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Abstract 
-4 

A perturbation method known as "the asymptotic averaging method" in the theory of 

nonlinear oscillations was first presented by Krylov and Bogoliubov (KB) in 1947. 

Primarily, the method was developed only to obtain the periodic solutions of second order 

weakly nonlinear differential systems. Later, the method of KB has been improved and 

justified by Bogoliubov and Mitropolskii in 1967. In literature, this method is known as 

the Krylov-Bogoliubov-Mitropolskii (KBM) method. Now a days, this method is used for 

obtaining the solutions of second, third and fourth order nonlinear differential systems for 

oscillatomy, damped oscillatory, over damped, critically damped and more critically 

damped cases by imposing some restrictions. Ji-I-luan He has developed a homotopy 

perturbation method for second order strongly nonlinear differential systems without 

damping. Recently, Uddin el al. have developed approximate analytical technique for 

second order strongly nonlinear differential systems with damping combining He's 

homotopy perturbation technique and the extended form of the KBM method. In this 

thesis, an analytical approximate technique will be presented by combining the He's 

hornotopy perturbation technique and the extended fonn of the KBM method for solving 

certain type of fourth order strongly nonlinear differential systems with small damping 

and cubic nonlinearity. Also, the KBM method will be modified and elaborated to find 

out the solutions of fourth order weakly and near critically damped nonlinear differential 

systems by imposing some restrictions on the eigen values. To justi' the presented 

methods, the approximate solutions have been compared to those solutions obtained by 

the fourth order Runge-Kuttu method. 
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CHAPTER 1 

Introduction 

Differential equation is a mathematical tool, which has its application in many branches 

of knowledge of mankind. Numerous physical, mechanical, chemical, biological, 

biochemical, and many other relations appear mathematically in the form of differential 

equations that are linear or nonlinear, autonomous or non-autonomous. Generally, in 

many physical phenomena, such as spring-mass systems, resistor-capacitor-inductor 

circuits, bending of beams, chemical reactions, the motion of pendulums, the motion of 

the rotating mass around another body, etc, the differential equations occur. Also, in 

Ift ecology and economics the differential equations are vastly used. Basically, many 

differential equations involving physical phenomena are nonlinear. Differential equations, 

which are linear, are comparatively easy to solve and nonlinear are laborious and in some 

cases it is impossible to solve them analytically. In such situations, mathematicians, 

physicists and engineers convert the nonlinear equations into linear equations by 

imposing some conditions. The method of small oscillations is a well-known example of 

the linearization. But, such a linearization is not always possible and when it is not, then 

the original nonlinear equation itself must be used. The study of nonlinear equations is 

generally confined to a variety of rather special cases, and one must resort to various 

methods of approximation. 

- At first Van der Pol [1] paid attention to the new (self-excitations) oscillations and 

indicated that their existence is inherent in the nonlinearity of the differential equations 

characterizing the process. This nonlinearity appears, thus, as the very essence of these 

phenomena and by linearizing the differential equation in the sense of the method of 

small oscillations, one simply eliminates the possibility of investigating such problems. 

Thus, it is necessary to deal with the nonlinear problems directly instead of evading them 

by dropping the nonlinear terms. To solve nonlinear differential equations there exist 

some methods. Among the methods, the method of perturbations, i.e., asymptotic 

expansions in terms of a small parameter are foremost. Perturbation methods have 

recently received much attention as methods for accurately and quickly computing 

numerical solutions of dynamic stochastic economic equilibrium models, both single-

agent or rational expectations models and multi-agent or game theoretic models. A 
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perturbation method is based on the following aspects: The equations to be solved are 

sufficiently "smooth" or sufficiently differentiable a number of times in the required 

regions of variables and parameters. 

The KBM [2-4] method was developed for,  the systems only to obtain the periodic 

solutions of second order nonlinear differential equations. Now, the method is used to 

obtain oscillatory as well as damped, critically damped, over damped, near critically 

damped, more critically damped oscillatory and non-oscillatory solutions of second, third, 

fourth etc, order nonlinear differential equations by imposing some restrictions to obtain 

the uniform solutions. Ji-Huan He [5-7] has developed a homotopy perturbation technique 

for solving second order strongly nonlinear differential systems without damping effects. 

Belendez el al. [8] have applied He's homotopy perturbation method to duffing harmonic 

oscillator. Later, Uddin ci al. [9-1 1] have presented an approximate technique for solving 

second order strongly nonlinear oscillatory differential systems with damping effects 

combing by the He's [5-8] hornotopy perturbation and the KBM [2-4] methods. The 

method of KB [2] is an asymptotic method in the sense that s -* 0. An asymptotic series 

itself may not be convergent, but for a fixed number of terms, the approximate solution 

tends to the exact solution as e -+ 0. It may be noted that the tcnn asymptotic is 

frequently used in the theory of oscillations in the sense that & -* Co But, in this case, 

the mathematical method is quite different. It is an important approach to the study of 

such nonlinear oscillations in the small parameter expansion. Two widely spread methods 

in this theory are mainly used in the literature; one is averagiiig asymptotic KBM method 

- and the other is multitime scale method. The KBM method is particularly convenient and 

is the extensively used technique to obtain the approximate solutions among the methods 

used to study the nonlinear differential systems with small nonlinearity. The KBM 

method starts with the solution of linear equation (sometimes called the generating 

solution of the linear equation), assuming that in the nonlinear case, the amplitude and 

phase in the solution of the linear differential equation are time dependent functions 

instead of constants. This method introduces an additional condition on the first 

derivative of the assumed solution for determining the solution of a second order 

equation. The KBM method is demanded that the asymptotic solutions are free from 

secular terms. These assumptions are mainly valid for second and third order equations. 

But, for the fourth order differential equation, the correction terms sometimes contain 

2 



secular terms, although the solution is generated by the classical KBM asymptotic 

method. For this reason, the traditional solutions fail to explain the proper situation of the 

systems. To remove the presence of secular terms and obtain the desired results, we need 

to impose some conditions. The KBM method with some special conditions for fourth 

order weakly nonlinear differential systems and the hornotopy perturbation technique for 

fourth order strongly nonlinear differential systems with damping almost remain 

untouched. The main objective of this thesis is to find out these limitations and to fill 

these gaps and to detennine the proper solutions under some special conditions. The 

results may be used in mechanics, physics, chemistry, plasma physics, circuit and control 

theory, population dynamics, etc. 

In this thesis, we have chosen fourth order nonlinear autonomous differential equations 

that describes strongly nonlinear oscillatory differential system with small damping and 

cubic nonlinearity to solve by combining the He's [5-1 1] homotopy perturbation 

technique and the extended form of the KBM [2-4] method. Also the modified KBM 

method has been extended to solve weakly and near critically damped nonlinear 

differential system. 

In Chapter 2, the review of literature is presented. In Chapter 3, an approximate 

analytical technique has been developed for obtaining the solution of certain type of 

fourth order strongly nonlinear oscillatory differential system with small damping and 

cubic nonlinearity. The KBM method has been extended to solve weakly and near 

critically damped nonlinear non-oscillatory differential system with special conditions in 

Chapter 4. Finally, in Chapter 5, the conclusions are discussed. 
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CHAPTER 2 

Literature Review 

Nonlinear differential equations show varieties characters. But, mathematical 

fonnulations of many physical problems often result in differential equations are 

nonlinear. In many situations, linear differential equation is substituted for a nonlinear 

differential equation, which approximates the former equation closely enough to give 

expected result. In many cases such linearization is not possible, and, when it is not, the 

original nonlinear differential equation must be tackled directly. During last several 

decades in the 20th  century, some Russiaii scientists like Mandelstain and Papalexi [12], 

Krylov and Bogoliubov [2], Bogoliubov and Minopolskii [3] unitedly investigated the 

nonlinear dynamics. To solve nonlinear differential equations there exist some methods. 

Among the methods, the method of perturbations, i.e., an asymptotic expansion in terms 

of small parameter is foremost. Firstly, Kiylov and Bogoliubov [2] considered equations 

of the form 

(2.1) 

where x denotes ordinary derivative with respect to I, e is a small positive parameter and 

•t is a power series in. e, whose coefficients are polynomials in x, x, sin I and cost and 

their proposed solution procedure is known as KB method. In general,f does not contain 

either e or t. To describe the behavior of nonlinear oscillations by the solutions obtained 

by perturbation method, Lindstedt [13], Glyden [14], Liapounoff [15], Poincare [16] 

discussed only periodic solutions, transient were not considered. Most probably, Poisson 

initiated approximate solutions of nonlinear differential equations around 1830 and the 

technique was established by Liouville. The KBM [2-4] method started with the solution 

of the linear equation, assuming that in the nonlinear systems, the amplitude and phase 

variables in the solution of the linear equation are time dependent functions rather than 

constants. This procedure introduces an additional condition on the first derivative of the 

asswried solution for detennining the desired results. Some meritful works are done and 

elaborative uses have been made by Stoker [1.7], McLachlan [18], Minorsky [19], Nayfeh 

[20] and Bellman [21]. Duffing [22] has investigated many significant results about the 

periodic solutions of the following nonlinear damped differential equation 



(2.2) 

Sometimes different types of nonlinear phenomena occur, when the amplitude of the 

dependent variable of a dynamic system is less than or greater than unity. The damping is 

negative when the amplitude is less than unity and the damping is positive when the 

amplitude is greater than unity. The governing equation having these phenomena is 

I—e(1—x2 )+xO. (2.3) 

This equation is known as Van der Pol equation. Kruskal [23] has extended the KB 

method to solve the fully nonlinear differential equation of the following form 

= (2.4a) 

Cap [24] has studied nonlinear systems of the form 

I+w 2 f(x)=eF(x,±). (2.4b) 

Generally, siricefdoes not contain either 6 or 1, thus the equation (2.1) becomes 

! + w2x = E(x,.*). (2.5) 

As pointed certain that, in the treatment of nonlinear oscillations by perturbation method, 

only periodic solutions were discussed, transients were not considered by different 

investigators, where as Krylov and Bogoliubov have discussed transient response firstly. 

When = 0, the equation (2.5) reduces to linear equation and its solution is 

x = acos(a1 + (2.6) 

where a and q are arbitrary constants to be detennined by using the given initial 

conditions. 

When r # 0, but is sufficiently small, then Kiylov and Bogoliubov assumed that the 

solution of equation (2.5) is still given by equation (2.6) together with the derivative of 

the form 

= —awsin(oI + (p), (2.7) 

where a and are functions of 1, rather than being constants. In this case, the solution of 

equation (2.5) is 

x = a(i)cos(wt + q.'(t)) (2.8) 

and the derivative of the solution is 

= —a(I)vsin(cos + (f)). (2.9) 

Differentiating the assumed solution equation (2.8) with respect to time I, we obtain 

= âcosçti —awsin—aØsiny, ti = an' +ço(i). (2.10) 

Using the equations (2.7) and (2.10), we get 
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àcosqi=ab sin yt. (2.11) 

Again, differentiating equation (2.9) with respect to t, we have 

x == —aa)Sinyl - a(02  cosyi - awcosy'. (2.12) 

Pulling the value of from equation (2.12) into the equation (2.5) and using equations 

(2.8) and (2.9), we obtain 

aw sin qi +aw cos yi = —/(acosqi,--aw sin qi). (2.13) 

Solving equations (2.11) and (2.13), we have 

a = —.-sin yif(acos VI,—  aa)sin VI), (2.14) 

= — 
S  

---cosyl f(acosVI,— aa)sin yi). (2.15) 
aa) 

It is observed that, a basic differential equation (2.5) of the second order in the unknown 

x, reduces to two first order differential equations (2.14) and (2.15) in the unknowns a 

and o. 

Moreover, a and p are proportional to e; a and qqo are slowly valying functions of the 

time period 'I It is noted that these first order equations are now written in terms 

of the amplitude a and phase o as dependent variables. Therefore, the right sides of 

equations (2.14) and (2.15) show that both a and are periodic functions of time 7. In 

this case, the right-hand terms of these equations contain a small parameter & and also 

contain both a and q, which are slowly varying functions of the time 1 with period 

T = We can transform the equations (2.14) and (2.15) into more convenient form. 
09 

Now, expanding 

sin VI f(a cos V1
, 
- aw sin i)  and cos ilf f(a cos yl, - aw sin VI)  in Fourier series in the total 

phase y,  the first approximate solution of equation (2.5), by averaging equations (2.14) 

2 and (2.15) with period  I = -, is 
a) 

2ff 

r (a 
& 

2rw 
) = 

-- I sin yij(acosyi,—aw sin yi)dqi, 
0 

(2.16) 
= 
- jcosV/J(acosvl,—aw sin  VJ)dV1, 

2rwa 
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where a and are independent of time t under the integrals. Kiylov and Bogoliubov [2] 

called their method asymptotic in the sense that e -+ 0. An asymptotic series itself is not 

convergent, but for a fixed number of terms the approximate solution tends to the exact 

solution as c -+ 0. Later, this technique has been extended mathematically by 

Bogoliubov and Milropolskii, and has extended to non-stationary vibrations by 

Mitropolskii [4]. They have assumed the solution of the nonlinear differential equation 

(2.5) of the form 

x = acosyi + Ez/1 (a,y/) + E 2u2(a,yi)+ ............  + e"u,,(a,y,) + O( 1), (2.17) 

where Uk,  (k = 1, 2, .......,)i) are periodic functions of v with a period IT, and the 

quantities a and w are functions of time i and defined by the following first order 

ordinary differential equations 

a 6 4(a)+ 62A2(a)+ ..........  + cA,(a)+ O(e 1 ), 
(2.18) 

= C) + eB1 (a) + s2 B2(a)+ .......  + 

The functions Uk Ak  and Bk, (k = 1, 2, ........n) are to be chosen in such a way that the 

equation (2.17), after replacing a and y' by the functions defined in equation (2.18), is a 

solution of equation (2.5). Since there are no restrictions in choosing flmctions Ak  and 

Bk , it generates the arbitrariness in the definitions of the functions it, (Bogoliubov and 

Mitropolskii). To remove this arbitrariness, the following additional conditions are 

imposed 

f uk(b.yI) cos v/d = 0, 

2 (2.19) 

fUk (a, yi)sin ill dy = 0. 

Absences of secular terms in all successive approximations are guaranteed by these 

conditions. Differentiating equation (2.17) two tunes with respect to I, substituting the 

values of x, . and . into equation (2.5), using these relations in equation (2.18) and 

equating the coefficients of t, (Ic = 1, 2........, n) result a recursive system leads to 

+ ilk) = .f_D(a,y) + 2C)(a 11k  cosqi + Ak  sin ci'), (2.20) 

where (uk  ), denotes partial derivatives with respect to qi, 

f ° (a,y) = [(acosy,— awsin (11) and 
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fW(a,v/) = u1J(acosy!, —  a(9sln yi)+(A1  cosyi - aB sin yi + 

2 dA1 dB1
-- 

. 
f (cosu,— awsin t,ii) + (aB1 — - A1 )cosçtí + (2.4 - aA1  —)sm yt - (2.21) 

da 
J3 

da 
2a(A1(ui)ar,, + B1(u1),). 

Here i( is a periodic function of yl with period 2n which depends also on the 

amplitude a. Therefore, f1)  and Uk  can be expanded in a Fourier series as 

gkI)(a) + + hl>(a)sfi1 ny'), 
n=l 

(2.22) 

uk (a, yi) = v '>(a) + (v(a)cosny/ + w(a)sin ny!), 

where 

2ff 

90
(k-I) 1 

j• 
f(k_l)(aCOS u, - Q(OSifl y/) dyi. (2.23) 

Here, = = 0 for all values of Ic, because both integrals of equation (2.19) are 

vanished. Substituting these values into the equation (2.20), we obtain 

(O2v(k_I) (a) + n2  ){v7(a) cos nyi + ()( k1) (a) sin n yt] 

= gk_l)(a) + (g(a) + 2waRk)cosn V' + (h( k-I) (a) + 20Ak )sin çt' (2.24) 

+ [k_ 
cos nçu + h(a) sin n yi]. 

'i=2 
 

Now, equating the coefficients of the harmonics of the same order, yield 

g
(

k J)(a) gkI)(a)±2(I)aB =0, (a)+2wAk  =0, v(a)= h1(k _I) 
0)2  

v(a) = 
g(k I)(a) 

(kI)(a) = 
/ (k1)() (2.25) 

0)2 (1 
0) 

 

These are the sufficient conditions to obtain the desired order of approximation. For the 

first order approximation, we have 

2ff 

A = - 
h ° (a) 

= - facos tyt,— ao sin yt)sin yt dyt, 
20) 2rcv I) 

Jr (2.26) 

_ = $ 0) 
i 

f(acoslyi,—asinyl)cosyldy!. 
2aw 22ra0) 

Thus, the variational equations in equation (2.18) become 



a = 
---f---  f 

f(acosyi,— awsin çu)sin 
2,r 0 

(2.27) 

0)— 
g 

Jf(a cos yi,—asiny) cos d1,. 
27ra0) 

It is seen that, the equation (2.27) are similar to the equation (2.16). Thus, the first order 

solution obtained by Bogoliubov and Mitropolskii [3] is identical to the original solution 

obtained by Krylov and Bogoliubov [2]. In literature, this method is well known as 

Krylov-Bogoliubov-Mitropolskii (KBM) [2-4] method. Secondly, higher order solutions 

can be found easily. The correction term ii is obtained by equation (2.22) on using 

equation (2.25) as 

g ° (a) 
+ 

g ° (a) cos n cii + h ° (a) sin n qf
(2.28) U1 

- iv 2 ,,=2 w2(1 - 112 ) 

The solution equation (2.17) together with u1  is known as the first order improved 

solution in which a and yi are obtained from equation (2.27). If the values of the 

functions A1  and B1  are substituted from equation (2.26) into the second relation of 

equation (2.21), the function T) and in the similar way, the functions A2, B2  and u2  

can be found. Therefore, the determination of the higher order approximation is 

completed. The KB [2] method is very similar to that of Van der Pol [I] and related to it. 

Van der Pol has applied the method of variation of constants to the basic solution 

x = acoswt + bsin a of x+ 0)2 x = 0, on the other hand Krylov-Bogoliubov have applied 

the same method to the basic solution x = acos(wt + q) of the same equation. Thus, in 

the KB method the varied constants are a and q, while in the Van der Pol's method the 

constants are a and b. The method of KB seems more interesting from the point of view 

of applications, since it deals directly with the amplitude and phase of the quasi-harmonic 

oscillation. 

The solution of the equation (2.4a) is based on recurrent relations and is given as the 

power series of the small parameter. Cap [24] has solved the equation (2Ab) by using 

elliptical functions in the sense of Kiylov and Bogoliubov. The method of KB has been 

extended by Popov [25] to damped nonlinear differential systems represented by the 

following equation 

I + 2k± + w2x = (2.29) 
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where —2k x is the linear damping force and 0 < k <a'. It is noteworthy that, because of 

the importance of the Popov's method in the physical systems, involving damping force, 

Mendelson [26] and Bojadziev [27] have retrieved Popov's results. In case of damped 

nonlinear differential systems, the first equation of equation (2.18) has been replaced by 

a = —ka+ eA(a) + e24(a) + ............+ e'A(a) +O(e). (2.18a) 

Murty and Deekshatulu [28] have developed a simple analytical method to obtain the 

time response of second order nonlinear over damped systems with small nonlinearity 

represented by the equation (2.29), based on the KB method of variation of parameters. 

Alan-i [29] has extended the KBM method to find solutions of over damped nonlinear 

differential systems, when one root of the auxiliary equation becomes much smaller than 

the other root. According to the KBM method, Murty el a!, [30] have found a hyperbolic 

type asymptotic solution of an over damped system represented by the nonlinear 

differential equation (2.29), i.e., in the case k > a'. They have used hyperbolic ftinctions, 

cosh 'p  and sinh q instead of their circular counterpart, which are used by Krylov, 

Bogoliubov, Mitropolskii, Popov and Mendelson. In case of oscillatory or damped 

oscillatory process may be used arbitraily for all kinds of initial conditions. But, in case 

of non-oscillatory systems cosh ç or sinh ç should be used depending on the given set of 

initial conditions (Murty et al. [30], Bojadziev and Edwards [31], Murty [32]). Murty [32] 

has presented a unified KBM method for solving the nonlinear systems represented by the 

equation (2.29), which cover the undamped, damped and over-damped cases. Bojadziev 

and Edwards [31] have investigated solutions of oscillatory and non-oscillatory systems 

represented by equation (2.29) when k and a) are slowly varying functions of time 1. 

Aiya and Bojadziev [33-34] have examined damped oscillatory systems and time 

dependent oscillating systems with slowly varying parameters and delay. Sattar [35] has 

developed an asymptotic method to solve a second order critically damped nonlinear 

system represented by equation (2.29). He has found the asymptotic solution of the 

equation (2.29) in the following fonn 

x = a(l + çu)+ eu(a,w)+  ...........  + C "u,,(a,yi)+ O( 1) (2.30) 

where a is defined by the equation (2.1 8a) and yi is defined by 

= I + eC(a) + c2C2(a) + ...........+ c"C(a) + O(e'') (2.18b) 

Osiniskii [36] has extended the KBM method to the following third order nonlinear 

differential equation 
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+ c 1+ c2  + c.x = ef(I,i,x), (2.31) 

where s is a small positive parameter and [is a given nonlinear function. He has assumed 

the asymptotic solution of equation (2.31) in the fonn 

x = a+hcosyi+ eu1 (a,b,i)+...........+e"u(a,b,yi)+O(e'), (2.32) 

where each Uk  (k = 1, 2, ......., n) is a periodic function of yi with period 2,r and a, I, 

and ji are functions of time t, and they are giveil by 

a = —2a + e A1(a)+ e2 A2(a)+ ...........  + gn A(a)+  Q(fl41)
, 

 

b = —1ua + e B (h) + e2B2(h) + ...........+ e'B(h) + O(s"), (2.33) 

= w + EC1 (h) + e2C7 (h) + ...........+ C(h) + O(e1), 

where - ,%, - i ± w are the eigen values of the equation (2.31) when s = 0. 

By using the KBM method, Bojadziev [37] has investigated solutions of nonlinear 

damped oscillatory systems with small time lag. Bojadziev [38] has also found solutions 

of damped forced nonlinear vibrations with small time delay. Bojadziev [39], Bojadziev 

and Chan [40] have applied the KBM method to solve problems of population dynamics. 

Bojadziev [27] has used the KBM method to investigate solutions of nonlinear systems 

arised from biological and biochemical fields. Lin and Khan [41] have also used the 

KBM method to some biological problems. Proskurjakov [42] and Bojadziev el al. [43] 

have investigated periodic solutions of nonlinear systems by the KBM and Poincare 

method, and have compared the two solutions. Bojadziev and Lardner [44-45] have 

investigated monofrequent oscillations in mechanical systems including the case of 

internal resonance, governed by hyperbolic differential equations with small 

nonlinearities. Bojadziev and Lardner [46] have also investigated solution for a certain 

hyperbolic partial differential equation with small nonlinearity and large time delay 

included into both unperturbed and perturbed parts of the equation. Rauch [47] has 

studied oscillations of a third order nonlinear autonomous system. Bojadziev [48] and 

Bojadziev and Hung [49] have developed a technique by using the method of KBM to 

investigate a weakly nonlinear differential system with strong damping. Osiniskii [50] has 

also extended the KBM method to a third order nonlinear partial differential equation 

with initial friction and relaxation. Mulholland [51] has studied nonlinear oscillations 

governed by a third order differential equation. Lardner and Bojadziev [52] have 

investigated nonlinear damped oscillations governed by a third order partial differential 

equation. They have introduced the concept of 'couple amplitude" where the unknown 
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functions 4k' Bk  and Ck  depend on both the amplitudes a and b. Bojadziev [48] and 

Bojadziev and Hung [49] have used at least two trial solutions to investigate time 

dependent differential systems one is for resonant case and the other is for non-resonant 

case. But, Alam [53] has used only one set of variational equations, arbitraily for both 

resonant and non-resonant cases. Alarn el al. [54] have presented a general form of the 

KBM method for solving nonlinear partial differential equations. Raymond and Cabak 

[55] have examined the effects of internal resonance on impulsive forced nonlinear 

systems with two-degree-of-freedom. Later, Alam [56-57] has extended the method to 

,ith, n ~! 2,3 order nonlinear differential systems. Alam [58] has presented a new 

perturbation method based on the KBM method to find approximate solutions of second 

order nonlinear systems with large damping. Alam et al. [59] have investigated 

perturbation solution of a second order time dependent nonlinear system based on the 

modified KBM method. Sattar [60] has extended the KBM asymptotic method for three 

dimensional over damped nonlinear systems. In recent years. He [5] has developed some 

new approaches to Duffing equation with strong]y and high order nonlinearity (I) 

linearized perturbation method. In another paper, He [6] has obtained the approximate 

solution of nonlinear differential equation with convolution product nonl inearities. Also, 

He [7] has presented a new interpretation of hornotopy perturbation method. Belendez et 

al. [8] have presented the application of He's homotopy perturbation method to Duffing 

harmonic oscillator. Lirn ci al. [61] have also presented a new analytical approach to the 

Duffing harmonic oscillator. Later, Uddin ci at. [9-1 1] have presented an approximate 

technique for solving second order strongly nonlinear oscillatory differential systems with 

damping effects combing by the He's [5-8] hornotopy perturbation and the KBM [2-4] 

methods. Alam and Sattar [62] have studied time dependent third order oscillating 

systems with damping based on the extended form of KBM method. Alam [29] and Alam 

et at. [63] have developed a simple method to obtain the time response of second order 

over damped nonlinear systems together with slowly varying coefficients under some 

special conditions. Later, Alarn [57] and Alarn and 1-lossain [64] have extended the 

method presented in [29] to obtain the time response of n-th order (n !! 2), over damped 

systems. Alam and Sattar [65] have presented a unified KBM method for solving third 

order nonlinear systems. Later, Alam [66] has extended the method to nonlinear over 

damped systems. Also, Alam et al. [67] have extended the method to certain non-

oscillatory nonlinear systems with varying coefficients. Alam [68] has also presented a 
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unified KBM method, which is not the fonnal form of the original KBM method, for 

solving nih, ii ~! 2,3 order nonlinear systems. The solution contains some unusual 

variables, yet this solution is very important. Alam [69] has also presented a modified and 

compact form of the KBM unified method for solving an ;iih, n ~ 2,3 order nonlinear 

differential equation. The formula presented in [69] is compact, systematic and practical, 

and easier than that of [68]. Alain and Sattar [70] have developed a method to solve third 

order critically damped autonomous nonlinear systems. Alam [71] has redeveloped the 

method presented in [70] to fInd approximate solutions of critically damped nonlinear 

systems in presence of different damping forces by considering different sets of 

variational equations. Later, he has unified the KBM method for solving critically 

damped nonlinear system whose unequal eigen values are in integral multiple. Alam [72] 

has also extended the method to a third order over damped system when two of the eigen 

values are almost equal (i.e., the system is near to the critically damped) and the rest is 

small. Alam [73] has presented an asymptotic method for certain third order non-

oscillatory nonlinear system, which gives desired results when the damping force is near 

to the critically damping force. Akbar et al. [74] have presented an asymptotic method 

based on the KBM method to solve the fourth order over damped nonlinear systems. 

Akbar et al. [75] have also developed a simple technique for obtaining certain over 

damped solution of an nih order nonlinear differential equation. Akbar et al. [76] have 

presented the KBM unified method for solving n-tb order nonlinear systems under some 

special conditions including the case of internal resonance. Later, Akbar et al. [77] have 

extended the KBM method for solving fourth order more critically damped nonlinear 

systems. Akbar et al. [78] have also developed perturbation theory for fourth order 

nonlinear systems with large damping. Haque el al. [79] have investigated the solution of 

fourth order critically damped oscillatory nonlinear systems when two of the eigen values 

are real and equal and the other two are complex conjugate. Uddin and Sattar [80] have 

presented an asymptotic method for solving fourth order weakly nonlinear differential 

system with strong damping and slowly varying coefficients. Recently, Rahman ei al. 

[81] have developed a technique for solving of fourth order near critically damped 

nonlinear systems. 

7/ 

it  
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CHAPTER 3 

An Analytical Approximate Technique for Solving a Certain Type of Fourth Order 

Strongly Nonlinear Oscillatory Differential System with Small Damping 

3.1 Introduction 

The study of nonlinear problems is of crucial importance in all areas of applied 

mathematics, physics, engineering, medical science and other disciplines, since most of 

the phenomena in the real world are essentially nonlinear and described by nonlinear 

differential systems. It is too much difficult to handle nonlinear problems and in general, 

it is often very difficult to get an analytical approximate solution than a numerical one. 

The most common methods for constructing the analytical approximate solutions to the 

nonlinear oscillator equations are the perturbation techniques. Some well known 

perturbation methods are the KBM method [2-4], the Lindstedt-Poincare (LP) method 

[13, 16], and the method of multiple time scales [82]. Almost all perturbation methods 

are based on an assumption that small parameters must exist in the equations, which is too 

strict to find wide application of the classical perturbation methods. It detennines not only 

the accuracy of the perturbation approximations, but also the validity of the perturbation 

methods itself However, in science and engineering, there exist many nonlinear problems 

which do not contain any small parameter; especially those appear in nature with strong 

nonlinearity. Therefore, many new techniques have been proposed to eliminate the "small 

parameter" assumption, such as the homotopy perturbation method (HPM). In recent 

years, He [5] has developed some new approaches to Duffing equation with strongly and 

high order nonlinearity (I) linearized perturbation method. In another paper, J-Ie [6] has 

obtained the approximate solution of nonlinear differential equation with convolution 

product nonlinearities. Recently, He [7] has presented a new interpretation of homotopy 

perturbation method. Belendez etal. [8] have presented the application of He's honiotopy 

perturbation method to Duffing harmonic oscillator. Lim el al. [61] have also presented a 

new analytical approach to the Duffing- harmonic oscillator. Alam [68] has investigated a 

unified KBM method for solving nih, 'i ~! 2, 3 order nonlinear systems. Also, Alam [83] 

has investigated a unified KBM method for solving nih, n ~! 3 order nonlinear 

differential system with slowly varying coefficients. Later, Alani ci al. [84] have 
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presented an asymptotic method for third order nonlinear system with vaiying 

coefficients. Akbar el aL [76] have presented the KBM unified method for solving an nih 

order nonlinear differential equation under some special conditions including the internal 

resonance for weakly nonlinear system. Recently, Uddin el al. [9-1 1] have presented an 

approximate technique for solving second order strongly nonlinear oscillatory differential 

systems with damping effects combing by the He's homotopy perturbation and the KBM 

methods. Many physical and engineering problems occur in nature which does not 

contain a small parameter, i. e., appear with damping and strong nonlinearity. The more 

difficult and no less important case, the fourth order strongly nonlinear oscillatory 

differential systems with damping and cubic nonlinearity has remained almost untouched. 

The aim of this chapter is to fill this gap. So in this chapter, we are interested to develop a 

coupling analytical approximate technique based on the He's homotopy perturbation and 

the KBM methods to solve a certain type of fourth order strongly nonlinear oscillatory 

differential systems with damping and cubic nonlinearity. This method transforms a 

difficult problem under simplification into a simple problem which is easy to solve and 

understand and there is no any complexity for handling this method. The presented 

method has been successfully applied to solve fourth order strongly nonlinear damped 

oscillatory differential system with an example. The advantage of this method is that the 

first order analytical approximate solutions s110w a good agreement with the 

colTesponding numerical solutions. 

3.2 The Proposed Method 

Let us consider the fourth order nonlinear ordinary differential equation (ODE) with 

damping in the following form 

x +(w + w)I+wwx = —(p+q±)+sf(x), (3.1) 

where over dots represent the derivatives with respect to time t, w1  and 0)2  are the 

frequencies for double mode of vibrations of the systems, c is a positive parameter which 

is not necessarily small, p, q are unknown constants and f(x) is a given nonlinear 

function. If we choose p = 4k and q = 4k 3  + 2k(& + 0)-12 k 3  then the eigen values 

of equation (3.1) becomes - k ± I w, - k ± / w2 , where k <<1 represents any positive 

constant. Now, we are going to consider [9-11] the following substitution 

15 

'I. 



x=y(1)e'. (3.2) 

r Differentiating equation (3.2) four times with respect to time I, and then substituting the 

derivatives PI,Y, 1, ± together with x and the values of p and q into equation (3.1.) 

and simplifying them, we get 

+(v12  +w —6k 2 )j)+ {5k 4  —k 2 (w + (0)+wW}y = cekn f(ye 1 ). (33) 

According to the hornotopy perturbation method [5-11] equation (3.3) reduces to 

(4) + ( + - 6k 2) + 5k - k 2(a 2  + a) + + 
(3.4) 

= 2y + eektf(ye_kt). 

Equation (3.4) can be rewritten as 

+ (a + co. - 6k 2) + v 2y %y + sef(ve), (3.5) 

where w2  = 5k - k 2(w + co) + coj  

Herein U) is a constant for u.ndamped nonlinear oscillator and known as the frequency in 

literature and A. is an unknown function which can be determined by eliminating the 

secular terms. But, for damped nonlinear oscillatory differential systems, t is a time 

dependent function and it varies slowly with time t. To handle this situation, we can use 

the extended form of the KBM [2-3] method by Mitropolskii [4]. According to this 

method, we choose the solution of equation (3.5) (for a single mode of vibrations) in the 

following form 

y=acos, (3.7) 

where the amplitude a and the phase q vary slowly with time i and they satisfy the 

following first order ordinaiy differential equations 

= u1 (7*)+ s B1(a,r)+ e2B2(a,r)--..., 
(3.8) 

where s is a sinail positive parameter and r = 51 is the slowly varying time. Now, 

differentiating equation (3.7) four times with respect to time / and utilizing equation (3.8) 

and then taking the terms up to 0(s), we obtain 

+ +/122 (j; + i4y) 

= 55 a,i7t
I

1  sin + 26flj (A1  sin + a B,  sin ) (3.9) 

+ /122 -5a/1 sin q - 2et (A1  sin + aB1  cos(p)). 

Equation (3.9) can be re-written as 
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= - ,u )asin p + 2su(u - i)(A1  sinq + aB1  cos). 
(310) 

Now, 

(4) ± (42  

which leads to 

- 1u2 )asin ç + 2i1 (1u - 1i)(A1  sin + aB1  cos(p) = 0. (3.12) 

Equating the coefficients of sin p and cos(p from equation (3.12), we obtain 

A = _t(5)a 
B1  =0. (3.13) 

Comparing equation (3.10) with equation (3.5) 

,u +p = + co —6k 2, = 5k 4  —k 2(w +w)+ wv + A. (3.14) 

Now, 

By solving equation (3.14) and equation (3.15), we get 

(3.16) 

1J2 (3.17) 

Putting the value of y from equation (3.7) into equation (3.2) and the values of A1  and 

B from equation (3.13) into equation (3.8), we obtain 

x =ae' cosço, (3.18) 

2p1(p—p) 
(3.19) 

Equation (3.18) represents the first order analytical approximate solution of equation (3.1) 

by the proposed coupling technique. Usually, the integration of equation (3.19) is 

accomplished by the well-known techniques of calculus [82, 85], but sometimes they are 

calculated by a numerical procedure [9-1 1, 34, 48, 68, 76, 83, 84, 86] with the help of 

equations (3.16) - (3.17). Thus, the determination of first order analytical approximate 

solutions of equation (3.1) is completed by the proposed method. 
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3.3 Example 

As an example of the above procedure, we are going to consider the fourth order strongly 

nonlinear oscillatory differential system with small damping and cubic nonlinearity in the 

following form 

+ (1"0 2  + w2 2)I + w12w22x = -(p + q±) + ex3, (3.20) 

where f(x) = x3  is the given nonlinear function. Now, by using the transformation 

equation (3.2) and then simplifying them and according to the homotopy perturbation 

method [5-1 1], we obtain 

+ (,u12  + 1u) + ji12  p.y = 2y + 6y3e 2k1. (3.21) 

According to the extended form of the KBM method [2-4], the solution of equation (3.21) 

is assumed as 

y=acosq, (3.22) 

where a and q are given by 

ep(5- )a (3.23) 
2pi(,uj - /12) 

Now, putting the value of y from equation (3.22) into the right hand side of equation 

(3.21), we have 

2 1 2 

( 4 
—W  -Jcos+_ cos3. (3.24) + (h + + 2 a + 3

5a3e_2 k 1 ea3e 2 k t  

The requirement of no secular terms in particular solution of equation (3.24) implies that 

the coefficient of the cos tenTi is zero. Setting this term to zero, we obtain 

3ea3e2 Ic  
4 —=0. (3.25) 

For the nontrivial solution (i.e., a :?,- 0), equation (3.25) leads to 

2 = 
3Ea2e_2 Id 

(3.26) 

Now, putting the value of A. from equation (3.26) into equations (3.16) -(3.17) we obtain 

-6k2 +\
/(2 _2)2 -8k2(w2  +w)+3ca2e21 1  )/2, (3.27) 

(3.28) 
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Squaring equation (3.27) and expanding according to the binomial theorem and then 

simplifying, we obtain 

2k 2(a+a 1

2  

— K — 
) 3Ea2e_2k 

. 
011-02 4(a 12 -w) 

(3.29 

Differentiating equation (3.29) with respect to 1 and treating a as constant, we obtain 

21u1i = 
3k 0e 2kt 

(3.30) 
2(w, 2) 

Dividing equation (3.30) by equation (3.29) we have 

-2k 
iL_ 3kae 

_w_5k2)_4k2a 
- 

3eae 2' 
4(-) (-w) ( 2 4(c_co)J 

 

which can be written as 

3ka 3ea e_2k 1  

2u 8{(a - 

e 2 k$ 

- 

1 + w2 )(Q)2 5k2 )4k2(021 2 ( 2 1 }J 
 v)( a--5k 2) 4k 2a} 

(3.32) 

Now, putting equation (3.32) into equation (3.13) and taking the terms for 0(e), we get 

A1=rae2k, B1 =0, (3.33) 

where 

r=- 
3ka(5ii-,i) 

8( -p){(o12  -)(o -5k 2)-4k 2w} 
(3.34) 

Thus, equation (3.23) becomes 

6=erae 2 , 0=u1 (r). (3.35) 

Integrating equation (3.35), we obtain 

(

2k ia=aexp(l-e )). = ipo  +f,(r)di, (3.36) 

where a0  and (po  are the initial amplitude and phase variables for the nonlinear 

differential systems respectively. 

Thus, the first order analytical approximate solution of equation (3.20) is given by 

x = ae '  cosq, (3.37) 

where a and are calculated from equation (3.36) with help of equations (3.27) - 

(3.28). 



3.4 Results and Discussion 

In this chapter, a new coupling analytical approximate technique has been presented to 

obtain the first order analytical approximate solutions for a certain type of fourth order 

strongly nonlinear oscillatory differential systems with damping and the method has been 

successfully implemented to illustrate the effectiveness and convenience of the proposed 

method. The first order analytical approximate solutions of equation (3.20) are computed 

by equation (3.37) with the help of equations (3.27) -- (3.28) and equation (3.36) and the 

corresponding numerical solutions are obtained by the well known fourth order Runge-

Kutta method. 

Furthermore, the presented method is simple and the advantage of this method is that the 

first order approximate solutions show good agreement (see also Figs. 3.1-3.4) with the 

corresponding numerical solutions for several damping effects. The initial approximation 

can be freely chosen, which is identified via various methods in the references. The 

approximations obtained by the presented method are valid not only for strongly 

nonlinear oscillatory differential systems, but also for weak one with small damping 

effects. Figs. 3.1-3.2 are provided to compare the solutions obtained by the presented 

method to the corresponding numerical solutions with small damping for strongly 

nonlinear oscillatory differential systems. Also, Figs. 3.3-3.4 are cited to compare the 

solutions obtained by the proposed method to the corresponding numerical solutions for 

weakly nonlinear oscillatory differential systems with small damping effects. From the 

Figs. 3.1-3.4 it is seen that, the obtained analytical approximate solutions for both 

strongly and weakly nonlinear differential systems show good agreement with those 

solutions obtained by the fourth order Runge-Kutta method. 
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Fig. 3.1 First approximate solution of equation (3.20) is denoted by - - (dashed lines) 

by the proposed coupling technique with the initial conditions a0  = 1.0, ço0  = 0 or 

{x(0) = 1.00000, (0) = —0.10003, .(0) = —99.92663, (0) = 30.08070} when w = 10.0, 

0)2 —5.0, k =0.1, c =1.0 and f =x3 . Corresponding numerical solution is denoted by - 

(solid line). 
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Fig. 3.2 First approximate solution of equation (3.20) is denoted by -   -. - (dashed lities) 

by the proposed coupling technique with the initial conditions a0  = 1.0, , = 0 or 

[x(0) = 1.00000, .k(0) = —0.20065, 1(0) = —24.76098, (0) = 15.06427] when w1  = 5.0, 

c92 = 1.0, k = 0.2, g = 1.0 and f = x3. Corresponding numerical solution is denoted by - 

(solid line). 



r 

Fig. 3.3 First approximate solution of equation (3.20) is denoted by -. - (dashed lines) 

by the proposed coupling technique with the initial conditions a0  = 1.0, = 0 or 

x(0)= 1.00000, x(0)= —0.1000, 1(0) = —99.93565, (0) = 30.078271 when a = 10.0, 

= 5.0, k = 0.1, s = 0.1 and .1 x3 . Corresponding numerical solution is denoted by - 

(solid line). 
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Fig. 3.4 First approximate solution of equation (3.20) is denoted by -. - (dashed lines) 

by the proposed coupling technique with the initial conditions a9  = 1.0, ço0  = 0 or 

x(0) = 1.00000, i(0) = —0.20007, .(0) = —24.78982, 1(0) = 15.057791 when CO, = 5.0, 

= 1.0, k = 0.2, e = 0.1 and f = x3 . Corresponding numerical solution is denoted by - 

(solid Jine). 
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CHAPTER 4 

7 

Approximate Solution of Fourth Order Near Critically Damped Nonlinear Systems 

with Special Conditions 

4.1 Introduction 

The KBM [2-4] method is one of the widely used techniques to obtain analytical 

approximate solution of weakly nonlinear systems and this method was originally 

developed for finding periodic solution of nonlinear systems with small nonlinearities. 

The method was extended by Popov to damped oscillatory systems. Murty et cxi. [30] 

have investigated an over-damped nonlinear system using Bogoliubov' s method. Murty 

[32] has presented a unified KBM method for solving second order nonlinear systems 

which cover the un-damped, damped and over-damped cases. Alam and Sattar [70] have 

extended the KBM method for third order critically damped nonlinear systems. Alain [72] 

has also investigated the solution of third order nonlinear systems when two of the eigen 

values are almost equal and the other is small. Akbar ci al. [77] have extended the KBM 

method for solving fourth order more critically damped nonlinear systems. 1-laque ci al. 

[79] have investigated the solution of fourth order critically damped oscillatory nonlinear 

systems when two of the eigen values are real and equal and the other two are complex 

conjugate. Uddin and Sattar [80] have presented an asymptotic method for solving fourth 

order weakly nonlinear differential system with strong damping and slowly varying 

coefficients. Recently, Rahman ci al. [81] have developed a technique for solving of 

fourth order near critically damped nonlinear systems. 

For the relation 24  24 + 2A, the solution obtained in Rahman ci al. [81] break-down. 

The aim in this chapter is to fill this gap, that is, we are interested to investigate the 

solution when the i'elation 24  24 + 224 exists among the eigen values 2, 22 , A.3 , 24 . 

The solutions obtained by this technique show good coincidence with those obtained by 

numerical method. 
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4.2 The Method 

Let us consider the fourth order weakly nonlinear ordinaty differential equation in the 

following form 

x + C1 + c3 + c4x = —Ef(x), (4.1) 

where over dots represent the derivatives with respect to time t, is a positive small 

parameter, c1 , c21  c31  c4  are constants and f(x) is the given nonlinear function. The 

constants are defmed in terms of the cigen values 
-. 

i = 1, 2,3,4 of the unperturbed 

equation of equation (4.1)as c1 =X, C2 = ±IJ. c1 = and c4  
1=1  

ij 

The equation (4.1) becomes linear when a' = 0, and suppose the eigen values - X and 

- 2 are almost equal (2 22 ) and other two eigen values - and 
- 

X. are distinct. 

Therefore, the unperturbed solution is 

x(1,0)= a10 (e" + e') + a2o
[e

21  
a30e +a40e (4.2) 

where a (i = 1, 2, 3, 4) are arbitrary constants. 

When a' 0, following Alam [72] technique we choose the solution of equation (4.1 in 

the form 

+ a4 (1)e '  + eu1 (a1 ,a2,a3,a.1,i) + 

where a, (1 = 1, 2, 3, 4) satisfy the following first order differential equations: 

e4(a1,a2,a3,a4,1)+e2", i=l,2,3,4. (4.4) 

Confining only to a first few terms 1, 2, 3.....n in the series expansions equations (4.3) 

and (4.4), we calculate the functions u1  and A1 , 1 = 1, 2, 3, 4 such that 

a, (1), 1 = 1, 2, 3, 4 appearing in equations (4.3) and (4.4) satisfy the given differential 

equation (4.1) with an accuracy of order e. To determine the unknown functions 

u1 , Al , A2, A3, A4 , it is assumed (as customary in the KBM method) that the correction 

term u1  does not contain secular-type term i e 2' , which make them large. 

Differentiating equation (4.3) four times with respect to I, substituting the derivatives 
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xe), , 1, and x in the original equation (4.1), utilizing the relations presented in 

ly equation (4.4) and finally equating the coefficients of €, we obtain 

+ A,)(D - + A)+ e(D—A2  +)x 

—D))A +e t (D—A2 +)(D—A2  +A2)(D— +A4)A3  + 
2 

. 
(4.5) 

- 

e 21(D_A+)(D_+k)(D_+A2)A4 +( )(D+)x 

D(D+A2- 2)A2 
)D(1)+A2—)A+ 

(D+ ,)(D+2,)(D+A2)(D+A4 )U1 = 

where 

( I 
-2i e 

-,t' 

 — 
f° f(x0 ) and x

0
=_a1(t)(e 21t +e)+a2(t) )+ 3(r) - 

 +a4(1)e. 

It is assumed that the function f(°) can be expanded in power series (Taylor's series) in 

the fonn (see also [31 for details) 

11 
-t r  -2. t -Z,t. 

 j(0) =J(a3ea4e 

I

I 
a

1
(e - )+a2 

—A2 )j

r 

' 
(4.6) 

rO 

where n is the order of polynomial of the nonlinear function f. This assumption is 

certainly valid when f is a polynomial function of x. Such polynomial functions cover 

some special and important systems in mechanics. Following Alam's [72], in this chapter 

we assume that u1  does not contain the terms J and F of f(0), since the system is 

considered to near critically damped. Substituting the value of f(s) from equation (4.6) 

- 
22t \ 

into equation (4.5) and equating the coefficients of like powers of 
, — 

we 

obtain 

e 1 (D—A2 +)(D—A2 +A2)(D—A2 +)A3 +e 2tt(D_24  +)x 

+A2)x 

(D—A +24 )+e t (D — A2  +))(D — A2 +A2)(D—A2 +24)}A1 + (4.7) 

(D+24){e'( —A2 _1))+e2t(A2 —A2 31))}A2 
( eA2e

2 1)
)  

x J)(D + - 

± 

A2 )A2  = -n;, - !a(e 1'  + 
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-p 

(D+ 24 )x DD + A3 — 1)  )A2  = —a2/, (4.8) 

and 

(D + 2)(I..) + A2)(D + A)(I) + ,14 )u1  

(4.9) 
+e•2i)+az[ 

21—A3 

KBM [2-4], Alam [70. 721 have imposed the condition that Ut does not conlain the 

fundamental terms (the solution presented in equation (4.2) is called generating solution 

and its terms are called fundamental terms) of 
f(s). The solution of equation (4.8) gives 

value of the unknown function A2. If the nonlinear function f and the eigen values 

—23, —24  of the corresponding linear equation of equation (4.1) are not 

specified then it is not easy to solve the equation (4.7) for the unknown functions A1 , A3  

and A4 . When these are specified, the values of A1 , A3  and A4  can be found subject to 

the condition that the coefficients in the solutions of A1 , A3  and A4  do not become large 

(see Alam [72], Akbar el al. [77] for details), as if Al , A3  and A4  do not contain terms 

involving 1e 1 . in this chapter, we have imposed the conditions that the relation 

24 23  + 2,Zl  but 24  <2A exists among the eigen values A , 23,24  (also 2 --> 22 since 

the system is near critically damped). These relations are important, because under these 

relations the coefficients in the solutions of Al , A3  and A4  do not become large. Under 

these imposed conditions, we obtain the values of A1 , A3  andA4  from equation (4.7). 

Substituting the values of Al , A2  ,A3  and A4  in the equation (4.4), we obtain the solutions 

of a, (i) (i = 1, 2, 3, 4), which are proportional to the small parameter c . So they are 

slowly varying functions of time i, that is, they are almost constants and by integmting 

we obtain the values of a, (I = 1, 2, 3,4). It is laborious work to solve the equation (4.9) 

for u1 . However, as 23 —* 23 it takes simple form 

(D + 23 )2 (D + 23 )(D + 24 )u v (a3e' ,a4e441)1 e21 (a1  — a2t)}' . (4.10) 
r='2 

Solving equation (4.10), we obtain the value of it, . Finally, substituting the values of 

a, (/ = 1,2,3,4) and U1  in the equation (4.3), we obtain the complete solution of equation 

(4.1). 



4.3 Example 

For an example of the above method, we consider the following fourth order nonlinear 

differential equation, 

= — x3 , 
 

( 
 

e —e 
Here f(x)=x 3  and x0  =1a(e'' +e ' )±a2 

- 

)+a3e t  +a4 "  

3 

(e_A  
Thus, f(0) ={ia  (e t +et)+a2 

2 —A2 
+a3e_A +a4e_t} 

E0  =(a3e' +a4e 2t ), F1  =3(a3e
-At 

 +a4e ) . 
(4.12) 

Vy According to the equations (4 .7)-(4.9), we obtain 

e t (D — +24 )A3  ±e"(D-24  +2)x 

(D- 4  + )(D- 4  +)A4 +i {e t  (D- 1 +)(D— +A)x 

(I)—A +, 4)+e  )2t(D_A2 A2  +A)(D—A +A)}A1 +(D+t4 )X 

_D)+e2t ( - —D)}A2  -(- 

1 3 

D(D +  A1  - 
' 

' )A2  = —{(a3e
-2,t + a4e

2 
 ) + 3(a3e A"  + a4e

-21 
 )

2 x 

I 2: -Al 
—a1 (e

-
+e )1, 

2 
(4.13) 

-212 

(D + 4)x D(D + - 

+  A2 )A2  = —3a2(a3e
-At  + ae 4) 

, 
(4.14) 

and 

(I) + A1 )(D+A)(1)+ A.3 )(D+ )t4 )u1  

f-At  
3 e 

-At 
e 

l — 

— 

(4.15) 

A2   
r=2 

Solving equation (4.14), we obtain 

2 -22 1 )r + n3ae_2A1t 
A2  —_a2 [n1a3e +n2a 3a4e . IL (4.16) 

where 
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3 12 
f t  = 2 ±24)(2++224  

'I 
(417) 

3 
n3  = 

Substituting the value of A2  from equation (416) into equation (4.13). in order to 

separate the equation (4.13) for determining the unknown functions A> , A3  and A.1 , we 

use the conditions as discussed in the method (see also Alam [72], Akbar et al. [77]). It is 

to note that our solution approaches toward critically damped solution (see Alam [72]) if 

However, equation (4.13) has not ai exact solution unless ?.> - Now, we 

consider 2.3  23 + 22 but 24 (223 . Under these imposed conditions and by equating like 

terms on both sides of the equation (4.13), we obtain 

C
-21 

= —a2U)?>  2223(23 + 2 + 22>  )1e2 
+22)C 

- 

I +22324 
+ 

-(2 +2 i% )1  

+ +2324 +2224 )tc ' _a2an3 A224 (A1 +A -2A3 + 

424  )te2' 
+22 4  ) 

e>'(D-23 + ) + 2)(D— 2>  + 

2 -(2 +22 >4 

=[a2n> {(23 +223)(23 +223 —24)#23 +23 
(4.19) 

3 2 -(). 4.22 )t 3 -32,4 

+[a2n1(A+2%3 )(A2 +223 _24)_]03 e 
- —a3 e 

- 

and 

e (D_24 +23)(D_24 +23)(D 24+23)144 

1 =[—a2n2{(A>  + 23)(2A1  + 23 + 324)+ (22 + 22323+ A3 23 + 2323+ 
2 

+ 2324 )} - 3a> ]a3  a4e2' 
+23+24)> 

+ [a2n3{(1 + 2> )(2>  —23  + 324 ) 

3 2 -(2 +22>1 1 
(4.20) 

+24(A1+23-2Ai+4A4) ---a1ja4e 4 +[—a2n2(A2 +23)x 

(223 i-23 +321 )-3a> ]a3 C14e 2' ' +[a2n3(22  +24 )(23 —23+323) 

-32 1 3 --a la4e — [3a3ae '  ±ae 1. 2 t 

The particular solutions of equations (4.1S)-(4.20) yield respectively 
>4 

2 - 2,+22 >4 
- i> a2a3 1e - ' + i2a9a1e - + 13a2a3a4te 

(4.2 1) 
- 

)( 
+ i4a2a3a4/e2' 

2 +2 +2. >1 
+ i5a2a1et2' 

- +224 
+ i6a2a/e - 

+22,>: 
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A3 (A'I,a2 + (M3a2  +M4a3  )ae +M5ae 2 ' 
(4.22) 

+ M6aa4e +)4)1  

and 

A4  =(S1 a2  +Siai)a3a4e)t -t-(S3a2  +S4a1 )ac' +(Sç cl 2  +56a1 )x 
(4.23) -(A +23 )1 3 -22,,i a3a4e 2 +(37 a2  +S8a1 )ae' t  +S9a3ae ~2)t +S10a4e 

where 

= —nAA3  + A2  + 2/13 ), 

= —n(222  + 2A224 + A3 + + A 4  + 

r3  = —n3A2A(A1  i- ,13 - 2A -- 4A4). 

1; (i 1 1 
(A--A3) (A+2A—, 4 ) 

13  

r (i 1 
1=- I ± + 

(/+/%4) (Al +A2)' 

1=— 
1; 

224( +/4)(/+224 —/13) 

r_ (i I II 
1=- I-+ +- 

2A4(A+24 )(A1+224 —A1)2,%4 (A+2A.4 -2) 

mi={(+2A2)(+2A2_ 24)++A2+2A2)) m2=—, 

in3  =nL (2A3 +A2 )(2A2+A2—,%4 ), 

SI  =n +A2)(2 +324)+(2%+2A224  ++AA3 +24  +A224) 

s2=-3, s=421+24)(A3—A2+324)+24(A1+/12-2A2+424)}, 

s5 =!n2(A2+,13)(2A2 +A2+3,%4 ), s6 =-3, 

s7 =n3(A+)(A—A3 +32), 
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/ 

A'! 
in1  

223(23+223 -22)(23  +223 -23) 

M 2 223(A+2A3 -22 )(23+223 —%4 ) 

m 
M3 

223(23+223-23)(+223—A4)' 

m4  

223(23+223 —14)(23+223-24)' 

M 5 = 
1 

(Al  —323)(22  —323)(323 AS 
3 

6  223(2 —223  /14)(22  —223  24 ) 

SI  

I (23+24 )(23+24 )(—A1 +23-23-24 )' 

s2 =- 
S2  

(23 +23(23 +24)(—A1+23-23 -24) 

1 = 

•S3  

224 (23-22 +224 )(-23+23-224 ) 

c
I
,  

22(23 -23 +224 )(-23 +23-224 )' 

s5 =- 
(A2 +24)(23+24)(14-23-23-24) 

(23 +24)R+24 )(23 —)2 -23-24)' 

57  

224(14-23 —224 )(23 —23±224)' 

s-- SR 
8 224(14-23 —224 )(23 —23+224)' 

224(14-23-2%4 )(23 —23-224) 

S1o = 
1 

(14  - 32.4)(A, - 324)(23 - 32.4) 

(4.24) 

1-lere u1  is a correction term and has also very small contribution in the soiution. 

However, it is laborious work to solve the equation (4.15) for u1 . So, we can ignore the 

calculation of u. Putting the values of A1 , A2, A3  and A4  from equations (4.21), (4.16), 

(4.22), (4.23) into equation (4.4) and integrating, we obtain 
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2 - e -22 )i) 

a1(I)=a10  +e[a20  a0x .1 (-2+2 -22 
) + 

e 22 22 ' _ 
/2 2, +22 ) —11 j1e 2 3 

I 
- 3 

2-2+22) 

14(1 - e2' 2 
23 

+a20 a30 a40  x 2I+22_23_2t + 
i 2, +2, + 2) 

2-2+2+2 
I 2 3 4 

41 - e1' 
+2, _224  JI 

[ 

e(_ +2 2 22 )t 1'i(A A, +22)l, 
_i 1 e '22'  + 

2 —A. +22 
I 2 4)J 

1—e
-22 

 'I _____ ___ 
\ -(2, +2)t \ 

[ 
- e2" 

\1 
02(1)=a70  +ea2o[niao[ 

, 
j+n2a30a40[_

- +24 
na4o _ 

2 224 Jj 
1_ e_k+23' 

03(1) = a30  + e[a:o 1a20  + M2 QLO( 
+ 23 

J+ a 03a 0  + M4a10 
+ ) 

e_2A31  
+ a0M5 

i - - 

I l+a 0a4M6 
2 

( 

4 J 223 ) 23 + 11 

___________ 

I I - a4(t) = a40  + 5[a30  a40 a20 2 aio(_ J a403a20  + S4a10 
+ J 

__________ 

j1_ e 22 +24 
+ a30  04Q  {s5  a20  + 6 a10 

23 +23 J 
+ a 0  0 20 + Sg  aj 

23 +24 J 
-2) /'\ 

I +a + a3 

oa4osg(  23+24 ) 
40S10[2  

(4.25) 

Thus, we obtain the first approximate solution of the equation (4.11) is 

( -21 -2,:" 

x(t,e)=ia(e2h1+e_)+af e 
I 

J+a
3

e 231  +0
4

e 241 (4.26) 

where 0L'  a2 , a3 , a4  are given by the equation (4.25). 
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4.4 Results and Discussion 

To test the accuracy of the approximate analytical solutions obtained by the presented 

technique have been compared to the numerical solutions. Firstly, x(l, ) is calculated by 

the equation (4.26) by using the imposed conditions -), ,t, 2. ,% + 221  but 24  <22, 

in which a1 , a2 , a3 , a4  are calculated by the equation (4.25). The corresponding 

numerical solution of equation (4.11) is computed by fourth order Runge-Kufta method, 

The approximate analytical solutions and numerical solutions are plotted in the Figs. 4.1-

4.4 for different initial conditions. 
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Fig. 4.1 First approximate solution of equation (4.11) is denoted by -. - (dashed lines) 

by the presented method with the initial conditions 

a10  =0.6, a20  =0.6, a30  =0.6, a, =0.6 or [x(0)=l.80000, (0)=-2.6151, 

I(0)=3.33514, (0) =-3.88353] when ,1 =0.7,21  =0.95,  

and f = x. Corresponding numerical solution is denoted by - (solid line). 
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2 8 10 12 14 

-0.5 

Fig. 4.2 First approximate solution of equation (4.11) is denoted by -. - (dashed lines) 

by the presented method with the initial conditions 

a1,0  =1.0, a20  = 0.5, a = 1.0, a40  = 0.5 or [x(0) = 2.50000, (0) = —2.88042, 

.(0)=3.13488, (0)=-3.07011] when A1  =0.25, A2  = 0.8, A =1.2,24  = 1.43,8=0.1 

and f = x3 . Corresponding numerical solution is denoted by - (solid line). 
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Fig. 4.3 First approximate solution of equation (4.11) is denoted by - - (dashed lines) 
by the presented method with the initial conditions 

a10  = 0.4, a2,0  = 0.4, a30  = 0.4, a40  = 0.4 or [x(0) = 1.20000, (0)= —1.74277, 

(0)=2.22474, Y(0)=-2.65437] when A =0.7,A2  =0.95, A, =1.18,24  =1.35,e=0.1 

and f = x3 . Corresponding numerical solution is denoted by - (solid line). 
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Fig. 4.4 First approximate solution of equation (4.11) is denoted by -. - (dashed lines) 

by the presented method with the initial conditions 

a10  =0.5, a20  =0.5, a 0  =0.5, a40  =0.5 or [x(0)=1.50O00,(0)=-2.l79O1, 

(0)=2.78047, (0)=-3.28167] when ,% =°,l  =0.95, A.3  =1.18,24  =1.35, g=0.l 

and f = x3 . Corresponding numerical solution is denoted by - (solid line). 
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CHAPTER 5 

IV- 

Conclusions 

The determination of amplitude and phase variables is crucial question in strongly 

nonlinear damped oscillatory differential systems and they play very important role for 

any physical problem. The amplitude and phase variables characterize the oscillatory 

processes. In presence of damping, amplitude a -+ 0 as i - (i.e., for large time i). it 

is also noticed that the some limitations of He's homotopy perturbation (without 

damping) technique and the KBM method (weak nonlinearity) have been overcome by 

the proposed method in chapter 3. Moreover, the proposed technique in chapter 3, is able 

to give the desired results for both strongly and weakly damped nonlinear oscillatory 

differential systems with small damping effects. 

Also, in chapter 4, the KBM method has been extended for solving the fourth order near 

critically damped nonlinear systems under some special conditions with small 

nonlinearities, when the four eigen values of the corresponding linear equation are real 

and negative numbers. From the Figs. 4.1-4.4, it is noticed that the solutions obtained by 

the presented method show good agreement with those obtained by the numerical 

method. 

1 

Wi 
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