&T/ôx +vbTlôy =(kIpC) a2 TIôy2 (2.9) 

concentration equation 

uôC/ôx +vôC/ôy =Dm a2  Cloy2  +DT 
01  T/0y2 (2.10) 

where g0  is the acceleration due to gravity, ' is the co-efficient of volume expansion. 
3* is the co efficient of expansion with concentration, p is the density, T is the 
temperature of the flow field, T, is the temperature of the fluid at infinity, C is the 
species concentration, C is the species concentration at infinity, DM is the molecular 
diffusivity and DT is the thermal diffusivity. 

The boundary conditions for the problem are: 

u=U0,v=v0 (x),w=0,T=T,C=C(x)at y=O 
(2.11) 

u=O,v=O,vO,T=T,CC asy—x 

where U0  is the uniform velocity and v0  (x) is the velocity of suction at the plate and 
C(x) is the variable concentration at the plate. Now for reasons of similarity the plate 
concentration C (x) is taken to be 

C(x)C+(C0 -C) x (2.12) 

where x = xU0  /v and C. is the mean concentration. 

2.2. Mathematical formulation 

Since our main goal is to attain similarity solutions and to achieve that we have 
introduced the following similarity variables: 

 

71 = y I(U0  / (2vx)) 

f'()=uiU0  

 

(2.13) 

O(i) = (T-T)/(T-T) 

4) = (C- Cc0)/( x  (C0  -  C. 
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Now in terms of(2. 13) the equation (2.6) can be integrated to 
v = I(vU0  / (2x)) (if' -f) (2.14) 

With the aid of relations in (2.12), (2.13) and (2.14) the following dimensionless 
parameters are defined 

Gr = g0 f'(T - T) 2xIUo 2 Gm = g0 13*  (C0  - C) 2x2/ (vU0). 

N11= 2x (B0  aE) / (U0 2  p), N2' = 2x (B0  c13E)I (U0 2 

M = 2xB020/ (pU0), M1  = aM, M2  = I3M, 

N1 2x (B0  wyE)/ (UO2  p), N2  = 2x (B0  13cyE7)/ (UO2  p) 

PrpvC/k , Scv/D, So=(DT(TW -T))/(xUO(Cw-C)) 

The equations (2.7) and (2.8), thus reduce to the following ordinary differential 
equations 

f"+ff"- MI  1' + Gre +Gm - M2  g - N1' +N2' 0 (2.15) 

9"+g'f-M l 9+M2 J'+Ni+N2 =0 (2.16) 

where Gr is the local Grashof number, Gm is the local modified Grashof number, M 
is the local magnetic force number, Pr is the Prandtl number, Sc is the Schmidt 
number and So is the local Soret number. 

We now consider further the case of short circuit problem in which the applied 
electric field E = 0. Now for this value N1= 0, N2  =0, N l '= 0 and N2' = 0. Then the 
equation (2. 15) and (2.16) reduces to 

+ ff" - Mif' - M29 + GrO +Gm4 = 0 (2.17) 

9"+9'f+f'M2 —M1g0 (2.18) 

Using the similarity variables and dimensionless parameters the equations (2.9) and 
(2.10), reduce to the following differential equations 

0" +PrfO' = 0 (2.19) 

4" -2ScJ'4 + 5cf4'+ So Sc 0" = 0 (2.20) 

Subject to the above formulations the boundary conditions (2.11) now transform to 

f=f,f'=1,g0,0r1,1,at 70 
(2.21) 

f'=0,g=0,00,0as 1—*x 

P. 



where J. = - v0  (x)'I(2xI(vU0  )) is the transpiration parameter and primes denote 
derivative with respect to r. Here f> 0 indicates the suction and f,, < 0 the injection. 
The solution of the equations (2.17)— (2.20) subject to the boundary conditions (2.21) 
are now sought and are presented in the following sub section. 

2. 3. Solution 

Since the solutions are sought for large suction, the further transformations are made 
as 

f F (ç), g (n) = f 2G (ç), 
(2.22) 

0(1)=f 2 H(c), (1)=f 2 P(c) 

Substituting (2.22) in equations (2.17) - (2.20) we have 

F" +FF" + C {- M1F - M2G + Gr H + Gm P} = 0 (2.23) 

G"+G'F+ e {F'M2  - M1G} = 0 (2.24) 

H" + PrFH' =0 (2.25) 

P" - 2 Sc F'P + Sc F P' +So Sc H" = 0 (2.26) 

where c =1/f 2  

Also the boundary conditions (2.21) transform to 

F=1,F'=c,G=O,H=c,P=c at =0 
(2.27) 

F'O,GO, H0. P0 as 

Now for large suction f>> 1, so that c is very small, therefore, following Bestman 

(1990) F, G, H and P can be expanded in terms of small perturbation quantity c as 

(2.28) 

G () =c G1 () +c2G2  () +e3G3  () + (2.29) 

H () = eH1  ( ) +c2H2  () +c3H3  () + (2.30) 

P () = cP1 (ç) -4-€2P2 (ç) +c3P3() + (2.31) 

Then substituting F(ç), G(ç), H() and P() from (2.28) - (2.31) in the 
equations(2.23) - (2.26), we have the following set of ordinary differential equations 
with respective boundary conditions for F1(ç), G1(ç), H1(ç) and P1(ç) (i= 1,2,3,--------) 
as: 
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p 

For the first order i.e. 0 (c): 

F11"+F1 1' = 0 (2.32) 

G11'+G1 = 0 (2.33) 

H111+Pr H1 ' = 0 (2.34) 

P1"+Sc Pi'+So Sc H11' = 0 (2.35) 

F1 =0,F1'=1,G1 =0,H1 =l,P1 =1,at ç=o 
(2.36) 

F1 '=0,G1 =0,H1 =0,P1 =0as ç.—x 

For the second order i. e. 0 (€2): 

F21"+F2"+F1  F1" -M1 F1' - M2G i + Gr H1  + Gm P1  = 0 (2.37) 

G2"+G21+F1G1 ' +M2F1' - M1G1  =0 (2.38) 

H21' + PrH2' +PrF1H1 ' = 0 (2.39) 

P21' -2Sc Pi  F1'+ ScP2' +ScF1  P1' + So Sc H2" = 0 (2.40) 

F2 =0,F2'=0,G2 =0,H2 =0,P2 =Oat ç=ø 
(2.41) 

F21 =0,G2 0,H2 =0,P2 =0 as ç—*co 

For the third order i. e. 0 (); 

F311' +F3" +F1F21 +F2F1"-M1  F2'-M2G2+GrH2+GmP2 = 0 (2.42) 

G3  "+G31+F1G21+F2G1 '+M2F21-M1G2  = 0 (2.43) 

H3"+PrF1H2'+P1H3'+PrF2Hi' = 0 (2.44) 

P3 2ScP2F1 2ScPl F2 +ScP3 +ScF I P2 +ScF2P I +ScSOH3 0 (2.45) 

F3 0, F3'O, G0, H3 0, P3 0, at = 0 
(2.46) 

F3' =0, G3  =0, H3  =0, P3  =o as cc 

etc. 

The solutions of the above equations up to order 3 under the prescribed boundary 
conditions are obtained in a straightforward manner and are 

F=1-e (2.47) 
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11  

= 0 (2.48) 

(2.49) 

Pi =A1  e '  +A2e (2.50) 

F2  = A7  +A6e +A3  e +0.25e 2  +A e +A5  e-sc (2.51) 

G2 =M2çe < (2.52) 

H2  = A8  e' - Pr e' - A8e (2.53) 

P2 A9  e' 1  +A10 e 4 S + All  e' —Al2  çe' + Ai3ce tc 

+A14  e (2.54) 

F3  = - 0.07e 3  - 0.5A3  e 2 -A3  e 2 - 0.5A15 2 e+ 0.25A16  e 2  +A17  e' 

+A18 e" -A19  e -c(1+sc)  -A20  e .fPr)+A e -+ A22+A23 e-Sec  

+A24e '  +A25  e (2.55) 

U3 = - 0.5M2 e + 0.5A26ç 2  e + A27  e + A28 e r c 

+A29  esc c  +A30e (2.56) 

H3 =(A31+Pr) e" +A32  e —A34  e 2Prc+  A35 çe'' +A36  

+A37 e'' +0.5Pr2  ç 2  e'+AsPr2  e< /(Sc2+ScPr) (2.57) 

P3  =A8e ..c(2fpr) +A39e 25 
 +Aoe 2+ie -c(Pr•fsc) +A42e 2S + A43ce S 

+A44  çe ''  +A45 2e+ Aj 2e" +A47ePr)+A48e-c(1+Sc)  +A49e-Prç 

c +A50çe c +A51çe  c  +A52e-Sc (2.58) 

where the constants A1  (where i=l, 2, 3 ------- 52) are shown in appendix 2.A. The 
velocity, the temperature and the concentration fields are thus obtained from (2.28) to 
(2.31) as 

u/Uo rf'(l) =F1'+eF2'+c2 F3 ' (2.59) 

w/U0 g()Gi+eG2 + c 2 G3 (2.60) 

0 (i) = H1  +Cll2  +e2H3 (2.61) 

4(n) = Pi+ C P2  +€P3 (2.62) 
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Thus with the help of the solutions (2.47) - (2.58) the velocity, temperature and 
concentration distributions can be calculated out from (2.59) - (2.62). The velocity 
and temperature distributions are shown in Figs 2.2-2.14. 

2.4. Skin - friction coefficient, Nusselt number and Sherwood number 

The quantities of chief physical interest are the local skin friction coefficient, local 
Nusselt number and local Sherwood number. 
The equations defining the wall skin friction are 

tx=  (uI8y)o 

.r= (aw/y)=0 

Thus from equations (2.59) and (2.60) we have 

T. c.cf"(0) 

g' (0) 

and in tum we have 

f" (0) = -1+ £ [1 -2A3  +A4Pr2  +AsSc 2 
 + A61 + C2 

- 5/8 - 2A3 —A15+A16  

-2A17Sc -2A18Pr - A19  (Sc+1)2  - A20  (Pr+1)2  +A21+ A23Sc2  

+A24Pr2  - 2A251 (2.63) 
and 

g' (0) = eM2 + 2[_ 0.5M2+ A27  - A28Pr - A29Sc- A30  1 (2.64) 

The local Nusselt number denoted by Nu is proportional to - (öT/&y)=o, hence we 
have from (2.61) 

Nu tx - 0'(0) 

and in tum we have 

O'(0) = -Pr+ c[-  A8  Pr - Pr + A8  (Pr+l)] (2.65) 

The local Sherwood number denoted by Sh is proportional to - (505y)=o, hence we 
have from (2.62) 

Shcc-4'(0) 

and in turn we have 

- A1 Pr - A2Sc + 4- A9(Pr+1) - Aio(Sc+1) - A11Pr 

- Al2  + A33- A14Sc] (2.66) 
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The values proportional to the skin friction coefficient, local Nusselt number and local 
Sherwood number are respectively obtained from (2.63) - (2.66). These values are 

sorted in tables 2. 1 - 2.4. 

2.5. Results and Discussions 

For the purpose of discussing the results some numerical calculations are carried out 

for non-dimensional primary (f'(i)) and secondary (g(i))  velocities. The velocity 
profiles for the x and z components of velocity are shown in Figs2.2 - 2.14 for 

different values of j3, 13, Gr, Gm, So and f for fixed values of M, Pr and Sc. The 
value of M is taken to be large which corresponds to a strong magnetic field, that is 
generally encountered in nuclear engineering in connection with the cooling of 
reactors. Negative values of Gr which indicates the heating of the plate are also taken 
into account. The value of Sc is taken to be 0.6 which corresponds to water vapor, Pr 
is taken equal to 0.71 which corresponds to its value in case of air. The magnetic force 
number M is chosen arbitrarily being equal to 5.0 which imply a strong magnetic 

field. Gr < 0 corresponds to heating of the plate by free convection currents. We have 
presented the non dimensional velocity components represented by f'and g for an 
impulsive flow in figures 2.2 -2. 13 respectively. 

Figure 2.2 represents the velocity profiles of primary velocity f for different 0. with 

fixed Pr, Sc, So, 3j, f and Gr and Gm (both positive or both negative). It is found that 

for positive values of Gr and Gm, f is negative and increase in Pc  produced rapid 

increase in f. For negative Gr and Gm, f is positive and with the increase of Pe,  1' 
decreases rapidly. 

Figure 2.3 represents the velocity profiles of secondary velocity g for different 13 with 
fixed Pr, Sc, So, f, Pi and Gr and Gm (both positive or both negative). It is found that 
for positive values of Gr and Gm, g is positive and increase in 0, produced rapid 
increase in g . For negative Gr and Gm, g is negative and with the increase of j3, g 
decreases rapidly. 

Figure 2.4 represents the velocity profiles of primary velocity f for different Pi with 
fixed Pr, Sc, So, Pe,  f and Gr and Gm (both positive or both negative). It is found 
that for positive values of Gr and Gm, f is negative and increase in Pi produced slow 

increase in f'. For negative Gr and Gm, f is positive and with the increase of 13 , I' 
slowly decreases. It may be noted that the sensitivity of f is more with respect to f3 
than 

Figure 2.5 represents the velocity profiles of secondary velocity g for different Pi with 
fixed Pr, Sc, So, f, Pe and Gr and Gm (both positive or both negative). It is found 
that for positive values of Gr and Gm, g is positive and increase in Pi  produced rapid 
decrease in g. For negative of Gr and Gm, g is negative and with the increase of 0j,  g 
increases rapidly. 

Figure 2.6 represents the velocity profiles of primary velocity f for different So with 
fixed Pr, Sc, fj, 13, 1w and Gr and Gm (both positive or both negative). It is found that 

for positive values of Gr and Om, f is negative and increase in So produced slow 
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increase in f'. For negative Gr and Gm, f is positive and with the increase of So, f 
slowly decreases. 

Figure 2.7 represents the velocity profiles of secondary velocity g for different So 
with fixed Pr, Sc, f. f3j, f3 and Gr and Gm (both positive or both negative). It is found 
that for positive values of Gr and Gm, g is positive and increase in So produced rapid 
increases in g. For negative Gr and Gm, g is negative and with the increase of So, g 
decreases rapidly. 

Figure 2.8 represents the velocity profiles of primary velocity f for different f with 
fixed Pr, Sc, So, f3, 13e and Gr and Gm (both positive or both negative). It is found that 
for positive values of Gr and Gm, f is negative and increase in f produced rapid 
increase in f'. For negative Gr and Gm, f' is positive and with the increase of f, f 
decreases rapidly. It may be noted that the sensitivity of f is more with respect to f 
than So. 

Figure 2.9 represents the velocity profiles of secondary velocity g for different f 
with fixed Pr, Sc, Pi, So, f3 and Gr and Gm (both positive or both negative). It is 
found that for positive values of Gr and Gm, g is positive and increases in f 
produced rapid decrease in g. For negative Gr and Gm, g is negative and with the 
increase of J,,,,, g increases rapidly. 

Figure 2.10 represents the velocity profiles of primary velocity f for different values 
of Gr with fixed Pr, Sc, f, M, So, Pi and J3 along with fixed Gm (either positive or 
negative). For positive Gm, considering Gr as positive it is found that f' is negative 

and with the increase in Gr. f' decreases. It is also observed that for negative Gm and 
considering Gr as negative, f is positive and with the decrease in Gr, f increases. 

Figure 2.11 represents the velocity profiles of secondary velocity g for different 
values of Gr with fixed Pr, Sc, J., M, So, fj and or along with fixed Gm (either 
positive or negative). For positive Gm, considering Gr as positive it is found that g is 
pogitive and with the increase in Gr, g increases. It is also observe that for negative 
Gm and considering Gr as negative g is negative and with the decrease in Gr, g 
decreases. 

Figure 2.12 represents the velocity profiles of primary velocity f for different values 
of Gm with fixed Pr, Sc, f, M, So, Pi  and Pr  along with fixed Gr (either positive or 
negative). For positive Gr, considering Gm as positive it is found that f is negative 
and with the increase in Gm, f decreases. It is also observe that for negative Gr and 
considering Gm as negative f is positive and with the decreases in Gm, f increases. 

Figure 2.13 represents the velocity profiles of secondary velocity g for different 
values of Gm with fixed Pr, Sc, f., M, So, fj and P. along with fixed Gr (either 
positive or negative). For positive Gr, considering Gm as positive it is found that g is 
positive and with the increase in Gm, g increases rapidly. It is also observed that for 
negative Gr and considering Gm as negative g is negative and with the decrease in 
Gm, g decreases rapidly. It may be noted that the sensitivity of g is more with respect 
to Gm than Gr. 
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Figure 2.14 represent the temperature profiles for different values of Pr with fixed Sc, 
So, M, f, Oi, , Or and Gm. From the figure it is observed that with the increase in 
Pr, 0 decrease. This decrease is very large in case of water (Pr 

= 7.0). We also observe 
that for Pr=7.0 the field temperature remain less than the uniform flow temperature 
for most part of the boundary layer. 

Finally the effect of various parameters on the components of the skin fiction 
coefficient Tx  and ; are shown in Table 2.1 -2.4. From table 2.1, we observe that the component t, increase with the increase of f but, ; decreases in the case of cooling 
of the plate. It is further observed that, in the case of heating of the plate, with the 
increase  of suction parameter f; decreases where as ; increases i. e. then reverse effect between -rx  and ; is observed. From table 2.2, we observe that the t and; both increases with the increase of Hall parameter (0). Wher as for fixed 

3e with the increase in f3r and ; both decreases. In the equations (2.65) and (2.66) we observe that the parameters Miand M2  are absent. For this cause we avoid the analysis of Nu 
and Sh with the increase of Pi and 0. From table 2.3, in the case of cooling of the 
plate we observe that -rx  and ; 
Again we observe that decreases but Sh increases with the increase of Sc. 

; and Nu both increase but; and Sh both decrease with the 
increase of Pr. Further we observe from table 2.4, that the Skin friction coefficient 

; increase and; decreases with the decrease of magnetic parameter (M).But Nu and Sh 
does not change with the decrease of M. Because in the equations 

(2.65) and (2.66) we observe that the parameters Miand M2  are absent. Again we observe from table 2.4, that; decreases but ; and Sh both increase with the increase of So. 
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Table 2.1 
Numerical 
Pr=0.71, Sc=0.6 

values proportional 
and So=l 

to ;, Nu and Sh for 3= 0.6, Pi  =0.1, M=lO, 

3 ' I[TrTr7TNUSh 
3.5 

5 5 -8.27376 1.64233 0.756134 0.30246 

4 
5 5 -4.65048 0.974077 0.743894 0.268379 5 5 -2.95336 0.630228 0.73595 0.246259 

-5 -5 873719T 9 0.756134 0.30246 
2.103407 -1.13791 1 0.743894 0.268379 
0.408706 I -0.60778 0.73595 0.246259 

Table 2.2 
Numerical values proportional to t, t., Nu and Sh for fZ=3, M=10, Gr=5, Gm=5, Pr=0.71, Sc=0.6 and So=1 

-11.121 0.330465 0.756134 0.30246 
10.2356 0.94239 0.756134 0.30246 
896255 1.4448

0.6 
02 0756134 0.30246 

0.1 -8.27376 1.64233 0.756134 0.30246 
-7.73148 1.425173 0.756134 0.30246 
-7.22594 j  1.24662 C.75634 1 0.30246 

Table 2.3 
Numerical values proportional to t, 17, Nu and Sh for 13e0.6, ()i 0.1, GF5, Gm 5, f=3, M=10 and So=1 

Sc Pr 
0.6 0.71 -8.27376 1.64233 0.756134 0.30246 

022 0.71 -18 3145 6.82546 0.756134 J 0.119251 06 0.71 -8.27376 1 64233 0.756134 I 0.30246 
15  0.71 -5.46997j 756134  

Table 2.4 
Numerical values proportional to TX, 17 , Nu and Sh for 13= 0.6, Oi =0.1, f=3, Gr=5, Gm=5, Pr=0.71 and Sc=0.6 

OM 
1 5 -3.76816 0.99953 0.756134 0.30246 

-0.51511 1.767211 0.756134 0.54262 

3 76816 0.99953 0.756134 0.30246 
=4411.1566280756134 030246 

1.299457 0.756134 0.30246 
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Appendix 2. A 

A1  = (So Sc Pr)! (Sc-Pr); A2  = 1- A1 ; A3  = 1 + M1; 

A4  = (Gr + A1 Gr)! (Pr' - Pr2); As = GmA2! (Sc3  - Sc2); 

A6  = A3  - 0.5 - A4Pr - A5Sc; A7  = A4Pr + A5Sc + 0.25 —A3  - A4  - A5; 

A8  = Pr2  / (1+Pr); A9  = B1! ((Pr+1) (Pr-Sc+I)); A10  = B2/(Sc+1); 

A11  = B3/(Pr(Pr - Sc))+B5(2Pr - Sc)!(Pr2(Pr - Sc)2); Al2  = B1ISc; 

A13  = B5  / (Pr (Pr - Sc)); A14  = -A9  - A10 - A11; A15  = A3  + M1 A3  —M22; 

A16  = 1 + 2A3  + 0.5M - 2A6; A17  = B12! (Sc2  - Sc); A18  = B11! (Pr2  —Pr3); 

A19  = B10! (Sc (Sc +1)2); A20  = B9! (Pr (Pr +1)2); 

A21  = A17  - B13Sc + A18 — B14  Pr+ A19  (Sc +1) +A20(Pr +1) 

+5/24 +1.5A3  - B15Sc —B16Pr +B6  - 2A15  - 0.5A16; 

A22= A20 + 5!72 + A3  - B13 — B14 + A19  —B15 — B16  - A21  - 0.25A16; 

A23 B13 +B15; A24 B14+B16; A25 =B6 -2A15; 

A26  = - M1M2  - M2  —M2A3; A27  = A26  + B17; A28  = A4M71 (Pr- 1); 

A29 = A5M2/ (Sc - 1); A30  = -A28 — A29; A31  = -(A3  +1+A7)Pr; 

A32 = 0.25Pr2!(4+2Pr); A33  =(Pr2+2A8  Pr2  - A6  Pr2+A8 Pr)!(1+Pr); 

A34  = -0.5 A4/Pr; A35  = B18!(Pr+1); A36 = (2+Pr)B18!(Pr+1)2  -A33; 

A37  = -A32  +A34  - A36  - A5Pr2!(Sc2+ScPr) A38  = B19/(4+4Pr +Pr2-2Sc-ScPr); 

A39 = B2044 +2Sc); A40 = B25!(4Pr2-2ScPr); A41= B26/(Pr2+ScPr); 

A42 = B27! (2Sc2); A43  = B27!(1+Sc); A44 = B23!(1+2Pr +Pr2-Sc-ScPr); 

A45 = B29!(2Sc); A46 = B32!(Pr2-ScPr); A47  =B33  

A48  =B34  +B37; A49  =B35  +B4 1+B43 A50  =B36  +B39 A51  =B40  +B42; 

A52 = -(A38  +A39  +A40  +A41  +A42+A47  +A48  +A49) 

B1 =2ScA1 — A1ScPr+ ScSoA8 (1 + pr) 2; B2 2 Sc A2 —A2Sc2; 

B3  = ScA1Pr —SoScA8Pr2  —Sc So 2 Pr2 ; B4  = Sc2A2; B5  = ScSoPr3  

B6 =A6-2A3 —A+A6MI—MIA3; B7 =Pr2A4 +MiA4Pr+GrA8+GmAii; 

B8  = A5Sc2 ± M1ScA5  + GmA14; B9  = A4Pr  2+A4+ A4Gr-A9Gm; 

B10  = A5  Sc? +A5  - A10  Gm; B11  = GrPr —GmA13; B12  = GmAl2; 

B13  = B12  (2Sc-35c2)! (Sc2- Sc3)2; B14  = B11  (2Pr - 3 Pr2)! (Pr2  - 

B15  = B8! (Sc3- Sc2); B16  = B7! (Pr3 — Pr 2); B17  = - M2A6  + M2  + A3M2; 

B18= Pr3+A3Pr2  

B1 9 =2Sc A9 — ScAi- ScA9(1+Pr)+0.25ScPrAi+0.25 A2  Sc2  - ScSoA32(2 + pr) 2; 

B20  =2Sc A10 — ScA2- ScA1o(1+Sc); 
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B21  =2Sc A11 - 2ScA1 A6 -2ScAiA3 -ScA9(1+Pr)-ScPrAti+ A13Sc 

+Pr5cAlA6 +ScSo (A33A36)(1+Pr)2+2SOSCA35(1+Pr),  

B22  = -2Sc Al2  -2ScA2A3  +Al2  Sc2  + A3A2  Sc2; 

B23  =2ScA13 — PrScA13  +PrScA1 A3  +2ScA1 A3  +ScSo A35(1+Pr)2; 

B24  =2ScA14 — 2ScA2A6  +2ScA2A3  -ScAl2  +ScA1o(1+Sc) +A14  Sc2- A6A2  Sc2; 

B25 = -4ScSoA34Pr2-PrSCA4A1, B26  =2A5A1  Sc2— 2PrScA2A4+PrScAlA5+A2A4 Sc2; 

B27  = A2A5  Sc2; 

B28 = ScSoA37Pr2+PrScA7Ai+PrScAi 1-ScA13  +2PrScSoA3 1-ScSo+2ScSoPr; 

B29  =-Sc2Al2; B30  = A2A7  Sc2+A1 4 Sc2+ScAl2; 

B31  = -ScSoA31Pr2+PrScA13 -ScSoPr2+2ScSoPr; B32  = -0.5ScSoPr2; 

B33  = B21/(1+2Pr+ Pr2-Sc-ScPr); B34  = B241(1+Sc); B35  = B28/( Pr2-ScPr); 

B36  = -B30ISc; B37 = B22(2+Sc)/(1+Sc)2; 

B38 = B23(2+2Pr-Sc)I (I+2Pr+ pr2 Sc ScPr)2; B39 = -B29ISc2 ; 

B40  = B31/( Pr2-ScPr); B41 = B31(2Pr-Sc)I( Pr2-ScPr)2; 

B42  = 2B32(2Pr-Sc)/( Pr2-ScPr)2; B43  = B32(2Pr-Sc)21( Pr2-ScPr)3- 2B321( Pr2-ScPr)2  
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Chapter 3 

Steady MIlD free convection and mass transfer flow with 
thermal diffusion, Hall current, ion slip current and large 
suction in a rotating system. 

An important type of rotating boundary layer flow is the flow over rotating blades, 
occurring in turbines, helicopters and propellers. Alam and Satter(2001) studied the 
steady two-dimensional MHD free convective and mass transfer flow with thermal 
diffusion and large suction past an infinite vertical porous plate in rotating system. 
Ram and Takhar(1993) studied the MHD free convection flow past an infinite vertical 
plate with Hall and ionslip currents when the fluid and the plate are in a state of rigid 
rotation. In view of the above investigations we aim to study the MHD free 
convection and mass transfer flow with thermal diffusion, Hall current and ionslip 
current and large suction of a viscous incompressible electrically conducting partially 
ionized fluid past an impulsively started infinite vertical plate. The whole system is 
assumed to be in a state of rigid body rotation. In fact the problem considered in this 
chapter is an extension of that of chapter 2. In this case we have taken into account the 
effect of rotation on the flow considered in the previous chapter. 

3.1. Governing Equations 

The flow model considered is the steady MHD free convection flow of a viscous, 
incompressible and electrically conducting partially ionized fluid past an infinite 
vertical porous plate with thermal diffusion, Hall current, ion slip current and large 
suction in a rotating system under the influence of a transversely applied magnetic 
field. In fact this model is an extension of the previous model considered in section 
2.1, through the introduction of a rotating system In addition to the assumptions made 
in section 2.1, in the present model we consider that the fluid and the plate are in a 
state of solid body rotation with a constant angular velocity ) about y-axis, which is 
taken to be perpendicular to the plate. With the same assumptions and approximations 
as considered in section 2.1, the flow configuration in a rotating system is shown in 
Fig3.1 A 

Vertical flat p1 

Fig 3.1 The flow configuration with the coordinate system. 



The basic equations relevant to the problem are: 

continuity equation 

ôuiax+ôv/ôy=O (3.1) 

momentum equation 

uôu/3x +vôulôy - 2wQ = v02  u16y2  +g0 3'(T-Tcc ) +g0  J3 (C- Ccc) - B. J  /p (3.2) 

uôw/3x +vaw/ay + 2uQ =v82  w/8y2  +130  J /p (3.3) 

energy equation 

u(1/ôx +vfff/ôy (k/pC) T/6y2 (3.4) 

concentration equation 

>. 
uôC/ôx +vôC/ôy =DM Cloy2  +D•1 02  T/0y2 (3.5) 

where 0 is the angular velocity, g0 is the acceleration due to gravity, ' is the co-
efficient of volume expansion, 3'' is the co efficient of expansion with concentration, 
p is the density, T is the temperature of the flow field, T. is the temperature of the 
fluid at infinity, C is the species concentration, is the species concentration at 
infinity, DM is the molecular diffusivity and Dr is the thermal diffusivity. 

The boundary conditions for the problem are 

u=U0,v=v0 (x),w=O,TT,CC(x)at yO 
(3.6) 

uO,vO,wO,T=T,C=C asy -* cc 

where U0  is the uniform velocity and v0  (x) is the velocity of suction at the plate and 
C(x) is the variable concentration at the plate. Now for reasons of similarity the plate 
concentration C,, (x) is taken to be 

C(x)C+(C0-C) x (3.7) 

where x = xU0  /v and C. is considered to be the mean concentration. 

3.2. Mathematical Formulations 

As in section 2.2 we introduce the following similarity variables: 

ii = y I(U0  l(2vx)) 

J'()=u1U0  

g (ii) = vlU0 (3.8) 

O(i) = (T-T)/(T-T) 

VTO = (C- Cco)/( X (C0  - C.  
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Now in terms of (3.8) the equation (3. 1) can be integrated to 

v = J(vU(, /(2x)) (if' - f) (3.9) 

With the aid of relations in (3.7), (3.8) and (3.9) the following dimensionless 
parameters are defined 

Gr g0 13'(T - T, )2xIUo 2 Gm g0  (C0  - C )2x2/(vU0), 

N1 2x (B0  .wE7)I(U0 2  p), N2' = 2x(B0  cypEy. )I(U0 
2 

M = 2xB02 I(pUO2), M1  = cxM, M2  = [3M, R = xQ/U0  

N1  = 2x (B0  aoE )I(UO2  p), N2  = 2x(B0  I3cEz  )I(UO2  P) 

Pr = pvC, 1k, Sc = vIDM, So = (DT (T - T. ))I(xU0(C - C. 

The equations (3.2) and (3.3), thus reduce to the following dimensionless differential 
equations 

+ ff"+ 4Rg - M1J' - M29 + GrO +Gm4 -N1' + N2' = 0 (3.10) 

g" + g'f- 4Rf' +f'M2 — M1g +N1 +N2  = 0 (3.11) 

where Gr is the local Grashof number, Gm is the local modified Grashof number, T 
is the temperature at the plate, M is the local magnetic force number, Pr is the Prandtl 
number, Sc is the Schmidt number, So is the local Soret number and R is the 
rotational parameter. 

We now consider further the case of short circuit problem in which the applied 
electric field E = 0. Now for this we have N1  0, N2  0, NI'= 0 and N2' = 0. Then the 
above equations (3.10) and (3. 11) reduces to 

+ ff"+ 4Rg - M1f' - M29 + GrO +Gm4 = 0 (3.12) 

g" + g'f- 4R  f' +f'M2  - M1g = 0 (3.13) 

The equations (3.4) and (3.5), using the similarity variables and nondimentional 
parameters reduce to the following dimensionless differential equations 

0" +Prf0'= 0 (3.14) 

4," -2Scf'4, + Scf4,'+ So Sc 0" = 0 (3.15) 

Subject to the above formulations the boundary conditions (3.6) now transform to 

frf , f'1,g 0, 0l,4,1at0 
(3.16) 

f'=0,g=0,00,4,0as r- 
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where f = - v0  (x)'J(2xI(vU0  )) is the transpiration parameter and primes denote 
derivative with respect to 11. Here f> 0 indicates the suction and f < 0 the injection. 
The solutions of the equations (3.12) - (3.15) subject to the boundary conditions 
(3.16) are now sought and are presented in the following section. 

3.3. Solution 

As has been done in section 2.3, the following further transformations are made 

f. F (ç), g() = f 2G(ç), 
(3.17) 

O(r) = 
2 H(ç), (i) = 

2 P( ) 

Substituting (3.17) in equations (3.12) - (3.15) we have 

F" +FF" + c {- M1 F' + (4R -M2  )G + GrH +GmP} = 0 (3.18) 

G"+G'F+c {F'(M2 —4 R) - M1 G} = 0 (3.19) 

H" + PrFH' = 0 (3.20) 

P'1  -2 Sc F'P + Sc F P' +5oSc H" = 0 (3.21) 

where c1/f 2  

Also the boundary conditions (3.16) transform to 

F=1,F'=c,G=O,H=e,P=c at =O 
(3.22) 

F' =0, G =0, H =0, p = 0 as 

Now for large suction f>> 1, so that e is very small, therefore, following Singh and 
Dikshit (1988) and Bestman (1990), F, G, H and P can be expanded in terms of small 
perturbation quantity e as 

=1+ c F1() + 2 F2(ç) + c3F3(ç) + ........................... (3.23) 

= c G() + c2G2(ç) + c3G3(ç) + .............................. (3.24) 

= cH1 (ç) + c2H2() + c3H3(ç)+ ............................... (3.25) 

P() = €P 1 (ç) + c2P2(ç) + e3P3(ç) + ................................. (3.26) 

Then substituting F(ç), G(ç), H() and P() from (3.23) - (3.26) in the 
equations(3.18) - (3.21), we have the following set of ordinary differential equations 
and the boundary conditions for F1 (ç), G1(ç), H1(ç) and P(ç) (i= 1,2,3...........); 
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For the first order i. e. 0 (c): 

F1 +F11' = 0 (3.27) 

G111+G11= 0 (3.28) 

H111+Pr H1' = 0 (3.29) 

P"+Sc Pi'+So Sc H1" = 0 (3.30) 

F1 =0,F1'=1,G1 =0,H1 =1,P1 =I,at ç=0 
(3.31) 

F11 =0,G1 =0,H1 =0,P1 =Oas ç - 

For the second order i. e. 0 (€2): 

F2"+F211+F1  F11' -M1 F1' + (4R - M2)G i + Gr H1  + Gm P1 0 (3.32 

G2"+G21+F1G1 ' +(M2 — 4R)Fi' - M1G1  = 0 (3.33) 

H2" + PrH2' +PrF1H1' = 0 (3.34) 

P2 -2Sc Pi F1'+ ScP2' +5cF1  P1' + So Sc H2 = 0 (3.35) 

F2 =0,F21 =0,G2 =0,H2 =0,P2 0 at ç=o 
(3.36) 

F21 =0,G2 =0,H2 =0,P2 =0 as 

For the third order i. e. 

F3" +F3" +F1F2"+F2F11'-M1F2' +(4R-M2)G2+GrH2+GmP2  = 0 (3.37) 

G3"+G31+F1G21+F2G11+(M2- 4R)F2'-M 1G2  = 0 (3.38) 

H3"+PrF1H21+PrH31+PrF2H1' = 0 (3.39) 

P3 2ScP2F1 .2SCPI F2 +ScP3 +SCFI P2 +ScF2P I +SCSOH3 0 (3.40) 

F3 =0, F31 =0,G3 =0,H3 0, P3 =0,at=0 
(3.41) 

F3'=0,G3 =0,H3 0, P3 =Oas —>co 

etc. 

The solutions of the above equations up to order 3 under the prescribed boundary 
conditions are obtained in a straightforward manner and are 

F1 =1-e (3.42) 
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G1  = 0 (3.43) 

H1 =e (3.44) 

P1 =A1 e' +A2e (3.45) 

F2  = 0.25e 2  + A3  e +A4  e" +A5  e +A6e< + A7 (3.46) 

G2=(M2— 4R) e (3.47) 

H2  = A8 - çPr e' - A8e ' (3.48) 

P2  = A9  e41'  +A10 e lS + A11  e" - Al2 + Aj3e' +A14  eS (349) 

F3  = -0.07&3 -0.5A3  e 2 -A3  e-2c  0.5A15ç 2  e+0.25A16e +A17 e-Sc  I  +A18  

-A19  e c(HSc) A20  e 1' +A21  e < +  A22+  A23  e' I +A24  e'+A25ç e (3.50) 

G3  = - 0.5(M2 — 4R)çe 2  +0.5A26ç2e + A27çe +A28e' +A29e + A30e (3.51) 

H3  =(A3  i+1)c e1r  +A32  e c(2-)r)+A36   e +Pr  —A34  e 2Pr+  A35 +A3. & Pr 

+0.5 2  e' (3.52) 

P3  =A38e -ç(2+Pr) +A39e -(2+Sc)  +A40e 21+A41e -ç(P+Sc) +A42e 2S4 + A43ce(I 4sc) 

+A44  çe + 45ç 2eSc + A46  ç 2e' +7e' +Pr) +A48e4(' +Sc) +A.4oePr 

+A54e +A5  1çe +A52& (3.53) 

where the constants A1  (where 1=1, 2, 3........) are shown in appendix 3.A. The 
velocity, the temperature and the concentration fields are thus obtained from (3.23) to 
(3.26) as 

u/U0 = I '(il) = F1 ' + € F2' F3 ' (3.54) 

w/U0  = g (ii) = G1+ eG2 G3 (3.55) 

e(1)= H1 +cH2 +c2H3 (3.56) 

= P1+ C P2  +P3 (3.57) 

Thus with the help of the solutions (3.42) - (3.53) the velocity, temperature and 
concentration distributions can be calculated from (3.54) - (3.57). The velocity and 
distributions are shown in Figs 3.2- 3.15. 

3.4. Skin - friction coefficient, Nusselt number and Sherwood 
number 

The quantities of chief physical interest are the local skin friction coefficients, Nusselt 
number and Sherwood number. 
The equations defining the wall skin friction are 
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rx= 

tz=  
Thus from equations (3.54) and (3.55) we have 

JX  x f" (0) 

-17 cc g' (0) 

and in turn we have 

f'1  (0) =-1+ c [A6 -2A3  +1 +A4Pr2 +A5Sc 2 ] + €2  [A23Sc2 +A24Pr2 -2A25 +A21  

- 2A17Sc -2A18Pr - A19(Sc+ 1)2 
 - A20  (Pr+ 1)2 

- 5/8 - 2A3  —A15  + A16 ] (3.58) 

and 

g' (0)= c(M2- 4R) + 2[ 
- A30  + A27  - 0.5(M2 - 4R) - A28Pr - A29Sc1 (3.59) 

The local Nusselt number denoted by Nu is proportional to - (cTIôy)=0, hence we 

have from (3.56) 

Nu cc - O'(0) 

and in turn we have 

0'(0) = - Pr + ef -A8Pr - Pr +Ag(Pr + 1)] (3.60) 

The local Sherwood number denoted by Sh is proportional to —(ôC/y)=0 , hence we 

have from (3.57) 
Shcc-4'(0) 

and in turn we have 

4'(0) = - A1 Pr - A2Sc + - A14Sc - A9(Pr+1)- A10(Sc+I) - A11 Pr —Al2  + A13] (3.61) 

Thus the values proportional to the skin friction coefficients, Nusselt number and 
Sherwood number are respectively obtained from (3.58) - (3.61). These values are 
sorted in tables 3.1 - 3. 3. 

3.5. Results and Discussions 

For the purpose of discussing the results some numerical calculations are carried out 
for non-dimensional primary (f'(r)) and secondary (g(r)) velocities. Before 
discussion it may be pointed out that in this problem we have added the effect of 
rotation with the case of previous problem. As a result we have additional term of the 
order of R in the results (in eqs. 3.47 and 3.51). If R is chosen as zero these equations 

transform to 2.52 and 2.56 respectively, which confirms the result obtained here. The 
velocity profiles for the x and z components of velocity are shown in Figs 3.2 - 3.15 

for different values of 13i, t3, Or, Gm, So, R and f ,  for fixed values of M, Pr and Sc. 
The value of M is taken to be large which corresponds to a strong magnetic field, 
which is generally encountered in nuclear engineering in connection with the cooling 
of reactors. Negative values of Or, which indicates the heating of the plate by free 
convection currents, are also taken into account. The value of Sc is taken to be 0.6 
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which corresponds to water vapor, Pr is taken equal to 0.71 which corresponds to its 
value in case of air. The magnetic force number M is chosen arbitrarily being equal to 
5.0 which imply a strong magnetic field. 

Figure 3.2 represents the velocity profiles of primary velocity f for different P. with 

fixed Pr, Sc, So, R, j3, f.. and Gr and Gm (both positive or both negative). It is found 

that for positive values of Gr and Gm, f is negative and increases in P. produced 

rapid increases in f'. For negative Gr and Gm, f is positive and with the increase of 

Pej decreases rapidly. 

Figure 3.3 represents the velocity profiles of secondary velocity g for different 0 with 

fixed Pr, Sc, So, R, f, Pi  and Gr and Gm (both positive or both negative). It is found 
that for positive values of Gr and Gm. g is negative and increases in 0e  produces rapid 

decreases in g for t3> 0.17. When P. = 0.17 then g = 0,and it becomes positive if 

0.17. Again for negative Gr and Gm, g is positive for 3> 0.l7and increases rapidly 

with the increase of 13e. At the lower value of P,, <0.17 g becomes negative. It is also 

found that all curves intersect g=o at the point vi = 1.9 When 1.9<i <4.0 the values 

of g is just reverse in sign, though the values are very small. 

Figure 3.4 represents the velocity profiles of primary velocity f for different Pi with 
fixed Pr, Sc, So, R, 13, f,, and Gr and Gm (both positive or both negative). It is found 

that for positive values of Gr and Gm, f is negative and increases in Pi produced slow 

increases in f'. For negative Gr and Gm, f is positive and with the increase of 13 , 1' 
slowly decreases. It may be noted that the sensitivity of f is more with respect to f 
than 

Figure 3.5 represent the velocity profiles of secondary velocity g for different 13j with 

fixed Pr, Sc, So, R, f, Pc  and Gr and Gm (both positive or both negative). It is found 
that for positive values of Gr and Gm, g is positive and increases in 13j produced 

increase in g. For negative Gr and Gm, g is negative and with the increase of 13, g 

decreases gradually. It is also found that when vi = 1.95 then all curves intersect. It is 

also found that when i > 1.95 then the values of g reverses its signs. It may be noted 

that g is less sensitive on Pi  than 13e. 
11,  

Figure 3.6 represent the velocity profiles of primary velocity f for different So with 

fixed Pr, Sc, R, 13 , f3,,  f,.,. and Gr and Gm (both positive or both negative). It is found 

that for positive values of Gr and Gm, f' is negative. For 0<11 <0.65 with the 

increases of So, f increases slowly. But when 0.65<11 <4 the effect is reversed i.e. f 
decreases with the increases of So. For negative Gr and Gm, f' is positive when 11 lies 

between 0 to 0.65, f decreases slowly with the increases in So. But after that point 
the effect is reversed as in the cease with positive Gr and Gm. 

Figure 3.7 represent the velocity profiles of secondary velocity g for different So with 
fixed Pr, Sc, R, f, I3, ft and Gr and Gm (both positive or both negative). It is found 
that for positive values of Gr and Gm, g is positive and increase in So produced rapid 
increase in g. For negative Gr and Gm, g is negative and with the increase of So, g 
decreases rapidly. It is found that in the case of the cooling of the plate g becomes 

zero at vi = 2.05 with So = 1. The same is happened at vi = 2.35 and r = 2.55 when 

So= 1.5 and So = 2 respectively. It is further noticed that in the case of the heating of 

the plate g becomes zero at il =1.9, 2.3, and 2.5 with So= 1.0, 1.5 and 2.0 

respectively. 
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30 ---13e=.17  Gr=5 Gm=5 —j3e=.57 Gr=5 Gm=5 
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e=.57 Gr=-5 Gm=-5 e=.97 G-5 Gm=-5 
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f 0.5 i 2533.5 1 4 
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-20 

-30 j 
Pr=.71,Sc=.6,M=5, So1, Pi= 0.1, f3R0.2, 

Fig. 3.2 Primary velocity profiles due to cooling and heating of plate for different 
values ofe 

Fig.3.3. Secondary velocity profiles due to cooling and heating of the plate for 
different values of De. 
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Fig. 3.4 Primary velocity profiles due to cooling and heating of plate for differeni 
values ofi. 
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Fig.3.5. Secondary velocity profiles due to cooling and heating of the plate for 
different values of 13i 
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3511 
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Pr=.71, Sc.6, M=5, 13e= 0.1,  f 3, R0.2, 3i0.1 

Fig. 3.6 Primary velocity profiles due to cooling and heating of plate for different 
values of So. 
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Fig.3.7. Secondary velocity profiles due to cooling and heating of the plate for 
different values of So. 
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Fig. 3.8 Primary velocity profiles due to cooling and heating of plate for different 
values of fw. 
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Fig.3.9. Secondary velocity profiles due to cooling and heating of the plate for 
different values of fw. 
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Fig. 3.10 Primary velocity profiles due to cooling and heating of plate for 
different values of R 
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Fig. 3.12 Primary velocity profiles due to cooling and heating of plate for 
different values of Gr. 
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Fig.3.13. Secondary velocity profiles due to cooling and heating of the plate for 
different values of Gr. 
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Fig. 3.14 Primary velocity profiles due to cooling and heating of plate for 
different values of Gm. 
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Fig.3.15. Secondary velocity profiles due to cooling and heating of the plate for 
different values of Gm. 
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Figure 3.8 represent the velocity profiles of primary velocity f for different f with 
Al 

fixed Pr, Sc, So, R, 13, J3, R, and Gr and Gm (both positive or both negative). It is 
found that for positive values of Gr and Gm, f is negative and increase in f 
produced steady increase in f. For negative Gr and Gm, f is positive and with the 
increase of f, , f decreases steadily. It may be noted that the sensitivity of f is more 
with respect to f than So. 

Figure 3.9 represent the velocity profiles of secondary velocity g for different f with 
fixed Pr, Sc, R, Pi, So, P. and Gr and Gm (both positive or both negative). It is found 
that for positive values of Gr and Gm, g is positive and increase in f produced steady 
decrease in g. For negative Gr and Gm, g is negative and with the increase of f, g 
increases steadily. It is observed that for the both cooling and heating of the plate g 
becomes zero with f = 3 at i = 1.65,but if1> 1.65 then g changes its sign with very 

small value. Similar situations took place with f = 3.3 and 3.6 at i  =1.85 and 2.05 
respectively. 

Figure 3.10 represent the velocity profiles of primary velocity f for different R with 
fixed Pr, Sc, So, fi,  J3,  f, and Gr and Gm (both positive or both negative). It is 
found that for positive values of Gr and Gm, f is negative and increase in R produced 

slowly decreases in f'. For negative Gr and Gm, J' is positive and with the increase of 

R, f slowly decreases. 

Figure 3.11 represent the velocity profiles of secondary velocity g for different R with 
fixed Pr, Sc, f, Pi, So, 3e and Gr and Gm (both positive or both negative). It is found 
that for positive values of Gr and Gm, g is positive and increases rapidly for R> 0.12, 

when R = 0.12 then g = 0, but if R <0.12 then g is negative. For negative Gr and Gm, 
g is negative and decreases rapidly for R> 0.12, when R = 0.12 then g = 0, but if R 

<0.12 then g is positive. It is also found that all curves intersect at the point 1 = 1.9 
where g = 0. When 1> 1.9 then reverse effect of g is observed. 

Figure 3.12 represents the velocity profiles of primary velocity f for different values 
of Gr with fixed Pr, Sc, f, M, So, R, Pi and 0e  along with fixed Gm (either positive or 
negative). For positive Gm, considering Gr as positive it is found that f is negative 
and with the increase in Gr, f decreases slowly. It is also observed that for negative 
Gm and considering Gr as negative f is positive and with the decreases in Gr f' 
increases slowly. 

Figure 3.13 represents the velocity profiles of secondary velocity g for different 
values of Gr with fixed Pr, Sc, f, M, So, R, 3 j and P. along with fixed Gm (either 
positive or negative). For positive Gm, considering Gr as positive it is found that g is 
positive and with the increase in Gr, g decreases slowly. It is also observed that for 
negative Gm and considering Gr as negative g is negative and with the decreases in 
Gr, g increases slowly. It is also found that when Gr = 5, 1 = 1.7 then g = 0, if Gr = 5 

and 1> 1.7 then reverse effect of g is observed. When Gr = 6, 1 = 1.9 then g = 0, if 

Gr = 6 and 1>  1.9 then reverse effect of g is observed. Again when Gr = 7, 1 = 2.05 

then g = 0, if Gr = 7 and 1 > 2.05 then reverse effect of g is observed. Further for the 

heating of the plate when Gr = 5, r = 1.5 then g = 0, if Gr = 5 and 1>  1.5 then 

reverse effect of g is observed. When Gr = 6,1 = 1.75 then g = 0, if Gr = 6 and 
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i> 1.75 then reverse effect of g is observed. Again when Gr = ,i = 1.9 then g = 0, 

if Gr = 7 and 11> 1.9 then reverse effect of g is observed. 

Figure 3.14 represents the velocity profiles of primary velocity f for different values 
of Gm with fixed Pr, Sc, f, M, So, R, Pi and P. along with fixed Gr (either positive or 
negative). For positive Gr, considering Gm as positive it is found that f is negative 
and with the increase in Gm, f' slowly decreases. It is also observed that for negative 
Gr and considering Gm as negative f is positive and with the decreases in Gm, 
J'slowly increases. 

Figure 3.15 represents the velocity profiles of secondary velocity g for different 
values of Gm with fixed Pr, Sc, J, M, So, R, Pi and 0. along with fixed Gr (either 
positive or negative). For positive Gr, considering Gm as positive it is found that g is 
positive and with the increase in Gm, g increases rapidly. It is also observe that for 
negative Gr and considering Gm as negative g is negative and with the decreases in 
Gm, g decreases rapidly. It may be noted that the sensitivity of g is more with respect 
to Gm than Gr. It is further observed that for the cooling of the plate when Gm = 5, ii 
= 2.05 then g = 0, if Gm = 5 and 11> 2.05 then reverse effect of g is observed. When 

Gm = 6, 1 = 2.1 then g = 0, if Gm = 6 and ii>  2.1 then reverse effect of g is observed. 

Again when Gm = 7, Tj =  2.15 then g = 0, if Gm = 7 and 1>  2.15 then reverse effect 

of g is observed. Further for the heating of the plate when Gm = 5, 11 = 1.9 then g = 0, 
if Gm = 5 and Ti>  1.9 then reverse effect of g is observed. When Gm = 6, 71 = 2.05 

then g = 0, if Gm = 6 and 1> 2.05 then reverse effect of g is observed. Again when 

Gm = 7, r = 2.1 then g = 0, if Gm = 7 and 1>2.1  then reverse effect ofg is observed. 

Finally the effect of various parameters on the components of the skin friction 
coefficient i  and t, are shown in table 3.1 -3.3. From table 3.1, we observe that the 
component t, increase with the increase of f but, T, and Sh decreases in the case of 
cooling of the plate. It is further observed that, in the case of heating of the plate, with 
the increase of suction parameter and Sh decreases where as t.,. increases. It is 
farther observed that the skin friction coefficient t, and t both decreases when the 
rotation parameter R increases. Again for the heating of the plate with the increase of 
R, ', and T, both increases. From table 3.2 in the case of cooling of the plate we 
observe that the t(  and t both increases with the increase of Hall parameter or, where 
as for fixed 0,, with the increase in fj, r, increases but t. decreases. Again for the 
heating of the plate with the increase of 13e, and t, both decreases, where as for the 
heating of the plate with the increase in j3, t, decreases but t. increases. From 
equations (3.60) and (3.61) we observe that Nu and Sh do not depend on the 
parameters M1 and M2  and thus not on Pi and f3. From table 3.3 in the case of cooling 
of the plate we observe that the skin friction coefficients r, and T, decreases but the 
Sherwood number Sh increases with the increase of Sc. Further we observe that T., and 
t both increases but Nu and Sh both decreases with the increase of Pr. Again in the 
case of heating of the plate t, t. and Sh increases with the increase of Sc. Further we 
observe that t, t,Nu and Sh all decreases with the increase of Pr. 
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01. Table 3.1 

Numerical values proportional to z, t, Nu and Sh for 13= 0.6, Pi  =0.1, Pr =0.71, 
Sc=0.6, M=5 and SoI 

GrGm R f  Nu Sh 
10 4 0.2 3 -371.746 0.694725 0.708865 0.55938 
10 4 0.3 3 -371.655 0.467339 0.708865 0.55938 
10 4 0.2 3.3 -306.832 0.60782 0.708968 0.524346 

-10 -4 0.2 13 371.7283 -0.85017 0.708865 0.55938 
-10 -4 0.3 3 371.8191 -0.57191 0.708865 0.55938 
-10 -4 0.2 I 3.3 306.2459 -0.66896 0.708968 0.524346 

Table 3.2 

Numerical values proportional to t,, t, Nu and Sh for R0.2 f"3, Pr =0.71, 
Sc0.6,M5 and So=1 

Gr Gm P. 

10 4 0.3 0.1 -454.005 0.235659 
10 4 0.6 0.1 -371.746 0.694725 
10 4 0.6 0.3 -352.875 0.539235 
-10 -4 0.3 0.1 455.7263 -0.40061 
-10 -4 0.6 0.1 371.7283 -0.85017 
-10 -4 0.6 0.3 352.7218 -0.61357 

Table 3.3 

Numerical values proportional to t,, t, Nu and Sh for 0 0.6, Pi  =0.1, R0.2, f3, 
M=5 and So=1 

Gr Gm Pr Sc  Tz   Nu Sh 
10 4 0.71 0.22 -254.77 25.17645 0.708865 0.230152 
10 4 0.71 0.60 -371.746 0.694725 0.708865 0.55938 
10 4 7 0.60 -138.719 2.438216 -21.2917 -3.20313 
-10 -4 0.71 0.22 254.7525 -25.3319 0.708865 0.230152 
-10 -4 0.71 0.60 371.7283 -0.85017 0.708865 0.55938 
-10 -4 7 0.60 138.7017 -2.59367 -21.2917 -3.20313 
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Appendix 3.A 

A1  = (So Sc Pr)/(Sc-Pr); A2  = 1- A1; A3  = 1 + M1  

A4  ( Or + A1Gr)/(Pr3  - Pr); As  = GmA2/(Sc3  - Sc2); 

A6 = A3  -0.5— A4Pr— AsSc; A7 = A4Pr+ A5Sc+0.25—A3 — A4 -As; 

A8 Pr2  /(l+Pr); A9  = B1/((Pr+I)(Pr-Sc+1)); A10  = B2/(Sc+1); 

A11  = B3/(Pr(Pr - Sc))+B5(2Pr - Sc)/(Pr2(Pr - Sc)2): 

Al2  = BilSc; A13= B5  / (Pr (Pr— Sc)); A14  = -A9  - A10 - A11; 

A15  = A3  + M1A3  —(M2  - 4R)2 ; A16  = I + 2A3  + 0.5M - 2A6; 

A17  = B12/(Sc2  - Sc3) ; A18  = B11 / (Pr2  —Pr3) ; A19  = B10/(Sc(Sc +1)2) 

A20  = B9/(Pr(Pr+1)2); 

A21  = A17  - B13Sc + A18  - B14  Pr + A19(Sc +1) +A20(Pr +[) +5/24 +1.5A3  

- B15Sc —B16Pr +B6  - 2A15  - O.5A16; 

A22 = A20+ 5/72 + A3  - B13 — B14 + A19 —B15 — B16  - A21  - 0.25A16; 

A23 = B13 + B15 ; A24 =B14 + B16 ; A25 = B6 -2A15 ; 

A26  = ( M - 4R)(-l-A3  -M i); A27  = A26  + B17 ; 

A28 = A4 (M2 -4R)/(Pr- 1); A29 =A5(M2 -4R)/(Sc— 1); A30=-A28 —A29 ; 

A31  = -A8Pr —Pr+A7; A32  =(A8Pr2  +A8Pr-.25Pr)/(4+2Pr); 

A33 (( l+2A8  )Pr2  +(A5+A6+A2  )Pr)/( 1+Pr); 

A34  =O.5A4IPr; A35 = B18/(Pr+1); A36 = (2+Pr)Biil(Pr+1)2  -A33; 

A37 = -A32 + A33  +A34 - A36; A38 = B19/(4+4Pr+Pr2-2Sc-ScPr); 

A39  = B20/(4 +2Sc); A40  = B25/(4Pr2-2ScPr); A41= B26/(Pr2+ScPr); 

A42 = B27/ (2Sc2); A43 = B27/(1+Sc); A44  B23/(1+2Pr ±Pr2-Sc-5cPr); 

A45 = - B/(2Sc); A46 = B32/(Pr2-ScPr); A47  =B33  

A48  =B34  +B37; A49  =B35  +B41+B43; A50  =B36 +B39; 

A51  =B40 +B42; A52 = -(A38  +A39  +A +A41  +A42+A47  +A48  +A49) 

B1 =2ScA1 — A1 ScPr+ ScSoA80 + pr)2 ; B2 2 Sc A2 —A2 Sc2; 

B3  = ScA1Pr —SoScA8Pr2  —Sc So 2 Pr2; B4  = Sc2  A2; B5  = Sc SoPr3; 

B6 =A6-2A3 —A7 +A6 M1 —M1 A3; B7 =Pr2A4 +MlA4Pr+GrA8+GmA11; 

B8  = A5Sc2 + M1 ScA5  + Gm A14; B9  = A4Pr2+A4+ A8Gr-A9Gm; 

B10  = As  Sc2  +A5  - A10  Gm; B11  = Gr Pr —GmA13; B12  = GmAl2; 

B13  = B12  (2Sc-3Sc2)/(Sc2- Sc3)2 ; B14 = B11(2Pr— 3 Pr)/(Pr2  - Pr3)2 ; 

B15  = B8/(Sc3- Sc2); B16  = B7/(Pr3 — Pr2 ) ; B17  = (M2  - 4R)( 1-A4+A3); 

B18= Pr3-A3Pr; 
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B19  =2Sc A9 — ScAi- ScA9(1+Pr)+0.25ScPrAi+0.25 A2  Sc2  - ScSoA32(2 + pr) 2; 

B20 =2Sc A10 — ScA2- ScA1o(l+Sc); 

B21  =2Sc All  - 2ScA1A6  -2ScA1 A3  -ScA9(1+Pr)-ScPrAii 

+ A13Sc+PrScAiA4 +2SoScA35(1+Pr) - ScSo A36(1+Pr)2; 

B22  = -2Sc Al2  -2ScA2A3  +Al2  Sc2  + A3A2  Sc2; 

B23  =2ScA13 — PrScA13  +PrScA1 A3  +2ScA1 A3  +ScSo A35(1+Pr)2; 

B24  =2ScAI4— 2ScA2A6  +2ScA2A3  -ScAl2 +ScA1o(1+Sc) +A14  Sc2- A6A2  Sc2; 

B25  = -4ScSoA34Pr2-PrScA4A1; 

B26  = - 2A5A1  Sc2— 2PrScA2A4+ PrScA1 A5+A2A4 Sc2  -A5Pi2(Sc+Pr)ISc; 

B27  = -A2A5  Sc2; 

B28  = ScSoA37Pr2+PrScA7A1  +PrScAij-ScAl3  +2PrScSoA31+ ScSoPr2; 

B29  =-Sc2Al2; B30  = A2A7  Sc2+A14 Sc2+ScAl2; 

B31  = PrScAI3 -ScSoA3l Pr2  +Sc5oPr3; B32  = -0.5ScSoPr4; 

B33  = B21/(1+2Pr+ Pr2-Sc-ScPr); B34  = B21I(1+Sc); B35  = B281( Pr2-ScPr); 

B36  = -B30/Sc; B37  = B22(2+Sc)/(l+Sc)2; 

B38  = B23(2+2Pr-Sc)/(1+2Pr+ Pr2-Sc-ScPr)2; B39  = -B29/Sc2; B40  = B31/( Pr2-ScPr); 

B41  = B31(2Pr-Sc)/( Pr2-ScPr)2; B42  = 2B32(2Pr-Sc)/( Pr2-ScPr)2; 

B43 = 2B32(2Pr-Sc)21( Pr2-ScPr)3- 2B32/( Pr2-ScPr)2  
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