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ABSTRACT 

In this study the thermal diffusion effect on the steady laminar free convection flow and heat 

transfer of viscous incompressible MHD electrically conducting fluid above a vertical porous 

surface is considered under the influence of an induced magnetic field. The governing non-

dimensional equations relevant to the problem, containing the partial differential equations, are 

transformed by usual similarity transformations into a system of coupled non-linear ordinary 

differential equations and will be solved analytically by using the perturbation technique. On 

introducing the non-dimensional concept and applying Boussinesq's approximation, the 

solutions for velocity field, temperature distribution, mass concentration and induced magnetic 

field to the second order approximations are obtained for different selected values of the 

established dimensionless parameters. The influences of these various establish parameters on 

the velocity and temperature fields, mass concentration and the induced magnetic fields are 

exhibited under certain assumptions and are studied graphically. The effects of these 

dimensionless parameters on the coefficients of skin friction and heat transfer are also studied in 

tabular form in the present analysis. It is observed that the effects of thermal-diffusion and 

suction have great importance on the velocity, temperature, induced magnetic fields and mass 

concentration for several fluids considered, so that their effects should be taken into account 

with other useful parameters associated. It is also found that the dimensionless Prandtl number, 

Grashof number, Modified Grashof number and magnetic parameter have an appreciable 

influence on the concerned independent variables. Further, for more accuracy of the analytical 

approximate results, a numerical solution have been obtained by using standard initial value 

solver numerical procedure based on the sixth order Runge-Kutta integration scheme along with 

Nachtsheim-Swigert iteration technique. Finally, a comparison has been made between the 

numerical results and analytical approximate results and a very good agreement is found 

between the results. 
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INTRODUCTION 

The convective heat and mass transfer process takes place due to the buoyancy effects owing to the 

differences of temperature and concentration, respectively. In dealing with the transport phenomena, 

the thermal and mass diffusions occurring by the simultaneous action of buoyancy forces are of 

considerable interest in practice. Further, heat and mass transfer in the presence of magnetic field, 

which is the subject matter of MHD, has different applications in natural phenomena and in many 

engineering problems. In recent times, the problems of natural convective heat and mass transfer flows 

through a porous medium under the influence of a magnetic field have been paid attention of a number 

of researchers because of their possible applications in many branches of science, engineering and 

geophysical process. Considering these numerous applications, MHD free convective heat and mass 

transfer flow in a porous medium have been studied by among others [34], [40] etc. Using Runge-

Kutta fourth order technique along with shooting method, Sharma and Shing [42] investigated the 

unsteady MHD free convection boundary layer flow and heat transfer of viscous incompressible 

electrically conducting fluid along an isothermal vertical non-conducting porous plate. Choudhary and 

Sharma [10] studied the laminar mixed convection flow of an incompressible electrically conducting 

viscous fluid over a continuously moving porous vertical plate with combined buoyancy effects of 

thermal and mass diffusion under the action of a uniform transverse magnetic field, subject to constant 

heat and mass flux with induced magnetic field. However, Pantokratoras [30] showed that a moving 

electrically conducting fluid induced a new magnetic field, which interacts with the applied external 

magnetic fields and the relative importance of this induced magnetic field depends on the relative 

value of the magnetic Reynolds number (R,,>>l). Alam [3] studied the steady two-dimensional 

problem of MHD free convection and mass transfer flow past an infinite vertical porous plate taking 

into account the effects of thermal diffusion and large suction. 

In recent times, the problems of natural convective heat and mass transfer flows through a porous 

medium under the influence of a magnetic field have been paid attention of a number of researchers 

because of their possible applications in many branches of science, Engineering and geophysical 

process. Considering these numerous applications, MHD free convective heat and mass transfer flow 

in a porous medium have been studied by among others Rapits and Kafoussias [35], Sattar [39], Sattar 

and Hossain [40] etc. Besides, Kim [25] has been studied the effect of MHD of a micropolar fluid on 

coupled heat and mass transfer, flowing on a vertical porous plate moving in a porous medium. 



Nevertheless, more complicate phenomenon arises between the fluxes and the driving potentials when 

heat and mass transfer occur simultaneously in case of a moving fluid. It has been observed that an 

energy flux can be generated not only due to the temperature gradients but also by composition 

gradients. 

Moreover, it has been observed that an energy flux can be generated not only due to the temperature 

gradients but also by composition gradients. The energy flux produced by a composition gradient is 

referred to as the diffusion-thermo (Dufour) effect, whereas, mass flux caused by temperature gradients 

is known as the thermal-diffusion (Soret) effect. In some exceptional cases, for instance, in mixture 

between gases with very light molecular weight (112,  He) and of medium molecular weight (N2, air) the 

diffusion-thermo (Dufour) effect and in isotope separation the thermal-diffusion (Soret) effect was 

found to be of a considerable magnitude such that these effects cannot be ignored. 

In view of the relative importance of these above mentioned effects many researchers have studied and 

reported results for these flows of whom the names are [14], [24], [7], [4] and [36] etc. Combined 

chemical reaction and Soret/Dufour effects on free convection heat and mass transfer in Darcian 

porous media were studied also very recently by [33]. In these studies it has been identified that Soret 

and Dufour effects are important for intermediate molecular weight gases in coupled heat and mass 

transfer in chemical process systems. Alam et al. [5] extensively investigated the Dufour and Soret 

effects on steady MHD free-forced convective and mass transfer flow past a semi-infinite vertical 

plate. A numerical study of the natural convection heat and mass transfer about a vertical surface 

embedded in a saturated porous medium under the influence of a magnetic field has been done by 

Postelnicu [32], taking into account the diffusion-thermo and thermal-diffusion effects. 

Following the study to those of [10], [30] and [32], Hossain and Khatun [20] investigated the Dufour 

effect on combined heat and mass transfer of a steady laminar mixed free-forced convective flow of 

viscous incompressible electrically conducting fluid above a semi-infinite vertical porous surface 

under the influence of an induced magnetic field. They have used the perturbation technique to solve 

the problem. 

Using the Galerkin finite element method, an analysis was performed by Reddy and Rao [37] to study 

the effect of thermal diffusion on an unsteady MHD free convective mass transfer flow of 

incompressible electrically conducting fluid past an infinite vertical porous plate with Ohmic 
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dissipation. It is considered that the plate temperature oscillates with the same frequency as that of 
A. 

variable suction velocity and influence of uniform magnetic field is applied normal to the flow. 

Based on the assumptions that the magnetic Reynolds number of the flow is of insignificant 

magnitude, the present study deals with the study of steady two-dimensional MHD free convection 

heat and mass transfer flow past an infinite vertical porous plate, taking into account the effects of 

thermal diffusion and large suction with induced magnetic field. 

Considering various aspects of an MHD heat and mass transfer flow, the analyses presented here, as 

mentioned above, are classified mainly into two different methods, one is analytical approximate 

method and the other is numerical method. The analytical solutions are obtained by the method of 

perturbation technique. Numerical solution is obtained by the sixth order Runge-Kutta integration 

scheme along with Nachtsheim-Swigert iteration technique. 

Therefore, this thesis is composed of six chapters. In CHAPTER I, available information regarding 

MHD heat and mass transfer flows along with various effects are summarized and discussed from both 

analytical and numerical point of view. In CHAPTER II, the basic governing equations related to the 

problem considered thereafter are shown in standard vector form and the detailed calculation 

techniques for the problem are given. CHAPTER III is concerned with the analytical solution of the 

problem based on perturbation technique has been discussed. In CHAPTER IV, the perturbation 

solutions and results discussions are presented. CHAPTER V deals with the numerical procedure 

based on the sixth order Runge-Kutta integration scheme along with Nachtsheim-Swigert iteration 

technique is discussed. A comparison between the numerical results and analytical approximate results 

are also given here. In CHAPTER VI, the conclusions gained from this work and brief descriptions 

for further works related to our present rehearse are discussed. 
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CHAPTER I 

Available Information on MHD Heat and Mass Transfer Flows 

I.I. Magnetohydrodynamics (MHD) 

Magnetohydrodynamics (MHD) is the branch of magneto fluid dynamics, which deals with the 

flow of electrically conducting fluid in electric and magnetic field. Probably, the largest 

advancement towards an understanding of such phenomena comes from the field of 

astrophysics. It has long been suspected that most of the matter in the universe is in the form of 

plasma or highly ionized gaseous state and much of the basic knowledge in the area of 

electromagnetic fluid dynamics involved from these studies. 

p The field of MHD consists of the study of a continuous, electrically conducting fluid under the 

influence electromagnetic fields. Originally, MHD included only the study of partially ionized 

gases as well as the other names have been suggested, such as magneto fluid mechanics or 

magneto aerodynamics, but the original nomenclature has persisted. The essential requirement 

for problem to be analyzed under the law of MI-ID is that the continuum approach be applicable. 

There are many natural phenomena and engineering problems susceptible to MHD analysis. It is 

the useful in astrophysics because much of the universe is filled with widely spaced charged 

particles and permeated by magnetic fields and so the continuum assumption becomes 

applicable. Engineers employ MHD principles in the design of heat exchangers, pumps and flow 

meters; in solving space vehicle propulsion, control and reentry problem; in designing 

communications and radar system; in creating novel power generating systems, and in 

developing confinement schemes for controlled fusion. 

The MHD in the generation of electrical power with the flow of electrically conducting fluid 

through a right-hand transverse magnetic field is one of the most important applications. 

Recently, theses experiments with ionized gases have been performed with the hope of 

producing power on large scale in stationary plants with large magnetic fields. Generation of 

MHD power on a smaller scale is of interest of space applications. 



Generally we know that, to convert the heat energy in to the electricity, several intermediate 

transformations are necessary. Each of these steps means a loss of energy. This naturally limits 
A 

the over all efficiency, reliability and compactness of the conversion process. Method for the 

direct conversion to energy is now increasingly receiving attention. Of these, the fuel converts 

the chemical of fuel directly into electrical energy; fusion energy utilizes the energy released 

when two hydrogen molecules fuse into a heavier one, and thermoelectrically power generation 

uses a thermocouple. MHD power generation is another new process that has received 

worldwide attention. 

The principal MHD effects were first demonstrated in the experiments of Faraday and Ritchie. 

Faraday [15] find out experiments with flow of mercury in glass tubes placed between poles of a 

magnet and discovered that a voltage was induced across the tube by the motion of the mercury 

across the magnetic field, perpendicular to the direction of flow and to the magnetic field. 

Faraday observed that the current generated by this induced voltage interacted with the magnetic 

field to slow down the motion of the fluid, and he was aware of the fact that the current 

produced its own magnetic fluid that obeyed Ampere right-hand rule and thus, in turn distorted 

the field of magnet. 

Ritchie contemporary of Faraday [15] discovered in 1832 that when an electric field was applied 

to a conducting fluid perpendicularly to a magnetic field, it pumped the fluid in a direction 

perpendicular to both fields. Faraday also suggested that electrical power could be generated in a 

load circuit by the interaction of a flowing conducting fluid and a magnetic field. 

The first astronomical application of the MHD theory occurred in 1899, when Bigalow 

suggested that the sun as a gigantic magnetic system. It remained, however, for Alfven [6] to 

make a most significant contribution by discovering MHD waves in the sun. These waves are 

produced by disturbances which propagate simultaneously in the conducting fluid and the 

magnetic field. The analogy that explains the generation of an Alfven wave is that of a harp 

string plucked while submerged in a fluid. The string provides the elastic force and the fluid 

provides the inertia force, and they combine to propagate a perturbing wave through the fluid 

and the string. 

In summary, MHD phenomena result from the mutual effect of a magnetic field and conducting 

fluid flowing across it. Thus, an electromagnetic force is produced in a fluid flowing across a 
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transverse magnetic field, and the resulting current and magnetic field combine to produce a 

force that resists the fluid's motion. The current also generates its own magnetic field which 

distorts the original magnetic field. An opposing or pumping force on the fluid can be produced 

by applying an electric field perpendicularly to the magnetic field. Disturbance in either the 

magnetic field or the fluid can propagate in both to produce MHD waves, as well as upstream 

and downstream-wake phenomena. The science of MHD is the detailed study of these 

phenomena, which occur in nature and are produced in engineering devices. 

1.2. Electromagnetic Equations 

MHD equations are the ordinary electromagnetic and hydrodynamic equations which have been 

modified to take account of the interaction between the motion of the fluid and electromagnetic 

field. The basic laws of electromagnetic theory are all contained in special theory of relativity. 

But it is always assumed that all velocities are small in comparison to the speed of light. 

Before writing down the MHD equations we will first of all notice the ordinary electromagnetic 

equations (Cramer and Pai [12]). The mathematical formulation of the electromagnetic theory is 

known as Maxwell's equations which explore the relation of basic field quantities and their 

production. The Maxwell's electromagnetic equations are given by 

Charge continuity V.D =p, (1.1) 

Current continuity V.J = -- (1.2) 

Magnetic field continuity V.B = 0 (1.3) 

Ampere's law VxH=J+ 
at 

(1.4) 

Faraday'slaw VxE=— (1.5) 
at 

Constitutive equations for D and B D =€' E (1.6) 

B=uH (1.7) 

Lorentz force on a change F, = q'(E + q P  x B) (1.8) 

Total current density flow J = cr(E + q x B) + pq (1.9) 



I 

In equations (1 .1) - (1 .9), D is the displacement current, Pc  is the charge density, J is the current 

density, B is the magnetic induction, H is the induced magnetic field, E is the electric field, Z is 

the electrical permeability of the medium, p is the magnetic permeability of the medium, qp is 

the velocity of the charge, a is the electrical conductivity, q is the velocity of the fluid and Pc q 

is the convection current due to charges moving with the fluid. 

1.3. Fundamental Equations of fluid Dynamics of Viscous Fluids 

In the study of fluid flow one determines the velocity distribution as well as the states of the 

fluid over the whole space for all time. There are six unknowns namely, the three components 

(u,v,w) of velocity q, the temperature T, the pressure p and the density p of the fluid, which are 

function of special co-ordinates and time. In order to determine these unknown we have the 

flowing equations: 

Equation of state, which connects the temperature, the pressure and the density of the fluid. 

p=pRT (1.10) 

For an incompressible fluid the equation of state simply 

p = constant 

Equation of continuity, which gives relation of conservation of mass of the fluid. The 

equation of continuity for a viscous incompressible fluid is 

V.q=0 (1.12) 

Equation of motion, also known as the Navier-Stokes equations, which give the relations of 

the conservation of momentum of the fluid. For viscous incompressible fluid the equation of 

motion is 

p?i =F—Vp+1uV2q 
Dt 

(1.13) 

where F is the body force per unit volume and the last term on the right hand side represents the 

force per unit volume due to viscous stresses and p is the pressure. The operator, 

DS S 5 5 
- + U- + V- + W- 

Di at  ox Sy Oz 

is known as the material derivative or total derivative with respect to time which gives the 

variation of a certain quantity of the fluid particle with respect to time. Also V2  represents the 

Laplacian operator. 
-4 
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(d) The equation of energy, which gives the relation of conservation of energy of the fluid. For 

an incompressible fluid with constant viscosity and heat conductivity the energy equation is 

DT aQ kV2 T + Ø pcI7 +  
Di at 

(1.14) 

C, is the specific heat at constant pressure, is the rate of heat produced per unit volume by 
at 

external agencies, k is the thermal conductivity of the fluid, çb is the viscous dissipation function 

for an incompressible fluid 

0 = 2d
U[
(au2 

\2 
1—i +1

(

—I + 
ax) 

+ 
kay) az) 2 -xY 

., )] 

where 

all av 
Yxy = + 

a)) ox 

Ov Ow 
Yr  = + 

Oz Oy 

Ow Ou 
= - + - 

Ox Oz 

(e) The concentration equation for viscous incompressible fluid is 

Dc 
= D,V2 C (1.15) 

Dt 

C is the concentration and DM is the chemical molecular diffusivity. 

1.4. MHD Approximations 

The electromagnetic equation as given in (1.1) - (1.9) are not usually, applied in their present 

form and requires interpretation and several assumptions to provide the set to be used in MHD. 

In MHD we consider a fluid that is grossly neutral. The charge density p, in Maxwell's 

equations must then be interpreted as an excess charge density which is in general not large. If 

we disregard the excess charge density, we must disregard the displacement current. In most 

problems due to convection of the excess charge are small (Cramer and Pai [12]). 

The electromagnetic equations to be used are then as follows: 

V.D=O (1.16) 

v.j=o (1.17) 
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V.B=O (1.18) 

VxH=J (1.19) 

VxE=O (1.20) 

D=E (1.21) 

B=pH (1.22) 

J=a(E+qxB) (1.23) 

13. MHD Equations 

We will now modify the equations of fluid dynamics suitably to take account of the 

electromagnetic phenomena. 

The MHD equation of continuity for viscous incompressible electrically conducting fluid 

remains the same 

V.q=0 (1.24) 

The MHD momentum equation for a viscous incompressible and electrically conducting 

fluid is 

p  DI  =F_Vp+,uV2 q+ J x B (1.25) 
Dt 

where F is the body force term per unit volume corresponding to the usual viscous fluid dynamic 

equations and the new term J x  B is the force on the fluid per unit volume produced by the 

interaction of the current and magnetic field (called a Lorentz force). 

The MHD energy equation for a viscous incompressible electrically conducting fluid is 

DT 
pC —=--+kV2T+Ø-- (1.26) 

Di at a 

The new term is the Joule heating term and is due to the resistance of the fluid to the flow of 

current. 

The MHD equation of concentration for viscous incompressible electrically conducting fluid 

remains the same as 

DC 
=DMV2C (1.27) 

Dt 

1.6. Some Useful Dimensionless Parameters 



PI  

(i) Reynolds number (Re) 

The Reynolds number R is the most important parameter of the fluid dynamics of a viscous 

fluid, which is defined by the following ratio 

R = 
inertia force 

= 
mass x acceleration 

C viscous force shear stress x cross sectional area 
pL3x— pLULU 

U 2  1ux—xL 

where, L and U denotes the Characteristic length and velocity respectively and v = is the 
p 

kinematic viscosity ( ji is the viscosity and p is the density). 

For if R is small, the viscous force will be predominant and the effect of viscosity will be felt in 

the whole flow field. On the other hand if R is large the inertia force will be predominant and in 

such case the effect of viscosity to be confined in a thin layer, near to the solid wall or other 

restricted region, which is known as boundary layer. However if R is very large, the flow ceases 

to be laminar and becomes turbulent. The Reynolds number at which translation from laminar to 

turbulent occurs is known as critical Reynolds number. 

Reynolds in 1883 found that for flow in a circular pipe becomes turbulent when Re exceeds the 

critical value 2300, 

i.e. R=[Z-] = 2300 
Cril 

where U is the mean velocity and 'd' is the diameter of the pipe. 

When the viscous force is pre-dominating force, Reynolds number must be similar for dynamic 

similarity of two flows. 

(ii) Prandtl number (Pr) 

The Prandtl number Pr  is the ratio of the kinematic viscosity to the thermal diffusivity and is 

defined by 

r a k k 
pc p  

where c is the specific heat at constant pressure and k is the thermal conductivity. The value of 
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--- is the thermal diffusivity due to the heat condition. The smaller value of ---- is, the 
PCP pc p  

narrower is the region which affected by the heat condition and it is known as the thermal 

boundary layer. the value of v = show the effect of viscosity of the fluid. Thus the Prandtl 
p 

number shows that the relative importance of heat conduction and viscosity of a fluid. Evidently 

P1  varies from fluid to fluid. For air Pr= 0.72 (approx), for water at 15.50c, P1  = 7.00 (approx), for 

mercury Pr = 0.044, but for high viscous fluid it may be very large, e.g. for glycerin Pr = 7250. 

Magnetic Force number (M) 

The magnetic force number is the ratio of the magnetic force to the inertia force and is defined 

by 

M= magnetic force = 
inertia force pU 

Schmidt number (Se) 

The Schmidt number is the ratio of the viscous diffusivity to the chemical molecular diffusivity 

and is defined by S = _________________________ 
viscous diffusivity v 

 
chamical molecular diffusivity -D. 

Grashof number (Ge) 

The Grashof number is defined by Gr 
= 

9/3L3VT 
 2 and is measure of the relative importance of 

vT 

the buoyancy and viscous forces. The larger it is, stronger is the convective current. 

Modified Grashof number (G 1) 

The modified Grashof number is defined by 
Gm gJ3 L3VC 

=  

U 2  

Soret number (So) 

The Soret number is defined by So = DT (TW  —T) 

v(C— C) 
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Magnetic diffusivity (P,?,) 

The magnetic diffusivity is defined by P, = ,ua'v 

Eckert number (Er) 

The Eckert number is defined by E = ____ 

U2 
 

c(T 1, —T) 

1.7. Suction and Injection 

For ordinary boundary layer flows of adverse pressure gradients, the boundary layer flow will 

eventually separate from the surface. Separation of the flow causes many undesirable features 

over the whole field; for instance if separation occurs on the surface of an airfoil, the lift of the 

airfoil will decrease and the drag will enormously increase. In some problems we wish to 

maintain laminar flow without separation. Various means have been proposed to prevent the 

separation of boundary layer flows; suction and injection are two of them. 

The stabilizing effect of the boundary layer development has been well known for several years 

and till to date it is still the most of efficient, simple and common method of boundary layer 

control. Hence, the effect of suction on hydromagnetic boundary layer is of great interest in 

astrophysics. It is often necessary to prevent separation of the boundary layer to reduce the drag 

and attain high lift values. 

Many authors have made mathematical studies on these problems, especially in the case of 

steady flow. Among them the name of Cobble [11] may be cited who obtained the conditions 

under which similarity solutions exist for hydromagnetic boundary layer flow past a semi-

infinite flat plate with or without suction. Following this, Soundalgekar and Ramanamurthy [46] 

analyzed the thermal boundary layer. Then Singh [43] studied this problem for large values of 

suction velocity employing asymptotic analysis in the spirit of Nanbu [27]. Sing and Djukic [44] 

have again adopted the asymptotic method to study the hydromagnetic effect on the boundary-

layer development over a continuously moving plate. In a similar way Bestman [8] studied the 

boundary layer flow past a semi-infinite heated porous plate for two component plasma. 
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On the other hand, one of the important problems facing the engineers engaged in high speed 

flow is the cooling of the surface to avoid the structural failures as a result of frictional heating 

and other factors. In these respect the possibility of using injection at the surface is a measure to 

cool the body in the high temperature fluid. Injection of secondary fluid through porous walls is 

of practical importance in film cooling of turbine blades combustion chambers. In such 

applications injection usually occurs normal to the surface and the injected fluid may be similar 

to or different from the primary fluid. In some recent applications, however, it has been 

recognized that the cooling efficiency can be enhanced by vectored injection at an angle other 

than 900  to the surface. A few workers including Ingar and Swearn [22] have theoretically 

proved this feature for a linear boundary layer. In addition, most previous calculations have been 

limited to injection rates ranging from small to moderate. Raptis et al. [35] studied the free 

convection effects on the flow field of an incompressible, viscous dissipative fluid, past an 

infinite vertical porous plate which is accelerated in its won plane. The fluid is subjected to a 
K 

normal velocity of suction/injection proportional to f 1  and the plate is perfectly insulated, i.e., 

there is no heat transfer between the fluid and the plate. Hasimoto [19] studied the boundary 

layer growth on an infinite flat plate started at time t = 0, with uniform suction or injection. 

Exact solutions of the Navier stokes equations of motion were derived for the case of uniform 

suction and injection whish was taken to be steady or proportional to f1'2  and the plate is 

perfectly insulated, i.e., there is no heat transfer between the fluid and the plate. Numerical 

calculations are also made for the case of impulsive motion of the plate. In the case of injection, 

velocity profiles have injection points. The qualitative natures of the flow in both the suction and 

injection cases are the same which are obtained from the results of the corresponding studies on 

steady boundary layer, so far obtained. 

1.8. MHD Boundary Layer and Related Transfer Phenomena 

Boundary layer phenomena occurs when the viscous effect may be considered to be confined in 

a very thin layer near to the boundaries and the non-dimensional diffusion parameter such as the 

Reynolds number, the Peclet number and the magnetic Reynolds number are very large. The 

boundary layers are then the velocity and thermal (or magnetic) boundary layers and each of its 

thickness is inversely proportional to the square root of the associated diffusion number. Prandtl 

observed from experimental flows that, in classical fluid dynamics boundary layer theory, for 

large Reynolds number, the viscosity and the thermal conductivity appreciably influences the 

flow only near a wall. When distance measurements in the flow direction are compared with a 
13 



characteristic dimension in that direction, transverse measurement compared with the boundary 

layer thickness and velocities compared with the free stream velocity, the Navier-Stokes and 

energy equations can be considerably simplified neglecting small quantities. The flow 

directional component equations only remain and pressure is then only a function of the flow 

direction and can be determined from the non-viscous flow solution. Also the number of viscous 

term is reduced to the dominant term and the heat condition flow direction is negligible. 

There are two types of MHD boundary layer flows, by considering the limiting cases of a very 

large and a negligible small magnetic Reynolds number. When the magnetic Reynolds number 

is large; the magnetic boundary layer thickness is small and is of nearly the same size of the 

viscous and thermal boundary layers and then the equations of the MHD boundary layer must be 

solved simultaneously. On the other hand, when the magnetic Reynolds number is very small 

and the magnetic field is oriented in an arbitrary direction relative to a confining surface; the 
A 

flow direction component of the magnetic interaction and the corresponding joule heating is 

only a function of the transverse magnetic field component and the local velocity in the flow 

direction. Changes in the transverse magnetic boundary layer are negligible. The thickness of the 

magnetic boundary layer is very large and the induced magnetic field is negligible. In this case 

the magnetic field moves with the flow and is called frozen mass. 

1.8.1. MHD and Heat Transfer 

With the advent hypersonic flight, the field of MHD, as defined above, which has been 

associated largely with liquid metal pumping, has attracted the interest of aerodynamics [13]. It 

is possible to alter the flow and the heat transfer around high-velocity vehicles provided that the 

air is sufficiently ionized. Further more, the invention of high temperature facilities such as the 

shock tube and plasma jet has provided laboratory sources of flowing ionized gas, which provide 

an incentive for the study of plasma accelerators and generators. 

As a result of this, many of the classical problems of fluid mechanics have been reinvestigated. 

Some of these analyses arose out of the natural tendency of scientists to investigate a new 

subject. In this case it was the academic problem of solving the equations if fluid mechanics 

with a new body force and another source of dissipation in the energy equation were presented. 

Some times there were no practical applications for these results. For Example, natural 

convection MHD flows have been of interest to the engineering community only since the 
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introduction of liquid metal heat exchangers, whereas the thermal instability investigations 

described later in section 1.1 are directly applicable to the problems in geophysics and 

astrophysics. 

1.8.2. Free Convection 

In the Studies related to heat transfer, considerable effort has been directed towards the 

convective mode, in which the relative motion of the fluid provides an additional mechanism for 

the transfer of energy and material, the later being a more important consideration in cases 

where mass transfer, due to a concentration difference, occurs. Convection is inevitably coupled 

with the conductive mechanisms, since, although the fluid motion modifies the transport 

process, the eventual transfer of energy from one fluid element to another in its neighborhood is 

thorough conduction. Also, at the surface the process is predominantly that of conduction 

because the relative fluid motion is brought to zero at the surface. A study of the convective heat 

transfer therefore involves the mechanisms of conduction and sometimes those of radiative 

processes as well, coupled with that fluid flow. These make the study of this mode of heat or 

mass transfer very complex, although its importance in technology and in nature can hardly be 

exaggerated. 

The heat transfer in convective mode is divided into two basic processes. If no externally 

induced flow is provided and flow arises naturally simply owing to the effect of a density 

difference, resulting from a temperature or concentration difference in a body force field, such as 

the gravitational field, the process is referred to the natural convection. On the other hand if the 

motion of the fluid is caused by an external agent such as the externally imposed flow of a fluid 

- stream over a heated object, the process is termed as force convection. In the force convection, 

the fluid flow may be the result of, for instance, a fan, a blower, the wind or the motion of the 

heated object itself. Such problems are very frequently encountered in technology where the heat 

transfers to or from a body is often due to an imposed flow of a fluid at a different temperature 

from that of a body. On the other side, in the natural convection, the density difference gives rise 

to buoyancy effects, owing to which the flow is generated. A heated body cooling in ambient air 

generates such a flow in the region surrounding it. Similarly, the buoyant flow arising from heat 

rejection to the atmosphere and to other ambient media, circulations arising in heated rooms, in 

the atmosphere, and in bodies of water, rise of buoyant flow to cause thermal stratification of the 

medium. Such a temperature inversion and many other such heat transfer process in our natural 

15 



environment, as well as in many technological applications, are included in the area of natural 

convection. The flow may also arise owing to concentration differences such as those caused by 
dr salinity differences in the sea and by composition differences in chemical processing unit, and 

these cause a natural convection mass transfer. 

Practically some time both processes, natural and forced convection are important and heat 

transfer is occurred by mixed convection, in which neither mode is truly predominant. The main 

difference between the two really lies in the word external. A heated body lying in still air loses 

energy by natural convection. But it also generates a buoyant flow above it and body placed in 

that flow is subjected to an external flow and it becomes necessary to determine the natural, as 

well as the forced convection effects in the regime in which the heat transfer mechanisms lie. 

When MHD become a popular subject, it was normal that these flows would be investigated 
1 

with the additional ponder motive body force as well as the buoyancy force. At a first glance 

there seems to be no practical applications for these MHD solutions, for most heat exchangers 

utilize liquids, whose conductively is so small that prohibitively large magnetic fields are 

necessary to influence the flow. But some nuclear plants employ heat exchangers with liquid 

metal coolants, so the application of moderate magnetic fields to change the convection pattern 

appears feasible. Another classical natural convection problem is the thermal instability that 

occurs in a liquid heated from below. This subject is of natural interest to geophysicists and 

astrophysicists, although some applications might arise in boiling heat transfer. 

The basic concepts involved in employing the boundary layer approximation to natural 

convection flows are very similar to those in forced flows. The main difference lies in the fact is 
A 

that the pressure in the region beyond the boundary layer is hydrostatic instead of being imposed 

by an external flow, and that the velocity out side the layer is zero. However the basic treatment 

and analysis remain the same, the book by Schlichting [41] is an excellent collection of the 

boundary layer analysis. There are several methods for the solution of the boundary layer 

equations namely the similarity variable method, the perturbation method, analytical method, 

numerical method etc. and their details are available in the books by Rosenberg [38], Patanker 

and Spalding [31]. 

a 
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1.8.3. heat and Mass Transfer 

if The basic heat and mass transfer problem is governed by the combined buoyancy effects arising 

from the simultaneous diffusion of thermal energy and chemical species. Therefore the 

equations of continuity, momentum, energy, mass diffusion are coupled through the buoyancy 

terms alone, if there are other effects, such as the Soret and Duffor effects, they are neglected. 

This would again valid for low species concentration levels. These additional effects have also 

been considered in several investigations, for example, the work of the Caldwell [9], Groots and 

Mozur [18], Hurel and Jakeman [21] and Legros, et al. [26]. 

Somers [45] considered combined buoyancy mechanisms for flow adjacent to a wet isothermal 

vertical surface in an unsaturated environment. Uniform temperature and uniform species 

concentration at the surface were assumed and an integral analysis was carried out to obtain the 

result which is expected to be valid for Pr and Sc values around 1.0 with one buoyancy effect 

being small compared with the other. Adams and McFadden [1] presented experimental 

measurements of heat and mass transfer parameters, with opposed buoyancy effects. Gebhart 

and Pere [16] studied laminar vertical natural convection flows resulting from the combined 

buoyancy mechanisms in terms of similarity solutions. 

Nanousis and Goudas [29] have studied the effects of mass transfer on free convection problem 

in the stokes problem in the stokes problem for an infinite vertical limiting surface. 

Georgantopolous and Nanousis [17] have considered the effects of the mass transfer on free 

convection flow of an electrically conducting viscous fluid (e.g. of a stellar atmosphere, of star) 

in the presence of transverse magnetic field. Solution for the velocity and skin friction in closed 

form are obtained with the help of the Laplace transformation technique,, and the results obtained 

for the various values of the parameters Sc, Pr and M are given in graphical form. Raptis and 

Kafoussias [35] presented the analysis of free convection and mass transfer steady hydro 

magnetic flow of an electrically conducting viscous incompressible fluid, through a porous 

medium, occupying a semi infinite region of the space bounded by an infinite vertical porous 

plate under the action of transverse magnetic field. Agrawal et al.[2] have investigated the effect 

of 1-lall current on the combined effect of thermal and mass diffusion of an electrically 

conducting liquid past an infinite vertical porous plate, when the free stream oscillates about 

constant non zero mean. The velocity and temperature distributions are shown on graphs for 

different of parameters. 
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1.8.4. Thermal Diffusion 

In the above mentioned studies heat and mass transfer occur simultaneously in a moving fluid, 

where the relations between the fluxes and driving potentials are of more complicated nature. In 

general the thermal diffusion effects is of a small order of magnitude, described by Fourier or 

Flick's law, is often neglected in heat and mass transfer processes. Mass fluxes can also be 

created by temperature gradients and this is Soret or thermal diffusion effect. There are however, 

exceptions. The thermal diffusion effect for instance has been utilized for isotope separation and 

in mixtures between gases with very light molecular weight (H2, He) and of medium molecular 

weight (N2, air). Kafoussias [23] studied the MI-ID free convection and mass transfer flow, past 

an infinite vertical plate moving on its own plane, taken into account the thermal diffusion when 

(i) the boundary surface is impulsively started moving in its own plane (I.S.P) and (ii) it is 

uniformly accelerated (U.A.P). The problem is solved with the help of Laplace transformation 

method and analytical expressions are given for the velocity field as well as for the skin friction 

for the above-mentioned two different cases. The effect of the velocity and skin friction of the 

various dimensionless parameters entering into the problem is discussed with the help of graph. 

For the both cases, it is seen from the figure that the effect of magnetic parameters M is to 

decreases the fluid (water) velocity inside the boundary layer. This influence of the magnetic 

field on the velocity field is more evident in the presence of the thermal diffusion. From the 

same figures is also concluded that the fluid velocity rises due to greater thermal diffusion. 

Hence, the velocity field is considerably affected by the magnetic field and the thermal 

diffusion. Nanousis [28] extended the work of Kafoussias [23] to the case of rotating fluid 

taking into account the Soret effect. The plate is assumed to be moving on its own plane with 

A. arbitrary velocity UQ/(t ), where Uo is a constant velocity and J(t'5  is a non dimensional function 

of time t'. The solution of the problem is also obtained with the help of Laplace transformation 

technique. Analytical expression is given for the velocity field and for the skin friction for two 

different cases; Case-I: When the plate is impulsively started, moving on it own plane and 

Case-I!: When the plate is uniformly accelerated, the effect on the velocity field and skin 

friction of various dimensionless parameters entering into the problem, specially of the Soret 

number S0, are discussed with the help of graphs. In the case of an impulsively started plate and 

uniformly accelerated plate, it is seen the primary velocity to increase of So  and the magnetic 

parameter M. the mass fluxes can also be created by temperature gradients and this is the Soret 

or the thermal diffusion effect. 
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CHAPTER II 

Basic Equations and Transformations 

Cobble [11] showed the condition under which similarity solutions exist to a hydromagnetic flow 

over a semi-infinite plate in presence of a magnetic field and pressure gradient with or without 

injection and suction. The heat transfer aspect of this problem has been studied by Soundalgekar 

and Ramanamurthy [46] taking the effects of suction and injection. 

Following the above studies, Singh [43] studied the problem of Soundalgekar and Ramanamurthy 

[46] for large values of suction parameter by making use of the perturbation technique as has been 

done by Nanbu [27]. Later Singh and Dikshit [44] studied the hydromagnetic flow past a 

continuously moving semi-infinite porous plate employing the same perturbation technique. They 

also derived similarity solutions for large suction. This large suction, in fact, enabled them to obtain 

analytical solutions and indeed these analytical solutions are of immense value and complement 

various numerical solutions. 

2.1. Governing Equations of the flow 

We consider the steady free convection heat and mass transfer flow of a viscous, incompressible, 

electrically conducting fluid past a semi-infinite vertical electrically non-conducting porous plate. 

Following the Cartesian coordinate system, the flow is assumed to be in the x-direction, which is 

A taken along the vertical plate in the upward direction, where, y-direction normal to the plate. The 

schematic view of the flow configuration and coordinates system of the problem are shown in fig 

V0  

y 
IL 

Figure 2.1 Schematic representation and coordinate system of the problem. 



A uniform transverse magnetic field is applied normal to the flow region. Based on the assumptions 

that the magnetic Reynolds number of the flow is not taken to be of considerable magnitude so that 

the induced magnetic field is taken into account. The magnetic field is of the form H = (Iii, H3,, 0) 

on of electric charge is V.J = 0 where J = (J ' Jy, J:).  Since the direction of propagation of electric 

charge is along the y-axis and the plate is electrically non-conducting, J= 0 every where within the 

flow. It is also assumed that the Joule heating effect is small enough and divergence equation for the 

magnetic field V.H = 0 is of the form H3, = H0  . Further, as the plate is infinite extent, all physical 

variables depend on y only and therefore the equation of continuity is given by 

au ôv 
—+—=0 
ox 0)) 

whose solution gives v = -V0  , where V0  is the constant velocity of suction normal to the plate and 

the negative sign indicates that the suction velocity is directed towards the plate surface. In 

accordance with the above assumptions and initiating the concept of usual Boussinesq's 

approximation, the basic equations related to the problem incorporating with the Maxwell's 

equations and generalized Oham's law can be put in the following form: 

OU OU OU 
u—+v-- = u+g/3(T_T)+g/3*(C_C.,)+ (2.2) 
Ox Oy oy p Oy 

OH OH Ou IO2 HX  
(2.3) 

Ox 0 Up,u--+v-----=H —+H0 --+ 
2 

OT Or k 02T v —I + 
i 
(2 

(2.4) u—+v---=---------i- - ____ 

Ox Oy  pC 0y2  ç ay) GrpC aj; J 
ac ac a2c 02T 

u— 
a

+v—   a= 
m  

D —+D7 ---- (2.5) 
0y2  

The relevant boundary conditions on the vertical surface and in the uniform stream are defined as 

follows: 

u=U0 ,v=V0,T=T.,C=C, H,.=H,, at y=O 

u=O,v=0,T=T,C=C,H =0 when y-+ 
(2.6) 

where g is the acceleration due to gravity, 8  is the coefficient of thermal expansion, T denotes fluid 

temperature, C is concentration of species, T.  and C. are the temperature and species concentration 

of the uniform flow, fl is the concentration expansion coefficient, v is the Newtonian kinematics 
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viscosity of the fluid, ,i is the magnetic permeability, H0  is the applied constant magnetic field, H, 

is induced magnetic field, p is the density of the fluid, a is the electrical conductivity, k is the 

thermal conductivity, D,,  and Dr  are the chemical molecular and thermal diffusivity, C,, is the 

specific heat capacity of the fluid at constant pressure, C,, is concentration of species at the wall, k 

is the thermal diffusion ratio, U0  is the uniform velocity, V0  is the non-zero suction velocity 

perpendicular to the wall and J-L  is the induced magnetic field at the wall, respectively. In order to 

simplify the above equations (2.1) - (2.5) with boundary conditions (2.6), we introduce the 

following transformations, viz: 

VU 
q =yF

~2_v;x 
f I() _ 8=T—T CC H=

r2xo 
H() (2.7) 

U0 ' - cj'  

Then by equation (2.1) we obtain v=F~~O[qf '(q)-f(?7)] 
  

2.2. Mathematical Calculations 

For equation (2.2): 

aT/ 

ay2ux' 

ô77 yJU

H)
X 
 

' -3/2 

oxhj  

(i 
=1 -- KO 

2) V2vx 

=--17 
2x 
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--- {uj'(r}_1 = 
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2x 

= Uj'()[--uoq  f "Ø7)l 
L 2x j 

ôu UO 2i 
or,u— = - f"(?7)f'(77) (2.8) ax 2x 

ôu ô 
= -{uj'(r)} 

{uj'}-i 

=U0f) 
ll2vx 

= U0f) 
2vx 

V = \f__kf(hl) - f(',)} JII U0f"(7 ) 
2x 2vx 

= u2 {izf'(ii) - f(i)}f"(i) (2.9) 

ô 2u _a(au 
ay2  

a 
a 17 ( O-Y ) O"Y 

aJu0vuo 1 j-ü;- 

= fm() 
2ux 

ô 2u u0 2  
(77) (2.10) 

= ij2 H(77) 
/e 2x 

22 



t3H 
- IpU0v H'07) 

ay 2px 2vx 

=9F-~P,-, 
H'(77) 

2x  

- 

F2ox
allx 

H(1l)ÔY ô))  

/PUO V 

a77V 2)uCx )ay 

• /Je R0 öHx ,uH0  UO 
- f7J H'(77) 
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p ôy p 2x p,, -  2x P 

Now using equations (2.8) - (2.11) in equation (2.2) we get 

2 rr  2 2 

- U0 f"(i)f'() + --- {qf'(ij) - f(i)}f(i) = 
UO  fm(i) + g/3(T - T) 

2x 2x 2x 

+gfl*(c_c)+hb0U0 H'() 
2x FEPL  

2 2 2 2 
U0 '7 

___ or, - f"(r)f'(r7 )+° f"()f'(q) 
2x 2x 2x 2x 

2x F-EPL 
2 

Dividing both sides by 
2x 

gfl*(C_C)+ H'('7) or, — f(i7)f"(, )=f m(,7)+ gfl(T_T ' + 2  
2x 

U0 U0 U0 \lp 
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UO
2 (T— T) U 2  0 
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For equation (2.3): 

= 
H(i) 

Pe q x 

allx Iii I -ô-{x h 12H()} 
ox 2 Ox 

= F
\

i_ Jx 2  Uov 

2 Oi Ox Ox 

=  Fp UOU I 2Ht()( 2x + H()(-1/ 2)x312 

} 2 ) 

1pU0v I 
= 

2 2x312  

=r
p /U0v '—H'(77)a7 H(q)) 

2 2x312  - 2x312  

OH = JpU0v U0 f'(71) 

OX 2p, 2x312 
{H'()+H(i7)} (2.13) 

OH = L)U0 FTP J-J' (q)  v
ay 2x
-

2x 

- 
U0 

 !VU0 ['()-f()}H'() (2.14) 
- 2x 2X,u 

H— U0i7 IU0 pv 
Ox - 2x 2/.1eX 

H(q)f"(q) (2.15) 

Ho 
 au 

 =H0 fiU 0 f"(7i) (2.16) 
ay 2vx 

O 2H X U0 p 
2 2x\l2uvx 

.IO2H X  U0  lU0 p 
(2.17) 2 

2iUeX1J2/1eVX 

Now using equations (2.13)— (2.17) in equation (2.3) we get 

mIll 



_  

y /pUo
v U0f'() {H'()~I1()} + U

0 
 IvU0p [if'(q) - 

J 2p 2x312 2x 2x  

- 
U0  UOPVHp( 

) + HO U0f"()+ U
0  IU0 p 

- 2x 2x 2vx 2a/JX1J2/JUX 
H"(i7) 

__ 
U0

i !U0pv H(r)f(i) or, 
- ____ _______ 

1 pU0
v U0 {f()H'(q)+H()f'()} 

= 2 2px I,? 21u 2x3"2  

U0  IU0 p 
H"(i7) 

2vx 2/eXJ2/JVX  

Dividing both sides by 
u0  1U0 p 

2crx 2/4,VX 

or, —pov {f()H'(i)+H(77)f'(i7)} = —pov. 

+ 2Ux 
(17) + 

or, H"() + pav {f()H'() + 
- . 

(2.18) 
F-E;- 

For equation (2.4): 

0= TTr, 

T—T0  

T=T -I-(T  —T)0 

A aT 
— 

aea 
—(T—T00  

 

=(T.  T.) 0'(77) (— 77  ) 

77  
=----(T - 

2x 

ÔT 
- (T - T) 0'(77) [(77) 

ox 2x 

 

(2.19) 

lk 

ar 
0ji 0770)) 
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=(7T0 )9'(ii)ji—i 

IT 
v =

Fvlo 
[f'() 

- f()} (T - 
2vx ay  

=
UO  

- f()] (T - T,)O'(17) (2.20) 

a 2T 
- 

a fai- 

ô))2 ay1ay 

= a JaT1,aii 

ai7 ayJ ô3) 

= - T ) 
2vxj 2vx 

=(7 v 
2vx 

k Ô2T k 
(2.21) 

2ox 

V 
(

aU)
2 

= UO
{f':)7)}2 (2.22) 

Cp y 2C,x 

1 JaH~  1 2 UO2 

pC,,a ay = 4Cpa,L1e X 2 
(2.23) 

Now using equations (2.19) - (2.23) in equation (2.4) we get 
A 

- 77U0(T 
- T)O'() f'() + UO[ -  f()] (T - T) O'() 

= (T -T)O"()+_UO3 {,}2+ U0  

pC,, 2ox 2Cx 4CpOUe X 2  

UO  or, - - (T -T)O'(i)f(i) = —'f— (T-T)-9-O(ii) +
U0 {f #()}2 + U0  

2x pC 2vx 2Cx 4Cp*:7/Je X 2  

Dividing both sides by -k-- (T -T,)11-- 
pC 2vx 

or, - PCV O'()f()=O"()+ U
O 2vp {f }2 + U0 pv 

k k(T- T) 
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pC pv pCv UO 2 
+ 

PV UO 2 I or, - 9'(ij) f(i) = + 
k k C(T- T) k C(-7)2crxU0  

or, 8"(77) +___ 

2 
{2 u 2 {ff()}2 

k C(7-]) k C(7-7)v2xU0  

or, O"() +___ 
U_ UO2 

(If 0 (2.24) 
k k 2 /c 

For equation (2.5): 

c-c 
C=C+(C0 -C) 

47 x(C0 -C) v 

ac 
 =(C0 -C)q+

xU  
 ( CO 

U V ox 

UO  = (CO --(C0 -C 

= (CO -C)q,+ C0-C'(i)1---- 
ii v 2x) 

= (CO - C00 ) --(C0  - C'(i7) 
v 2v 

(Co -C(i7)f'() (Co
77U -C'()f'() (2.25) 

Ox v 2v 

ci= xUo--(C0 -C 
0)) V 

=Q(C0 -c,'(7l)fii 
V 2ux 

OC 
- 

f(ii)} -(C0  - C'(i7 )fii v— = 

ay 2x v 2vx 

UO 
2 

= - 
f(ii)] (CO  - C)q'(q) (2.26) 

2v 

a2c 
- 

a 

(11c 0y2  ay5y 

- a 1acai 

a 77  ay)a 
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= 
--- Wo - C'(li)f i1f-i  v 2vxj 2vx 

= 
v 2vx 

alc  
--= -(C 

ôy 21) 0 -C)ço"(i7) (2.27) 

-= (T-T)- 9-6"(i7) (2.28) 
öy 2vx 

Now using equations (2.25) - (2.28) in equation (2.5) we get 

- C(i)f'() - (Co  - C'()f'() + - f()} (C0  - 
v 2v 2v 

= D I (C0  -C"()+DT (, -T)9"() 
2v 2vx 

or, -(C0  -Cjç(17)f'(?7) -C,)ç9'(7/)f(17) Dmj(C0  -C"(i7) 
0 2v

+ D (T -T)---O"(i7) 
2vx 

Dividing both sides by Drn '---(Co C) 
2
02 

or, --2f'(17),(77) - ---f(i),'(i) = 7) + - 
----O(i7) 

D. Co - xU0  D. 

or, +--f(77)ç'(?7)----2f'(77)ç9(17)+ ----8"(i7) = 0 (2.29) 

Boundary Conditions: 

For 77 = 0 

U U0  
u=U0  =f(i)=—=--=1 

U0 U0 

=   f'()f()) v 

or,
F2  — 
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asf'(77)=1,f=—V0 I 
vU0  

77— f(77) = -f as 77 = 0, f(0) =  f. 

T-7,, T—T 1  
T = T~  =8(0)= 

T-7 0  Tw 7 c, 

C=C, = ,(0) 
C — C. = C. — Cr , CO — C. = 1 as = — 

= 
x(C0  —000 ) (CO  —000 ) (Cs, —000 ) (CO —000 ) 

For 77 —> x 

u=0 f'(co)=O 

v=0 F2xO 
or, 171'(77) — = 0 

or, f'(77) 
= 

.. f(co) = 0 as —f Co 
77 

T—T00  T00 —T000  
T=T00  =e(Co)= _ TTTT  

C=C00 
C—000  — C—C = 

Hx  = 0 

Now we define the following dimensionless parameters 
.11 

Grashoff number: Gr = 
g/3(T 

 

2 
—T00)2x 

U0   

Modified Grashoff number: G = 
gfl*(CO  —000 )2x2  

U0 2  

Magnetic Parameter : M = -- 

U0FmEp;- 

Magnetic diffusivity : P. mPe 

Prandtl number: Pr=  PvCP k 

FM 



Eckert number: E. = U 2  

C(I— T) 

Schmidt number: S =L 
C Dm  

Soret number: So  =
(L.' - T,,)DT  

(CO - C)U0 x 

Therefore, substituting equations (2.7), (2.12), (2.18), (2.24) and (2.29) into (2.2) - (2.5) with 

boundary conditions (2.6) and introducing the above non-dimensional quantities and ignoring the 

asterisk (*), we obtain 

f"(q) +f(7/)f"(77)+ Gr 8+Gm (P +M H'(i7) = 0 (2.30) 

+ I {f()i-i' +H(i)f'(77)1 
- 

iH(i1)f"(i7) +2M 1 f"(q) = 0 (2.31) 

O"(i)+ Pr 9'(i)f(77)+ PrEc[{P(ii)}2 + = 0 (2.32) 

(p"(17) + Sf(i)'(i) - 2Sf'(i7)ço(il) + S0S6(77) = 0 (2.33) 

with transformed boundary conditions 

f(0) = f, f'(0) = 1, 0(0) = 1 (0) = 1, H(0) = h = 

=0, 9() =0, () =0, H() =0 
(2.34) 

where 0 is the dimensionless temperature and f —1 , h 
= 

H M U0 x 
 = 

To obtain the more convenient form of above equations (2.30) - (2.33), we further introduce the 

following transformations: 

= 'zf f(77) = fF(4), H(77) = f 1 L(), 0(i) = f 2G() and (7 7) = f 2P() (2.35) 

For equation (2.12): 

=zf= 

f(i) = LF() 

f'(ti) = fF'() = 
377 
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f"(i) = f 2F() = f,3F) 

= = (2.36) 

f(17)f"() = = (2.37) 

Gr0(77) = Grfw2G() (2.38) 

= G,f 2P() (2.39) 

MH'(77) = MfL'()--- = Mf 2L'() (2.40) 

Now using equations (2.36) - (2.40) in equation (2.30) we get 

+ f 4F()F) + Grfv2G() + Gmf,2  P() + Mf 2 L'() =0 

Dividing both sides by j 

or, F )+F()F"()+ - [GrG()+ GmP()+ ML'()]=0 (2.41) 

For equation (2.13): 

H() = fL() => H'() = fL'() = fM, 2L'() 
ai7 

H"(17) = f,2L11() = f 3 L"() (2.42) 

= = f 3 F'()L(4) (2.43) 

= f,F()f 2L'() = f 3F()L'() (2.44) 

= fL()f.3F"() = f 4 L()F"() (2.45) 

= f.3F"() (2.46) 

Now using equations (2.42) —(2.46) into equations (2.31) — (2.33) we get 

Pm [f 3 F'()L() + f 3F('()] P. f 4 L()F"() +2M Pm f 3 F"() 0 
w 

Dividing both sides by f,3  

L"() +Prn  [F'()L() + F(4)L'(4) J_ P. L()F"() +2M P,,, F11() =0 (2.47) 
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For equation (2.14): 

0(77) f 2G() = O'(i) = = f,3G'() 
a?7  

= = (2.48) 
ôi1 

= fF()L 3G'(4) = (2.49) 

(f"())2  = (2.50) 

(fJt
(77

))2 
= i'." (L'())2  (2.51) 

Now using equations (2.48) - (2.5 1) in equation (2.32) we get 

f4G"()+ Prfw4F()G'()+ prEc[f6(F())2+ f 4 (L'())2 ] = 0 

Dividing both sides by j 

G"()+ PrF()G'()+ PrEc 1(F"(~))'  ~(L())2]= o (2.52) 

For equation (2.15): 

77)  = fP() = 1() f 2pP() 
= J 3P'() 

a?1  

= 
f  3pl!(i 

= f4P"()  (2.53) 
all 

= J.2F'(4)f 2 P() = j 4 F'()P() (2.54) 

4 f(?7)p'(?7) = f 3F()fP'() = 

= f 4G"() (2.55) 
a?7  

Now using equations (2.53) - (2.55) in equation (2.33) we get 

+Sf,4  F(4)P'() Sc f 4G"() = 0 

Dividing both sides by 

P) —2Sf  F'() P() +S F(4)P'() +S0  S G"() = 0 (2.56) 
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Boundary Conditions: 

For = 0 

f(i) = L => f(i) = f.F() or, J, f,F() => F()= 

=1 f 2  F'() = 1 or, F'() = = S 

0(17)=1 f 2G()=1 or, G()=—-=e 

or, P()=---=e 

H0  =1= H(r) => fL() = I, or, L() = = 

A. 
For -*03 

f'(77) = 0 => F'()=0 

(7)=0= P()=O 

H(7)=0=L()=0 

Therefore, substituting equation (2.35) into equations (2.41), (2.47), (2.52), (2.56) with boundary 

conditions (2.34) 

F)+F()F"()+ 6[GrG()+  Gm P()+ML'(4)] = 0 (2.57) 

L) Pm [ F'()L() + F()L'() }Pm L()F"() +2M Pm F"() = 0 (2.58) 

G"()+ Pr F()G'()+ pr Ec [ 6(Fff())2 + (L'())2 }= 0 (2.59) 

P"() —2Sf  F'(4)P() +S, F()P'() + S0  S G"() = 0 (2.60) 

with transformed boundary conditions 

F()=1, F'()=s,G()=s, P()=e L(~) fe at 0 
(261) 

F'()=0,G()=0, P()=0 L()=O at -*03 J 
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CHAPTER III 

Perturbation Solution 

To obtain a complete solution of the coupled nonlinear system of equations (2.57) —(2.60) under 

boundary conditions (2.61), we introduce the perturbation approximation. Since the dependent 

variables F, L, G and P are mostly dependent on only and the fluid is purely incompressible 

one, we expand the dependent variables F, L, G and P in powers of small perturbation quantity 

e such that the terms in and its higher order can be neglected. Thus we assume 

F()=l+e(4)+e2F()+e3F)+ (3.1) 

(3.2) 

G(4)=eG1() + e 2G2() + e1G3() + (3.3) 

(3.4) 

F) = e F' + e2F2' + s3F3' + ............... 

F11  ()=eF' +e2  F2t' +s3F" + ............... 

F" () = t + s 2F211' +63F,31+ 
 ............... 

From equation (2.57): 

............+(1+e+ 2 F2 +s3F3 +....)( 11 +e2 F211 +e3F311 +...) 

+e[G(eG1  +e2G2  +6 3G3  +...)+Gm (Sf +e2 P +e3 f +...) 

+M(sL1' +e2 L2' +63L3' +...]=0 

For first order 0(e): 

III // I/I II eI +eF = 0  => F,  +i;; =0 

For second order 0(62): 

E 2 F"+S2 JF"+62F'+&2GrGi ±C2G"'1+C2ML=0 

F2'"+ F I"+ F" + GrGi  + G P + ML' =0 

Again 

L' = eL 4-6 2L +e3L +.. 

L" =eL+e2L+e3L+..... 



From equation (2.58): 

6L'+6 2 L2"+63 L+ ...... +Prn (SF1'+6 2  F2'+e3 F3'+....)(sL1 +e2 L2  +e3 L3 +...) 

+Pm (1+SP +s2 F2  +sI + ......  )(eL+s 2 L +e 3 L +....) 

—Pm (6Li +6 2 L2 +6 3 L3 +...)(F3"+ ......)+2MPm (6F+6 2 F2"+6 3 F3"+....)=0 

For first order 0(6): 

4+P+2MIF'=0 

For second order 0(62): 

Again 

G'=eG'+e2G +e3G+.... 

G" = G+s2G+e3G'+.... 

From equation (2.59): 

eG+e2G +e3G'+....+ J(1+eF1 +e2 F2  +e 3 F +..)(eG +e 2G +c3G +..) 

For first order 0(e): 

G+F.G1' =0 

For second order 0(62): 

G+P(G +G)+ EcPr (L')2  =0 
2Pm  

Again 

P' = e]+e2 P +e3 P3'+.... 

P11  eP±e2 P"+e 3 P3"+ 

From equation (2.60): 

+e2 P2 +..) 

+S(eI'+e2 P+e3 P3'+..)(1+eJ +e2 F2 F3  +..) 

+S0S(eG+e2G'+g3G+..)=O 

For first order 0(e): 

'r± s'+ S,SCG =0 
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For second order 0(6 2 ) :  

+ P)+S0SG = 0 
y 

So that the first order equations are: 

(3.5) 

L"+PL;+2MPF'=o (3.6) 

G"+P.G1'=0 (3.7) 

P+SJ'+S0SG'= 0 (3.8) 

with boundary conditions 

F =0,F=1,G1 =1,J =1,L1 =—Lat=0 
(3.9) 

F11 =0,G1  =0,P1  = 0,L1  = 0 at oo 

4 
and the second order equations are: 

F2"'+FF"+F2"+GG1 +G,,,p +ML1' =0 (3.10) 

+ P(I'L1  +IL + L)— Pm Li F'+2MPm F2"= 0 (3.11) 

+ J(G + G)+ 
EcPr 

 (L')2  = 0 (3.12) 

(3.13) 

with boundary conditions 

F2  =0, F2' =0, G2  =0, P =0, L2  =0 at =01 
(3.14) 

F=0,G2=01P2=0,L2=0ar—*00 J 

Now we are interested to solve equation (3.5) - (3.8) with boundary conditions (3.9) and 

equation (3.10) —(3.13) with boundary conditions (3.14) 

From equation (3.5) we have 

F+ F1"= 0 

The general solution of equation (3.5) is given by 

F =c, +c2 +c3e 

Applying boundary conditions: 

F=0, F=1 as=0 and F'=O as—co 

0=c1 +c31  F=c2  —c3e, 1=c2  —c3  and 0=c2  sothat c1  =0,c2  =0,c3  =-1 

Hence the complete solution of equation (3.5) F1 () = 1—e (3.15) 
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Again from equation (3.6) we have 

L'+Prn L +2MPF"=O 

Here F,  = 1—e .. Fi ff = —e 

So that L + = 2MP,e 

The complementary function is obtained by 

LIC = c1  + c2 e '' 

Now the particular integral 

L1 
= D2  ±Pm D 

= 
2MP,e 

1Prn  

The general solution is L1  = c1  + c2e 1' + 
2MP e 

 
At 1—I 

Using boundary conditions: 

Li =_j=as c=O and L1 =Oas —>oo 

1 2MP 1 2MPm  
—=cl +c2 + and c1  = 0, so that c1  = 0, c2 

= - - 1 _Ifl 

Hence the complete solution of equation (3.6) is 

2MPm e +1!_ 2MPm ')e' 
1Fm 1Pm ) 

2MPi 
p \  or, L1 =_m —e  

1Pm  

or, L () = A1  (e - e' )+ K 1e' 

where A1 = 2MPm K 
= 

1P 
1

m 

Again from equation (3.7) we have 

G+F.G =0 

The general solution is G1  = c1  + 

 

(3.16) 

Using boundary conditions: 

G1 =l as=0 and G=O as oo 
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1 = c1  + c and O =c,  so that c1  = 0, c2  = 

Hence the complete solution of equation (3.7) is 

G1 ()=e' 

Again from equation (3.8) we have 

P1"+ S,P1' + SO S C GI  =0 

(3.17) 

Here G1  = .. = —Pe', G' = P 2e' 

F"+ SP11 = —S0S c Pr 2  e" 

The complementary function is obtained by 

p - 
Ic - C1  + c2e 

and the particular integral is 

I 
= D +SD(5o5ce) 

or, = 

- S0SPe' 

Pr Sc  

The general solution is = + c2e - 

SoScPre' 

Pr  — Sc. 

Using boundary conditions: 

I=I as =0 and P1 =0 as 

SS.P. So Sc Pr  
= + - and 0 = c1  so that c1  = 0, c2  = I + 

- Sc  

Hence the complete solution of equation (3.8) is 

=111+ 

SuScPr 
' e - 

SoScPr 

or,P()=A2e' +A3e' (3.18) 

where A2  = 1— A3 , A3 
SoScPr 

 = -______ 

Pr Sc  

Again from equation (3.10) we have 

F+ FF"+ F'+ GrGj  + GJ + ML 0 

Here F =1—e, F"=—e, G1  

L =A1 (e _e)+K1e", 

L = A1  (Pme' _e)_ Ki Pme 
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F"+F,'=(1—e) —Gre" —GrnA2e —G,A3e' —MA1 (,e",,,4  —e)+iviK1 1,e'" 

The complementary function is obtained by 

= c1  + c2  + c3e 

and the particular integral is 

D3 D2 (e 
+ e_2)_ Gr e' Gm A2  -S4 GA3 e" 

+ D3  D2 D3 +D2 e  

_ 
MA MKP 

e + lme 
D3 +D2 D3 +D2 D3 +D2  

+ie 2 - Gm A3 ' 
- + 

M45 e 
3D2  +2D 4 p3p2 

— s+s 2 p3 +p2 3D2  +2D 

MK P e' 
+ lm 

- 
+ P 2  

= 4e + 
Gre'•' G,A2e' 

+ 
GmA3e'•• 

+ 
MA1e1' 

+ MA1  e - MK 1e' 

Pr2(_1)+8c2(Sc_1) Pr 2 (Pr 1) Pm (Pm 1) i(i— i) 

The general solution is 

= C 1  + c + c3e +ie2  +(i + MA1 e ,  + (G
r  + GmA3:k) + G

1 A2 e 
+ 

(MA, - MK I )e 
__________ __ 

p 2 (p —i) s 2(s —i) Pm(Pm ) 
Using boundary conditions: 

F=O as and F2'=0 as cc 

o = c, + c3 + + (Gr  + Gm  A3 ) 
+

G, A2  
+ 

(M4 - MK1 ) 

4 p 2(p) s2 (S
c -i) Pm (Pm 1) 

= C2  —c3e _ie2+(1+ MA1 —(i + MA1e - (Gr  + G,11 A3 ' Gm  A2e' 

2 i(i— i) s(s.-i) 

(MA1 — MK I  )e" 

(pi) 

0= C2 - —  

 
-+ (i ± MA1) - ( + G. A3 ) - G, A2  - (MA, — MK I ) 

P, ( - ii) s (s - ii) (Pm  - 

C2  = 0 

= -! + (i + M4) - (Gr  + G. A3 ) - Gm  A2  - (MA, - MKI) 
i.(i—i) s(s- i) (Pm 1) 

= I - (i + MA2  2
1) + (Gr  + Gm  A3 ) + Gm  A2  + (MA1  — MK I ) — — (Gr  + Gm  A3 ) 

i(p —i) sjs —i) (j: —1) 4 2 ( —i) 

- 
Gm A2 (MAI  — MK I ) 

s.2  (se, - i) n (n - i) 
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(i + M) + (Gr  + G, A3 ) + Gm  A2  + (M14, - MK I ) 
- 

i 
- 

(G,. + Gm  A3 ) 

i(i.—i) s(S-i) (Pm l) 4 P 2(PI) 

- G?fl  A2  -(MA, - MKI)  I + (i + MA1) - (Gr  + G.  A3 ) 
- 

G, A2  

s.2  (se, - 1) P (Pm  - 0 1-2  Pr (Pr  - i) Sc  (Sc  - i) 

- (MA, -MK,)1 
e +Ie2+(l+A,e + (Gr  +Gm A3 ' 

(Pry - i) J  

+ 
GmA2eS 

+ 
(MA, - MKI  -' 

(Sc  - i) i (Pm  - 

Hence the complete solution of equation (3.10) is 

F2() = e_2+Dte_ + D9e'+D,0e+D7e' + D8e + DI 1 (3.19) 

D2   
where D, =l+IvL4,, D2  =Gr  G111 D3  =G,A2 , D4 

= Pr(Pr — i)' Sc (Sc  —i)' 

D 
D,2 

C) = - 

D1 2 MA1  MKI ,  1)7 D '+ D,—D4 —D5 —D6 ,D= = - = 
(Pm  -0' 8 = - 2 

D10 5  2 
(s 

 —i)' D,, =— 
4 
— D8  — D9  DIO  — D7  

Again from equation (3.11) we have 

L+ Pm L +P,(FL+ IL;)—Pri L,F"+2MPm F;'= 0 

Here F = I - e, 1' = e, F"= —e 

F2 = e_2+D,e_ +D9e +D,0e 5 +D7e' +D8e +1),, 

= _e_2_D,e_ + D,e - D9Pre' _DtoSce_Sr4 - D7 Pme'"4  - D8e 

F' = e 2  + D,ce + (D8 - 2D, )e + D9Pr2e' + D,0S.2e' + 

L = A, (e —e")+ L = A1 (Pe _e)_ K1 Pe'" 4  

L + Pr1L + Pr7 [e {A, (e - e'' )+ K,e" }+ (i - e ){A, (e + P,e"-4 )- K,P7e'' }j 
- Pm {At  (e - e' )+ K,e l',,,4 X- e) + 2MPm  [e 2  + + (D8  - 21), )e + D9 Pr 2e' 

+ DioSc2 e_S  + D7 f,7 2e" J = 0 



L + Pm L + Pm[A1e 2  - A1e' + + Ae + P,11 A1 e - K1 1,,e' 

- A1 e 2  - + Ki Prne''i + Ai Pm e 2  - Ai Pm e + 

+2MP113 e 2  +2MP117 (D8  —2D1 )e +2MP D1 e +2MP111 D9 2e 

+2MPD 0S 2e +2MPn,D7 Pm 2e' =0 

Or, L' + + P.  (K1  - A - A1 P11  + + Pm 2  (A3  - K1 )e""" + AiPme' 

+ A1 P,e 2  + (K1  - A1  )e'" + 2MPme 2' + 2MPm (D8  - 2D3 )e' + 2MP,De 

+ 2MP 7 D9 2e' + 2MPm DioSc2  e_S + 2MPm 3 D7C"" = 0 

The complementary function is obtained by 

L2c = C 3  + 

Now the particular integral is 

1 
= 
- [m (K3  - A3  - A1?11, + K3  i,, )e + m  2(A - K3  )e' + A3  Pm e 
D2 +P111 D 

+AI I ?,e 2  +(K +2MPm C 2  +2M],(D8  —2D1 )e 4-2MP113 D3 e 

+ 2MP11, D9 P 2e" + 2M?m DioSc 2e S • + 2MP 3  D7 e'" 

= - 
i,, (K1  - A3  - A I,, + K3 P,  )e 

- 

2 (A - K1) e 
- 

A3 
e - 

A3 m e 
(Pii,+1)2 _P,,(Pm +l) 2D+P11, 1—F,,, D2 +Pm D 

+ 
A3 P(2D + F,,,) e

2  - 
(K - 

A3) e"' + 
(K - A3 )(2D + f11) e'"

1 4  —2 
MP,,, e2F 

(D2 + Pm D)2 D2  + P,,,D (D2 + PD)2 4— 2P,, 

2MP;(D8 _ 2DI)e  - 2MPmDi e + 2MI)mDl(2D+ IJm) e 2MPmD9P.2 e'' 

1—F,,, D2 +Prn D (D2 +Pm D)2  

- 

2MPDIOSC2 
e - 

2MP,,,3D7 e'" 

Sc2  PmSc 2D+I,, 

J,,(K3 —A3 )(],, +1)e'" 3 
_____ —24 __ 
A1I,, e — i 

_ 
APm 

(I,,+1)(I,+l—I,,) lPm 421 

+ AlIfl(2D+Ifl)e_2 — 4(K 3 —A) 
+ 

(K1  —A1 )(2D+P,,,) —(P+I) 

(42Pm )2 (I ~1)2 m (1'm  +1) {(1, +1)2  —1,(I,, +l)} 

+ 
MP,,, e2 

+ 
2Mf,,(D8  —2D3 ) C , 

+ 
2MP,,D1 e 

+ 
2MP,,,D3 (2D+ P,,) e 

Pm 2 IL_I I,,—1 (I
,,

1)2  

— 2MPn,D9Pr e' 
- 

2MPm Di0Sc 
+ 2MPm 2 D7e'" 

Sc Pm  

41 



= Pm (Ai  —K1 +P(A1  —K1 )e - 

A1P, e 
+ 

A1P, 
e2 

2(P,-2) 

+ 
A1  n (m 4) 

e 2  + 
(A1  - K1) !'+l + 

(Al  - K)(P, + 2) 
e""' 1  + 

MP, e2 

4(F _2)2 
('m 

+1) (F'm +1)2 
'm 

—2 

+ 2MPm(D8 _2DI)e + 
2MP,,De + 2MPmDi(Pn, + 2MPm D9 Pe 

p - I - 1 (p - 1)2 
- 

2MPm  DioSce_Sc 
2  + +2MD7 e 

- Sc  

The general solution is 

L2  =c1  +c2e' +Pm (Ai  —K 1 ' +Pm (Ai  —K 1 )e'' - 
A1 P A P -2 in e + I rn e 

1—I 2(Pm 2) 

+ '1' 4) 
e 2  + 

(A1  - K1) 
e""' + 

(Al  - K1 )(m  + 2) 
e'" + 

MP 

4(J , _2)2 (P,,,+1) (P,+l)2 P-2 
-4 

2MP(D8 _ 2DI)e 2MP,D1 e 2MPmDi(Pni e' 2MPn,D9Pre1 114 

fl 
—1 —1 (P 

_)2 
P. 

- 1r 

2MP DtoSceS +2MPm2D7e' 
+ 

Pm - Sc  

Using boundary conditions: 

L2  = 0, as = 0 and L2  = 0 as —> co 

..0=c1 +c2 +Pm(Aj  —.K1)+ 4P + 
Ai Pm (Pm  —4)(A, —K 1 )(P +2) MPm  

Pm — I 4(Pm 
_2)2 (Pm ~1)2 + P. —2 

+ 
2MP(D8  —2D1) + 2MPmDi(Pm —2) + 2MPm D9 Pr  + 2MPm Di0Sc  

P—I (Pm I)2 mr 1m 5c  

and c1  = 0, so that 

=—[I1(A1—K1)+ A
i Pm  + AiPm(F ' + + 

—4) (Al  —K1 )(P, +2) MP 
+ 

2MP,(D8  —2D1 ) 

Pml 4(J_2)2 (Pm +1)2  P7 -2 Pm — i 

2MPi7i Di (Pm  —2) 2MP D9 P,. 2MP DIoSc]e_J +(A1 + + m +_ 
(i _1)2 i,, —i. i, -s 

— Ki)Pnie' — A1P,71 e5 
+ 

A1P,5 e2' + Ai Pm (Pm  4) 
e2' + 

(A1  — K1 ) 

1— Pm 2(Pm 2) 4(Pm 2)2 (Pm +1) 

+ 
(Al  — K1 )(P, + 2) 

+ MI e2 
+ 2MPm (Dg  —2D1) e 

+ 
2MP,D1 e 

(Pm +I)2 Pm -2 Pm — i 
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2MP D1 (P,, —2) e + 2MP,D9Pe' 2MP,,D S e + In 
__________________ ____________________ _ 

I.  -+ ___________ 
'0 C +2M 7 2 D7e' 

( - 
)2 

- — 

Hence the complete solution of equation (3.11) is 

= B1e' + B1 e" + B2e + B3e 2  + + B5e 2  + B6 e + B7 e 

+ B8e" + B9e + B4Oe 11' + B11 e 2  + + B, 3 e + B,4 e" (3.20) 

4Pm B AiP,n(Pm4) 
 B (A1 — K1 )(P+2) MPm  where B, =P(A1 —K1),B2  = ___ _______  

l7 1 4(P-2)2 
' (P,+1)2  

B 
P; 

2MP,(D8 

—1 
—2D1) B 2MPD,(P-2) 2MPmD9F. 2MP7 D10S. — 

' 

(i - 1)2 
, B8 

= - 

, B9  = 

- SC  

B10  =—[B, +B2  +B3 +B4  +B5  +B6 +B7 +B3 +B9 ], 

B11— 
A,P, B =4K1,Bl3=2MPm B14  =2MPm 2 D7  

4 
2(F-2)' I2 

Pm +l Pm 1 

Again from equation (3.12) we have 

G+I.(G +FG;)+A(L)2 =0 
2P 

Here G, = e', G1' = 

= 1 - e, 4 = A, —e'' )+ K,e'', L,1  = A, (i,e'' - e)— Ki Pnie' 

(L)2  = Al 2  (P,e'' - 

)2 + K,2  2e 21" - 2AI KI P, (PmC••'"  

2 - 
- 2J,e e + e )+ K, 2 Pm 2e 21" - 2A,K, 1 2e 21  + 2A,K,ee"" 

= + K12P 2 
- 2A, K,? 22J 

 +(2A,K,P, - 2Pm A,2_ +1) + A, 2e 2  

= P2 (A, - K,2  )e 21" + (2A, K, , —24 2P _(/+1)  + A, 2e 2  

The complementary function is obtained by 

G2c = c1  + c2e 1  

and the particular integral is 

G2 
= 2 

1 
(P 2 (1 —e)e - 

PEC 
P2 (A, - K,)e 21 ' - EC 

(2A,K, —2A,2 ,)e' 
+PD r 2Pm 2J, 

- PrEc A,2e2) 
1) 

U, 

= 
p2 

e—_ PE p2
e''— J iK)2e_2)  

D2 +JD D2 +ID D2+JD 2 

3] 



- 
PE (2Ai Ki Pm  2Al 2 Pm )_(P+I) 

- 
PE 1 _e_2  

D2 +F.D 2Pm D2 +F.D2P, 

2 -(/'+ 
= e' - 

A r  e 
- 

PF P#,EC (AI  — K, )2 e2" 

2D+Pr 2 
 +2Pr  +1P,2 2(4P1 2  2Pr Pm ) 

Pr Ec  2Ai Ki Pm 2Ai2 P. x 
1 

e'"' - 

PrEc 
Al2e2 

Pm 2  +2Pm +1Pr PP 2Pm  4-2 2Pm  

=  Pr Ec  (A1  - K,)2 
 

Ai Pr Ec  (A1  - K 1 ) 
 

(P,.+1) 4(2Pm Pr ) (Pm +l)(P,n Pr +1) 

Pr Ec Ai 2 -2 
- e 

4Pm (2Pr ) 

The general solution is 

G2 =c, +c2e 1 -Je '  

PP EC (AI  —K,)2 
-_____________ 

AiPr Ec (Ai 
e2 +_ 

—K,) 
________________ 

(r +1) 4(2Pm r) (1m  ±D(pm - +1) 

2 
PEA, e2 

4I(2Pr ) 

Using boundary conditions: 

G2 0, as 4 = 0 and G2  = 0 as —* co 

O=c+c —_' 
PE(A,—K1 )2 Ai Pr Ec (Ai Ki ) — FEC AI 2  

1 2 
(Pr  +1) 4(2Pm 1),) (m +1)(Pm  Pr  +1)  4Pm(2Pr ) 

and c1  = 0, so that 

G2=[_
)2 

Pr Ec(Ai Ki )2  - AjPEc(Aj K1 ) 
+ le—Pe—_

p2  

[(J+l) 4(2I—/) (J+l)(J,?—P+l)  4P,,,(2—f)] 
r 

(P +1) 

 

- 
IEC (AI — K,)2 -2P + A Pr Ec(Ai — K,) 

_ —
Pr Ec Ai 2  

C e2 
4(2Pm  - P) (P, +1)(f — P,. + 1) 4Pm(2 r) 

or, G2  () = A4 e" - A5e - A6e 21'"' 1  + A7e'" - A8e 2  + A9e" 

P PrEc(At Ki )2 AiPrEc(Aj Ki ) where A4 r' A5 = 'r +1' 
A 

- 4(2Pm r) 
, A7 

= (Pm  +1)(Pm  — Pr  +1)' 

2  
A — P,EC AI  

8 (2 Pr)' 
A9=A5+A6—A7+A8 

4P, 
 

(3.21) 

Again from equation (3.13) we have 

P'— 2SPF'+ S.(P'F + +S0SG = 0 
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Here 

I =l—e 

= A2e' + A3e' 

F f=_A2Sce_S A3Pe"e 

G2  = A4 e' - A5e - A6 e 21' + A7e'' - A8e 2  + A9e" 

• = A4e' - A4 Pe" + A5 (f. +1)e'' + 2A6 P,e 2  2 

—A7 (],, +1)e'" +2A8e 2  —A1e' 

and 

G=—A4 P,e" - A4  fe" + A4 Pr 2e' - A5 (P,. +1)2e"' 2  

- 4A6 Pm 2e 21'"' + A7  (P, + 1) 2e''' - 4A8e 2  + A9 Pr 2e" 

The complementary function is obtained by 
A 

P2 =c1+c2e 

and the particular integral 

= 
2A2S 

+ 2A3SC 
+ A2SC2 e + A3PSC e" 

2p 
 D2 +SD D2 +SD D2 +SD D2 +SD 

- 
A2S 2 

- 
A3 PrSc + 

2S S 
A4Pr e!'e - 

SOSCA42 

D2 +SD D2 +SD D2 +SD D2 +SD 

+ A5 S0Sc (Pr  + 1)2 
'' 

4A6 Pm 2  SoSc 
e 2'' - 

A7 S0S.(P 1  + 1)2 
e +  

D 2 +SD D 2 +SD D 2 +SD 

+ 
4A8SOSC e

2  - 
A9 F 2  s0s e

-
44  

D2 +SD D2 +SD 

= 2A2S - A2SC 2 
+ 2A3SC  - A3JSC  + A5SOSC (F + 1)2 

(S +1)2 — S(S +1) (F. 1)2 P ~1) 

—A2Se + A3 F,SC  +2S0SA4F —A9S0SF2 e' 
- 

A4SCSOI-2 
+

A4SCSO I 2 
—2P,)e 

F.2 SC Pr T)r 2 c (p2 

+ e 2  - 
A7 SOSC (P, + 1)2 

e ('m + e 2  
4p2 — 2sI (I + 1)2 —S(P, + 1) 4-2S 

= 
2A2S - A2SC 2 

+ 2A3S - A3 J- SC  + 4SSc(Pr  + 1)2 
- A2Se 

(S+1) (P+1)(I—S+l) 



+ A3S + 2S0SA4 - A9S0S]-. 
e '  - 

A4SCSOF 
çe' 

+ A4SCSO 
(Sc -  2I)e"' 

(f.-s)2  

+ 24So1m e 21' - 
A7 SoSc(Pm  +1) 

+ 
2SOSCA8 

e2  
2P,,,—SC (Pm Sc +1) 2—Sc  

The general solution is 

=c1  +c 2 e +2A2Sc —A2S 2 +23 —A3 PS +A5SoSc(P +1)2 

(Se. +1) (r +1)(J. —S +1) 

- A2Sc4e Sc + A3S +2S0SA4  —A9S0SP. 
e '  - 

A4SCSQJ. 
e "  + 

A4SCS() 
(S —2Pr )e 

Pp 5 (j5 )2 

+ 215'1 
e 21' - 

A7 SoSc (Pm  + 1) 
e ' ' '  + 

2SoScA8 
e2 

2 P; - S (I 
- Sc +1) 2 — Sc  

Using boundary conditions: 

P,=0 as 4 = 0 and G2 =0 as4—>co 

A 

..0=c1+c2 2A
2SC  A2Sc 2  2A3ScA3JSc+A5SS(P +1)2  A3Sc +2SoSc A4  A9SoSc ] 

(Sc  +1) (Pr +l)(Pr S+1) 

+ 
A4 

 S0 (Sc _______ 
2A6 SC S, 

- 
A7 SoSc (Pm  +1) + 2SSC A8  

(i - s )2 
- 2Pr  ) 

+ 2Pm  - Sc (, - Sc  +1) 2— Sc  

and c1  = 0, so that 

2A2SC  - A2Sc 2  2A3Sc  - A3 FSc  + A5S oSc(Pr +1)2 A3Sc  + 2SoSc A4  - A9SoScF 

(Sc  +1) (Pr +l)(Pr Sc+1) PSc  

(Sc  2Pr ) 
A4 Sc S, 2A6 Sc S,Pm  + A7 S0S(P, + 1) 

- 

2S,ScA8 

(fSc )2 2P j Sc (Pin  Sc +l) 2Sc  

+ 2A2SC - A2SC 2 + 2A3S - A3FSC  + A5SoSc(I + 1)2 
- A2Sc e_Sc 

(S+1) (F. +1)(Pr Sc +1) 

+ A3S + 2S0SA4  - A9SOSCI e' 
- 

A4SCSO P, + A4SCSO (Sc-2P,.)e 
Pr Sc 'rc (PrSc) 

+ 24ScSoPm e 2°" - A7 SoSc(F,i  + 1) e'" 
+ 

2S0SA8 e2' 

2I — S (JSc +l) 2S 

or, P2 (e) = E1 e' + E2eP'+N + + E4e 2  - E5e 

+ E6e 2  + E7e' + E3ee 
- E9 e - (3.22) 

The solution of the equations (3.5) —(3.8) and (3.10) —(3.13) up to order 2 under the prescribed 

boundary conditions are obtained in a straightforward and are: 

M. 



(3.23) 

L1 ():z  A1 (e _e')~ K1e' (3.24) 

G1 () =e (3.25) 

I (4) = A2e' + A3e" (3.26) 

F2  () ie_2  + D1 e + D9e' + D10e + D7 e l',,,4  + D8e + D11  (3.27) 

L2 () = B1e' + B1 e' + B2e + B3e 2  + + B5e 2  + B6 e + B7 e + B8e' 114 

+ B9e + B10e'' + B11 e 2 + + B134e' + B14 e (3.28) 

G2  () = A4 e'' - A5e" - Ae 2"" + A7e' - A8e 2 + A9e" (3.29) 

(=1le" +Ee +e +E4e 2 +E,e 2  +E,e' +he -E4' (3.30) 

where the constants A,, B,, D,, and K1  are shown in Appendix 3.A 
A. 

The above solutions (3.15) —(3.22) are however valid for I. = Sc  # 1 and F # Sc  

The velocity, temperature induced magnetic field and the concentration can now be calculated 

from (3.1) —(3.4) as follows: 

U fI(ll)FI+EFl +62F? (3.31) 

H(i )_/L1+s3 / 2 L2  (3.32) 

9(77) = G,  + sG2  + e 2G3  (3.33) 

ço(i) = + + e2P (3.34) 

Thus with the help of the solutions (3.23) - (3.30) the velocity, temperature, induced magnetic 

field and concentration distributions are calculated from (3.31) - (3.34). However for different 

values of the established parameters, the results of the velocity, temperature, induced magnetic 

field and concentration distributions are plotted graphically and the coefficient of skin friction 

and heat transfer are given in tabular form in CHAPTER IV. 
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Appendix 3.A 

A
- 

2MP,17 

I -P. 
 

=1+ MA1 , 

K,== A2 =1—A35  

G, + G 1 A31 D3  = Gm A2 , 

SoSc P;. 
A3 -  -_____ 

D4= D2, 

___ 
D,2 

D5 = Sc  (s - i)' 
D6  - 

—D4 —D5 —D6 , 
2 

D,, =——D8 —D9 —D,0 —D7 ,  

D7  - 
D,2  

- Pm(Pm —i)' 

- 
D2  

D9 
- p 2 (p  

D12  = MA1  - MK1 , B, = Pm(Ai - K,), 

DIO 
- 

D3  

- Sc 2  (Sc  

B2_ 
- 

A,P, 
B3 

= AiPn:(Pm 4) 
P

m
_l 

4(Pm 2)2  

- 

BS_P
m

_2 
MPrn  

B6 = 
2MI(D8-2D,) 

Fm 1 

B8  = 
2MF,D9 F. 
_______ B9 = 2M]DIOSC  

________ 

B,, = B 12 2(P11, —2)' 'm +1 

A5=, 

2  F'pEAj 
A8= 4 = A5  + A6  - A7  + A8  

4F,(2—P)

El 

' 

A1S + 250S A4  - 4SOSCF 

2A2S - A2SC 2  

(S +1) 

E6 = 
2SOS S 

2—Se  

E2 
2A3SC - A3 F.SC  + ASSOSC(F. + 1)2  

= 
(P+1)(P—S+1) 

E4 = 24ScSoPm E5 = A
7SoSc(Pm  +1) 

2P,, 
- S, ' (n - c +1) 

E7 = A4SCSO (S —2J), 
(s)2  C 

n (Al  —K,)(P111+ 2) 
1)4 

(Pm +1)2  

B7 = 2MPmDi(Pm  —2) 

(I , 1)2  

B0  =—B,+B2  +B3  +B4  +B5  +B6  +B7  +B8  +B9], 

________________ 
2 B,3 

= 2MPmDI 
B,4  = 2MP, D7  

'rn' 

A7= AiPrEc(AtKi) 

4(2Pm Pr ) (P+1)(I 7 —I.+1) 

E8  = —E, - E2  - E3  - - E, - E6  - E7 , E9  = A2S, Flo  = 4ScSoPr 
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A. 

CHAPTER IV 

Perturbation Solutions and Results Discussions 

The system of coupled, nonlinear, ordinary differential equations (3.5) - (3.8) and (3.10) - 

(3.13) governed by the boundary conditions (3.9) and (3.14), respectively are obtained by using 

perturbation technique. In order to get insight into the physical phenomena of the problem, it is 

required to find the approximate numerical results of the first order solutions (3.23) - (3.26) 

along with the second order solutions (3.27) - (3.30), concerning the velocity, temperature, 

induced magnetic field and concentration. For more consistent results the numerical 

approximation of the second order solutions (3.27) - (3.30), with the assist of the first order 

approximation, have been carried out here for small values of Eckert number EC  = 0.2 (which is 

the measure of the heat produced by friction) with different selected values of the established 

dimensionless parameters like Soret number (So), Grashof number (Gr ), modified Grashof 

number (G,77) for mass transfer, suction parameterJ, magnetic parameter (M), etc. Since the two 

most important fluids are atmospheric air and water, the values of the Prandtl number (Pr) are 

limited to 0.71 for air (at 20°  C) and 7.0 for water (at 20°  C) for numerical investigation. The 

other parameters like magnetic diffusivity (Pm) and Schmidt number (Se) are chosen to be fixed 

values 3.0, 0.6, respectively. With the above mentioned parameters the velocity and temperature 

profiles, the variation of induced magnetic field and mass concentration are presented in the 

following Figure 4.1 through Figure 4.20. 

Figures 4.1 and 4.2 show the effect of Soret number (S0) on the velocity and temperature fields 

respectively. It is observed that velocity increases with the increase of So but there is no 

remarkable effect of S0  on the temperature field. Also the velocity decreases more with 

increasing S0  for negative values of modified Grashof number G,,1  and it becomes negative and 

asymptotically tends to zero far away from the plate surface. 
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17 

Figure 4.1: Velocity profiles for different values of S0  (with fixed values of Pr = 0.71, M = 1.5, 
Gr = 10.0,f = 3.0) taking G. = 4.0 and —4.0. 
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Figure 4.2: Temperature profiles for different values of S0  (with fixed values Of Pr = 0.71, 
M= 1.5, Gr = 10.0,f = 3.0) taking Gm = 4.0 and —4.0. 

The variation of induced magnetic field and mass concentration with So  are shown in Figure 4.3 

and Figure 4.4 respectively. It is seen that with the increase in So, the induced magnetic field 

decreases but the reverse effect is observed for the mass concentration, that is, concentration 

increases with increasing So.  The induced magnetic field becomes higher for negative values of 

G. but show increasing with increasing So as observed in Figure 4.3. 
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Figure 4.3: Variation of induced magnetic field for different values of S0  (with fixed values of 
Pr = 0.71, M= 1.5, G = 10.0,f = 3.0) taking Gm = 4.0 and 4.0. 
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Figure 4.4: Variation of concentration for different values of S0  (with fixed values of Pr = 0.71, 
M= 1.5, G = 10.0,f = 3.0) taking Gm = 4.0. 

The effects of suction parameter (/,) on the velocity and temperature fields are presented in 

Figure 4.5 and Figure 4.6, respectively. Both of them are found decreasing with increasingf. 
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Figure 4.5: Velocity profiles for different values off,  (with fixed values of Pr  = 0.71, 
S0  = 3.0, M= 1.5, Gr  = 10.0 and Gm  = 4.0). 
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Figure 4.6: Temperature profiles for different values off,  (with fixed values of Pr  = 0.71, 
S0 =3.0, M= 1.5, G= 10.0 and Gm 4.0). 

Figure 4.7 and 4.8 respectively show the effect of ,  f on the induced magnetic field and mass 

concentration. The induced magnetic field rapidly increases with the increase of f, but 

concentration first increases very close to the plate surface and then found to decrease further 

with increasingf, away from the surface. 

- 
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Figure 4.7: Variation of induced magnetic field for different values off, (with fixed values of 
Pr = 0.71, So = 3.0, M= 1.5, Gr = 10.0 and G, = 4.0). 

77 

Figure 4.8: Variation of concentration for different values off, (with fixed values of Pr = 0.71, 
S0  = 3.0, M= 1.5, Gr  = 10.0 and Gm = 4.0). 

The effect of Grashof number (Gr) on the velocity and temperature fields, induced magnetic 

field and mass concentration are displayed in Figures 4.9 and 4.10 and Figures 4.11 and 4.12, 

respectively. Figures show that velocity increases with the increase of G but the induced 

magnetic field decreases with increasing values of Gr. No considerable effect of Gr on the 

temperature and concentration is found as seen in Figure 4.10 and Figure 4.12, respectively. 
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Figure 4.9: Velocity profiles for different values of Gr (with fixed values of P = 0.71, So = 3. 0, 
M= 1.5,f= 3.0 and Gm = 4.0). 

Figure 4.10: Temperature profiles for different values of Gr (with fixed values of Pr  0.71, 
So  = 3.0, M= 1.5,f = 3.0 and G,,, = 4.0).  
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Figure 4.11: Variation of induced magnetic field for different values of Gr (with fixed values of 
Pr  = 0.71, S0  = 3.0, M= 1.5,J = 3.0 and G,,, = 4.0). 
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Figure 4.12: Variation of concentration for different values of G (with fixed values of 
Pr = 0.71, So = 3.0, M= 1.5,f = 3.0 and G,,1  = 4.0). 

Figure 4.13 and Figure 4.14 observed the effect of magnetic parameter (M) on the velocity and 

temperature fields. The effect of magnetic parameter (A'!) on induced magnetic field and mass 

concentration are shown in Figures 4.15 and 4.16, respectively. As M increases, velocity 

increases but the induced magnetic field decreases as shown in Figures 4.13 and 4.15, 

respectively. But no significant effect is observed on the temperature and concentration gradient 

for the variation of magnetic parameter as observed in Figure 4.14 and Figure 4.16, respectively. 
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Figure 4.13: Velocity profiles for different values of M(with fixed values of Pr = 0.71, 
So = 3.0, f = 3.0, G = 10.0 and G,,, = 4.0). 
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Figure 4.14: Temperature profiles for different values of M(with fixed values of P = 0.71, 
S0  = 3.0,f = 3.0, Gr = 10.0 and G. = 4.0). 
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-4- Figure 4.15: Variation of induced magnetic field for different values of M(with fixed values of 

Pr  = 0.71, S0  = 3.0,f = 3.0, Gr = 10.0 and G. = 4.0). 
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Figure 4.16: Variation of concentration for different values of M(with fixed values of 

Pr = 0.71, So = 3.0,J = 3.0, Gr = 10.0 and G,,, = 4.0). 

Displayed Figure 4.17 and Figure 4.18 show the effect of Prandtl number (Pr) on the velocity 

and temperature fields where as Figure 4.19 and Figure 4.20 show the effect of Pr  on the induced 

magnetic field and concentration, respectively. Here we see that both velocity and temperature 

decrease with the increase of Pr. A reverse effect is observed for the induced magnetic field. 

Here the induced magnetic field increases with increasing Pr  as is seen in Figure 4.19. 

Figure 4.17: Velocity profiles for different values Of Pr  (with fixed values of So = 3.0,f = 3,0, 

M 1.5,Gr  = 10.0 and G,,,4.0). 
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Figure 4.18: Temperature profiles for different values of Pr (with fixed values of S0  = 3.0, 
= 3.0, M= 1.5, G = 10.0 and Gm = 4.0). 

ra 
Figure 4.19: Variation of induced magnetic field for different values of Pr  (with fixed values of 

S0  = 3.0,J = 3.0, M= 1.5, G,. = 10.0 and Gm = 4.0). 
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Figure 4.20: Variation of concentration for different values of P1  (with fixed values of S0  = 3.0, 

f1= 3.0, M= 1.5, Gr = 10.0 and (;, = 4.0). 

Again with increasing Pr, the concentration is found to increase first very close to the plate 

surface and after that it further decreases and asymptotically approaches to zero away from the 

plate surface (Figure 4.20). 

The variations of the values proportional to the coefficients of skin friction .f" (0) and heat 

transfer —91(0) with the variation of the values of different selected established dimensionless 

parameters are tabulated in Table (4.1) - (4.4). 

Table 4.1: Variations of the values proportional to the coefficients of skin-friction (f" (0)) and 

heat transfer (-9"(0) ) with the variation of S0  (for fixed values of Pr  = 0.71, Sc = 0.6, 

= 3.0, M 1.5, Gr = 10.0 and G,,1  = 4.0). 

S0  f"(0) 

3.0 6.250391 1.92228 
1.5 4.250391 1.92228 
0.0 2.250391 1.92228 

From Table 4.1, it is observed that with the increase in S, the coefficient of skin friction 

increases but no effect of So  on the coefficient of heat transfer is perceived. 
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Table 4.2: Variations of the values proportional to the coefficients of skin-friction (f/I  (0)) and 

heat transfer (-91 (0)) with the variation ofj (for fixed values of Pr  = 0.71, Sc = 0.6, 

S03.0,M=1.5,Gr l0.0 and G,,1 =4.0). 

fl, f11 (0) 
5.0 -0.04977 3.24787 
3.0 6.250391 1.92228 
1.5 1 18.50078 0.96905 

From Table 4.2, it is seen that, with the increase in j,,  the coefficient of skin friction highly 

decrease and the rate of heat transfer increases. The usual stabilizing effect of the suction 

parameter on the boundary layer growth is also evident from this Table. 

Table 4.3: Variations of the values proportional to the coefficients of skin-friction (f' (0)) and 

- heat transfer (-9"(0)) with the variation of Gr (for fixed values of Pr = 0.71, Sc =0.6, 

So3.0,fv3.0,M1.5 and Gm 4.0). 

Gr f''(0) -91(0) 
10.0 6.250391 1.92228 
5.0 3.902973 1.92228 
3.0 2.964006 1.92228 

-3.0 0.147105 1.92228 
-5.0 -0.791860 1.92228 

Table 4.3 shows that with the decrease in Gr, the coefficient of skin friction gradually decreases 

but there is no effect of Gr on the coefficient of heat transfer as is seen in the Table. 

Table 4.4: Variations of the values proportional to the coefficients of skin-friction (f1" (0)) and 

heat transfer (_91'(0))  with the variation of M(for fixed values Of Pr  = 0.71, Sc = 0.6, 

So = = 3.0, Gr = 10.0 and G, = 4.0). 

M f''(0) -91 (0) 
3.0 4.750391 1.52290 
1.5 6.250391 1.92228 
1.0 6.750391 2.01990 
0.5 7.250391 2.09978 

From Table 4.4, we see that with the increase of induced magnetic field M, both the coefficient 

of skin friction and the coefficient of heat transfer reduce significantly. 



Table 4.5: Variations of the values proportional to the coefficients of skin-friction (f/I  (0)) and 

heat transfer (-91(0)) with the variation of Pr  (for fixed values of S = 0.6, 50  = 3.0, 

fv=3.0,M=1.5,Gr =10.0, and Grn 4.0). 

Pr f11 (0) -91(0) 
0.71 6.250391 1.92228 
3.0 2.666667 7.78750 
7.0 2.031746 17.87920 

It is observed from Table 4.5 that, with the increase of the Prandtl number Pr, the coefficient of 

skin friction decreases but the rate of heat transfer extensively increases. 

Table 4.6: Variations of the values proportional to the coefficients of skin-friction (fh'  (0)) and 

heat transfer (-9'(0)) with the variation of S (for fixed values of, Pr = 0.71, S0  = 3.0 

= 3.0, M= 1.5, Gr= 10.0 and G,, = 4.0). 

S f11 (0) -81 (0) 

5.0 4.294836 1.92228 
3.0 4.472613 1.92228 
1.5 4.917085 1.92228 
0.6 6.250391 1.92228 
0.1 17.361500 1.92228 

Table 4.6 shows that with the decrease in S, the coefficient of skin friction sharply decreases but 

no through effect of S on the coefficient of heat transfer is seen here. 

Table 4.7: Variations of the values proportional to the coefficients of skin-friction (f" (0)) and 

heat transfer (-9'(0)) with the variation of G 1  (for fixed values of Pr = 0.71, Sc 0.6, 

So = 3.0,f4 = 3.0, M= 1.5, and G,= 10.0). 

S f11 (0) 9(0) 

4.0 6.250391 1.92228 
-4.0 -6.194050 1.92228 

The coefficient of skin friction decrease with the decreasing values of S from positive to 

negative but no significant effect of S on the coefficient of heat transfer is observed as is seen in 

Table 4.7. 
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CHAPTER V 

Numerical Scheme and Procedure 

In Chapter IV, we have obtained the approximate analytical solutions of the system of coupled 

nonlinear ordinary differential equations (2.30) - (2.33) with boundary conditions (2.34) by 

using the perturbation technique. In this Chapter, our aim is to solve the same equations 

(2.30) - (2.33) together with the boundary conditions (2.34) numerically using a standard initial 

value solver numerical procedure based on the sixth order Runge-Kutta integration scheme 

along with Nachtsheim-Swigert iteration technique. Also for more accuracy of the solutions, a 

comparison will be made of the numerical results adopting the aforementioned numerical 

techniques with the obtained analytical approximate results through graphs and tables. 

Nachtsheim-Swigert iteration technique 

To obtain the solution of the system of ordinary differential equations (2.30) - (2.33) with 

boundary conditions (2.34), an extension of the Nachtsheim-Swigert shooting iteration 

technique (guessing the missing value) (Nachtsheim and Swigert (1965)) together with Runge-

kutta sixth order integration scheme is implemented. 

It is clear that the numbers of initial conditions are not sufficient to obtain the particular solution 

of the differential equations, so we require assuming additional missing/unspecified initial 

conditions. Thus, in this method, the missing initial conditions at the initial point of the interval 

are assumed and with all the initial conditions (given and assumed) the equations are integrated 

numerically in steps as an initial value problem to the terminal point. These are to be so assumed 

that the solution of the outer prescribed points also matches. The accuracy of the assumed 

missing initial condition is checked by comparing the calculated value of the dependent variable 

at the terminal point with its given value there. If match is not found (a difference exists) at the 

outer end then another set of missing initial conditions are considered and the process is 

repeated. This trial and error process is taken care through Nachtsheim-Swigert iteration 

technique and the process is continued until the agreement between the calculated and the given 

condition at the terminal point is within the specified degree of accuracy. For this type of 

iterative approach, one naturally inquires whether or not there is a systematic way of finding 

each succeeding (assumed) value of the missing initial condition. 



The boundary conditions (2.34) associated with the system are of the two-point asymptotic class. 

Two-point boundary conditions have values of the dependent variable specified at two different 
> values of the independent variable, where the outer boundary conditions are specified at infinity. 

There are four asymptotic boundary conditions and five known surface conditions as well as 

four unknown surface conditions ["(0), H" (0), 9" (0), çø' (0) here. Specification of asymptotic 

boundary condition implies that the value of velocity approaches to zero, the value of induced 

magnetic field approaches from unity to zero, the value of temperature approaches from unity to 

zero, and the value of concentration approaches from unity to zero as the outer specified value of 

the independent variable 'i  is approached infinity. The governing differential equations are then 

integrated with these assumed surface boundary conditions. If the required outer boundary 

condition is satisfied, a solution has been achieved. However, this is not generally the case. 

Hence a method must be devised to logically estimate the new surface boundary conditions for 

the next trial integration. Asymptotic boundary value problems such as those governing the 

boundary layer equations are further complicated by the fact that the outer boundary conditions 

are specified at infinity. In the trial integrations, infinity is numerically approximated by some 

large specified value of the independent variable. There is not a priori general method of 

estimating this value. Selection of too small a maximum value for the independent variable may 

not allow the solution to asymptotically converge to the required accuracy. Selecting a large 

value may result in divergence of the trial integration or in slow convergence of surface 

boundary conditions required satisfying the asymptotic outer boundary condition. Selecting too 

large a value of the independent variable is expensive in terms of computer time. Nachtsheim-

Swigert developed an iteration method, which overcomes these difficulties. 

Within the context of the initial value method and Nachtsheim-Swigert iteration technique the 

outer boundary conditions may be functionally represented as 

= f'(fh(0), H"(0), O"(0), ç"(0)) = (5.1) 

H( max ) = H(f'(0), H"(0), 9"(0), '(0)) = 82 (5.2) 

= 8(f"(0), H'(0), 9'(0), (p"(0)) = 83 (5.3) 

(max) = ço(f"(0), H'(0), 8'(0), '(0)) = 84 (5.4) 

With the asymptotic convergence criteria is given by 

f11 ( max )f"(.f"(0), H'(0), O'(0), (p'(0))=8 (5.5) 

H'(f"(0), H'(0), 6'(0), (p'(ø)) =56 (5.6) 
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'(max) = 0'(f"(0), H'(0), 0'(0), co'(0)) = 87 (5.7) 

ç0'( max )=(f"(0), H"(0), 0'(0), o'(0))=88 (5.8) 

Let us choose f11 (0) = g1 , H'(0) = 921 0'(0) = 93 , (0) = 94 , and expanding first order 

Taylor series expansion after using the above equations (5.1) —(5.8), yields 

/ Of' Of / of of' 
f (max) f (inax) + Ag1  + Ag2  + Ag3  + A94  = 8 (5.9) 

0g1  09 2  093 O9 4  

OH OH OH OH 
H( inax )= +—Ag2  +—Ag3  +—Ag4  = 82 (5.10) 

0g1  592  O93  094  

00 
Ag1  +—Ag2  

00 
+—Ag3  

00 
+—Ag4  

50 
=83 (5.11) 

Og1  Og 2  Og3  094  

+--Ag3  +--Ag4  =84 (5.12) 
0g1  092  093  094  

Of II Of" '/ 
jf 

II  
f1I(rnax)=f'(inax) gi 92 

+—Ag3  +—Ag4  =85 (5.13) 
0g1 8g2 O93  

OH' OH' OH' OH' 
Ag4  = H'( iax)= H'()+—Ag1  +—Ag2  +—Ag3  +- 66 (5.14) 

0g1 5g2 0g3 094  

' () = 0 Max ) + Ag + Ag + A93  + Ag =87  (5.15) 
592 093 O94  

9(inax) = +—Ag2  +—Ag3  +—Ag4 = 88  (5.16) 
5g1 0g2 093 094  

where subscript 'c' indicates the value of the function at 4 determined from the trial 

integration. Solution of these equations in a least square sense requires determining the 

minimum value of the error as 

E=81 2  +82 2  + 83 2  +842 + 5 
 5  2 +56 2  + 87 2  + 8 2  (5.17) 

with respect to 911  92 , 93  and 94 . 

Now differentiating equation (4.17) with respect to 911  92, 93  and 94  

(51 

O8 052 053 084 085 056 087 O5 
--3-8 —+8 —+b — +86 +57 —=0 (5.18) 
8g3 Og1 0g1 Og1 0g1 Og1 Og1 0g1  

(5.19) 
092 592 092 O92 092 092 092 

l 2 +83 +84  (5.20) 
091 093 093 093 093 093 093 097  

M. 



all  8 L+82 -+8 +ä4 +85 --1-+ö 2 +58 =0 (5.21) 
39 4 09 4 094 094 a94  

Now using the equations (5.9) —(5.16) in the equation (5.18) 

[

aH 
fe' +f ig1  4_Ag2 +f- A93  +-A 4 ]af'  J 

+] 
+[0, +—Ag + ao —Ag + ao —Ag +_A4] 

+ [ 
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ôg4 ag1 ô92 a93  094 
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a " at' 11 aj" 
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1 J.." + i —Ag1 +--Ag2 +----Ag3 +--Ag I —  

L ag 2 0g 3 094 j 3g1 

I / / 

Ag3 + 
I 

+ H +—Ag1 +---Ag2 +-------Ag4  
[ 

ag, ô92 093 094 ag, 

[ / ao ' ao" ao ' ao ' 
4 I 
lao' 

~iO +—Ag,+--Ag2+--Ag3+--Ag — 
L ag, ôg2 3g3 094 j ag, 

[ , a a ' a ' aço' a 
+ço+Ag,+Ag2 +Ag3 +Ag4 =0 

ag, ag 2 ag 3 ag 4 I ag, 

[(5f2 
(aH2 

(2 
(a2 

(ifl2 (ai-i 2 (,2
] Ag, or,Il—I 4-i-------i -  i-I — I -+-i--------i -i-i--------1 --I----------I -i-I--------I --i---------I 

[Og1 ) ag,) tag,) ag,) ag,) tag,) ag,) ag,) 

+

[

af4 afl  
ag2 091 ö92  ag, 092  ag, 092  ag, 092  ag, ag2  ag, a92  ag, 092  ag, j 

+ + + 
[ôg3  39 , ag3  ôg, 093  ag , ag, ôg, 093  ôg , a93  ôg , 093  ôg,  093  ag,] 
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IH 
+0' 

 ao a (P aH' 
-[ (5.22) 

ag, ag, ag, ag, ag , ag, 

Similarly by using the equations (5.9) —(5.16) in the equation (5.19), (5.20) and (5.21) 

Iag  ag2 ag  ag2 ag, ag2 ag , ag2 ag, ag2 ag , ag2 ag, ag2  ag, a92 j 

+[12  +1 1 2  ~1 2 12  ~1fl2 1a0'i +1i Ag 
ag2 ) ag2 ) ag2 ) a9 2 ) a9 2 ) ag2 ) ag2)  

[ag3  ag2 093 092 093 092 ag, ag, 093 092 893  092 ô93  092  393  092 

[3g4  ag2 ag4  ag2 ag4  ag2 ag4  ag ,, ag4  ag2 ag4  ag2 ag4  ag ,, ag4  ag2  J 
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5g4 Sg4 Sg4 5g4 094 Sg4 Sg4  

We can write the equations (5.22) — (5.25) in system of linear equations in the following form 

as: 

a11 A91  + a12 A92  + a13 A93  + a14 A94  =  bil (5.26) 

a21A91  + a22 A92  + a20'93 + a246'94 = b22 (5.27) 

a31 A91  +a32 Ag2  +a33 Ag1 +a34 Ag4  =b33 (5.28) 

a41Ag1  + a42 A92  + a43A93  + a44 A94  = b44 (5.29) 

where 
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Now solving the equations (5.26) (5.29) by Cramer's rule, we have 

det A1 det A2 det A3 det A4  
Ag1  = , Ag2  = , Ag3  = and Ag4  = , where 

det A det A det A det A 
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all a12  a13  a14  

det A - 
a21  a22  a23  a24  

a31  a32  a33  a34  

a41  a42  a43  a44  

b11  a12  a13  a14 a1  b11  a13  a14  

det A = 
b22  a22  a23  a24 

, det A2 = 
a21  b22  a23  a24  

b33  a32  a33  a34 a31  b33  a33  a34  

b44  a42  a43  a44 a41  b44  a43  a44  

a11  a 2  b11  a14 a11  a12  a13  b11  

a21  a22  b22  a24 a21  a22  a23  b22  
det A3 = , detA4 = 

a3  a32  b33  a34 a31  a32  a33  b33  

a41  a42  b44  a44 a41  a42  a43  b44  

Then we obtain the missing (guess) values as 

g1 +-g1 + Ag1  

9292+A92 
(530) 

g3 g3 +Ag3  

94  <- g + A94  

Based on the integration done with the aforementioned numerical technique, the velocity J, the 

induced magnetic field H, temperature 0 and concentration function are determined in terms 

of the similarity variable i for some selected values of the established parameters. In the process 

of calculation, the skin friction coefficient f,1,, (0) and the heat transfer rate - 0, (0) are also 

evaluated. The numerical results thus obtained for velocity and temperature fields in terms of the 

similarity variable are plotted in graphs together with the analytical approximate results to make 

a comparison of the solutions below: 
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Figure 5.1: Comparison between velocity profiles of numerical solution and perturbation 
solution (P=O.71,So=3.0,j.3.O,M= 1.5,Gr = 10.O and G,,,=4.0). 
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Figure 5.2: Comparison between temperature profiles of numerical solution and perturbation 
solution (Pr =0.71,S0=3.0,fw 3.0,M= 1.5, (7= 10.0 and G,,,4.0). 

The values proportional to the coefficient of skin friction and the rate of heat transfer are 

compared by putting them in tabular form given below: 

Table 5.1: Comparison of the values proportional to the coefficient of skin friction and the rate 
of transfer heat between numerical solution and perturbation solution (Pr  = 0.71, 
S0  = 3.0,/, = 3.0, M= 1.5, G = 10.0 and G, = 4.0). 

Perturbation solution Numerical solution 

f'(0) 6.250391 6.209126 

-0"(0) 1.922228 1.918692 

Therefore, a very good agreement is found between the numerical results and the analytical 

approximate results as seen in the above Figures and Tables. 
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CHAPTER VI 

Conclusions 

An analysis of the steady MHD free convection heat and mass transfer flow of viscous 

incompressible electrically conducting fluid above a vertical porous plate is presented under the 

action of a transverse applied magnetic. The thermo diffusion (Soret) effect is taken into 

account. Approximate numerical results for the second order solutions incorporation with the 

first order solutions regarding the velocity, temperature, induced magnetic field and mass 

concentration are presented for different selected values of the established dimensionless 

parameters. A numerical solution have been obtained by using standard initial value solver 

numerical procedure based on the sixth order Runge-Kutta integration scheme along with 

Nachtsheim-Swigert iteration technique to measure the accuracy of the approximate results. 

On the basis of the figures, it is concluded that: 

 The velocity increases with the increase of Soret number (So) 

 For negative values of modified Grashof number (Gm), the velocity decreases more 

with increasing So. 

 There is no remarkable effect of So on the temperature field. 

 The induced magnetic field decreases with the increase of S0. 

 Concentration increases with increasing S0 . 

 Both the velocity and temperature are decreased with the increase of suction 

parameter (fi). 

 The induced magnetic field increases rapidly with the increase ofJ. 

 Concentration increases very close to the plate surface and then decrease away from 

the surface with the increase ofJ. 

 The velocity increases with the increase of Grashof number (Gr ). 

 No considerable effect of Gr on the velocity. 

 The induced magnetic field decreases with increasing values of Gr. 

1. No considerable effect of G on the temperature and concentration are found. 

in. The velocity increases with the increase of magnetic parameter (M). 

 The induced magnetic field decreases with the increase of magnetic parameter (Al). 

 No significant effect is observed on the temperature and concentration with the 

increase of M. 

 The velocity decreases with the increase of Prandtl number (Pr). 



The temperature decreases with the increase of P1. 

The induced magnetic field increases with increasing Pr. 

The concentration increases with increasing Pr. 

On the basis of the tables, it is concluded that: 

With the increase in S0, the coefficient of skin friction increases but no effect of S0  on the 

coefficient of heat transfer is perceived. 

With the increase in J1,, the coefficient of skin friction highly decreases and the rate of 

heat transfer increases. 

With the decrease in Gr, the coefficient of skin friction gradually decreases but there is 

no effect of Gr on the coefficient of heat transfer. 

With the increase of induced magnetic field M, both the coefficient of skin friction and 

the coefficient of heat transfer reduce significantly. 

With the increase of the Prandtl number P1, the coefficient of skin friction decreases but 

the rate of heat transfer extensively increases. 

With the decrease in S, the coefficient of skin friction sharply decreases but no through 

effect of Sc on the coefficient of heat transfer. 

The coefficient of skin friction decrease with the decreasing values of Sc from positive to 

negative but no significant effect of Sc on the coefficient of heat transfer. 

From the comparison of numerical solution and perturbation solution a very good agreement is 

found between the numerical and analytical approximate results. 

71 



REFERENCES 

r [1] Adams, J. A. and McFadden, P. W. (1966). Journal of American Industrial Chemical 

Engineering 12, 842. 

Agrawal, H.L., Ram, P.C. and Singh, V. (1983): Astrophysics Space Science, 91, 445. 

Alam, MD. M. (1995) "Steady MHD free convection and mass transfer flow with 

thermal diffusion and large suction", Ph. D. Thesis, Ch 7, 134. 

Alam, M. S. Rahman, M. M. Ferdows, M. Kaino, Koji, Mureithi, Eunice and Postelnicu, 

A. (2007) "Diffusion-thermo and thermal-diffusion effects on free convective heat and 

mass transfer flow in a porous medium with time dependent temperature and 

concentration", mt. J. App!. Engg. Res., 2(1), 8 1-96. 

Alam, M. S. Rahman M. M. and Samad, M. A. (2006) "Dufour and Soret effects on 

unsteady MHD free convection and mass transfer flow past a vertical porous plate in a 

porous medium, Nonlinear Analysis". Modelling and Control, 11(3), 2 17-226. 

Alfven, H. (1942). On the existence of electromagnetic Hydromagnetic waves, Arkiv F. 

Mat. Astro. 0. Fysik. Bd., 295 No. 2. 

Anghel, M. Takhar H. S. and Pop, I. (2000) "Dufour and Soret effects on free 

convection boundary layer over a vertical surface embedded in a porous medium", 

Studia Universitatis Babes-Bolyai, Mathematica XLV(4), pp.  11-21. 

Bestman, A. R. (1990). International J. Energy Resch. 14, 384. 

Caldwell, D.R. (1974). J. Fluid Mech., 64, 347. 

Chaudhary, R.C. and Sharma, B.K. (2006) "Combined heat and mass transfer by laminar 

Cobble, M. H. (1977). J. Engg. Maths. 11,249. 

Cramer, K. R. and Pai, S.I. (1973). Magneto fluid Dynamics for Engineers and applied 

physicists, McGraw Hill, New York. 

Djukic, Dj. S. (1973). "On Unsteady Magnetic Low-Speed Slip Flow in the Bounbary 

Layer" ActaMech., 18(1-2), 35-48. 

Dursunkaya, Z. and Worek, W. M. (1992) "Diffusion-thermo and thermal-diffusion 

effects in transient and steady natural convection from a vertical surface", mt. J. Heat 

Mass Transfer, 35, 2060-2065. 

mixed convection flow from a vertical surface with induced magnetic field". J. Appl. 

Phys., 99, 034901-10. 



Farady, M. (1832). Experimental Researches in electrically Phill, Trans. 15, 175. 

Gebhart, B. and Pera, L. (1971). mt. J. Heat Mass Transfer, 14, 2025. 

Georgantopolous, G. A. and Nanousis, N. D.(1980). Astrophys. Space Sci., 67(1), 229. 

Groots, S. R. T. and Mozur, P. (1962). Non-equilibrium thermodynamics, North 

Holland, Amsterdam. 

Hasimoto, 1-1. (1957). J. of the Physical Society of Japan, 12(1), 68. 

Hossain M. M. T. and Khatun, M. (2012) "Study of Diffusion - Thermo Effect on 

Laminar Mixed Convection Flow and Heat Transfer from a Vertical Surface with 

Induced Magnetic Field". Tnt. J. of Appi. Math and Mech., Vol. 8(5), 40 —60. 

Hurel, D. T. J. and Jakeman, E. (1971). J. Fluid Mech., 47, 667. 

Ingar, G. R. and Swearn, T. F. (1975). AIAA, J. 13(5), 616. 

Kafoussias, N. G. (1992). Astrophys. Space Sci. 192,11. 

Kafoussias, N. G. and Williams, E. W. (1995) "Thermal-diffusion and diffusion-thermo 

effects on mixed free-forced convective and mass transfer boundary layer flow with 

temperature dependent viscosity", mt. J. Engng. Sci., 33, 1369-1384. 

Kim, Y. J., (2004) "Heat and mass transfer in MHD micropolar flow over a vertical 

moving porous plate in a porous medium, Transport in Porous Media", 56(1), 17-37. 

[261 Legros, J. G.,Van Hook, W. K. and Thomas, G.(1968). Chem. Phys. Lett., 2,696. 

Nanbu, K. (1971). AIAA, J. 9, 1642. 

Nanousis, N. (1992) Astrophys. Space Sci., 191,313. 

Nanousis, N. D. and Goudas, C. L. (1979). Astrophys. Space Sçi., 66(1), 13. 

Pantokratoras, A. (2007). Comment on "Combined heat and mass transfer by laminar 

mixed convection flow from a vertical surface with induced magnetic field", Journal of 

Applied Physics, 102, 076113. 

Patanker, S. V. and Spalding, D. B. (1970). Heat and Mass Transfer in Boundary Layers, 

2 nd  Edn., Intertext Books, London. 

Postelnicu, A. (2004). "Influence of magnetic field on heat and mass transfer by natural 

convection from vertical surfaces in porous media considering Soret and Dufour effects", 

mt J. Heat and Mass Transfer, 47, 1467-1472. 

73 



Postelnicu, A. (2007) "Influence of chemical reaction on heat and mass transfer by 

natural convection from vertical surfaces in porous media considering Soret and Dufour 

effects", Heat and Mass Transfer Journal, 43 (6), 595-602. 

Raptis, A. (1986). Flow through a porous medium in the presence of magnetic field, Tnt. 

J. Energy Res., 10, 97-101. 

Raptis, A. and Kafoussias, N.G. (1982). "Magnetohydrodynamic free convection flow 

and mass transfer through porous medium bounded by an infinite vertical porous plate 

with constant heat flux", Can. J. Phys., 60(12), 1725-1729. 

Rawat, S. and Bhargava, R. (2009). "Finite element study of natural convection heat and 

mass transfer in a micropolar fluid-saturated porous regime with Soret/Dufour effects". 

ow Tnt. J. of App!. Math and Mech., 5(2), 58-71. 

Reddy B. P. and Rao, J. A. (2011). "Numerical solution of thermal diffusion effect on an 

unsteady MI-ID free convective mass transfer flow past a vertical porous plate with 

Ohmic dissipation". Tnt. J. of App!. Math. And Mech., 7(8), 78-97. 

 Rosenberg, D. U. V. (1969). Method for numerical solutions of partial differential 

equations, American Elsevier, New York. 

 Sattar, M.A. (1993). "Unsteady hydromagnetic free convection flow with hall current 

mass transfer and variable suction through a porous medium near an infinite vertical 

porous plate with constant heat flux", mt. J. Energy Research, 17, 1-5. 

 Sattar, M. A. Hossain, M. M. (1992). "Unsteady hydromagnetic free convection flow 

with hail current and mass transfer along an accelerated porous plate with time- 

dependent temperature and concentration". Can. J. Phys., 70, 369-374. 

 Schlichting, H. (1968). Boundary Layer Theory, McGraw-hill, New York. 

 Sharma, R. and Singh, G. (2008). "Unsteady MI-ID free convective flow and heat 

Transfer along a vertical porous plate with variable suction and internal heat generation", 

Tnt. J. of Appi. Math. and Mech., 4(5), 1-8. 

 Singh, A. K. (1980). Astrophys. Space Science, 115, 387. 

 Singh, A. K. and Dikshit, G. K. (1988). "Hydromagnetic flow past a continuously 

moving semi-infinite plate for large suction", Astrophysics and Space Sci. 148, 249-256. 

 Somers, F. V. (1956). J. App!. Mech., 23, 295. 

 Soundalgekar, V. M. and Ramanamurthy, T. V. (1980). J. Engg. Maths. 14, 155. 

 Spalding D. B. (1977).GENMIX, a general computer program for two dimensional 

parabolic phenomena, Pergamon Press, Oxford, UK. 


