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ABASTRACT 

This thesis studies the nature of a sectionally pesudocomplemented lattice and Boolean 

Algebra. Lattice theory is a part of Mathematics. Boolean algebra and Boolean function 

is an important of lattice theory. A nonempty set P together with a binary relation R is 

said to form a partially order set or a poset if the following conditiois hold: 

(i) Reflexivity (ii) Anti-symmetry (iii) Transitivity. 

A poset (L,:!~) is said to form a lattice if for every a, bE L if a v b and a A b exist in 

L. A lattice is said to be complemented lattice if every element has a complement. 

Let L be a bounded distributive lattice, let a e L an element a' e L is called a 

1 pseudocomplement of a in L if the following conditions holds: (i) a A a' = 0 (ii) 

V x E=-  L, ax =0 implies that x!~ a' 

A complement distributive lattice is called a Boolean lattice. Since complements are 

unique in a Boolean lattice as an algebra with two binary operations A and v and one 

unary operation '.Boolean lattices so considered are called Boolean algebra. Moreover 

we can discuss on relatively pseudocomplemented Lattices. In this thesis, we have given 

several results on seetionnally (relatively) pseudocomplemented lattices which certainly 

extended and generalized many results in lattice theory. 

In chapter one is to outline and fix the notation for some of the concepts of lattices 

which are basic to this thesis. Some more definitions and formulate results on a 

orbitrary lattices for later use. We have considered this section as the base and 

background for the study of subsequent sections. For the background material in Lattice 

theory we have refered the readers to the of G. Birkoff [14] G. Gratzer [15] and V.K. 

Khanna [24] and several authors. 

In chapter two, we have given a description of difference classes of lattices. We have 

also studied normal lattices and distributive quasi-complemented lattices. Generalized 

stone lattices have been studied by H. Lakser [16,17], K.B Lee [20] and many other 

authors. 
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We have given a characterization of minimal prime ideals of a sectionally 

pseudocomplemented lattices. Then we have shown that a distributive Lattice L with 0 

is generalized stone if and only if it is both normal and sectionally quasi-complemented. 

In chapter three introduces the concept of relative annihilators in lattices. Relative 

annihilators in lattices were studied by several authors including Mandelker [21] and 

Verlet [22]. B.A. Davey [1] has used the annihiiators in studying relatively normal 

lattices. Here we have studied the relative annihilators in lattices. In terms of relative 

annihilators, we have characterized modular and distributive lattices. Relatively stone 

lattices have been studied by several authors including Mandelker [26], T.P. Speed [23] 

Gratzer and Schmidt [15]. Here we use given several characterizations of relatively 

stone lattices, which are certainly the generalization of above authors work. We have 

also shown for a distributive lattice L in which every closed interval in 

pseudocomplemented is relatively stone if and only if any two incomparable prime 

ideals of L are comaximal. 

In chapter four, we have studied lattices with the greatest element 1 where on each 

interval [a,1] an antitone bijection is defined. We have characterized these lattices by 

means of two induced binary operations proving that the resulting algebras form a 

variety. 

The congruence properties of this variety and the properties of the underlying lattices 

are investigated. We have shown that this variety contains a single minimal subquasi 

variety join-lattices, whose principal filters are Boolean lattices, were used by J.C. 

Abbott [13]. We have introduced a further generalization of this concept, defining the 

notion of a lattice with sectionally antitone bijection. We have also introduced 

Residuated Lattices studied by Ward and Diworth [26] and several authors. Two mono 

graph contain a compendium on residuated lattices. They are that by Blyth and Janowitz 

[2]. In this paper we will compare a certain modification of a residuated Lattice. 

In chapter five, It is shown that every directoid equipped with sectionally switching 

mappings can be represented as a certain implication algebra. The concept of directoid 

was introduced by J. Jezek and R. Quackenbush [19] in the sake to axiomatize algebraic 

structures defined by on upward directed ordered set. In certain sense, directoids 

generalize semilattices. 
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0. 

In chapter six. We have studied switching Mapping introduced by Chajda and 

Emanovsky [3]. A mapping f of [a,!] onto itself is called switching mapping if 

f(a) =1 and for x e [a,1],a * x :# 1 in the section[q,1] is determined by that of [p,l], 

we say that the compatibility condition for antitony switching mappings and connection 

with complemention in sections have been shown. 
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Chapter One 

First concepts of Lattices 

Introduction: The intention of this section is to outline and fix the notation for some of 

the concepts of lattices which are basic to this thesis. Some more definitions and 

formulate some results on arbitrary lattices for latter use. We consider this section as the 

base and background for the study of subsequent Sections. For the background material in 

lattice theory we refer the reader to the text of G. Birkhoff [14], G. Gratzer [13] and 

Vijay K. Khanna [24]. 

1.1 Preliminaries 

Some definitions with examples: 

Set: Any collection of objects which are related to each other. 

Finite set: A set is finite if it consists of a specific number of different elements 

Example 1.1.2 Let A be the set of months of a year. Then A is a finite set. 

Infinite set: A set is infinite if it does not consist of a specific number of different 

elements. 

Example 1.1.3 Let A = {1,3,5,7............}. Then A is infinite. 

Comparable: Two set A and B are said to be comparable if A c B or B Cz A i.e. 

if one set is a subset of the other. 

Example 1.1.4 LetA ={1,3,6,9} andB={l,3,6,9,12 ............  }. Then A and B are 

comparable i.e. A c B. 

Empty set: A set having no element is called the empty set or null or void set and 

denoted by 0. 
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Example 1.1.5 Let A is a set having no element. i.e. A = 

Line diagram: If A B then we write B on a higher level then A and connect them by 

a line. 

B 

A 

Fig-I. 

If A c B and B c C 
-r 

C 

41  B 

A 

Fig-l.2 

Example 1.1.6 Let A = {3},B = {4} and C = {3,4} then the [inc diagram of A,B and C. 

il 
A<,/ B 

C 

fig-L3 

Power set: The family of all the subsets of any set is called the power set of X. Notice, 

since 0 is contained in every set, 0 E p(X) we denote the power set of X is p(X). 

Example 1.1.7 Let X = {a,b} then P(X) = {{a,b}, (a), {b},(p} 

Disjoint set: If the set A and B have no common elements. i.e. no element of A is in 

B and no element is in A , then we say A and B are disjoint set. 

2 



Example 1.1.8 Let A = {a,b} and B = {c,d}, then A and B are disjoint set, since 

Ar-  B=ç. 

Theorem 1.1.1 Let A and B be two sets which are not comparable. Construct the line 

diagram A,B and A r B 

Proof: Since Ar -BcA and ArBcBsoArB isasubsetof both A and B 

Accordingly, we have the following line diagram, 
A\/B 

AmB 

Fig- 1.4 

Function: Let A and B be two sets, a relation R: A -p B is called a function if each 

element of A is assigned to a unique element of B 

Example 1.1.9 f(x) = + 1 is a function. 

Domain and Co-domain: If the relation R A -* B is a function then the set A is 

called domain and the set B is called co-domain. 

Example 1.1.10 A = {l,2,3} - B{2,4,6,8} : f(x) = 2x then the set A is domain and B is 

co-domain. 

One-one function: Let f be a function from A to B the function. Then f is said to 

be one-one function if every element of A is assigned to single element of 13 

Example 1.10 f(x) = x3  + 1 is a one-one function. 

Onto function: Let f be function from A to B then the function f is said to be onto 

function if every element of B is assigned. 

Product function: Let f be a function from A to B and let g be a function of B the 

co-domain of f, into C The new function is called a production function or composite 

function of f and g and it is denote by g of or (gf) 

3 



f 
g 

Fig-1.5 

Relation: A relation R from A to B is subset of A x B 

Example 1.1.13 Let X= {x,y,z) and Y= (a,b) ,then 

R = {(x,a),(x,b),(y,a),(y,b),(z,a),(z,b)} is a relation from A to B 

Equivalence Relation: A relation R in a set A is an equivalence relation if 

R is a reflexive: (a, a) E RVa E A 

i.e. aRa Va E R 

R is symmetric: (a,b)ER then a,bER 

i.e. aRb =' bRa 

R is transitive: (a,b),(b.c) eR then a,b,cE R 

i.e. aRb,bRc = aRc 

Example 1.1.14 Let A = {1,2,3} be a set and 

R = (l,l), (2,2), (3,3), (1,2), (2,1), (1,3), (3,1), (2,3)} be a relation of R then the relation is 

an equivalent relation. Since 

1? is reflexive, (l,1),(2,2),(3,3) e R 

R is symmetric, (l,2),(2,l),(l,3),(3,l) e R 

R is transitive, (2,1), (1,3), (2,3) e R 

Partially order relation: A relation R in a set A is an partially order relation if 

Reflexivity: aRa V a € R 

Transitivity: aRL bRc then aRc Va, b, c E R 
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Anti-symmetry: aRb, bRc then a = b Va, b E R 

Example 1.1.15 On a set A = (1,2,3) 

R = {(1,l),(2,2),(3,3)} is reflexive, anti-symmetry and transitive. 

Quasi order relation: A relation R in a set A is quasi order relation if 

R is a reflexive: a, a E 1? Va E A 

i.e. aRa Va E R 

R is transitive: (a, b), (b, c) E R then a, c E R 

i.e. aRb, bRc => aRc 

Example 1.1.16 Let A = {l,2,3} be a set and R = ((1,1), (2,2), (3,3), (2,1), (1,3), (2,3)) 

R is reflexive, (1,1),(2,2),(3,3) E R 

R is transitive, (2,1), (1,3), (2,3) E R 

Totally order set: If P is poset in which every two members are comparable it is called 

a totally order set or toset or a chain. 

Example 1.1.17 If P is a chain and x, y E P then x :!~ y or y :5 x . Clearly also ifx,y 

are distinct element of a chain then either x :!5 y or y :!5 x 

I 

a 

0 

fig-1.6 

Greatest element of a poset: Let P be a poset. If 3 an element a E P s.t. x :9 a Vx E P 

then a is called greatest or unit element of P . Greatest element if exist, will be unique. 

Example 1.1.18 Let A = {1,2,3} then (p(A),c) is a poset. 

Vr 
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Let B= {{l,2),(2),{l},{3},{l,2,3}} then (B,ç) is aposet with {1,2,3} as greatest 

element. 

Least element of a poset: Let P be a poset. If 3 an element x E P s.t. b :~ x Vx E P 

then b is called least or zero element of P. Least element if exist, will be unique. 

Example 11.19 Let A = {l,2,31 then (P(A),) is a poset. Let 

B = {0{1,2},{2},{11,(3},{1,2,3} } then (B,c) is a poset with as least element. 

Maximal element: An element a in a poset P is called maximal element ofP if a <x 

for no x e P. 

Example 1.1.20 In the poset A = {2,3,4,6} under divisility 4 and 6 are both maximal 

element. 

Fig-i .7 

Minimal element: An element b in a poset P is called minimal element of P if 

a<x<b forno xeP. 

Example 1.1.21 In the poset A = {2,3,4,6} under divisility 2 and 3 are both minimal 

Fig-l.8 

Upper bound of a set: Let S be a nonempty subset of a poset P. An element a E P 

is called an upper bound of S if x :!!~ a 'lx E S 

Example 1.1.22 <L;A,v,O,1> is bounded lattice. 

Least upper bound of a set: If a is an upper bound of S s.t. a !9 b for all upper bound 

b of S then a is called least upper bound (Lu.b) or supremum of S. We write sup S for 

supremum S. 



Lower bound of a set: An element a E P will be called a lower bound of S if 

a:5x VxES. 

Greatest lower bound of a set: If a is a lower bound of S s.t. b <a for all lower 

bounds b of S then a is called greatest lower bound (g.l.b) or infemum of S. We write 

inf S for infemumS. 

Lattice: A poset (L, :5) is said to form a lattice if for every a,b EL sup {a,b} and 

inf{a,b} exist in L. In that case, we write, 

sup {a,b} = a vb (read a join b) 

inf {a,b} = a A b (read a mectb) 

Other notation like a + b and ab or a u b and a u b are also used for sup {a, b} and 

inf {a,b} 

Example 1.1.27 The set, L = {1,2,3,4,6,12} of factors of 12 under divisibility forms a 

lattice. It is represented by the following diagram: 
12 

fig-1.9 

Theorem 1.1.2 If S is a non empty finite subset of a poset P . Then S has sup. and inf. 

Proof: Let (p,:!~) be a lattice. Let S be any non-empty finite subset of P 

Case-i: S has single element a, then inf S = supS = a. 

Case-2: S has two elements a,b then by the definition of lattice, supS and infS exist. 

Case-3: S has three elements say, S = {a,b,c} . Since by the definition of lattice any two 

Wi 
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elements of F have sup and inf. 

We take, d = inf{a, b}, e = inf {c, d} 

We show e= inf{a,b,c} 

By the definition of d and e, 

d!~a,d:!~b,e:~c,e:!~d thus e:!~a,e:!~b,e<c 

=> e is a lower bound of {a,b,c} 

1ff is any lower bound of {a,b,c) then. f:5 a,f :!~ b,f :5 c. 

f a,f:!~b,and d=inf{a,b} gives f:!~d 

f c,f:5d, and e=inf{a,b} gives f < e 

Hence e=inf{a,b,c}=infS 

Similarly sup S exists. 

The result can similarly be extended to any finite number of elements in S. 

Indeed Inf S=inf{ .....  inf{a17 a2 },a3 } .......  a} 

If S={a1 ,a2,a3. .......... a} 

Conversely, the result holds trivially as when every non-empty finite subset has sup. and 

inf.o 

Theorem 1.1.3 Let L be a lattice, then for any a,b,cE L the following results hold: 

aAa=a, a v a = a (Idempotency) 

aAb=bAa, avb=bva (Commutative) 

aA(bAc)=(aAb)Ac, a v (b v c) = (a v b) v c (AssociativIty) 

aAb:!~a, b:5avb 

a:5baAb=a (Consistency) 

a A b = b 

Iq 



A. IfO,uELthen 

OAa=O, Ova=a 

uAa=a, uva=a=u 

vu. a A (a v b) = a (absorption) 

f :!~ a, f :~ b, and 

viii. a:!~b,c:5d 

aAC:!~bVd 

;.avc:!~bvd 

In particular case, 

a:5b= aAx:5bAx 

avx:~bvx VxeL 

Proof: We proof results for the meet operation, similarly we can prove the results for 

join operation. 

1. aAa=infa,a}=inf{a}=a 

ii. aAb=rnf{b,a}=bAa 

M. Let b A c = d then d=inf{b,c} 

d :~ b,d :5 c 

Again let e = inf(a,d}, then e :5 a, e :5 d 

thus e :!~ a,e < b,e !9 c (by using transitivity) 

Now e=aAd=aA(bAc)=inf{a,b,c} 

Similarly we can show that (a A b) AC = inf{a, b, c} 

a (b AC) = (a A b) AC 

iv. Since any two elements a,b of a chain are comparable, say a :~ b, 

-r 
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wefind aAb=inf{a,b}=a 

v. a:!gb, a:!~a (byreflexivity) 

a is a lower bound of f a,b} and therefore a = a A b, .•. a A b = a 

A. Since O:!~x:!~u,VXEL 

a :!g a v b by(iv) 

..aA(aVb)=a by(v) 

:.avb:5a by(iv) 

:.(avb)v=a by(v). 
If 

aAC:!~a<b 

aAc:!~c:5b 

Thus a A C is lower bound of {b,d} 

Hence aAc:5bAb,the glb{b,d} 

Also then. a:!!gb,X:!~X='aAx:!~bAx 0 

Theorem 1.1.4 In any lattice L the distributive inequalities 

i. aA(bvc)~!(aAb)v(aAc) 

U. a v (b Ac) :!~ (a v b) A (a v c) hold for any a, b,c E L. 

Proof: aAb:5a 

aAb 15bvc 

=' a Ab is lower bound of {a,bvc} 

='aAb:5aA(bvc) .................. (i) 

Again aAc:5a 

a AC :5C :5bvc 

=aAc:5aA(bvc) .................  (ii) 

FE 



(1) and (ii) show that a A (b v c) is an upper bound of {a A b,a v c} 

aA(bAc):!~(avb)A(avc). o 

Similarly we can prove the other inequality. 

Note: The above are also called semi-distributive lattice. 

Theorm 1.1.5 In any lattice L, 

(aAb)v(bAc)v(cAa):!~(aVb)A(CVa), forall a,b,ceL 

Proof: Since aAb:~avb 

a Ab :!~bvc 
If 

aAb:~a:5cva 

wefind (aAb)!9(avb)A(bvc)A(cVa) 

Similarly, (bAc):!~(avb)A(bvc)A(cva) 

and (cAa)!~(avb)A(bvc)A(cva) 

Hence (aAb)v(bAc)v(cva):~(aVb)A(bvc)A(CVa) o 

1.2 Algebraic Lattice 

Algebraic Lattice: A non-empty set L together with two binary compositions 

(operations) A (meet) and v (join) is said to form a algebraic lattice if for all a,b,c E L 

the following conditions are hold: 

Idempotency: aAa=a,ava=a,aL 

Commutativity: aAb=bAa,avb—bva,a,b€L 

Associativity: a A (b A c) = (a A b) A C 

av(bvc)=(avb)vc a,b,cEL 

Absorption: a A (a A b) = a 

11 



av(aAb)a a,bEL 

Theorem 
1.2.1 Show that a poset (L,A,v) is a lattice if (L,A,v) is algebraic lattice. 

Proof: Suppose L is a non-empty set 

So that a Al) = inf{a,b} and a AL = sup{a,b} 

Then aAaiflf{a,a} and ava=suP{a,a}a 

So A and v are idempotent. 

a A b = inf{a,b} = inf{b,a} = b A a 

a v b = sup {a, b} = sup{b, a} = b v a 

So A and v are commutative. 

Next a A(bAc)inf{a,bAc} =inf{a,inf{b,c}} 

= inf{inf{a,b},c} = inf{a Ab,c} = (a A b)A c 

a v (by c)= sup{a,b v c} = sup{a,sup{b,c}} 

= sup(sup{ab} ,c} = sup(a v b,c} =( b)vc 

So A and v are associative. 

Finally, a A (b v c) = a A sup {a,b} = inf{a, sup {a,b}} = a 

a v (b A c) =a V inf{a,b} = sup{a,inf{a,b}} = a 

Hence A and v satisfy two absorption identity. 

So (L,A,v) is a lattice. 

Conversly, Since A is idempotent i.e, a A a = aVa E L 

So a :!~ a 

:~ is reflexive. Since A is commutative 

a Aa = a, a = a,a EL 

a=b [sinceaAba] 

12 



So !~ is anti-symmetric. 

Let a:_~b and b:5c.Then a=aAb,bbAC 

' a A (b Ac) = (a A b) A c = a AC 

' a = a A C => a 2: c. So, ~t is transitive. 

(L, :5) is a poset. o 

Problem 1.2.1 Non-empty subset of every chain is sublattice. 

Solution: Let L be a chain and ifs be a non-empty subset of L . If a,b be two elements 

ofSi.e., a,bES 
14 

a,b E L a,b are comparable. 

Again let b~!a i.e, a < b 

ThenaAb=aES. AndavbbES. 0 

1.3 Semi lattice, Convex Lattice, Bounded Lattice and Complete Lattice 

Meet semi Lattice: A non empty set P together with a binary operation A (meet) is 

called a meet semi Lattice if for all a,b,c E P, 

i. Idempotency: a A a = a 

IL Commutativity: a A b = b A a 

iii. AssociativitY a A (b Ac) = (a A b) A C 

Join semi lattice: A non empty set P together with a binary operation v (join) is 

called a meet semi lattice 

if for all a,b,cEP, 

Idempotency: a v a = a 

CommutatiVitY a v b = b v a 

AssociatiVity a v (b v c) = (a v b) v c 
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Theorem 1.3.1 A and B two lattices then prove that Ax B is also a lattice. 

Proof: Given that A and B two lattices then is a poset under the relation :~ defined by 

(x1 ,y1 )!f-(x2,y2) 

x1  :~, x, in A, y1  :!~ y, in B. 

We show that A x B forms a lattice. 

Let (x1,y1),(x2,y2)E A x B be any element. 

Then (x1 , x2) E A and (y1,  y2 ) e B 

Since A and B are lattices. 

So {x1 ,x2} and {y1,y2} have sup and inf in A and B respectively. 

AK Let x1  tx2  =inf{x1 ,x2} and y, Ay2  =inf{y1,y2} 

Then x1  AX2  :~x1,x1  AX2  :5x2,y1  iy2  ~y1,y1  A)'2 :~y2 

=>(x1  Ax2,y1  Ay,):!~-(x1,y1)(X1  Ax,,))1  Ay,):!~(x2,y2) 

=.(x1  AX2,)'1  Ay2 ) is a lower bound of {(x1,y1 ),(x2,y2)} 

Suppose (z,w) is any lower bound of {(x,y1 ),(x2,y2)} 

Then 

(z,w):~(x1 ,y1 ) 

(z, w) :~ (x, v2) 

'7 =:z:~x1 , z:!~x,, w:5y1, iv:!~y2 

z is a lower bound of {x1 ,x.,} mA 

and w is a lower bound of {y1 ,y2} in B 

=z:~x AX, =infx1 ,x2} 

w :!~ y1  A Y2  - inf{y,, y2} => (z, w) :!~ (x1  A X, 
, y1  A y2) 

Or that x1  AX,, 1  A)'2) is g.l.b {(x1,y1 ),(x2,y,)} 
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7if 

Similarly we can say that, 

(x1  AX2,YJ  Ay1) 
j jetupper bound0f {(x,y1 ),(X2 5Y2)} ,1. 

Hence A x B is a lattice. o 

Convex Lattice: A subset K of a lattice L is called a convex lattice if 

a,b E k,cE L,a!~C:~bPlYthtc6 K• 

Convex sublattice: A subset K of a Lattice L is called a convex sublattice if for 

all a,b c= K,[aAb,avb]cK 

Example 1.3.2 In the lattice {1,2,3,4,6,12} under divisibility {1,6} is a sublattice which is 

not convex as 2,3 e 1,6] but 2,3 0 {1,6} 

DiagrammatiCallY the lattice {1,2,3,4,6,12} can be represented by the figure 1.9. 

Theorem 1.3.2 A sublattice of a lattice L is a Convex sublattice iff for all 

Proof: Let k be a convex sublattice of L and x,y e k(x :~ y), be any elements, then by 

the definition 

[X A Y,XV y1c K 

[x,yKaS X:5YXAYX 

x :5 3' => X V 3) =3' 

Conversely, let [x, y] c K Vx, y(x :!~- y) 

Let x,y E K be a sub lattice. 

Also are comparable. .. [x A y,x v yj ç K o 

Bounded Lattice: A 
lattice with a largest and a smallest element is called a bounded 

lattice. Smallest element is denoted by zero and the largest element is denoted by one. 
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Complete Lattice: A lattice L is called complete lattice if for its every sub set K, both 

sup K, and inf K exists in L. 

Finite Lattice: A lattice L is called finite lattice if it contains a finite number of 

elements. 

Example 1.3.4 Let L = {1,2,5,10} be a lattice under divisibility. Hcrc in the lattice the 

finite number of element in L. So, L is finite lattice. 

1.4 Ideal 

Ideal of a Lattice: A non empty set I of a lattice L is called an ideal of L 1ff 

a,bEIavbEl 

aI,iEIaAiEI 

Example 1.4.1 Let L = {l,2,5,10) be a lattice of factors of 10 under divisibility. Then 

{l}, {l,2}, {1,5}, {1,2,5,10} areall the ideals ofL 

to 

<2> 

Fig: 10 

Prime Ideal: An ideal P of L is called a prime ideal if for any x, y E L, X A y e P 

implies x E P or y E P 

Example 1.4.2 Let L = 11,2,3,4,6,12 } of factors of 12 under divisibility forms a 

Lattice then {1,2,4} be a prime ideal of L (figure 1.9). 

Principal Ideal: An ideal which generated by a single element is called principal ideal. 

Example 1.4.3 Let (a] = (x/x :~ a } then the ideal (a] is generated by the element a. 
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Hence (a] is principal ideal. 

Filter or dual ideal: A non empty subset I of a lattice L is called dual ideal of L if 

a , b E I implies that a A b E I 

d e J,a E L implies that d A a E I 

Example 1.4.4 Let L = { 1,2,5,10 } be the lattice under divisibility. 

Then{10 }, {S,10}, {2,10} are all dual ideals of a latticeL 

Theorem 1.4.1 If L is a chain then prove that every ideal of a lattice L is prime. 

Proof: First suppose that every ideal of L is prime. 

4. 
Now we are to show that L is a chain. 

Let a,b E L then a A b E L 

Now consider the ideal I = (a A b) 

By hypothesis 1 is prime. 

Now aAbEi= either aEI orbEl 

either a :~ a A b or b :!~ a A b 

=> either a = a A b orb = a A b =' either a :!~ b or b :!~ a 

L is chain. 

Conversely, let L be a chain and P be an ideal of L , we are to show that P is prime. 

Let x,y E L with XA yE P .Since L is chain. 

Then either x :5 y or y :5 x 

=eitherxAy=x orxAy=y =.eitherx(=- P oryEP 

=> P is a prime ideal of L . o 

Theorem 1.4.2 Suppose K and I be non-empty subset of a lattice L 

i) I is an ideal if for all x, y E 1 x V y E L and for all x E I, implies t ~ I 

17 
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ii)(K]={xELfx:5K 1 VK 2 v .vKforsomeK i ,K 2 .,K n EK} 

iii. (a]= {xELIX:!~a 

proof: i. Suppose 1 is an ideal. 

So 1 is a sublattice and so forall x,y E 1,x V Y E L 

Now let x E 1, t :5 x implies t 5 L 

Then t = t A x e L 

Conversely, suppose I has the stated properties, 

Let x, yr= I then x A y ~ x implies X A y E I 
* 

i.e. I is a sub lattice. 

Now suppose i E I, x E I then i A X < I 

Implies i A X < I 

Therefore I is an ideal. o 

ii. Let x,y E k,  v k 2  v ..... A k forsome k 1 ,k 2. .....  , k E K 

then, x k1 vk 2 v ..... Ak,, forsomek1 ,k 2 ,....., k,,eK 

y k1 vk 2 v ..... Ak,, forsomek1 ,k2  ....... k,,EK 

so xvy<k1 vk2 v Ak,,vk,vk2v ........ vk,, 

..x,yEk1 Vk 2 V ..... Ak,,forsomek1 ,k2  ......,k,,EK 

lfx€k1 vk2 v ..... Ak,, forsomek1 ,k2  ......,k,,€K 

andt:5Lwith t::~x, then 

x:5k1 vk 2 v Ak,, forsomek1 ,k, ....... k,,€K 

andt:!9x:!gk1 vk2 v .....  Ak,, implies 

tek1 vk 2 v Ak,, forsomek L ,k 2  ....... k,,EK 
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Hence k1  v /2  v......v k is an ideal, which contain K . o 

1.5 Complemented Lattice 

Complemented Lattice: in a bounded latticeL, a is a complement of b if 

a A b = 0 and a A b = I. A complemented lattice is a bounded lattice in which every 

element has a complement. 

Example 1.5.1 Let [a, b] be an interval in a lattice L . Let x E [a, b] be any element. 

If thereexists ye b such that XA y = a, xv y = b. 

We say y is a complement of x relative to [a, b] , or y is relative complement of x 

in [a, b] . In every element x of an interval [a, b j has at least one complement relative 

to [a, b], the interval [a, b] is called complemented. Further, If every interval in a 

lattice is complemented, the lattice is said to be relatively complemented. 

Theorem 1.5.1 If L 1  and L 2  are relatively complemented, then Cartesian product is 

also relatively complemented. 

Proof: Since L 1  and L 2  be relatively complemented. 

Let [(x1 , y1 ), (x2 , y2 )] be any interval of L 1  x L 2  and suppose (a,b) is any element 

of this interval. Then (x1 ,y1 )!:'~t (a,b):!~,(x 2 ,y2 ); xt ,x 2 ,a cL1 , y1 ,y2 ,be L2 . 

Impliesthat x1  a x2  y1  <— b :~ y 2  

Implies that a E [x1 ,x2 ] an interval in L 1  and b e[y1 ,y2 ] be an interval in L 2  

Since L 1  , L 2  are relatively complemented, (a, b) have complements relative to 

[x,x2 ] and [y1 y2 respectively. 

Let a ' and b be these complements, then a A a' = x1 , a V a' = 

bAb'=y1 , bvb'—y2  

Now (a, b) A (a ',b') = (a A a',b A b')= (x1 , x 2 ) 

19 



(a,b)v(a',b')(aVa',bvb')(ni,x2) 

i.e., (a', b') is complement of (a, b) relative to [(x1 , y1  ), (x2 , y 2  )j,  thus any 

interval in L x L2  is complemented. 

Hence L1  x L 2  is relatively complemented. 

Conversely, Let L1  x L, be relatively complemented. 

Let [x1 ,x2 ] and [y1,y2JbeaflYiflterva1SmLi andL2 

Let a E [x1 ,x 2 ], bE [y1 ,y2 ] be any elements then x1  ~ a ~ x,, y1  ~ b ~ y, 

Implies that (x1 ,x1 ):~ (a,b):~ (x21 y 2 ) 

Implies that (a,b) E[(x1 ,y1),(x2,y2)} anintervalin L1  xL2  

Implies that (a, b) has a complement, 

Say, (a', b') relative to this interval. 

Thus, (a, b) A (a', b') = (x 1 ,y1 ) 

(a,b)v (a', b') = (x1 ,y1 ) 

Implies that (a A a', b  A b ) = (x1 , 

(a v a',b v b') = (x1 , y1) 

Implies that (a A a' = x, a v a' = 

(bAb'=y1 , bvb'=y2, 

Implies that a' is complement of a relative to [x1,x2] b' is complement of b relative to 

[Y]'Y21 

Hence L and L2  are relatively complemented. o 

Theorem 1.5.2 Dual complemented lattice is always complemented. 

Proof: Let (L, p) be a complemented lattice with (0,1) as least and greatest elements. 

Let (L,p), be the dual of (L,p), then (0,1) are least and greatest element of L. 
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Let a E L = L be any element. 

Since a E L, L is complemented, 

2 a'e L 2 s.t.aAa'=O,ava' in L 

i.e. O=inf{a,a'} in L 

=>Opa, OpaapO, a'pO in L 

:=> 0 is the upper bound of {a, a'} in L 

then apk, a'pk =' kpa, kpa' 

. kpO as 0 is infimum. => Opk 

i.e., 0 is Lu.b (a, a) in L i.e., a v a' in L 

Similarly, a A a'=  I in L 

or that a' is complement of a in L 

Hence L is complemented. o 

Theorem 1.5.3 A complemented distributive lattice is relatively complemented. 

Proof: Let L be a complemented distributive lattice. 

Let [a,b] be any interval in L and x e [a,b] be any element. 

Since I is complemented x has a complemented, 

say x' then XAX'=O and xvx'=u 

a!5x:!~b, a:!~x~5b, take y=(avx)Ab 

then xAy=xA[(avx)Ab][(XAa)V(XAX)1Ab 

= [(x A a) v 0] A b = (x A a) A b a A b = a. 

and xvy=xv[(avx)Ab1=[(xAa)v(XAX)]Ab 

=[(x A a) v 0] Ab= (x A a) Ab = a Ab= a. 
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=(xv (avX ))A( A V  

Hence y is relatively coniplemented of x in [a,b] o 

Fall 
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Chapter Two 

An extension of sectionally pseudocomplenient Lattice 

Introduction: In this chapter we study sectionally antitone and residuated 

lattices.Firstly, lattices with the greatest element I where on each interval [a, 1] an 

antitone bijection is defined. We characterize these lattices by means of two induced 

binary operations proving that the resulting algebras form a variety. We show that this 

variety contains a single minimal subquasi variety Join-lattices, whose principal filters 

are Boolean lattices, were used by. J.C. Abbott [18] for a characterization of the logic 

connective implication in the classical propositional logic. These lattices also have the 

property that on each principal filter of them an antitone involution is defined. Motivated 

by this observation, the notion of a lattice with sectionally antitone involutions was 

defined in [4] and [5]. In this paper we introduce a further generalization of this concept, 

defining the notion of a lattice with sectionally antitone bijections. Our aim is to obtain 

by means of these lattices 'nice' algebraic structures, i.e. a variety of algebras 

characterized by 'nice' congruence properties. 

Secondly, Residuated lattices were introduced by Ward and Dilworth [26] and studied 

by several authors. Two monographs contain a compendium on residuated lattices. They 

are that by Blyth and Janowitz [2] (where it is renamed as a residuated Abelian semi-

group with a unit). In this short note we will compare a certain modification of a 

residuated lattice with already introduced concepts (see [2, 8]). 

2.1 Lattices with sectionally antitone bijections 

Let A = (A,v,A,*,o,l) be a lattice with the greatest element 1. For each a E L the interval 

[a,!] (with respect to the induced order) will be called a section. We say that L is a 

lattice with sectionally antitone bijections if for each a e L there exists a bijection a of 

[a,!] into itself such that x :!~ y f0 (y) :5 f0 (x), for all x, y E [a,1] of course, the 

inverse f of  f is also an antitone bijection on [a,l]. If each f,  is an involution, 
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i.e. fa 2  (x) =a for all x E [a,l] then L is called a lattice with sectionally antitone 

involutions (see [5]). Given a lattice L with sectionally antitone bijections, we can 

introduce two new binary operations on L as follows: 

xoy=f(xvy) and x*y=f(xvy)  .......... (p) 

Since x v y E [y,l] and are everywhere defined operations on the set L. 

Conversely, one can check immediately that for any a L and x E [a,!] 

fa (x) = x o  a and f (x) = x * a...........(A) 

Clearly, if all the mappings f(a) are involutions, then x o  y = x * y for all x, y r= L 

(Sincef,, —f0' for each a€L). 

The following Lemmas are extension of [5] and theorems are shown in semilattice. 

Lemma 2,1.1 Let L be a lattice with sectionally antitone bijections * and o  be 

operations defined by (p). Then 

xox=x*x=l,xo11,lx=lXX 

(x oy)*y=(x*y)oy=(yox)*x=(y*x)ox 

(((x oy)*y)oz)o(xoz)=(((Xoy)*y)*Z)o(X*Z)_1 

Proof: Suppose a,b E L and a :5 b Then 

faob=fb(avb)=f(h)l and l 

la * b = (a v b) = Jj'(b) = .............. 
(Q) 

Hencexox=x*x=l and xol=x*l=l. Wealsoobtainlcx=f(1)=x 

and 1*x=f'(l)=x. 

Thus (1) is satisfied. 

(x o  y) * = f (f (x v y) v ) = f (f(x v y)) = xv y since f(x v y) ~: y 

and hence f,,(xvy)vy=f(xvy). 

Analogously, we can check (x * y) o  y = xv y, (y a x) * x = x v y, and (y * x) a x = xv y. 

As (x o  y) * y = x v y. We get ((x o  y) * v) z = f: (x v y v z). Further, 

(x a z) = f,.(x v z). 
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However,xvy ::~xvyvz. and f isantitone, thus 

- ((Xoy)*y)oZ=f(XVyVZ):!!~ f(xvz)= xoZ. 

Analogously,weprove ((xoy)*y)*z=f'(xvyv):5f'(XVZ)=X*Z. 

By (Q) we obtain (3) immediately. 0 

Theorem 2.1.1 Let A = (A,v,A,*,o,1) be an algebra of type (2, 2, 0) satisfying the 

identities (I) and (2). Define a binary relation !~ on A as follows: 

a:5bif and onlyifa°b=1 ................. (R) 

Then the following assertions are equivalent: 

The algebra A satisfies identity (3). 

4 (ii) For any x, y, z e A the implications 

(4) (x o  z) = f (x v z). and x :5 y => y z :5  x * z. are satisfied. 

:!~ is a partial order on A and (A,:!~) is a lattice with the greatest element 1, 

whereavb=(aob)*b andforany a€A themaps f:5fa(x)=xoa,f 1 =x*a 

are antitone bijections on[a,l]. 

Proof: (1) => (ii). Suppose x ::,~ y. Then using (i), (R) and (3) we obtain: 

(yoz)o(xoz)=((l *y)oz)(xoz)= (((xoy)*y)oz)o(xoz)=1, 

and hence yoz:5xoz. 

Analogously, we obtain: 

(y*z)o(x*z)((l*y)*z)(x*Z)= (((xoy)*y)*z)o(x*z) =1, whence 

y * z :!~ x * Z. 

=> (iii). Assume that (1), (2) and (4) are satisfied. First we prove that the relation 

:!~ defined by (R) is a partial order. 

Dueto(l), :5 isrefiexive. Suppose x5y. and y:5x. Then xoy=l. and yox=l. 

hence by (1) and (2), 

x=l*x=(yox)*x=(xoy)*y1 *y=y, 

thus :5 is anti-symmetrical. 

Suppose x ::-~ y andy :5 z. Then we get y a  z =1 by (R), and x a  z y a  z, by (4). 

Hence we obtain x o  z = l,i.e.,x _-5 z. Thus :!~ is transitive, i.e., it is a partial order. 
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As for any x€A wehave xol =1 weget x:~1 for all x€A. Therefore, 

x=loz:!~xoz, forall x,zEA and hence 

zo(xoz)=1, for all X,ZEA ................ (S) 

Define av b = (ao b)* b for all a,b E A. Then (2)and (S) implies 

ao((aob)*b)_—(ao((b*a)oa)=1 and 

bo((aob)*b)=bo((a*b)ob)=l, 

thus a::~avb andb:~avb. 

Suppose now a :5 c and b :5 c for some c E A. Then b o  c =1 and 

c=l*c=(boc)*c=(cob)*b by(2).Thisgets 

((aob)*b)oc=((aob)*b)o((cob)*b). 

Due to (4) we infer a :!~ c => c o  b :5 a o  b = (a o  b) * b :5 (c o  b) * b and hence 

((a o  b) * b) o ((c -b) *b) =1, i.e., ((a o  b) * b) o c = 1 proving a v b :!g c. Thus a v b 

is sup{a,b} w.r.t _<. 

Now consider a E A,f0,J defined by (A) and x E [a,1]. Then 

f'(f(x))=(xoa)*a=xva=x and 

fa(f (x)) = (x * a) o a = x v a = 

thus f0 and  f are bijections on [a,l]. (and inverses each of other). 

For x, y E [a,1] with x :!g y we have by (4) 

f0(y)=yoa:5xoa=f(x) and 

f(y)—y*a ::!~x*a_—f(x), 

therefore f0 and  f' are antitone bijections. 

(iii) => (i). By the assumptions of (iii) (A,:!~) is a join semilattice with sectionally 

antitone bijections. Take any x,y e A. Since 

f( xv y)=(xv y)oy=((x oy)*y)oy=f(j(xoy))=xoY and 

f( xv y)=(xv y)*y=((x*y)oy)*y=f'(f(x*y))—_X*Y, 

* and o can be also defined using relation (p). By applying Lemma 2.1.1, we obtain 

that the algebra A = (A,v,A,*,o,1) satisfies the identity (3). U 
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2.2 Sectionally residuated Lattice 

At first, we recall the basic concept: 

By a residual lattice is meant an algebra L = (L,v,A,*,o,O,I) such that 

L = (L,v,A,0,1) is a bounded lattice, 

L = (L,*,1) is a commutative monoid, 

it satisfies the so-called adjointness property: (x v y) * z = y if and only if y :!~ z < x o y 

Let us note (see, e. g., [1]) that xv y is the greatest element of the set (xv y) * z = y 

Moreover, if we consider x * y = X A y, then x o y is the relative pseudocomplement of x 

with respect to y, i. e., for* = A residuated lattices are just relatively pseudo-

complemented lattices. It is well known that every relatively pseudocomplemented 

Is lattice is distributive. An extension of relative pseudocomplementation for the non- 

distributive case was already involved [8,9]. The identities characterizing sectionally 

pseudocomplemented lattices are presented in [18], i. e., the class of these lattices is a 

variety in the signature {v,A,o,l}. We are going to apply a similar approach for the 

adjointness property. 

Definition 1. A latticeL = (L,v,A,l) with the greatest element I is sectionally 

pseudocomplemented if each interval [y, 1] is a pseudocomplemented lattice. From 

now on, denote by x v y the pseudocomplement of x v y in the interval [y, 1]. 

Naturally, xv y E [y,l] thus L = (L;v,A,l) is sectionally pseudocomplemented if and 

only if 'o' is an (every where defined) operation on L. 

Definition 2. An algebra L = (L;v,A,*,o,1) is called a sectionally residuated lattice if 

L = (L,v,A,0,1) is a lattice with the greatest element 1; 

L = (L,*,l) is a commutative monoid; 

It satisfies the sectional adjointness property: (x v y) * z = y if and only 

ify:5z:5xoy 

Lemma 2.2.1 LetL = (L;v,A,*,o,l) be a sectionally residuated lattice. Thenx*y 

is the greatest element of the set {z; (x v y) * z = y} 

This immediately yields the following facts: 

(xvy)*(xoy)=y .....................(1) 
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(xvy)*y=y  .............................. (2) 

.........................(3) 

Lemma 2.2.2 LetL = (L;v,A,*,o,l) be a sectionally residuated lattice. Then 

x:5y, if and only ifxoy=l 

Proof: Suppose x :!~ y, then x v y = y, and, by Lemma 1, x o y is the greatest 

elementofthe set{z;y*z=y}. By defmition2, y*l =1 thus xoy=l. Conversely, 

suppose x o y =1 . Then, by (1), we have y = (x v y) * (x o  y) = (x v y) *1 = x v y 

whence x:!-~y. Li 

Lemma 2.2.3 In a sectionally residuated lattice, the following identities are satisfied: 

xox=l,xol=1,Oox=1, and lox=x 
4 

Proof: The first three identities follow directly by Lemma 2.2.2. Further, by Lemma 

2.2.1, lox is the greatest elementofthe set {z; l*z = x} -x) thus lo x= x). El 

Lemma 2.2.4 In a sectionally residuated lattice, a * b = a if and only if a = b 

Proof: Putting x = y = a, and z = b in the sectional adjointness property, the 

assumption a * b = a yields (a v a) b, zff a :!~ b :5 a o  a =1 thus a :5 b 

Conversely, a :!~ b implies by Lemma 2.2.3 a :~ b :5 I = a o  a and, by sectional 

adjointness, a * b = (a v a) * b = a. Li 

Applying Lemma 2.2.2 and Lemma 2.2.4, we get 

Corollary 1. In a sectionally residuated lattice, 

x *y= x x yx if and only ifxo y = 1 

x*x=x 

Lemma 2.2. 5 In a sectionally residuated lattice, X A y :!~ x * Y. 

Proof: By (3) we havex A y 15, x o (x A y). Applying sectional adjointness, we 

infer x*(xAy)=(xv(xAy))*(xAy)x and,analogously, y*(xAy)=xAy. 

Hence, by Corollary I (b), 

x*y*(xAy)__x*(xAy)*y*(xAy)=(xAy)*(xAy)XAX 

and, by Lemma 2.2.4, X A y :5 x * Y. 0 

Theorem 2.2.1 Let L = (L;v,A,*,o,1) be a sectionally residuated lattice. Then 

it is a sectionally pseudocomplemented lattice. 
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Proof: Replacing y by X A y in the sectional adjointness property, we obtain 

X*ZXAy iffxAy:52:5.0(xY). 

However, x o (x A y) is the greatest element of the set 

{t;(xv(xAy))*t xAy}={t;x*t =xAy}. 

By Lemma 2.2.5, X At :!~ x * t = X A y, thus the greatest t of this property satisfiest ~ y. 

Thusy:5xo(xAy),i.e., xAy<y<xo(xAy) 

and, by the sectional adjointness, x * y = (x A (x v y)) * y = X A Y. 

Hence, x o  y is the pseudocomplement ofxv y in the interval [y, 1]. L] 

1•' 
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Chapter Three 

Relative annihilators in Lattices 

Introduction: Through this chapter we will be concerned with the relative annihilators 

in lattices. For a, b e L , we define (a, b) = {x / a A x !~ b}. According to [23], (a, b) is 

known as an annihilators of a relative to b or simply relative annihilator. It is very easy to 

see that in presence of distributivity (a, b) is an ideal of L. Relative annihilators in 

lattices have been studied by many authors including Mandelker [21] and T.P. Speed 

[23]. Also B.A. Davey [1] has used the annihilators in studying relative normal lattices. 
Ir We also include characterizations of modular and distributive lattices in terms of relative 

annihilators. Then we have generalized some of the results of Mandelker [21] on relative 

annihilators. We have shown that in a distributive lattice L. (a, b) v (b, a) = L for all 

a, b € L if and only if the filters containing any given prime filter form a chain. For the 

background material in lattice theory see Gratzer [13], Mandelker [21], T.P. Speed [23] 

and Gratzer and Schmidt [15] have studied relatively stone lattices. In section two we 

have introduced the notion of relatively stone lattices and generalises several results of 

[13], [21], [23]. 

It 
3.1 Some characterizations of relative annihilators in Lattice 

Modular lattice: A lattice L is called a modular lattice if for all a, b, c e L with a > b 

a A (b v c) = b v (a Ac) 

Example: The following diagrams are modular, 

If a = b then the above defmition becomes 

(b v c) = a A (a vc) 

av(bAc)=av(aAc) =a 

Ifc~!b 

Then a ~:b,c~! b => avc ~!:b,aAc~:b 

Thus a A (b v c) = a A c 
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1, A (a V c) = a A C 

iii. For a,b,c€L,witha~b 

a v (b Ac) = b A (a v c) 

Hence dual of a modular lattice is modular. (see picture 3.1) 

a 

Fig: 3.1 

Distributive Lattice: 

A lattice L is called distributive lattice if 

aA(bvc)=(aAb)vaAc) Va,b,c€L 

i.Ifa<b,a~:c,b:5c, 

then a :!~ b :!~ c => a = b = c 

Thus, aA(bvc)=a=(aAb)v(aAc) 

If a:5h,a:!~c,c:5b 

Then, a:!~b,a~!b,c:!~,b 

Thus aA(bvc)=aAb=a 

(a A b) v (a Ac) avc =a 
1 

Hence a chain is always a distributive lattice. 

A distributive lattice is always modular. 

Boolean Algebra: A non empty set <L,A,v,',O,l> with the binary operations A,V 

unary operation and nullary operations 0,1 is called a Boolean algebra if it satiesfy the 

following conditions: 

i)aAa=a, ava=a VaEL 

ii)aAb=bAa, avb=bva Va,bEL 

iii) aA(bAc)=(aAb)Ac, av(bvc)=(avb)vc V a,b,ceL 

iv)aA(avb)=a, av(aAb)=a Va,beL 
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v)aA(bvc)=(aAb)v(aAc) Va,b,cEL 

-41 vi) There exists 0 E L, 1 E L such that a v 0= a a A I = a V a E L 

vii)Each aEL, a'EL suchthat aAa'=O, ava=1 

0'=1, 11=0 

(aAb)'=a'vb', (avb)'=a'Ab' 

Lemma 3.1.1 A lattice L is distributive iff 

Vx,y,zL, (A((xAy)v(xAz))=(tAxAy)v(tAxAz) 

Proof: Suppose L is distributive, then obviously, 

tA((XAy)V(XAZ))(tAXAy)V(IAXAZ) 

Conversely, suppose L has the given property. Let a, b, C E L with b v c exists. 

Ar Sett=bvc, then 

a A (b vc) =a A ((t Ab) v (t Ac)) 

=(aAtAb)v(aAtAc)=(aAb)v(aAc) 

Therefore L is distributive. o 

Notice that a lattice L is modular if for all x, y, z E L with z ~ x and whenever y v z 

exists then xA(yvz)=(xAy)vz 

We can also easily characterize modular lattices by the following result. 

Lemma 3.1.2 A lattice L is modular if for all t, x, y, z E L with z < x, 

XA ((t A y)  v (t A z)) = (x A t A y)v (t A z). 

Proof: Suppose L is modular. Then obviously, 

XA ((t A y)  v (t A z)) = (x At A y)v (t A z). 

Conversely, suppose L has the given property, 

Let, a,b,c E L with c --, a and b v c exists. 

Set, z = b v c, then 

aA(bvc)=aA((rAb)v(tAc))=(aA:Ab)v(tAc)(a/.b)vc. 

Therefore L is modular. o 

Theorem 3.1.3 A lattice is modular iffwheneverb :!~ a, if t A XE b and t A y E (a, b)for 

any, 1 e L then (1 A y) v (1 A x) E (a, b). 
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Proof: Suppose L isnlodular,since(tAy)v(tAx)E(a,b). So aAAy:5b 

also, t A y :5- b a 

Thus by modularity of L, 

aA((tAy)v(tAy))=(aA/Ay)v(tAx):5b, 

and so, (tAx) v (t A y) E (a, b) 

Conversely, let the given condition holds, 

Suppose 1,x,y,zEL with z v x then (tAz)v(lAxAy):!gx. 

Also, tAxAy:!~(tAz)v(tAxAy) implies 1Aye(x,(tAz)v(tAxAy)). 

Then by hypothesis, (tAzv(1Ay)e(x,(tAz)v(tAxAy)). 

This implies xA((tAy)v(rAz))<(tAx/\y)v(tAz). 

Since the reverse inequality is trivial, so by Lemma 3.1.3 L is modular. o 

Theorem 3.1.4 Suppose L is a lattice. Then the following conditions are equivalent: 

L is distributive. 

(a, b) is an ideal for all a,b € L 

(a, b) is an ideal whenever b :~ a 

Proof: Since (i) implies (ii) and (iii) are trivial, 

We shall prove only (iii) implies (i). 

Suppose (iii) holds. Let. t, x, y, z E L 

Then (t A X A y) v (t A X A z) :5 x implies 

(x, (I A X A y) v (t A X A z)) is an ideal. 

Again (tAxAy):5(tAzAy)v(tAxAz) 

Implies (tAy)E(x,(IAxAy)v(tAxAz)) 

Similarly, (tAz)E(x,(tAxAy)v(tAxAz)) 

Hence (1Ay)v(tAz)E(x,(tAxAy)v(1AxAz)) 

ThUS xA((tAy)v(tAz))E(x,(tAxAy)v(tAxAz)) 

Since the reverse inequality is trivial, 

So xA((tAy)v(tAz))=(x,(tAxAy)v(tAxAz)) 

Therefore by Lemma 3.1 .1 L is distributive. G 
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Lemma 3.1.5 In any distributive lattice L, each of the following conditions on a given 

filter F implies the next. 

For all a,b eL, there exists an element XE F such that ax and b AX are 

comparable. 

The filters containing F form a chain. 

F is prime. 

F contains a prime filter. 

Proof: (i) implies (ii). Suppose (i) holds. If (ii) fails then there exists non-comparable 

filters Gand H containing F. Choose elements a€F—G and b€F—G. Then by(i) 

there exists x € F such that a AX and b A X are comparable. Suppose. a AX :!!~ b A X. 

Since x€F—G,so aAXEG 

Then a A X :!~ b implies 1, E G, which gives a contradiction. 

Therefore (ii) holds. 

(ii) implies (iii). Suppose (ii) holds. Let a,b E L with a v b exists and a v b E F. 

LetG=Fv{a) and. H=Fv[b). 

By (ii), either G c H or II g G. Suppose G c H. Then a E H, and so a = X A b for 

somexEF. Since x,avbE F, so xA(av)E F. Thus by distributivity of L, 

(xAa)v(xAb)=(xAa)va=aE F. 

Therefore F is prime. (iii) implies (iv) is trial. o 

Theorem 3.1.6 For as distributive lattice L the identity (a, b) v (b a) = L for all 

a,b € L holds if and only if 

For all a,b€L, there exists an element XE Fsuch that ax and bAX are 

comparable. 

The filters containing F form a chain. 

F is prime. 

F contains a prime filter. 

Proof: Suppose the identity holds. We only to show that (iv) implies (i). Let a, b € L. 

Suppose P is a prime filter contained in F. Choose z E P. 

Since (a,b)v(b,a) = L ,so z = xv y for some XE (a,b) and.y E (b, a). 
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Since P is prime, eitherx E P or y E P. 

Suppose x € P. 

Then xEF,and x€(a,b) implies aAx:5-b andso aAx:!~bAx. 

Therefore (i) holds. 

Conversely, suppose all the conditions are equivalent. Let there exists a, b E L. 

Such that 1 = (a, b) v (b, a) is proper ideal of L. 

Then there exists a prime filter P disjoint from I. 

Then by (iii) implies (i), there exists x E P such that a A X and b A X are comparable. 

Suppose, a A X :5 b implies x € (a, b) which is a contradiction as. P r I = 1. Therefore, 

(a, b) v (b, a) = L. 0 

Ar 
3.2 Relatively stone Lattices 

We start this section with the following characterization of relatively stone lattices, which 

is generalization. A pseudocomplemented lattice L is called a stone lattice if for each 

x E L, x4  v x = I. We call a distributive lattice L a relatively stone lattice if each 

closed interval [x, y] with x < y(x, y e L) is a stone lattice. Two prime ideals P and Q 

ofalattice L are saidto be comaximal if PvQ=L. 

The following characterization of relatively stone lattices, which is a generalization of 

[15, Theorem 5] 

Theorem 3.2.1 Suppose L is a distributive lattice in which every closed interval is 

pseudocomplemented. Then the following conditions are equivalent: 

L is relatively stone. 

Forall x,y€L, (x,y) v (y,x) = L 

Proof: (i) implies (ii). Suppose L is stone. Let x, y € L. For any a e L consider 

I = [x A y A a, a] in L. Let * denotes the pseudocomplement in I. 

Now, xAyAa=(xAa)A(yAa) 

since 1 stone,so a=(xAyAa)'  =((xAa)A(yAa))t  =(xAa) v(yAa) 

thus a =rvs wherer =(xAa),s =(yAa) 

then xAaAr=yAaAs=xAyAa 
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since r,s:5 a wehave XAA =xr =yAs. 

This implies XA r :5 y and YAS :~ x and so a = rvs e(x,y)v(y,x) 

Hence (ii) holds. 

(ii) Implies (i). Let [a, b] be any closed interval in L and let * denotes 

pseudocomplemente in [a, b] .Let x E [a, bl 

By hypothesis (x,x')v(x,x)=L. Hence b—rvs for some re(x,x') and 

se(x**,x*). Since a,r,s:!~,b, so by the upper bound property avr,ays exists. Now 

r A x* :5 x and r A x :!~ x. Thus, x A (a v r) :5 x'. Moreover x A (a v r) :5 x is 

obvious. Hence x A (a, r) :5 X A = a Since a v r E [a, b] so a v r :!~ x. Similarly 

a v s :5 x. Hence b = (a v r) v (a v s) :5 x' v x :5 b. This implies x v x = b and so 

[a,b] is a stone Lattice. 

In other words, L is relatively stone. o 

Definition: A filter F of a lattice L is called meet irreducible if F = G A H implies 

either F = G orF=H where G and H are filters of L 

Theorem 3.2.2 Let L be a distributive lattice. A filter F of L is prime if and only if it 

is meet irreducible. 

Proof: SupposeF is prime and F = GAH for some filters G andH ofL.IfG#F. 

Then there exists g # F. Suppose h € H. Then for anyf e F, g A f F, g A f E G 

and hAfEH. Hence (gAf)v(hAf)EGAH=F. 

But g A fz F as g o G. Since F is prime so h A f E F which implies h E F This 

implies H = F. As F g II is obvious, so F = H. Therefore F is meet irreducible. 

Conversely, suppose F is meet irreducible. Let a,b E L such that a v b exists and 

a v b E F. Set G= F v [a) and H F v [b) clearly, F G A H. Now, let 

x E G A H then for some f1 , f1 E= F. Hence, x ;-> f1 A  f2 A a ~: f1 A  f2 A b Put 

f=f1 AJ thenweget x~!fAa,x~!fAb which implies that x2:(fAa)v(fAb). 

Now x ~: (f A a) v (f A b) = f A (a v b), as L is distributive and a v b exists. 

Therefore, (f A a) v (f A b) E F as a v 1, e F . Hence x E F. 
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Therefore, G A H F and so G A H = F. Since F is meet irreducible, so either 

K G = F or H = F, that is either a e F or b E F . Hence F is prime. o 

Following theorem generalizes a result of [17]. 

Theorem 3.2.4 In a distributive lattice L , the following conditions are equivalent. 

Any proper filter which contains a prime filter is prime. 

For any pair of non-comparable prime ideals P and Q, P v Q L 

Proof: (i) implies (ii). Let L be a distributive lattice and let P and Q be two non-

comparable prime ideals in L such that P v Q # L. Then there exists a prime filter F 

disjoint from the ideal P v Q, L - P and L - Q 
are non-comparable prime filters. Such 

Zr 
that (L - F) A (P - Q) = G D F, where G is a filter and by assumption (i), G prime, 

which is impossible. Because, the theorem 3.2.3, G is meet-irreducible. 

Hence for any pair of non-comparable prime ideals G and Q, P v Q = L 

(ii) implies (i). Let L be a distributive lattice and let there exists a prime filter P and a 

non-prime proper filter G such that F c G . Thus, G is not meet irreducible. Then there 

exists filtersA #G and B # G such that G =Ar'B. 

So we can find two elements a and b such that a e A, a e B and b € B, b 0 A. 

Then there exists a prime filter A1  containing A and disjoint from (hi and prime filter 

B1  containing B and disjoint from (al. A1  and B1  contain G and are non-comparable. 

Thus by assumption (ii), (L - A ) v (L - B1  ) = L. 

Which would imply that any element of F is the  join of two elements not belonging to 

F , hence a contradiction. o 

Following result is due to 13, Theorem 2.71 

Theorem 3.2.5 For any distributive lattice L the following conditions are equivalent: 

For all a,b e,< a,b> v < b,a >= L. 

The filters containing any given filter form a chain. 

Proof: (i) (ii) holds by theorem 3.1.6 and 3.2.5. 
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Theorem 3.2.6 Suppose L be a distributive lattice in which every closed interval is 

pseudocomplemented. Then the following conditions are equivalent: 

L is relatively stone. 

The set of all prime ideals contained in a prime ideal is a chain. 

Any two incomparable prime ideals are comaximal. 

The set of all prime filters of L containing a prime filter is a chain. 

Any proper filter which contains a prime filter is prime. 

LF  is a chain for each prime filter F of L. 

Proof: (i) implies (ii). Suppose (i) hold. Then by Theorem 3.2.1, <x, y> v < y, x >= L 

for all x, y E L. If (ii) does not hold, then there exists prime ideals F, Q, R with 

P Q, R; and Q and R are incomparable. Let x E Q - R and y E R 
- Q. 

Then <x,y>R and, y,x>cQ.Thus L=<x,y>v<y,x>cQVRP#L which 

is a contradiction. Hence (ii) holds. 

(iii) and (ii)<(iv) are trivial. 

(iii) (v) holds by theorem 3.2.4. 

(iii) implies (vi). Suppose (iv) holds. Then the prime filters of LF  form a chain for any 

prime filter of L . But, in a distributive lattice if the set of prime filters form a chain, then 

the lattice itself is a chain. 

Therefore LF  is a chain for each prime filter F of L. 

implies. Let F be any prime filter of L. By (vi) LF  is chain, and so for x,y in L , we 

have either 1/'F  (x) F (v) or c"F  (y) :5  11/F(X). In either case, 

< 'F (X),Wp(Y) > V <Vp (Y),IP'F(r) >= L,, 

i. w,.(< x,y> v <y,x >) = çv.(L), and so by the principle of localization, 

(<x,y > v <y,x>) = L. Hence by Theorem 3.2.1. L is relatively stone. o 

We have given several characterizations of these F which are filters in a relatively stone 

lattice L. Then we have proved that LF  is relatively stone. 
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Theorem 3.2.7 If F is a filter in a relatively stone lattice L. Then LF  is relative stone. 

Proof: Suppose L is relatively stone. Let p(x),çv (y) E Lv.. 

Then< 4/J F (W F (Y)> V <l/JF(Y),Y/F(X) >= çi',. <x,y> Vçtp <Yx> 

'F[< x,y > v <y,x >]. 

WF (L) = LF as L is relatively stone. 

Hence LF  is relatively stone. o 

We conclude this section with the following examples. 

Notice that both the lattices are relatively pseudocomplemented. In lattice of figure 3.1, 

notice that (a], (b] and (c] are only prime ideals. Here both (a] and (b] are 

incomparable with (c] . Moreover, (a] v (c] = (/,] v (c] = L1 , therefore L1  is relatively 

stone. But for lattices of figure 3.2, observe that (a] and (b] are incomparable prime 

ideals. But (a] v (b] * L2. Therefore, L2  is not relatively stone. 

Also notice that though L1  is relatively stone, it is not generalized stone as 0 e L1 . 0 

33 Relative annihilators in normal Lattices 

Mandelker [21] has characterized distributive lattices L, in which <a,b > v <b,a >= L 

identically for all a, b in L, as those lattices in which the filters containing any given 

prime filter form a chain. Surely, in such lattices every prime filter must be contained in 

unique minimal filter. Hence bounded distributive lattices L in which 

<a, b > v <b, a >= L identically for all a, b in L are the examples of normal lattices. 

The following conditions are equivalent: 

L is normal. 

Each prime filter in L is contained in unique maximal filter. 

Any two minimal prime ideals in L are comaximal. 

Cornish [25, theorem 3.7] a characterization of a normal lattice in terms of relative 

annihalitor ideals, is obtained in the following: 

Theorem 3.3.1 Let L is a distributive lattice then the following conditions are 

equivalent in L. 

(i) Every prime filter in L is contained in a unique maximal filter. 
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<a,b >v <b,a>= L identically for a,b €L with a A b = 0. 

For any prime filter P in L and for any a, b e L with a A b =0 there exists x in 

L such that a A x and b A x are comparable. 

Proof: (i) = (ii) Let <a,b > v <b, a >= I(# L) with a A b = 0. By Stone's theorem, 

a A b = 0 are exists a prime filter P disjoint with I . Consider the filter P v (a). If 

b E P[a) then b = t A a for some t E P will imply t e< a,b> and hence 

t € I n P = q, a contradiction. Therefore b o P v [a) proves that P v [a) is a proper 

filter. Let M 1  be a maximal filter containing PV[a). Similarly, there exists a maximal 

filter, say M 2 , containing the proper filter PV[b). As a A b = 0,b o M and a 0 M 2. 

Hence M1  :# M 2 . Thus the prime filter P is contained in two distinct maximal filters 

M1  and M 2  contradicting the assumption. Therefore <a,b > v <b, a >= L for 

a,b€L with aAb0. 

(ii) = (iii) Let P be any prime filter and a, b are in L with a A b =0. By 

<a,b> v < b,a >= L. For any t € P we have, t = x A y for some 

x E< a,b> and y e< b,a>. As xv E P and P is prime, x € P or y € P. Without 

loosing generally, assume that x e P. Then by choice of x, a A x :!~ b will imply 

a A X :5 b A X and the implication follows. 

(i) Let P be a prime filter such that P M1  and P M2 where M1  

and M21  distinct maximal filters in L. Let a € M1  such that a1  0 M2 . But then 

there exists a2  € M2  such that a1  A a2  = 0. By assumption (iii) there exists x E P 

such that a1  A x and a2  A x are comparable. 

Assume without loss of generality a1  A x :5 a2  A x. As ai  A x E M1  implies a2  A x € 

we get a2  e M1. But then 0 = a1  A a2  E M1, contradiction the maximality of M1 . 

Hence the prime filter P must be contained in a unique maximal filter. o 

Note that each prime filter L is contained in unique maximal filter if and only if each 

minimal prime filter in L is contained in a unique maximal filter. Using this property we 

get, the following theorem. 
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Theorem 3.3.2 Let L is a distributive lattice then the following conditions are 

equivalent in L. 

Any two distinct minimal prime ideals are equivalent in L. 

For any two distinct maximal filters M1  and M 2  in L there exists a1  o M1  

and a2  M2  with a1  A a2  =1. 

For any maximal filter M, M is the unique maximal filter containing the filter 

W(M) = {x € Ix v y =1) for some y 0 M 

Proof: (i) => (ii) Let M1  and M2  be any two distinct maximal filter containing the 

filters in L. By (i) (L1M1)v (L/M2) L. As 1 € Lthere exists a1  4 M1  and a2 0 M2  

with a1  v a2  =1 and the implication follows. 

=> (iii) Let W(M) g M1  for some maximal filter M1  = M2. Hence by (ii) there 

exists a 0 M and b e M1  such that a1  v a2  =1. But then b e W(M) c a 

contradiction. Hence (ii) = (iii). 

= (1) Let F be a minimal prime filter contained in two distinct maximal filters M1  

and M2  in L.As F is minimal. F=W(F) and hence W(F)çM1  

and W(F) ç M2  . But F ç M, W(M1) g W(F) gM2; a contradiction. 

Thus each minimal prime in L is contained in a unique maximal filter. o 

3.4 Relatively complemented Lattices 

Atom: An element a in a lattice L is called an atom if it covers 0. In other words a is 

anatomiffa#O and xAa=a or xAa=O Vx€L. 

Dual atom: An element b is called dual atom if u, the greatest element of the lattice 

covers b. 

Theorem: 3.4.1 Let L be a lattice then the following implications hold: 

L is a Boolean algebra L is a relatively complemented. 

L is relatively complemented => L is sectionally complemented. 

L is finite and sectionally complemented => every non-zero element C of L is a 

join of finitely many atoms. 
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Proof: Let L bea Boolean algebra and let a:~x:5.b.Define y:=bA(avx') then y is 

a complement of x in [a, b], 

Since xAy=xA(bA(aVX'))=XA(aVx) 

=(xAa)v(xAx') — XAa-- a 

and xvy= xv(bA(avx'))=xv((bAa)V(bAX')) 

— xv (b A x!)(xvb)A(xvxI)=bAl=b. 

Thus L is relatively complemented. 

If L  is relatively complemented, then every [a, b] is complemented; thus every 

interval [a, b] is complemented i.e. L is sectionally complemented. 

Let {p1 ......................................, p,, } be the set of atoms :~ a E L and let 

10 
b=p1 v ...............  vp,. 

Now b :!~ a, and if we suppose that b # a, then b has non-zero complement, say c in 

[0, a]. Let p be an atom :~ c, then p E 1p1 ......................................, p,,) and thus 

p = p Ab :5 C A b = 0, which is contradiction. Hencea = b = p1  v ...............v p. 0 

Finite Boolean algebra can be characterized of [17] as follows: 

Theorem: 3.4.2 (Representation theorem) Let B be a finite Boolean algebra, and let A 

denote the set of all atoms in B. Then B is isomorphic to P(A) 

It 
i.e., (B,A,v) (P(A)r,) 

Proof: Let v e B be an arbitrary element and let A(v) = {a € / a :5 v}. Then A(v) g A. 

Define h:B-+P(A);v--*A(v) 

We show that h is Boolean isomorphic. First we show that h is a Boolean 

homomorphism. 

Foran atom a and for V,WEV we have 

aEA(VAW)a:!~VAWa:!~V and a:!~w>a€A(v)(A(W), 

which proves h(v A w) = h(v) m h(w). 

Similarly, 

a E A(v v w) a :f~_ v v w a < V 
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or a:!~waeA(v)uA(w) 

Finally, aEA(v)a_<vaAv'_—O<>a_<IV<>a€A\A(V) 

Hence, the second equivalent. Note that h(0) = 0 and 0 is the unique element which is 

mapped to b. Since B is finite, we are able to verify that h is bijective. We know that 

every v e B can be expressed as join of fmitely many atoms: v = a1  v...........v a with 

all atoms a. :~ v. Let h(v) = h(w), i.e., A(v) = A(w). Then a1  € (v) and a. e (w). 

Therefore a, :5 w and thus v :5 w. Reversing the roles of v and w yields v = w, and this 

shows that h is injective. 

To show that h is suijective we verify that for each c E P(A). There is a some v € B 

such that h(v) = c. Let c = {c1 , c2................, c } and v = c1  v v ............... v c,,. 

Then A(v) c, hence h(v) D c. 

Conversely, if a E h(v), Then a isanatomwith a:!~v=c1  vc2  v ...............  vc. 

Therefore a :!~ c-, for some i e 11,2 ..................  

so a = C. E c. Altogether this implies h(v) = A(v) = c o 

'1 
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fig-4.2 

1=0 

c=a*=b* 

Example 4.1.1 

Chapter Four 

Pseudocomplemented Lattices 

Introduction: In lattice theory there are different classes of lattices known as variety 

of lattices. Distributive pseudocomplemented lattice is one of the large variety. 

Throughout this chapter we discuss pseudocomplemented lattice. 

Pseudocomplemented lattice have been introduced by H. Lakser [16,17], K.B.Lee 

[20] and several author. In this chapter we have studied pseudocomplemented lattices 

and generalization of several results. 

4.1 Pseudocomplemented Lattice 

Pseudocomplemented: Let L be a bounded distributive lattice, let a e L an element 

e L is called a pseudocomplement of a in L if the following conditions holds: (i) 

aAa0 (ii)VxEL,aAx=OimplieSthatX!~a'. 

a<i o b  

fig-4.l 

Pseudocomplemented Lattice: A bounded lattice L is called a 

pseudocomplemented lattice if its every element has a pseudocomplement. 

The latticeL = (O,a,b,c,1) shown by the fig (4.2)is pseudocomplemented. 
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Lattice with pseudocomplementation: An algebra, <L,A,v,*,O,l> where A,V are 

binary operation * is a unary operation and 0,1 are nullary operations is called lattice 

with pseudocomplemention if <L,A,v,*,O,l>  is bounded lattice, i.e.V a E L there 

exists a * such that a A a* = 0 and a A x =0 implies that x A a* = x, V x E L 

Pseudocoinpiemented distributive lattice: A bounded distributive lattice L is 

called a pseudocomplemented distributive lattice if its every element has pseudo 

complemented. 

Example 4.1.2 

a 

0 
fig-4.3 

Consider the finite distributive lattice of fig. (4.3). As a distributive lattice it has 

twenty five sublattices and eight congruence's; as a lattice with pscomplementation 

has three sub-algebras and five congruence's. 

Snblattice: As a lattice L: 

{0},(a),{b},c),{1},{0,b},{0,c},{0,1},{O,a,b,c},L,{a,c},{a,c,1},{b,c},{a,l},{b,1}, 

(b, c,1), {c,l}, JO, a,l}, {0, b,l}, 0,c,1}, (0, a,c) , (0, b,c), (0, a, C,!), (0, b,1} = 25 

As a lattice with pseudocomplementation: (0,1), L, (0, c,l) 

Congruence: As a lattice: 

w =(0),{a},{b},{c},{l} 

r = (0, a,b,c,1} 

cS = {0,a},{b,c},(1) 

= (0,a),(b,c,1} 

= {0,b},{a,c},{I} 

= (0,b),(a,c,1) 
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çcqIn,, 

ç={O,a,b,l},{l) 

?7 c,l},{a},{b},{O} 

Congruence as a lattice with pseudocomplementation, w,r,q%i 

The following theorem is an extension of a fundamental result in lattice theorem [13]. 

Though our proof include for the convenience of the reader. 

Theorem 4.1.1 A pseudocomplemented and distributive lattice L such that 

S(L) = {a/a* = 01 and D(L) = (a /a* = 0) Then for a,b EL 

i. a A a* =0 

1 ii. a :!~ b implies that a*  ~! b * 

a:5a 

a*=a*** 

(avb)*=a* Ab* 

(aAb)**=a**A b** 

aAb=O ca** A b**=O 

aA(a/¼ b)*= aAh* 

ix.0*=l.and 1=0 
- VI 

aES(L) ff a __ a** 

a,b E S(L) implies that a A b E S(L) 

sup(L){a,b} = (a v b)* = (a * Abt) * 

0,1 6 D(L) and S(L) r'i D(L) = (l) 

a,!, E D(L) implies that a A b 6 D(L) 

a ED(L) and a ~ b implies that 11 E D(L) 

a v a* 6 D(L) 
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xvii. x -* x * * is a meet-homomorphism of L onto S(L) 

Proof: i. By the definition of pseudocomplement 

a Aa*O \/aEL 

Forbtb'=O and a:5b =aAb*=O 

which implies thata ~t b * 

By the definition of pseudocomplement a A a* = a * Aa = 0 

similarly a* A(a*)* a *Aa **O and  a A a*=0 

a :!~ a * * 

hence a:9 a** 

We get, 

a :!g a implies that a > a * * (A)[by(ii)] 

Again a:5 a**=0 

i.e., a**Aa*=O 

Similarly, a**A (a**)*=0 implies that a** A u***=0 

and a**Aa*=0  implies that a:5a** .(B) 

From (A) and (B) we get, 

a*=a*** hence a*=u*** 

We have, 

(avb) A (a*Ab*)= (aAa*Ab*) v (b Aa*Ab*)(0A b*)v(a*AO) by(i) 

=0vO=0 

Let (a v b) A X 0 

Implies that (a A x) v (b A x) =0 

Implies that a A x =0 and b A x =0 Implies that x :!~ a * and x :!~ b * 

Implies that x:5 a* Ab* 
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Therefore a * Ab * is the pseudocomplement of a v b 

Let a,beL implies that a*,b* E L implies that a**,b** E S(L) 

implies that a** A b** E S(L) 

But a * *A b * * is the smallest element ofS(L) containing a A b 

So (aAb)**=a** A b** 

If a A b by (vi) 

Then a** Ab**=(aAb)**O**=O 

So a**Ab**=O. 

Conversely, if a**Ab**=O. by(ii)a:~ a**,b :5b** (ii) Va,bEL 
I 

Then aA b :E9 a ** A b**=0. ..aAb=O 

Hence aAb=O if a**A b**=0. 

Since aAb:~b so(aA b)*>-b* and so 

a A (a A b)* >- a A b * .(A) 

Again (a A b) A (a A b)* = 0. Implies that (a A (a A b)*) = 0, 

Therefore a A (a A b)*:5 b *. Implies that aAaA(aA b)* —<a A b* 

Implies that aA(aAb)*-<aAb* (B) 

From (A) and (B) = a A (a A b)* = a A b * 

Hence a A(a A b)*=a A b* 

xi. We have OAX=OVEL and 0AI=0 

But xs~1 VXEL 

Hence Q* = 1 Again, 0* = I 

Implies that 0=I  Implies that  0=1*  :.1'=0 

x. If a E S(L) then, a = b * for some b E L 

But a*=a***,VaEL 
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Now, a**=b***__b*__ a  Hence, a**a 

Conversely, ifa = a * * then a = b*, thus a € S(L) 

HenceaES(L) iff a = a** 

xii. Let a,bES(L) then a-a**,b=b**. 

SinceaAb:!~a implies that (aA b)**-<a**=a :.a~>(a Ab)**. 

Again, sinceaA b :!g b implies that(a Ab)**  <- b = b 

(a A b)t * -< b implies that b ~! (a A b) * . Implies that a A b = 0 

But(aA b):!~(aAb)** (B) 

From (A)and (B) weget, (a A b) = (a A b) * * implies that, aAbES(L) 
-r 

If x E S(L) such that x :!~ a and x ~ b then x :9 a A b is a greatest lower bound of 

S(L). 

Therefore a A b = infS(L), {a,b} E S(L) 

xii. For a,bES(L) a*>-a* Ab* 

Implies that a * * <- (a * Ab*) * [by(ii)] 

Implies that a :5 (a * Ab*) * [by(i)] 

Again, b* >- a * Ab * implies that b (a * Ab*) * [by(ii)] 

Implies that b :5 (a * Ab*) * [by(i)] 

(a' Ab*) * is a upper bound of{a,b} in 8(L) 

Let x€ 8(L) such that a :5 x,b :5 x then a*  >- x 

B* x * [by(ii)] 

..a* Ab* >- x implies that(a* Ab*) !~ x**= x . Implies that (a* Ab*) :5 x  

(a' Ab*)*  is a least upper bound of {a,b} in 

sup{a,b}=(a* Ab*) 

Again (a A b) * * = ((a v b)*) = (a * Ab*) * 
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Hence sup{a,b}=(avb)**=(a *Ab*)* 

From (ix) we have 0* = 1, 1* = 0 then 0,1 E S(L)and 1 e D(L) 

Let xES(L)nD(L) then XES(L) and xcD(L), 

Suchthat x=x, x'=0 then x =(x*)*=0*=1 

Hence S(L) r D(L) = {I} 

Let a,bED(L) then a*=0, b*=0.ImpIies that a**=b**=0*=1 

Now, (aAb)**=a**Ab**=IAI=!  [by(ii)] 

(aAb)*=(aAb)***=1*=0 . Impliesthat aAbED(L) 

If then a* = 0 and a :!9 I) 

Impliesthat a*>—b*  .ImpIiesthat b*<—a*=0 

Implies that b*  =0. Hence b E D(L) 

xvi From(v) we have (a v a*)*  = a * Aa * * = a * A(a*)*  = 0 

Hence a v a* E D(L) 

xvii. Letç : L -+ S(L) defined by (x)= x * * 

Then, (xAy)=(xAy)**=x**Ay**=c(x)Aq,(y) 

cc is a meet homomorphism. o 

Theorem 4.1.2 Leta,b r= L and L be pseudocomplemented meet semilattice and let 

a,beL, verif'that (aAb)*=(a**Ab)*=(a**Ab**)* 

Proof: We know that, (aAb)*=(aAb)**=((a A b)**)* 

i.e., (a A b)* = (a * * A b * *) * ................(i) 

Again (a** A b)*=(a** A b)***=((a ** A b)**)*=(a**** A b**)* 

i.e., (a** A b)*=(a** A b**)* ...(ii) 

Now from (i) and (ii) we get, 
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(aAb)*=(a**Ab)*=(a**Ab**) 0 

Theorem 4.1.3 Let L be pseudocomplemented distributive lattice. Prove that for 

each a,b L, [a) is a pseudocomplemented distributive lattice, infect, the pseudo- 

complement ofx e [a) in[a) is x * Va. 

Proof: Let xe[a) thenxv(x*va)=(xvf)va=lva=a 

Furthermore ifxvt=1 then t~:x* 

=> (V a~! x*va  

=t~!x*va [since tE[a)=t!-ta=tva=t] 

If From the above it follows that x * va is the pseudocomplemented of x. 

Therefore, [a) is a pseudocomplemented distributive lattice. o 

Theorem 4.1.4 A pseudocomplemented lattice L and a,b E L then prove that 

a * * v b * * = (a v b) * * 

Proof: If L is a pseudocomplemented meet semilattice then a v b = (a * Ab*) * where 

a,bES(L) 

Now, fora,b EL and a,b'€ S(L) 

So, a**vb**=(a ***Ab***)*=(a*Ab*)*=(a vb)** 

Implies that a**v b**=(avb)**. o 

Theorem 4.1.5 Let L be a pseudocomplemented meet semilattice and a,b e L . Then 

prove that(a Ab) = (a** Ab)* = (a**A b**)*. 

Proof: Since L is a pseudocomplemented meet semilattice, then a :!~ a * * 

Implies that 0 A b !~ a * Ab * 

Implies that (a A b) :!~ (a * * A b*)(1) 



Again, b:5 b** implies that a** A b!~ a** A b** 

Implies that a**A b :~(a A b)** 

Implies that (a**A b)* —>(aAb)*** 

Implies that (a * * A b)* >— (a A b) * (ii) 

From (1) and (ii) we get, 

(aA b)*(a** A b)* (iii) 

Again, b 5b** implies that a**A b :5a**A b**. 

Implies that (a** A b)2:(a**A b**)* (iv) 

Again, a**:5a***  impliesthat a**A b**<-a****A b**(a**A b)**. 

Implies that (a * * A b (a * * A b) * * 

Implies that (a** A b**)*>— (a** A b**)* ......................(v) 

From (iv) and (v) we get, 

(a ** A b)* = (a * * A b **) * ..................(vi) 

From (iii) and (vi) we get, (aAb)*=(a**Ab)*=(a**Ab**)*. 0 

Theorem 4.1.6 Every distributive algebraic lattice is pseudocoinpiemented. 

Or, Let L be a distributive algebraic lattice, then L I(S), where S is a join semi 

lattice with 0. 

Proof: Let I,  4 e i(s) for k e K (index set) 

Then IAI,. IAv(1k/kEK)  forany rEK. 

Clearly, v(Ik /k E K)c_ I Av(Ik/kE  K). 

To prove the reverse inequality, 

Let (aEI)Av(Jk /kEK). 

Then a E I and a € v(I / k K). 
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Then there exist indices A1,A2........... 

1 Such that a:5iLlvi2v .............. vi 

Forsomei€1 forsomekl,2 .............  n. 

Thus aElA(I 1 vI 2 v .............  v121, and so on. 

a=IA(I,vI,2v............. 

(IA I 1 )v(IA I 2)v ............. v(I AI,) as 1(S) is distributive c: v(Ik /k E K) 

i.e.,IA v(Lk /kE K c 1v(Ik /keK). 

Therefore 'k /IA v(Lk  1k E K) = Iv(Ik  1k e K). 

This shows that I(S) has the join infinite distributive property. 

Moreover as 0 E S, I(S) is complemented. 

Therefore 1(S) is pseudocomplemented and soL is pseudocomplemented. o 

Theorem 4.1.7 Suppose L be a pseudocomplemented distributive lattice. Define the 

relation R by x y(R) if and only if x = y * then R is a congruence on L and 

LIRS(L). 

Proof: Here we have x y(R) 

X*=y*, then X=X 

Implies that x = x(R). Implies that R is reflexive. 

Also if x_=y(R), then x y*.  Implies that y* =x 

Implies that y = x(R). Implies that R is symmetric. 

Letxy(R)y=z(R) then  x*=y* and 

implies that x = z Implies that x z(R). 

Implies that R is transitive. 

Implies that R is an equivalence relation. 
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Nowsuppose x=y(R) and tEL then x*__y* 

1 Implies that  x**=y** 

Now,(xAt)** =x**At**=(yAt)** 

= (x A t) = (y A t) 
** 

= (xt. t)* = (yA t)* 

XAtyAtyAt(R). 

And (xvt)*=x*At*=y*At*=(yvt)* 

Implies that x v t = y v t(R). So R is congruence relation on L. 

Define p:L/R—S(L) by ço((a]R)= a** 

Then q([aj A[b])= ([a A b]) =(a A b)* * 

= a * * A b * * =ço([a])Aço([bj) 

and ç([a])v[b])=q([avb]) =(avb)**=(a* Ab*)* 

=(a***vb***)* = a**vb** 

= q([a]) v q'([h]) 
.. 

q.' is a homomorphism. 

To show thatp is one-one. 

Let a**__b** implies thata*=b* 

Implies that a b(R). Implies that [a] = [b] :. q is one-one. 

Let a e S(L) then a = a * * => a = ([a}) => p is onto. 

Hence : L /R —p S(L) is an isomorphism. 

Therefore L/R_=S(L). o 

Following theorem gives a discription of semilattice which is due to [18] 

Theorem 4.1.8 Suppose L be a pseudocomplemented meet semilattice and 

S(L) = ja * Ia e U. Then the partial ordering of L partially orders S(L) and forms 
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S(L) into a Boolean lattice. For a,b E 8(L) we have a A s5 e S(L) and then join in 

S(L) is described by a v b = (a * Ab*) *• 

Proof: We derived with the following observations: 

Va E L, a:5a** 

a !~ b a*  >- b * 

1I. a * * * 

iv.aES(L) 1ff a=a 

For a,bES(L),aAbES(L) 

For a,b E S(L),avb=(a * Ab*)* 

Since a*Aa=a A a*=O 

Also a*Aa**=O a* Aa**=O 

So a :5 a * * from the definition of pseudocomplement lattice. 

viii.a:5b,so aAb!~bAb=O i.e.,aAb=Ob:!~a 

From the definition of pseudocomplement lattice. 

By (i)a* —< (a*) * * = a * * * 

Again a!~a**  by (i) 

Soby (ii)a***—<a*.  Hence a*=a*** 

Let a E S(L) then a = b * for some b e L 

Hence a**=b***=b*=a  

Ifa =(a*)* then a=(a*)*  .Andso, aES(L) 

a,bES(L) then a=a**b=b* * 

So, a~:(aAb)**>-(a A b)** So, (a Ab)** -<aAb 

Again, by(i)and (ii)aAb :5(aAb)** .HenceaA b—(aA b)** 

So, aAbES(L),a~:aAb za** (aA b)** by (ii) 
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= a ~! (a A b) * * 

For a,bES(L). We have a*->a*Ab*  So by (ii) and a*<-(a* Ab*)* 

Similarly, b :!~ (a * Ab*) * 

Nowifa:!~x,b:~x(x€S(L)) then a* —> x*, b* >— x * 

So, a * Ab* -> x . Hence, x * * >- (a * Ab*) * 

t.e., x ~! (a* Ab*)* asxeS(L) 

Hence, (a* Ab*)*= Sup {a,b}=avbES(L). Thus S(L) is a lattice. 

Moreover 0,1 e S(L). Therefore S(L) is a bounded lattice. 

Nowforany aES(L),aAa*=O.  And ava*(a* Aa**)=0*=l 
'7 

i.e., a * is the complement of a in S(L). Hence S(L;A,v) is a complemented lattice. 

Then we only to show that S(L) is distributive. 

Let x,y,z S(L) 

Then xAz:~(xv(yAz) andyAz:~(xv(yAz).Hence xAzA(xv(yAz))=:O 

and y A zA (xv(y A z))*-<x*=O.Thus, z A(xv(yAz))*-<x* and y* 

and so z A(xv(y A z))*-<x* Ay*.Consequently, z A (xv(yAz))A(x*Ay*)=O 

Which implies z A (x*Ay*)*=(xv(yAz))**=xv(yAz) 

So by (vi) and (iv) = Z A (xv y) = xv (y A z) 

ThereforeS(L) is distributive. o 

4.2 Stone Lattice & Minimal prime Ideal 

Boolean Lattice: A complemented distributive lattice is called Boolean lattice. 

Stone Lattice: A distributive pseudocomplemented lattice L is called stone lattice if 

for aEL, a*va**=1 

Example 4.2.1 Every Boolean lattice is stone lattice but converse is not true. 
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Stone algebra: A complemented distributive lattice is called a stone algebra if for 

each a *va**=l 

Generalized Stone Lattice: A lattice L with 0 is called generalized stone lattice if 

(x]*v(x]**L for each XEL. 

Theorem 4.2.1 Let L be a complemented distributive lattice, then show that the 

following conditions are equivalent: 

L is a stone algebra. 

For a,bEL,(aAb)*=a*Vb* 

a, 1, € S(L) implies a v b E S(L) 

iv. S(L) is a sub algebra. 

Proof: (a) (b) 

Suppose(a) holds, i.e.,L is a stone algebra. 

Wehave, (aAb)*a*Vb* 

Leta,b€ L, (aAb)A(a*Vb*)(a AbAa)v(aAb A b*) [Since L is a distributive 

lattice 

= (aAa* Ab)V (a AbAb*)(0)v( 0'OO 

Now supposexE L suchthat (aAb)AXO 

(b Ax) A a = 0 => b AX :!~- a 

MeetingbothSides with a** then weget, 

xAa**)AbO XAa**b* 

SinceL is a stone algebra, then we have, a 
* va * * = I 

Now, x=xAlXA(a*Va**) =(xAa*)V(XAa**):5c*b* 

Hence a * vb * is the complement of a A b 

i.e.,(b) holds. 
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= (c) 

Suppose (b) holds, 

Let a,b € S(L) we have, a = a * and b = b * * 

= (a* vb*)* = (av b)** 

zavbeS(L) 

= (d) 

Suppose (c) holds, 

i.e.,a,bS(L). Impliesthat avbES(L) 

As a vbES(L).S0  we have, avb€S(L) 

Hence (d) holds, 

i.e., S(L) is a subalgebra. 

(a) 

Suppose (d) holds, 

i.e., S(L) is a sub algebra of L. 

Now forany aEL,a*ES(L),a**ES(L) 

Hence a*va**(a**a***)* [since avb(a*Ab*)* ] 

= 0* = 1. Hence L is stone algebra. i.e-,(a) holds. o 

Theorem 4.2.2 Show that a distributive pseudoconiPlemented lattice L is a stone 

Lattice 1ff (av b)** a**vb** Va,b€L. 

Proof: Let L be a pseudocomplemented distributive lattice. If L is a stone lattice, 

then Va,bEL.We have, (avb)*=a*Ab* 

Hence (avb)**=(a*Ab*)*=**** 

Conversely, let (a v b) * * = a * v b * * Va, b E L 

NowforxeL, let x* vx**Y, then 
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(X*VX**)**Y** 
=y=y** =.(x *VX**)**Y**  

Now, 

Hence X*VX**=l 

Therefore L is stone lattice. 0 

Proposition 4.2.1 If p is a prime ideal of a lattice L, then -f--- is a two element
R(p) 

chain. The elements are p, L - p. 

Proof: Let x,yELP 

If for somel E L,xAl € 

Then lep [sincexp and Pisprime] 

Hence y A 1 E p 

i.e.,VIEL,XAIEP ??yAIEP ixy R(p) o 

PropositiOn 4.2.2 Show that in a stone algebra every prime ideal contain exactly one 

minimal prime ideal. 

Proof: Let P be a prime ideal and q1  and q2  be two minimal prime ideals contains 

in p with q1  * q2, 

Let xEq1 —q2  then xeq1  but xq2  

Now 
X*E p 

Again since q1  minimal, then 
q14X** E q1  = x**EP 

Hence x * vx * * € p which contradict the fact that p is prime. Hence q1  = q2  

Hence in a stone algebra every prime ideal containS exactly one minimal prime ideal. 

0 

The following theorem is an extension of a fundamental result in lattice theory [13, 

Lemma 4, pp 1691. Though our proof is similar to their proof, we include the proof 

for the convenience for the reader. 
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Theorem 4.2.3 Let L be a distributive lattice with complemented. Then L is a stone 

algebra if P v Q = L for any two distinct minimal prime ideal. 

Proof: First consider L is a stone algebra. 

Let P and Q are two distinct minimal prime ideals.  

Let aeQ—P.Then aEP 
P UH 

Now a A a* =0 € p. since p is prime and a E 

\I' * 

Soa*Ep, 

Now let L 
- Q is a minimal dual prime ideal. 

Thus(L -Q)v[a)= L, 

So a=xAa forsomexEL-Q 

2!xEL-QEL-QaQ =aep-Q 

Similarly we have, a**Ep_Q 

Hence a*va**=1  lEpVQL =pvQ 

Conversely, Suppose p v Q = L for any two distinct minimal prime ideals. 

We have to show that L is a stone algebra. 

If L is not stone algebra, then there exists a E L, 

Suchthat a* va**;t1 

Then there exists a prime ideal R 

Such that C1*VCJ**ER 

Weclaim that, (L_R)v[a*)=L  then xAa*=O, 

For some x E (L - R) 

a**>—xE (L_R) 

Which is contradiction. 

Hence (L_R)v [a*)#L 
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LetF be a minimal dual prime ideal containing(L_R)v[a*). and G be a maximal 

dual prime ideal containing (L - R) v [a * 

Put p=L—F and Q=L—G 

Then p and Q are minimal prime ideal and p # Q 

Asa*EQbuta*P and  a** E pbUta**Q 

i.e., p and Q are distinct. 

Also p,QcR and thusPvQcR# L 

Which is also contradiction. 

Hence L is a stone algebra. o 

Theorem 4.2.4 Let L be a complemented distributive lattice and p be a prime ideal of 

L. Then the following conditions are equivalent: 

1. p  is minimal. 

xE p,=,x*p 

XEP,X**EP 

pAD(L)q 

Proof: (i) => (ii) 

Let p be minimal. Suppose, If (ii) fails there exists x E p. 

Such thatx* E p. Let D=(Lp)v[X) then OED. 

For otherwise 0= q A x for some q € L 
- 

p. 

Which implies that q :~ x e  p. 

Therefore, q € p, which is contradiction. 

Hence Opr'D, 

Then by stone's representation theorem there exists a prime ideal Q, 
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Such that Qr(L—P)(° This implies Qn(L—p)' 

andsoQPBUtQP asxeQ 

This contradict the minimally of p 

Hence (ii) follows. 

=> (iii) suppose (ii) holds and x € p 

Now X*AX**OEP 

But x' p andp is prime. Sox** E p i.e.,(iii) holds. 

(iv) suppose (iii) holds 

-1 

Let x E p c D(L). Then XE p and XE D(L) 

x€ D(L) implies x* = 0. By (iii) x * E p 

Which is impossible as p is prime. 

So (iv) holds. 

Suppose p is not minimal, then there exists a prime ideal Q c p 

Let xEp -Q 

Now x A =0 E Q. Since x E Q and Q is prime. 

So, x* E=- C) c p. Then x,x*€p 

So, xvx*EP 

Now, (XVX*)*X*AX**0 

implies that xv D(L) i.e., p D(L) ~ 

and so (iv) does not hold. o 

In [18, Lemma 81 has proved the following result lattices we generalize it to 

pseudocomPlemeted lattices. 
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Lemma 4.2.1 Let L be a distributive lattice with 0. Let 0 :!~- x r= Land the interval 

[0,x], is complemented. If y *  is the relative complemented of y in[O,x], then 

(y*] = (y} * A(X](X] and (y **] =  (y) A (x}. o 

Lemma 4.2.2 Let L be a distributive lattice with 0 . For any r € L 

and any ideal 1,((r ] A I]* A(I]I*A(r] o 

Theorem 4.2.5 A distributive lattice L with 0 is a generalized stone lattice if and 

only if each interval [0,x], 0 < XE L, L is stone lattice. 

Proof: Let L with 0 be a generalized stone and let FE [0,x]. 

Then (P] * v(P] * * = L. So xe (P]*v(PI** implies x — rvl, forsome 

Nowr E (F) * implies r A P =0, also 0 :!~ r :5 x. 

Suppose I e [0,x] such that t A P = 0,then I E (P] * implies £ A I = 0 Therefore, 

tAx=tA(rvl)=(tAr)v(tAI)(tAr)vO=tvr 

Implies f-f Ar implies t < r 

So, r is the relative complement of F in [0, x], i.e., r = P. 

Since 1 € (P] **.  and r E (P]*, so I A r = 0. Let q E [0,x} such that q A r = 0 Then 

as x=rvl so qAx=(qAr)v(qAl) 

Implies q = q :!~ I implies q < I 

Hencej is the relative complement of r— P in [0,x],Le.,IP** implies 

x = r v I = P * vP * ". Thus[0,x], is a stone lattice. 

Conversely, suppose [0,x], 0< x € L is a stone lattice. Let FE L, 

Then P A X E [0, F] Since [0, P1 is a stone lattice, then 

(PAX)*V(pAx)**=P where (PAx)* is the relative 

compiment of (P A x) in [0, F] 

Therefore PE((p]r(pA x])v((p]ri(PAxJ**) 
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So, we can take P= rvl, for (PAx]*, l(pAx]** 

Now, rE(PAx]*  implies rAPAx=O implies rAxO implies 

r E ( x ]** and  IE(PAX]** 

Now P A X :!~ x implies (P A x) * * (x] * * 

Andso 1E (xl** 

Therefore P=rvlE(x]*v(x]**  and so L c(x}*v(x]** 

But (x] * v(x] * * cz  L is obvious. 

Hence (xj * v(x] * * = L and S on L is generalized stone. o 

Following theorem is a generalization of[14, Proposition 5.5(b)] 

Theorem 4.2.7 Suppose L be a distributive lattice with 0. If L is generalized 

stone, then it is normal. 

Proof: Let P and Q be two minimal prime ideals of L . Then P, Q are 

unordered. Let x E F, 

Then (x] A (xj* = (0] c Q implies (x]* Q. Since P is minimal, 

so (xj * * ç P. Again, as L is generalized stone, 

so (xl * v(xj * * = L. This implies P v Q = L and so L is normal. o 

Lemma 4.2.4 If L1  is a sublattice of a distributive lattice L and P1  is minimal prime 

ideal in L1, then there exists a minimal prime ideal P inL such that t = L1  n P o 

Following theorem is generalization of [14, theorem 5 p.1  151 

Theorem 4.2.8 A sectionally pseudocomplementetd distributive lattice L is 

generalize stone if and only if any two minimal prime ideals are comaximal. 

Proof: Suppose L is generalized Stone. So by Theorem 2.3.7 any two minimal prime 
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ideals are comaximal. To prove the converse, let P,Q be two minimal prime ideals of 

4 
L . We need to show that [0, x] is stone, For eachx € L Let I,Q1  be two 

minimal prime ideals in[O,x]. Using Lemma 2.2.4. there exists minimal prime ideals 

P,Q in L such that P = Pr'[O,x],Q1  = Qr40,x]. 

Therefore P vQ1  =(Pr'l[O,x})v(Qr)[O,xj)=[Pv Q]n[O,x]= Lm[O,x] =[O,x]. 

Therefore [0, x] is stone. So L is generalized stone. o 

Corollary 4.2.1 A distributive lattice L is generalized stone if and only if it is 

sectionally complemented and normal. Figure 2.1 the lattice L is in fact a 

generalized stone lattice, as it is both sectionally complemented and normal. 

Corollary 4.4.4: A distributive lattice L with 0 is generalized stone if and only if it 

is normal and sectionally complemented. 

4.3 Sectionally pseudocomplemented Lattices 

Sectionally pseudocomplemented Lattices: A lattice L with 0 is called sectionally 

pseudocomplemented if interval [0, x] for each x e L is pseudocomplemented. 

Note: Every finite distributive lattice is sectionally pseudocplemented. 

Following figure 2.3 gives an example of a distributive lattice with 0 which is not 

sectionally pseudocomplemented. 

In R2  consider the set: 

£ = {(O,y)IO :5 y <5) {(2,y)I0 :5 y <5) u {(3,5),(4,5),(3,6)} 

Define the partial ordering :~ on £ by(x,y) :~ (x1,y1) if and only ifx :!~; 

and y :!~ y1  here E is clearly a distributive lattice. This is not a lattice as the supremum 

of (3,6) and (4,5) does not exist. Consider the interval [O,p] observe that in t his 
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interval (2,0) has no relative pseudocomplemented. So (E,:!~) is not sectionally 

pseudocomplemented. 

Normal Lattice: A distributive lattice L with 0 is called normal lattice if each 

prime ideal of L contains a unique minimal prime ideal. Equivalently, L is called 

normal if each prime filter of L is contained in a unique ultrafilter (maximal and 

proper of L). 

Dense Lattice: A lattice L with 0 is called Dense lattice if (x]' = (0] for each 

x # 0 in L. 

The following theorem is generalizasion of [8] 

Theorem 4.3.1 If L is a distributive sectionally pseudocomplemented lattice, then 

LF  is a distributive pseudocomplemented lattice. 

Proof: Suppose L is sectionally pseudocomplemented. Since LF  is a distributive 

lattice. Let [x] E LF, Then [0] g [x] c F . Now 0 :!~- X A f :5  f, for all f € F. 

Let y be the pseudocomplemented of x A f in [0, fj then y A x A f =0 implies 

[yAf]A[x][O], that is [y]A[x]=[O1. 

Suppose [z] A [x] = [0], for some [z] e LF  then 2 AX 0(w) .This implies 

2AXAf'0 ...............  (1) 

For somef"e F. Since z Z A f(WF)' SOZA f"= z Af = Af".........(ii) for some 

f"E F. From (i) and (ii) we get x AX A f'Af"= 0 and X A f'Af"= 2 AX A f'Af" 

Setting g = f'Af" we have 2 A gA = Z A A f, which implies z A g 5 f and 

zAgAf0 So 0!~zAg5f and zg<_y. 

Hence, [z A g] c [y] But[z] = [z A g] as g E F 

Therefore, [z] ç [y],  and so LF  is a pseudocomplemented distributive lattice. o 

66 



Theorem 4.3.2 Suppose L be a relatively pseudocomplemented lattice. Let 

x :!~- y !~, z in L and 1 be the relative pseudocomplement of y in [x,z]. Then for any 

r E L 1 tr is the relative pseudocomplement of y A r in [x A r, Z A r] 

Proof: Suppose t A r is the relative pseudocomplement of y A r in [x A r, Z A r] 

Since / is the relative pseudocomplement of y in [x,z], so 1 A y = x Thus, 

(lAr)A(yAr)=xAr Thisimplies 1Ar:5tAr 

Again, x:51v(tAr):5z andyA(lv(tAr))=(YA/)v((YAr)A(t))=xv(x1.r) 

implies /v(tAr):51;[xAr,ZAr]:51 Le,I=lv(tAr) 

Hence tAr:5l, andso tAr51Ar. This implies tAr=1Ar 

Therefore 1 A r is the relative pseudocomplement of y A r in [x A r,z Ar]. o 

[17] extended the notion of pseudocomplementation for meet semilattices, following 

theorem generalises. 

Theorem 4.33 If L is a distributive relatively pseudocomplemented lattice, then LF  

is a distributive relatively pseudocomplemented lattice. 

Proof: Since LF  is a distributive lattice. Let [x],[y],[z] c L. with [x] c [y] c: [z]. 

Then [x]=[x Ay] and [y] [y A z] Thus, y x A Y(WF) and y X A Y(cF) This 

implies xAf=xAyAf and yAg=yAzAg forsome f,gEF then 

-I. 

yAfAgyAzAfAg, and yAfAg=yAZAfAg, andso 

xAfAg:!~yAfAg:5zAfAg, that is xAh:!~yAh:5zAg 

where f A g E F 

Suppose £ is the relative pseudocomplement of y A h in [x A h, Z A h]. Then 

t A y A h = X A h, and so [t] A [y A h] = [X A h]. That is, [t] A [y] = [x] as 

y EyA h(IiF) yyAh(WF ) and X-xt\/(WF ) Moreover, 

[1]A[z]=[IIA[zAhl=[tAzAh]=[1] implies [x1c[11[z1 

We claim that [z] is the relative pseudocomplement of [y] in[[x],[z]] in L. 
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Suppose [1] A [y] = [xl for some [1] E [[x],[z]]. Then / A y X(WF) and so 

lAyAfxAf for some f'EF Again [l]c[z] implies JlAZ(ct'F), and so 

1Ag'=/AzAg' for some g'EF.Thefl /AyAf'Ag'=xAf'Ag' and 

I Af'Ag'=lA ZA [Ag' 

Thus, lAk=lAxAk and lAklAzAk where k=f'Ag'EF 

This implies xAhAk:5IAhAk:5zAhAk 

and (/AhAk)A(yAhAk:!~ZAhAk 

Then [i A h A k :9 z A k]. Hence [1] = [I A hA k} c[t A k] = [t] 

And so t is the relative pseudocomplement of [y] in [[x],[y]]. 

I Therefore, LF is relative pseudocomplemented. 0 

The following theorem is extension of[ 25, theorem 4.1] 

Theorem 4.3.4 For a distributive sectionally pseudocomplemented latticeL, the 

following conditions are hold: 

If L is generalized stone then LF  is stone for any filter F of L. 

L is generalized stone if and only if for each prime filter F of L, LF  is dense 

Lattice 

Proof: (i) Let WF  (x),çi'p (y) e Lb  be such that çi'. (x) A cup  (y) =0 Then, 

X A y O(LI), which implies that X A y A f =0 for some f e F. Since L is 

generalized stone, then L is normal, so (x] * v(y A f]* = L 

Hence (ku  (x)] * v(Yb (y)}* 
= (ku'F(x)] * v('f(y A f] * 

= WF ((x)1 v(y A fj*) 
= w(L) = L. 

Thus, LF  is normal. 

Again, since L is sectionally pseudocomplemented, then LF  LF is 

pseudocomplemented, 
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Hence LF  is stone. 

(iii) Suppose L is generalized stone. Let(x) # Oand(q) € (v F (X)] *  .Then 

A Y/F(X) =0. Then F is contained in a unique ultra filter of L. Thus L has a 

unique ultra filter; and soLF  hasa unique minimal prime ideal. 

But the zero ideal of LF  (as 0 E L) is the intersection of all the minimal prime ideals 

of LF. Hence, by uniqueness, it is (minimal) prime ideal of LF . Hence (q) =0 

showing that L is dense. 

Conversely, letLF  be dense for each prime filter F of L. Suppose x, y E L are such 

that xAy=0Then fF(XAY)=ct'F(0) 0 That is WF(x)AWF(Y)0 which implies 

'4 
that Wp(X) = 0 or p(y) = 0 as LF  is dense. Hence, either (v(x)]* = LF  or 

(i1F (y)]* LF . Thus F((x)]v(Y])' =i(L) and so (x]*v(yl*=L) 

Therefore L is normal. 

Again, since L is sectionally pseudocomplemeflted, so L is generalized stone. o 

69 



Chapter Five 

4 

Directoid equipped with sectionally switching mapping 

Introduction: it is shown that every directoid equipped with sectionally switching 

mappings can be represented as a certain implication algebra. The concept of directoid 

was introduced by J. Jezek and R. QuackenbuSh [191 in the sake to axiomatize algebraic 

structures defined by on upward directed ordered set. In certain sense, directoids 

generalize semilattices. 

5.1 Basic concepts 
40 

An ordered set (B;!!~)is upward directed if U(x,y) q for every x,y E B, where 

U(x,y) = {a e B;x :!~ a and y :~- a}. Elements of U(x,y) referred to be common upper 

bounds of x, y. of course, if (B, :5) has a greatest element then it is upward directed. 

Let (B; :!,~) be an upward directed set and v denotes a binary operation on B. The 

pair B = (B;v) is called directoid if the following axioms are hold: 

1. XVyEU(X,y) for X,yEB 

2.Ifx:5ythenxvYY and Y=Y ........................  (A) 

Switching Algebra: The system { {O,l} ,A,V,' } 
is a two elements Boolean algebra which 

are called a switching algebra. 

Proposition 5.1.1 A groupoid B is a directoid if only if it satisfies the following 

axioms: 

l.xvx=X ...........................................  .................................(I) 

2.(xvy)VXXVY .............................  ................................(
2) 

3.yv(xvy)XVY .......................  ......................................(
3) 

4. x v ((x v y) v z) = (x v y) v z .... (skew asssociatiVilY) .........  (4) 

Then the binarY relation :5 defined on B by the mle x:!~y if and onlyifXvY isan 

order and xvyEU(x,y) for each X,yE B. 
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A directoid B = (B;v) is called commutative if it satisfies the axiom 

5.xvy=yvx ....................................................................  (5) 

5.2 Switching Involutions 

Let (B;v) be an ordered set with a greatest element 1. For p B, the interval [p,l] will 

be called a section. A mapping f of [p,l] into itself will be called a sectional mapping. 

If f is a sectional mapping on [p,l] and x E [p,l] then f(x) will be denoted by x". 

A sectional mapping on [p,l] is called switching mapping if p" =1 and 1" = p then it is 

called an involution if x" = x for each x E [p,l]. Hence any involution is a bijection 

and if a sectional mapping on [p,l] is a switching involution then p"  =1 if x = p and 

14 
x" = p if x = 1. (B;::!~,l) will be called with sectional switching involutions if there is a 

sectional switching involution on the section [p,1] for each p E B. 

Lemma 5.2.1 Let B = (B;o,l) be an algebra of type (2,0) satisfying the following 

axioms: 

xox=l, xol=1 .......................................... (6) 

x o  y = I implies y = (y o x) o x....................(7) 

xo((((xoy)oy)oz)oz)1 ......................... (8) 

Define a binary relation !~ on B by the setting x:!~y if and onlyifxoy=l  ......  (*) 

Then (B; :5) is an ordered set with a greatest element I where for each p E B the 

mapping x F4 x'' = x o p is a sectional switching involution on [p,l]. 

Proof: By (6) and (7) we infer immediately 

lox=(xox)ox=x .......................................  (**) 

Due to (6) the relation :!~ is reflexive and x :5 1 for each x E B. Suppose x :!~ y and 

y~5x. Then xoy=l,yol=1 and, by (7), y=(yox)ox=1oxx thus :!~ is anti-

symmetrical. Suppose x .5 y and y :!~ z. Then :!~ x o y = l,y o z =1 and by (6) and (7) we 

have, xoz=Xo(loz)=Xo((yoz)oZ)=xo(((loy)oz)oZ)X0 ((((XOY) 0 Y)OZ) 0 Z)=l 

thus x :!~ z proving transitivity of <. 
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Now, let p€B and x€[p,1]. Then p < x an hence pox=1. Due to (7) we conclude 

x' = (x o p)  o  p = x thus every sectional mapping x i-4 x" = x 0 p is an involution on 

[p,l]. Applying (6) and (**) we infer that it is a switching mapping. o 

Lemma 5.2.2 Let B = (B;o,1) satisfy (6), (7), (8) and 

I. yo(xoy)=l 

2. xo((xoy)oy)=l 

then (xoy)oyEU(x,y) for each X,yEB. 

Proof: By Lemma 5.2.1, :!~ defined by (*) is an order on B. Replace x by x o  y in (4) 

we obtain y o ((x  o y)  o  y) =1 thus y :5 (x o  y)  o  y. By (5) we have x :~ (x o  y)  o  y thus 

(x o  y)  o  y E U(x,y). o 

5.3 d- implication algebras 

The concept of implication algebra was introduced by J.C. Abbott [18]. It is a groupiod 

B = (B ; 0) with a distinguished element 1 in which an order :!~. can be introduced by 

x :!~ yif and only if xoy =1. It was shown [1] that (B;:!~) is semi lattice 

x v y = (x o y)  o  y and ,moreover, every section [p,l] is equipped by a sectional antitone 

involution x" = x p. 

Let us note the name implication algebra express the fact that x a  y is interpreted as a 

connective implication x y 

Theorem 5.3.1 An algebra B = (B;0;1) satisfying (1) - (5) will be called a weak d- 

implication algebra. We can state 

Let B = (B;0;l) be a weak d-implication algebra.. Defme a binary operation von B 

By xvy=(xoy)°y 

and for each p o B define x" = x a p. Then D(B) = (B;v) is a directoid with the greatest 

element 1 with sectionally switching involutons whose induced order coincides with that 

of B. 

Proof: Define x v y = (x 0  y) 0  y and x" = x 0  p, for x € [p,l]. 
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Let xoy=1.Then xvy=(xoy)oyloyy. 

Let :5 be the induced order on B . By (B4) we have x o  y E [y,l]. Suppose now 

xv y = y. Then, since the sectional mapping on [y,l] is an involution, we infer 

xoy=(xoy),  =(xoy)oy)oy=(xvy)o=yoy=l 

we have shown xoy - l if and only if x v y = y thus order on B defmedby(*) 

coincides with that of (B;v) defined by B. The fact that (B;v) is a directoid by Lemma 

5.2.2 and the fact that x ::~ y gets xv y = y (x o  y) o  y = by = y and ,by (B2), also 

yvx=(yox)ox= y. ByLemma5.2.1 sectional mappings x i—* x"for xe[p,11 are 

switching involutions. o 

Theorem 5.3.2 Let D = (D;v,l) be a directoid with a greatest element 1, :!~ its induced 

order. Let for each p E D there exists a sectional switching involution x i—* x" on [p,l]. 

Define xoy=(xvy 

Then B(D) = (D;O;l) is a weak d- implication algebra. 

Proof: Since y ~ x v yin D, we have x v y = [y,l] and hence the definition of the new 

operation "0" is sound. Moreover, (x o  y) o  y = (xv y)" = xv Y. 

We have to verify the conditions (1) - (5). 

xox=(xv l)x JX  =land xol=(xvl)' =11=1. 

Suppose x o  y =1 .Then (xv y) Y =1 thus (since the sectional mapping is a switching 

bijection) also x v y = y. Conversely, if x v y = y then x o  y =1, i.e., the order induced 

on D coincides with that given by (*) in Theorem 5.3.1 . Hence, if x o  y =1 then x :5 y 

thus yE[x,l],i.e., (yox)ox=y=y. 

By (4) we have x :!~ (xv y) v z thus (x - ((((x o  y) o z) o z) = x o  ((x v y) v z) =1 

Since xv y E [yi1 we have x o y = (xv y)Y  e [y,l] thus y :!~ x o y whence 

y o (x o  y) =1 

Since y:5xvywe have (xoy)0y((xVY)y VY)'(XVY)'XVY. 

Thus xxvy=(xoy)oy proving xo((xoy)oy)1. 0 
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Lemma 5.3.3 Let B = (B;o,l) be a d-implication algebra. Define a binary relation :!E~ 

on B by the setting x :!s~- y if and only if x o  y = 1. Then :!~ is an order on B and I is 

greatest element. 

Proof: By (1), :!9 is reflexive. Suppose x:!~y and y:!~x. Then xoy=l,y ox=l and due 

to (1), also x = 1 o  x = (y o  x) o  x = (x o  y) a  y = 1 o y = y, i.e., :!~ is anti-symmetrical. 

Transitivity of :!~, can be shown identically as in the proof of Lemma 5.2.1. By (1) x :5 1 

for each x€B. o 

Theorem 5.33 Let B = (b,o,l) be a d-implication algebra. Define xv y = (x o  y) o  y 

and for I E [y,l] let xy = x o y. Then C(B) = (B;v) is a commutative directoid with a 

greatest element 1 and with sectionally switching involutions. 

Proof: By Lemma 5.3.3, (B; :5) is an ordered set where x :~ y if and only if x o  y = I) 

and lisa greatest element of(B;:~). Due to (1) we infer xv y = y v x. 

By (l) and (3)wehave,xo(xvy)=xo((xoy)oy)=xo((((xoy)oy)oy)oy)=l 

thus x:!~xvy. Analogously y:5xvy thus xvyEU(x,y). Further, if x:!5y then 

xvy:=(xoy)oy=loy=y. 

We have shown that (B;v) is commutative directoid. Analogously as in the previous 

proofs, the induced order of (B;v) coincides with :!~,. Hence, 1 is a greatest element of 

(B;v). 

Now, let y E B and x € [y,l]. Then y :!~- x and hence x' = (x o  y) o  y = x v y = x. 

Further, yY = y o  y = 1 thus for each y E B the mapping x F4 x' is a sectional switching 

involution on [y,I]. o 

Theorem 5.3.4 Let C = (C;v,l) be a commutative directoid with a greatest element 1. 

Let :5 be its induced order and for each p e C there exists a sectional switching mapping 

involution x i—* x" on [y,l]. Define x o  y = (xv y)Y.  Then B(C) = (C;o,I) is a d-

implication algebra. 
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Proof: It was shown in Theorem 5.3.2 that no" is correctly defined operation on C 

satisfying (1) and (3), and that (x o  y) a  y = x o  y. Since xv y = y v x, (1) is evident. It 

remains to prove (2). Since y :!~ x v y we derive 

((xoy)oY)oY(XVY)0Y(x'Y)y =xoy. o 
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Chapter Six 

re 

Boolean lattices with sectional switching mapping 

Introduction: Sectional switching mapping were introduced by Chajda, and P. 

Emanovsky [3] and studied by several authors. Consider a Boolean lattice L = (L,v,A,l) 

with a greatest element 1. An interval [a,l] for a € L is called a section . In each 

Section [a,1] an antitone bijection is defined. We characterize these lattices by means 

of two induced binary operations providing that the resulting algebras from a 

variety. A mapping f, of [a,!] on to itself is called a switching mapping if 

f(a) = 1, f(1) = a and for x E [a,l],a # x # 1. We have a # f(x) # 1. If for 

p, q e L, p :5 q the mapping on the section [a,!] is determined by that of [1,1] , We 

say that the compatibility condition is satisfied. We shalt get conditions for antitone 

of switching mapping and a connections with complementation in sections will be 

shown. 

6.1 Basic concepts 

Let L = (L,v,A,1) be a lattice with the greatest element 1. for a E L, the interval 

[a,l] will be called a section. 

A mapping f : x -* y is called an involution if f(f(u)) = x for each x € X. 

Let (X,:!~) be an ordered set. A mapping f : x i-4 y is antitone if, x :!~ y implies 

f(y) :5 f(x) for all x,y € X. 

A wealdy switching mapping : x i- x' will be called a switching mapping if 

a # x * 1 for each x € [a,l] with a # x # 1. 

We induced lattices with 1. where for each a € L there is a mapping on the section 

[a,1] ; such a structure will be called lattice with sectional mappings. 
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We study the following notation: for eacha e L and x € [a,!] denote by x° the image 

of x in this sectional mapping on [a,l]. Thus x i— x"  is a symbol for the 

corresponding sectional mapping on the section [a,1]. 

Let L = (L,v,A,l) be a Lattice with sectional mapping. Define the so-called induced 

operation on L by the rule xv y = (xv y)-'  .Since xv y E [y,l] for any x,y E L. Also, 

conversely, if "v" is induced on L, then for each a E L and x E [a,1]. We have 

xv a = (x v a)0 = Xa.  

6.2 Switching mapping 

A mapping : x i— x° on the section [a,l] is weakly switching if a° = l,l' = a, in other 

words, a weakly switching mapping "switches" the bound element of the section. 

Lemma 6.2.1 A lattice L = (L,v,A,l) with section involutions the following 

properties are equivalent for a E L 

: x l— x0  is antitone, 

The section [a,l] is a lattice where XA0  y = (x° vy°)° (De Morgan law). 

Proof: (i) = (ii): Since the sectional mapping on [a,l] is an antitone involution, it is 

a bijection and x,y :~ x v y implies x', y'  ~(xvy)0  and the existence of supremum 

for x,y e [a,!] yields existence of the infimum x A0  Y.  

Hence XQ A0 YO  (XVY)0 .  

However, x0, y°  X"  y
a 

thus, due to x=x 00 ,y=y°'7 , 

we obtain x,y ~ (x A0 
ya)0 

Whence x vy :5 (x° A0 y0 )'7 ie u a 
A. y° 

All together, we obtain (ii) 

(ii) = (i): Let x,y E [a,l] 

and suppose x < y. 

Then x v y = y and, by (ii) 
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ya =
I
XVy) 

\a x j  A.  a 

Thus y°  :!~x0 , 

i.e. the sectional mapping on [a,l] is antitone. 

Lemma 6.2.2 A Lattice L = (L,v,A,1) with sectional mappings. 

if the sectional mapping x i- x' is an involution for each 1 e L then the induced 

operation satisfies the identity (xv y) v y = (y v x)v x = xv y .....................(A). 

if the sectional mapping : x * x' is weakly switching for each 1 E L and the 

induced operation an involution satisfies (A), then every sectional mapping is an 

involution. 

Proof: (i) Since. x v y E [y,l] 

We have x v y = (x v y)Y  —> y. 

Thus, if the sectional mapping is an involution we conclude, 

(xvy)vy=((xvy)VYY =(xvy) =xvy, 

Whence (i) is evident. 

(ii) Let each sectional mapping be weakly switching, let 1 E L and x E 

Then xvl=x by(i) 

and x" = (x v 1) v / = (1 v x) v x = ((1 v x)x  v  x)x = (f v x)x = (1 v x)x = 1x = x 

and thus : x —)~ x' is an involution. 

Lemma 6.2.3 A lattice L = (L,v,A,l) with sectional mappings. Let :5 be its induced 

order. Then x:~-y if and only ifxvy=l. 

Proof: If xf-y ,then xvy=((xvy)" =yY 

Conversely, if x v y =1, then (x v y)' 1, 

Since it is a switching mapping, x v y = y, whence, x :5 y. [1 

Lemma 6.2.4 A lattice L = (L,v,A,1) with sectional weakly switching mappings. 

Then L satisfies identities, 

xvx=1,lvxx,xvll .........................  (B) 

Proof: Since x v y = ((xv y)" . 
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Thus xvy=((xvy)V yY =1, 

Again, since in a sectional switching mappings. 

x" =(xvI) 1  

= (1 v 

= ((1 V X)X  v 

= (xx V
XY  

= (1 v x)x = lx = x 

further, x=(xvl)'  

=xvl=(xvl)xl 

• 

/ 

( 
,:7 

\ 
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Theorem 6.25 A lattice L = (L, v,A,l) with sectional switching mappings. 

If L satisfies the identity (((xv y) v y) v z) v (xv z) = I...................(c) 

then every switching mapping on L is antitone. 

If every sectional switching mappings. on L is an involution then it antitone if 

and only if L satisfies (c) 

Proof: (i) Let z ; x, y E [z,1] and x :!~ y. 

By Lemma6.2.3 We have yvz=l,andby 

Lemma 6.2.4 and (c) We conclude: 

(yvz)v(xvz)=((lvy)vZ)V(XVZ) 

=(((xvy)vy)vz)v(XVz)1. 

By Lemma 6.2.3 we have v z :!~ x v z 

and thus j?=yvz:~xvz_f 

(ii) Let the sectional switching mappings. on L are antitone involutions. 

By Lemma 6.2.l we have (xvy)vy=xvy. 

Since xvyvz~!xvzand XVYVZ,XVZE[Z,1] 

We obtain, ((xvy)vy)vz=(xvyvz)z :!~(XVZ)XVZ. 

By Lemma 6.2.3 we conclude (((x v y) v y) v z) v (x v z) =1. U 
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6.3 The compatibility condition 

Consider a lattice with sectional mappings where the mapping in a smaller section 

is determined by that of a greater one. 

We say that L = (L,v,A,1) satisfies the compatibility condition if p :~ q :5 x 

implies that Xq = x" v q .............................(D) 

It is easy to verify that (D) can be equivalently expressed as the following identity, 

(yvz)v(xvy)=((yvz)vx)v(xvy) ................................. (E) 

Since x:5xvy:5xvyvz and (yvz)v(xvy)=(xvyvz)1) 

(yvz)vx__(xvyvz)X  

Lemma 6.3.1 A lattice L = (L,v,A,1) with sectional switching mappings satisfying 

- the compatibility condition. Then 

xvx'  =1 for each 1EL and each xE[l,1] 

If z z'  is a switching mappings for 1 # 1 then x1  # x and if x <y then 

x' # y'  for x,y € [i, i] 

If all the sectional mappings are switching, then no section of L can be a 

chain with more then two elements. 

Proof: (i) Since / :!~ x, we conclude directly by (E) I = v x 

If z i- z'  is a switching mapping on [1,11 and x,y E [i,i], then if x' = x, by (i), 

We obtain I = x' v x = x and, hence, 

1 = x' = 11  =1, a contradiction. 

If x<y and x'=y',then by (E)and (i), y t = y'  vx=x '  vx=1 

Since the sectional mapping is switching, it yields y = x, a contradiction. 

Suppose that [1,1] is a chain with more then two elements. 

Then there exists, x,E [i, ii / # x ~ 1 

We have, x' #l,x' #1 and by (i), 

1 = x' v x = max(x, x'), a contradiction. 
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Theorem 6.3.2 A Lattice L = (L,v,A,l) with sectional switching mapping satisfying 

the compatibility condition. If x i-~ x' is antitone on [1,1], then x' is a complement 

of x for each x,€[1,1}, 

Proof: Considers the sectional switching mapping on [1,1] is antitone. 

By Lemma 6.3.5 we have xvx'  =1 and x' vx"  =1 for each x,E[1,1]. 

Take z = X A1  x ' . Then z :f~- x, z :!~ x1  and, due to the antitone property of mapping, 

also z'>—x',z'>—x".Thus,z'>—x'vx"=l 

Therefore, it follows that, z' = 1, i.e.,z =1 and x' is complement of x in the lattice 

([l,l}v,A,l). [I 

Theorem 6.3.3 A lattice L = (L,v,A,l) with sectionally antitone involutions satisfying 

the compatibility condition. Then for each I e L the section [1,1] is an orthomodular 

lattice where x' is an orthocomplement of x,E 

Proof: Since sectionally antitone involutions are switching mappings, thus by 

Lemma 6.1 .1 and Theorem 6.3.7, [/,1] is a lattice and x' is a complement of 

x,E[l,l]. 

Since this sectional mapping is an involution, we have x" = x and due to antitony, 

x :5 y implies y' <- x' for x, y [i,i], thus x' is an orthocomplement of x in [1, 1], 

using the compatibility condition 1 :~- x :!~ y implies yX = y' v x 

and hence yA1  (x vy')= y A1 yX = yA yX =x 

which is the orthomodular condition in the lattice ([I, 1],v,A1) [I] 

Theorem 6. 3.4 A Lattice L = (L,v,A,l) with sectionally antitone involutions, if for 

/ E L and each x,y e [i, i}, the relation 

(x'vy)vx'=(y'vx)'vy' ........................  (F) 

holds, then ([1,1],v,A1) is a Boolean algebra. 
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Proof: Due to Lemma 6.1.1 ([/,1],v,A,) is a lattice and we can use De Morgan's law 

* for each section. Let a e [i,ij. 

Using of the identity (F), we obtain 

ava'  =a" va'  =(a'vl)'vd 

= (1' v a)'  v 1' = (1 v a)'  v 1 = 1 

Due to the De Morgan's law, we have, 

av, a'  =a"  v,a'  =(a'  va)t  =1' =1. 

Hence, a' is a complement of a in [1, 11. 

Let u E [i, ii is a complement of a in [1, 1], 

i.e, avu=l and aA,u=l. 

Using the identity (F) and the De Morgan's law again, we derive, 

a =1 v a = (a v u)' v a 

= (a" v u)' va'1  

= (U'  V a')' vu' 

=(uA, a)vu' 

=lvu' =u' 

Thus, a' = u" = u, and the complement is unique. 

Since the involution is an antitone unique complementation, then, according to 

([l,1]v,A,) is distributive. 0 
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