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Abstract 

I 

A perturbation method known as "the asymptotic averaging method" in the theory of 

nonlinear oscillations was first presented by Krylov and Bogoliubov (KB) in 1947. 

Primarily, the method was developed only to obtain the periodic solutions of second 

order weakly nonlinear differential systems. Later, the method of KB has been 

improved and justified by Bogoliubov and Mitropolskii in 1967. In literature, this 

method is known as the Krylov-Bogoliubov-Mitropolskii (KBM) method. Now a 

days, this method is used for obtaining the solutions of second, third and fourth order 

weakly nonlinear differential systems for oscillatory, damped oscillatory, over 

damped, critically damped and more critically damped cases by imposing some 

special restrictions. Ji-I-Iuan He has developed a homotopy perturbation method for 

solving second order strongly nonlinear differential systems without damping. Uddin 

ci al. have presented an approximate analytical technique for second order strongly 

nonlinear differential systems with damping by combining He's homotopy 

perturbation technique and the extended form of the KBM method. Recently, Uddin ci 

al. have developed an analytical approximate technique for solving a certain type of 

fourth order strongly nonlinear oscillatory differential systems with small damping 

and cubic nonlinearity by combining He's homotopy perturbation and the extended 

form of the KBM methods. In this thesis, approximate analytical techniques shall be 

presented by combining the He's homotopy perturbation technique and the extended 

form of the KBM method for solving the second and fourth order nonlinear ordinary 

differential systems with strong generalized nonlinearity. To justify the presented 

methods, the approximate solutions have been compared to those solutions obtained 

by the fourth order Runge-Kutta method. 
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CHAPTER I 

Introduction 

Differential equation is a mathematical tool, which has its application in many 

branches of knowledge of mankind. Numerous physical, mechanical, chemical, 

biological, biochemical and many other relations appear mathematically in the form 

of differential equations that are linear or nonlinear, autonomous or non-autonomous. 

Generally, in many physical phenomena, such as spring-mass systems, resistor-

capacitor-inductor circuits, bending of beams, chemical reactions, the motion of 

pendulum, the motion of the rotating mass around another body, etc, the differential 

equations occur. Also, in ecology and economics the differential equations are vastly 

used. Basically, many differential equations involving physical phenomena are 

nonlinear. Differential equations, which are linear, are comparatively easy to solve 

and nonlinear are laborious and in some cases it is impossible to solve them 

analytically. In such situations, mathematicians, physicists and engineers convert the 

nonlinear equations into linear equations i.e., they linearize them by imposing some 

special conditions. The method of small oscillations is a well-known example of the 

linearization. But, such a linearization is not always possible and when it is not, then 

the original nonlinear equation itself must be used. The study of nonlinear equations is 

generally confined to a variety of rather special cases, and one must resort to various 

methods of approximation. 

At first Van der Pol [I] paid attention to the new (self-excitations) oscillations and 

indicated that their existence is inherent in the nonlinearity of the differential 

equations characterizing the process. Thus, this nonlinearity appears as the very 

essence of these phenomena and by linearizing the differential equations in the sense 

of the method of small oscillations, one simply eliminates the possibility of 

investigating such problems. Thus, it is necessary to deal with the nonlinear problems 

directly instead of evading them by dropping the nonlinear terms. To solve nonlinear 

differential equations there exist some methods. Among the methods, the method of 

perturbations, i.e., asymptotic expansions in terms of a small parameter are foremost. 

Perturbation methods have recently received much attention as methods for accurately 

and quickly computing numerical solutions of dynamic, stochastic and economic 
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equilibrium models, both single-agent or rational expectations models and multi-agent 

or game theoretic models. A perturbation method is based on the following aspects: 

the equations to be solved are sufficiently "smooth" or sufficiently differentiable a 

number of times in the required regions of variables and parameters. 

The KBM [2-3] method was developed for the systems only to obtain the periodic 

solutions of second order nonlinear differential equations. Now, the method is used to 

obtain oscillatory as well as damped, critically damped, over damped, near critically 

damped, more critically damped oscillatory and non-oscillatory solutions of second, 

third, fourth etc, order nonlinear differential equations by imposing some suitable 

restrictions to obtain the uniform solutions. Several authors [5-73] have investigated 

and developed many significant results concerning the solutions of the weakly 

nonlinear differential systems. Extensive uses have been made and some important 

works are done by several authors [5-73] based on the KBM method. 

Ji-Huan He [74-76] has developed a homotopy perturbation technique for solving 

second order strongly nonlinear differential systems without damping effects. 

Belendez et al. [77] have applied He's homotopy perturbation method to Duffing 

harmonic oscillator. Uddin c/ al. [78-79] have presented an approximate technique for 

solving second order strongly nonlinear oscillatory differential systems with damping 

effects by combing the He's [74-76] homotopy perturbation and the KBM [2-3] 

methods. Recently, Uddin et al. [82] have developed an analytical approximate 

technique for solving a certain type of fourth order strongly nonlinear oscillatory 

differential system with small damping and cubic nonlinearity by combining He's 

[74-76] homotopy perturbation and the extended form of the KBM [2-3] methods. 

The method of KB [2] is an asymptotic method in the sense that c —+ 0. An 

asymptotic series itself may not be convergent, but for a fixed number of terms, the 

approximate solution tends to the exact solution as e —* 0. It may be noted that the 

term asymptotic is frequently used in the theory of oscillations in the sense that 

6 —* c. But, in this case, the mathematical method is quite different. It is an 

important approach to the study of such nonlinear oscillations in the small parameter 

expansion. Two widely spread methods in this theory are mainly used in the literature; 

one is averaging asymptotic KBM method and the other is multiple-time scale 

method. The KBM method is particularly convenient and extensively used technique 
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to obtain the approximate solutions among the methods used to study the nonlinear 

differential systems with small nonlinearity. The KBM method starts with the solution 

- 
of linear equations (sometimes called the generating solution of the linear equation), 

assuming that in the nonlinear case, the amplitude and phase variables in the solution 

of the linear differential equation are time dependent functions instead of constants. 

This method introduces an additional condition on the first derivative of the assumed 

solution for determining the solution of a second order equation. The KBM method 

demands that the asymptotic solutions are free from secular terms. These assumptions 

are mainly valid for second and third order equations. But, for the fourth order 

differential equation, the correction terms sometimes contain secular terms, although 

the solution is generated by the classical KBM asymptotic method. For this reason, 

the traditional solutions fail to explain the proper situation of the systems. To remove 

the presence of secular terms and to obtain the desired results, we need to impose 

some special conditions. The KBM method is fail to tackle the second and fourth 

order ordinary differential systems with strong generalized nonlinearity. Also the 

hornotopy perturbation technique for second and fourth order nonlinear ordinary 

differential systems with strong generalized nonlinearity in presence of damping 

almost remains untouched. The main objective of this thesis is to overcome these 

limitations of KBM and He's homotopy perturbation methods. The results may be 

used in mechanics, physics, chemistry, plasma physics, circuit and control theory, 

population dynamics, economics, etc. 

In this thesis, He's hornotopy perturbation method has been extended for obtaining 

the analytical approximate solutions of second and fourth order strongly generalized 

nonlinear differential systems with small damping based on the extended form of the 

KBM method. 

In Chapter II, the review of literature is presented. In Chapter III, an approximate 

analytical technique has been developed for solving second order strongly generalized 
nonlinear differential system with small damping. Also a coupled analytical 
approximate technique has been extended for obtaining the solutions of certain type 
of fourth order strongly generalized nonlinear oscillatory differential systems with 
small damping based on the He's homotopy perturbation and the extended form of the 

famous KBM methods in Chapter IV. Finally, in Chapter V. the conclusions are 

drown. 
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CHAPTER II / -7 

Literature Review 

Nonlinear differential equations show varieties characteristics. But, mathematical 

formulations of many physical problems often result in differential equations that are 

nonlinear. In many situations, linear differential equation is substituted for a nonlinear 

differential equation, which approximates the former equation closely enough to give 

expected result. In many cases such a linearization is not possible and when it is not, 

the original nonlinear differential equation must be tackled directly. During last 

several decades in the 20th century, some famous Russian scientists like Krylov and 

Bogoliubov [2], Bogoliubov and Mitropolskii [3], Mitropolskii [4], Mandelstam and 

Papalexi [5] have investigated the nonlinear dynamics. To solve nonlinear differential 

equations there exist some methods. Among the methods, the method of 

perturbations, i.e., an asymptotic expansion in terms of small parameter is foremost. 

Firstly, Krylov and Bogoliubov (KB) [2] considered the equation of the form 

(2.1) 

where ldenotes the second derivative with respect to t, s is a small positive 

parameter and f is a power series in s, whose coefficients are polynomials in 

x, i, sint and cost and their proposed solution procedure is known as KB method. 

In gcneral,f does not contain either e or t. In literature, the method presented [2-3] is 

known as Krylov-Bogoliubov-Mitropolskii (KBM) method. To describe the behavior 

of nonlinear oscillations by the solutions obtained by the perturbation method, 

Lindstedt [6], Glyden [7], Liapounoff [8], Poincare [9] discussed only periodic 

solutions, transient were not considered. Most probably, Poisson initiated approximate 

solutions of nonlinear differential equations around 1830 and the technique was 

established by Liouville. The KBM [2-3] method started with the solution of the 

linear equation, assuming that in the nonlinear systems, the amplitude and phase 

variables in the solution of the linear equations are time dependent functions rather 

than constants. This procedure introduces an additional condition on the first 

derivative of the assumed solution for determining the desired results. Some mirthful 

works are done and elaborative uses have been made by Stoker [10], McLachlan [11], 
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Minorsky [12] and Bellman [13]. Duffing [14] has investigated many significant 

results for the periodic solutions of the following damped nonlinear differential 

- 
system 

I+2ki+w2x=—ex3. (2.2) 

Sometimes, different types of nonlinear phenomena occur, when the amplitude of the 

dependent variable of a dynamic system is less than or greater than unity. The 

damping is negative when the amplitude is less than unity and the damping is positive 

when the amplitude is greater than unity. The governing equation having these 

phenomena is 

—e(1—x 2 )+x=O. (2.3) 

In literature, this equation is known as Van der Pol [1] equation and is used in 

electrical circuit theory. Kruskal [15] has extended the KB [2] method to solve the 

fully nonlinear differential equation of the following form 

I = (2.4a) 

Cap [16] has studied nonlinear system of the form 

I+w 2x = EF(x,x). (2.4b) 

Generally,fdoes not contain either e or!, thus the equation (2.1) becomes 

I+ü 2x=ef(x,x). (2.5) 

In the treatment of nonlinear oscillations by the perturbation method, only periodic 

solutions are discussed, transients are not considered by different investigators, where 

as KB [2] have discussed transient response firstly. 

When e = 0, the equation (2.5) reduces to linear equation and its solution can be 

obtained as 

x=acos(!+). (2.6) 

where a and are arbitrary constants and the values of a and are determined by 

using the given initial conditions. 

When s # 0, but is sufficiently small, then KB [2] have assumed that the solution of 

equation (2.5) is still given by equation (2.6) together with the derivative of the form 

(2.7) 

where a and ço are functions of t, rather than being constants. In this case, the 

solution of equation (2.5) is 

x = a(t)cos(wl + (2.8) 
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and the derivative of the solution is 

= —a(t)wsin(v/ + (p(i)). (2.9) 

Differentiating the assumed solution equation (2.8) with respect to time I, we obtain 

.1=ácosw—aysincu—asinw, i=wt+q'(r). (2.10) 

Using the equations (2.7) and (2.10), we get 

ácosyi =açsin,u.  

Again, differentiating equation (2.9) with respect to i, we have 

= —aw Sm - aw2  cos,i' - awç'cosçtf. (2.12) 

Putting the value of x from equation (2.12) into the equation (2.5) and using 

equations (2.8) and (2.9), we obtain 

à(osinyi + accosw = —ef(acos qi,— aasin yi). (2.13) 

Solving equations (2.11) and (2.13), we have 

a = ---sinqif(acosçu,— a -osin), (2.14) 

= --—cosyif(acosçu, - a(osin ci'). (2.15) 
aw 

It is observed that, a basic differential equation (2.5) of the second order in the 

unknown x, reduces to two first order differential equations (2.14) and (2.15) in the 

unknowns a and q'. 

Moreover, a and are proportional to s; a and are slowly varying functions of 

- the time period T = It is noted that these first order equations are now written in 

terms of the amplitude a and phase as dependent variables. Therefore, the right 

sides of equations (2.14) and (2.15) show that both a and are periodic functions of 

period T. In this case, the right-hand terms of these equations contain a small 

parameter s and also contain both a and q', which are slowly varying functions of 

the time t with period T = --. We can transform the equations (2.14) and (2.15) into 

more convenient form. Now, expanding sinyf(acosçii,—aøsinçt') and 

cosç,if(acosçii,—awsinci') in Fourier series with phase ci', the first approximate 
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solution of equation (2.5) by averaging equations (2.14) and (2.15) with period 

2,r 
7 =, is 

CO 

2'r 
S 

I 
slnçuf(acosy,—aa) sinçu)dyi, 

2,ra, 
(2.16) 

e r 
j 
cosçtíf(acosçu,—aw sin çu)dcu, 

2iraa 

where a and q are independent of time t under the integrals. KB [2] have called 

their method asymptotic in the sense that s - 0. An asymptotic series itself is not 

convergent, but for a fixed number of terms the approximate solution tends to the 

exact solution as s -+ 0. Later, this technique has been extended mathematically by 

Bogoliubov and Mitropolskii [3], and has extended to non-stationary vibrations by 

Mitropolskii [4]. They have assumed the solution of the nonlinear differential 

equation (2.5) of the form 

x = acosw + su1 (a,qi) + e2ii2(a,yi) + ............+ e?t
u,,

(a,cu) + O(e?+l), (2.17) 

where Uk,  (k = 1, 2. ........ n) are periodic functions of cit with a period 27r, and the 

terms a and ci' are functions of time t and defined by the following first order 

ordinary differential equations 

a = eA1 (a)+ 6 2 A2(a)+..........+e"A?? (a)+ O(s"'), 
(2.18) 

= + 6 B1 (a)+ s2B2(a)+  ....... +sB,3(a)+ O(cfl+I). 
 

The functions Uk Ak  and Bk,  (k = 1, 2. ........ n) are to be chosen in such a way that 

the equation (2.17), after replacing a and i  by the functions defined in equation 

(2.18), is a solution of equation (2.5). Since there are no restrictions in choosing 

functions Ak  and Bk,  it generates the arbitrariness in the definitions of the functions 

Uk (Bogoliubov and Mitropolskii [3] ). To remove this arbitrariness, the following 

additional conditions are imposed 

S
uk (b,vJ) cos yldcfl =0, 

(2.19) 

J
uk (a,y)sinc/Idw = 0. 

Absences of secular terms in all successive approximations are guaranteed by these 

conditions. Differentiating equation (2.17) two times with respect to i, substituting the 
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values of x, i and into equation (2.5), using these relations in equation (2.18) and 

equating the coefficients of 6/C,  (k = 1, 2. ........ n) , leads to 

+ U/C) = f(kD(a cii) + 2a) (a Bk  cosçii + A sin çi'), (2.20) 

where (Uk ), denotes partial derivatives with respect to çu, 

f ° (a,yi) = f(a cos cu,—aa) sin cu) and 

JW(a,cl,) = u1 f(a cos çu,— av sin c11) + (A1  cosçu - aB1  siny! + 

d 1  
f (cos çii,—aw  sin çii) + (aB12  —A1

A
---)cos + (2A1 B1  —a4 —

dB
) sin yi - (2.21) 

da da 

2(O(Ai(Ui)ay  + 

1-lere f( is a periodic function of iti with period 2,r which depends also on the 

amplitude a. Therefore, and Uk  can be expanded in a Fourier series as 

= gk_I) (a) + (g(a) cos nçii + h(a)sin ncu), 
(2.22) 

uk (a,cll) = v(a) + (v,(a)cosnçii + (k_l)(a)Sin nyi), 
?1 I 

where 

J g kI)(a) = __Jf(kI) (acos yl,—  awsin )dyi. (2.23) 
2,r 

Here, = a = 0 for all values of k, because both integrals of equation (2.19) 

are vanished. Substituting these values into the equation (2.20), we obtain 

0 2v 1 (a) + w2 (1 - n 2)[v'(a) cosn ,i + k_I)(a) sin n 
n=2 

= g(a) + (g(a) + 2waB/C ) cos nyl + (h'(a) + 2aAk ) sin cu 

+ Y[g(a) cosn  + h(a)sin ny]. 
n= 2 

Now, equating the coefficients of the harmonics of the same order, yield 

g(a) + 2a)a Bk = o, h(a) + 2WA/C  =0, v(a) 
-- 

g(a) 
2 ' a) 

n - 

- 

g" (a) h (a) 
~1. a) (a) - _______ 

0)2 (1—n2) - o2 (In2)' 

(2.24) 

(2.25) 

These are the sufficient conditions to obtain the desired order of approximation. For 

the first order approximation, we have 
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2,r 

A = _° = ---ff(acostcu, — awsinctf)sincudw, 
2w 2w 

(2.26) 
2.r 

B 
g ° (a) 

1 ff(a  cos  tct1,sinw)  cos  wdw. 
2aw 2raw 

Thus, the variational equations in equation (2.18) become 

2/7 

o = - Jf(a  cos  w,—  awsin)sin'd', 
2,rw 

(2.27) 
2,'r 

• r 
yi = 

S 

j 
 f(a cos çi/,—aa)sInçu) cos çud. 

2,raw 

It is seen that, the equation (2.27) are similar to the equation (2.16). Thus, the first 

order solution obtained by Bogoliubov and Mitropolskii [3] is identical to the original 

solution obtained by KB [2]. In literature, this method is well known as Krylov-

Bogoliubov-Mitropolskii (KBM) [2-3] method. The correction term u1  is obtained 

from equation (2.22) by using equation (2.25) as 

g ° (a) 
+ 

gO)(a)  cos  n  qj  + h ° (a)sin nçii 
(2.28) 

CO2 (l - n2) 

The solution equation (2.17) together with u is known as the first order improved 

solution in which a and u are obtained from equation (2.27). If the values of the 

functions A1  and B1  are substituted from equation (2.26) into the second relation of 

equation (2.21), the function j)  and in the similar way, the functions A2, B2  and 112 

- can be found. Therefore, the determination of the second order approximation is 

completed. The KB [2] method is very similar to that of Van der Pot [I] and related to 

it. Van der Pol has applied the method of variation of constants to the basic solution 

x = acosa)t + bsin wt of + c 2x = 0, on the other hand KB [2] has applied the 

same method to the basic solution x = acos(col + (p) of the same equation. Thus, in 

the KB [2] method the varied constants are a and p, while in the Van der Pol's 

method the constants are a and b. The method of KB [2] seems more interesting 

from the point of view of applications, since it deals directly with the amplitude and 

phase of the quasi-harmonic oscillation. 

The solution of the equation (2.4a) is based on recurrent relations and is given as the 

power series of the small parameter. Cap [16] has solved the equation (2.4b) by using 



elliptical functions in the sense of KB [2]. The KB [2] method has been extended by 

Popov [17] to damped nonlinear differential systems represented by the following 

equation 

I+2ki+w 2x=sf(i,x), (2.29) 

where 2k i is the linear damping force and 0 < k <w. It is noteworthy that, because 

of the importance of the Popov's method in the physical systems, involving damping 

force, Mendelson [18] and Bojadziev [19] have retrieved Popov's [17] results. In case 

of damped nonlinear differential systems, the first equation of equation (2.18) has 

been replaced by 

a = —ka + A1 (a) + e2 A2(a) + ............+ 6"A,,(a) + O(e). (2.18a) 

Murty and Deekshatulu [20] have developed a simple analytical method to obtain the 

time response of second order nonlinear over damped systems with small nonlinearity 

represented by the equation (2.29), based on the KB [2] method of variation of 

parameters. In accordance to the KBM [2-3] method, Murty ci al. [21] have found a 

hyperbolic type asymptotic solution of an over damped system represented by the 

nonlinear differential equation (2.29), i.e., in the case k > . They have used 

hyperbolic functions, cosh and sinhqi instead of their circular counterpart, which 

are used by KBM [2-3], Popov [17] and Mendelson [18]. Murty [22] has presented a 

unified KBM method for solving the nonlinear systems represented by the equation 

(2.29), which cover the undamped, damped and over-damped cases. Bojadziev and 

Edwards [23] have investigated solutions of oscillatory and non-oscillatory systems 

represented by equation (2.29) when k and a are slowly varying functions of time 1. 

Initial conditions may be used arbitrarily for the case of oscillatory or damped 

oscillatory process. But, in case of non-oscillatory systems cosh ço or sinh should 

be used depending on the given set of initial conditions (Murty et al. [21], Murty [22], 

Bojadziev and Edwards [23]). Arya and Bojadziev [24-25] have examined damped 

oscillatory systems and time dependent oscillating systems with slowly varying 

parameters and delay. Sattar [26] has developed an asymptotic method to solve a 

second order critically damped nonlinear system represented by equation (2.29). He 

has found the asymptotic solution of the equation (2.29) in the following form 

x = a(l + v') + e u1 (a,y) + ...........+ s'u,,(a,i) + O(s"), (2.30) 

where a is defined by the equation (2.18a) and çu is defined by 

EDJ 



= I + eC1 (a) + 2C,(a) + . + + O(e"') (2.18b) 

Also Sattar [27] has extended the KBM asymptotic method for three dimensional over 

- damped nonlinear systems 

Osiniskii [28] has extended the KBM method to the following third order nonlinear 

differential equation 

= f(I,±,x), (2.31) 

where s is a small positive parameter and f is a given nonlinear function. He has 

assumed the asymptotic solution of equation (2.31) in the form 

x = a + bcosçL' + 6u1 (a,b,çu) + ...........+ u,,(a,b,yi) + O(), (2.32) 

where each Uk  (k = 1, 2........,n) is a periodic function of çit with period 27r and 

a, b and u are functions of time t, and they are given by 

a = —2a + e A1 (a) + s2 A2(a) + ...........+ "A,(a) + O(c'), 

b =—pa+eB1 (b)+e2B2(b)+ ...........  +e!tB,, (h)+ O(eP), (2.33) 

=co +C1 (b)+e2C2(h)+........... 

where - A., - 1ii ± co are the eigen values of the equation (2.31) when e = 0. 

By using the KBM [2-3] method, Osiniskii [29] has investigated to solve a third order 

nonlinear partial differential equation with initial friction and relaxation. Lin and 

Khan [30] have also used the KBM [2-3] method to some biological problems. 

Proskurjakov [31] has investigated periodic solutions of nonlinear systems by using 

the Poincare and KBM methods, and has compared the two solutions. Bojadziev [32] 

qW 
has investigated the solution of nonlinear damped oscillatory systems with small time 

lag. Bojadziev and Lardner [33] have investigated periodic solution of nonlinear 

systems by using the methods of Poincare and KBM. Bojadziev and Lardner [34] 

have investigated monofrequent oscillations in mechanical systems including the case 

of internal resonance, governed by the hyperbolic differential equations with small 

nonlinearities. Bojadziev and Lardner [35-36] have also investigated solution for 

certain type of hyperbolic differential equations with small nonlinearities in the case 

internal resonance and large time delay. Bojadziev [37] has also found solutions of 

damped forced nonlinear vibrations with small time delay. Bojadziev [38] and 

Bojadziev and Chan [39] have applied the KBM method for solving the problems in 

population dynamics. Bojadziev [40] has used the KBM method to investigate the 

solutions of nonlinear systems that arise from biological and biochemical fields. 

Bojadziev [41] and Bojadziev and Hung [42] have developed a technique to 



investigate the solutions of damped nonlinear oscillations modeled by three-

dimensional differential system. Rauch [43] has studied oscillations of a third order 

nonlinear autonomous system. Mulholland [44] has studied nonlinear oscillations 

governed by a third order differential equation. Lardner and Bojadziev [45] have 

investigated the solutions of nonlinear damped oscillations governed by a third order 

partial differential equation. They have introduced the concept of "couple amplitude" 

where the unknown functions Ak , Bk  and  Ck  depend on both the amplitudes a and 

b. Raymond and Cabak [46] have examined the effects of internal resonance on 

impulsive forced nonlinear systems with two-degree-of-freedom. Alam and Sattar 

[47] have developed a method to solve third order critically damped autonomous 

nonlinear systems. Alam and Sattar [48] have presented a unified KBM method for 

solving third order nonlinear systems. Later, Alam [49] has extended the KBM 

method to over damped nonlinear differential systems. Also, Alani e/ al. [50] have 

extended the KBM method to certain non-oscillatory nonlinear systems with slowly 

varying coefficients. Alam and Sattar [51] have studied time dependent third order 

oscillating systems with damping based on the extended form of the KBM method. 

Alam et al. [52] have investigated the solution of time dependent nonlinear system 

based on the KBM method. Alam [53] has presented perturbation theory based on the 

KBM method to find the approximate solutions of second order nonlinear systems 

with large damping. Later, Alam [54-55] has extended the KBM method to 

nih, (n ~: 2,3) order nonlinear differential systems. Alam [56] has also presented a 

unified KBM method, which is not the formal form of the original KBM method for 

solving nih, (n ~! 2,3) order nonlinear systems. The solution contains some unusual 

variables, yet this solution is very important. Alamn [57] has extended the KBM 

method presented in [47] to find the approximate solutions of critically damped 

nonlinear systems in presence of different damping forces by considering different 

sets of variational equations. Alam [58] has also extended the KBM method to a third 

order over damped system when two of the eigen values are almost equal (i.e., the 

system is near to the critically damped) and the rest is small. Alam [59] has presented 

an asymptotic method for certain third order non-oscillatory nonlinear system, which 

gives desired results when the damping force is near to the critically damping force. 

Alam [60] has developed a simple method to obtain the time response of second order 

over damped nonlinear systems under some special conditions. Alam [61] has 

investigated a unified KBM method for solving ni/i order nonlinear differential 

PO 
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equation with varying coefficients. Alam and Hossain [62] have extended the method 

presented in [60] to obtain the time response of nih order (n ~! 2), over damped 

systems. Alam and Sattar [63] have developed an asymptotic method for third order 

nonlinear systems with slowly varying coefficients. Alam [64] has also developed a 

modified and compact form of the KBM unified method for solving an n/h, (n ~! 2) 

order nonlinear differential equation. The formula presented in [64] is compact, 

systematic and practical, and easier than that of [56]. Alam c/ al. [65] have developed 

the KBM method for solving over-damped nonlinear systems with slowly varying 

coefficients on a special condition. Alam [66] has developed damped oscillations 

modeled by an nih order time dependent quasi-linear differential system. Alam ci al. 

[67] have presented a general form of the KBM method for solving nonlinear partial 

differential equations. Alam et al. [68] have presented a general Struble's technique 

for solving an nih order weakly nonlinear differential system with damping. Nayfeh 

[69-70] and Murdock [71] have developed perturbation methods and theory for 

obtaining the solutions of weakly nonlinear differential systems. Sachs ci al. [72] have 

developed a simple ODE model of tumor growth and anti-angiogenic or radiation 

treatment. 

Lim and Wu [73] have also presented a new analytical approach to the Duffing 

harmonic oscillator. 1-le [74] has obtained the approximate solution of nonlinear 

differential equation with convolution product nonlinearities. He [75] has developed 

some new approaches to Duffing equation with strongly and high order nonlinearity. 

— 
Also, He [76] has presented a new interpretation of homotopy perturbation method. 

Belendez ci al. [77] have presented the application of He's homotopy perturbation 

method to Duffing harmonic oscillator. Uddin ci al. [78], Uddin and Sattar [79-80] 

and Uddin [81] have presented an approximate technique for solving second order 

strongly nonlinear differential systems with damping by combing the He's [74-76] 

homotopy perturbation and the extended form of the KBM [2-3] methods. Recently, 

Uddin ci al. [82] have also developed an analytical approximate technique for solving 

a certain type of fourth order strongly nonlinear oscillatory differential system with 

small damping and cubic nonlinearity by combining He's homotopy perturbation [74- 

76] and the extended form of the KBM [2-3] methods. Younesian ci al. [83] have 

presented frequency analysis of strongly nonlinear generalized Duffing oscillators 

using He's frequency- amplitude formulation and He's energy balance method. 
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CHAPTER III 

An Approximate Analytical Technique for Solving Second Order Strongly 

Generalized Nonlinear Differential Systems with Small Damping 

3.1 Introduction 

The study of nonlinear problems arise in the fields of applied mathematics, physics, 

engineering, medical science, economics and other disciplines is of crucial 

importance, since most of the phenomena in the real world are essentially nonlinear 

and described by nonlinear differential systems with damping. It is too much difficult 

to handle nonlinear problems and in general, it is often very difficult to get an 

approximate analytical solution for strongly generalized nonlinear differential systems 

with damping than a numerical one. The most well-known common methods for 

constructing the approximate analytical solutions to the nonlinear oscillators are the 

perturbation techniques. Among of these techniques are the KBM [2-3] method, the 

Lindstedt-Poincare (LP) method [6, 9] and the method of multiple time scales [69, 70] 

for this category. Perturbation methods are based on an assumption that small 

parameters must exist in the equations, which is the major restriction to find wide 

application of the classical perturbation techniques. It determines not only the 

accuracy of the perturbation approximations, but also the validity of the perturbation 

methods itself. However, in science and engineering, there exist many nonlinear 

oscillatory problems which do not contain any small parameter, especially those 

appear with strong nonlinearities. Therefore, many new techniques have been 

proposed to eliminate the "small parameter" assumption. Among of them, the 

homotopy perturbation method (HPM) is a popular one. Lim and Wu [73] have 

presented a new analytical approach to the Duffing- harmonic oscillator. He [74] has 

obtained the approximate solution of nonlinear differential equation with convolution 

product non linearities. In another paper, He [75] has developed some new approaches 

to Duffing equation with strongly and high order nonlinearity. Recently, He [76] has 

presented a new interpretation of homotopy perturbation method. Belendez et al. [77] 

have presented the application of He's homotopy perturbation method to Duffing 

harmonic oscillator. Uddin et al. [78] have presented an approximate technique for 
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solving strongly nonlinear differential systems with damping effects and cubic 

nonlinearity. Uddin and Sattar [79] have developed an approximate technique for 

solving strongly nonlinear biological systems with small damping effects. Uddin and 

Sattar [80] have also presented an approximate technique to Duffing equation with 

small damping and slowly varying coefficients. Uddin [81] has applied 1-le's 

homotopy perturbation method to Duffing equation with small damping and high 

order strong nonlinearities. Recently Uddin el al. [82] have developed an approximate 

analytical technique for solving a certain type of fourth order strongly nonlinear 

oscillatory differential system with small damping and cubic nonlinearity. Younesian 

et al. [83] have presented the frequency analysis of strongly generalized nonlinear 

Duffing oscillators using 1-Le's frequency- amplitude formulation and 1-le's energy 

balance method. From the early discussion, it has been seen that the most of the 

authors [74-77, 83] have studied nonlinear differential systems without considering 

any damping effects. But most of the physical and engineering problems occur in 

nature as nonlinear differential systems with small damping and the damping term 

plays important role to the systems. It is mentioned that from our early discussion, the 

second order strongly generalized nonlinear differential system with small damping 

has remained almost untouched. The main goal of this chapter is to fill this gap. The 

advantage of the presented coupling technique is that the first order analytical 

approximate solutions show a good agreement with the corresponding numerical 

solutions and the strongly generalized nonlinear differential equation is handled easily 

while the classical perturbation methods are failed to solve such generalized nonlinear 

differential systems. 

3.2 The Method 

We are interested to consider the strongly generalized nonlinear differential equation 

with small damping modeling in the following form 

1+ 2ki+ v2 x = —e(a3 f3(x, fc)+a5 f5 (x,±)+ ce7 f7 (x, .)+ a,,f(x, ))),(3.1) 

under the initial conditions 

x(0) = .(0) = 0, (3.2) 

where over dots denote differentiations with respect to time t, v is a constant, c is 

a parameter not necessarily small, 2k is the linear damping coefficient, a1  are 
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constants, b0  is an initial amplitude, and f(x, ), I = 3,5,7.. •n are given nonlinear 

functions and they satisfy the following condition 

= —f(x, (3.3) 

To solve the equation (3.1), we are interested to assume the following transformation 

x = y(t)e_kt (3.4) 

Now differentiating equation (3.4) twice with respect to time t and substituting 1, 

together with x into equation (3.1), we obtain 

+(v2  —k 2)y = —e  ki a1 f je_kt ,(_ky)e_kt). (3.5) 

In accordance to the homotopy perturbation method, equation (3.5) can be re-written 

as 

11 

+w2y= 2y _ sek aj  f e_k 1 ,(_ky)e_k (3.6) 
1=1 

where 
2 =

2  —k 2  +2. (3.7) 

Herein &j is a constant for undamped nonlinear oscillators and known as the angular 

frequency of the nonlinear systems and 2 is an unknown function which can be 

determined by eliminating the secular terms. But for the damped nonlinear differential 

systems w is a time dependent function and it varies slowly with time t. To handle 

this situation, we are going to use the extended form of the KBM [2-3] method. In 

accordance to this method, we choose the solution of equation (3.6) in the following 

form 

y=b cos , (3.8) 

where b and q vary slowly with respect to time t. In literature b and ço are known 

as the amplitude and phase variables respectively and they play an important role to 

nonlinear physical systems. The amplitude b and phase variable q' satisfy the 

following first order ordinary differential equations 

(3.9) 

where is a small positive parameter and z = t is the slowly varying time. Now 

differentiating equation (3.8) twice with respect to time I, utilizing the relations 
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equation (3.9) and substituting j, y into equation (3.6) and then equating the 

coefficients of sin (p and cos , we obtain 

IL B1  = —w'b/(2w), C1  = 0, (3.10) 

where prime denotes differentiation with respect to slowly varying time r. Now 

putting equation (3.8) into equation (3.4) and equation (3.10) into equation (3.9), we 

obtain the following equations 

x=be_kt cosço, (3.11) 

b = —saib /(2a), 
(3.12) 

Thus, the first order analytical approximate solution of equation (3.1) is obtained by 

the presented coupling technique by equation (3.11) with the help of equations (3.7) 

and (3.12). Usually the integration of equation (3.12) is computed by well-known 

techniques of calculus [69-70], but sometimes they are calculated by a numerical 

procedure [17-18, 24, 28, 34, 44, 47-68, 77-82]. 

3.3 Examples 

3.3.1 To apply the above procedure for the practical problems, let us consider the 

strongly generalized nonlinear differential equation with a linear damping effects for 

n = 3,5 [83] in the following form 

5+2k±+u2x=—e(a3x3 +a5x 5 ), (3.13) 

where J (x, ±) = x3, f5 (x, *) x5. To solve the equation (3.13), we are interested to 

assume the following transformation 

x=y(t)e '' . (3.14) 

Now using the transformation equation (3.14) into equation (3.13) and then 

simplifying them, we obtain 

5+(v2  —k 2)y = —e(a3 y3e 21 ' + a5  y5e'"'). (3.15) 

In accordance to the homotopy perturbation [74-82] technique, equation (3.15) can be 

written as 

j +a 2y =2y _ s(a3 y3e 2 I( +a5y 5  e -4k 1
), (3.16) 

where 

= 02  — k 2  + ,%. (3.17) 
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Here 2 is an unknown function which can be determined by eliminating the secular 

terms. In accordance to the extended form of the KBM [2-3] method, the solution of 

equation (3.16) is obtained in the form 

y=bcosço, (3.18) 

where 

= —Ea)'b/(2w), 
(3.19) 

ç9=a)(r). 

According to the trigonometric identity, we know 

[ ç91 COSn+nCOS(n_2)+ n(n —1) cos(n - 4) 

cos 
= 

2! (3.20) 
2?1 

 [ 
n(n - l)(n 

—2) cos(n - 6) 
+ ] 3! 

for all odd n. Now using the value of y from equation (3.18) into the right hand side 

of equation (3.16) and using the trigonometric identity equation (3.20) and 

rearranging, we obtain 

5 ea5 b5e_40  

a3b e d( 5ab5e_4k1)
cos3~o+  

- 

+ 
 4 16 

The requirement of no secular terms in particular solution of equation (3.16) implies 

that the coefficient of the cos term is zero. Setting this term to zero, we obtain 

2b - 
3sa3  be 

- 

5t' a5  b5e4' 
= , (3.22) 

which leads to 

3a b 2e 2 5sa5 b4e' 
2= + 

4 8 
(3.23) 

Putting the value of 2 from equation (3.23) into equation (3.17), then it leads to 

3sa1b2e 21 '  

w2 u2  —k 2  + - + 
5ea5 b4e 1

• (3.24) 
4 8 

From equation (3.24) it is clear that, the frequency of the damped nonlinear 

differential systems depends on both amplitude b and time 1. When t —* 0 then 

equation (3.24) yields 
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WO = w(0) = v2 
 - k2 + + 56a5 b (3.25) 

- By integrating the equation (3.19), we get 

b = bF
C̀o~)O_ 

O)o , = ,o + JU)(r)dt, (3.26) 
0 

where r = et is the slowly varying time and b0  and ço0  are constants of integration 

and is known as the initial amplitude and phase of the systems. Now putting equation 

(3.26) into equation (3.24), we obtain a biquadratic algebraic equation in CO in the 

following form 

CO +pa)2  +qco+r=O, (3.27) 

where 

p =k2 2 q = 
_3ea3wobe_2k1 r 

= _5
&a5U)o21_4k 1 

(3.28) 
4 8 

The solution of equation (3.27) is computed by using the well-known Newton-

Raphson method. Thus, the first order analytical approximate solution of equation 

(3.13) is given by 

x= b e _et cosQ,, (3.29) 

b=b0
F±co)o-  

, = 0 +JU)()dt, (3.30) 
0 

where r = t, w0  is obtained by equation (3.25), & is calculated from equation 

(3.27), b and q' are carried out by equation (3.30). 

3.3.2 As a second example, we are going to consider the strongly generalized 

nonlinear differential system with a linear damping effects [74, 83] modeling in the 

following form 

I+2k±+v 2x=—s(a3 x 3 +a5 x 5 +a7 x 7 ). (3.31) 

For solving the equation (3.31), we are going to assume the following transformation 

x = y(t)e_t . (3.32) 

Now using the transformation equation (3.32) into equation (3.31) and then 

simplifying them, we obtain 

- k2)y = _&.(a3y3e_2k1 + a5 y 5e '  +a7 y7e"'). (3.33) 
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In accordance to the homotopy perturbation [74-82] method, equation (3.32) yields 

+ w 2 y 2y - s(a3  y 3e 21"  + ce5 y5e + cr7  ye), (334) 

where w is calculated by the following equation 

CO 
2 
=0 - k 2  + A. (3.35) 

In accordance to the extended form of the KBM [2-3] method, the solution of 

equation (3.34) is considered as the following form 

y=bcos'p, (3.36) 

where 

b = —soib/(2o), (3.37) 

Now using the value of y from equation (3.36) into the right hand side of equation 

(3.34) and using the trigonometric identity equation (3.20) and rearranging, we obtain 

2 ( 3Ea3 a3e _2k 1  5
8
a5 a5e_4k 1  35

6
a7a7e_6 k 1  

1p y+a y=2a— 
4 - 8 - 64 

jcos 

(3.38) 
(a3a3e_2k1 5a5  aSe_4kt 21a7 a7e6k1 

4 16 
-el + + 

64 
icos3-i-. 
) 

The requirement of no secular terms in particular solution of equation (3.38) implies 

that the coefficient of the cosq term is zero. Setting this term to zero, we obtain 

2b_36a3be _5ea5 b 5e' _35ea7b7e' 
=0, (3.39) 

4 8 64 

which leads to 

23ea3b2e2 + 56 a5b4'  + 35sa7b6 . (3.40) 
4 8 64 

Putting the value of 2 from equation (3.40) into equation (3.35), yields 

2 =  2 2 3sab2e 21" 5ea b4e' 35sa7 b6e' 

4 8 64 

From equation (3.41), we obtain (ast -* 0) 

= 0(0) = )02 - k2 + 
3&a3  b 

+ 
Sc a5  b 

+ 64 
(3.42) 

4 8

By integrating the equation (3.37) 

b=b4i-i, q,=9,0 +fa(r)dt (3.43) 
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where r = s/. Using the equation (3.43) into equation (3.41), we obtain a fifth degree 

polynomial in w in the following form 

- w5 +po 3 +qo2 +rw+s=O, (3.44) 

where 

3ca3  a)0 b 

4 (3.45) 

r 

5g502_4kt ,s=— 35 6 a
7

o
0

3 b
0

6 e 6 k I  
=— 

8 64 

The solution of equation (3.44) is obtained by using the well-known Newton- 

Raphson method. 

Thus, the first order analytical approximate solution of equation (3.31) is obtained by 

x=be" cosq, (3.46) 

b=b0 , = o +fw(r)dt, (3.47) 

where r = e t, w0  is obtained by equation (3.42), w is calculated from equation 

(3.44), b and are given by equation (3.47). 

3.4 Results and Discussion 

In this chapter, we have extended He's hoinotopy perturbation method to solve 

second order strongly generalized nonlinear differential system [83] with small 

damping. It is too much difficult to solve the strongly generalized nonlinear Duffing 

type problems, especially with small damping and high order nonlinearities by the 

classical perturbation methods [2-4, 17-68]. But the suggested method has been 

successfully applied to solve second order strongly generalized nonlinear differential 

systems with small damping and high order nonlinearities. The first order 

approximate solutions of equation (3.13) and equation (3.31) are computed with small 

damping and high order nonlinearities by equations (3.29) and (3.46) respectively and 

the corresponding numerical solutions are obtained by using fourth order Runge-

Kutta method. The variational equations of the amplitude and phase variables 

appeared in a set of first order nonlinear differential equations. The integration of 

these variational equations is carried out by the well-known techniques of calculus 

[69-70]. In lack of analytical solutions, they are solved by numerical procedure 
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[2-4, 17-83]. The amplitude and phase variable change slowly with time t. The 

behavior of amplitude and phase variable characterizes the oscillating processes and 

- amplitude tends to zero in presence of small damping for large time i (i.e., t -> co). 

On the other hand, our proposed technique can take full advantage of the classical 

perturbation method. The solutions obtained by the presented method show a good 

agreement with those obtained by the numerical procedure [2-4, 17-831 with several 

damping effects. It is also noticed that the presented method is also capable to handle 

the second order weakly generalized nonlinear differential system with damping 

effects and high order nonlinearities. Comparison is made between the solutions 

obtained by the presented technique and those obtained by the numerical procedure in 

Figs. 3.1-3.2 for both strongly (e = 1.0) and weakly (e = 0.1) generalized nonlinear 

- differential systems with small damping effects. Also the solution of the Dufling 

equation for cubic nonlinearity is obtained from equation (3.13) and equation (3.31) 

by setting a5  = 01  a7  = 0 with small damping (Fig. 3.3). Also the average percentage 

errors have been calculated between numerical and approximate solutions in table 3.1. 

From the table 3.1, it is clear to us that the average percentage errors except few cases 

are negligible. 
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Fig. 3.1 (a) First approximate solution of equation (3.13) is denoted by -.- (dashed 

lines) by the presented analytical technique with the initial conditions 

b0  = 0.5, = 0 or [x(0) = 0.5, ±(0) = —0.07194] when k = 0.15, c = 1.0, 

a3  = 1.0, a5  = 1.0 and f3  = x3, f5  = x5 . Corresponding numerical solution is 

denoted by - (solid line). 

0.5 

0.25 
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-0.25 

-0.5 

t 

Fig. 3.1 (b) First approximate solution of equation (3.13) is denoted by -.- (dashed 

lines) by the presented analytical technique with the initial conditions 

b0  =0.5, çoo  =0 or [x(0)=0.5, ±(0)=-0.07466] when k=0.15, =0.1, 

a3  = 1.0, a5  = 1.0 and f3 = x3 , J' = x5 . Corresponding numerical solution is 

denoted by - (solid line). 
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Fig. 3.2 (a) First approximate solution of equation (3.31) is denoted by -. - (dashed 

lines) by the presented analytical technique with the initial conditions 

b0  = 0.5, 'o =0 or [x(0)=0.5, ±(0)=-0.13401] when k=0.3, e=1.0, 

a3  = 1.0, a5  = 1.0, a- = 1.0 and f3 x3,  f5 = x5, f. = x7 . Corresponding numerical 

solution is denoted by - (solid line). 
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Fig. 3.2 (b) First approximate solution of equation (3.31) is denoted by -. - (dashed 

lines) by the presented analytical technique with the initial conditions 

bo  = 0.5, q'0  =0 or [x(0)=0.5, (0)=-0.14781] when k=0.3, e=0.1, 

a3  =1.0, a5  =1.0, a7  =1.0 and f =x3,  f5 =x5,  f7 =x7 . Corresponding numerical 

solution is denoted by - (solid line). 
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Fig. 3.3 (a) First approximate solution of equation (3.13) is denoted by (dashed 

lines) by the presented analytical technique with the initial conditions 

b0  =0.5, ipo  =0 or [x(0)=0.5, i(0)=-0.O7281] when k =0.15, e=1.0, 

a3 =I.0,  a5  = 0.0 and f = x3 , f5 = x5 . Corresponding numerical solution is 

denoted by - (solid line). 

-0.5 

t  

Fig. 3.3 (b) First approximate solution of equation (3.13) is denoted by --- (dashed 

lines) by the presented analytical technique with the initial conditions 

b0  = 0.5, j = 0 or [x(0)= 0.5, (0) = —0.07476] when k = 0.15, e = 0.1, 

a3  = 1.0, a5  = 0.0 and f3 = x 3 , fs  = x5 . Corresponding numerical solution is 

denoted by - (solid line). 
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Table 3.1: Average percentage error between numerical and approximate solutions: 

Figures Initial conditions for different values of the Average 
No. parameters. Percentage 

Error 
Fig-3.1(a) b0  = 0.5, =0 or [x(0)=0.5, ±(0)=-0.07194] 3.083016% 

when k = 0.15, s = 1 .0, a3 1.0, a5  = 1.0 and f = x3, 

f5 =x5  

Fig-3.1(b) b0  = 0.5, = 0 or [x(0) = 0.5, (0) = -0.07466] when -0.08613% 

k = 0.15, 6 = 0.1, a3  = 1.0, a5  = 1.0 and f = 

= X  5. 

Fig-3.2(a) b0  = 0.5, q o  = 0 or {x(0) = 0.5, 1(0) = -0.1340 1] when 0.093699% 

k = 0.3, e = 1 .0, a3  = 1.0, a5  = 1.0, a7  = 1.0 and 

= x3 
, 

= x5, f7 = x7 . 

Fig-3.2(b) b0  =0.5, rpo 0 or [x(0)=0.5, x(0)=-0.14781] when 4.62758% 

k = 0.3, e = 0. 1, a3  = 1.0, a5  = 1 .0, a7  = 1.0 and 

f =x3 , f5 =x5,  f7 =x7 . 

Fig-3.3(a) b0  = 0.5, = 0 or [x(0) = 0.5, 1(0) = -0.07281] when -1.4236% 

k=0.15, e=l.O, a3  =1.0, as  =0.0 and f3 =x3, 

= x5 . 
Fig-3.3(b) b0  = 0.5, çpo  = 0 or [x(0) = 0.5, 1(0) = -0.07476] when -0.19684% 

k = 0.15, e = 0.1, a3  = 1.0, as  = 0.0 and f3  = 

f =x5 . 

I 
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CHAPTER IV 

A Coupling Approximate Analytical Technique for Solving Certain Type of 

Fourth Order Strongly Generalized Nonlinear Damped Oscillatory Differential 

System 

4.1 Introduction 

The most common methods for constructing the approximate analytical solutions to 

the nonlinear oscillator equations are the perturbation techniques. Some well known 

perturbation methods are the KBM [2-3] method, the Lindstedt-Poincare (LP) method 

- [6, 9], and the method of multiple time scales [69-70]. Almost all perturbation 

methods are based on an assumption that small parameters must exist in the equations, 

which is too strict to find wide application of the classical perturbation methods. It 

determines not only the accuracy of the perturbation approximations, but also the 

validity of the perturbation methods itself. However, in science and engineering, there 

exist many nonlinear problems which do not contain any small parameter; especially 

those appear in nature with strong nonlinearity. Therefore, many new techniques have 

been proposed to eliminate the "small parameter" assumption, such as the homotopy 

perturbation method (HPM), harmonic balance method (I-IBM), iteration method. 

Alam [56] has investigated a unified KBM method for solving nih, (n ~! 2) order 

weakly nonlinear differential systems. Alam and Sattar [63] have presented an 

asymptotic method for third order nonlinear differential system with slowly varying 

coefficients. In another paper, Alam [64] has investigated a modified and compact 

form of KBM unified method for an nih order nonlinear differential equation. Alam 

el al. [68] have developed a general Struble's technique for solving an nih order 

weakly nonlinear differential system with damping. Sachs et al. [72] have presented 

simple ODE models of tumor growth and anti-angiogenic or radiation treatment. Lirn 

and Wu [73] have also presented a new analytical approach to the Duffing- harmonic 

oscillator. He [74] has obtained the approximate solution of nonlinear differential 

equation with convolution product nonlinearities without damping. In another paper, 

He [75] has developed some new approaches to Duffing equation with strong and 

high order nonlinearity without damping. Recently He [76] has presented a new 
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interpretation of homotopy perturbation method without damping. Belendez et al. [77] 

have presented the application of He's homotopy perturbation method to Duffing 

- harmonic oscillator without damping. Combing He's homotopy perturbation and the 

extended form of the KBM methods, Uddin ci al. [78], Uddin and Sattar [79-80] have 

presented approximate techniques for solving second order strongly nonlinear 

damped oscillatory differential systems for both cubic and quadratic nonlinearities. 

Recently Uddin et al. [82] have developed an approximate analytical technique for 

solving a certain type of fourth order strongly nonlinear oscillatory differential system 

with small damping and cubic nonlinearity. Younesian ci' al. [83] have developed 

frequency analysis of strongly nonlinear generalized Duffing oscillators using He's 

frequency- amplitude formulation and He's energy balance method. But many 

- physical and engineering problems occur with fourth order strongly generalized 

nonlinear damped oscillatory differential systems and they do not contain small 

parameters, i. e., those appear with small damping and strong nonlinearity. The more 

difficult and no less important cases, the fourth order strongly generalized nonlinear 

damped oscillatory differential systems has remained almost untouched. The aim of 

this chapter is to fill this gap. So in this chapter, we are interested to extend an 

approximate analytical technique based on the He's homotopy [74-76] perturbation 

and the extended form of the KBM [2-3] methods to solve certain type of fourth order 

strongly generalized nonlinear damped oscillatory differential systems. This method 

transforms a difficult problem under simplification into a simple problem which is 

easy to solve but the classical perturbation techniques are almost unable to handle the 

fourth order strongly and weakly generalized nonlinear damped oscillatory 

differential systems. The presented method has been successfully implemented to 

solve the fourth order strongly generalized nonlinear damped oscillatory differential 

systems with example. The advantage of this method is that the first order 

approximate analytical solutions show a good agreement with the corresponding 

numerical solutions. Moreover, the presented method is also able to give the desired 

results for the fourth order weakly generalized nonlinear damped oscillatory 

differential systems. It is also noted that the presented method is able to handle the 

fourth order strongly and weakly nonlinear oscillatory differential systems with cubic 

nonlinearity for several damping effects. 
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4.2 The Method 

We are going to assume the fourth order strongly generalized nonlinear damped 

oscillatory differential system in the following form 

x" +(a + I +a x = —(p+ q)— ea1 f1(x,), (4.1) 

under the initial conditions 

x(0) = a0 , ±(0) = (0) = (0) = 0, (4.2) 

where over dots represent the derivatives with respect to time I, w1  and W2  are the 

angular frequencies for double mode of vibration of the systems, a is a positive 

parameter which is not necessarily small, p, q are unknown constants and 

- f(x, ±), j=3,5• ••n are given nonlinear functions satisfying the conditions 

f(—x, -) = —J'1(x, ) and a1  are given positive constants. If we consider p = 4k 

and q =4k 4  +2k(a +a)-12 k 3  then the eigen values of equation (4.1) reduces 

to — k±iw, and —k±iW2 , where k<<1 represents the significant positive damping 

effects. In accordance with the earlier works [78-82] the dependent variable is 

changed by the following transformation 

x=y(1)e. (4.3) 

Differentiating equation (4.3) four times with respect to time t, and then substituting 

the derivatives x, 1, i, x together with x and the values of p and q into equation 

(4.1) and after simplif'ing them, we obtain the following equation 

(4) —6k2))+{5k4  —k2(v,2 
CO2  

ki 
U 

-kl
(4.4)  

= —eea1 f(ye,(j,_ky)e_ko). 

In accordance to the homotopy perturbation [74-82] method, equation (4.4) can be 

written as 

(4)  +(a +W _6k2 ))+(5k4  —k 2(w +W)+WW +,)y 
,, 

= - eek1a  f,(ye',( - ky)e). 
(4.5) 

1 

Equation (4.5) can be re-written as 

(4) + (W + - 6k 2)) + = 
- eek 1 a  f(ye',(j' - ky)e'), (4.6) 
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where 

w 2  =5k 4  —k 2(a +w)+wu4 +2. (4.7) 

- Herein w is a constant for undamped nonlinear oscillator and known as the angular 

frequency in literature and 2 is an unknown function which can be determined by 

eliminating the secular terms. But w is a time dependent function and it varies slowly 

with time I for nonlinear damped oscillatory differential system. To tackle this 

situation, the extended form of the KBM [2-3] method by Mitropolskii [4] is applied. 

In accordance to this method, we consider the solution (for a single mode of 

vibration) of equation (4.6) in the following form 

y=acos, (4.8) 

where the amplitude a and the phase vary slowly with time I and they satisfy the 

following first order ordinary differential equations 

= (r) +e C1 (a, z-) + e2C2(a,r) + .. 

where e is a positive parameter which is not necessarily small and v = ci is the 

slowly varying time, J3  and  C, are  unknown functions and p1  is reduced angular 

frequency of the nonlinear differential systems. Now differentiating equation (4.8) 

four times with respect to time I and utilizing equation (4.9) and then collecting the 

terms up to 0(c) and neglecting 0(2)  and higher terms, we get 

(4) 

= 5eapp1'sinço+2ci(B1  sin ço+aC1  sin co) (4.10) 

+ p(—ca1uçsin - 2ep1 (B1  sing' + aC1  cosqi)). 

where ,u represents the derivative with respect to slowly varying time v and P
2  is 

reduced angular frequency of the nonlinear differential systems. 

equation (4.10) can be re-written as 

(411) 
= ep(5p - p)asin + 2sp1 (p - p)(B1  sin ç + aC1  cos). 

Now if 

(4.12) 

then equation (4.11) becomes 

ep(5p - 1u)asin 'p + 2ep1 Cu - p)(B1  sin + aC1  cos(p) = 0. (4.13) 
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Equating the coefficients of sinq and cosq from both side of equation (4.13), we get 

the following functions 

C =0. (4.14) 
2p1 ( -pg) 

Again comparing equation (4.11) with equation (4.6), we obtain 

/-, 
2 +u =w +w2  —6k 2, (4.15) 

dUU? =5k 4  —k 2( +w)+atv +. (4.16) 

Also we get the following relation by using equations (4.15)- (4.16) 

t'il 22)2 +16k4 8k2 (w2 + w2)42 (4.17) 

By solving equation (4.15) and equation (4.17), we write 

= (0)  2 + 
- 6k2 + (a - co)2 + 16k4  - 8k 2(w + w) —42), (4.18) 'UI

,2  =j-!-(w2  + w 2 -6k2  -J(w —w)2  + 16k4  —8k 2 (w +(0)_42). (4.19) 

Putting the value of y from equation (4.8) into equation (4.3) and the values of B1  

and C1  from equation (4.14) into equation (4.9), we obtain the following final 

solution 

x(t,$) = ae cos, (4.20) 

(4.21) 
21u1(,u1 P2) 

Thus, the first order approximate analytical solution of equation (4.1) is obtained by 

equation (4.20) by the presented coupling technique. Usually, the integrations of 

equation (4.21) are carried out according to the well-known techniques of calculus 

[69-70], but sometimes they are carried out by a numerical procedure [17-18, 24, 28, 

34, 44, 47-68, 77-82] with the help of equations (4.18) - (4.19). Hence the 

determination of the first order analytical approximate solution of equation (4.1) is 

completed by the proposed method. 

4.3 Example 

To apply the above procedure, we are going to assume the fourth order strongly 

generalized nonlinear damped oscillatory differential system in the following form 

+ (w1 2  + ( 2 2 ) + w120)22x = —(p + qi) - e(a3  x3 + a5  x5  + a7  x7 ), (4.22) 
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where f3(x) = x3, J(x) = x5, f,(x) = x7  are the given nonlinear functions. By using 

the substitution equation (4.3) [78-82] and then simplifiing them and in accordance to 

the homotopy perturbation [74-82], equation (4.22) can be written as 

(4) +(1u + +P
2X,1Y 

= - e(a1  y3e 2  + a5  y5e + a7  y7e') 

(4.23) 

In accordance to the extended form of the KBM [2-3] method, the solution of 

equation (4.23) is considered as follows 

y = acos, (4.24) 

where a and qo are obtained by the following relations 

çb=p1 (r). (4.25) a 
21(1u-1u) 

According to the trigonometric identity, we know 

[cos nc + ncos(n - 2) 
+ 

n(n — l) 
 2! cos(n - 4)q1 

(4.26) 

= 

1 

 

211-1 

+ 

n(n - l)(n —2) cos(n 
- 6) 

+••• 3! 

for all odd n. Now using the value of y from equation (4.24) into the right hand side 

of equation (4.23) and using the trigonometric identity equation (4.26) and 

rearranging, we obtain 

+ (j + 1u )j + y 

= [
,a

_33c_2kl  5ea5 ae 4"' 35ea7a7e_ 
cosço (4.27)

] 

- 

[a3a3e_2k1 + 5a5  a5e_4k1 
+ 

21a7  a7e' 
Jcos3 +••-. 8 

4 16 64 

Since in presence of secular terms, the solutions are non-uniform. So, to obtain the 

uniform solution of the system, the requirement of no secular ternis in particular 

solution of equation (4.27) implies that the coefficients of the cosçp term are zero. 

Setting these terms to zero, we obtain 

2a- 
3saia3e2k  i  56a2  a5e 

 -4k 
 1  35e -6k I a3 a7e 

=• (4.28) 
4 8 64 

We are looking the nontrivial solution of the system. So, for the nontrivial solution 

(i.e., a # 0), equation (4.28) leads to 
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N 

3ea a2e2'' + 5ea a4e' + 35sa 3  a6e' 
2 =:  

4 8 64 
(4.29) 

Now substituting the value of 2 from equation (4.29) into equation (4.18) —(4.19) we 

get 

J(2 2)2 + 16k4  —8k2(w +co)_3ecx3a2e2k 
I 

J, 
kI 

(4.30) =_[w + 2  + —6k 
V-5ea5ae'/2-35ea7a6e6/16 

j ( (CO - 
2)2 + 16k 4  - 8k2 (0) + w) - 3ea3  ae 

j
(4.31) 

Squaring equation (4.30) and expanding according to the binomial theorem and then 

simplifying, we can write 

4k4  2k2(w+) 36a3a2e_211  5ea5 a4e 4  356a7 a6e
PI 

' 
= - 3k2  + 

o - - - - 4( 
- 

- 8(w 
- 

w) - 64(w - a) 

(4.32) 

Differentiating equation (4.32) with respect to t and treating a as constant, we get 

6 -6k! 

21u1u' - 
3ka3 ae 21 5ka5 ae 41" 105kcx a0 e 

- 2(w - w) + 2( 
- 

+ 2_ w) 

Dividing equation (4.33) by equation (4.32) we obtain 

L 13ka3 ae_2 k1  5ka5ae4 k' 105ka7a 6 
0e

-6k, 

2 + 4(w - w) + 64(w 
- 

w) ) 
(a —n)(a)2 -5k 2 )+4k 4  —4k 2w 3 ea3ae2k1 

(w - 
 0)2 

 ) 4( -) 
4 -4k1 

- 5eka5 a0 e 35e ka7 ae 61" 

8(0 —wy) - 64(w —a) J 

which can be rewritten as the following form 

2,u1  {(a - w)((0 - 5k2 ) + 4k4  - 4k2w2 } 

_2k 4 -4k (3ka3ae1 +5ka5a0e + 
_6k1 105k 6 \ ct7 a0e 

8 8 128 

11+ - 4k2w} 
X  

{( - ,)
2 )((02

- 5k 2) + 4k4  

(36a
3
a2e_ 2k1 56a5a4e4k1 +35sa?a66k1 

+ 8 64 JJ 

(4.33) 

(4.34) 

(4.35) 
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Now putting equation (4.35) into equation (4.14) and collecting the terms up to 0(e), 

we get 

B1 R1 ae_2k1  + R2  ae "'  + R3  ae , (4.36) 

where 

' 

R 
ika3 ao(5p—p 2  

2) 

8(p —p){(a —o22)(a? —5k 2 )+4k 4  —4k 2w} 

R = - 
5 kct 5  a (Si'? - i'22) (4.37) 

2 
8(u? — 1u22){( a j2  —a?)(a? —5k 2 )+4k 4  —4k 2 o.22} 

1O5ka7 a(5u? -P22 ) 
R3 =- -- 

Thus, equation (4.21) reduces to the following simple form 

- 6=e(R1 ae 2 +R2 ae
4k
+R1ae

6kt
), 0=i'1(ñ. (4.38) 

After carrying out the integrations of equation (4.38), we obtain the following 

equations for the amplitude (a) and phase ((p) variables 

e 
a = a0 exp(

2k 
_ R_!(1 - e_2k1) + £(l - e_4k1) eR. 

+--(l e - 
6k 

4k 6k 

where v = ci, a0  and p,,, are the initial amplitude and phase variables for the 

dynamical systems respectively. Thus, the first order approximate analytical solution 

of equation (4.22) is obtained by 

x=aecos, (4.40) 

where a and çü are carrying out from equation (4.39) with the help of equations 

(4.30), (4.31) and (4.37). 

4.4 Results and Discussion 

In this chapter, a coupled approximate analytical technique has been extended to 

obtain the first order approximate analytical solutions for certain type of fourth order 

strongly generalized nonlinear oscillatory differential system with damping and the 

method has been successfully implemented to illustrate the effectiveness and 

convenience of the proposed method. The first order approximate analytical solutions 

of equation (4.22) are computed by equation (4.40) with the help of equation (4.39) 
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and the corresponding numerical solutions are obtained by the well known fourth 

order Runge-Kutta method. 

Moreover, the presented method is simple and the advantage of this method is that the 

first order approximate solutions show good agreement with the corresponding 

numerical solutions for several damping effects (Figs. 4.1-4.6). The initial 

approximation can be freely chosen, which is identified via various methods [2-4, 17-

83]. The approximate solutions obtained by the presented method are valid not only 

for fourth order strongly generalized nonlinear damped oscillatory differential 

systems, but also for weakly one. Figs. 4.1-4.3 are provided to compare the solutions 

obtained by the presented method to the corresponding numerical solutions with small 

damping for fourth order strongly generalized nonlinear oscillatory differential 

systems. Also Figs. 4.4-4.5 are cited to compare the solutions obtained by the 

presented method to the corresponding numerical solutions for fourth order weakly 

generalized nonlinear oscillatory differential systems with damping effects. However, 

the proposed method is able to give the desired results for fourth order strongly 

nonlinear damped oscillatory differential systems (Fig. 4.6.) with cubic nonlinearity. 

From the Figs. 4.1-4.6, it is noticed that the obtained approximate analytical solutions 

for both strongly and weakly generalized nonlinear damped oscillatory differential 

systems show good agreement with those solutions obtained by the fourth order 

Runge-Kutta method. The average percentage errors have been calculated between 

numerical and approximate solutions in table 4.1. From the table 4.1, it is clear that 

the average percentage errors except one case are negligible. 



x 0 

-0.5 

-1 
- 

Fig. 4.1. First approximate solution of equation (4.22) is denoted by -. - (dashed 

lines) by the presented coupling technique with the initial conditions a0  = 1 .0, q 0  = 0 

or [x(0) = 1.00000, ±(0) = —0.09985, 1(0) = —99.95239, (0) = 29.95643] when 

w1 =10.0, 0 2  =5.0, k=0.l, e=1.0,/3 =/5 =17  =1.0 and J =x 3,f5  =x 5,f7 =x 7 . 

Corresponding numerical solution is denoted by - (solid line). 

r 

0.5 

 

1 

0.5 

0 

-0.5 

-1 

Fig. 4.2. First approximate solution of equation (4.22) is denoted by - - (dashed 

lines) by the presented coupling technique with the initial conditions a0  = 1.0, (PO = 0 

or [x(0) = 1.00000, .(0) = —0.09843, 1(0) = —25.0 1930, 1(0) = 7.43632] when 

co, 5 ' 2 =1.0, k=0.1, 6=1.01 13 =15 =17 =1.0 and f3 =x 3,f 5 =x 5,f7 =x 7 . 

Corresponding numerical solution is denoted by - (solid line). 
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Seriesi 

0.5 

t  

Fig. 4.3. First approximate solution of equation (4.22) is denoted by -. - (dashed 

lines) by the presented coupling technique with the initial conditions a0  = 1.5, = 0 

or [x(0) = 1.50000, .(0) = —0.26579, (0) = —37.86418, O) = 21.22602] when 

w1 5.° 02  =1.0, k=0.2, ?=1.0,13 =15 =17 =1.0 and f3 =x3,f5 =x5,f7  —x7 . 

Corresponding numerical solution is denoted by - (solid line) 

- 1 - Series1 

0.5 

0 

-0.5 

-1 

t 

Fig. 4.4. First approximate solution of equation (4.22) is denoted by - - (dashed 

lines) by the presented coupling technique with the initial conditions a0  = 1.0, = 0 

or [x(0) = 1.00000, (0) = —0.09998, (0) = —99.92923, 1(0) = 29.97764] when 

£m=lO.O, 02 =5.0,k=0.1, e=0.1,13 =15 =17 =1.0 and f3 =x',f5 =x5,f7 =x7 . 

Corresponding numerical solution is denoted by - (solid line). 
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-1 
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0.5 

x 0 

-0.5 

-1 

Fig. 4.5. First approximate solution of equation (4.22) is denoted by -. - (dashed 

lines) by the presented coupling technique with the initial conditions a0  1 .5, q0  = 0 

or [x(0) = 1.50000, (0) = —0.29653, 1(0) = —37.20460, 1(0) = 22.192411 when 

i =5.0, w2  =1.0, k=0.2, 0. 1, /3 =/5 =17 =1.0 andf=x3,f5 =x5,f7 =x7 . 

Corresponding numerical solution is denoted by - (solid line) 

Fig. 4.6. First approximate solution of equation (4.22) is denoted by -. - (dashed 

lines) by the presented coupling technique with the initial conditions a0  1.0, = 0 

or [x(0) = 1.00000, (0) = —0.09997, 1(0) = —99.93667, (0) = 29.97655] when 

1 0.0,w2  =5.0, k=0.1, 6=1.0, 13 =1.0, i =17  =0.0 and f3 =x3,  f5 =x5, 

= x7 . Corresponding numerical solution is denoted by - (solid line). 
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Table 4.1: Average percentage error between numerical and approximate solutions: 

Figures Initial conditions for different values of the parameters Average 
No. Percentage 

Error 
Fig. 4.1 a0  = 1.0, ço = 0 or [x(0) = 1.00000, ±(0) = —0.09985, -0.26013% 

(0) = —99.95239, i(0) = 29.95643] when w = 10.0, 

w2 =5.0,k=0.1,6=1.0,13 =15 =17 =1.0 and f3 =x3, 

= x5 , f = x. 

Fig. 4.2 a0  = 1.0, q 0 or [x(0) = 1.00000, ±(0) = —0.09843, -0.27229% 

1(0) = —25.0 1930, (0) = 7.43632] when o 5.0, 

(02 = 1.0, k = 0.1, e = 1.01  13  = 15  = 17  = 1.0 and f = 

15 = x5 , f7 = x7 . 

Fig. 4.3 a0  = 1 .5, = 0 or [x(0) = 1.50000, (0) = —0.26579, 4.471953% 

1(0) = —37.86418, I(0) = 21.226021 when o = 5.0, 

02 =1.0, k=0.2, 8=1.0,/3 =/5 =/7 =1.0 and j=x3, 

= x5 , f7 = x7 . 

Fig. 4.4 a0  = 1.0, (po 0 or [x(0) = 1.00000,±(0) = —0.09998, 0.46932% 

1(0) = —99.92923, (0) = 29.97764] when w 10.0, 

2 =5.0,k=0.1, S=0.1,l3 =l5 =l7 =l0 and f=x 3 , 

= x5 , f = X 

Fig. 4.5 a0  = 1.5, = 0 or [x(0) = 1.50000, ±(0) = —0.29653, 0.44104% 

1(0) = —37.20460, (0) = 22.1924 1] when o = 5.0, 

2 k=0.2, e=0.1, /3 =15 =17 =1.0 and j'3  =x3, 

15 = X f = 

Fig. 4.6 a0  = 1.0, = 0 or [x(0) = 1.00000, (0) = —0.09997 0.74605% 

1(0) = —99.93667, 1(0) = 29.97655] when v1  = 10.0, 

(02 =5.0, k=0.1, e=1.0, 13 =1.0, i =17  =0.0 and 

j =x3 , 5  =X f X7. 

----: .;' 

\ 
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CHAPTER V 

Conclusions 

The determination of amplitude and phase variables is important in strongly and 

weakly generalized nonlinear damped oscillatory differential systems and they play 

very important role for any physical problem. The amplitude and phase variables 

characterize the oscillatory processes. In presence of damping, amplitude a -* 0 as 

t - (i.e., for large time 1). 

The presented technique in chapter III is able to give the desired results for second 

- order strongly generalized nonlinear differential systems with damping and it is also 

noticed that the first order analytical approximate solutions show good agreement 

(Figs. 3.1-3.3) with those solutions obtained by the numerical procedure for second 

order strongly and weakly generalized nonlinear differential systems with damping. 

Also in chapter IV, the presented technique is able to give the desired results for 

fourth order strongly generalized nonlinear differential systems with small damping 

effects. The graphical representations show good agreement (Figs. 4.1- 4.6) between 

the first order approximate analytical solutions and the corresponding numerical 

solutions for fourth order strongly and weakly generalized nonlinear differential 

systems. 

It is also mentioned that, the classical KBM method is failed to tackle for both second 

and fourth order strongly and weakly generalized nonlinear differential systems with 

damping and He's homotopy perturbation method is failed to handle nonlinear 

systems with damping. Some limitations of 1-le's homotopy perturbation (without 

damping) technique and the KBM method (weak nonlinearity) have been overcome 

by the methods presented in chapter III and chapter IV. 
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