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ABASTRACT

This thesis studies the nature of a sectionally pesudocomplemented lattice and Boolean
Algebra. Lattice theory is a part of Mathematics. Boolean algebra and Boolean function
is an important of lattice theory. A nonempty set P together with a binary relation R is

said to form a partially order set or a poset if the following conditions hold:
(i) Reflexivity (ii) Anti-symmetry (iii) Transitivity.

A poset (L,S) is said to form a lattice if for every a,be L if av b and a Ab exist in

L. A lattice is said to be complemented lattice if every element has a complement.

Let L be a bounded distributive lattice, let aeL an element a €L is called a
pseudocomplement of a in L if the following conditions holds: (i) ana =0 (ii)

Vxel, anx=0 implies that x<a'.

A complement distributive lattice is called a Boolean lattice. Since complements are

unique in a Boolean lattice as an algebra with two binary operations A and v and one

unary operation ". Boolean lattices so considered are called Boolean algebra. Moreover
we can discuss on relatively pseudocomplemented Lattices. In this thesis, we have given
several results on sectionnally (relatively) pseudocomplemented lattices which certainly

extended and generalized many results in lattice theory.

In chapter one is to outline and fix the notation for some of the concepts of lattices
which are basic to this thesis. Some more definitions and formulate results on a
orbitrary lattices for later use. We have considered this section as the base and
background for the study of subsequent sections. For the background material in Lattice
theory we have refered the readers to the of G. Birkoff [14] G. Gratzer [15] and V.K.

Khanna [24] and several authors.

In chapter two, we have given a description of difference classes of lattices. We have
also studied normal lattices and distributive quasi-complemented lattices. Generalized

stone lattices have been studied by H. Lakser [16,17], K.B Lee [20] and many other

authors.
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We have given a characterization of minimal prime ideals of a sectionally
pseudocomplemented lattices. Then we have shown that a distributive Lattice L with 0

is generalized stone if and only if it is both normal and sectionally quasi-complemented.

In chapter three introduces the concept of relative annihilators in lattices. Relative
annihilators in lattices were studied by several authors including Mandelker [21] and
Verlet [22]. B.A. Davey [1] has used the annihiiators in studying relatively normal
lattices. Here we have studied the relative annihilators in lattices. In terms of relative
annihilators, we have characterized modular and distributive lattices. Relatively stone
lattices have been studied by several authors including Mandelker [26], T.P. Speed [23]
Gratzer and Schmidt [15]. Here we use given several characterizations of relatively
stone lattices, which are certainly the generalization of above authors work. We have
also shown for a distributive lattice L in which every closed interval in
pseudocomplemented is relatively stone if and only if any two incomparable prime

ideals of L are comaximal.

In chapter four, we have studied lattices with the greatest element | where on each
interval [a.1] an antitone bijection is defined. We have characterized these lattices by
means of two induced binary operations proving that the resulting algebras form a
variety.

The congruence properties of this variety and the properties of the underlying lattices
are investigated. We have shown that this variety contains a single minimal subquasi
variety join-lattices, whose principal filters are Boolean lattices, were used by J.C.
Abbott [18]. We have introduced a further generalization of this concept, defining the
notion of a lattice with sectionally antitone bijection. We have also introduced
Residuated Lattices studied by Ward and Diworth [26] and several authors. Two mono

graph contain a compendium on residuated lattices. They are that by Blyth and Janowitz

[2]. In this paper we will compare a certain modification of a residuated Lattice.

In chapter five, It is shown that every directoid equipped with sectionally switching
mappings can be represented as a certain implication algebra. The concept of directoid
was introduced by J. Jezek and R. Quackenbush [19] in the sake to axiomatize algebraic
structures defined by on upward directed ordered set. In certain sense, directoids

generalize semilattices.
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In chapter six. We have studied switching Mapping introduced by Chajda and
Emanovsky [3]. A mapping f of [a,1] onto itself is called switching mapping if
f(a)=1 and for x€[a,l],a#x #1.In the section[q,l] is determined by that of [p,]],
we say that the compatibility condition for antitony switching mappings and connection

with complemention in sections have been shown.
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Chapter One

First concepts of Lattices

Introduction: The intention of this section is to outline and fix the notation for some of
the concepts of lattices which are basic to this thesis. Some more definitions and
formulate some results on arbitrary lattices for latter use. We consider this section as the
base and background for the study of subsequent sections. For the background material in
lattice theory we refer the reader to the text of G. Birkhoff [14], G. Gratzer [13] and
Vijay K. Khanna [24].

1.1 Preliminaries

Some definitions with examples:

Set: Any collection of objects which are related to each other.

Finite set: A set is finite if it consists of a specific number of different elements
Example 1.1.2 Let 4 be the set of months of a year. Then 4 is a finite set.

Infinite set: A set is infinite if it does not consist of a specific number of different

elements.

Example 1.1.3 Let 4 ={1,3,5,7,...........}. Then 4 is infinite.

Comparable: Twoset 4 and B are said to be comparable if Ac B orBc 4 ie.
if one set is a subset of the other.

Example 1.1.4 Let4={1,36,9} andB={136.9]2,......}. Then 4 and B are
comparablei.e. AcB.

Empty set: Aset having no element is called the empty set or null or void set and

denoted by ¢.




Example 1.1.5 Let 4 is a set having no element. i.c. 4=¢

Line diagram: If4 c— B then we write B on a higher level then 4 and connect them by

a line.

If AcBand BcC

® A
Fig-1.2
Example 1.1.6 Let 4 ={3},B ={4} and C = {3,4} then the linc diagram of 4,8 and C.
A\/. B
Cc
fig-1.3

Power set: The family of all the subsets of any set is called the power set of X . Notice,

since ¢ is contained in every set, ¢ € p(X) we denote the power setof X is p(X).
Example 1.1.7 Let X = {a,b} then P(X)={{a,b},{a},{b},p}

Disjoint set: If the set 4 and B have no common elements. i.e. no element of A4 is in

B and no element is in A, then we say 4 and B are disjoint set.



Example 1.i.8 Let 4={a,b} and B ={c,d}, then 4 and B are disjoint set, since
AnB=g.
Theorem 1.1.1 Let 4 and B be two sets which are not comparable. Construct the line
diagram 4,8 and AN B
Proof: Since AnBc 4 and AnBc BsoAN B is asubset of both 4 and B
Accordingly, we have the following line diagram,

A'\/’ B

ANB

Fig-1.4

Function: Let 4 and B be two sets, a relation R : 4 — B is called a function if each

element of A4 is assigned to a unique element of B

Example 1.1.9 f(x)=x’ +1 isa function.

Domain and Co-domain: If the relation R: 4 — B is a function then the set A is
called domain and the set B is called co-domain.

Example 1.1.10 4= {1,2,3} > B{2,4,6,8}: f(x) =2x then the set 4 is domain and Bis

co-domain.

One-one function: Let f be a function from A4 to B the function. Then f is said to

be one-one function if every element of 4 is assigned to single element of B

Example 1.10 f(x)=x’ +1 is a one-one function .

Onto function: Let f be function from 4 to B then the function f is said to be onto -
function if every element of B is assigned.

Product function: Let f be a function from 4 to B andlet g be a function of B the
co-domain of f, intoC The new function is called a production function or composite

function of f and g anditisdenote by go f or (gf)



Fig-1.5
Relation: A relation R from 4 to B issubsetof AxB

Example 1.1.13 Let X = {x, y,z} and Y = {a,b} ,then
R = {(x,a),(x,b),(y,a),(y,b),(z,a),(z,b)} is arelation from A4 to B |

Equivalence Relation: A relation R inaset 4 is an equivalence relation if
a. R is areflexive: (a,a) e RVae A
i.e. aRa VaeR
b. R is symmetric: (a,b) € R then a,beR
i.e. aRb=> bRa
¢. R istransitive: (a,b),(b.c) € R then a,b,ce R
i.e. aRb,bRc = aRc

Example 1.1.14 Let A= {1,2,3} be aset and
R={(11),(2,2),(3.3), (1,2), (2,]), (1,3),(3,1),(2,3)} be a relation of R then the relation is

an equivalent relation. Since

a. R is reflexive, (1,1),(2,2),(3,3) € R

b. R is symmetric, (1,2),(2,1),(1,3),3,))e R

¢. R is transitive, (2,1),(1,3),(23)eR

Partially order relation: A relation R inaset A is an partially order relation if

a. Reflexivity: aRa VaeR

b. Transitivity: aRfy bRc then aRc Va,b,ceR



c. Anti-symmetry: aRb, bRc then a=b Va,beR

Example 1.1.15 Onaset 4= {1,2,3}

=~ R={(1,1),(2,2),(3,3)} is reflexive, anti-symmetry and transitive.

Quasi order relation: A4 relation R inaset 4 is quasi order relation if
a. Ris areflexive: a,ac R Vae A

i.e. aRa VaeR

b. R is tramsitive: (a,b),(b,c)e R then a,ce R

i.e. aRb, bRc = aRc

Example 1.1.16 Let A={1,2,3} be asetand R ={(1,1),(2,2),(3,3),(2,),(1,3),(2,3)}
a. R is reflexive, (1,1),(2,2),3,3) e R

b. R is transitive, (2,1),(1,3),(2,3) e R

Totaliy order set: If P is poset in which every two members are comparable it is called
a totally order set or toset or a chain.
Example 1.1.17 IfPisachainand x,ye P then x<y or y<x . Clearlyalsoifx,y

are distinct element of a chain then either x<y or y<x

1

0
fig-1.6

Greatest element of a poset: Let P be aposet. If 3 anclement ae P st. x<a VxeP

then a is called greatest or unit element of P . Greatest element if exist, will be unique.

Example 1.1.18 Let 4= {1,2,3} then (p(4),C) is a poset.



Let B={{1,2},{2},{1}.{3},{1,2,3}} then (B,c) isa poset with {1,2,3} as greatest
element.
Least element of a poset: Let P be a poset. If 3 anelement xeP st. b<x VxeP

then b is called least or zero element of P . Least element if exist, will be unique.

Example 1.1.19 Let A= {1,2,3} then (P(4),<) is a poset. Let
B={¢{1,2},{2},{1}.{3},{1,2,3} } then(B,c) is a poset with ¢ as least element.

Maximal element: An element a ina poset P is called maximal element of P if a<x

forno xeP.

Example 1.1.20 In the poset 4= {2,3,4,6} under divisility 4 and 6 are both maximal

A

2 3
Fig-1.7

element.

Minimal element: An element b ina posct P is called minimal element of P if

a<x<b forno xeP.

Example 1.1.21 In the poset 4 ={2,3,4,6} under divisility 2 and 3 are both minimal

A

2 3
Fig-1.8

Upper bound of a set: Let S be a nonempty subset of a posetP. An eclement ae P
is called an upper bound of Sif x<a Vxe S

Example 1.1.22 <L;A,v,0,1> s bounded lattice.

Least upper bound of a set: Ifa is an upper bound of § s.t. a<5 for all upper bound
bof S then a is called least upper bound (l.u.b) or supremum of S . We write sup S for

supremum S .



Lower bound of a set: An element aeP will be called a lower bound of § if

a<x VxelfS.
Greatest lower bound of a set: If ais a lower bound of S s.t. b <a for all lower

bounds bof S then a is called greatest lower bound (g.l.b) or infemum of §. We write

inf S for infemum § .

Lattice: A poset (L,<) is said to form a lattice if for every a,beL sup{a,b} and

inf{a,b} exist in Z . In that case, we write,

sup{a,b}=avb (reada join b)

inf{a,b} =a b (rcad a meeth)

Other notation like a+b and ab or aub and auUb are also used for sup {a,b} and
inf {a,b}

Example 1.1.27 The set, L={1,2,3,4,6,12} of factors of 12 under divisibility forms a

lattice. It is represented by the following diagram:
12

fig-1.9
Theorem 1.1.2 If § is a non empty finite subset of a poset P . Then S has sup. and inf.
Proof: Let (p,<) be alattice. Let S be any non-empty finite subset of P
Case-1: § has single element ¢, then inf S=supS =a.
Case-2: § has two elements a,b then by the definition of lattice, supS and infS exist.

Case-3: S has three elements say, S = {a,b,c}. Since by the definition of lattice any two



elements of P have sup and inf.

We take, d = inf{a,b},e=inf{c,d}

We show e=inf{a,b,c}

By the definition of d and e,

d<ad<b,e<c,e<d thus e<a,e<bhe<c

= e is a lower bound of {a,b,c}

If f is any lower bound of {a,b,c} then. f<a,f <b, f <c.
f<a,f<band d=inf{a,b}gives f<d

f<ec,f<d, ande=inf{a,b} gives f <e

Hence e=inf{a,b,c} =inf §

Similarly sup S exists.

The result can similarly be extended to any finite number of elements in § .
Indeed Inf § =inf{.....inf{a,,a,},a,}.......a,}

If § ={a,,a,,a,,.......... a,}

Conversely, the result holds trivially as when every non-empty finite subset has sup. and
inf. O

Theorem 1.1.3 Let L be a lattice, then for any a,b,ce L the following results hold:
i. ana=a, ava=a (Idempotency)

ii. anb=bnaa, avb=>bva (Commutative)

iii. an(bac)=(@nb)ac, av(bvc)=(avb)vc (Associativity)

iv. anb<a, b<avb

V. a<b < a ab=a (Consistency)

<anb=b



vi. If 0,u € L then
Ona=0,0va=a

una=a, uva=a=u

vii. a A (av b)=a (absorption)
f<a,f<band

vili. a<bc<d
=anc=<bvd
sLave<bvd

In particular case,
a<b=>anx<bnx

avx<bvx Vxel

Proof: We proof results for the meet operation, similarly we can prove the results for

join operation.
i. ana=inf{a,a} =inf{a}=a
ii. anb=inf{b,a}=bAa
iii. Let bac=d then d =inf{b,c}
=d<bhd=<c
Again let e=inf{a,d}, then e<a, e<d
thus e<a,e<b,e<c (by using transitivity)
Now e=aand=an(bac)=inf{a,b,c}
Similarly we can show that (a Ab) Ac =inf{a,b,c}
Sanbac)=(anb)ac

iv. Since any two elements a,b of a chain are comparable, say a <b,



we find aab=infla,b}=a
v. a<b, a<a (by reflexivity)
=>a is a lower bound of {a,b} and therefore a =aAb,
vi. Since 0<x<u,Vxel
vii. a<avb by(iv)

sLan(avb)=a by(v)

savb<a by(iv)

~(avb)v=a by(v).

viil. aanc<a<h
anc<c<bh

Thus a A ¢ is lower bound of {b,d}
Hence aanc<bAab,the glb{b,d}

Also then. a<b, X <X =anx<bax o

Theorem 1.1.4 In any lattice L the distributive inequalities

i. an(bvc)=(aab)vianc)
ii. av(barc)<(avb)a(avce) hold forany a,b,ce L.
Proof: anb<a
anb<bvc
= a A b is lower bound of {a,bv ¢}
anbfanbve)..... (1)
Again anc<a
ancscsbhve

=@ NC 2 EADV )i (i)

10

nanb=a




(i) and (ii) show that a A (v c) is an upper bound of {a Abavc}
=anbac)<(avb)a(ave). O

Similarly we can prove the other inequality.

Note: The above are also called semi-distributive lattice.

Theorm 1.1.5 In any lattice L,
(anb)v(bac)v(cra)<(avb)a(cva), forall ab,ceL

Proof: Since anb<avbh

anbsbve

anb<ascva

wefind (anb)<(avb)a(bve)n(cva)

Similarly, (bac)<(avb)a(bvc)a(cva)

and (crna)S(avb)n(bveln(cva)

Hence (anb)v(bac)v(cva)s(avb)a(bve)a(cva) o

1.2 Algebraic Lattice

Algebraic Lattice: A non-empty set L together with two binary compositions

(operations) A (meet) and v (join) is said to form a algebraic lattice if for all a,b,ceL

the following conditions are hold:

(i) Idempotency: arna=a,ava=a,acl

(ii) Commutativity: aAb=bAa,avb=bva,abel
(iii) Associativity: an(bac)=(anb)Ac
av(bvec)=(avb)vc ab,cel

(iv) Absomption: aA(anb)=a

11



av(anb)=a a,belL
Theorem 1.2.1 Show that a poset (L,A,v)1s a lattice iff (L,A,v) 18 algebraic lattice.
Proof: Suppose L is a non-empty set
SOmMaAb=mﬁ@b}mdaAb=mphﬁ}
Then a Aa=inf{a,a} and ava= sup{a,a}=a
So aand v are idempotent.
a Ab=inf{a,b} =inf{b,a}=bra
avb=sup{a,b} =sup{b,a}=bva
So A and v are commutative.
Next a A (b ac) =inf{a,bAct= inf{a,inf{b,c} }
= inf{inf{a,b},c} =inf{a A b,c}=(anb)ac
av(bvc)=supia,bvcy= sup{a,sup{b,c}}
= sup{sup{a,b},c}= supfav b,c}=(avb)vce
So A and v are associative.
Finally, aA(bvc)=aAsup {a,b} =inf{a,sup{a,b}}=a
av(bac)=avinfia,b}= sup{a,inf{a,b}}=a
Hence A and v satisfy two absorption identity.
So (L,A,v) is a lattice.
Conversly, Since A is idempotent i.e, ana= aVael

Soa<a

- < isreflexive. Since A 18 commutative
ana=a,ava=a,a€lL

—a=b [sinceanb=al]

12



So < is anti-symmetric.

Let a<bh and b<c.Then a=anbb=bnc
=san(brc)=(anb)anc=anc

—~a=arc=axc.So, 2 istransitive.

s (L,%) isa poset. O

Problem 1.2.1 Non-empty subset of every chain is sublattice.

Solution: Let L be a chain and if s be a non-empty subsetof L . If a,b be two elements

of Sie., a,beS
= abelL=>ab are comparable.
Again let b2 a ie, albh

Then anb=aecS Andavb=beS. O

1.3 Semi lattice, Convex Lattice, Bounded Lattice and Complete Lattice

Meet semi Lattice: 4 non empty set P together with a binary operation A (meet) is

called a meet semi Lattice if for all a,b,ceP,
i. Idempotency: aAnra=a

ji. Commutativity: anb=bnra

jii. Associativity: aa(bac)=(anb)rc

Join semi lattice: 4 non empty set P together with a binary operation v (join) is

called a meet semi lattice

if for all a,b,c€ P,

i. Idempotency: ava=a
jii. Commutativity: avb=bva

iii. Associativity: av(bvec)=(avb)ve

13



Theorem 1.3.1 Aand B two lattices then prove that 4 x B is also a lattice.

Proof: Giventhat 4 and B two lattices then is a poset under the relation < defined by

(6, 7)< (x2,7)

& x<x,in 4, y<yin B.

We show that 4x B forms a lattice.

Let (x,,7,),(x;,¥,) € Ax B be any element.

Then (x,,x,) € 4 and (y,,y,) €8

Since 4 and B are lattices.

So {x,,x,} and {y,,y,} have sup and infin 4 and B respectively.
Let x, AX, =inf{x,x,} and y Ay, =inf{y,y,}

Then x, AX, X, 4 AX, S X, AV, S VWAV, S Y,

= (4 A X D A Y2) S 0, 20) = (4 A%y, 00 A Y2) S (%2,02)
= (X, AX,, 7, A Y,) is a lower bound of {(x;,,),(x;,,)}
Suppose (z,w) is any lower bound of {(x;,»,),(x;, )}
Then

(z,w) £ (x,,0)
(z,w)<(x;,¥,)

=>z=Z<x,zZx,, wSy,w<y,

z is a lower bound of {x,,x,} in4

and w is a lower bound of {y,,y,} in B

= z<x A X, =inf{x,x,}

w<y Ay, =inf{y, y,} =>EwW<( Ax, Y, AY,)

Orthat x Ax,,», AY,) is glb {(x,3),(x;,1,)}

14



Similarly we can say that,
(4, AX, 1 AY,) 182 least upper bound of {(x,,

Hence Ax B is a lattice. o
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Convex Lattice: 4 subset K of a lattice L is called a convex lattice if

a,bek,ceL,aSch imply that ce K .
Convex sublattice: A subset K of a Lattice L

all a,beK,|a ab,avblc K

is called a convex sublattice if for

Example 1.3.2 Inthe lattice {1,2,3,4,6,12} under divisibility {1,6}1isa sublattice which is

not convex as 2,3 €[1,6] but 2,3 ¢ {16}

Diagrammatically the lattice {1,2,3,4,6,12} canbe represented by the figure 1.9.

Theorem 1.3.2 4 sublattice of a lattice L is a convex sublattice iff for all

x,yeK(x<y)lxyleK.

Proof: Let k be a convex sublattice of L and x,y € k(x < ), be any elements, then by

the definition

[xApy.xvylcK

[x,ylcKas x<Sy=>xAy=X
xL<y=>xvy=y

Conversely, let [x,y]c K VX, y(x<y)

Let x,y € K be a sub lattice.

Also are comparable. ~.[xAy,xVylc K o

Bounded Lattice: A lattice with a largest an,

lattice. Smallest element is denoted by zero and

15
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Complete Lattice: A lattice L is called complete lattice if for its every sub set K, both

sup K,and inf K existsin L.

Finite Lattice: A lattice L is called finite lattice if it contains a finite number of

elements.

Example 1.3.4 Let L={1,2,5,10} be a lattice under divisibility. Here in the lattice the

finite number of element in L . So, L is finite lattice.

1.4 Ideal

Tdeal of a Lattice: A non empty set / ofa lattice L is called an ideal of L iff
iL.abel=avhbel
ii.aeliel=aniel

Example 1.4.1 Let L = {1,2,5,10} be a lattice of factors of 10 under divisibility. Then

{13, {1,2}, {1,5}, {1,2,5,10 } are all the ideals of L .

10

Fig: 10
Prime Ideal: Anideal P of L is called a prime ideal if forany x,y € L,xA y€ P
implies x €e Por ye P

Example 1.4.2 Let L = {1,2,3,4,6,12} of factors of 12 under divisibility forms a
Lattice then {1,2,4} be a prime ideal of L ( figure 1.9).

Principal Ideal: An ideal which generated by a single element is called principal ideal.

Example 1.4.3 Let (a]= {x/x < a} thentheideal (a] is generated by the elementa.

16



Hence (a] is principal ideal.

Filter or dual ideal: A non empty subset I of a lattice L is called dual ideal of L if
i.a,bel impliesthat anbel
ii.,del,ael impliesthatd na el

Example 1.44 Let L = {1,2,5,10} be the lattice under divisibility.
Then{10}, {5,10}, {2,10} are all dual ideals of a lattice L .

Theorem 1.4.1 If L is a chain then prove that every ideal of a lattice L is prime.
Proof: First suppose that every ideal of L is prime.
Now we are to show that L is a chain.
Leta,be L then anbe L
Now consider the ideal I = (a A b)
By hypothesis / is prime.
Now anbei=> eitherael orbel
= either a<aab or b<anb
— either a=aAb orh=anb = cither a<borb=<a
=> L is chain.
Conversely, let L bea chainand P be an ideal of L , we are to show that P is prime.
Let x,ye L with x A y € P . Since L is chain.
Then either x < yor y < x
—>either xA y=x or x Ay =y =>ecitherxe P or ye P
= P isaprimeideal of L. O
Theorem 1.4.2 Suppose K and / be non-empty subset of a lattice L .

i)/ isanideal iffforallx,ye I xvye L andforall xel, implies ¢t < |

17



i(K]=[xeL/x<K VK, V.. .v K forsomeK,,K,,..., K, € K}
iii. (al={xel/x<a.

proof: i. Suppose [ is an ideal .

So I is a sublattice and so forall x,ye I,xv yelL
Nowlet xe I,t < ximpliest <L

Then t=tArxel
Conversely, suppose I has the stated properties,

Let x,y € I then x A y < x implies xAayel

i.e. I isa sub lattice.

Now suppose i€ [,xe ] thenin x< 1
Implies i A x <[
Therefore 1 is an ideal. O

ii. Let x,ye k,vk,v..nrk, for some k ,k,,...., k, € K

then, x< k, vk, V.. A k, forsome k,,k,,..., k, € K
y<kvk,V..nk, forsomek, ky,.., k,¢€ K

SO xVy<kVk,V..nk, VvkVEkYV...VEk,

S P ek ¥k W A k, forsome k ,k,,....., k,e K

If xek vk,v...Ak, forsome ki ,kypo k, €K

and ¢t < I with ¢ < x, then
xSkvk, V.. Ak, forsome k,,k,,..., k, € K

and t< x <k, v k, V... Ak, implies

tek, vk,v.. nk, forsomek, ky,... k, e K

18



Hence k vk, V.....vk, isanideal, which contain X . O

1.5 Complemented Lattice

Complemented Lattice: In a bounded lattice L, a is a complement of b if

anb=0and aAb=1I.A complemented lattice is a bounded lattice in which every

element has a complement.

Example 1.5.1 Let [a,b] be an interval in a lattice L . Let x € [a,b] be any element.

If thereexists y € b suchthat xA y =a,xV Yy = b.

We say y is a complement of x relative to [a,b] ,or y isrelative complement of x
in [a,b] . Inevery clement x ofan interval [a,b] has at least one complement relative
to [a,b], the interval [a,b] is called complemented. Further, If every interval in a

lattice is complemented, the lattice is said to be relatively complemented.

Theorem 1.5.1 If L, and L, are relatively complemented, then Cartesian product 18

also relatively complemented.

Proof: Since L, and L, be relatively complemented.

Let [(x,,¥,), (x;,¥,)] be any interval of L, x L, and suppose (a,b) isany element

of this interval. Then (x,,y,) < (a,b) < (x,,¥,); X,%,,4 € L, yi,Y:,be L,.
Implies that x, <a<x, ¥, <b<y,
Tmplies that @ € [x,,x,] anintervalin L, and bely,,y,] beaninterval in L,

Since L,,L, are relatively complemented, (a,b) have complements relative to

[x,,x,] and [ y,y,] respectively.

Let «' and b’ be these complements, then ana'=x, ava' =x,

bAb'=y,bvb' =y,

Now (a,b) A (a',b')=(ana',brb’)= (x,,%;)

19



(G,b) v (arab!) = (ﬂ £ a",bv b') = (xl:xz)

ie., (a',b') is complement of (a,b) relative to [(x,,¥,)(x,,y,)], thus any

interval in L, x L, is complemented.
Hence L, x L, isrelatively complemented.
Conversely, Let L, x L, be relatively complemented.
Let [x,,x,] and [y, y,] beany intervalsin L, and L,
Let a € [x,,x,]), b € [y, ¥,] beanyelements then x, < a < x,, ; <b<y,
Implies that (x,,x,) < (a,b) < (x,,5,)
Implies that (a,b) € [(x,, ), (x;,¥,)] an intervalin L, x L,
Implies that (a,b) has a complement,
Say, (a',b') relative to this interval.
Thus, (a,b) A (a’,b") = (x,,¥,)
(a,b)v (a’,b") = (x,,,)
Implies that (a A a',b Ab") = (x,, )
(ava',bvb)=(x,y)

Implies that (a ana'=x,, ava'=x,
(bAb' =y, bvb' =y,,
Implies that @' is complement of a relative to [x,%,] &' is complement of b relative to

[, »,]

Hence L and L, are relatively complemented. O

Theorem 1.5.2 Dual complemented lattice is always complemented.

Proof: Let (L, p) be a complemented lattice with (0,1) as least and greatest elements.

Let (L,p), be the dual of (Z,p), then (0,1) are least and greatest element of L.

20



Let a e L =L beany element.

Since ae L, L is complemented,

Ja'eld stana'=0,ava'in L

ie. 0=inf{g,a'} in L

=0pa, Opa'=ap0, a'p0in L

= 0is the upper bound of {a,a'} in L

then apk, a' pk = kpa, kpa'

= kp0 as 0 is infimum. = 0pk

ie,0 islub{a,a'}in L ie,ava inl

Similarly, ana'=1 in L

or that a' is complement of ain L

Hence L is complemented. O

Theorem 1.5.3 A complemented distributive lattice is relatively complemented.
Proof: Let L be a complemented distributive lattice.

Let [a,b] be any interval in L and x €[a,b] be any element.
Since 1 is complemented x has a complemented ,

say x then xAx'=0and xvx'=u

a<x<b,a<x<bh, take y=(avx)nb

then xAy=xA[(@vx)abl=[(xra)v (xAx)]Ab
=[(xAa)vO0lab=(xra)Ab=anb=a.

and xvy=xv[(@avx)abl=[(xAa)v (xAx)]Ab

=[(xAna)v0lab=(xna)ab=anb=a.
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=(xv(avx'))A(xvb]=((x/\a)vx')/\b=u/\b=b

Hence y is relatively complemented of x in [a,0] O
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Chapter Two

An extension of sectionally pseudocomplement Lattice

Introduction: In this chapter we study sectionally antitone and residuated
lattices.Firstly, lattices with the greatest element 1 where on each interval [a, 1] an
antitone bijection is defined. We characterize these lattices by means of two induced
binary operations proving that the resulting algebras form a variety. We show that this
variety contains a single minimal subquasi variety Join-lattices, whose principal filters
are Boolean lattices, were used by. J.C. Abbott [18] for a characterization of the logic
connective implication in the classical propositional logic. These lattices also have the
property that on each principal filter of them an antitone involution is defined. Motivated
by this observation, the notion of a lattice with sectionally antitone involutions was
defined in [4] and [5]. In this paper we introduce a further generalization of this concept,
defining the notion of a lattice with sectionally antitone bijections. Our aim is to obtain
by means of these lattices ‘nice’ algebraic structures, i.e. a variety of algebras
characterized by ‘nice’ congruence properties.

Secondly, Residuated lattices were introduced by Ward and Dilworth [26] and studied
by several authors. Two monographs contain a compendium on residuated lattices. They
are that by Blyth and Janowitz [2] (where it is renamed as a residuated Abelian semi-
group with a unit). In this short note we will compare a certain modification of a

residuated lattice with already introduced concepts (see [2, 8]).

2.1 Lattices with sectionally antitone bijections

Let A = (A4,v,A,*,0,1) be a lattice with the greatest element 1. For each ae L the interval
[a.]] (with respect to the induced order) will be called a section. We say that L is a
lattice with sectionally antitone bijections if for each a € L there exists a bijection a of

[a]] into itself such that x<y < f,(y) < f,(x), for allx,ye[a,l] of course, the

inverse 7. of f, isalso an antitone bijection on [a,]. If each f; is an involution,
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ie. fa2 (x)=a for all xe[al] then L is called a lattice with sectionally antitone
involutions (see [5]). Given a lattice L with sectionally antitone bijections, we can
introduce two new binary operations on L as follows:

xoy= f,(xvy) and x*y=fy'](xvy) .......... (p)

Sincex v y €[y,]] , * and o are everywhere defined operations on the set L.
Conversely, one can check immediately that for any a L and x € [a.1]

f.(x)=x0a and f(x)=x*a.......(4)

Clearly, if all the mappings f(a) are involutions, thenxoy=x*y forall x,yel
(Since f, = fg_' foreach ae L).

The following Lemmas are extension of [5] and theorems are shown in semilattice.
Lemma 2.1.1 Let L be a lattice with sectionally antitone bijections * and o be

operations defined by (p). Then

(1) xox=x*x=Lxol=lLlox=1*x=x

@) (xop)*ry=(x*p)oy=(yox)*x=(y*x)ox

B) ((xoy)*y)ez)o(xoz)=(((xo¥)*y)*2)o(x*2) =1
Proof: Suppose a,be L and a <b Then

{aob:fb(avb):fb(b)zl and}

a*b=f,(avb)=f"'(b)=1 =1

Hencexex=x*x=1 and xol=x*1=1. Wealsoobtain lex= f, ()=x

and 1*x= £ (I)=x.

Thus (1) is satisfied.

@) Gonry=1"(f,Gvyvy=1£"(f,Gvy)=xvy since f,(xvy)2y

and hence f, (xvy)vy=f (xVvy).

Analogously, we can check(x*y)oy=xv y,(yex)*x=xVvy, and (y*x)ex=xV y.
(3) As (xoy)*y=xvy. Weget (xoy)*y)ez=f.(xvyvz). Further,
(xo2)=f,(xV 2).
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However,x vy <xvyvz and f, isantitone, thus
(xey)*y)ez=f,(xvyv)Sf,(xvz)=x°2z.
Analogously, we prove ((xoy)*y)*z=f(xv V) S f (xvz)=x*2.

By (Q) we obtain (3) immediately. [

Theorem 2.1.1 Let 4= (A4,v,A,*0,1) be an algebra of type (2, 2, 0) satisfying the
identities (1) and (2). Define a binary relation < on A as follows:
a<b ifand only ifacb =1................. R)
Then the following assertions are equivalent:
(i) The algebra A4 satisfies identity (3).
(ii) For any x,y,z€ A the implications
(@) (xo2)=f.(xVvz). and x< y=> y*z<x*z are satisfied.
(iii) < is a partial order on A and (4,<) is alattice with the greatest element 1,
whereav b =(aob)*b and for any ac A themaps f < f,(x)=x°a, f, =x*a
are antitone bijections on[a,l].
Proof: (i) = (ii). Suppose x < y. Then using (i), (R) and (3) we obtain:
(oz)o(xoz)=((*p)e2)xoz)=((xoy)*y)°2)e(xo2) =1,
and hence yoz<xoz.
Analogously, we obtain:
(r*2)o(x*2)=(1*y)*2)(x*2)=(((x°y) *y) *z) o (x *z) =1, whence
y*zS<x*2z
(i) = (iii). Assume that (1), (2) and (4) are satisfied. First we prove that the relation
< defined by (R) is a partial order.
Due to (1), < is reflexive. Suppose x< y.and y <x. Then xoy =1. and yox=1.
hence by (1) and (2),
x=l*x=(yox)rx=(x0y)*y=1*y=y,
thus < is anti-symmetrical.
Supposex < yand y < z.Then we get yoz=1 by (R),and xoz2yo>z by(4).

Hence we obtain xoz=1lie.,x <z Thus < is transitive, i.e., it is a partial order.
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As forany xe A wehave xo1=1 we get x<1 for all x € 4. Therefore,

x=1loz<xo0z, forall x,ze A and hence

zo(xoz)=1, forall x,ze A.....cecee...(S)

Define av b= (aob)*b forall a,b € 4. Then (2) and (S) implies
ac((acb)*b)=(ao((b*a)ca)=1 and
bo((aob)*b)=bo((a*b)ob)=],

thus a<avbh andb<avb.

Suppose now a <c and b <c¢ forsome ce 4. Then boc=1 and
c=1*c=(boc)*c=(cob)*b by (2). This gets
((@ob)*b)oc=((aob)*b)o((cob)*b).

Due to (4) we infer a<c=> cob<acb= (acb)*b<(cob)*b and hence
((@aob)*b)o((cob)*b) =Lie,((aob)*b)oc=1 proving avb<c.Thus avb
is sup{a,b} w.r.t <.

Now consider a € 4, f,, £, defined by (A) and x € [a,1]. Then

£7(f,(x))=(xca)*a=xva=x and
L7 () =(x*a)ca=xva=rx,
thus £, and £, are bijections on [a,]]. (and inverses each of other).
For x,y €[a,l] with x < y we have by (4)
fi(=yoasxoa=f,(x) and
7' =y*asx*a=f (),
therefore f, and f,' are antitone bijections.
(iii) = (i). By the assumptions of (iii) (4,<) is a join semilattice with sectionally
antitone bijections. Take any x, y € 4. Since
f,Gvy) =Gvy)ey=((xep)*y)oy=f,(f, (xoy) =xcy and
£l avy)=@vy)ry=(x*y)ey)*y=f, (f,(x*y)=x*y,
* and o can be also defined using relation (p). By applying Lemma 2.1.1, we obtain

that the algebra 4 = (4,Vv,A,*,0,1) satisfies the identity (3) . [
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2.2 Sectionally residuated Lattice

At first, we recall the basic concept:

By a residual lattice is meant an algebra L = (L,v,A,*,0,0,1) such that

(1) L=(L,v,A,0,1) is a bounded lattice,

(i) L =(L,x]) is acommutative monoid,

it satisfies the so-called adjointness property: (xv y)*z=y ifandonly if y<z<xoy
Let us note (see, €. g., [1]) that x v y is the greatest element of the set (x v y)*z=y
Moreover, if we considerx* y =x A y, thenxo y is the relative pseudocomplement of x
with respect to y, i. e, for*=A residuated lattices are just relatively pseudo-
complemented lattices. It is well known that every relatively pseudocomplemented
lattice is distributive. An extension of relative pseudocomplementation for the non-
distributive case was already involved [8,9]. The identities characterizing sectionally
pseudocomplemented lattices are presented in [18], i. e., the class of these lattices is a
variety in the signature {v,A,0,]}. We are going to apply a similar approach for the
adjointness property.

Definition 1. A lattice L =(L,v,A,]) with the greatest element 1 is sectionally

pseudocomplemented if each interval [y, 1] is a pseudocomplemented lattice. From

now on, denote by xvy the pseudocomplement of xv yin the interval [y, 1].
Naturally, xv ye[y,1] thus L =(L;v,Al) is sectionally pseudocomplemented if and

only if ' is an (every where defined) operation on L.
Definition 2. An algebraL =(L;v,A,*0,1) is called a sectionally residuated lattice if

(1) L=(L,v,A0,]) is a lattice with the greatest element 1;

(ii) L =(L,*]) is a commutative monoid;

(ui) It satisfies the sectional adjointness property: (xv y)*z=y if and only
ify<z<xoy

Lemma 2.2.1 Let L = (L;v,A*,0,]) be a sectionally residuated lattice. Thenx * y

is the greatest element of the set{z;(x Vv y)*z = y}

This immediately yields the following facts:

(X VYR (X0 R =P socacsiiisinssesions (1)
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Lemma 2.2.2 LetL = (L;v,A*,0,]) be a sectionally residuated lattice. Then

x <y, ifand only ifxo y =1

Proof: Suppose x <y, then xv y=y, and, bv Lemma 1, xo y is the greatest
element of the set{z; y*z = y}. By definition2, y*1=1 thus xoy =1. Conversely,
suppose xoy=1.Then, by (1), we havey = (x v y)*(xo y) =(x vy)*l=xVvy
whence x < y. O

Lemma 2.2.3 In a sectionally residuated lattice, the following identities are satisfied:
xox=1x0l=100x=Land lox=x

Proof: The first three identities follow directly by Lemma 2.2.2. Further, by Lemma
2.2.1, 1ox is the greatest element of the set {z; 1*z=x} ={x} thus lox=x). U
Lemma 2.2.4 In a sectionally residuated lattice, a*b =a if and only if a =5
Proof: Putting x= y=a, andz = in the sectional adjointness property, the
assumption a* b = ayields(av a)*b,iff a<b<aca=1 thusa<b

Conversely, a <b implies by Lemma2.23 a<b<l=aca and, by sectional
adjointness, a*b=(ava)*b=a. a

Applying Lemma 2.2.2 and Lemma 2.2.4, we get

Corollary 1. In a sectionally residuated lattice,

(@) x*y=xx y=x ifandonlyifxoy=1;

(b) x*x=x

Lemma 2.2. 5 In a sectionally residuated lattice, xAy < x* y.

Proof: By (3) we have x A y < xo(x A y). Applying sectional adjointness, we

infer x*(x Ay) =(xV (xA y))*(x AY)X and, analogously, y*(xA y)=xAy.
Hence, by Corollary 1 (b),

X% y*(xAY)=X*(XAY)EY*(XAY) = (XA *(XAY) =X AX

and, by Lemma 2.2.4, xAy <x*y. [

Theorem 2.2.1 Let L = (L;v,A,*0,1) be a sectionally residuated lattice. Then

it is a sectionally pseudocomplemented lattice.
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Proof: Replacingy by x A y in the sectional adjointness property, we obtain
x*¥z2=xAY Iff XAYy<z<Xxo(XAY)
However, xo(x A y) is the greatest element of the set

{t(xv(xAY)*t=xAyt={tx*t=xAy}.

By Lemma 2.2.5, x At <x*t=xA y, thus the greatest t of this property satisfiest 2 y.

Thusy < xo(x A y),ie, XAYSy<xo(xAYy)
and, by the sectional adjointness, x*y=(xA(XV y))*y =X A}.

Hence, xo y is the pseudocomplement of x v y in the interval [y,1]. O
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Chapter Three
Relative annihilators in Lattices

Introduction: Through this chapter we will be concerned with the relative annihilators
in lattices. For a,b e L , we define (a,b) ={x/an x<b}. According to [23], (a,b) is
known as an annihilators of a relative to b or simply relative annihilator. It is very easy to
see that in presence of distributivity (a, b) is an ideal of L. Relative annihilators in
lattices have been studied by many authors including Mandelker [21] and T.P. Speed
[23]. Also B.A. Davey [1] has used the annihilators in studying relative normal lattices.

We also include characterizations of modular and distributive lattices in terms of relative

annihilators. Then we have generalized some of the results of Mandelker [21] on relative
annihilators. We have shown that in a distributive lattice L. (a,b)v (b,a)=L for all
a,b € L if and only if the filters containing any given prime filter form a chain. For the

background material in lattice theory see Gratzer [13], Mandelker [21], T.P. Speed [23]
and Gratzer and Schmidt [15] have studied relatively stone lattices. In section two we

have introduced the notion of relatively stone lattices and generalises several results of

[13], [21], [23].

3.1 Some characterizations of relative annihilators in Lattice

Modular lattice: A lattice L is called a modular lattice iff for all a,b,c € L witha 2 b
anbve)y=bv(anc)
Example: The following diagrams are modular,
i. If @ = b then the above definition becomes
an(bvc)y=an(avc)=a
av(bac)y=av(anc)=a
ii.Ilfc2b
Then a2b,c2b=>anvc=2banc2b

Thus an(bve)=anc
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ba(ave)=anc - t'nq'[;,,cﬁ
\'/- -l £/

i : / ¢ / e G
iii. For a,b,c€ L, witha=>b [/ 2
-l UE :
av(bac)=bna(avc) (E | Bangladesh E
< I'\ S
Hence dual of a modular lattice is modular.(see picture 3.1) ® A

1

Fig: 3.1
Distributive Lattice:
A lattice L is called distributive lattice if
anbve)y=(@nb)vanc) Va,b,ce L
i.Ifa<b,az2c,b<c,
thena<b<c=a=b=c
Thus, an(bvec)=a=(anb)v(anc)
ii.Ifa<b,a<c,c<b
Then, a<b,a=b,c<b
Thus an(bvc)=anb=a
(anb)v(anc)=avc=a
Hence a chain is always a distributive lattice.

iii. A distributive lattice is always modular.

Boolean Algebra: A non empty set <L,A,v,’,0,]1 > with the binary operations A,v
unary operation and nullary operations 0,1 is called a Boolean algebra if it satiesfy the
following conditions :

)ana=a, ava=a VY ael

ii) anb=baa, avb=bva V abel

i) an(bac)=(@nb)ac, av(vc)=(@vb)ve V abcel

wv) an(avb)=a, av(anb)y=a VY abel

31



vVVan(bve)=(@nb)v(anc) V ab,cel
vi) There exists 0 e L,1e L suchthat av0=a anl=a Vael
vii) Each ae L, @' € L suchthat ana’"=0, ava=1
viii) 0'=1, 1'=0
ix) (@anb) =a'vd, (avbh)=a b
Lemma 3.1.1 A lattice L is distributive iff
Vx,y,ze L, tA(xAY)V(XAZ)=(CAXAY)VEAXAZ)
Proof: Suppose L is distributive, then obviously,
IA(xAYIV(EAZ))=EUAXAY)VIEAXAZ)
Conversely, suppose L has the given property. Let a,b,c € L with b v ¢ exists.
Set t =b v c, then
anbvec)=an((tab)v(tac)) |
=(antab)yv(antac)=(anb)vianc)
Therefore L is distributive. O
Notice that a lattice L is modular if for all x,y,ze L with z<x and whenever yv z
existsthen xA(yvz)=(xAy)Vvz
We can also easily characterize modular lattices by the following result.

Lemma 3.1.2 A lattice L is modular iff for all #,x, y,z € L with z < x,
XN(EAYIVEAZD))=(xAIAY)V (EAZ)

Proof: Suppose L is modular. Then obviously,
xA(AYIVEAZ)D=(xALAY)V(AZ).

Conversely, suppose L has the given property,

Let, a,b,c € L. with ¢ <a and b v c exists.

Set, t =bv e, then
anbvec)y=an(@ab)v(Eac)=(@@ntab)v(tac)=(anb)vec.

Therefore L is modular. o

Theorem 3.1.3 A lattice is modular iff wheneverb < a,if tAxe b and t A y € (a,b) for

any,f € L then ¢ Ay)vV({Ax)e(a,b).
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Proof: Suppose L is modular, since(t A y)v(tAx) € (a,b). So ant Ay =<b
also, tAy<b=<a

Thus by modularity of L,

an(@ay)vay)=@natay)vtax)<h,

and so,  Ax)V(t Ay)e(a,b)

Conversely, let the given condition holds,

Suppose 2,x,y,z€ L with zvx then ((Az)v(AaxAay)<x.

Also, tAxAYy <@ Az)v(taxay) impliesstAye(x,fAZ)V(EAXAY)).
Then by hypothesis, { Azv(fAY)e(x,((AZ)V(IAXAY)).

This implies x A(FAYV)VEAZ)S(EAXAY)V(EAZ).

Since the reverse inequality is trivial, so by Lemma 3.1.3 L is modular. o

Theorem 3.1.4 Suppose L is a lattice. Then the following conditions are equivalent:

i. L is distributive.

ii. (a,b) is anideal for all a,be L

iii. (a,b) is an ideal whenever b < a

Proof: Since (i) implies (ii) and (iii) are trivial,

We shall prove only (iii) implies (i).

Suppose (iii) holds. Let. #,x,y,ze L

Then (FAx AY)V(t Ax AzZ)<x implies
(x,AXAY)V(AXAZ)) isan ideal.

Again ((AXAY)SEAZAY)VEAXAZ)

Implies ¢ AY)e(x,(AXAY)VIAXAZ))
Similarly, (tAz)e (x,fAXAY)V(EAX AZ))

Hence ((Ay)v(tAanz)e(x,(AxAY)VIAXAZ))
Thus x A(AY)V(Az)ex(EAxAY)VEAXAZ)
Since the reverse inequality is trivial,

So xA(AYIVIAZ))=(x,EAXAY)V(EAXAZ))

Therefore by Lemma 3.1.1 L is distributive. O
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Lemma 3.1.5 In any distributive lattice L, each of the following conditions on a given

filter F implies the next.

1) For alla,b € L, there exists an element x€ F such that aAx and b Ax are
comparable.

(ii) The filters containing F form a chain.

(1)  F isprime.

(iv)  F contains a prime filter.

Proof: (i) implies (ii). Suppose (i) holds. If (ii) fails then there exists non-comparable

filters G and H containing F'. Choose elements a € F —G and be F —G. Then by (i)

there exists x € F such that a Ax and b A x are comparable. Suppose. aAnx<bAx.

Since xe F-G,s0 anxeG

Then a A x <b implies b € G, which gives a contradiction.

Therefore (ii) holds.

(ii) implies (iii). Suppose (ii) holds. Let a,b e Lwithavb exists and avbe F.

LetG =F v[a) and. H = F v [b).

By (ii), either G H or Hc G. Suppose G H.Then ae H,andso a=x b for

somex € F . Since x,avbe F,s0 xA(av) e F . Thus by distributivity of L,

(xAa)v(xab)=(xAa)va=acF.

Therefore F' is prime. (iii) implies (iv) is trial. o

Theorem 3.1.6 For as distributive lattice L the identity(a,b)v (b,a)=L for all

a,b € L holds if and only if

Q) For all a,b e L, there exists an element x € F such that a Ax and bAx are
comparable.

(ii) The filters containing F form a chain.

(iii)  F is prime.

(iv)  Fcontains a prime filter.

Proof: Suppose the identity holds. We only to show that (iv) implies (i). Let a,be L.

Suppose P is a prime filter contained in F . Choose ze€ P.

Since (a,b) v(b,a) =L ,50 z=xv y forsome x € (a,b) and. y € (b,a).
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Since P is prime, eitherxe P or ye P.

Suppose x € P.

Then x e F,and x € (a,b) implies anx<b andso aAx<bAx.

Therefore (i) holds.

Conversely, suppose all the conditions are equivalent. Let there exists a,be L.
Such that 7 = (a,b) v (b,a) is proper ideal of L.
Then there exists a prime filter P disjoint from 7/ .

Then by (iii) implies (i), there existsx € P such that a Axand b A x are comparable.

Suppose, a A x < b implies x € (a,b) which is a contradiction as. P NI = @ . Therefore,

(a,b)v(b,a)=1L. o

3.2 Relatively stone Lattices
We start this section with the following characterization of relatively stone lattices, which

is generalization. A pseudocomplemented lattice L is called a stone lattice if for each
xelL, x vx" =I. We call a distributive lattice L a relatively stone lattice if each
closed interval [x, y] with x < y(x, y € L)is a stone lattice. Two prime ideals P and Q

of alattice L are said to be comaximal if PvQ =1L.
The following characterization of relatively stone lattices, which is a generalization of

[15, Theorem 5]

Theorem 3.2.1 Suppose L is a distributive lattice in which every closed interval is
pseudocomplemented. Then the following conditions are equivalent:

(i) L is relatively stone.

(i) Forall x,yelL, (x,y)v(y,x)=L

Proof: (i) implies (ii). Suppose L is stone. Let x,y e L. For any a e L consider
I=[xAyna,a]in L. Let * denotes the pseudocomplement in 7 .

Now, xAyAra=(xara)A(y Aa)

since I stone,so a=(xAyAra) =(xAra)A(yra)) =(xra) v(yra)

thus a=rvs wherer =(xra)’,s =(yra)

then xAaAr=yAans=xAyna
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since r,s<a wehave x AyAa@a=xXAr=yAs.
This implies x A7 < y and y A s < x and so a=rvse(x,y)Vv(y,x)

Hence (ii) holds.
(i) Implies (i). Let [a,b] be any closed interval in L and let * denotes

pseudocomplemente in [a,b] .Let x € [a,b]

By hypothesis (x*,x")v(x",x")=L. Hence b=rvs for some re (x",x") and
se(x”,x’). Since a,r,s < b, so by the upper bound property avr,av s exists. Now
rAax <x" and rAax- <x. Thus, x" A(avr)<x”. Moreover x" A(avr)<x'is
obvious. Hence x A (a,7)<x" Ax =a Since avrelab] so avr= x" . Similarly
avs<x . Hence b=(avr)v(avs)<x vx" <b. Thisimplies x" v x" =b and so
[a,b] is a stone Lattice.

In other words, L is relatively stone. m

Definition: A filter F of a lattice L is called meet irreducible if F = G A H implies
either F =G or F = H where G and H are filters of L .

Theorem 3.2.2 Let L be a distributive lattice. A filter /' of L is prime if and only if it
is meet irreducible. _

Proof: Suppose F isprime and F =G A H for some filters G and H of LIFG=#F.
Then there existsg # F. Suppose he H . Then for any f e F,gA f € F,.gnfeG

and hA fe H. Hence (gA f)v(han f)eGhrH=F.

But gAnfeF as geG. SinceF is primeso ha feF which impliesh € ¥ This
implies # c F. As F c H isobvious,so F'=H . Therefore F is meet irreducible.
Conversely, suppose F is meet irreducible. Let a,be L such that avb exists and
avbeF. Set G=Fv[a) and H=Fv[b) clearlly, FcGAH. Now, let
xeGAH then for some f,,f,€F . Hence, x2 finfyrna2fiAf, Ab Put
f=f nf thenweget x> fAa,x2 fAb which implies that x > (f A a) v (f Ab).
Now x=(fAaa)v(fab)=fA(avb), as L is distributive and avb exists.

Therefore, (f Aa)v(f Ab)e F asavbeF .Hence xeF.
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Therefore, G A H = F and so G A H = F.Since F is meet irreducible, so either
G =F or H=F,thatiseither ae F or b € F .Hence F is prime. o

Following theorem generalizes a result of [17].

Theorem 3.2.4 In a distributive lattice L, the following conditions are equivalent.

(1) Any proper filter which contains a prime filter is prime.

(i)  For any pair of non-comparable prime ideals P and O, PvQO=L

Proof: (i) implies (ii). Let L be a distributive lattice and let P and QO be two non-
comparable prime ideals in L such that Pv Q # L . Then there exists a prime filter F
disjoint from the ideal Pv 0,L-P andL-Q are non-comparable prime filters. Such
that (L-P)A(P—-Q)=G D F, where G is a filter and by assumption (i), G prime,
which is impossible. Because, the theorem 3.2.3, G is meet-irreducible.

Hence for any pair of non-comparable prime ideals G and Q,PvQ=L

(ii) implies (i). Let L be a distributive lattice and let there exists a prime filter P and a
non-prime proper filter G such that F c G . Thus, G is not meet irreducible. Then there
exists filters 4 # G and B # G suchthatG = ANB.

So we can find two elements a and b suchthat ae 4,a¢ B and be B,be 4.

Then there exists a prime filter 4, containing 4 and disjoint from (6] and prime filter
B, containing B and disjoint from (a]. 4, and B, contain G and are non-comparable.
Thus by assumption (ii), (L — 4,)V (L-B,)=L.

Which would imply that any element of F is the join of two elements not belonging to

F, hence a contradiction. O

Following result is due to [13, Theorem 2.7]

Theorem 3.2.5 For any distributive lattice L the following conditions are equivalent:
(i) Forall a,be,<a,b>v<ba>L.

(i)  The filters containing any given filter form a chain.

Proof: (i)<> (ii) holds by theorem 3.1.6 and 3.2.5.
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Theorem 3.2.6 Suppose L be a distributive lattice in which every closed interval is
pseudocomplemented. Then the following conditions are equivalent:

6)) L is relatively stone.

(i)  The set of all prime ideals contained in a prime ideal is a chain.

(iii)  Any two incomparable prime ideals are comaximal.

(iv)  The set of all prime filters of L containing a prime filter is a chain.

(v)  Any proper filter which contains a prime filter is prime.

(vi) L, is achain for each prime filter F of L.

Proof: (i) implies (ii). Suppose (i) hold. Then by Theorem 321, <x,y>v<yx>=1L
for all x,yeL. If (ii) does not hold, then there exists prime ideals P,Q,R with
P> O,R; and Q and R are incomparable. Let x € Q-R and ye R—-0.

Then < x,y >c R and, y,x >c Q. Thus L=<x,y>v<y,x>QVvRcP#L which
is a contradiction. Hence (ii) holds.

(i)« (iii) and (ii)+>(iv) are trivial.

(iii)<> (v) holds by theorem 3.2.4.

(iif) implies (vi). Suppose (iv) holds. Then the prime filters of L, form a chain for any
prime filter of L . But, in a distributive lattice if the set of prime filters form a chain, then
the lattice itself is a chain.

Therefore L, is a chain for each prime filter ¥ of L.

implies. Let F be any prime filter of L. By (vi) L, is chain, and so for x,y in L ,we
have either y/ (x) Sy, (») or ¥ (¥) Sy:(x).In either case,

<Wr()We(¥) >V <Y (Whyp(x)>= Lg

e We(<x,y>Vv<yx>)=y,(L), andso by the principle of localization,

(< x,y >V < y,x >) = L. Hence by Theorem 3.2.1. L isrelatively stone. O

We have given several characterizations of these #* which are filters in a relatively stone

lattice Z . Then we have proved that L, is relatively stone.

38



Theorem 3.2.7 If F is a filter in a relatively stone lattice L . Then Lis relative stone.
Proof: Suppose L isrelatively stone. Let . (x),y . (y) € Lg..

Then< . (X)W (¥)>V <Y DhWp(X)>=Yp <X,y >VWp < y,x >
=ywel<x,y>v<yx>]

(L) =L, as L isrelatively stone.

Hence L, isrelatively stone. O

We conclude this section with the following examples.

Notice that both the lattices are relatively pseudocomplemented. In lattice of figure 3.1,
notice that (a],(b] and (c] are only prime ideals. Here both (a] and (5] are
incomparable with (¢] . Moreover, (a]v (c]=(b]v (c]=L,, therefore L, is relatively
stone. But for lattices of figure 3.2, observe that (a] and (b] are incomparable prime
ideals. But (a] v (] # L,. Therefore, L, is not relatively stone.

Also notice that though L, is relatively stone, it is not generalized stoneas 0 ¢ L, O

3.3 Relative annihilators in normal Lattices _

Mandelker [21] has characterized distributive lattices L , in which <a,b>v <b,a>= L
identically for all a,b in L, as those lattices in which the filters containing any given
prime filter form a chain. Surely, in such lattices every prime filter must be contained in

unique minimal filter. Hence bounded distributive lattices L in which

<a,b>v <b,a>=L identically forall a,b inL are the examples of normal lattices.

The following conditions are equivalent:

1. L is normal.

2. Each prime filter in L is contained in unique maximal filter.

3. Any two minimal prime ideals in L are comaximal.

Cornish [25, theorem 3.7] a characterization of a normal lattice in terms of relative
annihalitor ideals, is obtained in the following:

Theorem 3.3.1 Let L is a distributive lattice then the following conditions are
equivalent in L.

(i) Every prime filter in L is contained in a unique maximal filter.
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(i) <a,b>v<ba>=L identically for a,b € L with anb=0.
(iii) For any prime filter P inZ and for any a,be L with a Ab=0 there exists x in

L such that a A x and b Ax are comparable.

Proof: (i)=> (ii) Let <a,b>v < b,a>= I(= L) with anb=0. By Stone’s theorem,
a Ab =0 are exists a prime filter P disjoint with 7. Consider the filter P v [a) . If
bePla) then b=tnra for some 1€ p will imply re<a,b> and hence
teln P =¢, a contradiction. Thereforeb ¢ Pv[a) proves that Pv[a) is a proper
filter. Let M, be a maximal filter containing PV[a). Similarly, there exists a maximal
filter, say M,, containing the proper filter PV[b). As anb=0,bgM, and ag M,.
Hence M, # M. Thus the prime filter P is contained in two distinct maximal filters
M, and M ,contradicting the assumption. Therefore < a,b > Vv <b,a>= L for

a,be L with anb=0.

(ii)= (iii)Let P be any prime filter and a,b are in L with aAnb=0. By
(ii) <ab>v<ba>L. For any teP We have, t=xAy for some
xe<a,b> and ye<b,a>.As xvyeP and P is prime, x € P or y € P. Without
loosing generally, assume that xe P. Then by choice of x,anx<b will imply

a A x <b Ax and the implication follows.

(iii) = (f) Let P be a prime filter such that PcM, and Pc M, where M,
and M,, distinct maximal filters in L. Let aeM, suchthat a ¢M,.But then
there exists a, € M, suchthat a, na, =0. By assumption (iii) there exists xe€P
suchthat a, Ax and a,Ax are comparable.

Assume without loss of generality a, Ax <a, AX. AS @, AX€E M, implies a, Ax €M,
we get a, e M,. Butthen 0= a na, € M,, contradiction the maximality of M.

Hence the prime filter P must be contained in a unique maximal filter. O
Note that each prime filter L is contained in unique maximal filter if and only if each
minimal prime filter in L is contained in a unique maximal filter. Using this property we

get, the following theorem.
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Theorem 3.3.2 Let L is a distributive lattice then the following conditions are
equivalentin L.
(i) Any two distinct minimal prime ideals are equivalentin L.
(ii) For any two distinct maximal filters M, and M, in L there exists a, ¢ M,
and a, ¢ M, with a, na, =1.
(iii) For any maximal filter M, M is the unique maximal filter containing the filter
W(M)={xe/xvy=1} forsome y& M
Proof: (/)= (i) Let M, and M, be any two distinct maximal filter containing the
filters in L. By (i) (L/M,)v(L/M,)=L. As e Lthere exists a, ¢ M, and a, € M,
with a, v a, =1 and the implication follows.
(i) = (iii) Let W(M)c M, for some maximal filter M, = M,. Hence by (ii) there
exists agM and be M, such that @ va, =1. But then be WM)cM,, a
contradiction. Hence (if) = (iii) .
(iii) = (i) Let F be a minimal prime filter contained in two distinct maximal filters M,
and M, in L.As F is minimal. F = W (F) and hence W (F) < M,
and W(F)cM,.But FcM,=>WM)cW(F)c M,; acontradiction.

Thus each minimal prime in L is contained in a unique maximal filter. m)

3.4 Relatively complemented Lattices

Atom: An element a in a lattice L is called an atom if it covers 0. In other words a is

anatom iff =0 and xAa=a or xAa=0 Vxel.
Dual atom: An element b is called dual atom if u, the greatest element of the lattice

covers b.

Theorem: 3.4.1 Let L be a lattice then the following implications hold:

6y L is aBoolean algebra = L jsa relatively complemented.
(i1) L is relatively complemented = L is sectionally complemented.

(i) L is finite and sectionally complemented = every non-zero element @ of Lisa

join of finitely many atoms.
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Proof: Let L be a Boolean algebra and let @< x<b. Define y:=bA(avx') then y is
a complement of xin [a,b],

Since x Ay =xA(bA(avx'))=xa(avx)

=(xAa)v(xAax)=xAa=a

and xvy=xv((a(avx)=xv((bra)v (brx'))
=xv(BAx)=(xVvbA(xvx)=bal=b

Thus L js relatively complemented.

Gi) If L is relatively complemented, then every [4; b] is complemented; thus every
interval [a,b] is complemented i.e. L is sectionally complemented.

(TR - (TP ORTTRN——— Y be the set of atoms <ael and let

[0,a]. Let p be an atom <c, then L0 § - O O ,p,} and thus

p=pAb=scab=0, which is contradiction. Hencea =56 = p; V cconeuveneeee 5 m]

Finite Boolean algebra can be characterized of [17] as follows:

Theorem: 3.4.2 (Representation theorem) Let B be a finite Boolean algebra, and let 4
denote the set of all atoms in B. Then B is isomorphic to P(4)

ie., (B,Av) = (P(A).NV)

Proof: Let ve B be an arbitrary element and let A(v) = {a € /a<v}. Then A(v)c 4.
Define h: B — P(A);v— A(v)

We show that A is Boolean isomorphic. First we show that s is a Boolean

homomorphism.

For an atom a and for v,w € ¥ we have

ae Avaw)Sas<vAawea<vand aswede A(v) N A(w),
which proves A(v A w) = h(v) N h(w).

Similarly,

acAvvw)=asvvwesasy
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or a<weae A(v)u A(w)

Finally, ae A(W) S a<v'eanv=0=as/ve ae AVAW);

Hence, the second equivalent. Note that /#(0) = ¢ and 0 is the unique element which is
mapped to ¢. Since B is finite, we are able to verify that & is bijective. We know that
every v € B can be expressed as join of finitely many atoms: v=a, v.......... v a, with
all atoms a, <v. Let h(v) = h(w),ie., A(v) = A(w). Then a, € (v) and a, € (w).
Therefore @, < w and thus v < w. Reversing the roles of v and w yields v =w, and this

shows that 4 is injective.

To show that # is surjective we verify that for each ¢ € P(4). There is asome ve B
such that #(v) =c. Let c={c;,C; ererverecse ,C,yand v=¢, Ve, Ve ve,.

Then A4(v) 2 ¢, hence h(v) Dec.

Conversely, if @ € h(v), Then a isanatom with as<v=¢,ve, V.. VC,.
Therefore a < c,, for some i € {1,2................. N},
so a = ¢, € ¢. Altogether this implies h(v) = A(v) =c¢ O

43



Chapter Four

Pseudocomplemented Lattices

Introduction: In lattice theory there are different classes of lattices known as variety
of lattices. Distributive pseudocomplemented lattice is one of the large variety.
Throughout  this  chapter ~we discuss  pseudocomplemented lattice.
Pseudocomplemented lattice have been introduced by H. Lakser [16,17], K.B.Lee
[20] and several author. In this chapter we have studied pseudocomplemented lattices

and generalization of several results.

4.1 Pseudocomplemented Lattice

Pseudocomplemented: Let L be a bounded distributive lattice, let € L an element
a’ e L is called a pseudocomplement of a in L if the following conditions holds: (i)

ana =0 (ii) Vxe L, anx=0 implies that x<a'.

1

fig-4.1

Pseudocomplemented Lattice: A bounded lattice L is called a
pseudocomplemented lattice if its every element has a pseudocomplement.
Example 4.1.1 1=0*
c*=b
c=a*=b*
x—
&R 0=1*

fig-4.2

The lattice L = {0,a,b,c,1} shown by the fig (4.2) is pseudocomplemented.
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Lattice with pseudocomplementation: An algebra, < L,A,v,*,0,1 > where A,v are
binary operation * is a unary operation and 0,1 are nullary operations is called lattice
with pseudocomplemention if < L,A,v,*,0,1> is bounded lattice, i.e.V ae L there

exists a* such that an a*=0 and a A x =0 implies that x Aa*=x,V x e L.

Psendocomplemented distributive lattice: A bounded distributive lattice L is
called a pseudocomplemented distributive lattice if its every element has pseudo

complemented.

Example 4.1.2

0
fig-4.3

Consider the finite distributive lattice of fig. (4.3). As a distributive lattice it has
twenty five sublattices and eight congruence’s; as a lattice with pscomplementation

has three sub-algebras and five congruence’s.
Sublattice: As a lattice L:

{0}.{a},{b}.{c}.{1},{0,5}.,{0,¢},{0,1},{0,a,b,c}, L {a,c}. {a,c, 1}, {by ¢}, {anl}, {b.1),
{b,c,1},{c,13,{0,a,1},{0,5,1},{0,c,13,{0, a.c},{0,b,c},{0,a,c,1},{0,b,1} = 25

As a lattice with pseudocomplementation: {0,1}, L,{0,¢,1}
Congruence: As a lattice:

@ ={0}.{a},{b}.{c}.{l}

r={0,a,b,c,l}

¢={0,a},{b,c}, {1}

¢ =1{0,a},{b,c1}

v ={0,b},{a,c} {1}

¢ ={0,b}.{a.c.lj
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The following theorem is an extension of a fundamental result in lattice theorem [13].

Though our proof include for the convenience of the reader .

Theorem 4.1.1 A pseudocomplemented and distributive lattice L such that
S(Ly={a/a*=0} and D(L)={a/a*=0} Then for a,bel
Lana*=0

ii. a<b impliesthat a*>b*

ifi. a<a**

iv: g*=q**"

v. (avb)*=a*Ab*

vi. (@anb)**=a**Ab**

vii. anb=0 iffa**Ab**=0

viti. an{(anb)*=anb*

ix. 0*=land 1*=0

x.aeS(L) iff a=a**

xi. a,b e S(L) implies that a b € S(L)

xii. sup(L){a,b} = (a v b)* = (a* AD*)*

xiii. 0,1 € D(L) and S(L)n D(L) = {1}

xiv. a,b € D(L) implies that a nb € D(L)

xv.ae D(L) and a <b implies that b € D(L)

xvi.ava*e D(L)
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xvii. x = x ** is a meet-homomorphism of L onto S(L)
Proof: i. By the definition of pseudocomplement
ana*=0 Vael
ii. Forbab*=0 and a<b=>anb*=0
which implies thata > b *
iii. By the definition of pseudocomplement aAa*=a*Aa=0
similarly a* A(@*)*=>a*Aa**=0 and ana*=0
= asa*?
hence a<a**
iv. We get,
a<a** implies that a > a**...........(A)[by(i)] .
Again a<a**=0
ie., a**ana*=0,
Similarly, a** A (@a**)*=0 implies that a** A g***=0
and a**Aa*=0 impliesthat a<a™**............ (B)
From (A4)and (B)we get,
g*=a*** hence g*=qg***
V. We have,
(@avb)a(@*ab®)=(ana* Ab*)v (b rna* Ab*)=(0Ab*)v (a* A0) by(i)
=0v0=0
Let (avb)Aax=0
Implies that (aAx)v(bAx)=0
Implies that anx=0 and bAax=0 Implies that x<a* and x<b*

Implies that x<a*Ab*
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Therefore a* Ab* is the pseudocomplement of av b

vi. Let a,b e L implies that g*,b* € L implies that a**,6**e S(L)
implies that a**Ab**c S(L)

But a**A b** is the smallest element of S(L) containing aA b
So (anb)**=a**Ab**

vii. If an b by (vi)

Then a**Ab**=(anb)**=0**=0

So a**Ab**=0.

Conversely, if a**Ab**=0. by(@)a<a**,b<b** (i) Vabel
Then anb<a**Ab**=0. .anb=0

Hence anb=0 iff a**Ab**=0.

viii. Since anb<b so(aanb)*=b* andso
an(anb)y*zanb*.............»4A)

Again (aAb)A(anb)*=0. Implies that (a A (a A b)*)=0,
Therefore an(aab)*<b*. Impliesthat anan(@anb)*<anb*.
Implies that an(@anb)*<anb*......(B)

From (4) and (B) = an(anb)*=anb*

Hence an(anb)*=anb* .

xi. We have 0Ax=0Vel and OAl=0

Butx<1 VxelL

Hence 0*=1 Again,0*=1

Implies that 0**=1* Implies that0=1* - 1*=0

x. IfaeS(L) then, a=b* forsome be L

But ¢*=a***,Vael
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Now, a**=b***=p*=gq Hence, a**=q

Conversely, ifa=a** then a=b* thusae S(L)

Henceae S(L) iff a=a**

xii. Let a,be S(L) then a=a**b=5b**.

SinceaAnb <a implies that (anb)**<a**=a . .a=(asnb)**.
Again, sinceanb<b impliesthat(aab)**<b**=p

S(anb)**<b implies that 52> (anb)**. Implies that anb=0

But (@aAb)<(@nb)**... e B)

From (A4)and (B) we get, (anb)=(anb)** impliesthat, anbe S(L)

If xeS8(L) suchthat x<a and x<& then x<anabisa greatest lower bound of

S(L).

Therefore a nb =inf S(L), {a,b}e S(L)

xii. For a,be S(L) a*>a*Ab*

Implies that a** < (a* Ab*)* [by(ii)]

Implies that a < (a* Ab*)*  [by(i)]

Again, b*> a* Ab* implies that b** < (a*Ab*)* [by(il)]
Implies that b < (a* Ab*)*  [by(7)]

.. (@* Ab*)*is a upper bound of {a,b} in S(L)

Let xe S(L) suchthat a<x,b<x then a*>x

B*>2x*  [by(ii)]

Sa*ab* 2 x* implies that(a* Ab¥) < x** = x . Implies that(a* Ab*) < x
~.(a* Ab*)* is a least upper bound of {a,b} in

sup {a,b} = (a* Ab*)

Again(anb)**=((av b)*)=(a* Ab*)*
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Hence sup{a,b} =(avb)**=(a* Ab*)*

xzii. From (ix) we have 0*=1,1*=0 then 0,le S(L)and 1€ D(L)
Let xe S(L)YN D(L) then xe S(L) and xe D(L),

Such that x = x**, x*=0 then x=(x*)*=0*=1

Hence S(L)n D(L)={1}

xiv. Let a,be D(L) then a*=0, b*=0.Implies that a**=h**=0*=1
Now, (anb)**=a**Ab**=1Al=1 [by(ii)]
(anb)*=(anb)***=1*=0 . Impliesthat anbe D(L)

xv. If then a*=0and a<bh

Implies that a* > 5* . Implies that b* <a*=0

Implies that 5* =0. Hence b € D(L)

xvi. From (v) we have (av a@*)*=a* na**=a* A(a*)*=0
Hence ava*e D(L)

xvii. Letg: L — S(L) defined by ¢(x)=x**

Then, @(x A y) =(x AY)**=x**Ay**=0(x) A@(y)

".@ is ameet homomorphism. o

Theorem 4.1.2 Leta,be Land Lbe pseudocomplemented meet semilattice and let

a,be L, verify that (aAb)*=(@**Ab)*=(@**Ab**)*

Proof; We know that, (and)*=(anb)**=((anb)**)*

ie, (anhy*=(a** Ab*%)"..... ..couciinlD)

Again (a** Ab)*=(a** Ab)***=((a** Ab)**)*=(a****nb**)*
ie, (@**AD)*=(a**AD**) ... (i)

Now from (i) and (i) we get,
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(anb)*=(@**Ab)Y*=(a@**Ab**) O

Theorem 4.1.3 Let L be pseudocomplemented distributive lattice. Prove that for

each a.be L, [a) isa pseudocomplemented distributive lattice, infect, the pseudo-
complement of x €[a) in[a)is x*va.

Proof: Let xe[a) thenxv (x*va)=(xvx*)va=Ilva=a

Furthermore if x vt =1 then 2> x*

=>tvazx*va

=>t2x*va [since tela)=>t2a=>tva=t]

From the above it follows that x* va is the pseudocomplemented of x.

Therefore, [a) is a pseudocomplemented distributive lattice. o

Theorem 4.1.4 A pseudocomplemented lattice L and a,b € L then prove that

a**vb**=(avb)**.

Proof: IfL is a pseudocomplemented meet semilattice then av b = (a* Ab*)* where
a,beS(L)

Now, fora,be Land a**,b**e S(L)

S0, a**vh**=(a*** Ab**¥)* = (a* Ab*)* = (av b)**

Implies that a**vb**=(avh)**. ©

Theorem 4.1.5 Let L be a pseudocomplemented meet semilattice and a,b € L . Then

prove that(a Ab) =(a** Ab)*=(a** Ab**)*.
Proof: Since L is a pseudocomplemented meet semilattice, then a<a**
Implies that anb<a* Ab*

Implies that(a A &) < (@** A b*)....ccneenn (i)
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Again, b < b**implies that a** Ab<a**Ab**.

Implies that a**Ab<(anb)**

Implies that (a**A b)* = (anb)***.

Implies that (@**Ab)*>(anb)*............(J)

From (/) and (i7) we get,

(@nb)y*=(@**aAb)*...........(itN)

Again, b<b** implies that a** Ab<a**Ab**.

Implies that(@a** A b) = (@a**Ab**)* .............. )

Again, a** <a*** implies that a** Ab**<a****Ab**=(a**Ab)**.
Implies that (a** Ab**) > (a** A b)***.

Implies that(@** Ab**)* 2 (a** AD**)*.vveviirireinnnn(V)
From (iv) and (v) we get,

(@ AP ={@* A DY) ik PE)

From (7if) and (vi) we get, (a Ab)*=(a** Ab)*=(a**Ab**)*. O

Theorem 4.1.6 Every distributive algebraic lattice is pseudocomplemented.

Or, Let L be a distributive algebraic lattice, then L = I(S), where S is a join semi

lattice with 0.

Proof: Let 1,7, € I(s) for k € K (index set)
Then Inl, cIav(l,/keK) forany re K.
Clearly, v({, /ke K)c I nv(l /keK).

To prove the reverse inequality,

Let (ael)av(l, /keK).

Then ae!l and aev(l,/k e K).
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Then there exist indices 4, 4,..........4,

Such thata <i,, Vi, V.eeeeea Vi,

Forsome i, € /,, forsomekel,2,..........n.

Thus aelA(l,,vI,v.......vI, and soon.

o B RSN S R - ) (N

IAL)Y)VUALL)Y .. v AT ,) as I(S) is distributive c v(/, /k € K)

ie Inv(L, ke Kc v, /keK).

Therefore 1, /I Av(L,/ke K)=I(,/keK).

This shows that /(S) has the join infinite distributive property.
Moreoveras 0 € §, I(S) is complemented.

Therefore I(S) is pseudocomplemented and so L is pseudocomplemented. o

Theorem 4.1.7 Suppose L be a pseudocomplemented distributive lattice. Define the
relation R by x = y(R) if and only if x*=y* then R is a congruence onZ and

L/IR=S(L).
Proof: Here we have x = y(R)

& x*=y* then x*=x*,

Implies that x = x(R). Implies that R is reflexive.
Also if x= y(R), then x*= y*. Implies that y* = x *
Implies that y = x(R) . Implies that R is symmetric.
Letx = y(R)y = z(R) thenx*=y* and

implies that x* =z* Implies that x = z(R).

Implies that R is transitive.

Implies that R is an equivalence relation.
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Now suppose x = y(R) and # € L then x*=y*
Implies that x**= y **
Now,(XAt)** =x**At**=(yat)**
SEAD**F=(yAl)**
SEAt)y=(ya)*
> xAat=yat=yAt(R).
And (xvi)*=x*At*=y*At*=(yvi)*
Implies that xv =y v¢(R). So R is congruence relation on L.
Define ¢: L/R — S(L) by ¢((a]R)=a**
Then p([al A[b]) = p([a Ab)=(anb)**
=a**Ab** =g(la]) A (b))
and g([a]) v[b]) =p([av b]) =(avb)**=(a*rb*)*
=(@***vh**F)* =grry b
=@([a]) v @(b]) .. isahomomorphism.
To show thatg is one-one.
Let a**=b** implies thata*=5b*
Implies that a = #(R) . Implies that [a]=[b] .. ¢ is one-one.
Let ae S(L) thena=a**=>a= ([a}) = ¢ isonto.
Hence ¢:L/R — S(L) is an isomorphism.
Therefore L/R=S(L). o

Following theorem gives a discription of semilattice which is due to [18]

Theorem 4.1.8 Suppose L be a pseudocomplemented meet semilattice and

S(L)={a*/ae L}. Then the partial ordering of L partially orders S(L) and forms
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S(L) into a Boolean lattice. For a,b € S(L) we have anbe S(L) and then join in

S(L) is described by avb=(a* Ab*)*.

Proof: We derived with the following observations:
i.Vael,a<a**

i.a<b=a*=b*

i Y= g " e

iv.ae S(L) iff a=a**

v. For a,beS(L),anbeS(L)

vi. For a,be S(L),av b =(a* b*)*

vii. Since a*Ana=anra*=0

Also a*na**=0 a*ra**=0

So a< a** from the definition of pseudocomplement lattice.
viii. a<b, so anb' <bab'=0 ie, anb’=0>b"<a’
From the definition of pseudocomplement lattice.

ix. By ()a® <(a®*)**=a***

Again a<a** by (i)

So by (ii)a***<a*. Hence a*=a***

x.Let ae S(L) thena=5b* forsome be L

Hence a**=>5b***=p*=q

Ifa=(a*)* then a=(a¢*)* . Andso, ae S(L)

xi.a,be S(L) then a=a**b=5b**

So, a2 (anb)**2(anb)** So, (anb)**<anb
Again, by (i)and (i)anb<(anb)** .Henceanb=(anb)**

So, anbeS(L),azanb =>a**>(anb)** by (ii)
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=az(anb)**
For a,be S(L). We have a*2a*Ab* Soby (ii) and a*<(a* Ab*)*
Similarly, & <(a* Ab*)*
Now if a< x,b <x(x e S(L)) then a*> x*,b*> x*
So, a* Ab* > x* . Hence, x**2 (a* Ab*)*
ie., x=(a*Ab*)* as xe S(L)
Hence, (a* Ab*)*= Sup {a,b}=avbeS(L). Thus S(L) is a lattice.
Moreover 0,1 € S(L). Therefore S(L) is a bounded lattice.
Now forany ae S(L),ana*=0. And ava*(a*ra**)=0*=1
ie., a* is the complement of ain S(L) . Hence S(L;A,v) is a complemented lattice.
Then we only to show that S(L) is distributive.
Let x,y,ze S(L)
Then xaz<(xv(yaz) andyanz<(xv(yaz).Hence xAzA(xv(yAz)=0
and yAzAa(xv(yAz))*<x*=0.Thus, zAa(xv(yAz))*<x* and y*
and so zA(xv(yAzZ))*<x*ay*. Consequently, zA(xv(yAz)A(x*Ay*)=0
Which implies zA (x*Ay*)*=(xv(yaz)**=xv(yanz)
Soby(vi) and(iv)=>zA(xvy)=xv(yaz)

Therefore §(L) is distributive. 0

4.2 Stone Lattice & Minimal prime Ideal
Boolean Lattice: A complemented distributive lattice is called Boolean lattice.

Stone Lattice: A4 distributive pseudocomplemented lattice L is called stone lattice if

for ae L, a*va**=1

Example 4.2.1 Every Boolean lattice is stone lattice but converse is not true.
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Stone algebra: A4 complemented distributive lattice is called a stone algebra if for

each a*va**=1

Generalized Stone Lattice: A lattice L with 0 is called generalized stone lattice if

(x]*v(x]**=L for each xe L.

Theorem 4.2.1 Let L be a complemented distributive lattice, then show that the

following conditions are equivalent:

(i) L is astone algebra.

(if) For a,belL,(a Ab)*=a*vbhb*

(iif) a,be S(L) implies av beS)

iv. S(L) is a sub algebra.

Proof: (a) = (b)

Suppose(a) holds, i.e.,L is a stone algebra.

We have, (anb)*=a* vh*

Leta,beL, (anb) al@a*vb*)=(an bAa*)v(anbnab*) [Since L is a distributive
lattice]

=(ana*Ab)v(anbab*) =(0Ab)v(aA0)=0v0=0

Now supposex € L such that (a A Hax=0
:>(be)Aa=U:>be£a*

Meeting both sides with a** then we get, a**A(bax)<a** Aa*=0
S>xAa**)ab=0 = xaatt=b"

Since L is a stone algebra, then we have, a*va**=1

Now, x=xAl=xA(a*va**) =(xAa¥)v(xaa*®) <a*vh*

Hence a*vh* is the complementof a A b

ie.(b) holds .
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B = ()

Suppose (b) holds,

Let a,be S(L) we have, a=a*and b=b**
avb=(a**vb**) =(a*vb¥)* =(avh)**
=avbeSl)

©)=(d)

Suppose (¢) holds,

ie.,abeS(L). Implies that av beS(L)

As av be S(L). Sowe have, avbeS()

Hence(d) holds,

ie.,S(L) is a subalgebra.

(d)=(a)

Suppose (d) holds,

ie.,S(L) is a sub algebra of L.

Now forany ae L,a*e S(L),a* *e S(L)

Hence a*va**=(a**a***)*  [since avb=(a*Arb*)* ]
—0*=1. Hence L is stone algebra. i.e.,(@) holds. o

Theorem 4.2.2 Show that a distributive pseudocomplemented lattice L is a stone

Lattice iff (av b)**=a**vb** Va,be L.
Proof: LetLbea pseudocomplemented distributive lattice. If L is a stone lattice,

then Va,b e L. We have, (avby*=a*nb*
Hence (avb)**=(a*nb*)*=a"vb**
Conversely, let (avb)**:a*"‘vb"‘* Ya,belL

Now forxe L, letx*vx**=y, then
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(x*VX**)**-":y** ::y=y** :,(x*VX**)**=y**
NOW, y*=(x*\fx**)*=x**ﬁx***=x**f\x*=0
.'.y**=0*=l:>y=l. Hence x*vx**=1

Therefore L is stone lattice. o

is a two element

Proposition 4.2.1 If p is a prime ideal of a lattice L, then R
P

chain. The elements are p,L - p-.

Proof: Letx,yeL—p

If for somel e L,x Al € p,

Then le p [sincex ¢ p and p is prime]
Henceynlep

ie.Vlelxnlep oynlep =>x=Yy R(p) O

Proposition 4.2.2 Show that in a stone algebra every prime ideal contain exactly one

minimal prime ideal.

Proof: Let P be a prime ideal and ¢, and ¢, be two minimal prime ideals contains
in p with g, #q,

Let xegq,—¢, then x€q, but x¢q,

Now xAx*=0eq, > x*eq, >x*€p

Again since g, minimal, then x€ g, =>x**€q, =X **ecp

Hence x*vx**ep which contradict the fact that p is prime. Hence g, =4,

Hence in a stone algebra every prime ideal contains exactly one minimal prime ideal.

u}

The following theorem is an extension of a fundamental result in lattice theory [13,
Lemma 4, pp 169]. Though our proof is similar to their proof, we include the proof

for the convenience for the reader.
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Theorem 4.2.3 Let L be a distributive lattice with complemented. Then L is a stone

algebra iff Pv Q=L for any two distinct minimal prime ideal.

Proof: First consider L is a stone algebra.

Let P and Q are two distinct minimal prime ideals. ﬂ E"_Q_'m{.j;;\

o

Let ae Q—P.Then ae P r':,:.r'f. CUET
|: o

Hangladesn /

Ly u; _‘{)‘LAE

. . . \ X
Now ana*=0€ p. since p isprime and a € p,
i /‘ ‘
’?f.-dl L_.[,['a.

So a*e P g

-

Now let L — Q is a minimal dual prime ideal.
Thus(L-Q)vila)=L,

So a=xAa forsomexel—-Q
D>a*2xel-Q0>a*el-Q0>a*¢Q Da*ep-0
Similarly we have, a**e p—Q

Hence a*va**=1=>lepvQ@=>L=pvQ
Conversely, Suppose pv @=L for any two distinct minimal prime ideals.
We have to show that L is a stone algebra.

If L is not stone algebra, then there exists ae L,

Such that a*va**#1

Then there exists a prime ideal R

Such that a*va**e R

We claim that, (L— R)v[a*)=L then xAna*=0,

For some x € (L —R)

=>a**>xe(L-R) >a**e(L-R)>a**¢R
Which is contradiction.

Hence (L-R)v[a*)= L
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Let F be a minimal dual prime ideal containing(L — R) v[a*). and G be a maximal

dual prime ideal containing (L — R) v [a*™*).

Put p=L—-F and Q=L-G

Then p and Q are minimal prime ideal andp#Q
As a*eQ buta*e¢ p and a**ep but a**¢Q
ie.,pand Q are distinct.

Also p,Qc R andthusPvQc R# L

Which is also contradiction.

Hence L is a stone algebra. u]

Theorem 4.2.4 Let L be a complemented distributive lattice and p be a prime ideal of

L . Then the following conditions are equivalent:
i. p isminimal.

ii. xep,>x*¢p

iii. xe p,=>x**ep

iv. pAD(L)=¢

Proof: (1) = (i)

Let p be minimal. Suppose, If (i7) fails there exists x€ p.
Such thatx*e p. LetD=(L— p)v|[x) then 0 D.

For otherwise 0=¢g A x forsome geL—p.

Which implies that g <x*e p.

Therefore, g € p, which is contradiction.

Hence 0¢ pnD,

Then by stone’s representation theorem there exists a prime ideal Q,
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Such that 9N (L-p)=¢@ This implies @ N (L - p)=¢
andso Q< p ButQ#p as xeQ

This contradict the minimally of p

Hence (i) follows.

(i) = (iii) suppose (if) holdsand x€ p

Now x*Ax**=0€p

But x*¢ p andp isprime. So x** € p i.e., (i) holds.
(iff) = (iv) suppose (iii) holds

Let xe pnD(L). Then xe p and x€ D(L)

. xe D(L) impliesx*=0. By (i) x**€p
sx¥*=(x¥)*=0*=lep

Which is impossible as p is prime.

So (#v) holds.

Suppose p is not minimal, then there exists a prime ideal Qc p
Let xe p—Q

Now xAx*=0e Q. Since x& 0 and Q is prime.

So, x*e 0 c p. Then x,x*e p

So, xvx*ep

Now, (xvx*)*=x"‘/\x**=0

Implies that x v x* € D(L) ie., pN D) #¢

and so (iv) does not hold. o

In [18, Lemma 8] has proved the following result lattices we generalize it to

pseudocomplemented lattices.
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Lemma 4.2.1 Let L be a distributive lattice with 0. Let 0 < x e Land the interval

[0,x].is complemented. If y* is the relative complemented of y in[0,x], then
0*1=(1*A(x](x] and (y**]=0} A (x]. O

Lemma 4.2.2 Let L be a distributive lattice with0 . Forany r e L

and any ideal Z,((F]JAI1*AUZ]1=1*A(r] . o

Theorem 4.2.5 A distributive lattice L with 0 is a generalized stone lattice if and
only if each interval [0,x], 0< x€ L, L is stone lattice.

Proof: Let L with 0 be a generalized stone and let P €[0,x].

Then(P}*v(P]** = L. So x€ (P]*v(P]** implies x=rv 1, for some
re(P1*,1e(P]**

Nowr € (P]* implies r AP =0, also 0<r<x.

Suppose ¢ [0,x] such that ¢t A P=0,then 1€ (P]* implies ¢ AI=0 Therefore,

tax=ta(rvD=@Ar)viEal)=@ar)v0=tvr
Implies t =1 A r implies £ <r
So, ris the relative complement of P in [0,x], ie.,, 7= P

Sincel e (P]**. and re(P]*, sol ar=0. Let g<[0,x] such that gAr=0 Then

asx=rvi so gax=(gar)vignl)
Implies g =g <1 implies g< [

Hence,I is the relative complement of r=P* in [0,x]ie,l=P** implies

x=rvI=P*vP** Thus[0,x],is a stone lattice.
Conversely, suppose [0,x], 0<xe L is astone lattice. Let P€ L,
Then P A x€[0, P] Since [0, P]is a stone lattice, then
(PAX)*ApAx)**=P where (PAX)* is the relative
complment of (P Ax) in [O,P]

Therefore P e((p]n(pAx])v (P1N(P A x]**)
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So, we can take P=rv 1, for re (PAx]* le(pax]**

Now, r e (P Ax]* implies r A P Ax=0 implies r A x=0 implies
re(x]** and le(PAx]**

Now P A x <x implies (P A x]**c (x]**

Andso le(x]**

Therefore P=r vie(x]*v(x]** and so L c (x]*v(x]**

But (x]*v(x]** c L is obvious.

Hence (x]* v(x]**=L and S on L is generalized stone. O

Following theorem is a generalization of [14, Proposition 5.5(b)]

Theorem 4.2.7 Suppose L be a distributive lattice with 0. If L is generalized

stone, then it is normal.

Proof: Let P and Q be two minimal prime ideals of L. Then P,Q are

unordered. Let xe P,

Then (x]A(x]*=(0]< Qimplies (x]* < Q. Since P is minimal,

so (x]**c P. Again, as L is generalized stone,

so (x]*v(x]**=L. ThisimpliesPv Q=L andso L isnormal. ©

Lemma 4.2.4 If L, is a sublattice of a distributive lattice L and 2, is minimal prime
ideal in L, then there exists a minimal prime ideal P inL suchthatF, =L NP O

Following theorem is generalization of [14, theorem 5 p.115]

Theorem 4.2.8 A sectionally pseudocomplementetd distributive lattice L is

generalize stone if and only if any two minimal prime ideals are comaximal.

Proof: Suppose L is generalized Stone. So by Theorem 2.3.7 any two minimal prime



ideals are comaximal. To prove the converse, let P,Q be two minimal prime ideals of
L . We need to show that [0,x] is stone, Foreachxe L Let B,Q, be two

minimal prime ideals in[0,x]. Using Lemma 2.2.4. there exists minimal prime ideals
P,Q in L such that B, =Pn[0,x],Q, =0nN[0,x].

Therefore P, v Q, = (P N\[0,x])v (Q[0,x]) =[P v Q] N[0, x] = LA[0,x] =[0,x].

Therefore [0,x] is stone. So L is generalized stone. O

Corollary 4.2.1 A distributive lattice Lis generalized stone if and only if it is
sectionally complemented and normal. Figure 2.1 the lattice L is in fact a

generalized stone lattice, as it is both sectionally complemented and normal.

Corollary 4.4.4: A distributive lattice L with 0is generalized stone if and only if it

is normal and sectionally complemented.

4.3 Sectionally pseudocomplemented Lattices

Sectionally pseudocomplemented Lattices: A lattice L with 0 is called sectionally

pseudocomplemented if interval [0,x] for each x € L is pseudocomplemented.

Note: Every finite distributive lattice is sectionally pseudocplemented.

Following figure 2.3 gives an example of a distributive lattice with 0 which is not

sectionally pseudocomplemented.

In R? consider the set:

E={(0,y)/0< y<5}U{(2,»)/0<y <5} {(3,5),(4,5),(3,6)}
Define the partial ordering < on E by(x,»)<(x,y) if and only ifx<x

and y < y, here E is clearly a distributive lattice. This is not a lattice as the supremum

of (3,6) and (4,5) does not exist. Consider the interval [0, p] observe that in t his
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interval (2,0) has no relative pseudocomplemented. So (£,<) is not sectionally

pseudocomplemented.

Normal Lattice: A distributive lattice L with 0 is called normal lattice if each
prime ideal of L contains a unique minimal prime ideal. Equivalently, L is called

normal if each prime filter of L is contained in a unique ultrafilter (maximal and
proper of L).

Dense Lattice: A lattice L with 0 is called Dense lattice if (x]' = (0] for each
xz20in L.

The following theorem is generalizasion of [8]

Theorem 4.3.1 If L is a distributive sectionally pseudocomplemented lattice, then

L, is a distributive pseudocomplemented lattice.

Proof: Suppose L is sectionally pseudocomplemented. Since L is a distributive

lattice. Let [x] € L., Then [0]c[x]cF .Now 0<xaAnf<f, forall feF.

Let ybe the pseudocomplemented of xA f in [0,f] then yAxA f=0 implies
Dy A f1n[x]=[0], thatis [y]Alx]=[0}.

Suppose [z]A[x]=[0].for some [z]le L. then zAx=0(y,).This implies

For some f''e F. Since z=2zA fWp)s0zZA f'=2A f=AS e (i) for some
f"e F. From (i) and (ii) we get xAaxA f'Af"=0 and A fAf'=zaxA fIAf"
Setting g=f'Af" we have zagA=2zAgA f, which implies zAang< fand

zagaf=0 So 0<szag<fand zAg<y.
Hence, [z A g]c[y] But[z]=[zAg] as geF

Therefore, [zZ]c[y],andso L, isa pseudocomplemented distributive lattice. o

66



Theorem 4.3.2 Suppose L be a relatively pseudocomplemented lattice.  Let

x<y<z in L and / be the relative pseudocomplement of y in [x,z]. Then for any

re L IAr isthe relative pseudocomplement of yAr in [xAr,zA r]

Proof: Suppose tAr is the relative pseudocomplement of yar in[xArzar]
Since / is the relative pseudocomplement of y in [x,z], so /ay=x Thus,

(IAr)A(yar)y=xar Thisimplies IAr<tar

Again, x<Iv({Ar)sz andyA(Iv{rAr))=(yAJ)v((yAr)A(tAr))=xv(xAr)
implies v (tar)<l; [xArzar]<l ie,=1v(tar)

Hence t ar <1, andso t Ar<Iar. Thisimplies tar=IAr

Therefore | A r is the relative pseudocomplement of y A7 in [xAr,z ar]. 3]

[17] extended the notion of pseudocomplementation for meet semilattices, following

theorem generalises.

Theorem 433 If L is a distributive relatively pseudocomplemented lattice, then L,

is a distributive relatively pseudocomplemented lattice.

Proof: Since L is a distributive lattice. Let [x1,[y].[z] € L with [x]lclylciz]
Then [x]=[xAy] and [y]=[yAz] Thus, y=xAy(y;) and y=xAy(y;) This
implies xA f=xAynf and yAg=yAZAE for some f,ge F then
yAfag=yazafag, and yAfAg=yAzZAfAg, and so
XANfAGEYAFAGSZAfAG, thatis xAhS yAhSzZAg

where fAageF

Suppose ¢ is the relative pseudocomplement of y A h in [xAh,z Ak]. Then
tAyah=xah, and so [f]a[yAh]=[xA h). That is, [t} Aly]=[x] as
y=yAh(y:)y=yAh(y,)andx=xAh(y;) Moreover,

MAlzl=[Alz ARl =[t Az AR =[] implies [x]<]1< 2]

We claim that [¢] is the relative pseudocomplement of [y] in[[x],[z]] in L,
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Suppose [/]A[y]1=[x] for some [/] €[[x}[2]]. Then / Ay = x(y;) and so
IAyAf'=xn f* forsome f'eF Again [I] <[z] implies 1=1Az(y;), and so
Ing'=Inzag forsome g'e F.Then IAyA fing'=xn f'Ag' and
IAfAg'=InzA fINE

Thus, Iank=1AxAk and IAk=1AzAk where k= f'rg'eF

This implies x AhAAk<IAhAkSzARAK

and (ARAK)A(YARAKSZARAK

Then [fahakstnk] Hence [I]=[IAhna k][t Ak]=[1]

And so ¢ is the relative pseudocomplement of [y] in [[x].[¥1]-

Therefore, L. is relative pseudocomplemented. a

The following theorem is extension of [ 25, theorem 4.1]

Theorem 4.3.4 For a distributive sectionally pseudocomplemented lattice L , the

following conditions are hold:

i. If L is generalized stone then L, is stone for any filter F of L.

ii. L is generalized stone if and only if for each prime filter ¥ of L, L. is dense
Lattice

Proof: (i) Lety,(x).p.(y)eL;be such that . (x)Ap:(y)=0 Then,
xAy=0(y,), which implies that xAyAf=0 for somefeF. Since L is
generalized stone, then L is normal, so (x]* viya f1*=L

Hence (¥, (0)]* V(¥ (0)1* = (T3] V(¥ A f1*

=Wp(@]* VO A )=y =L;

Thus, L, is normal.

Again, since L is sectionally pseudocomplemented, then L; Ly is

pseudocomplemented,
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Hence L, is stone.
(i) Suppose Lis generalized stone. Lcty/F(x);éOandwF(q)e(;uF(x)]*.Then

wp(@) App(x)=0.Then F is contained in a unique ultra filter of L.Thus L, hasa

unique ultra filter; and so L, hasa unique minimal prime ideal.

But the zero ideal of L, (as 0€ L) is the intersection of all the minimal prime ideals
of L. Hence, by uniqueness, it is (minimal) prime ideal of L, . Hence w:(q)=0
showing that L, is dense.

Conversely, letL, be dense for each prime filter F of L. Suppose x,y € L are such
that x A y=0Then y.(xAy) =y (0)= 0 That is . (x) Awr(y)=0 which implies
that w,(x)=0 ory.(»)=0 as Lg is dense. Hence, either (y.(x)]*=L, or
GO =Lp. This pu(@IVOI=Lo=w, (1)  and so (1*v1*=L)

Therefore L is normal.

Again, since L is sectionally pseudocomplemented, so L is generalized stone. O
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Chapter Five

Directoid equipped with sectionally switching mapping

Introduction: It is shown that every directoid equipped with sectionally switching
mappings can be represented as a certain implication algebra. The concept of directoid
was introduced by J. Jezek and R. Quackenbush [19] in the sake to axiomatize algebraic
structures defined by on upward directed ordered set. In certain sense, directoids

generalize semilattices.

5.1 Basic concepts

An ordered set (B;<)is upward directed if U(x,y)#¢ for every X,y € B, where
Uix,y)={aeBx<a and y <a}. Elements of U(x,y) referred to be common upper
bounds of x,y.Of course, if (B,<) has a greatest element then it is upward directed.

Let (B;<) be an upward directed set and v denotes a binary operation on B. The
pair B=(B;v) is called directoid if the following axioms are hold:

1. xvyeU(x,y) for x,ye B

2.1f x<ythen xvy=y and yVI= Yorrrsemsmnsieess (A)

Switching Algebra: The system {{0,1},A,v,'} is a two elements Boolean algebra which

are called a switching algebra.
Proposition 5.1.1 A groupoid B =(B;<) isa directoid if only if it satisfies the following

axioms:

R LY. s e ——— L 1)
2. (XV P)V X = XV Prorrrermrssrersmsmsessenssnsisrsssstniesssssssssssssssssss (2)
3. YV XV P) T XV Perrrarmmmmrsensemssmssasssssssnss s 3)

4. xv((xvy)vz)=xvyV z....(skew asssociativity).........(4)

Then the binary relation < defined on B by the rule x<y if and only if x vy is an

order and x v y € U(x,y) for cach x,y € B.
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A directoid B = (B;v) is called commutative if it satisfies the axiom

5.2 Switching Involutions

Let (B;v) be an ordered set with a greatest element 1. For p € B, the interval [p,1] will
be called a section. A mapping f of [p,1] into itself will be called a sectional mapping.
If f is a sectional mapping on [p,1] and x €[p,1] then f(x) will be denoted by x”.

A sectional mapping on [p,1] is called switching mapping if p” =1and 1” = p thenit is
called an involution if x?” =x for each x €[p,]]. Hence any involution is a bijection
and if a sectional mapping on [p,l] is a switching involution then p” =1 iff x= p and
x? = p iff x=1. (B;<,1) will be called with sectional switching involutions if there is a
sectional switching involution on the section [p,1] for each p € B.

Lemma 5.2.1 Let B = (B;e,]) be an algebra of type (2,0) satisfying the following

axioms:

1. e, FE L wmwninssvimenseinonersnss (6)
2. xoy=1 implies y=(¥oX)° Xorceeriererrrerrenns (7)
3. Fa((((xoy)o9)82)8%) Shimrerommsseenss ®)

Define a binary relation < on B by the setting x < y ifand only if xo y =1......(%)

Then (B;<) is an ordered set with a greatest element 1 where for each p € B the
mapping x > x” = xo p is a sectional switching involution on [p.1].

Proof: By (6) and (7) we infer immediately

16205 0 ) C X N smrnramesnmssssvesmmmnazessismissnisls )

Due to (6) the relation < is reflexive and x<1 for each xe B. Suppose x<y and
y<x. Then xoy=1ycl=1 and, by (7), ‘y=(yox)ox=lox=x thus < is anti-
symmetrical. Suppose x<y and y <z. Then <xoy=1yoz=1 and by (6) and (7) we
have, xoz =xo(lo2)=xo((yo2)o2)=xo(((loy)o2)o2) =xo (x> ¥)°y)°2)°2) =1

thus x < z proving transitivity of <.
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Now, let pe B and xe[p,l]. Then p<x an hence pox=1. Due to (7) we conclude
x” =(xo p)o p = x thus every sectional mapping x> x” =xo p isan involution on
[p.1]. Applying (6) and (**) we infer that it is a switching mapping. O

Lemma 5.2.2 Let B =(B;o,1) satisfy (6), (7), (8) and

L. yo(xoy)=1

2. xo((xoy)oy)=1

then (xoy)oyeU(x,y) foreach x,y e B.

Proof: By Lemma 5.2.1, < defined by (*) is an order on B. Replace x by xo y in (4)

we obtain yo((xoy)oy)=1 thus y <(xoy)oy. By (5) wehave x<(xc y)oy thus

(xey)oyeU(x,y). O

5.3 d- implication algebras

The concept of implication algebra was introduced by J.C. Abbott [18]. Itis a groupiod
B = (B ; 0)with a distinguished element 1 in which an order < can be introduced by

x < yif and only if xo y =1. It was shown [1] that (B;<) is semi lattice

xVv y=(xo y)o y and ,moreover, every section [p,1] is equipped by a sectional antitone
involution x? =xo p.

Let us note the name implication algebra express the fact that xo y is interpreted as a

connective implication x = y

Theorem 5.3.1 An algebra B = (B;0;]) satisfying (1) — (5) will be called a weak d-
implication algebra . We can state

Let B=(B;0;1) be aweak d-implication algebra. Define a binary operation v on B

By xvy=(xoy)oy

and for each p & B define x” = xo p. Then D(B) =(B;v) is a directoid with the greatest
element 1 with sectionally switching involutons whose induced order coincides with that
of B.

Proof: Define xv y=(xoy)oy and x” =xo p, for xe[p]l].
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(@) Let xoy=1.Then xvy=(xoy)oy=loy=y.

(b) Let < be the induced order on B.By (B4) we have x oy €[y,1]. Suppose now
xv y=y. Then, since the sectional mapping on [y,1] is an involution, we infer
xoy=(x0y)” =(x0y)oy)ey=(@Vvy)]=yey=I

we have shown xo y =1 ifand only if x v y = y thus order on B defined by (*)
coincides with that of (B;v) defined by B . The fact that (B;v) is a directoid by Lemma
5.2.2 and the factthat x <y gets xv y=y=(xoy)oy=1loy=y and by (B2),also
yvx=(yox)ox=y.ByLemma5.2.1 sectional mappings x > x”for x € [p,1] are

switching involutions. D

Theorem 5.3.2 Let D = (D;v,]) be a directoid with a greatest element 1, < its induced
order. Let for each p € D there exists a sectional switching involution x+ x* on [p,1].
Define xo y=(xVv y)’

Then B(D) = (D;0;1) is a weak d- implication algebra.

Proof: Sincey<xv yin D, we have x v y=[y,1] and hence the definition of the new
operation 70" is sound. Moreover, (xoy)ey==(xvy)” =xVvy.

We have to verify the conditions (1) —(5).

(1): xox=(xv1)* =1 =land xol=(xv1)' =1'=1.

(2): Supposexo y=1.Then (xv y)” =1 thus (since the sectional mapping is a switching
bijection) also x v y = y. Conversely, if xv y=y then xo y=1, i.e, the order induced
on D coincides with that given by (*) in Theorem 5.3.1 . Hence, if xo y=1then x<y
thus ye[x,1],i.e., (yox)ox=y" =y.

(3): By (4) we have x<(xvy)vz thus (xo(((x°y)ez)ez)=xco((xVy)Vvz)=1
(4): Since xv y €[y,1], we have xo y=(xVv y)” €[y,1] thus y<xoy whence
yeo(xeoy)=1

(5): Since y<xvy wehave (xop)oy=((xvy) vy) =xvy)” =xvy.

Thusxvayz(xoy)oy provmg xo((xoy)oy)_—,l_ O
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Lemma 5.3.3 Let B =(B:,1) be ad-implication algebra. Define a binary relation <
on B bythesetting x<y ifandonlyif xo y=1.Then < isanorderon B and 1 is

greatest element.

Proof: By (1), < is reflexive. Suppose x< y-and y<x. Then xo y=1,yox =1 and due
to (1),also x=1lox=(yox)ox=(xoy)oy=loy=y, ie., < is anti-symmetrical.
Transitivity of < can be shown identically as in the proof of Lemma 5.2.1. By (1) x<1

foreach xeB. o

Theorem 5.3.3 Let B=(b,o,l) be a d-implication algebra. Define xv y=(xo y)o y
and for xe[y,1] let x* =x o y. Then C(B)=(B;v) is a commutative directoid with a

greatest element 1 and with sectionally switching involutions.

Proof: By Lemma 5.3.3, (B; <) is an ordered set where x < y if and only if xoy=1)
and 1 is a greatest element of (B;<).Dueto (1) we infer xv y=y v x.

By (1) and (3) we have, xo (xv y)=xo ((xo y)o y)=xo(((x° y) o ¥) e y) e y) =1

thus x <x v y. Analogously y<xwvy thus xv yeU(x,y). Further, if x <y then
xvy=(xoy)oy=loy=y.

We have shown that (B;v) is commutative directoid. Analogously as in the previous
proofs, the induced order of (B;v) coincides with <. Hence, 1 is a greatest element of
(B;v).

Now, let ye B and xe€[y,1]. Then y<x and hence x” =(xo y)oy=xvy=ux
Further, y* =y o y =1 thus for each y € B the mapping x> x” is a sectional switching

involution on [y,1]. o

Theorem 5.3.4 Let C =(C;v,1) be a commutative directoid with a greatest element 1.

Let < be its induced order and for each p e C there exists a sectional switching mapping
involution x +> x” on [y,1]. Define xo y=(xVv y)”. Then B(C)=(C;o,l) isa d-

implication algebra.
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Proof: It was shown in Theorem 5.3.2 that "" is correctly defined operation on C

satisfying (1) and (3), and that (xo y)o y=xoy. Since xvy=yvx (1) is evident. It
remains to prove (2). Since y<xv y, We derive

(xoy)oy)oy=(xv y)ey=(xvy) =x°). a
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Chapter Six

Boolean lattices with sectional switching mapping

Introduction: Sectional switching mapping were introduced by Chajda, and P.
Emanovsky [3] and studied by several authors. Consider a Boolean lattice L = (L,v,A,l)

with a greatest element 1. An interval [a,l] for ae L is called a section . In each
Section [a,1] an antitone bijection is defined. We characterize these lattices by means
of two induced binary operations providing that the resulting algebras from a
variety. A mapping f, of [al] on to itself is called a switching mapping if
f(@=1f(1)=a and for xe[all,azx#1. We have a=f(x)=1l. If for
p,q€ L, p <q the mapping on the section [a,1] is determined by that of [11] , We
say that the compatibility conditionis satisfied. We shall get conditions for antitone
of switching mapping and a connections with complementation in sections will be

shown.

6.1 Basic concepts
Let L=(L,v,n,]) be a lattice with the greatest element 1. for a € L, the interval

[a,1] will be called a section.

A mapping f:x+> yis called an involution if f(f(x))=x foreach xe X .
Let (X,<) be an ordered set. A mapping f :x > yis antitone if, x <y implies
fO)= f(x) forall x,ye X.

A weakly switching mapping : x — x' will be called a switching mapping if

azx"#1 foreach xe[a,l] with a#x=#1.

We induced lattices with 1. where foreach a € L there is a mapping on the section

[a,1] ; such a structure will be called lattice with sectional mappings.
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We study the following notation: for eacha e L and x €[a,1] denote by x” the image
of x in this sectional mapping on [a,1]. Thus : x > x“ is a symbol for the

corresponding sectional mapping on the section [a,1].

LetL =(L,v,A,]1) bea Lattice with sectional mapping. Define the so-called induced
operationon L by the rule xv y=(xv y)” .Since xv ye[y.l] forany x,y e L. Also,

conversely, if “v” is induced on L, then foreach ae L and x €[a,1]. We have

xva=(xva) =x".

6.2 Switching mapping

A mapping :x - x° on the section [a,1] is weakly switching if ¢” =1,1° = a,in other
words , a weakly switching mapping “switches™ the bound element of the section .
Lemma 6.2.1 A lattice L =(L,v,A,l) with section involutions the following
properties are equivalent for a € L

(i) :x> x"is antitone,

(i) The section[a,1] is alattice where xA,y=(x"vy“)’ (De Morgan law).

Proof: (i) = (i7): Since the sectional mapping on {a,l]is an antitone involution, it is
a bijection and x,y<xvy implies x°,y* 2(xv y)? and the existence of supremum
for x,y e[a,]] yields existence of the infimum x A, y.

Hence x° A, y°2(xvy).

However, x°,y 2x“ A, y°.

thus, due to x =x",y = y®,

we obtain x,y < (x" A, Y° )a.

Whence xvy< (x" A, y")ai.e.(x vy)y 2x'a, ¥

All together, we obtain (ii)

(i) = (7i): Let x,y €[a.l]

and suppose x < y.

Then xvy =y and, by (ii)
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¥ =vyf =x"a,

Thus y° <x°,

ie. the sectional mapping on [a,1] is antitone. [l

Lemma 6.2.2 A Lattice L =(L,v,A,])with sectional mappings.

(i) if the sectional mapping :x - x' is an involution for each 1€ L then the induced
operation satisfies the identity (x v. PIVY=(PVXIVX =XV Y rcrnninnnnnnes (A).

(i) if the sectional mapping :x > x' is weakly switching foreach 1€ L and the
induced operation an involution satisfies (A), then every sectional mapping is an
involution.

Proof: (i) Since. x v y €[y.1]

We have xvy=(xvy) 2y.

Thus, if the sectional mapping is an involution we conclude,
@vyvy=@xvyy vy =(xvy) =xvy,

Whence (i) is evident.

(ii) Let each sectional mapping be weakly switching, let le L and xe[L1].
Then xvI=x by(i)
and x" =(xvlvi=(vx)vx=(vx)y vy =@ vx) =(vx) =1"=x

and thus :x — x' is an involution. O

Lemma 6.2.3 A lattice L =(L,v,A,1) with sectional mappings. Let < be its induced
order. Then x < y if and only if xvy=1.

Proof: If x<y,then xvy=((xvy) =y" =1

Conversely, if xv y=1, then (xv y)’ =],

Since it is a switching mapping, x vV y =y, whence, x<y. U

Lemma 6.2.4 A lattice L=(L,v,A,]) with sectional weakly switching mappings.

Then L satisfies identities,

gvx=) lva=x,2VI=] i (B)

Proof: Sincexvy=((xvy).
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Thus xvy=(xv Y = =1 /%
Again, since in a sectional switching mappings. (z ' nﬂ,f \ l”j:
X = (v k?}_\ DL s
={I'vx)"* T
=((vx)vx)

= (x’ % x)‘

=(vx)Y =l'=x

further, x" =(xvI)"

=xvil=(xvD)'=x"=1

Theorem 6.2.5 A lattice L =(L,v,Al) with sectional switching mappings.

(i) If L satisfies theidentity (((xvy)vy)vz)V 24 ) [E— (c)

then every switching mappingon L is antitone.

(ii) If every sectional switching mappings.onL is an involution then it antitone if
and only if L satisfies (c)

Proof: (i)Let ze;x,ye(z]] and x<y.

By Lemma 6.2.3 We have yvz=1,andby

Lemma 6.2.4 and (c) We conclude:

(yvz)v(xvz)=(Avy)Vvz)v(xvz)

={((xvy)vy)vz)v(xvz)=1.

By Lemma 6.2.3 we have vz<xvz

and thus y*=yvz<xvz=x"

(ii) Let the sectional switching mappings.on L are antitone involutions.

By Lemma 6.2.1 we have (xvy)vy=xvy.
Since xv yvz2xvz and xVyvz,xvze[z,l]
We obtain , ((xvy)vy)vz:(xvyvz)’S(xvz)z:xvz.

By Lemma 6.2.3 we conclude (((xv y)vy)vz)v(xvz)=1. 0
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6.3 The compatibility condition

Consider a lattice with sectional mappings where the mapping in a smaller section
is determined by that of a greater one.

We say that L =(L,v,A,l) satisfies the compatibility conditionif p<g <x

implies that X=X Vg ..corersmpmesmieisissiion: (D)

It iseasy to verify that(D)can be equivalently expressed as the following identity,

(YVvZIVEVYI=((YVIIVIIV(XV P)iriiennnisines (E)
Since x<xvy<xvyvzand (yvz)v(xvy)=(xvyvz)®™”
(yvz)vx=(xvyvz)’

Lemma 6.3.1 A lattice L =(L,v,A,]1) with sectional switching mappings satisfying
the compatibility condition . Then

(i) xvx' =1for each /e L and each xell,1]

(ii) If z+> z' is a switching mappings for 7/#1 then x' #x and if x <y then

x' %y for x,yell,1]

(iii) If all the sectional —mappings are switching, then no section of L can be a
chain with more then two elements.

Proof: (i) Since / < x, we conclude directly by (E) 1=x" = % v

(i) If z+> 2’ is a switching mapping on [11] and x,ye[L1], then if x' =x, by (),
We obtain 1=x' v x=x and, hence,

1=x' =1' =1, acontradiction.

If x<y and x' =y’ then by (E)and (i), y* =y vx=x'vx=1

Since the sectional mapping is switching, it yields y =x, a contradiction.

(iii) Suppose that [L1] is achain with more then two elements.

Then there exists, x,e [I, ll I#x#1

We have, x’ #7,x' #1 and by (i),

1=x'vx=max(x,x'), a contradiction. [J
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Theorem 6.3.2 A Lattice L =(L,v,A,]) with sectional switching mapping satisfying
the compatibility condition. If x > x'is antitone on [Ll], then x' is a complement
of x for each x,e[!,l],

Proof: Considers the sectional switching mapping on [/,I] is antitone.

By Lemma6.3.5 wehave xvx' =land x'vx" =1 for eachx,e[/]].

Take z=xA, x'. Then z<x, z<x'and, due to the antitone property of mapping,
also 2/ >x, 2/ 2x". Thus, z' >x' vx" =1

Therefore, it follows that,z' =1, ie.,z=I and x' is complement of x in the lattice

([LIv,A) . O

Theorem 6.3.3 A lattice L =(L,v,A,l) with sectionally antitone involutions satisfying

the compatibility condition. Then for each /€ L the section [L1]] is an orthomodular

lattice where x' is an orthocomplement of x,e [L1].
Proof: Since sectionally antitone involutions are switching mappings, thus by

Lemma 6.1.1 and Theorem 6.3.7, [1]] is a lattice and x' is a complement of

X,E€ [!,1].

Since this sectional mapping isan involution, we have x“ = xand due to antitony,
x <y implies y' <x' for x,ye[l,1} thus x'is an orthocomplement of x in [/,1],
using the compatibility condition / <x <y implies y* =y’ vx

and hence yA, (xvy)=yA ¥y =yA,y =x

which is the orthomodular conditionin the lattice ({/, 1]l.v,A;,) O

Theorem 6. 3.4 A Lattice L = (L,v,A,1) with sectionally antitone involutions. If for
leL and each x,yell,1] the relation

vV =G VI VY e (F)
holds, then ([/,1],v,A,) is a Boolean algebra.
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Proof: Due to Lemma 6.1.1 ([/,1],v,A,) is a lattice and we can use De Morgan’s law

for each section. Let ae[L]].

Using of the identity (F), we obtain

ava =a"va =@ vi va

=(I'va) vl =(1va) vli=1

Due to the De Morgan’s law, we have,

av,a' =a"v,d =@ va) =1=1L

Hence, a' is a complement of a in [1, 1].

Let ue [l, 11 is a complement of a in [1, 1],

ie.avu=land anu=I.

Using the identity (F) and the De Morgan’s law again, we derive,
a=Iva=(avu) va

=(@" vu) va"

=@w'va) vu'

=(unA, a)yvi'

=Ivu' =u'

Thus, a' =u" =u, and the complement is unique.

Since the involution is an antitone unique complementation, then, according to

([Z,1],v,A,) is distributive. O
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