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Abstract 

Krylov and Bogoliubov introduced a perturbation method named "asymptotic averaging 

method". The method was developed only to obtain the periodic solution of second order 

nonlinear differential systems. Now the method is used to obtain the solutions of 

oscillatory, damped oscillatory, over-damped, critically damped and more critically 

damped systems with of second, third, fourth etc. order nonlinear differential equations 

by imposing some restrictions to make the solutions uniformly valid. The method of 

Krylov and Bogoliubov has been improved and justified by Bogoliubov and Mitropolskii. 

In this dissertation, we have modified and extended the Krylov-Bogoliubov-Mitropolskii 

(KBM) method to investigate the fourth order critically damped and more critically 

damped nonlinear systems. We have imposed some restrictions on the eigenvalues to 

determine the unknown functions which are related to the variational equations. To get 

the solutions of the variational equations, we have replaced the variables by their 

corresponding linear values. For justification of the solution obtained by the extended 

KBM method, we have compared the results to those obtained by the fourth order Runge- 

Kutta method. 

VI' 



Introduction 

The subject of differential equation not only is one of the most beautiful parts of 

mathematics, but it is also an essential tool for modeling many physical situations such as 

spring mass system, resistor-capacitor-inductor circuits, bending of beams, chemical 

reactions, pendulums, the motion of the rotating mass around another body and so forth. 

These equations have also demonstrated their usefulness in ecology, economics and 

biology. That is a large number of problems in engineering and science can be formulated 

in the form of differential equation. Therefore the solution of such problems lies 

essentially in solving the corresponding differential equations. The differential equations 

may be linear or nonlinear, autonomous or non-autonomous. Practically, numerous 

differential equations involving physical phenomena are nonlinear. In many cases it is 

possible to replace such a nonlinear equation by a related linear equation, which 

approximates the actual non linear equation closely enough to give useful results. The 

method of small oscillations is a well-known example of the linearization of problems, 

which are essentially nonlinear. However, such a "linearization" is not always feasible; 

and when it is not, the original nonlinear equation itself must be considered. Methods of 

solutions of linear differential equations are comparatively easy and highly developed. 

Whereas, very little of a general character is known about nonlinear equations. The study 

of nonlinear equations is generally confined to a variety of rather special cases, and one 

must resort to various methods of approximation. 

Van der p01 first paid attention to the new (self-excited) oscillations and indicated that 

their existence is inherent in the nonlinearity of the differential equations characterizing 

the process. This nonlinearity appears, thus, as the very essence of these phenomena and 



by linearizing the differential equation in the sense of the method of small oscillations, 

one simply eliminates the possibility of investigating such problems. Thus it is necessary 

to deal with the nonlinear problems directly instead of evading them by dropping the 

nonlinear terms. To unravel nonlinear differential equations there exist some methods. 

Among the methods, the method of perturbations, i.e., asymptotic expansions in terms of 

a small parameter are foremost. Perturbation methods have recently received much 

attention as methods for accurately and quickly computing numerical solutions of 

dynamic, stochastic, economic equilibrium models, both single-agent or rational-

expectations models and multi-agent or game-theoretic models. A perturbation method is 

based on the following aspects: The equations to be solved are sufficiently "smooth" or 

sufficiently differentiable a number of times in the required regions of variables and 

parameters. 

In this thesis, we shall discuss problems that can be described by the dynamical systems 

of the fourth order nonlinear autonomous differential equations with small nonlinearities 

by use of the KryIovBogoliubOV-MitrOP0lSki (KBM) method. The method was 

developed only to obtain the periodic solutions of second order nonlinear differential 

equations. Now the method is used to obtain the solutions of oscillatory, damped 

oscillatory, critically damped, more critically damped and non-oscillatory systems with 

second, third, fourth etc. order nonlinear differential equations by imposing some 

restrictions to make the solutions uniformly valid. 

An important approach to the study of such nonlinear oscillations is the small parameter 

expansion. Two widely spread methods in this theory are mainly used in the literature; 

• 
One is averaging asymptotic method of KBM and the other is multi-time scale method. 
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In the KBM method the solution starts with the solution of linear equation (sometimes 

called the generating solution of the linear equation), only using the amplitude and phase 

of the solution of the linear differential equation which are assumed time dependent 

functions instead of constants. This method introduces an additional condition on the first 

derivative of the generating solution for determining the solution of a second order 

equation. 

KBM demanded that the asymptotic solutions are free from secular terms. These 

assumptions are definitely valid for second and third order equations But for the fourth 

order equation the correction terms sometimes contain secular terms, although the 

solution is generated by the classical KBM asymptotic method. For this reason, the 

traditional solutions fail to explain the proper situation of the systems. 

In order to avoid the appearances of secular terms and obtain the desired results, we need 

to impose some additional conditions. The main objective of this thesis is to find out 

these limitations and determine the proper solutions under some special conditions. The 

results may be used in mechanics, physics, chemistry, plasma physics, circuit and control 

theory, population dynamics etc. 

01  
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Chapter 1 

The Survey and the Proposal: 

1.1 The Survey: 

The behavior of many physical systems is adequately described by linear differential and 

algebraic equations, and the solution for the simulation response is usually a straightforward 

procedure and well established. 1-lowever, systems whose response must be described by non 

linear equations may present special difficulties. 

During the last several decades a number of Russian scientists, like, Mandelstam and 

Papalexi [39], Krylov and Bogoliubov [31], Bogoliubov and Mitropolskii [13] worked jointly 

and investigated nonlinear mechanics. An important aspect of various perturbation methods is 

their relationship with each other. Among them, Krylov and Bogoliubov are certainly to be 

found most active. In most treatments of nonlinear oscillations by perturbation methods only 

periodic oscillations are treated, transients are not considered. Krylov and Bogoliubov [31] 

have introduced a new perturbation method to discuss transients. They considered primarily 

equations of the form 

+aYx = sf(x,,t,e) 

where e is a small positive parameter and f is a power series in e, where coefficients are 

polynomials in x, , sint and cost. The method of Krylov and Bogoliubove (KB) starts 

with the solution of the linear equation, assuming that in the nonlinear case, the amplitude 

and phase in the solution of the linear equation are time dependent functions rather than 

constants. This procedure introduces an additional condition on the first derivative of the 

assumed solution for determining the solution. 



Extensive uses have been made and some important works are done by Stoker [92], Mc 

Lachian [40], Minorsky [43], Nayfeh [50,51] and Bellman et al. [11]. 

The method of Krylov and Bogoliubov is an asymptotic method in the sense thate -+ 0. An 

asymptotic series itself may not be convergent, but for a fixed number of terms, the 

approximate solution tends to the exact solution as e tends to zero. It is noted that the term 

asymptotic is frequently used in the theory of oscillations also in the sense that c -> co. But in 

this case the mathematical method is quite different. 

In general, f contains neither c nor I thus the equation (1.1) can be written as 

I+a)2 x = cf(x,) (1.2) 

When 6 = 0, the equation (1.2) reduces to linear equation and its solution is 

x=acos()t+q,) (1.3) 

where a and are arbitrary constants to be determined using initial conditions. 

Whene # 0, but is sufficiently small, then Krylov and Bogoliubov assumed that the solution 

of (1.2) is still given by (1.3) together with the derivative of the form. 

±=—awsin(cvl+() (1.4) 

where a and ç are functions of 1, rather than being constants. In this ease the solution of 

(1.2) is 

x = a(t)cos(w/ + (1.5) 

and the derivative of the solution is 

± = — a(t)co sin(a)l + (1.6) 

Differentiating the assumed solution (1.5) with respect to 1, we obtain 
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=àcosV' —awsinyi— aç'sin/f, VI  =a)t+(p (1.7) 

Comparing (1.4) and (1.7), we obtain 

ii cosçu —a çsin' =0 (1.8) 

Again differentiating (1.6) with respect to 1, we have 

=—a wsinyt— a cosçtf - awç cos çu (1.9) 

Substituting the value of i from (1.9) in to the equation (1.2) and using equations (1.5) - 

(1.6), we obtain. 

a cosinyl + awç cos y' = -6 f(a cos  VI,  — aasinçu) (1.10) 

Solving (1.8) and (1.10) for à and , yields 

- -- sinVi f (a cos qi, - a(osinVI)
CO  

- cosçu f (a cos yi, - aasinçu) (1.12) 
a co 

It is seen that the original equation (1.2) of the second order and provides a system of 

equations, (1.11) and (1.12), each of the first order. The interesting feature of this 

transformation lies in the fact that these first-order equations are now written in terms of the 

amplitude a and phase p as dependent variables 

From the form of the right sides of equations (1.11) and (1 .12), it is seen that both a and 

are periodic functions of time. From the fact that the right-hand terms of these equations 

contain a small parameter s, one can conclude that both a and p, being periodic, and are 

functions which vary slowly during one period T = as trigonometric functions are 
-a. 

involved. 



It is reasonable, therefore, to consider a and p  as constant during a period T. It is possible to 

transform equation (1.11) and (1. 12) into more convenient form. For this purpose, expanding 
.71 

sini' f(a cos yi, —aa'sinyi) and cos yif(a cos u,—aasinyi) in Fourier series in the total 

phase ', the first approximate solution of (1.2), by averaging (1.11) and (1.12) over one 

period is 

2r 
• 6 
a = - Jsinc,if(a cos yi, awsinçii) dyi 

2,ra 0 
 2x 

• S 
= -  

2 
Jcos çi/f(a cos çii, awsinçLf)d,1f 

rva 0 

where a and ip are independent of time under the integrals. 

The first approximation in the form in which they were originally obtained by Krylov and 

Bogoliubov [31] and in which they are generally used in applications. 

Later, this technique has been amplified and justified mathematically by Bogoliubov and 

Mitropolskii [13], and extended to non-stationary vibrations by Mitropolskii [44]. They 

assumed the solution of the nonlinear differential equation (1.2) in the form 

x = acosçf + s u1  (a,çu) + 
2  u2  (a, yi) + .........+ s' u,1  (a, cii) + O(e') (1.14) 

where, Uk,  k = 1, 2, . . . , n are periodic functions of ci' with a period 2 .ir, and the quantities a 

and cit are functions of time I, defined by 

=s A1(a) + 2 A2  (a) + .....+ s"A,, (a) +O(e) 
(115) 

i'=u + s B1(a) + s2B2  (a) + .....+ e"B,?  (a) +O(s') 

where Uk, Ak  and Bk , (k = 1, 2, . . . , n) are to be chosen in such a way that the equation 

(1.14) and (1.15) satisfy the differential equation (1.2). Since there are no restrictions in 

choosing the functions Ak  and Bk,  that generate the arbitrariness in the definitions of the 
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functions Uk  (Bogoliubov and Mitropolskii [13]). To remove this arbitrariness, the following 

additional conditions are imposed 

2,r 
J U/ (a, yi) cos yi dyi 0, 
0 
2r 
JUk (a, yi) sin VI  dl/'=O. 
0 

(1.16) 

These conditions guarantee the absence of secular terms in all successive approximations. 

Differentiating (1.14) twice with respect to t, substituting x, and 5c, using the relations 

(1.15) and equating the coefficients of s k,  k= 1, 2,".,n) one obtains recursive systems 

a 2 Uk 
CO

2  ( +Uk) = 
f) (a, t') + 2a(allk  cosçii +Ak  Siflçu), 

where 

f (a,çtf) = f (a cos yi, -aw sin qi), 

(1.17) 

a 
f (a,yi) =u1  f. (a cos Vl,  -atvsinçei) +(A1  cosyi -aB1  sinV' +w) 

x f (acos,u, - asinu) +(aB1  -A1  —)cosçu + (2A1  B1  -aA1 ---) sini,i (1.18) 
da da 

-2w(A1 ô2u +B1ôU) 
aaaVl 

Here fI)  is a periodic function of V'  with period IT depending also on the amplitude a. 

Therefore, f t ' as well as u1  can be expanded in a Fourier series as 

f(k_1) (a,yi)= 4k_1)(a) + (gn('-')(a)  cosn VI 
+ h' )(a) sin nVI) 

Uk (a,çii) = v 0(a) + (v(k-1)cosnVI +w_0(a) sin nVI) 

(1.19) 

[J 



where 

2g 
(k-i) _L 90 w $f(k1)  (acosu, - asinyi)dyi 

2,r 0  
2,r 

(k-I) 
f 
f(k I)(acosy 

- awsinyi)cosnyidyi g,,
7z.  

2)r 
= I ff(kO(acosyJ 

 - awsinyi)sinniidyi, n ~: 1 
1? 

7r o 

(1.20) 

Here vf1)= 4k_I) = 0 for all values of k, since both integrals of (1.16) vanish. 

Substituting these values into the equation (1.17), yield. 

w 2 v(k I)(a)+ (1 — n 2  ) [v(a)cosn + w(a)sin ny!] 
,7=I 

= gk_I)(a)+ (g(a)+ 2w a Bk) cos n ci' + (h(a)+ 2WAk  ) sinyi 
Ct 

+ [g(ki)(a)co5flqj + h(a)sin nyi] 
n2 

(1.21) 

Now equating the coefficients of the harmonics of the same order, give 

gki)(a)±2waB =0, 

v_1)(a) = 

gk_1)(a) 

U) 2  (1n) 

h(a)+ 2aAk  = 0 
(0 

w_1)(a)_ 
h_1)(a) 

n~1 
- U)2  (1 — n2 ) 

(1.22) 

These are the sufficient conditions to obtain the desired order of approximation. For the first 

order approximation, we have 

2.'r 

I 
2w 2irw 

A = ff(acosyi. — sin)sin dyi, 

1 2.'r 
B Jf(acosc11,_awsin1)cosçudçt1. 

2aw 2raw 

Thus, the variational equations (1.15) become 

9 
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a =- ff(acos, —awsinyi)sinyi d, 
2,w 

2,r 
(1.24) 

4.  

=w - jf(acoscii, —aasin)costi dçu. 
27ra0) 

We see that the equations of (1.24) are similar to the equations in (1.13). Therefore the first 

order solution obtained by Bogoliubov and Mitropotskii [13] is identical to the original 

solution obtained by KB [31]. In the second method, higher order solution can be found 

easily. The unknown function u1  called correction term, is obtained from (1.22) &(1.19) as 

g'(a) a (a) cos nii + h 
= 

(a) cos nyi 
(1.25) 2 

CO n=2 n 2 (1-2) 

The solution (1.14) together with U1  is known as the first order improved solution in which a 

and yi are obtained from (1.24). If the values of the functions A1  and B1  are substituted form 

(1.23) into (1.18), the function f, and in the similar manner, the functions A1 , B1  and u2  

can be found. Therefore the determination of the higher order approximation is complete. 

Somewhat different nonlinear phenomena occur when the amplitude of the dependent 

variable of a dynamical system is less or greater than unity. The damping is negative when 

the amplitude is less than unity and the damping is positive when the amplitude is greater 

than unity. The governing equation having these phenomena is 

e (1—x2 )+x=O (1.26) 

This equation is known as Van der Pol [94] equation. This equation has very extensive field 

of application in connection with self-excited oscillations in electron-tube circuits. 

The method of KB is very similar to that of Van der Pol and related to it. Van der Pol applies 

the method of variation of constants to the basic solution x = a cos cot + b sin cot 

of I + 0o 2 x = 0, on the other hand KB apply the same method to the basic 

10 



solution x = a cos(a. i + (p) of the same equation. Thus in the KB method the varied constants 

are a and ço, while in the Van der Pol's method the constants are a and b. The method of 

KB seems more interesting form the point of view of applications, since it deals directly with 

the amplitude and phase of the quasi-harmonic oscillation. 

Volosov [95] and Museenkov [49] also obtained higher order effects. 

The KB method has been extended by Kruskal [30] to solve the fully nonlinear differential 

equation 

I = F(x,,I) (1.27) 

The solution of this equation is based on recurrent relations and is given as the power series 

of the small parameter. 

Cap [26] has studied nonlinear systems of the form 

I+a 2  f(x)=sF(x,) (1.28) 

He solved this equation by using elliptic functions in the sense of Krylov and Bogoliubov. 

Later, the method of Krylov-Bogoliubov-Mitropolskii (KBM) has been extended by Popov 

[55] to damped nonlinear systems 

I+2k+ CO 2  x = ef(x,i) (1.29) 

where - 2/ce is the linear damping force and 0 <k <a. It is noteworthy that, because of the 

importance of the Popov's method [55] in the physical systems, involving damping force, 

Mendelson [41] and Bojadziev [24] rediscovered Popov's results. In case of damped 

nonlinear systems the first equation of (1.15) has been replaced by 

à=—ka+SA1(a)+E2  A2 (a)+ ..... +e"A,,(a)+O('') (1.30) 



Murty et al. [47] found a hyperbolic type asymptotic solution of an over-damped system 

represented by the nonlinear differential equation (1.29) in the sense of KBM method; 1. e. in 

the case k > a .They used hyperbolic function, cosh or sinh ço instead of the harmonic 

function, which is used in [13, 31, 41, 55]. In the case of oscillatory or damped oscillatory 

process cosh ç may be used arbitrarily for all kinds of initial conditions. But in case of non- 

oscillatory systems cosh or sinh q should be used depending on the given set of initial 

conditions (Bojadziev and Edwards [23], Murty et al. [47], Murty [48]). Murty and 

Deekshatulu [46] developed a simple analytical method to obtain the time response of second 

order nonlinear over-damped systems with small nonlinearity represented by the equation 

(1.29), based on the Krylov-Bogolibov method of variation of parameters. Shamsul [82] 

extended the KBM method to find solutions of over-damped nonlinear systems, when one 

root becomes much smaller than the other root. Murty [48] has presented a unified KBM 

method for solving the nonlinear systems represented by the (1.29) which cover the 

undamped, damped and overdamped cases. Bojadziev and Edwards [23] investigated 

solutions of oscillatory and non-oscillatory systems represented by (1.29) when k and cv are 

slowly varying functions of time i. Arya and Bojadziev [9, 10] examined damped oscillatory 

systems and time-dependent oscillating systems with slowly varying parameters and delay. 
1' 

Shamsul ci al. [72] extended the Krylov-Bogoliubov-Mitropolskii method to certain non-

oscillatory nonlinear systems with varying coefficients. Later, Shamsul [84] has unified the 

KBM method for solving n-th order nonlinear differential equation with varying coefficients. 

Sattar [63] has developed an asymptotic method to solve a second order critically damped 

nonlinear system represented by (1.29). He has found the asymptotic solution of the system 

(1.29) in the form 

x=a(1+yi)+eu1 (a,yi)+...+e"u,,(a,yi)+O(") (1.31) 

12 



where a is defined in the equation (1.30) and cit is defined by 

çi' =1+ E C1(a)+ 6 2  C2  (a) + .....+ eC,,(a)+O(E"), (1.32) 

Shamsul [69] has developed a new perturbation technique to find approximate analytical 

solution of both second order over-damped and critically damped nonlinear systems. Later, 

he [78] extended the method to n-th order nonlinear differential systems. Shmsul [79, 85] has 

also extended the KBM method for certain non-oscillatory nonlinear systems when the 

eigenvalues of the unperturbed equation are real and non-positive. Shamsul [71] has 

presented a new perturbation method based on the work of the Krylov-Bogoliubov- 

- Mitropolskii method to find approximate solutions of second order nonlinear systems with 

large damping. Shamsul el al. [74] investigated perturbation solution of a second order time-

dependent nonlinear system based on the modified Krylov-Mitropolskii method. 

Making use of the KBM method Bojadziev [14] has investigated solutions of nonlinear 

damped oscillatory systems with small time lag. Bojadzive [19] has also found solutions of 

damped forced nonlinear vibrations with small time delay. Bojadziev [20], Bojadziev and 

Chan [21] applied the KBM method to problems of population dynamics. Bojadziev [22] 

used the KBM method to investigate solutions of nonlinear biological and biochemical 

systems. Lin and Khan [35] have also used the KBM method to some biological problems. 

Proskurjakov [56], Bojadziev et al. [15] have investigated periodic solutions of nonlinear 

systems by the KBM and Poincare method, and compared the two solutions. Bojadziev and 

Lardner [16, 17] have investigated monofrequent oscillations in mechanical systems 

including the case of internal resonance, governed by hyperbolic differential equation with 

small nonlinearities. Bojadziev and Lardner [18] have also investigated solution for a certain 

hyperbolic partial differential equation with small nonlinearity and large time delay included 

into both unperturbed and perturbed parts of the equation. 

13 
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Osiniskii [52], first extended the KBM method to a third order nonlinear differential equation 

+k1i+k2i+k3x=ef(x,±,I) (1.33) 

wheres is a small positive parameter and f is a nonlinear function. Osiniskii assumed that 

the asymptotic solution is in the form 

x = a+b cos y!+eui (a,b, u)+...+c l u,7 (a,b, ,I)+o(s ) (1.34) 

where each Uk  k = 1,2,...,n is a periodic function of ,u with period 2r and, a,b and yiare 

functions of time , given by 

à=-2a+eA1 (a)+s2  A,(a)+..... 

b = —pb +s B1(b) + e2  B2  (b) + .....+ sB (b) +O(s?+I) (1.35) 

yi=w+s C1(b) + e2C, (b) + .....+ e"C,,(b) +O(") 

where - A, - p ± co are the eigenvalues of the equation (1.31) when e = 0. 

Osiniskii [53] has also extended the KBM method to a third order nonlinear partial 

differential equation with initial friction and relaxation. Muiholland [45] studied nonlinear 

oscillations governed by a third order differential equation. Lardner and Bojadziev [33] 

investigated nonlinear damped oscillations governed by a third order partial differential 

equation. They introduced the concept of "couple amplitude" where the unknown functions 

Ak, Bk and Ck  depend on both the amplitudes a and b. Rauch [57] has studied oscillations 

of a third order nonlinear autonomous system. Bojadziev [24], Bojadziev and Hung [25] 

developed a technique by using the method of KBM to investigate a weakly nonlinear 

mechanical system with strong damping. Sattar [641 has extended the KBM asymptotic 

method for three-dimensional over-damped nonlinear systems. First, Shamsul and Sattar [66] 

developed a method to solve third order critically damped autonomous nonlinear differential 

systems. Shamsul [77] redeveloped the method presented in [66] to find approximate 
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solutions of critically damped nonlinear systems in the presence of different damping forces 

by considering different sets of variational equations. Later, he unified the KBM method for 

solving critically damped nonlinear systems [91]. Shamsul and Sattar [70] studied time 

dependent third order oscillating systems with damping based on an extension of the 

asymptotic method of Krylov-Bogoliubov-Mitropolskii. Shamsul [82], Shamsul et al. [89] 

has developed a simple method to obtain the time response of some order over-damped 

nonlinear systems together with slowly varying coefficients under some special conditions. 

Later, Shamsul [78], Shamsul and Bellal [83] have extended the method presented in [82] to 

obtain the time response of n -th order (n ~: 2), over-damped systems. Shamsul [81] has also 

developed a method for obtaining non-oscillatory solution of third order nonlinear systems. 

Shamsul and Sattar [67] presented a unified KBM method for solving third order nonlinear 

systems. Shamsul [75] has also presented a unified Krylov-Bogoliubov-Mitropolskii method, 

which is not the formal form of the original KBM method, for solving n -th order nonlinear 

systems. The solution contains some unusual variables. Yet this solution is very important. 

Shamsul [87] has also presented a modified and compact form of the Krylov-Bogoliubov-

Mitropolskii unified method for solving a n -th order nonlinear differential equation. The 

formula presented in [87] is compact, systematic and practical, and easier then that of [75]. 

Shamsul [88] developed a general formula based on the extended Krylov-Bogoliubov- 

Mitropolskii method, for obtaining asymptotic solution of an n -th order time dependent 

quasi linear differential equation with damping. Bojadziev [24], Bojadziev and 1-lung [25] 

used at least two trial solutions to investigate time dependent differential systems; one is for 

resonant case and the other is for the non-resonant case. But Shamsul [88] used only one set 

of variational equations, arbitrarily for both resonant and non-resonant cases. Shamsul ci al. 

[90] presented a general form of the KBM method for solving nonlinear partial differential 

equations. Raymond and Cabak [58] examined the effects of internal resonance on impulsive 
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forced nonlinear systems with two-degree-of-freedom. Ali Akbar et al. [2, 3] found 

asymptotic solution of fourth order over-damped and under-damped nonlinear systems based 

on the work of [75]. Ali Akbar ci al. [4] also developed a simple technique for obtaining 

certain over-damped solution of an n -th order nonlinear differential equation. Ali Akber ci 

al. [5] presented the KBM unified method for solving n-th order nonlinear systems under 

some special conditions including the case of internal resonance. Ali Akbar et al. [7] also 

developed perturbation theory for fourth order nonlinear systems with large damping. Au 

Akbar et al. [6] developed an asymptotic method for fourth order more critically damped 

nonlinear systems. 
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1.2 The Proposal: 

We propose a perturbation system to solve fourth order nonlinear differential equations 

x + k1  + k21 + 4i + k4 x = —ef(x,±,,i) 

where s is the small positive parameter; k) , k2 , k35  k4  are constants, and f is the given 

nonlinear function. 

The Krylov-Bogoliubov-Mitropolskii (KBM) method for solving fourth order critically 

damped nonlinear systems is presented in Chapter 2. In Chapter 3 we have investigated 

solutions of fourth order more critically damped nonlinear systems. 
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Chapter 2 

Asymptotic Solutions of Fourth Order Critically Damped Nonlinear 

Systems Under Some Special Conditions 

2.1 Introduction 

Most of the well-known perturbations methods e. g., Struble's method [93] Krylov-

Bogoliubov-Mitropolskii (KBM) method [13, 31], and multiple time-scale method [50] 

was originally formulated to find periodic solution of second order nonlinear differential 

equations with small nonlinearities, 

-11 
I + = -s f(x,), s <<1 (2.1) 

Several authors extended these methods to investigate similar nonlinear differential 

equation with a strong linear damping effect, —2k , k = 0(1), modeled by the 

following equation 

I+2kx+.v2 x=—s f(x,±) (2.2) 

Popov [55] was familiar among them, who extended the KBM method and investigated 

the damped oscillatory case of equation (2.2). Owing to physical importance of this 

method, Mendelson [41] rediscovered the Popov's results. Murty el al. [47] have 

developed an asymptotic method based on the method of Bogoliubov to obtain the 

response of nonlinear over-damped system. Murty [48] also presented a unified method 

for solving equation (2.2). Such a unified solution is a general one and covers the three 

cases; 1. e., under-damped, undamped and over-damped cases. It is noted that, the 

unified solution represent the original KBM solution [13, 3 1 ] as the limit k - 0 + . 

Sattar [63] has found an asymptotic solution of a second order critically damped 

nonlinear system. Sattar [64] also studied third order over-damped system. Shamsul [80] 

investigated some special over-damped systems whose eigenvalues are in integral 
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multiple. Shamsul [77] also studied a third order critically damped nonlinear system 

whose unequal eigenvalues are in integral multiple. Shamsul and Sattar [66] have 

extended Bogoliubov's asymptotic method to a third order critically damped nonlinear 

system. Shamsul and Sattar [67] have also presented a unified method for obtaining 

approximate solutions of third order damped and over-damped oscillatory nonlinear 

systems based on the KBM method. 

Murty el al. [47] also extended the KBM method to solve fourth order over-damped 

nonlinear systems. But their method was too much complex and laborious. Ali Akbar et 

al. [2] again presented an asymptotic method for fourth order over-damped nonlinear 

systems which is simple and easier than the method presented by Murty ci' al. but the 

results obtained by Ali Akbar ci al. method is same as the results obtained by Murty el 

al. method. Later, Ali Akbar et al. [3] extended the method presented in [2] for fourth 

order damped oscillatory systems. Ali Akbar et al. [4] also presented a simple technique 

for obtaining certain over-damped solutions of an n-th order nonlinear differential 

equation. Rokibul ci al. [60] have extended the KBM method fourth order critically 

damped nonlinear systems. 

In this chapter, we have extended the KBM method for solving fourth order critically 

damped nonlinear differential systems which is different from the technique presented 

by Rokibul ci' al. [60]. The solutions obtained by the presented method show good 

coincidence with those obtained by numerical method. 

2.2 The method 

Let us consider the following fourth order weakly nonlinear ordinary differential 

equation 
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(2.3) 

where x represents the fourth derivative of x with respect to t, over dots are used for 

the first, second and third derivatives with respect to t; e is the small parameter; k1 , k2 , 

k35  k4  are constants, and f is the given nonlinear function. Since the system is 

critically damped, so the eigenvalues are real, negative and two of them are equal. 

Suppose the four eigenvalues are - A., —23 , - A.3  and - 24 , where two of the 

eigenvalues say - 13  and —22  are equal. When s = 0, the equation (2.3) becomes 

linear and the solution of the linear equation is 

x(t,0) = (a10  +t a20) e221  + a30 e' + a40 (2.4) 

where a1  0  (j = 1, 2, 3, 4) are constants of integration. 

Whens # 0, following Shamsul [75] a solution of the equation (2.3) is sought in the 

form 

x(I,$) = (a, (t) + t a2 (t))e"2(  + a3 (t) e' + a4 (t) e' + u1 (a1 ,a2 ,a3,a4  ,t) +... (2.5) 

where each a1 , (j = 1, 2, 3, 4) satisfy the first order differential equation 

a(t) = E A1 (a1 ,a2 ,a3 ,a4 ,t)+... (2.6) 

Confining to only a first few terms 1, 2, 3,.. .,n in the series expansion of (2.5) and 

(2.6), we evaluate the functions u., A, J = 1, 2, 3,. . . , n, such that 

a1(t), j = 1, 2, 3,... ,n, appearing in (2.5) and (2.6) satisfy the given differential 

equation (2.3) with an accuracy of order In order to determine these unknown 

functions it is customary in KBM method that the correction terms, u, must exclude 

terms (known as secular terms) which make them large. Theoretically, the solution can 
-I- 

be obtained up to the accuracy of any order of approximation. However, owing to the 
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rapidly growing algebraic complexity for the derivation of the formulae, the solution is 

in general confined to a lower order, usually the first (Murty et al. [47]). 

Now differentiating the equation (2.5) four times with respect t, substituting the value of 

x and the derivatives , 1, x, x in the original equation (2.3), utilizing the relation 

presented in (2.6) and finally equating the coefficients of 6, we obtain 

e22t(--_22 +2 -_22  ~24
) ( at

L+2A2 +1__") 
L91 at ) 

a 
)2 a  

+ e" - + 2 - + 2 JA3 

(2.7) 
at at 

+e t _24 +22)[_24 +2JA4  
at at 

+ + '12 

 ) ( a 

— + A3  ) ( a  + A4) u, =-f 0 (a1 ,a2 ,a3 ,a4 ,t) 
at at at 

wheref ° (a1 ,a2 ,a3 ,a4 ,t) = f(x0 ,±0101  YO ) 

andx0  = (a1  + a2  t)e + a3 e_t + a4  

Now, f can be expanded in a Taylor's series (Murty and Deekshatulu [46]) in the 

form 

(0) = F017 (a1 ,a2  ,a3,a4 )e 2223'24  

j, k I,m=0 

+(a1  +a2 t) Fi ,,,(ai ,a2 ,a3,a4 )e 22 '%3A4)1  
j,k,/,m=0 

2 
(2.8) 

+ (a1  + a2  t) F21,, (aj,a2,a3,a4 )e_(2+kA3+/ 1  
j,k,I,in-0 

+(a1  +a2 t)3 F3,n1(ai,a2,a3,a4)e_(i22+k23+I24)t +... 
j, k,/, m=0 

Substituting the value of j(0)  from equation (2.8) into equation (2.7), we obtain 
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) ( 
at at 

+t— I 
at ) 

+e23t(_23 +22)_ +24 JA3  +e'24 +JA4  
1"at at 

J(at :t +24
)

in 

e _(2+kA3+I ++22J - 
Fo,,n (ai,a2,a3,a4 ) 

j,k,!,=O (2.9) 

-(a1  +a2  0 F,,,(ai ,a2 ,a3,a4 )e JA24A344'24)t  
j, k,1,m=O 

-(a1  +a2 t)2 F2,(a1 ,a2 ,a3,a4 )e 2223 " )' 
j, k,1, m=O 

— (a1  +a2 t)3 OD  F,,,(ai ,a2 ,a3 ,a4 )e_ 22++4)(  
j, k ,I, rn=O 

Bogoliubov and Mitropolskii [13], Krylov and Bogoliubov [31], Sattar [63], Shamsul 

[69, 77, 81] Shamsul and Sattar[66] imposed the condition that u1  cannot contain the 

fundamental terms (the solution presented in equation (2.4) is called generating solution 

and its terms are called fundamental terms) of f(0). 1. e., the terms (a1  +t a2 )0  and 

(a1  +t a2 )'. Therefore equation (2.9) can be separated for the unknown functions u, 

and A1 , A2 , A3 , A4  in the following way: 

2'_,% +2
( at

-_22  +l4 J  aA  [-L+2A2  +t2 aA 

'Ir at 
e  

a') 
2 ( 

-),,  +e-- +22 J -23  +24JA3 +e'
(at

-4 + 

)2( 
+23JA4 

(2.10) at 

=- 

j,k,l.m=O 

— (as +a2 t) 
j, k,l,n,=O 

and 

4- 
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+ 

J2 (- + J(- 
'14)Ul  

=—(a1  +a2 1)2 (2.11) 
j,k,!,m=O 

— (a1  +a2 1) 3  
j, k ,I,rn=O 

Now, equating the coefficients of tO  and t' from both sides of the equation (2.10), we 

obtain 

e2

(  at
_ 

+JC22 
+24J 

VaA1  
_+2A2J 

+e

at  

231(_ 

+J2

( 

+J3 +e'C_24 +  112 

)2(a  

_24  +JA4 
(2.12) Lat 

= - Fom (ai ,a2 ,a3,a4 )e_(iA2+kA3+/)1  
j,k,I,n:=O 

— a 
j,k,l,rn=O 

and 

e21C-22 J[A2  +24 J 
at 

(2.13) 

= —a2 F1 ,(a1 ,a2 ,a3 ,a4 )e (2 '' 

j, k ,!, n,=O 

Solving equation (2.13), we obtain 

00 a2 Fi m (ai,a2  ,a3 
A2 = 

J,k,1,,n=O((j1) +k +124 )(22  +(k1) +124 )( j22  +k +(l_1)24) 
(2.14) 

Substituting the value of A2  from equation (2.14) into equation (2.12), we obtain 

23 
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'\3A1 
)2 ( a  

e21f_22 +23)(_22 +24J+e +24 JA3  

+e 4t(24  +22 J(_24  +23 )A4  

= - 

at 

Fo,,,, (ai,a2,a3,a4 )e_U22+k 23+/24)t (2.15) 
j, k, 1,m=O 

00 

- a1 > 171  F1  (a1 , a2 , a3 , a4) A2+k3+124): 

j,k,I,,n=O 

_2e2I
00 

a2 F,,,,(ai,a2,a3,a4)e__223A4)1 

j,k,1,,n=O ((i 1)22  + k23  +24 ) 

Now it is not easy to solve the equation (2.15) for the unknown functions A1 , A3  and 

Al A4 , if the nonlinear function f and the eigen values - 22, - 23 , - 24  of the linear 

equation of (2.3) are not specified. When these are specified the values of A1 , A3  and 

A4  can be found subject to the condition that the coefficient in the solution of A1 , A3  

and A4  do not become large (Ali Akbar et al. [4], Shamsul [78, 80, 82]). 

For this reason, we have considered that the relations 22  323  and 2, 223  + 224  

exist among the eigenvalues. These relations are important, since under these relations 

the coefficients in the solution of A1 , A3  and A4  do not become large. 

Equation (2.11) is a fourth order inhomogeneous linear differential equation. When the 

nonlinear function f is specified, we can find the particular solution of the equation 

(2.11) for the unknown function u1  by well-known operator method. 

Since a1 , a25  a35  a4  are proportional to the small parameters, so they are slowly 

varying functions of time i. Hence their rate of change are very small 1. e., they are 

almost constant. Therefore, it is plausible to replace a1 , a2 , a3 , a4  by their respective 

values obtained in the linear case (1. e. the values of a1 , a2 , a3)  a4  obtained when s = 0) 

in the right hand side of (2.6). This replacement was first made by Murty ci al. [47, 48] 



to solve similar type of nonlinear equations. Thus substituting the values of A1 , B1  

and C1  into the equation (2.6) and integrating, we obtain 

ai  = a o  +& JA1 (a 0,a20,a30,a4 
, 
t) dt 

0 

a, = a2 0  + s JA2  (a1 0 ,a2 0 ,a3  0,a4, 0'  t) dt 
0 

a3  = a3 0  + s JA3  (a1, 0 ,a2, 0 ,a3  0,a4 0'  1) dt 
0 

a4  = a4 0  + e JA4  (a1 0 ,a2  0, a3, 0,a4 
, 
t) dt 

0 

(2.16) 

Substituting the values of a1 , a2 , a3 , a4  and u in the equation (2.5), we shall get the 

complete solution of(2.3). 

Thus the determination of the first order approximate solution is completed. 

The method can be carried out for higher order nonlinear systems in the same 

way. 

2.3 Example 

As an example of the above method, we have considered the Duffing equation type 

41 nonlinear system 

x +k1 +k2 3+k3±+k4 x=—x 3 , (2.17) 

Here, f = x3  and x0  = (a1  + a2  1)e + a3  e" + a4  

Therefore, 

(0) = ae 3'' + 3 a a4 + 3 a3  a e 2'' + 

+3(a1 +a2 i)(a e 22 '+2a3 a4  e' +a e_2 4 1 ) (2.18) 

+3(a1  +a2 )2 (a3 e '  +a4  e 4'  )+e32' (a1 +a2 

4 Therefore, comparing the equation (2.8) and (2.18), we obtain 
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+124  F0  m(!i ,a2,a3,a4)e2+3)' 
j, k, 1, ,n=0 

= ae 3'  + 3a a4 + 3a3  a + 3 3 

F1 ,71(a1,a2,a3,a4)eA2+3')t 
j,kj,rn=0 (2.19) 

=3(a e 22'  +2a3 a4 +a e_21) 

F ,7(a1,a2,a3,a4)e( 223+'A4), = 3(a3 e )3 t  +a4 et) 
j,k,1,m=0 

=e 32'  
j,k,I,rn=O 

41 Therefore, equations (2.11)-(2.13) respectively become 

a 

)

2( a 

( + A4 )u, =_(a1+a2I)23(a3e3t +a4e4') 
(2.20) ôt )at 

—(a1 +a21)3e3'%21 

VaA1  
e 2 ( +J(-22  +24J+2 A2J 

at 

+ e-A31 
a 

)2 a  

-A4 (

+e'-24  +2) 24  +23 JA4 (2.21)
at  

= 
Wr _{ae3A3t +3a a4 +3a3  a e2'' +ae3'' }  

— 3a1  (a e2A31  +2a3a4 e23+A4)1  +a  e_2241) 

( at ) ( at ) at (2.22) 

= —3a2  (a e2A3t  +2a3  a4  e' +a e_241) 

Therefore, solving equation (2.22), we obtain 

A2  = q1  a2  ae 2'" +q2  a2  a3  a4 +q3  a2  a e 22 ', (2.23) 

where 
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q1  =3/223(22  +A3 )(23 +223 -24 ),  q2  =61(23 +23)(22  +24 )(23  +24 ), 

19,  

q3  =3/224 (22  +24 )(22  -23+224 ). 

Now substituting the value of A2  from equation (2.23) into equation (2.21), we obtain 

( 

a aA, +e 23t
( L91

_23+23J — 
at ) ( al ) at

(_23+24)A3
at 

+et(_24 ~23J2_24 
+23JA4 = _{aea 

( a 
3 _33t + 3 a3  a4  

at at 

+ 3a3  a e 2'' + ae3'' } - 3a1 {a e 22  +2a3  a4 (2.24) 4 4

+a e_2A 
t} 
 2e_2 

( at 
2tÔ 23 +23J_22 +24J{qia2ae_2A31 

+ q2  a2  a3  a4 e-(A3+24)t  +q3  a2  a e 2 "}. 

To separate the equation (2.24) for determining the unknown functions A1  A3  and A4 , 

we consider the most important relations 23 323  and 23 223 + 224  (Ali Akbar et 

al. [4], Shamsul [78, 80, 82]). exist among the eigenvalues and 23 =23 for critical 

damping. Under these conditions, we obtain 

e 't2hI... -22  +23)22 +24 
 aA  J- 
, at " at 

= _{ae 3k +3a1  a e'2+2'l3)'  +6a a3  a4 e223+')' 

+3a1a e _( 22+224)1}_{3a2a3 e_(23+22)t + 12 a2  a3  a4 e_2+23+t 
(2.25) 

23 (23+24 ) 

+ 3a
2  a e2t22)1 
24  

Al  I a 
2 ( a 

2 (A3+4 ) 3 
-23 + 22) -23  + 24 )A3  = -{3 a3  a e 22 ' + ae 3Ah 1 } (2.26) 

at at 

2 ( a  

 e241(_24 +22 ) -24  +23 )A4  = -3a a4 (2.27) 
at L91 

The particular solutions of equations (2.25)-(2.27) respectively become 
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A1 =p1ae 323"2)t  +p2a1ae 2'  

+ P3  a 1  a3  a4 + p4 a1a e 2  + p5 a2ae_2 3t (2.28) 

11 + P6  a 2  a3  a4  e' + Pi  a2  a e 22 ' 

A3  = r1  a3  a4  e 2'  +r2a (2.29) 

A4  = S1  a 2  a4  e 2'' (2.30) 

where 

p1 =1/223 (22  —323 )(24  —323 ), p2 =3/223(22 +23)(22 +223  24), 

p3 = 61(23 + 23)(22 + 24 )(23  + 24), P4 = 3/224(22  + 24)(/%2 23  + 224 ), 

p5_3/223(23+23)(23+2A324), P612/(22±23)(22±24)(23±24)' 

/37  =3/224 (23+24 )(23-23+224 ), = 3/(23  +24)(22  —23 _2%4)2, 

r2 =1/224(23_324)2, s1 =3/(23 +24 )(23-223-24 )2 , 

4 

The solution of the equation (2.20) is 

U 1 l a1  a3  e +1 2  a2  a3  e +1 3  a3  e 

+ a1  a3 a4
e 224)1(2 l I + 14 ) + a2  a3  a4e 2 ' (2 12  1+ 15 ) 

+a3 a4e(313 1+16 )+a1 a4 e(11 1 +17 1+18 ) 

+ a2a 2  e 23+2A4)t  (1212  + 19  t + l) + a3a e 32  (3 13 j2  + lt + 1 
12) 

+a e_3241  (131 +1131 2  +1 4t+l 5 ) 

where 

11  =-3/{224 (22  +224  -23)(23 +24)2), 

12 =_3/{224(23+224_23)(23+24)2}, 

13  =-1/{42(3%4  —22 )(324  

14  =
2

11 

2 1 
+ +—I 

(22  + 24) (22  + 224  -23) 224)' 

(2.31) 
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15  = + + 
2l[ 

2 1 i' 
—I, 

(23+24) (22+224 -22) 224 ) 

( 2 1 1" 
16  =3 13(32 —22)(324 2)2J 

17  = J

( 4 
+ + 

1 "l 
I 

2 

(22 +24 ) (22 +224 -23) 24 ) 

11 4 6 2 + + 
(22  + 24 ) (22  + 2) (22 + 224 - 

is  = Il  

+ 
2 

+ 
1 

 
24 (22  +24 ) 24 (22  +224  —23 

+- 
) 22 

4 1 

I 

19  = 
12 

+ 
+ 1 '•' 
-j 

I 

4 2 

(22+24) (22+ 224 -22) 24 ) 

4 6 2 + + 
(23 +24 ) (22+24 )2  (22+2222)2  

110 = '2 
2 1 1 + + +- 

24(22+ 24) 24(22+224 -22) 22 

lll=3131"+ 
2 

+ 2") 
24  (324 -22 ) (324 -22))' 

3 2 
+ + 

2 2 
22 24 (324 -22) 24 (324 -22) (324  _22 )2  

I2 =313 

+ 
2 2 

(324  23) 
+ 

(324  —22 )(324  -22) 

113 _131+ 
3 

+ 
3

\ 

24  (324 -22) (324 -22))' 

9 6 6 6 

22 24 (324 -22) 24 (324 -22) (324 _22 )2  
143 

+ 
6 

+ 
6 

(324  23) 2  (32 —2)(324 -22) 
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'IS 
= 13{ 3 + + 

9 6 
- + 
24  22 (324  —22) 22 (324 -22) 24 (324  22) 

If 6 6 6 6 
+ + + + 

24(324 _23 )2  (324  -22 ) (324 —22) (324  22)  (32 —23 ) 

+ 
6 

+ 
6 

(324  -22)(324 2)2  24 (324  -22 )(324  —23 ) 

Substituting the values of A1 , A2 , A3  and A4  from equation (2.23), (2.28)-(2.30) into 

(2. 6), we obtain 

61 = s{piae 3'32)' + Pi a1 a e 22'  

+ P3 a1  a3 a4 + O4  a1a4 e2' 1 + p5  a2a3 2 e-2)t 

+P6 a2a3 a4 e 3+A4)/ + p7a2  a e 2' }, 
(2.32) 

62 = e{q1a2ae 223I + q2 a2 a3 a4 + q3 a2 a e 2' ' }, 

63 = s{r1 a3 a4 e 2'  +r2ae
323)1 

 

a4  = ss1 a a4 e 2'1 . 

Since 61 , a21  â, 64  are proportional to the small parameters, so they are slowly 

varying functions of time t. Hence they are almost constant; therefore we can solve 

equation (2.32) by assuming a1 , a2 , a3  and a4  are constants (Murty and Deekshatulu 

[46], Murty et al. [47]) in the right hand sides of (2.32). Thus the solutions of equation 

V. (2.32) is 
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1 - e 33 '%2 '' 1— e_2A31 
+e{p1a0 32 

23 
+p2a10a30 

223 

1_ e_2 A4 1  
+ + P3 a1, 0  a 0  a40 

23 
4  a1  

+24 
0  a 0

224 

2 1 e 3 1— 
+ p5  a2  , 0  a3, 0 22 + P6 a2 ,0  a3, 0  a4, 0 

3 + 24  
(2.33) 

2 1—e4 
+ P7 a2 0  a4 0 224 

2 1—e22' 
a2  = a2,0  +e{q1 a20 a30 +q2 a20 a30 a40  

223 23+24  

1 - e -2A41 
+q3a20a0 

324-23 

1_ e_2 t 1e 22" 
a3  = a30  + s { a30  a 0 + r2  a 0  

224 224  

1—e 2  
a4  = a40  + cs1  a 0  a40  

223 

Therefore, we obtain the first approximate solution of the equation (2.17) is 

x(t,e) = (a1  + a2  t)e' + a3  e' + a4  e' + Cu1 (2.34) 

where a1 , a2 , a3 , a4  are given by the equation (2.33) and u is given by the equation 

(2.31). 

-I 
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2.4 Results and Discussion 

In order to test the accuracy of an approximate solution obtained by a certain 

perturbation method, we sometimes compare the approximate solution to the numerical 

solution. With regard to such a comparison concerning the presented asymptotic 

solution obtained by the KBM method of this chapter, we refer the works of Murty et al 

[47]. 

For the imposed conditions A2 323, 22  2% +224  and 2 = 2, in this chapter we 

have computed x(t, e) by equation (2.34) in which a1 , a2 , a3, a4  are evaluated by the 

equation (2.33) and u1  is evaluated by the equation (2.31) for different sets of initial 

conditions and for various values of t. A second solution of (2.17) is computed by 

fourth order Runge-Kutta method, and compared with the approximate analytical 

solutions. The approximate analytic solutions and numerical solutions are plotted in the 

figures (From Fig. 2.1 to Fig. 2.5). From figures we see that our approximate analytical 

solutions show good coincidence with numerical solutions. 

A 
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Fig. 2.1: Analytic solution in solid line - and solution by a fourth order Runge-Kutta 
method in dashed line - - -. 
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0.4 

0.2 
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-41 

a1  =0.25 

Fig. 2.2: Analytic solution in solid line - and solution by a fourth order Runge-Kutta 
method in dashed line - - -. 
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14,  
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c0.4 

0.2 

a1  = 0.25 
a2  = 0.25 
a3  = 0.25 

a4  = 0.25 
A1  =22  =2.25 
23  = 0.70 

2.4  = 0.35 
= 0.5 

2 4 5 

Fig. 2.3: Analytic solution in solid line - and solution by a fourth order Runge-Kutta 
method in dashed line - - -. 
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1.2 

0.4 
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a1  =0.5 

EA- 

Fig. 2.4: Analytic solution in solid line - and solution by a fourth order Runge-Kutta 
method in dashed line - - 
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Fig. 2.5: : Analytic solution in solid line - and solution by a fourth order Runge-Kutta 
method in dashed line - - 
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2.5 Conclusion 

4.- The Kry1ovBogo1iubov-M1trOPOlSk11 method has been extended to solve fourth order 

critically damped nonlinear systems under some special conditions. The method is 

important when the relations 22 3 A3, A2 223  + 224  and A1  = A2  exist among the 

eigenvalues. The solutions obtained by this method show good agreement with those 

obtained by numerical method. 

3fl') J 
J1 

A 
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Chapter 3 

Asymptotic Solutions of Fourth Order More Critically Damped Nonlinear 

Systems Under Some Special Conditions 

3.1 Introduction 

Krylov-Bogoliubov-Mitropolskii (KBM) [13, 31] method is a widely used tool to study 

nonlinear differential systems with small nonlinearities. Originally, the method was 

developed for obtaining periodic solutions of second order nonlinear systems with small 

nonlinearities. Later, the method has been extended by Popov [55] to damped oscillatory 

nonlinear systems. Owing to physical importance of damped oscillatory nonlinear systems, 

Mendelson [41] rediscovered the Popov's results. Murty et al. [47] also extended the KBM 

method for obtaining second and fourth order over-damped nonlinear systems. Sattar [63] has 

found an asymptotic solution of a second order critically damped nonlinear systems. Shamsul 

[69] presented a new asymptotic technique for second order over-damped and critically 

damped nonlinear systems. Shamsul [68] has generalized the KBM asymptotic method. 

Sattar [64] also studied third order over-damped nonlinear systems. Shamsul [77] studied a 

third order critically damped nonlinear systems whose unequal eigenvalues are in integral 

multiple. Shamsul and Sattar [66] have extended the Bogoliubov's asymptotic method to a 

third order critically damped nonlinear systems. Shamsul and Sattar [67] also presented a 

unified KBM method for obtaining the approximate solutions of third order damped, 

undamped and over-damped systems. Rokibul et al. [59] developed a new technique for 

solving third order critically damped nonlinear systems. 
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Murty ci al. [47] has also extended the KBM method to solve fourth order over-damped 

nonlinear systems. But their method is too much complex and laborious. On the other hand 

Ali Akbar ci al. [2] have found an asymptotic solution of fourth order over-damped nonlinear 

systems which is simple and easier than the method presented by Murty el al. [47] but the 

results obtained by [2] is same as the results obtained by [47]. Later, Ali Akbar ci al. [3] 

extended the method presented in [2] to damped oscillatory nonlinear systems. Ali Akbar ci 

al. [4] have also presented a simple technique for obtaining certain over-damped solutions of 

an n-th order nonlinear differential equation. Rokibul ci al. [60] have presented a technique 

for obtaining the solutions of fourth order critically damped nonlinear systems. 

In the present chapter, a fourth order more critically damped nonlinear system is considered 

and an asymptotic solution is found by extending the KBM method. The results obtained by 

the presented method agree with those obtained by numerical method nicely. 

3.2 The method 

Consider a fourth order weakly nonlinear system governed by the ordinary differential 

equation 

+ k1 I + k 21 + k3  + k4 x = —s f(x,,I,) (3.1) 

where x denote the fourth derivative of x with respect to i, and over dots are used to denote 

first, second and third derivatives; k1 , k2 , k3 , k4  are constants, s is the small parameter 

and f(x,,,I) is the given nonlinear function. As the equation is fourth order, so, 

we shall get four real negative eigenvalues, where three of the eigenvalues are equal 

because the system is critically damped. Suppose the eigenvalues are—A.1 ,—,%2 ,—A,-24  

and since the system is more critically damped, so we assume that = 22  =k 3 • 
.01 

When s = 0, the equation (3.1) becomes linear and the solution of the corresponding 



linear equation is 

x(t,O) = (a 1  + a 2  t + a3 t2)e_A  + a 4  e -A4 s (3.2) 
-q 

where a, j = 1, 2, 3, 4 are constants of integration. 

Whens # 0, following Shamsul [75], a solution of the equation (3.1) is sought in the form 

x(t,e) = (a, (1) + a2 (t) t + a3 (t) t2 ) e + a4 (t) + c u1 (a1 ,a2 ,a3 ,a4  ,t) +... (3.3) 

where each a (I), j = 1, 2, 3, 4 are functions of I and satisfy the first order differential 

equation 

a(I) = sA(a1 ,a2,a3 ,a4 ,t)+... (3.4) 

Confining to only a first few terms 1, 2, 3, ...,n in the series expansion of (3.3) and (3.4), we 

evaluate the functions u,, A, j = 1, 2, 3,..., n, such that a (t), j = 1, 2, 3,..., n, appearing 

in (3.3) and (3.4) satisfy the given differential equation (3.1) with an accuracy of order e" 

In order to determine these unknown functions it is customary in KBM method that the 

correction terms, u must exclude terms (known as secular terms) which make them large. 

Theoretically, the solution can be obtained up to the accuracy of any order of approximation. 

1-lowever, owing to the rapidly growing algebraic complexity for the derivation of the 

formulae, the solution is in general confined to a lower order, usually the first (Murty et al. 

Now differentiating the equation (3.3) four times with respect t, substituting the value of x 

and the derivatives ±, 1, 1, x in the original equation (3. 1), utilizing the relation presented 

in (3.4) and finally equating the coefficients of s, we obtain 

— 1 e'---23+2 
154 

+3L+6A3+t[3 
+ 6 

SA 
 + - 

252A31 

at at) 2 

(3.5) 

A4 

(

+e'- 4 A4  +
( at

+23 J (+24 )ui  =—f ° (a1 ,a2 ,a3 ,a4 ,t)
at  
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where f ° (a1 ,a2 ,a3 ,a4 ,1)=f(x0 , 0 ,I0 , 3 ) 

and x0  = (a1 (i) + a2 (0 I + a3(1) 12)  e" + a4 (t) 

Now, f(0)  can be expanded in a Taylor's series (Murty and Deekshatulu [46]) of the form 

= Fok  (a ,a2 +I E FI.k (al,a2 ,a3,a4 
i,j,k=O i,j ,k=O 

(3.6) 
0 

+ t 2 F2k(aI,a,,a3,a4)e 123+124)1
+t3 

F3k(al,a2,a3,a4)e 
 

i,j,k=O :,j,k=O 

Substituting the value of f from equation (3.6) into equation (3.5), we obtain 

___ 

(  

+tl
Ô2A 

 +6 e--23  +24) 
{a1t +3L+6 A3 2 2 

 J 

+e4'(24  +A) A4 + 23 L  + /14 ) U I 

(3.7) 
0 

= - F k (aJ ,a2 ,a3 ,a4 )e 
i,j,k=O i,j,kO 

00 
CO 

2 —t F3k (aI ,a2 ,a3,a4 )e 
i,j,k=O i,j,k=O 

According to KBM [13, 31], Sattar [63] and Shamsul [66, 69, 77, 81], u1  does not contain the 

fundamental terms (the solution presented in equation (3.2) is called generating solution and 

its terms are called fundamental terms) off ° . Therefore equation (3.7) can be separated in 

the following way: 

____ 

 

+1 
(a2 A aAa2 A1 

e"
( at

-23 +24) 
{o 
all +3+6 A3 2 ôt J all  

+ 
A4 

4 + A3 
( 

A4 =- 

3 

i,j,k=O 

(3.8) 

03 

- F I  (a1 ,a2  ,a3 ,a4 )e _12 (a1  ,a2  

i,j,k=O i,j,k=O 

Ar 
and 

42 



- — = -t 3 F3  (a1,a2 ,a3,a4 )etA3 24 )1 (39) + 24 )   
:,j ,k=0 

-r 

Now equating the coefficients of t, 1  and t 2  from both sides of the equation (3.8), we 

obtain 

3 + 
a2 A 

—2 2 
J 

= 
- F2k (al ,a2 ,a3,a4 )e (3.10) 

i 
4 

,j,k=0 

e A3 +2 (~~ +6i=_ Flk (al ,a2 ,a3 ,a4 )e (3.11) 4) 
I) i,j,k=0 

e2I_23+2 (a2 A
, 
 + 3 aA2  + 6 A3 ) 4 J2 at 

3 

+ 
( at 

24  + 23) A4  - 
i j ,k =0 

Solving equation (3.10), we obtain 

A3  = 

F2 (ai,a2,a3,a4 )e_t_1 / 1  
(3.13) 

,,((i—i)23 +j24 )2  (i23 +(j-1) 24 ) 

Substituting the value of A3  from equation (3.13) into equation (3.11), and integrating, we 

obtain 

oo 

A2  = 6 
F2k  (a1 ,a2,a3,a4 )e 3 1 2 +JA4)1 

:.j,k=O (i—i) 23 + j 24)2  ( + (f — i) 24)2 

00 F1 k  (a1 ,a2 ,a3 ,a4 ) e 22 ' 

i, j k=0 ((i - 1)23 + j 24)2(23 + (f—i)24 ) 

(3.14) 

Now, substituting the value of A3  from equation (3.13) and the value of A2  from the equation 

(3.14) into the equation (3.12), we obtain 
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- A4  + 
3 

 - ___ e '  --  

21+14 J 
A4IIa A4  

at 

a F2  (a1  ,a2 1 613  ,a4 )e 

at 

+24  1 = —6e —23 
)ijO ((i—I) A3 + i A4 

)2  ( 23  + (f — I) 24 ) 

- 3e_ 2 ( 23  + 24 
F2  (a1 ,a2,ai,a4)e1224)t 

at at ,,,kO((il) +j24 )2  (123  +(j-1) 24)2 

- 1,k(aI ,a2 ,
a

3,
a

4
)e 4 F0 (a ,a2 ,a3,a4)etAJ4 

i.j.k=O i,j,k=O 

(3.15) 

Now, we have a single equation (3.15) for obtaining two unknown functions A1 , and A4 . So, 

we need to impose some restrictions to split the equation (3.15) for determining the unknown 

functions A. and A4  (Shamsul [77, 78, 80, 82]). In this chapter, we have imposed the 

restriction that, if 1 ~! f the term e ' balance with A. or if j > I the term 

balance with A4 , when , > 24 . For the sake of definiteness of the eigenvalues, it 

is possible to have the relation 23  > 24  between them. This restriction is important, since 

under this restriction the coefficients of A1 , and A4  do not become large (the principle of the 

KBM method is that the coefficients of A1 , A2, A3  and A4  must be small) as well as the 

unknown functions A, and A4  can be determined very quickly. This restriction has another 

importance, that, the solution is also useful in the case of more critically (when three 

eigenvalues are equal) damped systems. This restriction is not used in previous papers [2, 59, 

60, 63, 69, 78, 80, 82, 83]. 

The values of A1 , A2, A3  and A4  will be obtained in terms of a1 , a2 , a3 , a4  and I; and since 

63 5 a4  are proportional to the small parameters, so they are slowly varying functions 

of time t. Hence their rates of change are very small i.e. they are almost constant. Therefore, 

Ir 
it is plausible to replace a,  a2 , a3  and a4  by their respective values obtained in the linear 

case (1. e. the values of ai,  a2 , a3  and a4  obtained whene = 0) in the right hand side of(3.4). 
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This replacement was first made by Murty ci al. [47] to solve similar type nonlinear 

equations. Thus, by substituting the values of A1 , A2 , A3  and A4  into equation (3.4) and 

integrating we will get the values of ai,  a2 , a3  and a4 . 

Equation (3.9) is a non-homogeneous linear differential equation, so it can be solved for u1  

by well known operator method. 

Substituting the values of a1 , a2 , a3 , a4  and u1  in equation (3.3), we shall get the complete 

solution of(3.1). 

Thus the determination of the first order approximate solution is completed. The 

method can be carried out for higher order nonlinear systems in the same way. 

3.3 Example 

As an example of the above method, we have considered the Duffing equation type nonlinear 

system 

x +k1 +k25+k3 +k4 x=—Ex 3 , (3.16) 

Here, f = x 3  and x0  = (al  (1) + a2  (1) t + a1  (1) 2)  e" + a4  (1) e 2 ' 

Therefore, 

f = ae 3 '' + 3 a1 a4 + 3 a1  a e' 22 ' + ae 3  

+ t (aa2 e_3A31  + 6a1  a2  a4 c2 A4)t + 3a2 ae224)1) 

+ 12(3  a1  a 
2

e

-3) + 3 aa3  e 3 + 3 aa4  e 2 ' + 6 a1  a3  a4  e 22' ' (3.17) 

+3a3  a -(A,+224):  )+ i(a e 3 + 6a1  a, a3  e 3 + 6a, a3 a4 e24h1) e 

+ t(3 a 2 a e 3 ' + 3 a1  a e 3 ' + 3 a a3 3 4 )+ 315a2  a e 3 ' + t 6a e 32' I  

Comparing equations (3.6) and (3.17), we obtain 

Fok  (a1  ,a2  

z,j,k=O (3.18) 

= ae 3''  + 3aa4 + 3a1  a e 2' 22'  + ae_3A4 I 
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oo 
F'i  (a1  ,a2  ,a33 a4  

,j,k=0 (3.19) 

- = 3 aa2  e 3 ' + 6a1  a2  a4  e2 24)1  + 3a2  ae 22 ' 

2 = 3a1  a2 e-3A i +3aa3  e 32 ' 
:.j,k=0 (3.20) 

+ 3aa4 + 6a1  a3  a4 + 3a3  

(?23+J)4 )t 3 -323 1 
oo 

lk(al,a2,a33a4)e = a2  e +6a1  a2  a3  e 32  +6a2  a3  a4 (3.21) 
:.j,k=0 

2 —323 1 
F4k(al,a2,a33a4)e = 3a2  a3  e +3a1  a 3' e' + 3 a a4 e (3.22) 

j ,k =0 

- 

F5 (a1  ,a2 = 3a2  a 2 e 32' ' (3.23) 
s,j,k=0 

00 

F6k(al,a2,a3,a4)e = a 3 e 32' (3.24) 
i,j,k=0 

Therefore, equations (3.9)-(3.12) respectively become 

3 
a 

 ( at 3 ) 
- I—+2 4 Ju1  = —{t 3 (a e 32  +6a1  a2  a3  e 32  +6a2  a3  a4 

(3.25) 

+t 4 (3a a3  e 32'  +3a1  a e 3'1"  +3 a a3 3 4 a2  a e 32" +t6a e 32''} 

Ô2A3 
- {3aa e +3aa3 e 2 3" 2 "  

-4K 

e 
( at 

+ A4
J ôt2  -- (3.26) 

+ 3aa4  e 222'  + 6a1  a3  a4  e 22 ' + 3a3 } 

e 23 ' _2 
(a2 

+6-'3 
+24J 

A 

at at J (3.27) 

= —{3aa2  e 3'  + 6a1  a2  a4 + 3a2  a4 e } 

J 
(-)3 

2

+3+6 A3+e 241_24  +23) A4
(3.28) 

e 1

( at

_23 +24 2 

= —{ae 3'  + 3 aa + 3a1  a e 2322'  + ae32 } 

FA 

Therefore, solving equation (3.26), we obtain 
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A3  = i (a, a' + aa3)e 22"  + r2 (a a4  + 2a1  a3  a1 )e 2' 2  + r3  a3  a e 22 ', (3.29) 

where 
fr 

r1  =3/42.(323  —24 ), r2  =3/223(23 +24 )2 , 113  =-3/42(23  +24 ). 

Now substituting the value of A3  from equation (3.29) into equation (3.27), we obtain 

e-A'I a — 
A3 + A4 ) 

( 

a2 A2  
=-623 (323 —24 )r(a1 a " +aa3 )e 3" 

at or 2  

—623  (23  + 24 ) r2  (a a4  + 2 a1  a3  a4 ) —6 2 (23  + 24 ) r3  a3  a 32 
t (3.30) 

- {3aa2  e 32'' + 6a1  a2  a4 + 3a2 ae_ +214)1 
} 

Now, integrating equation (3.30), we obtain 

A2  = q1  (a1  a 2 + aa3 )e 2 " + q2  (a a4  + 2 a1  a3  a4)e -(2+2)s 
 + q3  a3  a e 32" 

(3.31) 
-22 2 -224 1 

+q4  a,2  a2  e +q5 a, a2  a4  e 2° 2 ' +q6 a2  a4 e 

where 

q1 =9/42(323 —%4 ), q 2  =9/23(23 +24), q3 =9/42(23+24 ), 

q 5 =3/23 (23+24 )2 , q6 =3/42(23+24 ). 

Now substituting the value of A3  from equation (3.29), and the value A2  from equation 

(3.31) into equation (3.28), we obtain 

e_1h I 23 
+24) 

Al +e_14t ( _2 
at 0 2 Ot 

4  +23 J A4  

= 3 —2 + 24 J{qi(aia + aa3 )e 21  2 -3
' +q2 (a a4  + 2a1  a3  a4 )e 2' 2  

at at 

+ q3  a1  a 2  e 22 ' + q4  aa2 q e 21 ' + 5  a1  a2  a4  e 
14)1 + q6  a2  ae 21  } (3.32) 

_6e2(_23 +24 ){ri (ai a +aa3 )e 2 ' +r2 (a a4  +2a1  a3  

I- 
+ , a3  a e -21 1 

} - {ae 3'" + 3aa4 e_(2A44)t  + 3a1  a e 22 ' + ae 32 ' } 
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To separate the equation (3.32) for determining the unknown functions A1  and A4 , we have 

impose the restriction that, if i ~! j; the term e A3 J  '14 ) 1 balance with A1 , or if j > i the 

term e )+jA4)i balance with A4 , when 23 > 24 . Under these restrictions, we obtain 

- (

e 2 _2 +24) 
2 

a2AI  =-6 q1  23(323 —24 )(a1 a +aa3 )e 3 " 

—6 q2  21(23 +24)(a 2  a4  +2a1  a3  a4 )e 2 ' 2 ' —6 q4  23 (323  —24 ) aa2  e3' (333) 

—6 q5  23 (23  + 24 ) a1  a2  a4 + 6 ri (323  24 ) (a1a 2 + aa3  ) e 3" 

+12 r2  23 (a a4  + 2a1  a3  a4)e2 _ae_3A3I —3aa4 

and 

3 

e24I(_24 +23 ) A4  =-6 q3  24  (23 +24 ) a3 a 

—6 q6  24 (23  +24 )a2  ae 22' 4 ' —6 r3  (23  +24 ) a3  a (3.34) 

- {3 a a 2  e 21.4 ) 1 + ae32' } 

The particular solutions of equations (3.33)-(3.34) respectively become 

A1 = p1  (aa + aa3 )e 22 ' + p2  (a a4  + 2a1  a3  a4 )e 

+p3 a a 2 e
-2A, t + p4  a a2  a4  e 21f24)1  + p5  (a1 a + aa 2'1" 3 )e (335) 

+24 + p6  (a a4  + 2a1  a3  a4 + p7 ae_2A3t + p8  aa4  e'' 

A4  = s1  a3  a4  e + s2  a2  a4 e +s3  a3  a e 2 ' 
(3.36) 

+s4  a1  a e'' +s5 ae_ 2 A4 I  

where 

p1 =2718234 (323-24 ), p2 =27/23(23 +24 ) 4 , p3 =9/2(323 -24 ), 

p4  =9/2.,()., +24), p5  =-9/82(323 —24 ), p6  =-18/2(%3  +24 ), 

p7  = 1/82 (323-24 ), p8 =1/223 (23 +24), s1  =-27/22(2., —324), 

F- 
s2  =9/162, s3  =-9/162, s4  =3/8 2, s5  =-1/(23 —324 ). 
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The solution of the equation (3.25) is 

u1 = 11 a1 a e '2'  + 12  a2 a e 2'' '  +13  a e 3'  

+ a 1  a 3  a4 e '2'  (2 it + 14 ) + a 2  a 3  a 4e 2'  (2 12! + 15 ) 

and + a a4e Ai-22)1  (313  t + i) + aa e A1+223 (l t2  + 17  1 + 18) 

+ a2a (12  t + 19! + 110  + a3a e 3 ' (31312  + i,t + 112 ) 

+ a e3 Al  '(l3  t 3  + 1 3t + it + i14 ) 

where 

(3.37) 

1 =-3/{223(2 +223 —22)(,1 23)2}  12  =-3/{223 (22  +223-23(23 23)2} 

13  =-1/{4A(3%3  —23(323  —22 )}, 14  = 
2
1 + 

1 + 1 ' I 
(Al_ _ (21 +23 ) (23+223 -23) 223)' 

i = 
2
1 + + 

1 
 I,i6  = 13 (_

2 1 
+ + 

[ 

2 1 1 ' 

' (22+23) (23+223-21) 223) (323 -21) (323-22) 2J 

17 =
' 4 2 

+ + 1 ' —I 
(21 +23 ) (21 +223 -22 ) 23 )' 

4 
+ + 

6 2 
(Al  +23 ) (21+23)2  (21+22323)2  

/8 1I  
2 1 

+ + 
23(21+ 23) 23(21+ 223 -23) 22 

19 
__ 

2 1" 
= 

l2 ( 

4 
+ + 

(23+23) (22 +223 -21) 

4 6 2 
+ + 

(23+23) (2+2 (2 + 22323)2  
10 

2 1 
+ + 

23(22  + 23) 23(22  + 223 - 2) 22 

I 'II = 
3i3[ + 

+ 
2 2 

(323 -21) (323 -22))'  
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3 2 
+ + 

2 2 
22 23(323—A1) 23(32322) 

(323)2 

112  = 3 13  
Ir 2 2 

+ + 
(323 23)2  (323  —2)(323 -22 ) 

(3 3 3 
1 =13  li — + + 

23 (323-2,) (323-22 ) 

9 6 6 6 
+ + 

2232 23(323—A1) 23(323-22)  (323 23)2 

143 

+ 
6 

+ 
6 

(323  _22 )2  (323 -2,)(3/%3  —22 ) 

3 9 9 6 
115  = 13{ 

+ 2232(323 -2,) + 22 (323 -22 ) + 23(323  - 23)2 

6 6 6 6 
+ 23 (323 _22 )2  + 23)3 + (323  -22 ) + (323 23)2 (32322 ) 

+ 
6 6 

(323  —2,)(323  _22)2 +  23(323 —2,)(323  

Substituting the values of A,, A2, A3  and A4  from equations (3.35), (3.31), (3.29) and (3.36) 

into (3.4), we obtain 

- = 8 {p, (a1 a + a,a3)e 22"  + p2  (a a4  + 2a, a3  a4  )e 

+p3  a1 a2  e 2' 3 ' + p4  a1  a2  a4  e' +p5 (a1 a 2 +a,a3 )e 2 ' 

+ p6  (a a4  + 2a, a3  a4)e +A4)i  + p7  a,e 2 ' '  + p8  a,a4 ef24)t}, 

a2  =e{q,(a,a -i-aa3 )e 22 ' +q2(aa4  +2a1 a3 a4)e' 
(3.38) 

+ q3  a3  a 2 e "'  + q4  aa2  e 2' + q5  a1  a2  a4 + q6  a2  a 4e 2 -224 1 
, 

a3  = s{r,(a,a + aa3 )e 2'  + r2 (a a4  + 2a1  a3  a4 )e 2'  + r3  a3 a 22 '} 

64  = E5 a3  a e 22'  + s2  a2  ae'2 
t) 
 +s3  a3  a 

+54  a1  a +S ae_2241}. 
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Since a1 , a2 , a3 , a4  are proportional to the small parameter E, so they are slowly varying 

functions of time t. Therefore, we can solve equation (3.38) by assuming a1 , a2 , a3  and a4  
-01 

are constants in the right hand sides of (3.38). This assumption was first made by Murty etal. 

[46, 47]. Thus the solutions of equation (3.38) are 

1 - e A1+A4)t 1— e_2231 
a1  = a10  + {Pi (a10  a 0  + a0a30) 223 + p2  (a 0  a40  + 2 a0  a30  a40) 

23 + 

2 1 - e 22-' ' I - e 22 1 - e 22 ' 
+ p3  a10  a70 + p4  a10  a20  a40 + p5  (a10  a 0  + a 0a30 ) 

223 23 +24 223  

' 
e 1 - e 22  ' 1 - e 2 ' 2 ' 

+ p6  (a 0  a40  + 2 ai0  a30  a40 ) + p7  a 0 + p8  a 0  a40  
23 +24 223 23+24 } 

a2 a20  + s {qi  (a10  a 0  + a 0  a3,0 ) + q2  (a40  a 0  + 2 alO  a30a40 
)1_— 

223 23+24  

1—e 32 ' 1—e 22 ' 
+ q3  a30  a 0 + q4  a 0  a20 + q5  a 0  a20a40 (3.39) 

324 223 23 +24  

2 1 - e_ 224t 

} 
+ q6a20a40 

224 
 

i - 
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+ r2  (a 0  a40  + 2 a10  a30  a4,0 ) 
- C 1 - e 

(23+24) 
+r3a30a0 

 224 

1e 22 ' 1e _3+A4 ) 1 - 
+ s2  a20  a 0 + s3  a30  a 0  a4=e{sia3oao 

224 23+24 23+24  

1e ' 1 - -2)41  
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2' 
+s4  a10  a +s a40 

}. 23 +24 224  

Therefore, we obtain the first approximate solution of the equation (3.16) as 

x(t,e) = (a +a2  t+a3t 2 )e' +a4  e' +eu1 (3.40) 

FAV 

where a1 , a2 , a3 , a4  are given by the equations (3.39) and u1  is given by the equation (3.37). 
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3.4 Results and Discussion 

In order to test the accuracy of an approximate solution obtained by a certain perturbation 

method, we sometimes compare the approximate solution to the numerical solution. With 

regard to such a comparison concerning the presented asymptotic solution obtained by the 

KBM method of this chapter, we refer the works of Murty et a! [47]. 

We have computed x(t,e) by equation (3.40) in which a1 , a2 , a3 , a4  are evaluated by the 

equation (3.39) and u1  is evaluated by the equation (3.37) with different sets of initial 

conditions and for various t. The approximate analytic solutions and numerical solutions are 

plotted in the figures (From Fig. 3.1 to Fig. 3.5). From figures we see that our approximate 

analytical solutions show good coincidence with numerical solutions. 

k 
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Fig. 3.1: Analytic solution in solid line - and solution by a fourth order Runge-Kutta method 
in dashed line - - -. 
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Fig. 3.2 Analytic solution in solid line - and solution by a fourth order Runge-Kutta method 
in dashed line - - -. 
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EA 

Fig. 3.3: Analytic solution in solid line - and solution by a fourth order Runge-Kutta method 
in dashed line - - -. 

56 



I .L 

ic0.8 

1.2 

0.4 

1 2 3 4 5 6 
t I,v 

pi; 

0 
0 

I - 

Fig. 3.4: Analytic solution in solid line - and solution by a fourth order Runge-Kutta method 
in dashed line - - -. 
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Fig. 3.5: Analytic solution in solid line - and solution by a fourth order Runge-Kutta method 
in dashed line - - -. 
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3.5 Conclusion 

The Krylov-Bogoliubov-Mitropolskii method has been extended for solving fourth order 

more critically damped nonlinear systems. For different sets of damping forces as well as for 

different sets of initial conditions, the solutions obtained by the present method coincidence 

with those obtained by numerical method nicely. The solutions are also useful for strongly 

more critically damped nonlinear systems. 
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