
STUDY OF HYBRID EVOLUTIONARY COMPUTATION

TECHNIQUES FOR SOLVING LARGE SET OF LINEAR

EQUATIONS AND PARTIAL DIFFERENTIAL EQUATIONS

C. M. Moniruzzaman

Roll No. 0451505

KUFj

A thesis submitted for the partial fulfillment of the requirements for the degree of

Master of Philosophy in Mathematics

60

Khulna University of Engineering & Technology

Khulna 920300, Bangladesh.

October 2010

Approval
I

This is to certify that the thesis work submitted by G. M. Moniruzzaman entitled "Study of

hybrid Evolutionary Computation Techniques for Solving Large Set of Linea,- Equations

and Partial Dffereniial Equations" has been approved by the Board of Examiners for the

partial fulfillment of the requirements for the degree of Master of Philosophy in the

Department of Mathematics. Khulna University of Engineering & Technology, Khulna,

Bangladesh in October, 200.

BOARD OF EXAMINERS

Dr. Mohammad ArifFlossain
Professor
Department of Mathematics

Chairman
(Supervisor)

fl9Ff7

Khulna University of Engineering & Technology
Bangladesh. 2 KUEJ

Bangladesh

o!lt/

Head Member
Department of Mathematics
Khulna University of Engineering & Technology
Bangladesh.

PILO

Dr. Md. Baziar Rahanin
Professor Member
Department of Mathematics
Khulna University of Engineering & Technology
Bangladesh.

4
Dr. Md. Abul Kalam Azad
Professor Member
Department of Mathematics
Khu I na University of Engineering & Technology
Bangladesh.

5. WAam
Dr. Nurul Alam Khan

- o to
Professor
Department of Mathematics Member (External)
Jahangirnagar University
Savar, Dhaka
Bangladesh.

-4

I
*

Declaration

This is to certify that the thesis work entitled "Study of Hybrid Evolutionary Computation

Techniques for Solving Large Set of Linear Equations and Partial Differential Equations"

has been carried out by G. M. Moniruzzaman in the Department of Mathematics, Khulna

University of Engineering & Technology, Khulna, Bangladesh. The above thesis work or

any part of this work has not been submitted anywhere for the award of any degree or

diploma.

.................. W.-t T
Mohammad Arif Hossain G. M. Moniruzzaman

Dedication

To my respectable Father and late Mother whose constant

guidance and inspiration helped me to choose the correct

path of life.

01

To my beloved wife, affectionate two daughters who directly

and indirectly inspire me for doing research works.

Fit

Acknowledgements

I wish to express my profound gratitude to my supervisor Dr. Mohanimad Arif Hossain,
Professor, Department of Mathematics, Khulna University of Engineering & Technology,
for his constant guidance and encouragement during my research work and for his valuable
suggestions, criticism and guidance throughout all phases of the research work. Dr.
Hossain has a lot of research experience in this area. He has been a great source of ideas,
knowledge and feedback for me.

I heartily express my gratefulness to Dr. Md. Baziar Rahman, Professor, Department of
Mathematics, Khulna University of Engineering & Technology. His valuable suggestion
throughout the entire period of research work helps me to complete my thesis.

I heartily express my gratefulness to Dr. A. R. M. Jalal Uddin Jamali, Associate Professor,
Department of Mathematics, Pintu Chandra Shill, Assistant Professor, Department of
Computer Science and Engineering who directly help me to develop Algorithm Design. Dr.
Jamali has a research experience in this area. He has been a great source of ideas,
knowledge and inspiration for my research work.

Md. Mizanur Rahman, Junior system Engineer, Md. Moududur Rahman Shamim, 4th Year
Student, bearing roll No.- 0607035, Department of Computer Science and Engineering,
Khulna University of Engineering & Technology, also help me in clinical or technical
works and algorithm development. 1 would like to thank Md. Zahidul Islam, Head
Assistant, Department of Electronics & Communications Engineering, for his timely helps
during my research period. I am also thankful to all members of the Department of
Mathematics for their assistance during my research work.

I am obliged to express my heartiest thanks to my wife, Kliadiza Akter, for her constant
inspiration and encouragement. Finally, I would like to express my sincere thanks to my
two daughters, Jannat Zaman and Tasneem Zaman, for their sacrilice of affection and love
what they should deserve, during my research period. I also like to offer greatest thanks to
my father-in-law, Kliondokar Md. Abu Taher.

iv

List of Publications

Jamali, A R Mi U, M. ArifHossain, G. M. Moniruzzaman and M. M. A. Hashem

(in press), "('rossover a Redundant Opera/or tbr Solving System (?ILinec!r

Lqucitions by Uniform Adaptive Hybrid Evolu/ionaiy Algol-ithIns Journal

of the Bangladesh Mathematical Society, Dhaka University.

Jamali, A R M J U, Mohammad ArifHossain, G. M. Moniruzzaman and M. M. A.

Hashem, "For Solving Linear Equations Recombination is a Needless

Operation in Time-Variant Adaptive Hybrid Algorithms ", The 8th

International Conference on Computer and information Technology

(ICCIT-05), Dhaka, Bangladesh, 28 - 30 December, 2005.

Jamali, A R M J U, M. ArifHossain, G. M. Moniruzzaman and M. M. A. Hashem,

For Solving Limmear Jqua/ions by linifbrm Adaptive Hybrid Lvolulionaiy

Algorithms Crossover a Superfluous Operator ", The 16th Mathematics

Conference of Bangladesh Mathematical Society, Dhaka, Bangladesh, 17-

19 December, 2009,

V

Contents I
Pages

Approval................................... 1

Declaration................................
Dedication............................... iii

Acknowledgement.............................. iv

List of Publications V

Contents.................................. Vi

Abstract.................................. VU

Chapter
Introduction 1

2 Some Classical Numerical approach to solve a set of linear equations

2.1 Introduction .. 5

2.2 Direct Methods 6

2.2. I Gauss Elimination Method 6

2.2.2 Crout Method 7

2.3 Iterative Methods .. 9

2.3. 1 Jacobi Method. 11

2.3.2 (iauss-Seidel Method 12

2.3.3 Successive Relaxation (SR) Technique 13

3 Partial Differential Equation 15

3.1 Introduction .. 15

3.2 Finite Difference Method 16

3.2.1 Liebmanifs Iterative Method 18

3.3 Examples.. 19

4 An Overview of Evolutionary Computations 25

4.1 Introduction... 25

4.2 Variants of Evolutionary A Igorithins................................. 26

4.3 Basic Mechanisms of Evolutionary Algorithms 27

4.3. 1 Time-Variant Mutation...................................... 29

4.3.2 Development of Ti me-Variant Adaptive Parameters 30

4.4 Modern Trends: Hybrid Algorithms 32

4.5 Properties of Evolutionary Algorithms 33

4.6 Merits and Demerits of Evolutionary Algorithms 35

4.6. I Merits... 35

4.6.2 Demerits.. 36

4.7 Some Hybrid Algorithms... 36

4.7. 1 Jacobi Based Uniform Adaptive Hybrid Algori(hm 37

4.7.2 Jacobi Based Time Variant Adaptive Hybrid Algorithm............ 40

4.7.3 Gauss-Seidel Based Time Variant Adaptive Hybrid Algorithm........ 41

vi

4.

+ 5 Evaluation of Uniform Adaptive Hybrid Evolutionary Algorithms for solving a 45

set of Linear Equations
5.1 Introduction...45

5.2 The Existing Uniform Adaptive Hybrid Evolutionary Algorithms...........46

5.3 Necessity of Crossover ...49

5.4 The Proposed Modified Hybrid Evolutionary Algorithms..................49

5.5 Concluding Remarks...53

6 Use of Hybrid Evolutionary Algorithms for solving Partial Differential 55

Equtions

6.1 Introduction 55

6.2 Solution of Laplace's Equation 55

6.3 Solution of Poissons Equation 58

Concluding Remarks 60

Reference 62

Bangladesh

)

vii

Abstract I
Hybrid Algorithms for solving set of linear equations are hybridization of evolutionary

techniques and classical methods for solving set of linear equations. The classical iterative

methods for solving set of linear equations are slow in terms of convergence and can be

made faster by introducing relaxation factor co (0 < co < 2). The process in very sensitive

to the relaxation factor and the estimation of its optimum value is very difficult. Adaptation

and selection mechanism of evolutionary computations serves the purpose of finding the

optimum value of the relaxation factor and then the solution come out. The four Hybrid

Evolutionary Algorithms (JBUA, GSBUA, JBTVA and GSBTVA) were in front of us.

Thorough study of the Uniform Adaptive Hybrid Evolutionary Algorithms JB[JA and

GSBUA showed that the crossover operation present in them are needless and thus we

have proposed two modified Algorithms MJBUA and MGSBUA. We have tested the

proposed MGSBUA separately for solving partial differential equations (especially in case

of Laplace's equation). The solution of the discretized form is compared with the analytical

one and the same set is also solved by the Gauss-Scidel method. It is found that our

proposed method is faster and better accuracy can be achieved. We also have solved a

sample Poisson's equation using our proposed algorithm. It is found that MJBUA and

MGSBUA hybrid algorithms are faster and memory effective than their original

counterparts.

viii

4 CHAPTER 1

Introduction

The Evolutionary Computation techniques are inspired by the natural process of evolution

[Hashem (1999)]. Selection and variation are the two basic principles in evolution and

when these principals are found in any computation technique then that can be termed as

Evolutionary computation technique. The algorithms which contain these strategies are

4 termed as Evolutionary Algorithms. The variations of Evolutionary Algorithms bring

differing philosophies of how to algorithmically abstract the model of natural evolution.

Due to difference in commitment to levels of abstraction distinct emphasis are given that

leads to a commitment to representations and philosophy of operators. Four main streams

of these general algorithms, developed independent of each other, come forward - (i)

Genetic Algorithms [Holland (1962), Back and Schwefel ((1993)], (ii) Evolutions

strategies [Rechenberg (1993), Back and Schwefel (1993) and Hashem (1999)], (iii)

Evolutionary Programming [Fogel et al. (1966), Back and Schwefel (1993)] and (iv)

Genetic Programming (GP) [Koza (1994) and Hashem (1999)] They have their own

capabilities to yield good approximate solutions of optimization problem. Different

algorithms emphasizes different features as being most important for a successful evolution

process. Evolutions strategies and Evolutionary programming concentrate on mutation as

the main search operator, while the rule of pure random mutation in Genetic Algorithms

and Genetic Programming is usually seen to be of secondary importance. Recombination

and probabilistic selection mechanisms have their own merits in different algorithms.

The inherent strength of Evolutionary Algorithms lies in the choice of the mutation steps

(Rechnberg (1994), Fogel (1995), Back et al. (1996)]. According to the biological evidence

Time Variant Mutation operator can improve the fine local tuning and can reduce the

disadvantage of uniform mutation (Michalewiez (1996), Back et al. (1997), Hashem

(1999)].

4.

4. The peculiarity of Evolutionary Computations is maintaining a set of points (called

population) that are searched in parallel. Each point (individual) is evaluated according to

the objective ftinction (fitness function). Further a set of genetic operators is given that

work on populations. They contribute to the two basic principles in evolution - se/cc/jo,,

and i tiritafion. Selection focuses the search for the "better" regions of the search space by

given individuals with "better" fitness values and higher probability to be member of the

next generations (loop iteration). On the other hand, variation operators create new points

in the search space. Here not only random changes (mutations) of particular point are

possible but also the random mixing of the information of two or more individuals

(crossover/ recombination) are possible [Back and Schwefel (1993), Schoenauer and

Michaleewicz (1997) and Back et al. (1997), Hashem (1999)]. Evolutionary Computations
.4

are often characterized as combining features from path-oriented methods and volume-

oriented methods. Evolutionary Computations combine these contrary features in so far

that in the beginning of the search the population is usually spread Out in the whole search

space, corresponding to a volume-oriented search. In the latter stages of the search

algorithm has focused few (or single) region due to selection and the selected region is

examined further. In this respect the algorithm behaves like a path—oriented search

[Hashem (1999)]. Another possible identification of these two stages of the search could be

the correspondence of the first stage to a global reliability strategy (coarse grin search) and

the second stage to a local refinement strategy (fine grin search) [Yuret (1994), Hashem

(1999)]. It is also observed that there are two important issues in the simulated search

process of natural evolution: population diversity (exploration) and selective pressure

(exploitation). These factors are strongly related - a strong selective pressure "supports"

the premature convergence of evolutionary search and a weak selective pressure can make

the search ineffective. Thus it is important to strike a balance between these two factors

[Hashem (1999), Michalewicz (1996), Blickle (1997)].

Large set of linear equations are very common in Engineering and other physical

applications. Though many classical methods are available for solving them yet rapidly

convergent and efficient methods are still of interest. Iterative methods are preferred to

solve them as computers can be utilized for solution purpose. The convergence of the

Jacobi and the Gauss-Seidel methods (both are iterative in nature) is slow. Their

convergence can be made faster by introducing successive relaxation technique. But the

+ speed depends on the relaxation factor and the technique is very much sensitive to that. The

optimum value of the relaxation factor is difficult to estimate. In hybrid algorithms the

fitness of certain individual serves the optimality of relaxation parameter in terms of the

error of estimation. In this way the classical iterative methods with successive relaxation is

hybridized with the evolutionary algorithms. The generation of new population, mutation

etc. of evolutionary algorithms serves to generate new relaxation factors to estimate its

fitness. The partial differential equations, after discretization, also give rise of set of linear

equations. Thus the methods usable to solve set of linear equations are also useful to get

numerical solutions of partial differential equations.

For our study purpose we have chosen four hybrid evolutionary algorithms - Jacobi Based
.4

Uniform Adaptive, Gauss-Seidel Based Uniform Adaptive, Jacobi Based Time Variant

Adaptive and Gauss-Seidel Based Time Variant Adaptive hybrid evolutionary algorithms.

All of them can be used to solve set of linear equations effectively.

The organization of this thesis is presented below:

Chapter 2 contains discussion on some classical numerical approach to solve a set of

linear equations. There Jacobi's iterartion method, Gauss-Seidel method, Successive

relaxation method, along with Gauss elimination method is discussed. Chapter 3 starts

with the classification of Partial Differential Equations. How the discretized form of Partial

Differential Equations can be solved is presented there in limited form. The overview on

the Evolutionary Computation is presented in Chapter 4. Different aspects of Evolutionary

Computations, its merits and demerits, along with some hybrid evolutionary algorithms are

incorporated in Chapter 4. After thorough investigations on the chosen uniform adaptive

hybrid evolutionary algorithms we have found that the presence of crossover operation in

them is needless to solve a set of linear equations. This matter is presented in Chapter 5.

Utilizing our findings we have presented two modified hybrid evolutionary algorithms

there and the performance of them is also discussed. The result of the primary

investigations of the modified algorithms inspired us to use them in the solution of Partial

Differential Equations. We have used one of them in the next chapter i.e. in Chapter 6.

There we have presented the solution of a steady state heat distribution problem with

certain boundary conditions. The discretized equation gives rise of 121 equations with 12 1

unknowns. We have solved that set with our own devised tool and also by using a classical

3

numerical method. The results are compared with the analytical solution and a good match

is found. Also we have used that method to solve a sample Poisson equation and the

obtained solution is also presented in Chapter 6. Finally we have made our Concluding

Remarks. Also the cited references are listed at the end of the thesis.

KUEJ

4'

ri

J11- CHAPTER 2

Some Classical Numerical Approach to solve a set

of Linear Equations

2.1 Introduction

The importance of solving linear equations can be sunimarized in a single statement:

solving linear equations pervades and enriches almost all areas in numerical computation.

Numerous classical methods are available for the solution of system of linear equations

using computers. Yet this field is constantly expanding as more and more new concepts

and algorithms are developed almost every day. The reasons for such a rapid growth in this

area are the advent of very high-speed large-memory computers and the non-availability of

a best suited computational method in solving system of linear equations for all types of a

given problem. Since linear equations can be expressed as matrix equations, these

constitute an important aspect of matrix algebra. This chapter overviews the elementary

concept of linear equations in matrix algebra and the classical numerical methods of

solving linear equations.

Let us consider a set of ii equations with n unknowns as follows

ajixt +a1.,x2 +a1 x1 =b1

C1 2 1 X1 + ++ a2 x =

(2.1)

+c 2x1 +...... =b, 11

This can be written as Ax = h (2.2)

where A = La,1], x[x1 ,x2,x3.........,x,1 } and h=[h1 ,h2,b,.........b,J

There are mainly two methods to solve linear equations: Direct methods and Iterative

methods.

.1

5

2.2 Direct Methods

The term direct method indicates a method that solves a set of equations by techniques in

which it is not needed to guess an approximate solution. This method involves elimination

of a term containing one of the unknowns in all but one equation. One such step reduces

the order of equations by one. Repeated elimination leads finally to one equation with one

unknown. There are many direct methods to solve system of linear equations such as Gauss

elimination method, Gauss-Jordon method, Crout method, Doolittle's method, etc [Gerald

and Wheatley (1994), Jain et al. (1985), Forsythe and Moler (1967)]. The direct methods

are efficient and effective for small number of unknowns. But direct methods are not

suitable for solving very large set of linear equations. Since the order of operation of direct

methods are O() (only consider multiplication and divisions) [Gerald and Wheatley

(1994)] so it may produce a significant amount of round off error in calculation. Direct

methods also inefficient for large sparse and structured matrices. Two well-known classical

direct methods named Gauss Elimination and Crout LU decomposition methods are

described below:

2.2.1 Gauss Elimination Method

A simple and most well known direct method of solving linear equations (Small and dense

coefficient matrix) is Gauss elimination method. For small coefficient matrix, this method

is frequently used. This method possess a systematic strategy for deducing the system of

equations to the upper triangular form using the forward elimination approach and then

back substitution process is used to obtain the set of values of the unknowns. The strategy,

therefore, comprised two phases:

1. Forward el/rn/na/ion phase: This phase is concerned with the manipulation of

equations in order to eliminate some unknowns from the equations and produce an

upper triangular system. By the following way the coefficient matrix of Eqn. (2.2) is

reduced to triangular matrix. The relation for obtaining the coefficient of the kth

derived system has the general form:

.4

I'.

FA

6

a11 - a a (k-I)
(k)
-

(k-I)
-

a
(k-I)
/h. (k-I)

(2.3)

where / = k + 1 to n , j = k + 1 to 11; and

am =a4 fori=I ton, j=1 ton

The kth equation, which is multiplied by the factor a/k /akk , is called the pivot

equation and akk is called pivot element. The process of dividing the kth equation by

a/k /akk is referred to as normalization.

2. Back siibslilulioi, process: This phase is concerned with the actual solution of the

equations and uses the back substitution process on the reduced upper triangular

system. After reducing the system of Eqn. (2.2), by the following way the relation for

obtaining the kth unknown, Xk, has the general form:

Xk = (k-I)
[bk_n

-I)
-

.::] (2.4)
I cl /A 1+I

where k = n — I to I ,and X (n-I) (2.5)
a,11,

2.2.2 Crout Method

Although Gaussian elimination is the best known of the direct LU decomposition methods,

Crout (or Doolittle) method is widely used. In direct method, Crout method is popular in

programs because the storage space may be economized. There is no need to store the

zeros in either L or U, and the ones on the diagonal of U can also be omitted. The LU

decomposition is produced by Crout reduction method [Gerald and Wheatley (1994)] as

follow:

k-i

'ik =alk liiU ik , k~i, i=I,2,•••,n, (2.6)
j=I

7

Uk - a, —lijU jA. i ~ k, k 1,2. (2.7)
1=1 j

(For k =l,the role for /reduces to =a 1 for I = 1,2,",n . And for 1= 1,the role

for ureducesto 111k

=

a 1k
 fork = 2,3,n)
/11

where A = [a11] is the coefficient matrix as in Eqn. (2.2), L
=

[Ii,] is the lower triangular

matrix and U = [Uq] is the upper triangular matrix.

Then the matrix A can be transformed by the above equations and becomes

a, 1 a12 a13 - a, /11 U 19 11, •

02, 6122 a23 121 122 1/ 23 111 11

a3, 32 (133 >/3j 32 133 (2.8)

a_1 _ 1 a,,_ .

a,11 - a_1 a
121 1n2

Because the L and U matrices are condensed into one array and store their elements in the

space A, this method is often called a compact scheme.

Then the solution of the set of the Eqn. (2.2) is readily obtained with the L and U matrices

ra

4

by the following formulas:

The general equation for the reduction of b to b' are

b
bf

=bi - Ib;.k
J.

i =2,3, •

And the equations for the back-substitution are

x,, = b

Xk = - ux1, k = n—I, n-2,•
j=k+1

Ir ur1

(2.9)
IL •

1

(2.10)

i

2.3 Iterative Methods

As opposed to the direct methods of solving a set of linear equations by Elimination,

iterative methods are discussed now. Direct methods for solving linear systems, with their

large number of operations proportional to ti [Gerald and Wheatley (1994)], have a

tendency to accumulate round off errors so that for a not well-conditioned coefficient

matrix A, the solution can become entirely useless. On the other hand, iterative methods

are unaffected by round off error to a large extent, because each approximate solution with

its inherent computational error can easily be improved upon in the following iteration

steps. Iterative methods typically require around /,2 operations [Gerald and Wheatley

(1994)] for each iteration step. But unfortunately, they do not converge for all solvable

systems [Chapra and Canale (1990)]. Figure-2.1 illustrates the convergence and

divergence of iterative methods applied to the same functions (line ii and i' in the figure).

Thus the order in which the equations are implemented (as depicted by the direction of the

first arrow from the origin in the figure) dictates whether the computation converges or

diverges [Chapra and Canale (1990)]. In certain cases, these methods are preferred over

the direct methods - especially when the coefficient matrices are sparse (has many zeros),

in that situation they may be more rapid. They may be more economical in memory

requirements of a computer. Apart from this, because of round off error, direct methods

sometimes prove inadequate for large systems. Iterative methods may sometimes be used

to reduce round off error in the solutions computed by direct methods, as discussed earlier.

An iterative technique to solve the linear system Ax = b starts with an initial

approximation x 1 " to the solution x and generate a sequence of vectors {x that

converge to x. Iterative technique involves a process that converts the system Ax = b

into an equivalent system of the form

x=Hx+V

For some fixed matrix H, called iteration matrix, and vector V [Jain et al. (1985), Chapra

and Canale (1990), Mathews (2001)]. After the initial vector is selected, the sequence

of approximate solution vectors is generated by computing

I

9

K.,

4-

K'

U

LI

(a) (b)

Figure 2.1: Illustration of (a) convergence and (b) divergence of iterative methods. Notices that
the same functions (line it and v in (hc figure) are plotted in both cases.

x =Hx' + V , foreach k=l,2,— (2.12)

An iteration matrix H can be viewed as a correction on the last computed iteration [Chapra

and Canale (1990)]

= x +z (2.13)

where Z
(k)

is called the correction vector or residual vector.
1'

Subtracting Eqn. (2.11) from Eqn. (2.12) and if the error is defined as

() =x — X, (2.14)

then

(k+1) = Hs", k = 0, 1, 2, (2.15)

from which follows

= H's", k = 0, 1, 2,••• (2.16)

There are mainly two basic iterative methods - Jacobi method and Gauss-Seidel method.

The rate of convergence of both methods is relatively slow. The rate of convergence may

be accelerated by using Successive Relaxation (SR) technique [Gerald and Wheatley

(1994), Varga (1962), Engeln-Mullges and Uhlig (1996)]. The two well-known iterative

methods are discussed bellow including SR technique.

2.3.1 Jacobi Method

Assume that a linear system given (in the form Eqn. (2.2)) is

Ax = b with A # 0

Assume without loss of generality that none of the diagonal entries is zero, otherwise

interchange it rows. Then

(D+U +L)x =b,where A=(D+U+L)

11 or Dx=—(U+L)x+b

or x=—W1 (U+L)x+IY'b

or xH,x+V1 (2.17)

where H 1 —D '(L + U), called Jacobi iteration matrix, and V1 = D'b [Engeln-

Muliges and Uhlig (1996), Jam et al. (1985), Burder and Faires (1997), Cheney and

Kincaid (1999)].

By solving the ith equation of Eqn.(2.2) for X, , then an equivalent form for the system

is [Antia (1991)]

b
i=ln

k=I a11 aii (
k#i

And construct the sequence {x} for an initial vector X by setting

= H .x +V, with

x(k)
(

for k = 0,1,2,....

Expressed in component-wise, this Jacobi iteration becomes

_ I - —fly X~k) ...
'' c.1

•,=
a; and k0,l,2, (2.20)

j•#I

The iteration matrix H 1 can be viewed as a correction on the last computed iteration as

Eqn. (2.13) i.e.

= x(k) +z

where

= V1 —(1— H 1)x" (2.21)

Jacobi method is also known as the method of simultaneous displacement method [Antia

(1991)].

2.3.2 Gauss-Seidel Method

The Gauss-Seidel method differs from the Jecobi method slightly. The difference between

the Jacobi and Gauss-Seidel methods is that in the later, as each component of x"is

computed, and used it immediately in the iteration [Engein-Mullges and Uhlig (1996), Jam

etal. (1985), Burder and Faires (1997), Cheney and Kincaid (1999)]. Assume that a linear

system given (in the form Eqn. (2.2)) is

Ax=b with I A I #O

Assume without loss of generality that none of the diagonal entries of is zero; otherwise

interchange it rows. Since in Gauss-Seidel method used on the right hand side all the

available values from the present iteration. So

(D+U+L)xb,where A=(D+U+L)

or (D+L)x-Ux+b

or x=-(D+L)'Ux+(D+L)'b

or x=Hx+V (2.22)

where V? = (L + D) b and 1-I = —(L + D) U, called Gauss-Seidel iteration matrix.

And construct the sequence {x } for an initial vector x by setting

1 '
=HgX(k) +Vg with

x x
, fork =0, 1, (2.23)

12

I

Expressed in component wise, this Gauss-Seidel iteration becomes

and k =0,1,.— (2.24)
i

a
ii
..

._
ai.. .1-

The iteration matrix H g can be viewed as a correction on the last computed iteration as

Eqn. (2.13) i.e

= x ' +

where

= Vg — (I - H g)x (2.25)

Gauss-Seidel method is also known as the method of successive displacement method.

2.3.3 Successive Relaxation (SR) Technique

Relaxation method represents a slight modification of the Jacobi/Gauss-Seidel method and

is designed to enhance convergence [Carre' (1961), Young, (1954), Gerald and Wheatley

(1994), Varga (1962), Engein-MUilges and Uhlig (1996)]. Define an auxiliary vector x as

(k+l) = —D'Lx —D'Ux + D'b, for Jacobi method and

k = —D'Lx' - W1 Ux + D'b, for Gauss-Seidal method

Then using SR technique the final solution is now written as

= + ü z (2.26)

where z is the correction vector and w is a relaxation factor.

or X = + (0((k+l)
- x)

or = (1 - + (2.27)

Here is weighted mean of (k1) and and w is a weighted factor that is

assigned a value between 0 and 2 [Krishnamurthy and Sen (1989), Gerald and Wheatley

(1994), Varga (1962), Engeln-Mu11ges and Uhli (1996)].g

(i) For 0) = 1, the Eqn. (2.26) reduced to the Jacobi/Gauss-Seidel method

[Krishnaniurthy and Sen (1989), Gerald and Wheatley (1994)].

13

4'

If w is set at a value between 0 and 1, the result is weighted average of

corresponding previous result and sum of other (present or previous) result. It is

typically employed to make a non-convergence system or to hasten convergence by

dampening Out oscillations. This approach is called successive under relaxation

[Gerald and Wheatley (1994), Krishnamurthy and Sen (1989)].

For value of 0, from 1 to 2, extra weight is placed. In this instance, there is an

implicit assumption that the new value is moving in the correct direction towards

the true solution but at a very slow rate. Thus, the added weight (t is intended to

improve the estimate by pushing it closer to the truth. Hence this type of

modification, which is called over relaxation, is designed to accelerate the

convergence of an already convergent system. This approach is called successive

over relaxation (SOR) [Gerald and Wheatley (1994), Krishnamurthy and Sen

(1989)].

(iv) The combine approach, i.e. for value of CO from 0 to 2, is called successive

relaxation or SR technique [Gourdin and Boumahrat (1996), Engeln-Mullges and

Uhlig (1996)].

.44

I

CHAPTER 3

Partial Differential Equation

3.1 Introduction

Many physical phenomena in applied science and engineering when formulated into

IF mathematical models fall into a category of systems known as Par//al different/al

equations. A partial differential equation is a differential equation involving more than one

independent variable. These variables determine the behavior of the dependent variable as

described by their partial derivatives contained in the equation. Some of the problems

which lend themselves to partial differential equations include:

Study of displacement of a vibrating string,

Heat flow problems,

Fluid flow analysis,

Electrical potential distribution,

Analysis of torsion in a bar subject to twisting,

Study of diffusion of matter, and so on.

Most of these problems can be formulated as second-order partial differential equations

(with the highest order of derivative being the second). If we represent the dependent

variable as/and the two independent variables as x and y, then we will have three possible

j:f (f
___ second-order partial derivatives and in addition to the two first-order

ax - (7X(y PY

partial derivatives and

We can write a second-order equation involving two independent variables in general form

as

__

3 .(
+(-

21
 -=Il

. of
)

I (3.1)
ax- 0y Ox '

15

where the coefficients A, B and C may be constants or functions of x and y. Depending on

the values of these coefficients, equation (3.1) may be classified into one of the three types

of equations, namely, elliptic, parabolic and hyperbolic.

Elliptic, B 2 —4AC <0

Parabolic, B2 -4AC =0

Hyperbolic, B 2 - 4AC > 0

If A, B and C are functions of x and y, then depending on the values of these coefficients at

various points in the domain under consideration, an equation may change from one

classification to another.

Solution of partial differential equations is too important to ignore but too difficult to

cover in depth in brief Since the application of analytical methods becomes more complex,

we seek the help of numerical techniques to solve partial differential equations. There are

basically two numerical techniques, namely, fi,,ite-difference method and finite-element

method that can be used to solve partial differential equations. The finite-element method

is very important for solving equations where regions are irregular. We will discuss here

the application of finite-difference methods only, which are based on formulae for

approximating the first and second derivatives of a function. We will also consider

problems, only those where the coefficients A, B and C are constants.

3.2 Finite difference method

Consider the problem

ay

a L+ht +cL=P'Ix,y I., 0.")a2

Equation (3.2), when Ci = 1, h = 0, C = 1, and P'(x,y,f,t,f.) 0, becomes

+
ax

= = 0

The operator

12 2
2 I (l 7 =I—+--

lax2 2

4-

LI1

is called the Laplacian operator and Eqn. (3.3) is called Laplace 's equation. (Many authors

use it in place of f)

To solve the Laplace equation on a region in the xy -plane, we subdivide the region in two-

dimensional finite difference grid. Consider the portion of the region near (x,,',). We have

to approximate

2= 2f2f0
2 2

(fi.j.
 \ -

fi+i.i -2f•1+f11,1

- h 2
(3.4)

f,•1+1 -2 +L1-1
'.1 k2

(.).5)

Replacing the second-order derivatives by their finite difference equivalents fiom equation

(3.4) and (3.5) at the point we obtain,

v2j: =
-2i; +/;

+
-2/a +f;

1.J
k 2

If we assume, for simplicity, h = k, then we get

v2f
=

++ ~L _4f 1)= 0 (3.6)

Note that Equation (3.6) contains four neighboring points around the central point (x, ,y,)

(on all the four sides) as shown in Figure 3.1. Equation (3.6) is shown as the fIve-point

difference formula for Laplace's equation.

+1

i - l,j
I

i

i+1, j

4,
i,j-1

Fig. 3.1 Grid/or Lapace 's equal/oil

17

1

4-

We can also represent the relationship of pivotal values pictorially as in equation (3.7).

v2fI{l 4 (3 7)

From equation (3.6) we can show that the thnction value at the grid point (x1 ,y,) is the

average of the values at the four adjoining points. That is,

= +
I (f

1j +Li+1 (3.8)

To evaluate numerically the solution of Laplace's equation at the grid points, we can apply

equation (3.8) at the grid points where •/ is required (or unknown), thus obtaining a

system of linear equations in the pivotal values .t;.. The system of linear equations may be

solved using either direct methods or iterative methods.

3.2.1 Liebmann's Iterative Method

2j.
 32f

We have Laplace's equation
2 +

= V •f = 0 (3.9)

We know that a diagonally dominant system of linear equations can be solved by iteration

methods such as Gauss-Seidel method. When such iteration is applied to Laplace's

equation, the iterative method is called Liehinann 'S i/era/ire inc/hod.

To obtain the pivotal values of / by Liebmann's iterative method, we solve for fij

the equations obtained from (3.8). That is,

i =(f,11+f 11+f1+ +f11) (3.10)

The value fi. at the point (i, j) is the average of the values of / at the four adjoining

points. If we know the "initial values" of the functions at the right-hand side of equation

(3.10) we can estimate the value / at the point (i, .1) . We can substitute the values,

thus obtained, into the right-hand side to achieve improved approximations. This process

may continue till the values fj j converge to constant values.

) Initial values may be obtained by either taking diagonal average or cross average of the

adjoining four points.

3.3 Examples

Examnle 1:

Consider a steel plate of size 15 cm x 15 cm. If two of the sides are held at 100°C and the

other two sides are held at 0°C, what are the steady state temperature at interior points

assuming a grid size of 5 cm x 5 cm.

Solution:

A problem with the values known on each boundary is said to have Dirichiet boundary

conditions. The problem is illustrated below.

100 100

0 0

Fig. 3.2 Grid for Laplaces equal/oil

The system of equation is as follows:

Atpoint 1: f2+fH4f +100+1000

Atpoint2: J1+.14 4.[2+100 + 0 _O

At point 3: j + .f - 4.t. + 100+0 = 0

Atpoint4: .12+13 414+ 0 +00

100

100

100

EIA

Ir

19

>.
That is,

-4f +J +O=-200

f -4f +0+f4 100

f +0-4f, +f4 =-l0O

0+f2 +f--4f4 =0

Solution of this system is

j=75 f2 =50

f3 =50 f4 =25

Note that there is a symmetry in the temperature distribution, i.e. it can be stated that

= 1.3
and therefore the number of equations in Example I may be reduced to three equations

with three unknowns as shown below.

-4J +2f2 =-200

f -4f +f4 =-lOO

- 2f = 0

Example 2:

Solve the problem in Example I using Liebmann's iterative method correct to one

decimal place.

Solution:

By applying equation (3.8) to every grid points, we obtain

• - f, + f13 + 200
11 — 4

• _fl + •14 +100
f2- 4

r

ME

=
J + J1 +100

(3.12)

14_
2

4

Appropriate initial values for the iterative solution are obtained by taking diagonal average

at 1 and cross average at other points, assuming first j = 0.

I;(100+100+100+0) = 75.00 (Average)

.f =I(75+100+0+0)= 43.75

.r=(100 + 75 + 0 + 0)= 43.75

.t = i(4375+4375)= 21.88

Note that /,, f, , and f are computed using the latest values on the right hand side.

Using these initial values in equation (3.12) and performing iterations gives the values

as shown in Table 3.1.

Table 3.1

f Inilial
Values

Jieralions

1 2 3 4

75.00 71.88 74.22 74.81 74.95

43.75 48.44 49.61 40.90 49.98

43.75 48.44 49.61 40.90 49.98

.14 21.88 24.22 24.81 24.95 24.99

The process may be continued till we get identical values in the last two columns. Note that

the values are approaching to correct answers obtained in Example - 1.

ExamIe 3:

Solve the Poisson equation V 2 f = 2x 2y2 over the square domain 0 x :!~ 3 and

0 :!~ y :!~ 3 with .1 = 0 on the boundary and h = 1 by finite difference formula.

21

.1;

l f

Ott

o
'cUET

Bangladesh

o Qv
\tj; tJt!"

y = 2

y= 1

Solution: We have the finite difference formula for solving Poisson's equation

a 21 a2 f
2 + 2 g(x,y) then take the form

ôx ôy

f+LJ +_ +f =h2g ij (3.13)

The domain is divided into squares of one unit size as illustrated below:

0 0 0 0

0 x=1 x = 2 0

By applying equation (3.13) at each grid point, we get the following set of equations:

At point 1: 0 + O+f, + f3 - 4f = 2(1)2 (2)2

i.e. f2 +f4f8 (3.14.a)

At point 2: 0+0+ f + f4 - 412 = 2(2)2 (2)2

Af
i.e. f1 -4f2 +f4 z 32 (3.14.b)

At point 3: 0 + 0 + f + f4 - 4f3 = 2(1)2(1)2

i.e. j4f3 +f4 2 (3.14.c)

At point 4: 0+0+f2 +f4f4 2(2)2 (1)2

i.e. f2 +J4f4 8 (3.14.d)

VA

22

Rearranging the equations (a) to (d), we get

-4J +f2+f. =8

f1 -4f,+f4 =32

f1 -4j+f4 =2

f2 +J-4f4 =8

Solving the equation (3.15) by elimination method, we get the answers.

-

22 43
f2

13_ J4_ 4

(3.15)

Example 4:

Solve the problem in Example - 3 using Liebmann's iterative method.

Solution: By using the equations (3.15), we have

-4J+f2 +f =8

fI-f2--f4 =32

J-4f+f4 =2

f2 +f3 -4f4 =8

By rearranging the above equations, we have

f2 =(f+f4-32)

J=(+f4 -2)

f4 =1(f2 +f3 -8)

(3.16)

(3.17)

Note that .1; = .14 , Therefore the equation (3. 17) becomes,

f =(/+-8)

= I(2f; -32)

f. =(2f1 -2)

Assume starting values as f2 = 0 =

Iteration I:

f=-2, f2 =-9, j=-1
Iteration 2:

18 41 ç 11
11= 4' ./2= 4' J3

-ii-

Iteration 3

22
-

43 . 13
jI =—, .f--- •i=___

Iteration 4.•

.13 .11
- 4 , 12

- 4 ' .13 -
- j-

IOA

11(

Vr

-

24

CHAPTER 4

An Overview of Evolutionary Computations

4.1 Introduction

The Evolutionary Computation (EC) techniques are inspired by the natural process of

evolution [Hashem (1999)]. The peculiarity of ECs is maintaining a set of points (called

population) that are searched in parallel. Each point (individual) is evaluated according to

the objective function (fitness function). Further a set of genetic operators is given that

work on populations. They contribute to the two basic principles in evolution - se/cc/ion

and i.'ariation. Selection focuses the search for the "better" regions of the search space by

given individuals with "better" fitness values and higher probability to be member of the

next generations (loop iteration). On the other hand, variation operators create new points

in the search space. Here not only random changes (mutations) of particular point are

possible but also the random mixing of the information of two or more individuals

(crossover/ recombination) are possible [Back and Schwefel (1993), Schoenauer and

Michaleewicz (1997) and Back et al. (1997), Hashem (1999)]. ECs are often characterized

as combining features from path-oriented methods and volume-oriented methods. ECs

combine these contrary features in so far that in the beginning of the search the population

is usually spread out in the whole search space, corresponding to a volume-oriented search.

In the latter stages of the search algorithm has focused too few (or single) region due to

selection and the selected region is examined further. In this respect the algorithm behaves

like a path—oriented search [Hashem (1999)]. Another possible identification of these two

stages of the search could be the correspondence of the first stage to a global reliability

strategy (coarse grin search) and the second stage to a local refinement strategy (fine grin

search) [Yuret 1994, Hashem (1999)]. It is also observed that there are two important

issues in the simulated search process of natural evolution: population diversity

(exploration) and selective pressure (exploitation). These factors are strongly related - a

strong selective pressure "supports" the premature convergence of evolutionary search and

25

a weak selective pressure can make the search ineffective. Thus it is important to strike a

balance between these two factors [Hashern (1999), Michalewicz (1996), Buckle (1997)].

4.2 Variants of Evolutionary Algorithms

The variations of Evolutionary Algorithms (EAs) that are of current interest bring differing

philosophies of how to algorithmically abstract the model of natural evolution. Because of

differing commitment to levels of abstraction, each uses a distinct emphasis that leads to a

commitment to representations and philosophy of operators. Four main streams of

instances of these general algorithms, developed independently of each other, can now a

days be identified - (i) Genetic Algorithms (GAs) [1-lolland (1962), Back and Schwefel

(1993)], (ii) Evolutions Strategies (ESs) [Rechenberg (1973), Back and Schwefel (1993)

and Hashem (1999)], (iii) Evolutionary Programming (EP) [Fogel et al. (1966), Back and

Schwefel (1993)] and (iv) Genetic Programming (GP) [Koza (1994) and Hashem (1999)].

Each of these main stream algorithms have clearly demonstrated their capability to yield

good approximate solutions even in the cases of complicated multimodal, discontinues,

non-differentiable, and noisy or moving response surfaces of optimization problems. The

variety of data-structures, variation of operators and selection mechanisms give possible

ways of classifying Genetic Algorithms. However, the different terms are mostly historical.

Moreover, the differences between the variants are fluid. Furthermore, these algorithms are

specified for parameter optimization problems.

it is a remarkable fact that each algorithni emphasizes different features as being most

important for a successful evolution process. In analogy to repair-enzymes, which give

evidence for a biological self-control of mutation rates of nucleotide bases in DNA, both

ESs and EP use self-adaptation processes for the mutation rates. In canonical GAs, this

concept was successfully tested only recently [Back (1992)], but still need more time to be

recognized and applied. Both ESs and EP concentrate on mutation as the main search

operator, while the rule of pure random mutation in canonical GAs and GPs is usually seen

to be of secondary importance. On the other hand, recombination plays a major rule in

canonical GAs and GPs, but recombination is missing completely in EPs and is urgently

necessary for use in connection to self-adaptation in ESs. Finally, canonical GAs, GPs and

EPs emphasize on a necessarily probabilistic selection mechanism, while from the ESs

-4

26

'V

point of view selection is completely deterministic without any evidence for the necessity

of incorporating probabilistic rules. in contrast, both ESs and EPs definitely exclude some

individuals from being selected for reproduction, i.e. they use extinctive selection

mechanisms, while canonical GAs and GPs generally assign a non-zero selection

probability to each parent individual, which can be termed as presert'alive se/cc/ion

mechanism. The characteristic similarities and differences of the evolutionary algorithms

discussed in this chapter are summarized in Table 4.1 [Hashem (1999)].

Table 4.1: Main characteristics of evolutionary algorithms.

[Characteristics GA ES

Abstraction Organisni Individual behavior Species Organism

level behavior

Representation Binary-valued Real-valued Real-va liicd Tree like

Stntcture

Self-adaptation None Standard deviation Standard None

& covariancc deviation

Fitness Scaled objective Objective function Objective Objective

function value value function value Function value

Mutation Background Main operation Only operation Secondary

operation Operation

Recombination Main operation Different variants. None Main operation

important for

self-adaptation

Selection Probabilistic. Deterministic. Probabilistic. Probabilistic.

preservative extinctivc extinetive preservative

4.3 Basic Mechanisms of Evolutionary Algorithms

For the sake of clarity, we shall try to introduce a general framework according as much as

possible for most of the existing EAs. The EAs can be classified as probabilistic search

algorithms, which maintain a population of If individuals,

where w(t)E S for generation I which

simultaneously sample of the search space S. Each individual represents a potential

solution to the problem at hand and is implemented as some complex data structure and/or

27

object variable vector 4 with component E j E H V / € i, 2., n}. Each solution kV (i)

is evaluated to produce some measure of its "fitness" 90. After initialization of the

population, a new population is formed by three main operators - crossover

(recombination), mutation and selection. There is higher order transformation:

(crossover operator), which creates new individuals (offspring) (: (4 x

where i' is the offspring population size and an unary transformation: ' (mutation

operator), which modifies these new individuals (offspring) by a small change

). A selection operation (c: U pJre)ll) is then applied

to choose the parent population for the next generation. After some number of generations

the program converges - it is hoped that the best individual represents a near optimum

solution [Hashem (1999), Back and Schwefel (1993)].

Variation is introduced into the population by crossover and/or mutation. Since these

operators usually create offspring at new positions in the search space, they are also called

"explorative" operators. The several instances of the EAs differ in the way that how

individuals are represented and in the realization of the recombination operator. Common

representations are, for example, bit strings, vectors of real or integer values (for parameter

optimization), trees (for function optimization), graphs or any other problem dependent

data-structure. Based on information-theoretical considerations, John Holland suggests that

the bit-string representation is optimal. Back et al. (1993) suggests from practical

experience, as well as some theoretical point of view that the bit-string representations

have some disadvantages such as the coding and decoding functions might introduce

additional multimodality along with the objective function [Michalewicz (1994, 1994a),

Michalewicz and Attia (1994), Kim and Myung (1997) and Chellapilla et al. (1998)].

Along with a particular data-structure, variation operators have to be defined which can be

divided in asexual and sexual variation operators. The asexual variation (mutation) consists

of a random change of the information represented by an individual, if the individual is

represented as a vector, mutation is the random change of elements of the vector. How this

change is performed depends on the type of the vector-elements. If the vector is a simple

bit-string, mutation is to too1e the bit or not (with equal probability). For real or integer

a

values more sophisticated mutation operators are necessary. The most cl general approach is

to define a probability distribution over the domain of possible values for a particular

vector element. A new value is then chosen according to this distribution. During sexual

variation (Crossover /recombination) two individuals exchange or blend part of their

information. Two individuals are chosen from the population and named parents. How the

exchange or blend of information is performed depends of the chosen representation. There

is no need to restrict the number of parents for crossover to two. Recent research shows

that increasing the number of mates leads to an increased performance [Blickle (1997),

Salomon (1998)]. There is an ongoing debate between different communities which

operator- mutation or crossover - is more important. Some researchers found evidence that

the crossover operator might be "simulated" by mutation [Fogel (1995)].

4.3.1 Time-Variant Mutation

The inherent strength of EAs - towards convergence and high precision results - lies in the

choice of the mutation steps i.e. standard deviation [Rechnberg (1994), Fogel (1995), Back

et. al. (1996)]. According to the biological evidence, a special dynamic Time-Variant

Mutation (TVM) operator is proposed aiming to both improving the fine local tuning and

reducing the disadvantage of uniform mutation [Michalewicz (1996), Back et. al. (1997),

Hashem (1999)]. Moreover, it can exploit the fast (but not premature) convergence. By this

mutation scheme, a natural behavioral change at the level of individuals will be achieved.

The TVM is defined for a child - as that of EAs do [Back et. al. (1993), Schwefel et al.

(1995)] as VIE 1, 2, , n}
- +a(t).N1 (Oj)

where N, (0, 1) indicates that Gaussian random value with zero-mean and unity variance,

it is sampled anew for each value of the index i and (t) is the time-variant mutation step

generating function at the generation I, which is defined by

(t)=[1_q) I
V

(4.2)

29

- where qE(O,l), is uniform random number, T is the maximal generation, -y is a real-valued

parameter determining the degree of dependency on generations. The parameter -y is also

called an exogenous parameter of the method [Hashem 1999].

The function G1) returns a value in the range [0, 1], that falls within so-called evolution

window [Rechebberg (1994)] such that the probability of (t) being closed to 0 as the

generation t increases. This property of aW causes to search the problem space uniformly

(volume- oriented search) initially when I is small and very locally (path - oriented search)

at larger I stages. Another possible identification of these two stages of the search could be

the correspondence of the first stage to a global reliability strategy (coarse grain search)

and the second stage to a local refinement strategy fine grain search [Michalewicz (I 994a),

Michalewicz and Attia (1994), Michalewicz (1996)].

4.3.2 Development of Time-Variant Adaptive Parameters

As pointed earlier the inherent strength of EA - towards convergence and high precision

results - lies in the choice of the mutation steps, i.e. standard deviation. Obvious biological

evidence is that a rapid change is observed at early stages of life and a slow change is

observed at latter stages of life in all kind of animals! plants. These changes are more often

occurred dynamically depending on the situation exposed to them. Jamali et al. (2004b)

introduced a new Time-Variant Adaptive (TVA) parameter aiming at both improving the

fine local tuning and reducing the disadvantage of uniform adaptation of relaxation factors

as well as mutation for solving linear equations.

Fornuilas

The time variant adaptive (TVA) parameters are defined as

= x N(0,0.25)x 7 (4.3)

and is denoted as adaptive (TVA) probability parameter of (OX , and

= Ex J N(O,O.25) j xT (4.4)

and is denoted as adaptive (TVA) probability parameter of (o.

-I

30

)-
where i =21ii(1+) , >10 (4.5)

or =(1---) (4.6)

Here). and y are exogenous parameters, used for increased or decreased of rate of change

of curvature with respect to number of iterations, I and T denote number of generation and

maximum number of generation respectively. Also N(0, 0.25) is the Gaussian distribution

with mean 0 and standard deviation 0.25.

Now E and 1, denote the approximate initial boundary of the variation of TVA

parameters of w and Wr respectively. And if 00 is denoted as the optimal relaxation

factor then

= p.r Max
=

W

, so that co (0.5 + Pv max)(W x + w)
2(o. +w)

wwv M CO
and E . = p

. =
or

, so that
U) — u - v

69 +p,
niax

—(O1,), when, >w

. + p. max (w, - (O1,), when w1, <w,

Properties

The functions p, and p return values in the range [—E,, E I and [0, E s.] respectively,

which falls within the so-called evolution window [Rechenberg (1994), Yao and Liu

(1997)] such that probability of p, and p tend to 0 as generation of population increased.

This property of p and p causes to search the space uniformly (volume-oriented search)

initially when generation, I, is small and very locally (path oriented search) at larger I

stages. Another possible identification of these two stages of search could be

correspondence of the first stage to a global reliability strategy (coarse grain search) and

the second stage to a local refinement strategy (fine grain search) [Hashem (1999)].

Sf

Now from Eqn. (4.5) i.e. 7 (= 2 ln(1 + 11(1 + 2)) (denoted as Lambda based TVA

parameter) it is obvious that when the value of X is small then, initially, rate of change of

the function Ic = 2 In (1 + 11(1 + 2)) is very rapid; on the other hand when the value of X is

relatively large, then initially, rate of change of this function is relatively slow. For all the

cases, in later stages, the rate of change is slow.

Again from Eqn. (4.6) i.e. i = (1 - I / T)' (denoted as Gamma based TVA parameter) it CO

is obvious that when the value of y is large then initially, rate of change of this function is

very rapid; on the other hand when the value of y is relatively small, then initially, rate of

If
change of this function is relatively slow. The rate of change of this function is all most

constant in all stages for each value of y.

4.4 Modern Trends: Hybrid Algorithms

Many researchers modified further evolutionary algorithms "by adding" some problem

specific knowledge to the algorithm. Several papers have discussed initialization

techniques, different representations, decoding techniques (mapping from genetic

representations to phenotype representations) and the use of heuristics for genetic

operators. Such hybrid/nonstandard systems enjoy a significant popularity in evolutionary

computation community. Very often these systems, extended by the problem-specific

knowledge, outperform other classical evolutionary methods as well as other standard

techniques. For example, a system Genetic-2N [Michalewicz (1 994a)] constructed for the

nonlinear transportation problem used a matrix representation for its chromosomes, a

problem-specific mutation (main operator, used with probability 0.4) and arithmetical

crossover (background operator, used with probability 0.05) [Schoenauer and Michalewicz

(1997)]. It is hard to classify this problem: it is not an evolution strategy, since it did not

use Gaussian mutation, nor did it encode any control parameters in its chromosomal

structures. Clearly, it has nothing to do with genetic programming and very little (matrix

representation) with evolutionary programming approaches. It is just an evolutionary

computation technique aimed at particular problem.

32

Recently, hybridization of evolutionary algorithm with classical Gauss-Seidel based SR

method has successfully been used to solve large set of linear equations where relaxation

factor, w, is self-adapted by using uniform adaptation technique [He et a]. (2000)].

The key idea behind this hybrid algorithm that combines the SR technique and

evolutionary computation techniques is to self-adapt the relaxation factor w which is used

in the classical SR technique. For different individuals in a population, different relaxation

factors are used to solve equations. The relaxation factors will be adapted based on the

fitness of individuals (i.e. based on how well an individual solves the equations). Similar to

many other evolutionary algorithms, this hybrid algorithm always maintains a population

of approximate solution to linear equations. Each solution is represented by an individual.

The initial solution is usually generated by the SR technique using an arbitrary relaxation

factor w. The fitness of an individual is evaluated by the error estimate of the approximate

solution. The relaxation factor is adapted after each generation, depending on how well an

individual performs.

4.5 Properties of Evolutionary Algorithms

ECs are normally classified as stochastic optimization algorithms. Within this

categorization, the most important properties of ECs can be itemized as bellow

•Accuracy: The accuracy describes the difference between the optimal solution and the

solution obtained by the optimization method. This distinguishes between exact methods

and ECs. Exact methods guarantee to find the optimum. This guarantee is paid with the

complexity of the optimization method that has to be at least as high as the complexity of

the problem to be solved. For example, the branch and bound algorithm is an exact method

for solving linear optimization problems with integer restrictions. On the other hand, ECs

do obtain only near-optimal solutions; furthermore, the accuracy of the solution often can

not be predicted for these algorithms [Hashem (1999)].

•Time—cornplexity: The complexity of an EC method (or an algorithm in general) is

measured by the order of the number of elementary operations independent of the input

size. The input size is the amount of data necessary to specify the problem. As there are

33

many different problem instances having the same problem size, there are different

possibilities to define the complexity. Most commonly the complexity is measured in the

worst case asymptotic complexity. "Worst-case" means that the complexity of the

algorithm is determined by the "hardest" problem of fixed size input. EAs have polynomial

execution time allowing problems with a several order of magnitudes of higher

dimensionality to be considered. Usually the absolute complexity depends upon the

underlying machine model or implementation. Hence, the asymptotic complexity measures

the relative increases in time with length of the problem instance and not the absolute time

[Hashem (1999)].

•Sj,ace—coinplexity: The space (memory) demand of an evolutionary algorithm is an

important property that may limit the applicability of the algorithm. Similar to the time-

complexity measure a worst-case space demand is most commonly used [Hashem (1999)].

• Utilization of a priori-knowledge: It is obvious, that an algorithm that considers a priori-

knowledge about the problem will outperform a method using less knowledge. The least

knowledge that must be known (or must be computable) is the value of the objective

function. Additional information could be used to restrict the search space, and to use

symmetries in the objective function, etc. But most of the EAs perform blind search

without priori-knowledge [Hashem (1999)].

• Balance between global reliability and local refinement: Two competing goals have to

be achieved by an optimization method. First, as the global minimum can be located

anywhere in the search space no parts of the region can be neglected. Global reliability,

therefore, corresponds to a strategy where the search points are uniformly distributed over

the whole search space. Secondly, the assumption that the chance of finding a good point

in the neighborhood of a good point is higher than in the neighborhood of bad point. This

assumption will surely be fulfilled for a continuous function. However, in general this

assumption can not be made. Nevertheless for pragmatic reasons, most optimization

methods make this assumption. This leads to a strategy that focus on particular regions or

in other words that performs a local refinement of the search at "promising" points.

Interestingly, ECs have incorporated a mixture of these two basic strategies [Hashem

(1999)].

3

- 4.6 Merits and Demerits of Evolutionary Algorithms

4.6.1 Merits

The identified merits of ECs can be itemized as

•Large application domain: ECs have been applied successfully in a wide variety of

application domains. One reason for this might be the intuitive concept of evolution and

the modesty to the ECs with regard to the structure of the specific optimization problem.

Especially the intuitive concept makes it easy to implement an algorithm that works

[Hashem (1999)].

•Suitahlefr complex search spaces: It is extremely difficult to construct heuristics for

complex combinatorial problems. In these problems, the choice of one variable may

change the meaning or quality of an other, i.e., there are high correlation between

variables. ECs have been successfully applied to such instances. Obviously, the success of

the ECs depends on the particular implementation and not all flavors ECs are equally well

suited. As a rule of thumb, it is always good to combine an EC with available (problem-

dependent) optimization heuristics [Hashem (1999)].

•Robustness: Robustness means that different run of an EA for the same problem yields

similar results i.e. there is no great deviation in the quality of the solution. But a Monte-

Carlo-based algorithm performed in average as good as a GA, the variation in the results

was much higher [Hashem (1999)].

•Easy toparallelize: The population concept of ECs makes parallelization easy. This can

reduce the execution time of the algorithm. Whole population can be divided into sub-

population and each sub-population is assigned to each processor that evolves almost

independently of the other populations. Furthermore, a topology of the population is

defined such that each sub-population has only few "neighbours" A few individuals

ni/grale between neighbours and form a loose coupling between the sub-populations

[Hashem (1999)].

35

4.6.2 Demerits

The identified demerits of ECs can be itemized as

•High comjutational time: The modest demand on the objective function is paid with a

relatively high computational time. This time demand not only arises from the population

concept but also from the difficulty of the problems. An application specific heuristic that

makes use of domain —knowledge is likely to outperform an EC [Hashem (1999)].

• Difficult adjustment of parameters: In every EA, a large number of parameters need to

be adjusted, for example the kind of selection and crossover operator to use, the population

size the probabilities of applying certain operator and the form of fitness function. Due to

this fact, successful applications are often the result of a lengthy trial and error procedure

whose sole purpose is to adjust the parameters of the algorithm for a particular problem

class or even problem instance. Furthermore EAs are often very sensitive to the fitness

function such that slight changes in the fitness function may lead to completely different

behavior [Hashem (1999)].

•Heuristic principle: ECs don't guarantee to find the global optimum. The theoretical

proofs of global convergence are useless from practical point of view as they assume

infinite computation time. Under this premise, even random search can reach the global

4
optimum. Of more importance is the fact that for most instances of EC, the accuracy of a

solution obtained in a limited amount of computation time can not be predicted or

guaranteed [Hashem (1999)].

4.7 Some Hybrid Algorithms

In this section some available hybrid algorithms will be discussed. The chosen algorithms

are - Jacobi Based Uniform, Jacobi Based Time Variant and Gauss-Seidel Based Time

Variant Adaptive Hybrid Algorithms.

'V

36

4.7.1 Jacobi Based Uniform Adaptive 1-lybrid Algorithm

The Jacobi Based Unifbrm Adaptive (JBUA) evolutionary algorithm is proposed by Jamali

(2004). It uses evolutionary computation techniques and Jacobi based SR technique. The

JBUA hybrid evolutionary algorithm does not require a user to guess or estimate the

optimal relaxation factor co. The algorithm initializes uniform relaxation factors in a given

domain and "evolves" it. It integrates the Jacobi-based SR method with evolutionary

computation techniques, which uses initialization, recombination, mutation, adaptation,

and selection mechanisms. It makes better use of a population by employing different

equation-solving strategies for different individuals in the population. Then these

individuals can exchange information through recombination and the error is minimized by
1

mutation and selection mechanisms.

The Basic E(juations of Jacobi Based SR Method

Let us consider a system of linear equations

11
a

ii
= b1, (i = 1,2,...,n) (4.7)

In Jacobi method by using SR technique [Engeln-Mullges, and Uhlig (1996)] Eqn. (4.7) is

given by

x
k)

(i = l,2, ..,n) (4.8)
ce j=1

in matrix form Eqn. (4.8) can be rewritten in matrix-vector equation as using the concepts

discussed in § 2.3.1 and 2.3.3:

= + V(,) (4.9)

where H(,) , called Jacobi iteration matrix, and Vt,, are given successively by

H (,, = D' {(1—w)1 —co (L+U), (4.10)

V =coD1 b (4.11)

and

The Algorithm

Similar to many other evolutionary algorithms, the JBUA hybrid algorithm always

maintains a population of approximate solution to linear equations. Each solution is

represented by an individual. The initial population is generated randomly form the field

Different individuals use different relaxation factors. Recombination in the hybrid

algorithm involves all individuals in a population. If the population size is N, then the

recombination will have N parents and generates N offspring through linear combination.

Mutation is achieved by performing one iteration of Jacobi based SR method as given by

Eqn. (4.9). The mutation is stochastic since w used in the iteration is initially generated

between (V 1 and co,., and cq is adapted stochastically in each generation (iteration). The

fitness of an individual is evaluated based on the error of an approximate solution. For

example, given an approximate solution (i.e. individual) i, its error is defined by

1 e() A - b . The relaxation factor is adapted after each generation, depending

011 how well an individual performs (in term of error). The main steps of the JBUA hybrid

evolutionary algorithm described as below:

Step 1: Initialization

Generate an initial population of approximate solution to the system of linear Eqn. (4.7)

using different arbitrary relaxation factors. Denote the initial population as

X(o) -
((0) (0 (0)

- X 1 ,X 2 ... X (4.12)

4
where each individual x, E .)? fl; N is the population size. Let 0 is assigned to k, where k is

the generation counter. Also initialize relaxation factor co,W randomly from (coL

(ol .) where co, and co are lower and upper boundaiy of co's.

Step 2: Recombination

((k+c)
Now generate X (k+c) = { kic) x 1 , ,. .., x" } as an intermediate population

through the following recombination:

X"' = R(X)

j

where

so that

=' and i ~:O for I i < N

(4.14)

i.e. R is a stochastic matrix {Kriyszig (1993)]. Superscript " " is a transposed operator.

Note that the symbol c, as a superscript, is used just as an indicator of crossover.

Step 3: Mutation

Then generate the next intermediate population X" liows: from as to

(k.+c (k+c)
For each individual X1 (1 ~ 1 ~ N) in population X produces an offspring

according to Eqn. (4.9) as

= H(f, + V,, I = 1,2.... ,N (4.1 5)

where H is called Jacobi iteration matrix corresponding w,and given by

H(=D{(1—w,)I—co, (L+U)}, (4.16)

and

D'b. (4.17)

Here w is denoted as relaxation factor of the ith individual and (is denoted as ith

(mutated) offspring, so that only one iteration is carried out for each mutation. Note that

the symbol in, as a superscript, is used just as an indicator of mutation.

Step 4: Adaptation

Let x and y be two offspring individuals corresponding to relaxation factors w, and w

and 11 e(x) 11 and II e(y) 11 are their corresponding errors (fitness value). Then the

relaxation factors w and w are adapted as follows:

(a) If 11 e(x) Ij>I e(y) M

' (i) then move w toward (0 (i.e. co., is adapted to (o) by using

n
3

= (0.5 + p.)(w + (o1,)

where p E(-0.01, 0.01)

And (ii) move w away from w, (i.e. (o r is adapted to cv) by using

[W
.
 + p1, (w - co t,), when w1, >

W=
•V

L011, + p1, (co, - co), when w <w

where p € (0.008. 0.012)

(4.19)

(4.20)

(4.21)

If II e(x) 11<11 e(y)II,adapt w,and in the same way as above but reverse the

order of w and cv'.

If 11 e(x) 11=11 e(y) , no adaptation. So that

(z) = and cv' = Co'.

Here uniform adaptation technique is used to adapting the relaxation factors [He et. al.

(2000)].

Step 5: Selection and Reproduction

The best N12 individuals in population X" will reproduce (i.e. each individual

generates two offspring), and then form the next generation X(kI) of N individuals.

Step 6: Halt

.4, If the error of the population = inin{ e() € X} is less than a given

threshold i then the algorithm terminates; otherwise, go to Step -2.

4.7.2 Jacobi Based Time Variant Adaptive Hybrid Algorithm

The Jacobi Based Time Variant Adaptive (JBTVA) hybrid algorithm is proposed by Jamali

et al. (2004). In that algorithm Jacobi based SR method, evolutionary computation

techniques and time variant adaptation techniques are used. That also does not require a

user to guess or estimate the optimal relaxation factor cv. The algorithm initializes uniform

relaxation factors in a given domain and "evolves" it. The proposed algorithm integrates

Ir the Jacobi-based SR method with evolutionary computation techniques, which uses

a

recombination, mutation and selection mechanisms. It makes better use of a population by

employing different equation-solving strategies for different individuals in the population.

Then these individuals can exchange information through recombination and the error is

minimized by mutation and selection mechanisms.

The main steps of the JBTVA hybrid evolutionary algorithm are Initialization,

Recombination, Mutation, Adaptation, Selection, Reproduction and Halt respectively.

Initialization, Recombination, Selection, adaptation mechanisms and Halt criteria of this

proposed algorithm is same as those of Gauss-Seidel Based Time Variant Adaptive

algorithm and is discussed in the next subsection. And Mutation mechanism is same as

that of JBUA algorithm (see § 4.7.1).
KA

4.7.3 Gauss-Seidal Based Time Variant Adaptive Hybrid Algorithm

The Gauss-Seidel based Time-variant adaptive (GSBTVA) hybrid evolutionary algorithm

is the hybridization of evolutionary algorithm with classical Gauss-Seidel based SR

method in which a time-variant adaptation (TVA) technique is used instead of uniform

adaptation (UA). In sequel, it is described here elaborately. -.

The Basic Equations of Gauss-Seidal Based SR Method
8angsa ,

Here also the system of linear Eqn. is taken as

aijxj

= b1, (i = 1,2...,n) (4.22)

In Gauss-Seidel based SR method [Engeln-Mullges, and Uhlig (1996)] Eqn. (4.22) is given

by

w)x + CI..XA) + b
i (423)

a 1 J=l 1=1+1

and k = O,l,

In matrix form Eqn. (4.23) can be rewritten in matrix-vector equation as using the concepts

discussed in § 2.3.2 and 2.3.3:

(4.24)

if

where H,, is called Gauss-Seidel iteration matrix and given by

H, = (I +w D 1 L)' {(1—w) 1—wD'U) (425)

and

V(,) =w(I+wDLDb (4.26)

The Algorithm

Similar to many other evolutionary algorithms, the GSBTVA hybrid algorithm also always

maintains a population of approximate solution to linear equations. The initialization of

population and recombination mechanisms of this algorithm is same as those of JBUA
I

algorithm. Mutation is achieved by performing one iteration of Gauss-Seidel based SR

method as given by Eqn. (4.24). The mutation is stochastic since w used in each mutation

step, is adapted stochastically in each generation (iteration). The fitness of an individual is

evaluated based on the error of an approximate solution. The relaxation factor is adapted

after each generation, depending on how well an individual performs (in term of error).

The main steps of the GSBTVA hybrid evolutionary algorithm described as below:

Step 1: Initialization

Generate, randomly from 'R', an initial population of approximate solutions to the linear

Eqn. (4.7) using different relaxation factor for each individual of the population. Denote

ç (0) (0) (0)
the initial population as = 1X 1 , X 2 .., Xv I where N is the population size. Let 0

.4,

is assigned to k, where k is the generation counter. And initialize corresponding relaxation

factor (0 as:

for /=1
= 2 (4.27)

for 1<iN

d
-

W I.

where
- N

42

Step 2: Recombination

ç (k+c) (k~) (k+c)
Now generate X' x1 , x 2 ,..., Ar as an intermediate population through

the following recombination:

= R(X) (4.28)

where R is a stochastic matrix. Superscript " '" is a transposed operator.

Step 3: Mutation

..r(k+nz) r(k+c)
Then generate the next intermediate population from X as follows: For each

(k+c
individual Xj (1 ~i ~ N)in population produces an offspring according to

(see Eqn. (4.24))

= H X 1 + V , / = 1,2....., N . (4.29)

where H (, is called Gauss-Seidel iteration matrix corresponding w, and given by

H e,,, =(I+o) D1 L){(l—w,)I —w1 D 1 U} (4.30)

and

V() =w (L+w1 D'L 1 D'b (4.31)

Here co is denoted as relaxation factor of the Ith individual and x is denoted as /th

(mutated) offspring, so that only one iteration is carried out for each mutation.

Step 4: Adaptation

Let X ' " and y be two offspring individuals corresponding to relaxation factors co,

and co and 11 e(xF?l)I and 11 e(y") are their corresponding errors (fitness value). Then

the relaxation factors cv,: and co, are adapted as follows:

(d) If 11 e(x")>11 e(y")11, (i) then move co, toward w,: by using

= (0.5 + p)(w. + w) (4.32)

and (ii) move cv, away from w, using

f
co. +p4,(c)c: —wy), when w >

+p1,(co —w 1,), when w1, <w x
(4.33)

where p = E xN(0,0.25)x1 9 , and p =E ,. x I N(0,0.25) x7, as defined earlier

(Eqn. (4.3) and Eqn. (4.4)).

(e) If 11 e(x"') 11<11 e(y") 11 , then adapt co and w in the same way as above but

reverse the order of co and a.

(t) if II e(xm)JJ=jJe(ym)II, no adaptation. Sothat co"' =cox and co' =W..

Step 5: Selection and Reproduction

Selection mechanism is same as that of JBUA algorithm. That is, select the best N/2

offspring individuals according to their fitness values (errors). Then reproduce of the above

selected offspring (i.e. each parent's individual generates two offspring). Then form the

next generation of N individuals.

Step 6: Terniination

If nzinflle(z)II : z€X} < l (Threshold error), then stop the algorithm and get unique

solution. Ifmin{IIe(z)II : zX) —> oc, then stop the algorithm but fail to get any solution.

Otherwise go to Step 2.

4

'V

CHAPTER 5

Evaluation of Uniform Adaptive Hybrid Evolutionary

Algorithms for Solving a Set of Linear Equations

5.1 Introduction

4
Large set of linear equations frequently arise directly or indirectly in the real world

problems and though there are many classical methods available for solving them,

scientists till have their keen interest to find out the methods, which converge rapidly and

efficiently.

For solving large set of linear equations, especially for sparse and structured coefficients,

iterative methods are preferable, as iterative method are unaffected by round off errors

[Gerald and Wheatley (1998)]. The rate of convergence of the well-known classical

numerical iterative methods (the Jacobi and the Gauss-Seidel method) is very slow and can

be accelerated by using successive relaxation (SR) technique [Young (1971) and Engeln-

Muliges and Ublig (1996)]. But the speed of convergence depends on the relaxation factor

1) (0 < () < 2) and SR technique is very much sensitive to the relaxation factor [1-lagaman

and Young (1981), Stocr and Bulirsch (1991)]. Moreover, it is often very difficult to

estimate the optimal relaxation factor, which is a key parameter of the SR technique

[Hagarnan and Young (1981), Gourdin and Boumahrat (1996)].

The evolutionary algorithms (EA) are developed from some natural phenomena: genetic

inheritance and Darwinian strife for survival [Back et al. (1997), Back and Schwefel

((1993) and Schocnauer and Michalewiez (1997)]. Generally, most of the works on EA can

be classified as evolutionary optimization (either numerical or combinatorial) or

evolutionary learning [Hashem (1999), Watanabe and 1-lashem (2004), Michalewicz

(1994), Michalewicz and Attia (1996), Salomon and Van Henimen (1996) and Jun et al.
If

(2000)]. Recently, Jamali et al. (2003) has developed Gauss-Seidel based uniform adaptive

45

(GSBUA) hybrid evolutionary algorithm and Jacobi based uniform adaptive (JBUA)

hybrid evolutionary algorithm for solving large set of linear equations. In these algorithms

both crossover and mutations operations are present. Furthermore, Gauss-Seidel based

Time variant adaptive (GSBTVA) hybrid evolutionary algorithm [Jamali et al. (2004b)]

and Jacobi based Time variant adaptive (JBTVA) hybrid evolutionary algorithm [Jarnali et

al. (2004a)] have been developed for solving large set of linear equations by integrating

classical numerical methods with Time variant adaptive (TVA) evolutionary computation

techniques. In the later two algorithms, both crossover and mutations operations are also

present. The uniform adaptation or time variant adaptation techniques are introduced for

self-adaptation of relaxation factor. The idea of self-adaptation was also applied in many

different fields [Salomon and Van Hemmen (1996), Back (1997) and Beyer and Deb
MA

(2001)].

5.2 The Existing tJniform Adaptive Hybrid Evolutionary Algorithms

The main aim of the hybridization of the classical SR methods with the evolutionary

computation techniques is to self-adapt the relaxation factor used in the classical SR

technique. The relaxation factors are adapted on the basis of the fitness of individuals (i.e.

how well an individual solves the equations). Similar to many other evolutionary

algorithms, the hybrid algorithm always maintains a population of approximate solutions to

the linear equations. Each solution is represented by an individual. The initial population is

generated randomly from the field Different individuals use different relaxation

factors. Crossover in the hybrid algorithm involves all individuals in a population. If the

population is of size N, then the crossover will have iV parents and generates N offspring

through linear combination. Mutation is achieved by performing one iteration of classical

(Gauss-Seidel or Jacobi) method with SR technique. The mutation is stochastic since w,

used in the iteration are initially determined between coi (=0) and w, (=2), is adapted

stochastically in each generation. The fitness of an individual is evaluated on the basis of

the error of an approximate solution. For example, given an approximate solution (i.e., an

individual) z, its error is defined by IIe(z)II = jAZ - bjl. The relaxation factors are adapted

after each generation, depending on how well an individual performs (in terms of the

error). The main steps of the existing JBUA and the GSBUA hybrid algorithms are -

initialization, Crossover, Mutation, Adaptation and Selection mechanism [Jamali et al.

46

(2003)]. The pseudo-code structure of the existing hybrid evolutionary algorithms [Jamali

et al. (2003)] is given bellow:

Algorithm_J BUA/GSBUAO

begin

k *— 0 ; /* Initialize the generation counter */

(0) (0)
Initialize population: X ° = (x1 ,x2 .x};

* Here X
(k)

i-th individual at k-th generation

Initialize relaxation factors: w. E (0, 2) randomly

-I' Evaluate population: I Je(X)J = {, e(z) J : z X);

While (hot termination-condition) do

begin

Select individuals for reproduction:

Apply operators:

Crossover: X = RX);

j* R is stochastic matrix & Superscript c indicates Crossover *

(k+m) (k+c)
Mutation: X = H q(w,)Xi +Vq((oj) ,

/* where q E { .1' g , "j" indicate Jacobi based method and "g" indicate Gauss-

Seidel based method *

Evaluate newborn offspring: {e(") (/ +m)
H : E X"}

Adaptation of C') : CO, = fjco"Co,' &

ps.)

and p,, are adciptive probability functions *

Selection and reproduction: X(k) =

k —k+1;

" Increase the generation couizter *:

end
'V

end

47

As the adaptation and the selection are the main characteristic mechanisms of the existing

hybrid algorithms (as well as proposed modified algorithm also), so we have described

them in brief bellow:

Adaptation:

(k+m) (k+m) Let X and Y be two offspring individuals with relaxation factors 0V and w.

and with errors (fitness values) II e(x") and 11 e(y') respectively. Then the relaxation

factors w and w, are adapted as follows:

if JJ e(x") Ij>jJ e(y") JJ,

.1 (i) then co is moved toward w, by setting

(0 = (0.5+p)(w +w) (5.1)

and

(ii) w 1, is moved away from w by setting

(0111= JWV
+ PV(()U - wy), when W

.V
 > COX

.', + p,(0L - (oy), when w <W.V
(5.2)

where

€ (-0.01,0.01) and p1, E (0.008, 0.012),

are the uniform adaptive (UA) parameters of W and (OY respectively. Note that co and

are adapted relaxation factors correspond to °V and (0, respectively.

if 11 e(x"7) 114 e(y'11) 11, then W. and are adapted in the same way as above but in

the reverse order of w ' and

If II e(x"') 11=11 e(y"') , no adaptation will take place i.e.

= and C0' = CO

"V

Selection and Reproduction:

The best N/2 offspring individuals are selected according to their fitness values (errors).

Then the selected offspring are reproduced (i.e. each parent individuals generate two

offspring). Thus the next generation of N individuals is formed.

5.3 Necessity of Crossover

Here have tried to investigate the necessity of the crossover operation available in the

existing uniform adaptive hybrid evolutionary algorithms [Jun et al. (2000) and Jamali et

al. (2003)]. For the purpose two modified uniform adaptive hybrid evolutionary algorithms

(i.e. modified GSBUA and the modified JBUA algorithms) are proposed to solve large set
-01

of linear equations. The proposed modified hybrid algorithms are modified from the

existing GSBUA and the JBUA algorithms and contain all the evolutionary operations

available in the existing algorithms except crossover operation. The proposed modified

hybrid algorithms initialize random relaxation factors in a given domain and evolve" it by

uniform adaptation technique as well. The main mechanisms of the proposed modified

algorithms are initialization, mutation, uniform adaptation, and selection mechanisms (i.e.

crossover operation is absent). It makes better use of a population by employing different

equation-solving strategies for different individuals in the population. The errors are

minimized by mutation and selection mechanisms. The investigation is done by comparing

the proposed modified hybrid algorithms containing only mutation operation with existing

hybrid algorithms containing both crossover and mutation operations.

41

5.4 The Proposed Modified Hybrid Evolutionary Algorithms

The key idea behind the proposition of the modified algorithms (Modified Jacobi Based

Uniform Adaptive (MJBUA) hybrid evolutionary algorithm and the Modified Gauss-Seidel

Based Uniform Adaptive (MGSBUA) hybrid evolutionary algorithm) is to examine the

necessity of crossover operation for solving linear equations. So the proposed modified

hybrid evolutionary algorithms contains all steps of the JBUA and GSBUA hybrid

evolutionary algorithms except the step - crossover. And we are not repeating the pseudo-

code structures of the both modified uniform hybrid evolutionary algorithms here, as they

will be same as that of JBUA and GSBUA except crossover portion.

Me

- The system of ii linear equations with n unknowns X1 , X2 ,, X,, can be written as

12

1x1 = b,, (i = 1, 2,••, n) or equivalently, in matrix form

Ax=b (5.3)

In order to evaluate the effectiveness of the proposed MJBUA and MGSBUA hybrid

algorithm, a number of numerical experiments have been carried out to solve the Eqn.

(5.3) the following settings were valid for all the experiments:

Dimension of unknown variable, n = 200

Population size, N=2

Boundary of relaxation factor, (cot , (0) = (0, 2)

Initial domain from which each individual x of population X be initialized in (-30. 30)

Threshold error, q =1 O

Also the relaxation factors and the stochastic matrix R are generated randomly.

1.00.06
M JBUA

1(10 '04

100-1(12

I OE-O0

1,01002

001004

1 00.06

1 13 25 37 49

Generation

Figure 1: Comparison bctwccn
MJBUA and JBUA algorithms

1.01006

1.0510.1 .

00(102

1.00+1)0

:i
IoEo2j

1.05.0.1

\
HE-

1.01006

1.00.03-: . --

1 8 15 22 29
Generation

Figure 2: Comparison between
MGSBUA and GSBUA algorithms

-

-r
Z0 C

0 .0

88

50

The first problem (problem P1 in Table 1 & 2) was set by considering a,1 E (100,200), a,1 e

(-10, 10), h, E (100,200), I, j = 1, , ii. A single set of parameters was generated randomly

from the above-mentioned problem and the following two experiments were carried out.

The problem was solved with an error smaller than the threshold error 10

In the first experiment, the comparison between the JBUA and the proposed MJBUA had

been made. Figure 1 shows the numerical results of this experiment. From this experiment,

two important observations came out. Firstly the proposed MJBUA algorithm is

comparable with the JBUA algorithm in terms of number of generation. Secondly the

proposed MJBUA algorithm required less amount of time than that of JBUA algorithm.

Ir
In the second experiment, the comparison between the GSBUA and the proposed

MGSBUA had been made. Figure 2 shows the numerical results of this experiment. Again

two observations came out - (i) the proposed MGSBUA algorithm is comparable with the

GSBUA algorithm in terms of number of generation and (ii) the proposed MGSBUA

algorithm required less amount of time than that of GSBUA algorithm.

Table 1: Comparison between the JBUA and the proposed MJBUA hybrid algorithms for several
randomly generated test probleiiis

Domain of the elements of the coefficient matrix
A & the right side constant vector b of the test MJBUA Alg. JBUA Aig.

- Problems

o .2

)LiJ

P, a, €(100.200): a ji e 10. 10)-. h1e(100200) 62 390 60 411
P2 a11 E(1.400): a,1 €(-44): bi= 100 171 1016 168 1320
P3 a,e(-50.50), a11 e(-LI): be(-L1) 37 609 37 640

P., aij= 100: a,1 E(-l. 1): bE(-100. 100) 42 539 44 582

a1, = 50: a,, E(-10. 10): b,e(-5.5) 10 156 II 172
p6 aii =50: a, = (-1.1): h,= 2 10 188 11 219
P7 a,1 =20i: a1, =(100-j) "20: b=10 I 79 1282 82 1312

P8 a,, 20,i: a6 =
-
j: h, i

Not
converged

--

Not
 converged

P9 a,, =(-20. 200): a,, e(-2.3); be(-2.3) 475 7406 489 7641
P1 a,, =40: a,1 e(-44): b, =200 73 1170 74 1200

P,, a,e(-50.50): a11 e(-I.1): be(-L1) 34 530 33 560

Ir

51

Table 1 and 2 represent eleven test problems in each labeled from P i to P u , with

dimension, ii = 200. For each test problem P1: i = 1, 2.....II, the coefficient matrix A

and constant vector b all were generated uniformly and randomly within given domains.

Table I shows the comparison between the number of generations (iterations) of the JBUA

and the proposed MJBUA hybrid algorithms with respect to the considered threshold error,

,.
One observation can be made immediately from this table that the proposed MJBUA

hybrid algorithm is comparable with the existing JBUA hybrid algorithm for all the

problems. Another observation is that the proposed MJBUA required less amount of time

than that of JBUA for all the cases.

Table 2: Comparison between the GSBUA and the proposed MGSBUA hybrid algoritluiis for
several randomly generated test problems

Domain of the elements of the coefficient

-
matrix A & the right side constant vector b of MGSBUA Alg. GSBUA All

the test Problems
1:)

H ii H
P1 a,,€(100.200): a,, c(-10. 10): bE(100.200) 34 260 35 310
P. a,e(1.400): a, e(-4.4): h,= lOt) 92 710 93 734
P3 a1 E(-50.50): a,1 e(-l.1): be(-1.1) 44 625 45 656
P., a11= 100: a,1 e(-1,1): b,E(-100.100) 40 495 41 591
Ps a,= 50: a,, -10.10): bE(-5.5) 8 141 7 156
136 aii a,,=(-1.t): b=2 13 204 13 218
P- a,, =20i: a,, =(100-j) 20; b,=10 / 112 1468 117 1578
P,, a,, 20ii: a, =j: bi= i 60 859 58 938
P, a1, =(-20. 200): a11 E(-2.3): b,E(-2.3) 554 7141 559 7219
P10 a,1 =40: a11 e(-4.4): hi =200 107 1422 111 1500

p,, a11E(-50,50): aij€(-l.1): b,E(-1.1) 13 Iii 13 145

Table 2 shows the comparison between the number of generations (iterations) of the

GSBUA and the proposed MGSBUA hybrid algorithms with respect to the considered

threshold error, i. One observation can be made immediately from this table that the

proposed MGSBUA hybrid algorithm is comparable with the GSBUA hybrid algorithm for

all the problems. Another observation is that the proposed MGSBUA required less amount

of time than that of GSBUA for all the cases.

19

(

52

Table 3 Ff1ct of dimension of coefficient matrix Table 4: 1'11'ect of dimension of coefficient matrix

on both MUSifiJA and GSBUA algorithms on both MJT31JA and JBUA algorithms

Wj

q

MGSBUA GSBUA
Aig. Aig.

C)
.943

C)
E'

•
0

(f) <I)
C.)

0 :z

oLi-I
'-

C) c '-

200 168 2200 169 2266
100 34 171 46 293
50 20 16 20 31
25 19 2 19 3

ii!ii 15 0 15 0

MJBUA JBUA
AIg. Aig.

C)
.2

C)

h C j

(I)—

oLiJ 0

LiJ' tLJ

20() 162 2656 170 2828
10() 32 140 31 156
50 19 15 19 31
25 15 1 15 2
10 12 0 12 0

In order to study the effect of the dimension it of the coefficient matrix A on the modified

hybrid evolutionary algorithms, we set problems with ciii = it, a €(- n/4, n/4), h= ii: where

the value of it were set at 200, 100, 50, 25 and ID. For each value of it the problem was

generated randomly within proposed domain. Table 3 and 4 show the generation history

for both the modified hybrid algorithms and their existing counter parts for the above

problems. From the tables, it is observed that the effect of dimensions of the coefficient

matrix on MGSBUA and GSBUA as well as both MJBUA and JBUA hybrid algorithms

are almost same.

It is to be mentioned here that a total often independent runs with different sample paths

were conducted. The average results are reported here. Also for all the experiments, the

times were measured in the same environment.

5.5 Concluding Remarks

MJBUA and MGSBUA are the two modified uniform adaptive hybrid evolutionary

algorithms, which have been proposed for solving large set of linear equations which do

not contain the crossover operation. By omitting the crossover operations from existing

JBUA and GSBUA (Jun et al. (2000) and Jamali et al. (2003)) the proposed MJBUA and

MGSBUA hybrid algorithms respectively have been developed. The necessity of the

53

crossover operation is investigated by comparing the performance of the proposed

Algorithms with that of the JBUA and the GSBUA hybrid algorithms respectively. The

preliminary investigation has showed that both the proposed MJBUA and MGSBUA

hybrid algorithms are comparable in terms of generation (iteration) with the JBUA and

GSBUA respectively. Also the both proposed MJBUA and MGSBUA hybrid algorithms

required less amount of time than the JBUA and the GSBUA hybrid algorithm

respectively. Furthermore since proposed modified hybrid algorithms have no crossover

operation, so they require less memory allocation and less computational effort to solve the

problems. Moreover, the proposed modified hybrid algorithms are also very simple and

easier to implement both in sequential and parallel computing environments. It may thus

conclude that for solving set of linear equations by uniform adaptive hybrid evolutionary

algorithms, crossover is a needless operation.

(

rA

54

CHAPTER 6

Use of Proposed Hybrid Evolutionary Algorithms for

Solving Partial Differential Equations.

6.1 Introduction

Solution of Laplace's equation V 2 Ø = 0 will be performed using one of the Proposed

Modified Hybrid Evolutionary Algorithms. The problem will also be solved by Gauss-

Seidel method. Both the solution will be compared with the analytical solution and the

RMS error will be calculated. A sample Poisson's equation will also be discretized to

transfer into a set of linear equations. That set will also be solved by one of the proposed

Algorithm, MGSBUA Algorithm.

6.2 Solution of LapLace's Equation

Let us consider a steel plate of size 36cm x 36cm. The upper side is held at 100°C and the

other sides are held at 0°C. Now we are to find the steady state temperature at interior

points assuming a grid size of 3cm x 3cm. Here we obtain 13 x. 13 grid points on the plate.

(There will be II x I I grid points inside the plate where the temperature distribution is to

be calculated.

initial values may be obtained by either taking diagonal average or cross average of the

adjoining four points. They are associated with the point patterns

& . . .

S •

respectively, and may be more vividly pictured by the stencils

55

41 0 0 0 0 0 0 0 0 0 1 000 011
1-410000000001000

0 1 -4 1 0 0 0 0 0 0 0 001 0 0
0014100000000010

000 1-41 000000000 1

0 0 0 0 1 -4 1 0 0 0 0 0000 0
000001 -41 00000000
000000 1-41 0000000

0 0 0 0 0 0 0 1 -4 1 0 0000 0
00000000 1-41 00000
0000000001400000
1000000000041000
01000

....

.... 14100000000010
. . . . 0 1 -4 0 0 0 0 0 0 0 0 0 0 1
.... 00040000000000
.... 00014000000000
. . . . 00 0 0 1 -40 0 0 0 0 0 0 0

.... 00000140000000

.... 00000014100000
. . . . 00 0 0 0 0 0 1 -4 1 0 0 0 0
.... 00000000141000

.... 00000000014100

.... 10000000001410 /119

.... 01000000000141 .1120

.... 00100000000014 .21

-100
-100
-100
—100
- 100
-100
-100
-100
—100
-100
-100
0
0

(

I
I
I

I

1

1 -4 1

I

which show in their proper relative positions. Thus we have for any (i,j)

f+L/ +j / +j + +,._, -4ff =0 (6.1)

We will get a system of linear equations in terms of fi., and consequently we will have

121 equations with 121 unknowns. The system of linear equations came to the form

Ax=b (6.2)

Ed
The matrix will be of the form presented below. The coefficient matrix will be a 121 x 121

order.

For solving the equation (6.2) the Analytical/Exact solution is the basic solution. The

analytical solution of the problem is

56

n7rx
(

200{1
' Sflh y .SlIl (6.3)

= ,iirh 1 / fl1 n7r.sillll -

I

The presence of the hyperbolic function is trouble creating. If we want to take more terms

fl7t
in the summation the sinh / becomes larger and larger. So we restrict ourselves up to

50 terms only and the output result (6.3) is taken up to 6 decimal places only.

The following matrix represents the analytical result.

49.240183 68.930570 77.099542 80.999858 82.844247 83.394362 82.844247 80.999858 77.099542 68.930570 49.240183

28029296 46.964189 57.851131 63.865378 66.902297 67.832005 66.902297 63.865378 57.851131 46.964189 28.029296

18.327701 33.042382 43.202833 49.544496 52.971909 54.052922 52.971909 49.544496 43.202833 33.042382 18.327701

12.850216 23.937285 32.366485 38.071833 41.323675 42.375842 41.323675 38.071833 32.366485 23.937285 12.850216

9.317473 17.639133 24.302695 29.043628 31.846087 32.769986 31.846087 29.043628 24.302695 17.639133 9.317473

6.846087 13.071833 18.202833 21.964189 24.240183 25.000000 24.240183 21.964189 18.202833 13.071833 6.846087

5.022558 9.635470 13.499968 16.383616 18.153913 18.749648 18.153913 16.383616 13.499968 9.635470 5.022558

3.621661 6.966553 9.795235 11.928167 13.249081 13.695779 13.249081 11.928167 9.795235 6.966553 3.621661

2.504230 4.824423 6.797167 8.293784 9.225429 9.541412 9.225429 8.293784 6.797167 4.824423 2.504230

1.574475 3.035811 4.282064 5.230785 5.823099 6.024330 5.823099 5.230785 4.282064 3.035811 1.574475

0.759817 1.465658 2.068527 2.528265 2.815722 2.913465 2.815722 2.528265 2.068527 1.465658 0.759817

We have solved the system of equations represented by (6.2) by Gauss-Seidel method and

obtained the following result, which is obtained after 109 iteration.

49.231949 68.195547 76.616603 80.705450 82.638024 83.213237 82.638393 80.706113 76.617416 68.196314 49.232446

28.732703 46.934371 57.566362 63.568255 66.634544 67.577638 66.635234 63.569493 57.567880 46.935803 28.733631

18.765227 33.244032 43.147698 49.368342 52.756009 53.829238 52.756951 49.370033 43.149771 33.245989 18.766496

(13.085121 24.130310 32.413933 38.003525 41.194115 42.228490 41.195230 38.005525 32.416385 24.132625 13.086622

9.446029 17.779832 24.376316 29.040100 31.790920 32.697779 31.792121 29.042254 24.378958 17.782327 9.447646

6.920300 13.168423 18.273604 21.992119 24.234261 24.982071 24.235462 21.994274 18.276246 13.170917 6.921917

5.067856 9.701656 3.559696 16.422913 18.174423 18.763185 18.175544 16.424924 13.562160 9.703983 5.069365

3.650479 7.012189 9.842539 11.967582 13.279575 13.722861 13.280546 11.969323 9.844674 7.014204 3.651785

2.522719 4.855369 6.832300 8.327100 9.255296 9.569928 9.256061 8.328474 6.833983 4.856958 2.523750

1.585674 3.055232 4.305392 5.254564 5.845960 6.046819 5.846483 5.255502 4.306542 3.056318 1.586378

0.765152 1.475094 2.080213 2.540625 2.828003 2.925706 2.828264 2.541094 2.080788 1.475637 0.765504

We also have solved (6.2) by one of the proposed Modified Hybrid Evolutionary

Algorithm, MGSBUA Algorithm. Here threshold error is taken as 1/ 10. The

estimation procedure of the error is discussed earlier (§ 4.7.1).

For the following result the number of generations (iteration) required was 109.

57

A
49.233647 68.198716 76.620933 80.710572 82.643542 83.218755 82.643542 80.710572 76.620933 68.198716 49.233647

28.735872 46.940286 57.574442 63.577814 66.644842 67.587936 66.644842 63.577814 57.574442 46.940286 28.735872

18.769557 33.252112 43.158736 49.381399 52.770076 53.843305 52.770076 49.381399 43.158736 33.252112 18.769557

13.090243 24.139869 32.426990 38.018972 41.210757 42.245132 41.210757 38.018972 32.426990 24.139869 13.090243

9.451548 17.790130 24.390383 29.056741 31.808849 32.715707 31.808849 29.056741 24.390383 17.790130 9.451548

6.925819 13.178721 18.287671 22.008761 24.252190 25.000000 24.252190 22.008761 18.287671 13.178721 6.925819

5.073005 9.711264 13.572820 16.438440 18.191151 18.779912 18.191151 16.438440 13.572820 9.711264 5.073005

3.654938 7.020510 9.853906 11.981028 13.294062 13.737347 13.294062 11.981028 9.853906 7.020510 3.654938

2.526236 4.861931 6.841264 8.337705 9.266721 9.581353 9.266721 8.337705 6.841264 4.861931 2.526236

1.588076 3.059714 4.311515 5.261808 5.853764 6.054622 5.853764 5.261808 4.311515 3.059714 1.588076

0.766353 1.477335 2.083274 2.544247 2.83 1905 2.929608 2.83 1905 2.544247 2.083274 1.477335 0.766353

The Elapsed time in sequential processor is: 0.063000 seconds.

To cheek the efficiency of the Modified Hybrid Evolutionary Algorithm the same number

Ir of iteration is taken. The corresponding results are compared with the analytical one. For

the comparison the Root mean square (RMS) error is calculated. The RMS error for the

Gauss-Seidel method is found as 0.235760 and that for the proposed Modified Hybrid

Evolutionary Algorithm is found as 0.235158. Thus we may conclude that for the same

number of iteration Modified Hybrid Evolutionary Algorithm is better than the Gauss-

Seidel method. To get the same accuracy of the solution Hybrid Evolutionary Algorithm

requires 109 iteration where as Gauss-Seidel requires 312 iteration.

6.3 SoLution of Poisson's Equation (71
Let us consider the Poisson's equation

(
8xy (6.4)

over the square domain 0 x < 3 and 0 ::~ y _< 3 with f = 0 on the boundary and h

0.25. We have to find f(x, y).

The discretized form of the equation (6.4) becomes

f+ +f +fjjj -4f f = 8x(i)y(j) (6.5)

For h = 0.25 we have 1 1 x 11 grid points inside the boundaries. The matrix form will be as

follows: -

4 1 0 0 0 0 0 0 0 0 0 1000 0
1410000000001000 .
0 1 -4 1 0 0 0 0 0 0 0 0010 0 /
001-4100000000010 .

0001-410000000001
0000 1-41 000000000 .
000001-41 00000000 .
000000 1-410000000 .
0000000 1-41000000 .
0 0 0 0 0 0 0 0 1 -4 I 0000 0
0 0 0 0 0 0 0 0 0 1 -40000 0
1 0 0 0 0 0 0 0 0 0 0-4100 0
01000

.1-41 00000000010

.01-400000000001

.000-40000000000

.0001-4000000000

. 00 0 0 1 -40 0 0 0 0 0 0 0

.000001-40000000

. 00 0 0 0 0 1 -4 1 0 0 0 0 0

. 00 0 0 0 0 0 1 -4 1 0 0 0 0

.000000001-41000

. 00 0 0 0 0 0 0 0 1 -4 1 0 0

. 1 0 0 0 0 0 0 0 0 0 1 -4 1 0 ./119

. 0 1 0 0 0 0 0 0 0 0 0 1 -4 1 t.
0010000000001

5.5
11

16.5
22

27.5
33

38.5
44

49.5
55

60.5
5

10

10
11
.5
1.5
2

2.5
0
.3

0
-3-

4
4.5

5
5.5

It is difficult to find solution normally. But we have easily obtained the solution by using

the proposed MGSBUA Algorithm. The obtained solution is presented below which has

taken 110 generations (iterations).

(
-16966811 .33 631848 -49666321 -64683301 -78.197100 -89564348 -97.890348 -101 866250 -99456944 -87232202 -$ 741101

-28 735396 -56.894262 -83.850133 -108.869784 -131.040751 -149.169945 -161.630795 -166.117705 -159 229326 -135 730764 -87.232202

-36.080513 -71.359670 -104970165 -135.904951 -162926174 -184.443884 -198.345184 -201.744451 -190611888 -159.229326 -99.456944

-39.726985 -78.493739 -115.265908 -148.853680 -177.515111 -200.334234 -214.061604 -215.903027 -201.744451 -166.117705 -101.866250

-10 333688 -79.622392 -116 746048 -150.428749 -179 l4637 -201.016336 -213.663970 .214 061604 -198 345184 -161 630795 -97 890348

-38485375 -75.916092 -III 167145 -142.968911 -169825231 .189.920784 -201.016336 200334234 -184.443884 -149.169945 -89.564348

-34691722 -68.389456 -100.037528 -128454517 -152.264874 -169.825231 -179 146357 -177.815111 -162.926174 -131 04078! -78.197100

.29.392055 -57.912484 -84.638995 -108.546756 -128.454517 -142 96891! -150 428749 -148.853681) -135.904951 -108.869784 .64.683301

.22.964015 -45229428 -66.09211 -84.638995 -100.037528 -111.167145 -116.746048 -115265908 -104970165 -83 850133 49.666321

-15.734576 -30.982002 -45.229428 -57.912484 -68.389456 -75.916092 -79.622392 -78493739 -71 359670 -56.894262 -33 631848

-7992288 -15.734576 -22.964015 -29.392055 -34,691722 -38.485375 -40.333688 -39,726985 -36.080513 -28.735396 -16 9668!!

The threshold error is taken as '7 =10 and the time required was 0.078000 seconds.

The computation is done on the computer with 2.60 GI-Iz Intel Dual core processor and the

RAM is 1GB.

59

-J Concluding Remarks

Our target was to study the use of Hybrid Evolutionary Algorithms for solving large set of

linear equations. Iterative methods are best suitable for solving large set of linear equations

by computer. The convergence of the well known classical iterative methods is very slow

and can be accelerated by using successive relaxation technique. The speed of convergence

depends on the relaxation factor ct) (o <(o <2). It is veiy difficult to estimate the optimum

relaxation factor. To estimate the optimal value of the relaxation factor the idea of

evolution is utilized and thus Hybrid Evolutionary Algorithms evolved. Jacobi Based

Uniform Adaptive Hybrid Algorithm, Gauss-Seidal Based Time Variant Adaptive Hybrid

Algorithm and Jacobe Based Time Varint Adoptive Hybrid Algorithm has evolved with

underlying idea i.e. using the ideas of evolutionary computations the optimal relaxation

factor is estimated and using that optimum value of the relaxation factor the convergence

of the classical iterative method is accelerated and thus the hybridization is done. After

rigorously examining the existing Uniform Adaptive Hybrid Evolutionary algorithms we

have found that "For solving set of linear equations I/ic presence of cro.s-over is not

necessary". Hence we have proposed two modified algorithms. The modified algorithms

/
have no cross over operations as a result they consume less memory and become faster.

The proposed algorithms are tested to solve the steady state heat distribution on a square

plate with considered boundary conditions. The obtained result is compared with the

analytical one and found satisfactory. A sample Poisson's equation is taken for solving.

After discretization a set of linear equations is obtained. To solve that set we again have

utilized one our proposed Modified evolutionary algorithm and the obtained solution is

presented. It should be noted here that we have not tried to modify the Time Variant

Adaptive Hybrid Algorithms.

y

60

From our study the following conclusions and remarks can be made:

Hybridization of Evolutionary Computation and classical Iterative methods to

solve set of linear equations are very effective.

The presence of cross-over step in the Uniform Adaptive Evolutionary Hybrid

Algorithms to solve a set of linear equations is not necessary.

The two proposed modified hybrid algorithms are faster and memory effective

than their original counterparts.

Partial differential equations, after discretization can be solved suitably by the

proposed modified Hybrid Algorithms.

More studies are needed on the Time Variant Adaptive Hybrid Algorithms.

(

61

References

I. Antia, H. M. (1991), "Numerical Methods for Scientist and Engineers", Tata

McGraw-Hill, New Delhi, pp. 01 - 109.

Back, T. (1992), "ihe Jimieraction qf Mutation Rate, Selection, citid Self-adaptation

within ci gene/ic Algorithm, in Parallel 11roblem Solving fron, Nature ", mo

Procs. of the 1st European Conference on Artificial Life (F. J. Varela and P.

Bourgine, Eds) MIT press, MA, pp. 263 —271.

Back, T. (1997), 'Self-adaj,lation, in Handbook of Evolutionary (7ompillaliomi

Oxford University Press.

Back, T., G. Rudolph and H-P. Schwefel. (1993), "kvolutionamy Progmwnnzing and

evolution Strategies: Similarities and Differences ", In. Procs. of the 2nd

Annual conference on Evolutionary Programming. MIT Press, San Diego,

CA. pp. 11-22.

Back, T. and H-P. Schwefel. (1993), "Aim overview ?f Lvoluilionaiy Algorithms /br

Parameter Opuinuizalioui ", IEEE Trans. on Evolutionary Computation, 1(1),

pp. 1-23.

Back, T., M. Schutz and S. Khuri (1996), "Evolution Strategies: An alternative

evolutionary ('omputalion Method", In. Procs. of the 2nd Annual

Conference on Evolutionary Programming (M.J. Alliot, E. Luttin, E.

Ronald, M. Schoenhauer and D. Rogers, Eds.), Springer-Verlag, Berlin, pp.

3-20.

Back, T., U. 1-lammel, and H-P. Schwefel (1997), "Evolutionary Computation:

('oniments on the History and Current State ", IEEE Trans. on Evolutionary

Computation, 1(1), pp. 3-17.

Beyer, H.-G. and K. Deb (2001), "On Self adaptive feature.s in l?eaLlci,cz,,iete,•

Jvolulionary Algorithm ", Transactions on Evolutionary Computation, 5(3),

pp. 250-270.

62

Buckle, T. (1997), "theory ?f Evolu/ionaiy Algorithms and Application to Systeni

s:y,ithesis", A Doctoral Dissertation, Diss. ETH No. 11894, Swiss Federal

Institute of Technology, Zurich, Switzerland.

Burder, R. L. and J. D. Faires (1997), "Numerical Analysis (6 1' edition)",

Brooks/Cole - Thomson Learning, USA, pp. 250-472.

Carre', B.A. (1961), "7'he Determination (?tlhe Opiinuiin Accelerating i'actor for

Successive Over-Relaxation ", The Computer Journal, Vol 4, pp. 73-78.

Chapra, S. C. and R. P. Canale (1990), "Numerical Method/or Engineers (2n0

editio,i) ", McGraw-Hill, New York.

Chellapilla, K. H. Birro and S. S. Rao (1998, 'Effectiveness of Lvolutionaiy

programming", in: 3rd Annual conference on Genetic Programming

(GP'98), duly 22-25, Univ. of Wisconsin, Madision.

Cheney, W. and D. Kincaid (1999), "Numerical Mathematics and computing
(/hh1

edition)", Brooks/Cole - Thomson Learning, USA pp. 240-316.

Engeln-Mullges, G. E. and F. Uhlig (1996), "Numerical Algorithms with

Springer-Verlag, Heidlberg, pp. 59 - 142.

Fogel, D. B (1995), "Evolufionaiy Computation: Towards a New Philosophy of

Machine inelegance ", IEEE Press, Piscataway, N J.

Fogel, L. J., A. J. Owens and M. J. Walsh (1966), "Artificial intelligence ihivugh

Simulated Evolution ", Wiley, New York..

Forsythe, G. E. and C. B. Moler (1967), "('omputer So/u/ion of Liizear Algebraic

Systeni,s' ", Prentice-Hall, Englewood Cliffs, New Jersey.

Gerald, C. F., and P. O.Wheatley (1994), "Applied Numerical Analyis (5th

edition.)", Addison-Wesley, New York. pp. 102-209.

Gourdin, A. and M. Boumahrat (1996), "Applied Numerical Methods ", Prentice

Hall of India, New Delhi, pp. 2 12-232.

Hagaman, L. A. and D. M. Young (1981)' "Applied Iterative, Methods ", Academic

press, New York.

Hashem, M. M. A. (1999), "Global Optimization Through a New Class of

Evolutiomiary Algorithm ", Ph.D. dissertation, Diss. No. 19, Saga University,

Japan, pp. 1-30.

63

He, J., J. Xu, and X. Yao (2000), "Solving E(luations by Hybrid Evolutionary

Computation Techniques ", Transactions on Evolutionary Computation,

.4(3), pp. 295-304.

Holland, J. H. (1962), "Outline/or a Logical Jheoiy ?f Adaptive Systems", Journal

of the Association for Computing Machinery, 3, pp. 297-3 14.

Jam, M. K., S. R. K. lyengar and R. K. Jam. (1985), "Numerical Methods/or

Scientific and Engineering ('oniputa/ion (2nd edition) ", Wiley Eastern,

India.

Jamali, A R M J U, M. M. A. Hashem and M. B. Rahman (2003), "An Approach to

Solve Linear Equations Using a Jacobi-Based k'oliüoiiary Algorithm ",

Proceeding of the ICEECE, December 22-24, Dhaka, Bangladesh, pp. 225-

230.

Jamali, A. R. M. Jalal Uddin, M. M. A. Hashem and M. B. Rahman (2004a),

"5o1ving Linear Equations (ising a Jacobi Based 7me4'ar/cu/I Adaptive

Hybrid Lvollltionai3' Algorithm", Proceedings of The 7th International

Conference on Computer and Information Technology (ICCIT) 2004,

BRAC University, pp. 688-693.

Jamali, A. R. M. Jalal Uddin, M. M. A. Hasheni and M. B. Rahman (2004b), "An

Approach to Solve Linear Equations Using Time-J 'ariait Adaptive Based

Hybrid Evolutionaty Algorithm", The Jahangirnagar University Journal of

Science, Jahangirnagar University, Bangladesh, Vol. 27, pp. 277-289.

Jun, I-I., J. Xu and X. Yao (2000), "Solving Equations by Hybrid Evolutionary

Computation Techniques", Transactions on Evolutionary Computation,

Vol.4, No-3, pp 295-3 04.

Kim, J. H. and H. Myung (1997), "Evolutionary Programming Techniques/br

Constrained Optimization Problems", IEEE Trans. on evolutionary

Computation, 1(2), pp. 129 - 140.

3 1 . Koza, J. R. (1994), "Ge,ietic Programming on the Programming qf ('omputers by

Ivicans of Natiircil Evolution", MIT Press, Massachusetts.

32. Krishnamurthy, E. V. and S. K. Sen (1989), "NumericalAlgorithms compulations

in Science and Engineering", Affiliated East-West Press New Delhi, pp.

157-259.

64

Mathews, J. H. (2001), "Numerical Methods tbr Mathematics, Science, and

Engineering, (2nd edition. & 6//i reprint) ", Prentice-Hall of India, New

Del hi.

Michalewicz, Z. (1994), A Hierarchy of Evolution Pivgranis, "An Experimental

Study, Evolutionary Computation", 1(1), pp. 51 - 76.

Michalewicz, Z. (1994a), "Evolutionary ('ompulalion Jechnicues /br Nonlinear

Progranmung Prohle,n.s' ", International Trans. On Operation Research,

192), pp. 223- 240. (http:// www.coe.uncc.edu /-zbyszek/papers.htnil).

Michalewicz, Z. (1996), "Genetic Algorithms Data Structure Evolution

Programs, (3rd I?ev., and extended edition) ", Springer-Verlag, Berlin..

Michalewicz, Z. and N. F. Attia (1994)' "Evolutionary Optimization of(onsircuned

Problems", Procs. of the 3rd. Annual Conference on Evolutionary

Programming, River Edge, NJ, World Scientific, pp. 98-108.

Rechenberg, 1. (1993), "Evolutions Strategies: Optimierung tec/inisher Syvteme

na/h Prinzipieii des Biologischen Evolution ", Frornman-Holzbook Verlag,

Stuttgart.

Rechenberg, 1. (1994), "Evolution Strategy, In. ('oniputational Intelligence:

Imitating Li/i.'" (J.M. Zurada, R.J. Marks 11 and C.J. Robinson,Eds.), IEEE

Press, New York, NY, pp. 147-159.

Salomon, R. (1998), "Evolutionaty Algorithms and Gradient Search: Similarities

and Differences", iEEE Trans. on Evolutionary Computation, 2 (2), pp. 45

Sa1omon,R. and J. L. V. Hemmen (1996), "Accelerating Back Propagation

Through Dynamic Self-adaptation ", Neural Networks, 9(4), pp. 589-601.

Schoenauer, M. and Z. Michalewicz. (1997), "Evolutionary Computation", Control

and Cybernetics 26(3), pp. 303-3 88.

Schwefel, H.-P., G. Rudolph and T. Back. (1995), "('onlemporary Evolution

Strategies in Advances Artificial Life ", Third International Conference on

Artificial Life. Vol. 929 of lecture Notes in Artificial Intelligence, Springer-

Verlag, Berlin, Germany. pp. 893-907.

Stoer, J. and R. Bulirsch. (1991/92), "Introduction to Numerical Analysis ('2/id

edition) ", Springer, New York.

65

) 45. Varga, R. S. (1962), "Matrix Iterative Analysis", Prentice-Hall, Englewood Cliffs,

New Jersey.

Watanabe, K. and M. M. A. Hashem (2004), "Evohitionary Computation Technique

for Nonlinear Programming Problem", International Trans. on Operation

Research, Vol. 1, No. 2, pp 223-240.

Yao, X., and Y. Liu (1997), "Fast Evolutionary Strategies", Control and

Cybernetics, Special Issue on Evolutionary Computation, 26(3), pp.467 -

497.

Young, D. (1954), "Iterative Method for Partial Difference Equations of Elliptic

lype ", Trans. American Math. Soc, Vol 7(6), pp. 92-1 11.

Young, D. (1971), "Iterative Solution of Large Linear System ", Academic Press,

Now York.

Yuret, D. (1994), "From Genetic Algorithm to Efficient Opiinzization ", MIT, A.!.

Technical Report No. 1569.

LI

I

66

