
COMPLEXITY ANALYSIS OF ITERATED LOCAL SEARCH
ALGORITHM IN EXPERIMENTAL DOMAIN FOR OPTIMIZING

LATIN HYPERCUBE DESIGNS

By

13

Parimal Mridha \S

Roll No-1051552

A Thesis submitted in the partial fulfillment of the requirements for the degree of

Master of Philosophy in Mathematics

TwnI

Khulna University of Engineering & Technology
Khulna 9203, Bangladesh

August, 2013

Declaration

This is to certify that the thesis work entitled "Complexity Analysis of Iterated Local Search

Algorithm in Experimental Domain for Optimizing Latin Hypercube Designs "has been

carried out by Parimal Mridha in the Department of Mathematics, Khulna University of

Engineering & Technology, Khulna, Bangladesh. The above thesis work or any part of

1
thesis work has not been submitted anywhere for the award of any degree or diploma.

Ij , /VY

Signature of Supervisor

Name: Dr. A. R. M. Jalal Uddin Jamali

Designation: Professor of Mathematics,

KUET.

(~16vk

Signature of Candidate

Name: Parimal Mridha

Designation: M. Phill. Student of

Mathematics, KUET.

11

1. Approva'

This is to certify that the thesis work submitted by Parimal Mridha entitled "Complexity

Analysis of Iterated Local Search Algorithm in Experimental Domain for Optimizing

Latin Hypercube Designs" has been approved by the board of examiners for the partial

fulfillment of the requirements for the degree of Master of Philosophy in the Department of

Mathematics, Khulna University of Engineering & Technology, Khulna, Bangladesh in

August, 2013.

*

BOARD OF EXAMINER

I. Chairman

Prof. Dr. A. R. M Jalal Uddin Jamali
Department of Mathematics
Khulna University of Engineering & Technology
Khulna.

2................
Prof. Dr. Abul Kalam Azad
Head, Department of Mathematics
Khulna University of Engineering & Technology
Khulna.

Prof. Dr. Fouzia Rahman
Department of Mathematics
Khulna University of Engineering & Technology
Khulna.

4................
Prof. Dr. Mohammadrifl -Iossain
Department of Mathematics
Khulna University of Engineering & Technology
Khulna.

5.
Dr.

...
1aissin Pro .

Department of Mathematics
Rajshahi University of Engineering & Technology
Rajshahi.

I

(Supervisor)

Member

Member

Member

Member
(External)

III

Dedication

To my beloved Son

Loknath Mridha

Iv

Acknowledgement

First of all I wish to express my devotion and reverence to the Supreme Being, the creator

and the ruler of the universe, who enables me to complete the thesis for the fulfillment of the

degree of Master of Philosophy in Mathematics.

I would like to express my deepest sense of gratitude and respect to my honorable teacher

and Supervisor Dr. A. R. M. Jalal Uddin Jamali, Professor, Department of Mathematics,

Khulna University of Engineering & Technology, for his continuous encouragement, sincere

and regular advice to me for the research works. Without his kind supervision, I could not

complete this thesis.

I wish to express my profound gratitude to authority of the Khulna University of

Engineering & Technology for accepting me in M. Phil. program. Its outstanding learning

environment helped me lay a firm academic foundation.

I am also grateful with warm appreciation and great indebtedness for the support, guidance

and suggestion to me by all of my respected teachers in Mathematics Department, Khulna

University of Engineering & Technology, Khulna. They helped me whenever I needed

assistance regarding administrative as well as other academic necessities. I would like to

give sincere gratitude and proper respect to my teacher Prof. Dr. Mohammad Arif Hossain

who helped me in different phases of my M. Phil Course.

I would specially be grateful to my elder brother Mr. Birendro Nath Mridha who always

inspires me for my study and always wants to see the word "Dr." before my name.

I give heartfelt thanks to my mother and my wife who gave me mental strength in my

frustrations.

Ik

v

Abstract

Computer experiments involve a large numbers of variables, but only a few of them have no

negligible influence on the response. As is recognized by several authors, the choice of the

design points for computer experiments should fulfill at lest two requirements - space-filling

and non-collapsing. Unfortunately, randomly generated Latin Hypercube Designs (LHDs)

almost always show poor space-filling properties. On the other hand, maximin distance

- designs have very well space-filling properties but often show poor projection properties

under the Euclidean or the Rectangular distance. To overcome this shortcoming, Morris et

al. have suggested to search for maximin LHDs when looking for "optimal" designs. It is

shown that the Iterated Local search(ILS) approach not only able to obtain good LHDs in

the sense of space-filling property but the correlations among the factors are acceptable i.e.

multi-collinearity is not high. Anyway from the point of view of computational complexity

the problem is open. When number of factors or number of design points is large then it

requires hundreds of hours by the brute-force approach to find out the optimal design. So

when numbers of factors as well as number of experimental points are large, the heuristic

approaches also require a couple of hours or even more to find out a simulated optimal

- design. So time complexity is an important issue for a good algorithm. Specially for the need

of real time solution, the time complexity of the ILS approaches is analyzed. The inner most

view as well as the effect of the parameters of the algorithms have been observed and have

been analyzed. After analyzing, the time complexity model of the algorithms for two

optimal criterion namely Opt (D1, J1) as well as Opt(1') has been developed. More over

some experiments have been performed for higher dimension namely dimensions k >10.

Some new maximin LHDs value are obtained from these experiments, as there are few

maximin LHDs value available in the literatures for higher dimension, k >10. From these

experiments, multi-collinearity property, maximin LHDs in Rectangular distance, mimimal

D values, maximum pair-wise distance value of LHDs etc. are represented in this thesis.

vi

Contents

PAGE
Title Page
Declaration ii
Approval iii
Dedication iv
Acknowledgement v
Abstract vi
Contents vii
List of Tables ix
List of Figures X

CHAPTER 1 Introduction 1

1.1 Background 1

1.2 Literature Review 2

1.3 Goal of Thesis 4

1.4 Structure of the Thesis 6

CHAPTER 2 Overview of Complexity 7

2.1 Introduction 7

2.2 Some Definitions 8

2.3 Time Complexity 9

2.3.1 Constant Time Complexity 10

2.3.2 Types of Time Complexity 11

2.4 Measuring Time Complexity 13

2.5 Big-O Notation 14

CHAPTER 3 Iterated Local Search Approach for Maximin Latin 18

Hypercube Designs

3.1 Introduction 18

3.2 Iterated Local Search 18

3.3 Maximin Latin Hypercube Designs 23

vii

3.4 Definition of LHD 23

3.5 Optimality Criteria 25

3.6 ILS heuristic for maximin LHD 27

3.6.1 Initialization (Is) 28

3.6.2 Local Search Procedure (Ls) 28

3.6.3 Local Moves (LM) 29

3.6.4 Acceptance Rule 30

3.6.5 Perturbation Move (PM) 31

3.6.6 Stopping Rule (SR) 33

CHAPTER 4 Complexity analysis of the ILS Algorithms in 34

Experimental Domain: Consider ILS(D1)

4.1 Introduction 34

CHAPTER 5 Complexity Analysis of the Algorithm in Experimental 46
Domain : Consider ILS()

CHAPTER 6 Computational experiment of ILS of Higher dimensions 56

REFERENCES 65

VIII

LIST OF TABLES

Table Caption of the Table Page
No.

3.1 Some well know approaches as well as optimal criterion for optimal 27
experimental designs

4.1 Pseudo code of the ILS (D1 ,J1) algorithm 34

4.2 Analysis of time complexity for ILS (131 , J1) 45

5.1 Pseudo code of the ILS(D) algorithm 46

5.2 Analysis of time complexity for ILS (1) 55

6.1 The setting of number of runs for the ILS 56

6.2(a) Comparison of maximin LHD values for dimensions k = 11 57

6.2(b) Comparison of maximin LHD values for dimensions k = 12 and 13 58

6.2(c) Comparison of maximin LHD values for dimensions k = 14 and 15 59

6.3 Comparison of maximin LHD values and D values for dimensions 60
k — Il

6.4 Experimental results of maximnin L1 values corresponding to 61
optimized LHD values measured in L2 measure for k = 11 - 15

6.5 Experimental results of maximum average coefficient of correlation 62
of the co-factors of the maximin LHDs for k = 11 - 15

6.6 Experimental results of maximum pair-wise distance value (LM 64
and LM2) of the maximin LHDs fork = 11 - 15

Ix

List of Figures

Figure Caption of the Figure Page
No

2.1 Graphical representation of some functions in point of time 15
complexity

2.2 Schematic view of the field of complexity 17

3.1 Some LHDs and their corresponding (131,J1) values 24

3.2 Illustration of Neighborhood solutions for LMRPDI based local search 30
(LS) procedure

4.1 The percentage of pairs involving and not involving critical points 36

4.2 The history of number of critical points for (k;N) = (7, 50) during 37

Local Move

4.3 The impact of N on Maximum Critical Points during history of 37
evaluation

4.4 The impact of N on average Critical Points during history of 38

evaluation

4.5 The history of WL for (k, N) = (7, 20) and (Ic N) = (7, 50) during 38
Local Search

4.6 The impact of N on (a) Maximum WL (b) Average WL during 39

history of Local Search

4.7 The Impact of k on AWL during Local Search 39

4.8 The History of Elapsed time 40

4.9 The values of log(T) plotted against log(N) 41

x

4.10 The approximate time complexity for LS with respect to k 42

4.11 The impact of N on the number of perturbations 43

4.12 The impact of k on the number of perturbations 44

5.1 The history of WL values for (k, A') = (7, 10) and (k, IV) = (7, 50) 47

during Local Search

5.2 The impact ofNon (a) MWL (b) AWL 48

5.3 The Impact of k on AWL 49

5.4 The Impact of k on execution of AWL during Local Search with Fl 50

(First Improve) in Opt(Dj, J1)

5.5 Elapsed time per local search as a function of N 51

5.6 Linear regression between log(T) and log(JV) 51

5.7 Impact ofkon T 52

5.8 The approximate time complexity of k for LS obtained by the 52
experiments

5.9 Relation between the number of perturbations and N 53

5.10 Impact of k on the number of perturbations 54

xl

CHAPTERI

INTRODUCTION

1.1 Background

The design of computer experiments has much recent interest and this is likely to grow as

more and more simulation models are used to carry out research and also made it clear that

many simulation models involve several hundred factors or even more. Computer simulation

experiments are used in a wide range of application to learn about the effect of input

variables x on, a response of interest, y [Butler (2001)]. In computer experiments, instead of

physically doing an experiment on the product, mathematical models, describing the

performance of the product, are developed using engineering laws/physical laws and solved

on computers through numerical methods [Morris (1991)]. Computer experiments involve a

large number of variables, but only a few of them have no negligible influence on the

response (sparsity assumption) [Jourdan et al. (2010)]. Since the computer response is

deterministic, it is desirable to avoid replication, in particular when projecting the design on

to a subset of variables (non-collapsing). As is recognized by several authors, the choice of

the design points for computer experiments should fulfill at least two requirements - space-

filling and non-collapsing [Johnson et al. (1990), Morris and Mitchell (1995)]. Space-filling

property ensures unbiased selection of the design points whereas non-collapsing property

provided influence of individual effect on response variable.

For the design of computer experiments Latin Hypercube Designs (LLIDs) fulfill the non-

collapsing property. Such design, firstly introduced in 1979 by McKay and his colleagues

has proved to be a popular choice for experiments run on computer simulators [Levy et al.

(2010)] and in global sensitivity analysis [Helton and Davis (2000), Steinberg and Dennis

(2006)1; Assume that N design points have to be placed and that there are k distinct

parameters. It would be done such that the points will uniformly spread when projected

along each single parameter axis. It is also assumed that each parameter range is normalized

to the interval [0, N-I]. Then, a LI-ID is made up by N points, each of which has k integer

coordinates with values in 0, 1,. . . , N-i and such that there do not exist two points with one

common coordinate value. This allows a non-collapsing design because points are evenly

1

spread when projected along a single parameter axis. Note that the number of possible LHDs

is huge: there are (N!)" possible LHDs (where N is number of design points and k is number

of factors). Anyway the main attraction of these designs is the one-dimensional projective

property. The one-dimensional projective property ensures that there is little redundancy of

design points when some of the factors have a relatively negligible effect (sparsity

principle).

Unfortunately, randomly generated LHDs almost always show poor space-filling properties

or / and the factors are highly correlated. On the other hand, maximin distance designs,

proposed by [Jonson et al. (1990)] have very good space-filling properties but often no good

projection properties under the Euclidean or the Rectangular distance. To overcome this

shortcoming, Morris and Mitchell (1997) suggested to search for maximin LHDs when

looking for "optimal" designs. in the literature the optimal criterion for maximin Li-ID are

defined in several ways [Grosso et al. (2008)] but the main objective is identical i.e.

searching the LHD with the maximizing the minimum pair-wise distance.

1.2 Literature Review

Different methods have been presented in the literature to detect maximin LHDs. Morris

and Mitchell (1995) have been proposed a simulated annealing. Li and Jeff (1997) have

been proposed a class of algorithms based on column pair-wise exchange to build

supersaturated designs. Ye et al. (2000) have been presented an exchange algorithm for

finding approximate maximin LHDs with the further restriction to Symmetric LHDs

(SLHDs). In order to reduce the number of simulations needed to achieve the desired

accuracy Crombecq et al. (2011) have proposed sequential simulation—based method.

General formulae for maximin LHDs with k = 2 are given by Dam (2005) for the I -norm

(e') and infinite norm () distances, while for the Euclidean distance(e 2) maximin LHDs

up to N = 1000 design points are obtained by (adapted) periodic designs, while, using a

branch-and-bound algorithm, exact solutions have been obtained for N up to 70. Inspired by

Dam (2005), Flusslage et al. (2006) proposed (adapted) periodic designs and simulated

annealing to extend the known results and construct approximate maximin Latin Hypercube

Designs (LHDs) for k up to 10 and N up to 100. All these designs are available in the

website http:// www.spacefihlingdesigns.nl. Husslage et al. (2006) has shown that the

periodic heuristic tends to work when the number N of design points gets above some

threshold which depends on the dimension k of the design (more precisely, such threshold

increases with k), Grosso et al. (2009) successfully implemented Iterated Local Search (ILS)

approach for finding maximin LHDs fork =3 , 4,. .,10, and N= 3, 5......, 100. Iterated Local

Search (ILS) [Lourenco et al. (2002)] is a meta-heuristic designed to embed another,

problem-specific, local search as if it was a black box. This allows Iterated Local Search to

keep a more general structure than other meta-heuristics currently in practice. This simple

type of search has been reinvented numerous times in the literature, with one of its earliest

incarnations appearing in Lin and Kernighan (1973). The rationale behind ILS is supported

by the proximate optimality principle [Glover et al. (1997)]. This principle assumes that

good solutions are similar. This assumption is reasonable for most real-world problems.

A lot of improved values (maximin LHD values) are obtained by ILS approach proposed by

Grosso et al. (Grosso et al. (2009). The improved values are available in the well known

web portai http:// www.spacefihlingdesi ns.nl. But the algorithm was implemented in Sun-

Cluster Mainframe environment. It is worthwhile to mention here that under the project

2010-2011 provided by CASR (Committee of Advanced Studies and Research), KUET, the

algorithm (Grosso et al. (2009) is partially implemented the in the PC windows

environment. Also authors, in [Jamali et al. (2008) and Aparna D. (2012)], analyzed the muliti-

collineanty of the maximin LHD obtained by the ILS approach. In [Jamali ci al. (2010)], it is

- shown that the ILS approach not only able to obtain good LHD in the sense of space-filling

property but the correlations among the factors are acceptable. Moreover in this article they

also discuss about rectangular (e') coordinate measure.

From the above discussion it may conclude that ILS approach is a state-of-art method to find

out the maximin LHD based experimental design. From the point of view of computational

complexity the problem is, to the authors' knowledge, open (but suspected to be NP-

complete) [Grosso et al. (2009)]. So when numbers of factors as well as number of

experimental points are large, the algorithm required a couple of hours even more to find out

a simulated optimal design. So time complexity is an important issue for a good algorithm;

especially when we need a real time solution. Therefore the time complexity of the ILS

approach [Grosso et al. (2009)] should be analyzed. But as ILS is a Mata-heuristic approach

91

(several random parameters are implemented), it is impossible to analyze the time

complexity of the algorithm theoretically.

It is remarked that the maximin criterion is not the only one used in the literature, but also

other criteria like the maximum entropy [Currin et al. (1991, Jin et al. (2005), Park (1994),

Shewry and Wynn (1987)], the integrated mean squared error [Sacks et al.(1987), Park

(1994), Crary (2002)], the minimum correlation between components [Iman and

Helton (1985), Owen (1994)] and a mixed criterion involving both maximin distance and

correlation [Joseph and Hung (2008)] are used. Bates et al. (2003) by considering

minimization of potential energy which is called Audze—Eglais Uniform Latin Hypercube

design. [Fuerle and Sienz (2011)], obtained Optimal Latin Hypercubes design by

minimizing the Audze—Eglais potential energy of the points using a permutation genetic

algorithm. The book of Santner et al. (2003) and the article of Levy and Steinberg (2010) are

referred for more details. Moreover some important optimal objective function (Criterion) as

well as methods will be given is chapter 3 in tabular form.

13 Goal of Thesis

It has been already mentioned above that the design of computer experiments has much

recent interest and this is likely to grow as more and more simulation models are used to

carry out research. Morris (1991) and Kleijnen (1997), it is also made clear that many

- simulation models involve several hundred factors or even more. So, for the presents of

combinatorial nature, the number of possible LHDs is very high - (N!)k. Consequently, when

number of factors and/ or number of design points are large then it requires hundreds of

hours by the brute-force approach to find out the optimal design.

The intrinsic difficulty of the problem and/or the limited availability of computation time for

the particular application from which the problem arises (think, e.g., about real-time

applications, where solutions are required in very short times) may make computationally

infeasible to return an optimal solution by the required time. The importance of high

performance algorithms for tackling difficult optimization problems can not be understated,

and in many cases the only available methods are meta-heuristics like ILS approach. The

main objectives of the project are point out below.

Ifl

4
As mention earlier that ILS approach is a meta- heuristic based algorithm and as

the complexity analysis regarding theoretical point of view is almost impossible,

here the time complexity of the algorithm will be analyzed extensively in

experimental point of view.

As in ILS approach, has considered two optimal criterion. The time complexity

of ILS approach for both optimal criterion are measured separately in

experimental points of view.

As in Grosso et al. (2009) used ILS approach for k :!~ 10 and obtain remarkable

results which is updated in the well known web portal

www.spaceflhlingdesigns.nl. So the performance of the ILS approach for the

dimension k) 10 is experimentally studied.

> The multi-colliniarity property, optimal (I) value, maximin LFID value in

rectangular distance measure and maximum pair-wise distance are presented in

the thesis.

The algorithm has two variables name number of factors (k) and number of design points

(N). Moreover there are several parameters as well as random variables (parameters) exist in

the algorithm. These parameters are vary according to the change of the variables. So

extensive experiments will be performed by fixing each variable and counting the number of

iterations as well as CPU times. We will try to graphically represent the inner- most view of

the algorithm for the changing of variables as well as parameters. After analyzing, it will be

tried to develop time complexity model of the algorithms.

Though finding the optimal LI-ID in brute-force approach is (N!)k, but we expected, in ILS

approach, this will be polynomial time with low order. It will be worthwhile to mention here

that the solution obtained by the ILS approach must not be guaranteed to be optimal one

rather it may be approximately optimal. It is also expected that function based approach

also work well. Finally it is expected that structural analysis as well as theoretical

analysis may build the method as well as experimental design much more stronger.

Besides some complexity analysis, several experiments will be performed for dimension

k) 10. Then the results will be compared available one in the literature.
It

5

1.4 Structure of the Thesis

After the chapter 1 in which the literature review as well as introduction of the research

work is presented, the concept of Complexity is briefly discussed in chapter II. In chapter

HI, the ILS algorithms are presented. in chapter IV, the complexity of the algorithms

regarding Opt(Di,J1) optimal criterion is discussed from experimental point of view. Also In

chapter V, the complexity of the algorithms regarding Opt (1) optimal criterion is

discussed from experimental point of view. Several experiments of higher dimensions are

presented in chapter VI. in this chapter we have observed multicillinearity property,

rectangular distance measure and maximum pair-wise distance of LHD for maximinn LHD.

Moreover we also observed the track of LHD for minimization of D criterion.

CHAPTER II

OVERVIEW OF COMPLEXITY

2.1 Introduction:

In general usage, complexity tends to be used to characterize something with many parts in

intricate arrangement. Complexity Theory is concerned with the study of the intrinsic

complexity of computational tasks. Its "final" goals include the determination of the

complexity of any well-defined task. Additional "final" goals include obtaining an

understanding of the relations between various computational phenomena (e.g., relating one

fact regarding computational complexity to another). Indeed, we may say that the former

type of goals is concerned with absolute answers regarding specific computational

phenomena, whereas the latter type is concerned with questions regarding the relation

between computational phenomena.

Interestingly, the current success of Complexity Theory in coping with the latter type of

goals has been more significant. In fact, the failure to resolve questions of the "absolute"

type, led to the flourishing of methods for coping with questions of the "relative" type.

In general, Computational complexity theory is a branch of the theory of computation in

theoretical computer science and mathematics that focuses on classifying computational

problems according to their inherent difficulty, and relating those classes to each other. A

computational problem is understood to be a task that is in principle amenable to being

solved by a computer, which is equivalent to stating that the problem may be solved by

mechanical application of mathematical steps.

The important aspects of this approach are that [Grassberger et al.(2013)]:

• it applies to models rather than natural systems;

• complexity is distinguished from ignorance;

• it is relative to the modelling language it is expressed in;

• it relative to the identification of components and overall behaviour;

• complexity is a global characteristic of a model;

• we will get different kinds of complexities from different types of difficulty;
'5'

7

complexity represents the gap between component knowledge and knowledge of

global (or emergent) behaviour;

since difficulty is sometimes comparative, complexity will be also

Anyway there are two type of complexity regarding time and space. Time complexity is

concerned with the analysis of the elapsed time of an algorithm; whereas, how much

memory required is discussed in space complexity.

2.2 Some Definitions:

Some of these concept and respective are offered below:

(1) Time Complexity: A measure of the amount of time required to execute an algorithms

is called time complexity. Later time complexity is discussed elaborately.

Space Complexity: The (space) complexity of a program (for a given input) is the

number of elementary objects that this programs needs to store during its execution. This

number is computed with respect to the size n of the input data. We thus make the

assumption that each elementary object needs the same amount of space.

Turing Machine: Turing machines provide a model of digital computational which is

more primitive, hence harder to 'program" than random access machines. However, their

primitiveness becomes an advantage when they are manipulated for the purpose of proving

theorical results.

A Turing machine is a hypothetical device that manipulates symbols on a strip of tape

according to a table of rules. Despite its simplicity, a Turing machine can be adapted to

simulate the logic of any computer algorithm, and is particularly useful in explaining the

functions of a Cpu inside a computer.

Worst-case and Average case: Worst case analysis is used to find an upper bound on

algorithm performance for large problems (large n). Average case analysis determines the

average (or expected) performance.

Worst-case performance analysis and average case performance analysis have some

similarities, but in practice usually require different tools and approaches. Determining what

average input means is difficult, and often that average input has properties which make it

difficult to characterise mathematically (consider, for instance, algorithms that are designed

to operate on string of text). Similarly, even when a sensible description of a particular

8

"average case" (which will probably only be applicable for some uses of the algorithm) is

possible, they tend to result in more difficult to analyze equations.

Worst-case analysis has similar problems- it is typically impossible to determine the exact

worst-case scenario. Instead, a scenario is considered such that it is at least as bad as the

worst case. For example, when analyzing an algorithm, it may be possible to find the longest

possible path through the algorithm (by considering the maximum number of loops for

instance) even if it is not possible to determine the exact input that would generate this path

(indeed, such an input may not exist). This gives a safe analysis (the worst case is never

underestimated), but one which is pessimistic, since there may be no input that would
F

require this path.

Alternatively, a scenario which is thought to be close to (but not necessarily worse than) the

real worst case may be considered. This may lead to an optimistic result, meaning that the

analysis may actually underestimate the true worst case.

When analyzing algorithms which often take a small time to complete, but periodically

require a much larger time amortized analysis can be used to determine the worst-case

running time over a (possibly infinite) series of operations. This amortized worst-case cost

can be much closer to the average case cost, while still providing a guaranteed upper limit

-
on the running time. The worst-case time complexity is usually simpler to work out.

2.3 Time Complexity: Time Complexity comparisons are more interesting than space

complexity. The programming language chosen to implement the algorithm should not

affect in time complexity analysis. There are some other factors that should not affect in

time complexity are-: the quality of the compiler, the speed of the computer on which the

algorithm is to be executed.

The objectives of the time complexity analysis are to determine the feasibility of an

algorithm by estimating an upper bound on the amount of work performed. Objectives of the

time complexity analysis are also to compare different algorithms before deciding on which

one to implement.

Time complexity analysis is based on the amount of work done by the algorithm. It

expresses the relationship between the size of the input and the run time for the algorithm.

Time complexity is usually expressed as proportionality, rather than an exact function.

To simplify analysis, we sometimes ignore work that takes a constant amount of time,

independent of the problem input size. When comparing two algorithms that perform the

same task, we often just concentrate on the differences between algorithms.

For time Complexity, simplified analysis can be based on:

Number of arithmetic operations performed

Number of comparisons made

Number of times through a critical loop

Number of array elements accessed, etc.

2.3.1 Constant Time Complexity:

Algorithms whose solutions are independent of the size of the problem's inputs are said to

have constant complexity. It is denoted as 1(0).

Example:

Suppose that exponentiation is carried out using multiplications. Two ways to evaluate the

polynomial

P(x) = 4x4 + 7x3 - 2x2 + 3x' + 6

In Brute force method:

P(x) 4*x * x * x * x +7* x * x * x ..2* x * x +3* x +6

In Homer's method:

P(x) (((4* x +7)* x ..2)*x+3)*x+6

Method of Analysis:

Basic arithmetic operations are multiplication, addition, and subtraction.

We'll only consider the number of multiplications, since the number of addition and

subtractions are the same in each solution.

We'll examine the general form of a polynomial of degree n, and express our result

in terms of n.

We'll look at the worst case (max number of multiplications) to get an upper bound

on the work.

10

2.3.2 Types of Time Complexity:

There are many different types of complexity involved in actual examples of scientific

modelling. Conflation of these into a single "complexity" of scientifically modelling a

certain system will generally result in confusion.

There might be:

• The complexity of the data: the difficulty of encoding of a data model compactly

given a coding language;

The complexity of the informal (mental) model: the difficulty in making an informal

prediction from the model given hypothetical conditions;

• The complexity of using the formal model to predict aspects of the system under

study given some conditions;

• The complexity of using the formal model to explain aspects of the system under

study given some conditions.

Each of these will be relative to the framework it is being considered in (although this and

the type of difficulty may be implicit).

Many important complexity classes can be defined by bounding the time or space used by

the algorithm. Some important complexity classes of decision problems defined in this

manner are the following:

Complexity Model of computation Resource constraint
class I

DTI M E(An)) IDeterministic Turing machine TimeJ(n)

P IlDeterministic Turing machine Time poly(n)

EXPTIME lDeterministic Turing machine Time 2°"

NTIME(J(n)) IlNon-deterministic Turing machine Timefln)

NP JiNon-deterministic Turing machine IFTime poly(n)

NEXPTI ME IlNon-deterministic Turing machine IlTime
2°"

DSPACE(J(n)) IlDeterministic Turing machine I Spacej(n)

L IDeterministic Turing machine Space_O(log_n)

PSPACE Deterministic Turing machine ILspace poly(n)

EXPSPACE Deterministic Turing machine Space 2°"

NSPACE(j(n)) Non-deterministic Turing machine IISpacei(n)
NL Non-deterministic Turing machine Space O(log n)

NPSPACE IlNon-deterministic Turing machine Space poly(n)

NEXPSPACE Non-deterministic Turing machine ISpace 2°"

We will discuss following three of them:

Polynomial type Complexity (P type)

(ii). NonPolynomial type complexity (NP type)

NP-Complete type Complexity. (;- ('
!,.

(1) Polynomial Type Complexity (P type):

P is the class of algorithms whose complexity is a polynomial function of the problems size.

Examples include minimum spanning tree algorithms, finding an Eulerian cycle through a

graph and bubble sort. In fact most useful algorithms have degree 3 or less.

(ii) NP type Complexity:

NP means non-deterministic polynomial. Suppose a computer program could "guess" a

solution to a problem and then could check if the guessed "solution" actually solved the

problem and this check could be done in polynomial time, then the program is said to be in

the class NP. Non-deterministic is another word for guessing. Most problems are in this

class. NP includes P i.e P c NP. Some well known problems in NP are:

find a Hamiltonian circuit thru a graph

find all subsets of a set

• travelling salesman problem

knapsack problem - find the most valuable subset of n items of positive integer

weights and values which fit into a knapsack of a given positive integer capacity.

• partition problem - give n positive integers, determine if it is possible to partition

them into two disjoint subsets of which have equal sum.

graph colouring - for a given graph find the smallest number of colours that need to

be assigned to the graphs vertices so that no two adjacent vertices share the same colour -

called the chromatic number of the graph.

It is an open question in computer science whether problems in NP are in P also i.e. NP =

If so, there would be a polynomial time algorithm for finding a solution to each problem in

12

NP. For example is there a polynomial time algorithm that solves travelling salesman

problem? No one has been able to prove that there is or is not although it is widely believed

that there is not. Believed that P c NP.

(iii) Class NP-complete:

A problem X is NP-complete if it is in NP and if every other problem in NP both known and

unknown can be transformed into X. So by finding a solution to X, we find one to all other

problems in NP. The transformation should take polynomial time. The problems listed

above in NP are NP-complete. If any of them had polynomial time algorithm as a solution,

then so would all the others.

2.4 Measuring Time Complexity:

The worst-case time complexity of an algorithm is expressed as a function

T:N — N
Where T(n) is the maximum number of "steps" in any execution of the algorithm on inputs

of "size" n. Intuitively, the amount of time an algorithm takes depends on how large is the

input on which the algorithm must operate: Sorting large lists takes longer than sorting short

lists; multiplying huge matrices takes longer than multiplying small ones. The dependence

of the time needed to the size of the input is not necessarily linear: sorting twice the number

of elements takes quite a bit more than just twice as much time; searching (using binary

search) through a sorted list twice as long, takes a lot less than twice as much time. The time

complexity function expresses that dependence. Note that an algorithm might take different

amounts of time on inputs of the same size. We have defined the worst-case time

complexity, which means that we count the maximum number of steps that any input of a

particular size could take. For example, if the time complexity of an algorithm is 3n2, it

means that on inputs of size n the algorithm requires up to 3n2 steps. To make this precise,

we must clarify what we mean by "input size" and "step".

(i) Input Size: We can define the size of an input in a general way as the number of bits

required to store the input. This definition is general but it is sometimes inconvenient

because it is too low-level. More usefully we define the size of the input in a way that is

problem-dependent. For example, when we are dealing with sorting algorithms, it may be

13

more convenient to use the number of elements we want to sort as the measure of the input

size. This measure ignores the size of the individual elements that are to be sorted.

Sometimes there may be several reasonable choices for the size of input. For instance, if we

are dealing with algorithms for multiplying square matrices, we may express the input size

as the dimension of the matrix (i.e., the number of columns or rows), or we may express the

input size as the number of entries in the matrix. In this case the two measures are related to

each other (the latter is the square of the former). One conclusion from this discussion is that

in order to properly interpret the function that describes the time complexity of an algorithm

we must be clear about how exactly we measure the size of inputs[Nicolas, (2007)].

(ii) Step: A step of the algorithm can be defined precisely if we fix a particular machine on

which the algorithm is to be run. For instance, if we are using a machine with a Pentium

processor, we might define a step to be one Pentium instruction. This is not the only

reasonable choice: different instructions take different amounts of time, so a more refined

definition might be that a step is one cycle of the processor's clock. In general, however, we

want to analyze the time complexity of an algorithm without restricting ourselves to some

particular machine. We can do this by adopting a more flexible notion of what constitutes a

step. In general, we will consider a step to be anything that we can reasonably expect a

computer to do in a fixed amount of time. Typical examples are performing an arithmetic

operation, comparing two numbers, or assigning a value to a variable.

2.5 Big-O Notation:

Big 0 notation (with a capital letter 0, not a zero), also called Landau's symbol, is a

symbolism used in complexity theory, computer science, and mathematics to describe the

asymptotic behavior of functions. Basically, it tells us how fast a function grows or declines.

Landau's symbol comes from the name of the German number theoretician Edmund Landau

who proposed the notation. The letter o is used because the rate of growth of a function is

also called its order.

For example, when analyzing some algorithm, one might find that the time (or the number

of steps) it takes to complete a problem of size n is given by T(n) = 4n2 -2n +2. If we ignore

constants (which makes sense because those depend on the particular hardware the program

is run on) and slower growing terms, we could say "T(n) grows at the order of n2 and write:

14

T(n) = 0(n2). In mathematics, it is often important to get a handle on the error term of an

approximation. For instance, people will write

cx =l+x+x 2 / 2 +0(x)

to express the fact that the error is smaller in absolute value than some constant times x3

if x is close enough to 0.

For the formal definition, supposefix) and g(x) are two functions defined on some subset

of the real numbers. We write

f(x) = O(g(x))

(orJ(x) = 0(g(x)) for x —* co to be more precise) if and only if there exist constants N and

C such that

f(x)I :5 Cg(x) For all x>N.

Intuitively, this means thatf does not grow faster than g.

If a is some real number, we write

f(x) = O(g(x)) forx —* a

if and only if there exist constants d> 0 and C such that

If(x)I :5 Cg(x) for all x with k-al <d.

The first definition is the only one used in computer science (where typically only positive

functions with a natural number n as argument are considered; the absolute values can then

be ignored), while both usages appear in mathematics.

Non-Polynomial type

I Logarithmic type I

Polynomial type

Linear type

Figure 2.1: Graphical representation of some functions in point of time complexity.

15

Here is a list of classes of functions that are commonly encountered when analyzing

algorithms. The slower growing functions are listed first. C is some arbitrary constant.

notation name

0(1) constant

0(log(n)) logarithmic

0((log(n)c) polylogarithmic

0(n) linear

0(n2) quadratic

O(n') polynomial

O(C) exponential

Note that O(n') and O(C) are very different. The latter grows much, much faster, no matter

how big the constant C is. A function that grows faster than any power of n is called

superpolynomial. One that grows slower than an exponential function of the form C1 is

called subexponential. An algorithm can require time that is both super-polynomial and

subexponential; examples of this include the fastest algorithms known for integer.

01. factorization. Note, too, that O(log n) is exactly the same as O(log(nc). The logarithms

differ only by a constant factor, and the big 0 notation ignores that. Similarly, logs with

different constant bases are equivalent. The above list is useful because of the following

fact: if a functionj(n) is a sum of functions, one of which grows faster than the others,

then the faster growing one determines the order of fin).

('' ' .vi kipdiaor/w/wiki .pliini?ti1t1ç=131g.)

Example: If f(n) = 101og(n) +5(log(n))3 +7n + 3n2 +6n3 thenj(n) = 0(n3)

One caveat here: the number of summands has to be constant and may not depend on n.

This notation can also be used with multiple variables and with other expressions on the

right side of the equal sign. The notation:

f(n,m) = n2 + m2+ O(n + m) represents the statement:

N Vn,m > N : f(n,m) n2 + m3 + C(n + m)

16

Figure 2.2: Schematic view of the field of complexity

Ii

17

CHAPTER III

ITERATED LOCAL SEARCH APPROACH FOR MAXIMIN LATIN
HYPERCUBE DESIGNS

3.1 Introduction

The Latin hypercube design is a popular choice of experimental design when

computer simulation is used to study a physical process. These designs guarantee

uniform samples for the marginal distribution of each single input. A number of

methods have been proposed [Lournce et al.(2002), Martin and Otto(1996) for

extending the uniform sampling to higher dimensions. We show how to construct

Latin hypercube designs in which all main effects are orthogonal. Our method can

also be used to construct Latin hypercube designs with low correlation of first-order

and second-order terms. Our method generates orthogonal Latin hypercube designs

that can include many more factors than those proposed by Ye [Ye (1998)].

3.2 Iterated Local Search

The importance of high performance algorithms for tackling difficult optimization

problems cannot be understated, and in many cases the only available methods are

metaheuristics. The word metaheuristics contains all heuristics methods that show

evidence of achieving good quality solutions for the problem of interest within an

acceptable time. Metaheuristic techniques have become more and more competitive.

When designing a metaheuristic, it is preferable that it be simple, both conceptually

and in practice. Naturally, it also must be effective, and if possible, general purpose.

The main advantage of this approach is the ease of implementation and the quickness.

As metaheuristics have become more and more sophisticated, this ideal case has been

pushed aside in the quest for greater performance. As a consequence, problem-

specific knowledge (in addition to that built into the heuristic being guided) must now

be incorporated into metaheuristics in order to reach the state of the art level.

Unfortunately, this makes the boundary between heuristics and metaheuristics fuzzy,

and we run the risk of loosing both simplicity and generality.

18

Here a well known metaheuristics approaches, namely general Iterated Local Search

(ILS)has been discussed. Iterated Local Search is a metaheuristic designed to embed

another, problem specific, local search as if it were a black box. This allows Iterated

Local Search to keep a more general structure than other metaheuristics currently in

practice.

The essence of metaheuristic - the iterated local search - can be given in a nut-shell:

one iteratively builds a sequence of solutions generated by the embedded heuristic,

leading to far better solutions than if one were to use repeated random trials of that

heuristic. This simple idea [Baxter (1981)] has a long history, and its rediscovery by

many authors has lead to many different names for iterated local search like iterated

descent [Baum (1986a), Baum (1986b)], large-step Markov chains [Martin et al.

(1991)], iterated Lin-Kernighan [Johnson (1990)], chained local optimization [Martin

and Otto (1996)], or combinations of these [Applegate et al. (1999)]. There are two

main points that make an algorithm an iterated local search: (i) there must be a single

chain that is being followed (this then excludes population-based algorithms); (ii) the

search for better solutions occurs in a reduced space defined by the output of a black

box heuristic. In practice, local search has been the most frequently used embedded

heuristic, but in fact any optimizer can be used, be-it deterministic or not.

The purpose of this review is to give a detailed description of iterated local search and

to show where it stands in terms of performance. So far, in spite of its conceptual

simplicity, it has lead to a number of state-of-the art results without the use of too

much problem-specific knowledge; perhaps this is because iterated local search is

very malleable, many implementation choices being left to the developer. In what

follows we will give a formal description of ILS and comment on its main

components.

Procedure Jierated Local Search
so = Generate Initial Solution
s = Local Search(s0)

repeat

= Perturbation(s)
s*l = Local Search(sr)

= Acceptance Criterion (st, s*)
until termination condition met

end

IVIA

ILS involves four main components:

Creating an initial solution;

A black-box heuristic that acts as a local search on the set S;

The perturbation operator, which modifies a local solution;

The acceptance criterion, which determines whether or not a perturbed

solution will become the starting point of the next iteration.

Local search applied to the initial solution so gives the starting point s * of the walk in

the set S*. Starting with a good s
* can be important if high-quality solutions are to be

reached as fast as possible. The initial solution So used in the ILS is typically found

one of two ways: a random starting solution is generated or a greedy construction

heuristic is applied. A "random restart" approach with independent samplings is

sometimes a useful strategy (in particular when all other options fail), it breaks down

as the instance size grows because in that time the tail of the distribution of costs

collapses. A greedy initial solution so has two main advantages over random starting

solutions: (i) when combined with local search, greedy initial solutions often result in

better quality solutions 5*; (ii) a local search from greedy solutions takes, on average,

less improvement steps and therefore the local search requires less CPU time.

The current s, we first apply a change or perturbation that leads to an intermediate

state s' (which belongs to S where S is set of all local optimum). Then Local Search is

applied to s' and we reach a solution s' in
5*

 If s' passes an acceptance test, it

becomes the next element of the walk in S' otherwise, one returns to s . The resulting

walk is a case of a stochastic search in S*, but where neighborhoods are never

explicitly introduced. This iterated local search procedure should lead to good biased

sampling as long as the perturbations are neither too small nor too large. If they are

too small, one will often fall back to s and few new solutions of S* will be explored.

If on the contrary the perturbations are too large, s' will be random, there will be no

bias in the sampling, and we will recover a random restart type algorithm will be

recovered.
Is In practice, much of the potential complexity of ILS is hidden in the history

dependence. If there happens to be no such dependence, the walk has no memory: the

FM

perturbation and acceptance criterion do not depend on any of the solutions visited

previously during the walk, and one accepts or not s with a fixed rule. This leads to

random walk dynamics on S* that are "Markovian", the probability of making a

particular step from Sj to s2* depending only on and S2. Most of the work using

ILS has been of this type, though the studies show unambiguously that incorporating

memory enhances performance [Stutzle (1998)].

The main drawback of any local search algorithm is that, by definition, it gets trapped

in local optima that might be significantly worse than the global optimum. The

strategy employed by ILS to escape from local optima is represented by perturbations

to the current local optima. The perturbation scheme takes a locally optimal solution,

s ', and produces another solution from which a local search is started at the next

iteration. Hopefully, the perturbation will return a solution outside the basins of

attraction of previously visited local minima. That is, it will be "near" a previously

unvisited local optimum. Choice of the correct perturbation scheme is of primary

importance, because it has a great influence on the intensification/diversification

characteristics of the overall algorithm. Generally, the local search should not be able

to undo the perturbation; otherwise one will fall back into the local optimum just

visited. Perturbation schemes are commonly referred to as "strong" and "weak",

depending on how much they affect the solution that they change. A perturbation

scheme that is too strong has too much diversity and will reduce the ILS to an iterated

random restart heuristic. A perturbation scheme that is too weak has too little diversity

and will result in the ILS not searching enough of the search space. The perturbation

scheme should be chosen in such a way that it is as weak as possible while still

maintaining the following condition: the likelihood of revisiting the perturbed solution

on the next execution of Local Search should be low [Lourenco et al. (2002)]. The

strength should remain as low as possible to speed up execution time. The desired

perturbation scheme will return a solution near a locally optimal value. If this is the

case, the local search algorithm should take less time to reach the next locally optimal

value. Components from other meta-heuristics can sometimes be incorporated into the

perturbation phase. Battiti and Protasi [Battiti and Protasi (1997)] proposed memory

structures to control the perturbation. In doing so, one can force intensification when

globally good values are reached and force diversification when the search stagnates

21

in an area of the search space. Borrowing from Simulated Annealing [Kirkpatrick et

al. (1983)], temperature controlled techniques have been used to force the

perturbation to change in a deterministic manner. Basic variable neighborhood search

employs a deterministic perturbation scheme. Just as perturbation can range from too

much intensification (no perturbations) to too much diversification (perturb all

elements of the solution), acceptance criterion choices affect the search in a similar

way. The most dramatic acceptance criterion on the side of diversification is to accept

all perturbed solutions. This type of practice can undermine the foundations of ILS,

since it encourages a "random-walk" type search. Contrasting with this, the algorithm

accepts only solutions that are improvements to the globally optimal value (a sort of

greedy strategy). Many implementations of ILS employ this type of acceptance

strategy [Rossi-Doria et al. (2002)]. This type of criterion, especially with a weak

perturbation scheme, can restrict the search from escaping the current basin of

attraction. Moreover, with this type of scheme the probability of reaching the same

locally optimal value increases a trait that reduces the algorithm's overall

effectiveness. When the search stagnated, the random restart is a good way to ensure

some diversification and to counterbalance the (possible) negative effects of too

greedy a search. Large perturbations are only useful if they can be accepted. This only

occurs if the acceptance criterion is not too biased toward better solutions [Lourenco

et al. (2001)]. Stutzle (1998) showed that acceptance criteria that accept some worse

solutions outperform their best-only counterparts.

For what concerns the stopping rule, generally the algorithm executes until one of the

following conditions is met:

• a fixed number of cycles have finished;

• the best solution has not changed for a prede fined number of cycles;

• a solution has been found that is beyond some predefined threshold.

ILS has many of the desirable features of a metaheuristic: it is simple, easy to

implement, robust, and highly effective. The essential idea of ILS lies in focusing the

search not on the full space of solutions but on a smaller subspace defined by the

solutions that are locally optimal for a given optimization engine. The success of ILS

lies in the biased sampling of this set of local optima. How effective this approach

turns out to be depends mainly on the choice of the local search, the perturbations,

22

and the acceptance criterion. Interestingly, even when using the most naive

implementations of these parts, ILS can do much better than random restart. But with

further work so that the different modules are well adapted to the problem at hand,

ILS can often become a competitive or even state of the art algorithm. This dichotomy

is important because the optimization of the algorithm can be done progressively, and

so ILS can be kept at any desired level of simplicity. This, plus the modular nature of

iterated local search, leads to short development times and gives ILS an edge over

more complex metaheuristics in the world of industrial applications. As an example of

this, recall that ILS essentially treats the embedded heuristic as a black box; then

upgrading an ILS to take advantage of a new and better local search algorithm is

nearly immediate. Because of all these features, we believe that ILS is a promising

and powerful algorithm to solve real world complex problems in industry and

services, in areas ranging from finance to production management and logistics.

Finally, notice that although all of the present review is given in the context of

tackling combinatorial optimization problems, in reality much of what is covered can

be extended in a straight-forward manner to continuous optimization problems.

3.3 Maximin Latin Hypercube Designs:

We will denote as follows the s-norm distance between two points x1 and xj, V 1,1= 1,

2,

d,jllxj- XjII (3.1)

Unless otherwise mentioned, we will only consider the Euclidean distance measure (s

= 2). In fact, we will usually consider the squared value of d (in brief ci), i.e. d2

(saving the computation of the square root). This has a noticeable effect on the

execution speed since the distances d will be evaluated many times.

3.4 Definition of LHD:

A Latin Hypercube Design (LHD) is a statistical design of experiments, which was

first defined in 1979 [McKay et al. (1979)]. An LHD of k-factors (dimensions) with N

design points, x, = (x1 , X12 X) : i = 0, 1,.. . , N—I , is given by a Nxk- matrix (i.e.

a matrix with N rows and k columns) X, where each column of X consists of a

permutation of integers 0, 1, , N—i (note that each factor range is normalized to

the interval [0, N —1]) so that for each dimensionj all x, i = 0, 1, , N —1 are

23

distinct. We will refer to each row of X as a (discrete) design point and each colunm

ofXas a factor (parameter) of the design points.

We can represent X as follows

xo xoi
x= = (3.2)

XN_l X(N_I)I X_

such that for eachjE 1, 2 . , k} and for allp, q E {O, l, - 1 } with p :~ q, x,1 7~

xqj holds.

Given a LHD X and a distance d, let

D={d(x1,xj):1i<jSN}.

Note that IDI 4").
We define Dr(X) as the r-th minimum distance in D, and Jr(X) as

the number of pairs {x1, x1} having d (x,, x) = DT(X) in X.

The maximin LHD problem aims at finding a LHD X' such that Di(X) is as large as

possible. However, a search which only takes into account the D1 values is certainly

not efficient. Indeed, the landscape defined by the D1 values is "too flat". For this

reason the search should be driven by other optimality criteria, which take into

account also other values besides D1.

0 I 2 3 4 $ 0

Fig: (b) 01(X.66)8, Jt(Xsm)'4

3 3 2 7 4 3 6

Fig: (c) Dl(XM)=8, JI(XM)2

0 I 2 3 4 3 6 7 $

x

Fig: (a) Di(X1)2, J1(X6)"4

Figure 3.1: Some LHDs and their corresponding (D1, J1) values

24

3.5 Optimality Criteria

In order to drive the search through LHDs we need some criterion to compare them.

Below we will describe some of the criteria employed in the literature.

Opt(Di, J1) Optimality Criterion : Under this criterion a LHD Y can be considered

better than another one Xifa lexicographic ordering holds:

Di(Y)>Di(X) or

D1(1)=D1(X) and J1(Y)<J1(X). (3.3)

We illustrate this optimality criterion as follows. In Figure 3.1(a) Xr is a randomly

generated LHD with (N, k,) = (9,2) where Di(Xr) = 2 and J(Xr) = 4; Figure 3.1(b)

presents an improved configuration Xsm where Di(Xsm) = 8 with J(Xsm) = 4. A third

LHDXM i5 given in Figure 3.1 (c) where DI(XM) = 8 and JI(XM) = 2; by the Opt(Di,.Ji)

criterion this is the best configuration among the three.

By generalizing this approach, we can consider the problem like a multi-objective

problem with priorities: maximize the objective with highest priority Di; within the

set of optimal solutions with respect to D1, minimize the objective with second

highest priority J1. Note that Johnson et al. [Johnson et al. (1990)] first proposed this

optimality criterion.

Opt() Optimality Criterion : As previously remarked, if there exist different LHDs

with equal D1 and J1 values, i.e. in case there exist at least two LHDs X, Y such that

D1(X) = D1(Y) = D1 and J1(X) = J1(1) = .11, we could further consider the objective D2

and maximize D2(X), the second smallest distance in X, and, if equality still holds,

minimize J2(X), the number of occurrence of D2(X), and so on. Then an optimal

design X sequentially maximizes D,5 and minimizes J in the following order: D1, J1 ;

D2, J2,• ,Dm, *Jm. Morris and Mitchell [Morris and Mitchell (1995)] have used all the

above measures to define a family of scalar-valued functions (to be minimized),

which can be used to rank competing designs in such a way that a maximin design

receives the highest ranking. This family of functions, indexed by p, is given by

iY p

_____ I (3.4)
1[D. (X))"]

25

where p is a positive integer parameter. Under this criterion, LHD Y is better than X if

çbJ,(Y)<q5(X).

Note that for large enough p, each term in the sum in (3.4) dominates all subsequent

terms. Through p we can control the impact of the different Dr distances: as p

increases, the impact of distance D1 becomes more and more relevant. In the form

(3.4), the evaluation of Op would be computationally costly. However, it has a

computationally cheaper form (see [Jin et al. (2005)]). Indeed, (3.4) can be simplified

as

rN N 1
-

[=i =1+1d,
(3.5)

which can be computed without the need of detecting and ordering all the D1 values.

An apparent drawback of the Opt(b) criterion, if we are interested in maximin values

(maximum D1 value), is that LHDs with smaller (better) Ø, can have a

worse(smaller) D1, i.e. we can have X and Y such that 01,(X) < Ø(Y) and Di (X) <

Di (Y). This phenomenon has been frequently observed in our computational

experiments. Nevertheless, a profitable choice is to work in order to minimize the Ø

- function but, at the same time, keep track of the best (D1, J1) values observed during

such minimization. This way the search in the solution space is guided by a kind of

heuristic function. Such mixed approach might appear strange but, as we will

demonstrate experimentally, it can be extremely effective.

While the two criteria above are strictly related to maximin values and they will be

widely employed in the definition of approaches for detecting maximin solutions, for

the sake of completeness, we also mention that also other optimality criteria, not

necessarily related with maximin values, are available in the literature. We present a

couple of them as well as the approaches for constructing the optimal Latin hypercube

design in Table 3.1.

26

Table 3.1: Some well know approaches as well as optimal criterion for optimal

experimental designs

Researchers Year Algorithm Objective functions

Audze and Eglajs 1977 Coordinates Exchange Potential Energy

Algorithm

Park 1994 A 2-stage(exchange-and Integrated mean squared

Newton-type) algorithm error and entropy criteria

Morris and 1995 Simulated annealing
OP criterion

Mitchell

Ye et al. 2000 Columnwise-pairwise 0 and entropy criteria

Fang et al. 2002 Threshold accepting Centered L2 -discrepancy

algorithm

Bates et al. 2004 Genetic algorithm Potential energy

un et al. 2005 Enhanced stochastic
0 criteria, entropy

evolutionary algorithms
and L2 discrepancy

Liefvendahl and 2006 Columnwise-pairwise Minimum distance and

Stocki and genetic algorithms Audze-Eglajs function

Van Dam et al. 2007 Branch-and-bound 1-norm and infinite norm

algorithm distances

Grosso et al. 2008 Iterated local search and
OP criterion

simulated annealing

algorithms

3.6 ILS Heuristic for Maximin LHD

In Section 4.1 we have discussed a general scheme for ILS-based algorithms. Now we

present the ILS based procedure for maximin Latin hypercube design. As we have

stated earlier, the main components of ILS heuristic approaches are Initialization (Is),

LocalSearch (LM), Perturbation Move (PM), and the Stopping Rule (SR)

The pseudo-code of the proposed ILS heuristic for maximin LHD problems is given

bellow:

27

Step 1. Initialization : X = J({O, 1. N - 1)))

Step 2. Local Search : X = Lti(X
while SR not satisfied do

Step 3. Perturbation Move :X' = P 1(X)

Step 4. Local Search : X' = L 1(X9

Step 5. Improvement test: if X* is better thanX

set X =

end while
Return X

Below we detail the components in order to fully specify our algorithm.

3.6.1 Initialization (Is)

The initialization (Is) procedure embedded in our algorithm is extremely simple: the

first initial solution is randomly generated. In particular, the first initial solution

generation is built as follows. For each component hE { 1, . . . , k} a random

permutation VO,. . . , VN4 of the integers 0, 1,. . . ,N - 1 is generated and we set

Xrh = Vr for all r E {0,. . . , N - l}.

Although more aggressive procedures could be designed, we chose random

generation because it is fast and unbiased.

3.6.2 Local Search Procedure (L)

In order to define a local search procedure (Ls), we need to define a concept of

neighborhood of a solution. Given a LHD X = (x,, . . . , xx), its neighborhood is made

of all other LHDs obtained by applying local moves to X Before introducing some

local moves, we first introduce the notion of critical point.

Critical point: We say that x1 is a critical point for X, if

mm d(x1, x) =

J* ,

i.e., the minimum distance from xi to all other points is also the minimum one among

all the distances in X. We denote by 1(X) 11, . . . ,N} the set of indices of the critical

points in X.

1

28

3.6.3 Local Moves (LM): A local move is an operator that applies some form of

slight perturbation to a solution X, in order to obtain a different solution. Different

local moves defme different neighborhoods for local search. In the literature two

different local moves are available: Rowwise-Pairwise (RP) exchange [Park (1994)]

and Columnwise-Pairwise (CP) exchange [Morris and Mitchell (1995)]. In Park's

algorithm [Park (1994)] some active pairs (pairs of critical points, in our terminology)

are selected. Then, for each chosen pair of two active rows, say i l and i2, the RP

exchange algorithm considers all the possible exchanges of corresponding elements as

follows:

XIJ,p 4+X j2,q Vp,q1,2,...,kp-Aq,

and finds the best exchange among them. The CP algorithm proposed by Morris and

Mithchell [Morris and Mitchell (1995)] exchanges two randomly selected elements

within a randomly chosen column. But in [Li and Wu (1997)], Li and Wu defined the

CP algorithm in a bit different way: they randomly choose a column and replace it by

its random permutations if a better LHD is obtained.

It is observed that the effect of CP based local search and RP based local search is not

significance [Jamali (2009)]. So, here, RP based local move is considered as defined

in [Jamali (2009)] which is a bit different than that of [Park (1994)]. For optimal

criteria we consider Opt(0) optimal criteria.

The definition of Rowwise-Pairwise Critical Local Moves (we call it LMp,Dl) as

follows. The algorithm sequentially chooses two points (rows) such that at least one

of them is a critical point, then exchanges two corresponding elements (factors) of the

selected pair. If f E 1(X), r, j E {1, . . . , N}, Ii, € € { 1, . . . , k}, swapping the e-th

component gives the neighbor Y defined by

Xrh ifr#iorh I?

yrh x,,, ifr=jandh=e (3.8)

Xjh ifr=i and h=e

It is remarked that, if Opt(Di, J1) be the optimality criterion, it perfectly makes sense

to avoid considering pairs x1 and x such that 1(X) fl 1x1, x} = 0 since any swap

involving two non-critical points cannot improve the D1 value of the current LHD.

29

I.

I 2 0 2 5 6

x x
0 I 2 3 4 S 6

I.

When Opt(çb) is adopted as optimality criterion, any exchange can, in general, lead to

an improved value of 0. The RP local move for Opt(0) optimality criterion is

denoted by LMppØand is also defined as Eq. (4.8), the only difference being that we

drop the requirement that at least one point must be critical.

We now illustrate the RP based local moves by considering a randomly generated

initial design A : (N,k) = (7,2) (see Figure 4.2(a)). Then a neighborhood solution of A,

by considering points (0,2), (4,4) (here both are critical points), is LHD B, obtained

after swapping the second coordinate of the points (0, 2) and (4,4) (See Figure 4.2

(b)).

Initial solution - LHD A After single Local Move, nbh sot. LHD B After complete LS - LHD C

Fig: (a) D1(X2, J1(X3 Fig: (b) Dl(Xb)=2, J I Xb)=1 Fig: (c) D1(X)=8. J1(X)=4

Figure 3.2: Illustration of Neighborhood solutions for LMRPDI based local search
(LS) procedure

Also note that LHD B is an improving neighbor of LHD A, since (D1, .11)(B) = (2,1)

whereas (D1, .11)(A) = (2,3). Finally Figure 4.2 (c) shows the maximin LHD produced

by the Local search procedure.

3.6.4 Acceptance Rule: Among the two type of local moves [Jamali (2009)], we

considered Best hnprove (BI) acceptance rule as there are no significant difference

regarding output (see [Jamali (2009)]). For the BI acceptance rule, the whole

neighborhood of the current solution is searched for the best improving neighbor. We

warn again the reader that the meaning of "Y is better than X" can be defined

30

accordingly with the Opt(Di, Ji) or Opt(b) optimality criterion. So for the Opt(Di, J1)

optimality criterion: "Y is better than X" if

D1(Y) > D1(X) or (D1(X) = D1(Y) and Ji(X) > J1(Y)).

On the other hand for Opt(0) optimality criterion: "Y is better than X' if

0(Y) <ocv.,

where O p is defined by (5).

3.6.5 Perturbation Move (PM)

Perturbation is the key operator in ILS, allowing the algorithm to explore the search

space by jumping from one local optimum to another. Basically, a perturbation is

similar to a local move, but it must be somehow less local, or, more precisely, it is a

move within a neighborhood larger than the one employed in the local search.

Actually the perturbation operator produces the initial solutions for all the local

searches after the first one. Among the two types of perturbation operators, say, (i)

Cyclic Order Exchange (COE) and (ii) Pairwise Crossover (PC) proposed in [Jamali

(2009)], we consider COE.

1. Cyclic Order Exchange (COE): Our first perturbation move procedure is Cyclic

Order Exchange (COE). The operator COE produce a cyclic order exchange upon a

randomly selected single component (column) of a randomly selected portion of the

design points (rows). Among the three variant of COE perturbation move techniques:

Single Cyclic Order Exchange (SCOE) perturbation operation, Multiple Components

Cyclic Order Exchange (MCCOE), and Multiple Single Cyclic Order Exchange

(MSCOE) [Jamali (2009)], we consider here only SCOE technique.

Single Cyclic Order Exchange (SCOE): For SCOE, we randomly choose two

different rows (points), say xi and x, such that i <j and] - i? 2, in the current LHD

X. Then, we randomly choose a column (component), say €. Finally, we swap in

cyclic order the value of component (from point x, to point x. The pseudo-code

structure for SCOE is the following.

31

The pseudo-code structure for SCOE is the following.

Step 1: randomly select two different points x, and x,

such that i <j and! - 1? 2

Step 2: Randomly choose a component e

Step 3a: set temporarily x'I =

for t=/,/-1.....i+ldo

Step 3b: Replace the component x't)f by x(I-I)C

end for

Step 3c: and replace x1.e by x'

Note that we require] - i ~! 2 because otherwise the perturbation would be a special

case of the local move employed in the local search procedure. We illustrate the

SCOE perturbation by an example. Assume we have the current LHD X' with N = 6

and k = 8

0 5 3 1 5 2 4 4

1 0 4 2 4 3 3 5 1'Y
x3 21533420 _I739
X4 3 2 0 4 2 5 1 1

4 3 1 5 1 0 0 2

~Xj 5 4 2 0 0 1 5 3

Now we randomly choose two rows (points), say X2 and x5 and we randomly choose

the column (component) f = 4. Then, after the SCOE perturbation we get the

following LHD X' (bold faces denote the values modified with respect to X),

0 5 3 1 5 2 4 4

X2 1 0 4 5 4 3 3 5

X=X3=
523420

(3.10)
x4 3 2 0 3 2 5 1 1

4 3 1 4 1 0 0 2

~XO 5 4 2 0 0 1 5 3

Note that SCOE only slightly modifies the current LHD X* but this exactly follows

the spirit of ILS, where the perturbation should keep unchanged large portions of the

current solution and should not completely disrupt it structure.

32

CHAPTER IV

COMPLEXITY ANALYSIS OF THE ALGORITHM IN EXPERIMENTAL

DOMAIN: CONSIDER ILS (D1, J1)

4.1 Introduction

As we discussed in chapter II that there are mainly two kind of complexity - time

complexity and space complexity. It is noted that among the above two complexities,

time complexity is most important for analysis any algorithm. Moreover, in any CPU,

Table 4.1: Pseudo code of the ILS (1)1, Ji) algorithm.

Set Nonlmplteration = 0
\\hiledo

br j = Ido
for / = + I........\ do

Step 1= if {i,j} in Sc(X) # 0
then: let D1 D1 , k' =0
6 r /

Step 2: Swap (X11, X31)

Step 3: Compute d' until d" ~ D
l.0 l .0

.1 . . V1 t .j:u0 N-1;u 1

else break

Step 4 :Set k'= k and D = mm Uj

end l'or
Step 5: Upload best LHD if any
else continue

end for
end for

)tep 6: Repeat the three mops if there has been at least an inlpro\ ement
Otherwise STOP
Return X'
Step 7: if X' is better then set X X" and Nonimplteration =0

Otherwise increase Nonimplteration by one
Step 8: if MaxNonlmp > Nonimplteration

E
Otherwise STOP
Return X

34

are available spaces for running any algorithm. Also, now-a-days, the crisis of space for

running an algorithm is almost solved by the presence of high memory based computer.

Therefore, our main attention is to analyze the time complexity of the algorithms of ILS

approach.

Before analysis the time complexity of the ILS (131, J1) algorithm, It is worthwhile to

present it in a Pseudo code. The Pseudo code of the ILS (131,Ji) algorithm is displayed in

the Table (4.1).

As the aim of this section is to experimentally assess the computational cost of the

proposed ILS(Dj) algorithm, we will first derive the number of operations required by a

single local search, and then those for a single run of ILS (from now on in this section we

will give as understood that we are discussing the ILS(Di,J1) version). For these

experiments we consider k = 3, 5, 7, 10 and N = 101: i = 1, 2, . . ., 10. We use the

following parameter setting: Acceptance criteria= Best Improve (BI), Local Search=RP;

Stopping criteria MaxNonlmp= 1000, Perturbation movesSCOE and number of trials is

one if otherwise not defined.

Assume that we are at iteration s of a local search and that the current value is D1 ,J1

The basic operation in a local search is the swap one between two points i andj. In order

to compare the new candidate solution with the current one, we need to evaluate D1

and j/)• Such operation does not require computing from scratch all the distances

within the candidate solution. Indeed, only those involving points i and j are changed

with respect to the current solution. Therefore, with a proper implementation we should

only compute 0(N) new distances, each of which requires a number 0(1) of operations

(indeed, we do not need to compute the distance from scratch but only update the part

corresponding to the single coordinate whose value has been changed). In fact we do not

always need to compute all the new distances: as soon as we compute a distance lower

than DI N we can stop, since the candidate solution is certainly worse than the current

one. Therefore, each swap operation requires at most 0(N) operations.

The number of swap operation is not known in advance. Indeed, swap moves are

restricted only to those involving at least a critical point. In Figure 4.1 the x-axis reports

N and the y-axis reports the percentage of actually analyzed swap moves (those

35

involving at least one critical point) over the total number of possible swaps in each run

(those involving all possible pairs of points), for k = 3, 5, 7, 10. The black curve
RM

represents the percentage of analyzed swaps, the red curve represents the percentage of

"avoided" swaps, i.e. those not involving critical points. We observe that for very small

N (W <14) most of the possible swaps are to be considered, but as N grows the

percentage of swaps to be considered drops dramatically, quickly falling below 10% for

N> 30.

CO

a
C

--

70L

so-
 p (eost C. Pt)

50

40.

0 I. I 10

N

w

I.

I

go-

70.

so

30

20

N

a,

C

a
C

I
I(=7

— aqt Ft)
- rui drmt R)

07

C

a
C

0.
(0

I

I@10

(Bad R)
- ro (adt roQt FL)

0 10 4) 4) 4) 4) W /0 W 4) 1W U 1U 4) 4) 41 J 0) It) 0) 4) 1W

N N

Figure 4.1: The percentage of pairs involving and not involving critical points

Figure 4.2 shows the history of the number of critical points during the local searches for

the case (k, N) = (7, 50). We observe that most of the times the number of critical points

is I or 2, and only occasionally is greater than 6. Figure 4.3 shows with a bar diagram

the maximum number of critical points (MCP) obtained during the run of the algorithms

for each (k, N). Apparently, we cannot observe any significant impact of N and k on the

values of MCP. Indeed such values are always below 20, and most of the time they are

36

I (k,N)(7, 501

10

8

(n
C
0
a-

0

2

near 10. In Figure 4.4 we report the average number of critical points in each

neighborhood, rounded to the largest integer; this number is always stuck at 2, for all

k = 3, 5, 10. So we can confidently claim that the size of the problem has practically no

impact on the number of critical points in each visited configuration.

01 . • I I • I I• I I • II • I

0 50 2100 1504 90006 10000 110

Local Move

Figure 4.2: The history of number of critical points for (k;IV) = (7, 50) during local Move

25

20

15

10

co

5

0
10 20 30 40 50 60 70 80 90 100

N

Figure 4.3: The impact of N on Maximum Critical Points during history of evaluation

Since we need to consider all the swap moves involving at least one critical point, the

above considerations lead us to conclude that the total number of swap moves that we

need to perform at a given iteration is simply O(kA') (factor N is due to the number of

37

rk

(b)

pairs involving at least a critical point, factor k is due to the fact that, given a pair, we

have a swap operation for each possible coordinate).

QD

N

Figure 4.4: The impact of N on average Critical Points during history of evaluation

70

201 (8) -(k.N)(7.20)
60

20 -

:

Z io

20 40 60 80 000 1000 1500 2000
Loc8lSearch

Figure 4.5: The history of WL for (A; N) = (7, 20) and (A; N) = (7, 50) during Local
Search

The last thing, we need to consider, in order to evaluate the number of operations

required by a local search, is the number of times the While-Loop is executed, i.e. the

number of times an improving solution is observed during a local search. We will denote

this number by WL. We will perform some experiments in order to find the impact of N

as Figure 4.5 shows the history of WL during Local Search for (a) (A; N) = (7, 20)) and

(b) (A; N) = (7, 50). We observe in Figure 4.5 (a) that most of the time WL lies near 10

and the largest value observed in the figure is less than 25. In Figure (b) we notice that

most of the time the number WL lies near 30 and the maximum value of WL (MWL) is

near 80. That is WL (average as well as maximum value) increases together with N.

Figure 4.6 shows a cleaner representation of the impact of N on the number MWL.

Apparently there exists a linear relation between WL and N. We can also observe an

impact of the dimension k on WL. In order to investigate the dependence on k, we

38

50

40

2
0 30
z

20

IS

0>.I,-
0 20 40 60 80

Local Search

72
C
0

I

! ;
140

120

100
0

80
.0
E 60
0

40

20

0

performed another series of experiments, fork = 5i: i = 1, 2,... , 10 and N= 10, 25, 50,

100. Note that for finding out the impact on the local search phase, WL is averaged over

the corresponding number of performed perturbations. We observe in Figure 4.7 that

there is a significant impact of k for all N: N = 10, 25, 50, 100 on the average number of

WL (AWL).

0 20 40 80 80 100 0 20 40 60 80 100

N N

Figure 4.6: The impact of Non (a) Maximum WL (b) Average WL during history of

Local Search

225 I N50 Ac,plsnce • Di; OblecOve • Opt(D,, J,)

200J
.

I
175

150

125

100

75

no

25 ___
I N10 Aceptance BI, ObJetive Opt(D,, .s,)

20-I

15

10

10 20 30 40 00

1
0 10

.. ,

Dimension Dimension

Figure 4.7: The Impact of k on AWL during Local Search

We observe that the trend shown by WL is roughly

I k'

where 0 (c (1, i.e. a fractional power functional dependence of WL on k. In conclusion,

it has been experimentally seen that the number WL is 0(N k").

Now, if we sum up the time required by a single swap (at most 0(N)), the total number

of swaps per iteration 0(Nk), and the total number of iterations WL O(Nk'), we conclude

that a local search requires at most 0(k'W1) for some r and q (in particular, we might

conjecture that q is close to 3 and r ranges between 1 and 2). In order to validate this

result we performed some experiments whose outcome is shown in Figure 4.8. In such

figure we report the average computation time per local search as a function of N for the

three different values k = 3, 7, 10 (the time is the average per local search over 10 runs of

ILS).

0.409

0.0081

o.00il

o.
-J 1

. I
O.0041

0.0034

0,401

-0.401 I
50 80 70 40 90 10 20 30 1~0 150

N

0 10 20 30 40 50 60 70 90 90 140

N

0,12

0.10

0.40

0.40

I-
o 0.04

015

012

020

0.

020

003

000

400 102030405090704040103110 0 502030405040704090140

N N

Figure 4.8: The History of Elapsed time

We assume, as derived above, that the approximate time complexity for a local search of

the ILS approach is

TO(k'Wt7),

and will try to determine practical values for r and q experimentally. In Figure 4.8, we

observe that, for each k, the curves of elapsed times grow non-linearly with respect to the

increasing of N. To find out the approximate value of q we fitted the data in a linear

regression for each k as,

log(T) = q log(N) + r log(k),

40

where I = Average elapsed time in each LS. We observe from Figure 4.9 that the range

of q is 2.5 (q :!~ 3. In particular, as k increases it seems that q tends to 3, which is the

value previously conjectured.

To find out the approximate value of r we performed some experiments by considering

LHDs k = 5i: i = 1, 2,..., 10 with N = 10, 25, 50, 100. Figure 4.10 shows the impact of

k on average elapsed time in each LS. In the figure we observe that the average elapsed

time T increases slightly more than linearly with respect to k. In order to find out the

approximate value of r we have fitted the data (see figure 4.10). We notice that the range

of r is I (r :5 2, which is again in accordance with what was previously conjectured.

-3

-

Ot2 .0=
RI

/
• 2=
S ear .a

B
/

I -

-a
/

.2== /
S 074

log (N)

-1 .5

o 0

-2.0. S:::,7. •7.57
W •i00I• 0

-2 5.

O 297930 1000000
O S 2472 00 00700

:TT
3T9 4.0 4:1 42 43 4.4 4.5 4.

log (N)

Figure 4.9: The values of log(T) plotted against log(1V)

41

4 :7

0.030

0.025

0.020

0.015

I-

0.010

0.005

0.000

U

*0

C
6

N • 20

• 50 • n)5

We remind the reader that this practical time complexity 0(k1W), with r E (1, 2) and q

€ (2, 3), for LS has been estimated in the environment of ILS instead of evaluating a

stand-alone local search. According to our observations, the local search usually

performs less iterations in the ILS environment, due to the "partially optimal" structure

preserved by the perturbations.

0.030 -

0.0.: N .25 N 25 0.025 - uod.I: poo.202
€ 6 U SIlO fl

j..(I 0).b

• O)b
W ol500ln5

_

0
0.020 y No 010511fl5

Chi°2#DOF • 0.52010.8
62 • 0 59024

0.01 5- . 0.00006 05 41500.6
1.50506 00.02507

0 .0 1 0 -

0.005-

0.000 -

ib 2b 3b 40 5

k

10 20 30 4

k

0.30

0.25

0.20

0.15
I-

0.10

0.05

0.00

0.0.1 N .00 -

Uod. Pow2P2 -

Eq us lion:
y.5(100)°b - ---

•15h0109 welghtifl5

ChI'2I0oF 0 6.36030.6
R°2 • 0.99930

0.00000 *0 00004
0.00020 *002017

—

0 10 20 30 40 50

Ic

Figure 4.10: The approximate time complexity for LS with respect to k

42

MT

- k=7
• ••

C
0

-e

a, a.
I.-
0
I-.
a,

C
0

a, a-
I.-
0

a,
E

z
a)

0 Z) 4) 8) 8) KX)

N

0 20 4) 6) 8) 0)

N

6000

C
0

• 5000
-D

t
4000

3000

2000

1000

I • I • I • • • I

0 20 40 60 80 100

N

Figure 4.11: The impact ofNon the number of perturbations

In order to get to an empirical evaluation of the number of operations required by an ILS

run, we still need to evaluate the number of perturbations (and, thus, of local searches)

performed during an ILS run. Then, we would like to find out the impact of N as well as

k on the number of perturbations during each ILS run. For these experiments we

performed ten runs of ILS and considered the average number of perturbations per run.

43

5 10 15 20 25 30 35 40 45 50

k

For these experiments we considered LHDs with k = 3, 7, 10 and N = 3, 4, . . . , 100.

From the experiments (see Figure 4.11) we notice that there is a significant impact of N

on the number of perturbation invoked for all k considered. It seems that the number of

invoked perturbations is somewhat logarithmic with respect to N (see the dot curve in

Figure 4.11).

10000

9000

8000

C 7000
2

.o 6000
t
'

0 5000

0
4000 a z

0) 3000

2000

1000

0

Figure 4.12: The impact of k on the number of perturbations

In order to fmd the impact of k on the number of perturbations, we considered LHDs:

for each N: N= 10, 25, 50, 100 ; k = 51: i = 1,..., 10. From the experiments we remark

that there is no significant impact of k on the perturbation invoked during the run (see the

bar diagram in Figure 4.12). Now, if we put together the observation that the overall

number of perturbations/ local searches per ILS run is O(log(N)), and the previous one

about the 0(k'N7) about the complexity of local searches, we can conclude that a bound

on the overall time required by a single ILS run is O(kTN log(N)), a fact that it is also

experimentally confirmed by the analysis of the elapsed times per ILS run.

Finally, the analysis of time complexity for ILS (131, Ji) is given in a tabular form along

with the pseudo code of the algorithm. Table 4.2 represents the analysis of the time

complexity for the ILS (Di, ii).

44

Table 4.2: Analysis of time complexity for ILS (D1, J1)

(1) Compute Operation 0(1)
Set Nonlmplteration = 0

(comp. only swapped cord.) \\liiled()
'or / = 1do

± Ido
Step 3 (in worst case) Operation 0(N) Step 1= if {ij } fl Sc(X) #

(since compu. stop as soon as d' ~ D1') then: let D1 = D1 , K = 0
i"U

/

Inner most for ioop operation

__ _

0(k)
Step 2: Swap (X1, X1)

> Step 3:
(in BI local move) Step 3: Compute d °

i.0

(v) WL (in local search) operation > 0(Nk') until d'" >— DI
l.0

(0 <c <1), experimentally computed vj= i .j: u = 0N-l;
outer two for loops 0hi0i

> 0(N)

(in worse case theoretically 0(N 2))
U ~

else break
(but experimentally swap 0(N)) Step 4 :Set k= k and
WL (in local search) Operation

> 0(NkC)
= min d,

(0 < c <1), experimentally computed LI

Total cost of a single LS Step 5: Upload best LHD
if any

0(1).0(N).0(k).0(N).0(Nkc) - O(ktN) else continue
ii ftir

:(l<r<2)& (2<q:53)

tcp 6: Repeat the three loops ii
Cost of a single ILS: Opt (JJ1,J1) there has been at least an

Perturbation (for fixed MIN)) II1)I't)\ CI11Cnt

0 (log(N)) Otherwise STOP
Return X'

Total Cost: Step 7: if X' is better then
set X= X' and Nonimplteration = 0

0(k"N 1').0(log(N)) 0(k'N' log(N)) Otherwise increase
Nonimplteration by on

:(l <r <2) & (2 <q :5 3) Step 8: if MaxNonlmp>
Nonimplteration

E

Otherwise STOP
Return X

45

CHAPTER V

COMPLEXITY ANALYSIS OF THE ALGORITHM IN EXPERIMENTAL
DOMAIN: CONSIDER ILS()

In this section we will perform some experiments to derive a formula connecting the
computation times of ILS(q) with N and k. The analysis will be similar to the one

previously done for ILS(D1). For these experiments we consider ILS(q$) with the following

setting: Local Search: acceptance criterion=First Improve(FI), local move =

stopping criterion: MaxNonlmp = 100; Perturbation Technique = SCOE.

Table 5.1: Pseudo code of the ILS(D) algorithm

h I Ic do --

Set Non ImpIteration = 0
\\'hilcdo

l(r i I........ ...do
IVdo

Step I= letD1 =D1 (s),1ë=0
I...... do

Step 2: Swap (X,,, Xfl)
)-ty

J:
Step 3: Compute df until (+l)> ;

Vji .j:u0.........N-l;u #j'
else break

Step 4 :Set k"= kand D mm _J
Uj

X
i

*I)

Step 5: Upload best LHD if any
else continue

end JOt

etid ftw
Step 6: Repeat the th ice loops ii there has been at least an m pro\ enleilt

Otherwise STOP
Return X'
Step 7: if X' is better then set X= X' and Nonimplteration = 0

Otherwise increase Nonimplteration by one
Step 8: if MaxNonlmp > Nonimpiteration

E

Otherwise STOP
Return X

46

Ca

12

i1 =(71O)

l0-

8-

4-

(k,N) ={7,50)
90

80

70

60

so

40

30

20

10

Again before analysis the time complexity of the ILS(q) algorithm, It is worthwhile to

present it in a Pseudo code. The Pseudo code of the ILS(0) algorithm is displayed in the

Table (5.1).

60 80 100 120 140 160 180 0 10 20 30 40 50 60 100 200 300 400

Is IS

Figure 5.1: The history of WL values for (k,N) = (7, 10) and (k,N) = (7, 50) during

Local Search

We will first discuss the time required by a local search. We do not discuss the time required

by each swap move: this is the same as in ILS(D1) and is at most 0(N). However, the

number of swap moves which have to be attempted at each iteration is now different.

Indeed, since we are considering the LM local move, we have to consider all possible

pairs of points (also those not involving critical points). Therefore, the number of swap

operations is 0(kN2). Note that this is an upper bound: since we are employing the F!

acceptance criterion, we perform swap operations only until an improvement is observed.

Next, we need to derive some formula for the number of times the While-Loop is executed

during a local search, i.e. for the number of iterations performed by a local search. As

before, we will denote this number with WL. Note that with respect to ILS(Di) we made a

change in the local search, adopting the F! acceptance criterion rather than the B! one.

Figure 5.1 shows the history of WL values during different local searches for (a) (/1V) = (7,

10)) and (b) (/c,N) = (7, 50). We observe in Figure 5.1(a) that most of the time WL lies near

47

5 and never exceeds 12, whereas in (b) we notice that most of the time WL lies near 35 and

the maximum value of WL is near 90. Therefore, it seems that WL increases together with N

both for what concerns Average WL (AWL) values and Maximum WL (MWL) values.

Figure 5.2 shows more clearly the relation between N and MWL as well as AWL. We

observe that there is a linear impact of N. In order to establish the dependency of WL on k,

we perform other experiments with k = 2i : i = 1, 2 40 and N = 10, 25, 50, 75. The

relation between WL and k is not quite clear. Indeed, we have observed in Figure 4.7 that

WL is increasing with k for k < 10 but after that it decreases and finally tends to get stable

around a constant value. It seems that by enlarging k the local search is able to reach a local

minimum in quite few iterations with respect to lower values of k. This might be due to the

fact that by increasing k we also enlarge the size of the neighborhood explored at each

iteration of a local search.

0 V M M 4D W W 70 8) 0 10 20 3) 40 80 60 70 60

N N

Figure 5.2: The impact ofNon (a) MWL (b) AWL

48

Aceptance.Fl; Mn4t)

10

18

IS

14

2

I0

4

2

0 1(1 20 20 40 50 80 70 8

N

N
- Ace nceF OtjecbveMm(I)

10

8

IS

to-

-
.
r

12.

0 1020 30 iO iO iO 70 100

k

/

- _

10.

15 .
:1

0 8 15 IS 20 35 30 35 40 45 6

50

19
::
35

It It

: --N 101 H;h

10

IS

IS

8

a

2

0

70

60

50

40

20

N k

Figure 5.3: The Impact of k on AWL

80 -

Aceptance=F I, 0 bjeCtiveM m (0 ,,J,)

70

60 -

50

40•

30 -

20

10.

6 10 20 30 40 50 60 70 8

Figure 5.4: The Impact of k on execution of AWL during Local Search with

F1(First

In what follows we will neglect the dependency of WL on k and only consider WL as 0(N),

but we should keep in mind that at small k values a dependency of WL on k is in fact

present. Since when testing ILS(D1) we employed the BI acceptance criterion, we would

like to check, for completeness, if such phenomenon, i.e. the non dependency of WL on k at

large k values, is somehow connected to the fact that we have considered the Fl acceptance

criterion. For this reason, we have performed another experiment with ILS(D1) but with the

Fl acceptance criterion. We considered LHDs: k = 2i: I = 1, 2. 40 with N = 10, 50. We

observe in Figure 5.4 that WL increases quickly at small k values, while at large k values

WL still increases, though more slowly. Such behavior is quite similar to the one observed

in ILS(D1) with the BI acceptance criterion. If we put together the expected times for all the

components of a local search, we can conclude that the approximate time required by a local

search is

where we expect that the q value is close to 4, while the r value could range between 1 and

2. In order to find out the values of q and p experimentally, we performed the following

experiments. At first we perform experiments to find the approximate value of q. For these

experiments we considered k = 5 and N= 20, 21.........80 and run ILS(() ten times for each

LHD. In Figure 5.5, we plotted the average execution time per local search as a function of

50

..0111 N. We observe that the increase with N is non linear. Therefore, we applied the logarithmic

transformation

log T = q(logN - b),
where T denotes the average elapsed time, and then fitted the data in a linear regression.

According to the data, we have that the value of q is 3.92 (see Figure 5.6), thus very close to

the expected one, 4.

30

25

20

55

SO

5

0

20 30 40 50 60 70 80

N

Figure 5.5: Elapsed time per local search as a function of

k.5
O.to: k5 -5)
54 0 4 .) L In . N o 6
Eoa))On y= 0(o-b)
W 0 19 h tIn 9
O No w.ightlng

C hi2lO oF 005954
R2 0.90798

• 3.92005 ±0.05243
5 3.50512 ±0.00157

2.5 3:0 3:5 4:0 4.

log N

Figure 5.6: Linear regression between log(T) and log(N)

51

4

2

0
I—

-2

-4

-6

Now to find out the approximate value of r we performed experiments by considering

LHDs with k = 21: i = 1, 2,.. . , 25 with N = 50. Figure 5.7 shows the impact of k on the

average elapsed time per local search. In the figure we observe that T increases somewhat

linearly with the increase of k. In order to find out the approximate time complexity with

respect to k, we have fitted the data (see Figure 5.8) and detected a value of r approximately

equal to 1.13, again in accordance with what previously derived.

80

70

60

50

40

30

20

10

0

0 5 10 15 20 25 30 35 40 45

k

Figure 5.7: Impact of k on T

90-
-- N 5 0

80- yaxAb

70- A IIo Nod. I. m.I,Io I
tQo.IIon -

60- W.v:
y N. w.I9hIIsQ -

50- COIOoF • 27.0I3
R2 . 0 00707 -/

- 40- : :::

:

--/

10-
-

- -

0-

0 1 ,0 2 10 • 310 - 410 - 5
k

Figure 5.8: The approximate time complexity of k for LS obtained by the
experiments

52

11

On

I k=5

L - y=a*(Iog N-b) (Empirica')
Mwe

500
0
a)
I-

-t
a)
0
9-
0

a)
.0
E
z
>

400

300

200

100

0 10 20 30 40 50 60 70 80 90

N

Figure 5.9: Relation between the number of perturbations and N

In order to derive the overall time complexity of ILS(q) we still need to derive a formula for

the number of perturbations (i.e. the number of local searches) performed during each ILS

run. To find out the impact ofNon such number we considered LHDs with k = 5 and N = 3,

4, . . ., 80 performing ten runs for each LHD. From the experiments (see Figure 5.9) we

notice that there is a significant impact of N on the number of perturbations. We also try to

establish a functional relation between N and the number of perturbations. Similarly to what

already observed for ILS(D,), the relation appears to be a logarithmic one with respect to N

(see the dot curve in Figure 5.9). We point out that in both cases such logarithmic behavior

is probably due to the fact that a fixed value for MaxNonlmp (100 for ILS(q$), 1000 for

ILS(D1)) has been employed in all these tests, so that the total number of perturbations tends

to get stable as we increase N.

53

5 10 15 20 25 30 35 40 45 50

k

1-1 1000

0
0

800
C
0

600

400

E
z

200

To find out the impact of k on the number of perturbations, we considered LHDs with N

50 and k = 2i: i = 1,. . . , 10. From the experiments we notice that, in spite of a peak at k =

6, there is no significant impact of k on the number of perturbations invoked during a run

(see the bar diagram in Figure 5.10).

in conclusion, summing up all the previous observations, we have that the time required for

a single ILS(Ø) run appears to be O(k r N q log(A)), with r slightly larger than I and q slightly

lower than 4.

Figure 5.10: Impact of k on the number of perturbations

Finally, the analysis of time complexity for ILS (CD) is given in a tabular form along with the

pseudo code of the algorithm. Table 5.2 represents the analysis of the time complexity for

the ILS (CD).

54

Table 5.2: Analysis of time complexity for ILS (D)

(I) Compute d' Operation 0(1)

(comp.only swappedcord.)

Step 3 (in worst case) Operation 0(1

(since compu. stop as soon as ~ D)

Inner most for ioop 0eraoui > O(k

(in B! local move)

outer two for loops Operaizon >

(in worse case theoretic ally 0(N 2))

(but experiment ally swap 0(N))

WL (in local search) Operation > 0(NkC

(0 < c < I), experimentally computed

Total cost of a single LS

0(1).0(N).0(k).0(N).0(Nk')
:(I<r<2)& (2<q:~4

Cost of a single ILS (ED)

Perturbation (for fixed MIN))
0 (log(N))

Total Cost:
0(k rq).0(log(N)) 0(k r N' log(N))

:(I<r<2)& (2<q5:4)

c do
Set Nonlmplteration = 0
\\IuiIcdo

lot / = Ido
fort ido
Step 1= D1 = D1 5 , îë = 0

lor I I i Jo
Step 2: Swap (X1, .A 1)

Step 3: Compute df'

(X+I) , until a —>D1
1

u0 N-I;

U # j1
else break
Step 4 :Set k'= k

and D1' = min dx*I)

cnd
Step 5: Upload best LHD if any

else continue
end for

end for
Step 6: Repeat the three ioops ii
there has hem at least an
ml provciien I

Otherwise STOP
Return X'
Step 7: if X' is better then set X= X'

and Nonimplteration = 0
Otherwise increase

Nonimpiteration by one
Step 8: if MaxNonlmp>

Nonimpiteration

Otherwise STOP
Return X

55

CHAPTER VI

COMPUTATIONAL EXPERIMENT OF ILS FOR HIGHER DIMENSIONS

In chapter IV and V we have performed several experiments to find out the time complexity

in experimental domain. Grosso et al. (2008) have shown that, for finding maximin LHDs,

ILS approach outperforms when number of dimensions (k) are less than 11. The outperforms

results are available in the well-known website hp H But they

could not performed experiments higher than 10 dimension. It is also noted that few results

(in the cases of dimensions greater than 10) are available in the literatures which are

reported in the website . Here we will perform several

experiments for higher dimensions typically k greater than 10 regarding ILS approaches.

Also the results are compared with available one in the literature i.e. in the above mentioned

website.

Table 6.1: The setting of number of runs for the ILS

k N R

11-15 3-25 2

For ILS approach, we set RP local moves with BI acceptance rule in local search, SPC.

perturbation and MaxNonlmp'lOO. We also consider the Opt(D) optimality criterion i.e. we

consider ThS() approach. the value of p is equal to 20 as well. In what follows the

approach will be simply denoted as ILS((l)). For what concerns the number of runs for each

LHD, we considered is given in Table 6.1. In the table R denotes the number of runs (trials)

for each experiment (k, N): k = 11,12,•••,15; N = 3,4,••,25;. It is noted that for dimension

k = 11, besides R = 2 we have also considered R = 5 and 10. The experimental results are

reported in the Table 6.2(a), Table 6.2(b) and Table 6.2(c) where the distances are measured

in Euclidian measure and the values are the best maximin squared distance rather than actual

distances each for (k,N). It is noted that the 2' column of the tables 6.2(a), 6.2(b) and 6.2(c)

denotes the maximin LI-IDs values available in the website

56

Table 6.2 (a): Comparison of maximin LHD values for dimensions k = 11

Points(N) Web Value ILS Value

Trial 2 Trial 5 Trial 10
3 20 20 20
4 35 34 34 35
5 54 52 54 54
6 74 73 74 74
7 98 98 98
8 125 125 126
9 156 157 158

10 190 190 191
11 227 229 229
12 270 270 272
13 306 306 309
14 350 350 350
15 393 397 397
16 445 445 448
17 501 501 501
18 560 560 561
19 619 620 623
20 685 691 692
21 760 767 767
22 844 851 857
23 848 857 857
24 907 925 925
25 967 974 984

ht tp -.c'ii Iii n n I:. In the tables we have observed that few web values

(maximin LHDs values available in the web) are available for higher dimensions. It is

observed that the ILS values are identical with Web values. It worthwhile to mention here

that these values are analytically global optimal rather than approximate optimal. Moreover

The ILS approaches able to obtain some new maximin LHDs value for 6<N<26 which are

reported in the tables 6.2(a), 6.2(b) and 6.2(c). There is another observed in the table 6.2(a)

that the increasing of number of trials do not significantly increasing the maximum LHDs

values. From this observation it may conclude that for higher dimensions, few trials of ILS

approach able to find approximate optimal LHDs.

57

Table 6.2 (b): Comparison of maximin LHD values for dimensions k= 12 and 13

k=12 k=13

Point(N) Web Value ILS Value Point(N) Web Value ILS Value

3 24 3 25

4 40 40 4 41 41

5 60 60 5 64 64

6 82 82 6 89 89

7 107 7 117

8 137 8 150

9 172 9 187

10 209 10 229

11 251 11 274

12 296 12 322

13 347 13 376

14 351 14 434

15 438 15 605

16 495 16 669

17 550 17 487

18

19

611 18 540

745 684 19

20 758 20 823

21 830 21 910

22 908 22 997

23 999 23 1083

24 1105 24 1179

25 1230 25 1290

58

Table 6.2 (c): Comparison of maximin LHD values for dimensions k = 14 and 15

k=14 k=15

Point(JV) Web Value ILS Value Point(N) Web Value ILS Value

3 26 3 30

4 46 46 4 48 48

5 70 70 5 74 74

6 95 6 103

7 127 7 136

8 162 8 173

9 202 9 217

10 249 10 266

11 293 11 319

12 349 12 374

13 404 13 436

14 464 14 504

15 537 15 574

16 595 16 653

17 660 17 721

18 731 18 797

19 815 19 883

20 897 20 969

21 987 21 1064

22 1079 22 1063

23 1183 23 1271

24 1284 24 1376

25 1397 25 1502

It is also noted that the ILS (D) approach proposed by Grosso et al. (2008) does not

consider the LHD with corresponding optimal (minimum) b value but tracking the optimal

59

maximin LHD (whose mmimum pair-wise distance is maximum) during minimizing P

value. Here several experiment are performed to analyze the above discussion. For these

experiments we consider k = 11 , N = 3, 4, ..., 25 and number of trials R = 2, 5, 10. Other

parameter setting are same. The experimental results displayed in table 6.3. It is observed

form the table that though increasing of number of trials causes monotonic increasing of

maximin LH1Ds values but corresponding 1' values do not necessarily monotonic decreasing.

In the table we also observed that some time lower trial may better results. This implies that

initial solution may affect the final output.

Table 6.3: Comparison of maximin LHD values and D values for dimensions k = 11

N LHD values L' values

R=2 R=5 R=10 R=2 R=5 R=lO

3 20 20 20 0.456287 0.456287 0.456287
4 34 35 35 0.546794 0.513469 0.513469

54 54 54
-

0.565956 0.60572 0.60572
6 74 74 0.653762 0.653762 0.653762

97 97 99
-

0.690905 0.690839 0.690505
8 126 125 125

-
0.721167 0.721102 0.721102

154 154 156 0.747052 0.746939 0.746679
10 189 193 193

-
0.768803 0.768375 0.768375

11 226 225 225
-

0.787288 0.787281 0.787281
12 272 272 272

-
0.803762 0.803513 0.803513

13 309 309 309
-

0.824438 0.824438 0.824438
14 341 341 341

-
0.842359 0.842359 0.842359

383 383 390 0.857904 0.857904 0.857816
16 443 443 436

-
0.871477 0.871477 0.871336

17 495 495 504 0.882531 0.882531 0.882233
18 557 557 554 0.893106

0.901792

0.893106

0.901792

0.892659

0.901792 19 625 625 625
-

20 1 683 682 684
-

0.910757 0.910681 0.910578
21 750 768 748

-
0.918572 0.918509 0.918449

22 848 848 848 0.924703 0.924703 0.924703
23 850 1 850 850 0.942046 0.942046 0.942046
24 901 908 1 908 0.952664 0.95243 0.95243
25 958 958 1 950 0.965299 0.965299 0.965077

It is worthwhile to mention here that for all experiments performed earlier all the distances

measured in L2 measure. But when maximize the minimum pair-wise distance in L2

measure might causes L1 measure too. That is in any experimental design when the

minimum pair-wise distance is increasing in L2 measure, then the minimum pair-wise

distance in L measure should be increase but not necessarily monotonic. The experimental

results are reputed in the table 6.4. It is noted that the L' value reputed in the table 6.4 are

measured from the LHDs which are maximin LHD in L2 measure by the [LS approach but

not maximin LHDs in L1 measure. Since there are no any value available in the literatures,

so we could not compare the results.

Table 6.4: Experimental results of maximin L' values corresponding to optimized
LI-ID values measured in L2 measure fork = 11 - 1 5

N k=11 k=12 k=13 k=14 k=15
3 14 16 17 18 20
4 17 20 21 23 24
5 22 24 26 28 30
6 23 27 28 31 34
7 27 29 32 34 36
8 30 32 36 39 42
9 32 37 39 41 44

10 36 41 41 47 51
11 40 42 46 50 55
12 43 45 49 56 59
13 44 50 55 59 61
14 45 54 57 59 66
15 47 55 60 64 70
16 51 56 64 68 74
17 56 58 68 72 76
18 60 62 71 78 80
19
20

59 67 74 82 85
88 61 70 76 84

21 68 73 80 87 96
22 66 77 85 89 96
23 71 80 87 96 103
24 76 86 86 95 106
25 76 83 96 97 105

61

Table 6.5: Experimental results of maximum average coefficient of correlation of the
co-factors of the maximin LHDs fork = 11 - 15

N k=11 k=12 k=13 k=14 k=15

3_- 0.953463 0.953463 0.960769 0.963624 0.963624
4 0.738549 0.738549 0.748331 0.751263 - 0.758445
5 0.592376 0.603023 0.612896 0.620174 0.627163
6 0.490927 0.505309 0.517086 0.526916 0.535017
7 0.409534 0.427894 0.441798 0.453797 0.463749
8 0.340129 0.362158 0.379442 0.393168 0.404955
9 0.27707 0.30364 0.324707 0.341046 0.35451
10 0.215443 0.249506 0.273677 0.294027 0.309932
11 0.14771 0.193683 0.226577 0.250427 0.268747
12 0.038924 0.134783 0.177042 0.207415 0.229611
13 0.135165 0.036809 0.124208 0.163625 0.191376
14 0.154653 0.121373 0.030303 0.113747 0.151578
15 0.162267 0.148942 0.114768 0.029532 0.104976
16 0.157082 0.154097 0.134213 0.105412 0.026695
17 0.149606 0.148493 0.144009 0.127823 0.097976
18 0.136881 0.139549 0.14477 0.135268 0.121348
19 0.118659 0.134324 0.134428 0.137081 0.131929
20 0.096469 0.125651 0.137371 0.142735 0.133814
21 0.07354 0.10854 0.127346 0.1344 0.13852
22 0.018811 0.090604 0.114545 0.12536 0.135415
23 0.046038 0.068007 0.10028 0.116373 0.129211
24 0.075818 0.018534 0.082387 0.107147 0.117659
25 0.089355 0.044584 0.060996 0.093726 0.109148

It is also remarks that multicollinearity is another important properties of an experimental

design. A good experimental design should minimum multicollinearity among the factors

along with other two properties. Then the measure the multicollinearity among the factors

can be defined by the following measure of average pair-wise correlations

62

I"

k i-I

ii
2 - 1=2 j=1

k(k-1)I2

Where p, denotes the product-moment correlation between the i-th and j-th factors. Note

that this definition is frequently used in literature [Fang et a]. (2000b), Joseph and Hung

(2008)]. Whereas the definition of maximum pair-wise correlation is given below:

Pn a ki
jsk x = (6.2)

Now another experiment is performed by considering the same setting as considered above.

The experimental results are plotted in the table 6.5. It is observed that when the number of

design points (i.e N) is small the maximum coefficient of correlation is high. Whereas the

coefficient of correlation is negligible as well as decreasing when increasing the N values.

It is noted that in any experimental design when the minimum pair-wise distance is

increasing, then the maximum pair-wise distance should be decreasing but not necessarily

monotonic. So minimizing the maximum pair-wise distance may be the another optimal

criterion for optimal the experimental design. So another experiments is performed by

considering the same setting as considered above. The experimental results are plotted in

the table 6.5. In the table 6.6, L 1' and L,12 denote the maximum pair-wise distance of the

maximin LHDs measured in L' and L2 distance measure respectively. As there are no value

available in the literature, so we could not compare the experimental results.

(6.1)

63

Table 6.6: Experimental results of maximum pair-wise distance value (LM' and LN42)
of the maximin LF1Ds fork = 11 - 1 5

N L 1' LM2

- k=11 112 k=13 k = 14 k=15 k=11 k=12 k=13 k=14 k=15

3 15 16 18 19 20 23 24 28 29 30
4 20 20 24 24 27 42 40 48 47 55
5 22 24 26 28 30 56 60 66 70 76
6 27 29 32 34 36 80 87 96 101 108
7 32 35 37 39 43 108 118 125 137 148

8 36 39 42 46 48 146 152 162 176 188
9 40 44 47 50 55 174 192 208 222 234
10 45 48 53 56 60 218 238 248 270 290
11 48 53 57 60 67 256 279 307 327 347
12 52 58 63 66 70 305 332 359 380 408
13 85 62 67 72 79 695 395 416 461 482
14 87 94 74 78 82 787 866 482 526 553

15 89 99 107 82 87 887 991 1075 604 628
16 94 104 110 125 93 968 1103 1194 1297 721
17 100 111 120 129 146 1088 1204 1348 1451 1572
18 105 118 127 134 143 1221 1356 1481 1612 1747
19 109 117 134 144 153 1339 1463 1615 1783 1940
20 117 129

135

137

140

149

155

160

168

1481 1619

1781

1781

1937

1920 2109

2241 21 122 1650 2081
22 127 145 151 167 177 1795 1962 2131 2291 1 2466
23 134 146 158 169 187 1948 2126 2328 2511 2700
24 143 154 169 181 195 2011 2348 2512 2717 2914
25 144 160 169 190 203 2139 2497 2743 2969 3152

M.

REFERENCES

Apama D., 2012 , "Iterated Local search Approaches For Maximin Latin Hypercube

Designs", M. Phil thesis paper, Department of Mathematics, Khulna university of

Engineering & Tecnology, Khulna.

Applegate D., W. Cook and A. Rohe, 1999, "Chained Lin-Kernighan for large traveling

salesman problems", Technical Report No. 99887, Forschungsinstitut fu r Diskrete

Mathernatik, University of Bonn, Germany.

Arora S., Barak, B., Brunnermeier M., and Ge. R., 2011(May), "Computational

Complexity and Information Asymmetry in Financial Products", Communication of the

ACM, Vol. 54,pp. 101-106.

Audze P., and V. Eglais, 1997, "New approach to planning out of experiments,

problems of dynamics and strength", Vol. 35, pp. 104-107.

Bates S. J., Sienz J. and Langley D.S., 2003, "Formulation of the Audze-Eglais Uniform

Latin Hypercube design of experiments", Advanced in Engineering Software, Vol. 34,

Issue 8, pp. 493-506.

Battiti R., and Protasi M., 1997, "Reactive search, a history-based heuristic for the

MAX-SAT", ACM Journal of Experiments Algorithmic, Vol. 2.

Baum, E. B., 1986(b), "Iterated descent: A better algorithm for local search in

combinatorial optimization problems", Technical report, Caltech, Pasadena, CA

Manuscript.

Baum, E. B.,1986(a), "Towards practical "neural" computation for combinatorial

optimization problems", In J. Denker, editor, Neural Networks for Computing, pp. 53-

64, AlP conference proceedings.

Blondel V. D., Tsitsiklis J. N., 2000, "A survey of computational complexity results in

systems and control", Vol. 36, pp. 1249-1274, . '.

Butler N. A., 2001 "Optimal and orthogonal Latin Hypercube designs for computer

experiments", Biometrika, Vol. 88(3), pp. 847-857.

Baxter, J., 1981, "Local optima avoidance in depot location", Journal of the Operational

Research Society, Vol. 32, pp. 815-819.

65

 Crary S. B., Cousseau P., Armstrong D., Woodcock D. M., Mok E. H., Dubochet 0.,

Lerch P., and Renaud P., 2000, "Optimal design of computer experiments for

metamodel generation using I-OPTTM", Computer Modeling in Engineering &

Sciences, Vol. 1(1), pp. 127-139.

 Crombecq K., Laermans E., and Dhaene 1., 2011, "Efficient space-filling and non-

collapsing sequential design strategies for simulation-based modeling", European

Journal of Operational Research, Vol. 214(3), pp. 683-696.

 Currin C., Mitchell, T., Moms, M. D., and D. Ylvisaker, 1991, "Bayesian prediction of

deterministic functions, with applications to the design and analysis of computer

experiments", Journal of the American Statistical Association, Vol. 86, pp. 953-963.

15, Fang, K. T., D. K. J. Lin, P. Winkler, and Y. Zhang (2000b), "Uniform design: theory

and application", Technometrics, Vol. 42, pp. 237-248.

 Fang K. T., R. Li, and A. Sudjianto, 2006, "Design and Modeling for Computer

Experiments", CRC Press, New York.

 Felipe A.C. Viana, Venter G., 2009(Oct), "An Algorithm for Fast Optimal latin

Hypercube Design of Experiments", pp.1 -4, Do!: 10. 1 002/nme. 2750

 Fuerle F. and Sienz J., 2011, "Formulation of the Audze-Eglais Uniform Latin

Hypercube design of experiments for constrained design spaces", Advanced in

Engineering Software,Vol. 42, pp. 680-689.

 Grosso A., Jamali A. R. M. J. U. and Locatelli M., 2008, " Iterated Local Search

Approaches to Maximin Latin Hypercube Designs", Innovations and Advanced

Techniques in Systems, Computing Sciences and Software Engineering, Springer

Netherlands, pp. 52-56.

 Glover F., and Laguna M. ,1993, "Modern heuristic techniques for combinatorial

problems", Oxford: Blackwell, pp. 70150

 Grosso A., Jamali A. R. J. U. and Locatelli M., 2009, " Finding Maximin Latin

Hypercube Designs by Iterated Local Search Heuristics", European Journal of

Operations Research, Elsevier, Vol. 197, pp. 541 -547.

 Grassberger P., 1997, "Pruned-enriched Rosenbiuth method: Simulations of 0 polymers

of chain length up to 1000000", Phys. Rev., Vol. 56(3), pp. 3682-3693

 Hadzilacos, V., "Time complexity of algorithms",
,. .,...,..

W.

Helton J. C. & Davis F. J. 2000, "Sampling-based methods, in Sensitivity Analysis",

Ed. A. Saltelli, K. Chan and E. M. Scott, Chichester: John Wiley & Sons.

Heylighen F., (1990): "Relational Closure: a mathematical concept for distinction-

making and complexity analysis", in: Cybernetics and Systems '90 , R. Trappl (ed.),

(World Science Publishers), pp. 335-342.

Husslage B., E. R. van Dam, and D. den Hertog, 2005, "Nested maximin latin

hypercube designs in two dimensions", CentER Discussion Paper No. 200579.

Husslage B., G. Rennen, E. R. van Dam, and D. den Hertog, 2006, "Space-Filling Latin

Hypercube Designs for Computer Experiments", CentER Discussion Paper No.2006-18.

Husslage B., Rennen G., van Dam E. R., and Hertog D. den, 2006, " Space—Filling

Latin Hypercube Designs for Computer Experiments", CentER Discussion Paper No.

2006-18

Husslage B., Rennen G, Van Dam E. R., and Hertog D, 2006 "Space-Filling Latin

Hypercube Designs for Computer Experiments", CentER Discussion Paper No. 2006-18

Iman R. L., and Conover W. J., 1982(a), "A distribution-free approach to inducing rank

correlation among input variables", Comm. Stat. Part B - Simulation Comput., Vol. II,

pp. 311-334.

Iman, R. L. and Conover W. J. (1982b), "Small-sample sensitivity analysis techniques

for computer models, with an application to risk assessment. Communications in

Statistics - Part A", Theory and Methods 17, 1749-1842.

Johnson M. E., Moore L. M., and Ylvisaker D., 1990, " Minimax and maximin distance

designs", Journal of Statistical planning and inference, Vol. 26, pp. 1 31-148.

Jin R., W. Chen, and A. Sudjianto, 2005, "An efficient algorithm for constructing

optimal design of computer experiments", Journal of Statistical Planning and Inference,

Vol. 134(1), pp. 268-287.

Joseph V. R. , and Hung Y., 2008, " Orthogonal-Maximin Latin Hypercube Designs",

Statistica Smica, Vol. 18, pp. 171-186.

Jourdan A. and Franco J., 2010," Optimal Latin Hypercube designs for the Kullback-

Leibler Criterion", AStA Advances in Statistical Analysis, Springer-Verlag, Vol. 94, pp.

341-351, DOI: I0.1007/sl0l82-010-0145-y.

Kirkpatrick S., C. D. Gelatt Jr., and M. P. Veechi, 1983, "Optimization by Simulated

Annealing, Science, Vol. 220, pp. 671-680.

67

Kleijnen, J. P. C., 1997," Sensitivility analysis and related analysis: a review of some

statistical techniques", J. Statist. Comp. Simul., Vol. 57, pp. 111- 42.

Levy S., Steinberg D. M., 2010, Computer experiments, Adv. Stat. Anal. Vol. 94(4), pp.

3 11-324.

Li W. W., and C. F. J. Wu, 1997, "Columnwise-Pairwise Algorithms With Applications

to the Construction of Supersaturated Designs", Technometrics, American Society for

Quality Control and American Statistical Association, Alexandria, Va, USA, Vol. 39(2),

pp. 171-179.

Liefvendahl M., and R. Stocki, 2006(1 september), "A study on algorithms for

optimization of Latin hypercubes, Journal of Statistical Planning and Inference", Vol.

136 (9), pp. 323 1-3247.

Lin D. K. J., and D. M. Steinberg, 2006, "A Construction Method for Orthogonal Latin

Hypercube Designs", Biometrika, Oxford University Press, Vol. 93(2), pp. 279 -288.

Lourenco H. R. et al., 2002, "In Iterated Local Search Handbook of Metaheuristics",

ISORMS 57(Eds.: GloverF., and G. Kochenberger,), Kluwer, pp. 321-353.

Lourenco H. R., 0. Marting, and T. Stutzl, 2001, "A beginner's introduction to Iterated

Local Search", In Proceedings of MTC'2001-Meta-heuristics International Conference,

Porto-Portugal, Vol. 1, pp. 1-6.

Martin 0. and S. W. Otto., 1996, "Combining simulated annealing with local search

heuristics", Annals of Operations Research, Vol. 63, pp. 57-75.

Martin 0., S. W. Otto, and E. W. Felten, 1991, " Large-step Markov chains for the

traveling salesman problem", Complex Systems, Vol. 5(3), pp. 299-326.

McKay M. D., Beckman, R. J., and W. J. Conover W. J., 1979," A comparison of three

methods for selecting values of input variables in the analysis of output from a computer

code", Technometrics, vol. 21, pp. 239-245.

Morris M. D., 1991, "Factorial plans for preliminary computational experiments",

Technometers, Vf'urol. 33, pp. 161 -174.

Morris M. D., and Mitchell T. J., 1995, "Exploratory designs for computer

experiments", Journal of Statistical Planning and Inference, Vol. 43, pp. 38 1-402.

Nicolas S., 2006-2007(Nov), "Algorithms & Complexity-Introduction",

k0 , CA313@Dubai City University.

Oliveto P. S., He J., Yao X., 2007, "Time Complexity of Evolutionary algorithms for

Combanatories Optimization: A Decade of Results", International Journal of

Automation and Computing, Dol: 10.1007/si 1633-007-0281-3, Vol. 04(1), pp. 281-293.

Owen, A. B., 1994, " Controlling correlations in Latin hypercube samples", Journal of

the American Statistical Association,Vol. 89, pp. 1571-1522.

Park J. S., 1994, "Optimal Latin hypercube designs for computer experiments", Journal

of Statistical Planning and Inference, Vol. 39, pp. 95-111.

Rossi-Doria 0., M. Samples, M. Birattari, M. Chiarandini, J. Knowles, M. Manfrmn, M.

Mastrolilli, L. Paquete, B. Paechter, and T. Stutzle, 2002, " A Comparison of the

performance of different metaheuristics on the timetabling problem", In Proceedings of

PATAT 2002, The 4th international conference on the Practice and Theory of

Automated Timetabling, Gent, Belgium, pp. 115-119.

Sacks, J. and Ylvisaker, D. (1985), "Model robust design in regression: Bayes theory".

In Proc. of the Berkeley Conference in Honor of Jerzy Neyman and Jack Kiefer (L. M.

Le Cam and R. A. Olshen, eds.), Vol. 2, pp. 667-679, Wadsworth, Monterey, Calif.

Saniner T. J., Williams B. J., and Notz W. 1., 2003, "The design and analysis of

computer experiments", Springer Series in Statistics, Springer-Verlag, New York.

Shewry M., and Wynn H.,1987, "Maximum entropy design" Journal of Applied

Statistics, Vol.14, pp. 165-170.

Steinberg G. D. M, and K. J. N. Dennis, 2006, " A construction method for orthogonal

Latin hypercube designs", Biometrika, Vol. 93 (2), pp. 279-288.

Stutzle, T., 1998, " Local Search Algorithms for Combinatorial Problems -

Analysis", Improvements, and New Applications. PhD thesis, Darmstadt University of

Technology, Department of Computer Science.

www.wikipedia.org/w/wiki.phtm?tittlgfBig 0 notation

www.cs.toronto.edu/—vassos/teaching/c73/handouts/brief-com

www.spacefillingdesigns.nl

Ye, K. Q., 1998, "Orthogonal column Latin hypercubes and their application in

computer experiments" Journal of the American Statistical Association, Vol. 93,

pp.1430-1439.

Me

63.Ye, K. Q., W. Li, and A. Sudjainto, 2000, "Algorithmic construction of optimal

symmetric Latin hypercube designs", Journal of Statistical Planning and Inference, Vol.

90,pp. 145-159.

1

70

