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Abstract 

Design of Experiment (DoE) is an important issue for developing mathematical model of 

any physical problem especially when there exist large numbers of factors. Optimal Latin 

Hypercube Design (LHD) is one of the well-known and used tools among the experimental 

designs. For obtaining optimal LHD, Iterated Local Search (ILS) is one of the best way 

among the heuristic approaches. Grosso et al. (2009) showed that ILS approach has the 

ability to obtain a large number of maximin (Optimizations by maximizing minimum pair-

wise distance) LHD where distances are measured in terms of Euclidian distance measure. 

Several authors showed that rather than Euclidean distance measure other measures may 

suitable for good DoE. Manhattan distance measure is one of them [Morris and Mitchell 

(1995)]. In this research work, the main objective is to study the optimality of the maximin 

LHD obtained by ILS approach regarding Manhattan distance measure. For this purpose, 
L 

ILS approach is implemented in windows environment (rather than Sun cluster, as Gross et 

al. (2009) done). Extensive experiments are performed to obtain maximin LHD measured 

in Euclidian distance measure. Then ftirther experiments are reformed on those LHDs to 

find the minimum pair-wise distance of each LHD measured in Manhattan distance. Those 

values are compared with available one in the literature. It is noted that few values 

(maximin LHD measured in Manhattan distance measure) are available in the literature. It 

seems that the minimum pair-wise distance measured in Manhattan distance measure of the 

maximin LHDs obtained by ILS approach, optimized in Euclidian distance measure are 

comparable with those maximin LHDs obtained through other approaches but optimized in 

the Manhattan distance measure. Moreover some further experiments are performed to find 

out some new characteristics of those LHDs which may be used for further study. Some 

improved maximin LHDs are also obtained in this experimental arena and are presented in 

the thesis. 
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CHAPTER I 

Introduction 

1.1 Background 

In the design of complex systems, computer experiments are the only practical approach to 

obtain a solution. Typically, a simulation model of system performance is constructed 

based on knowledge of how the system operates. Performance measures are specified to be 

incorporated into optimization criteria and constraints, and the design parameters which 

affect performance are identified. The design solution method depends on the 

computational demands of the simulation model. In the simplest case, the simulation model 

may be used directly to calculate performance measures and optimize the system. If a 

performance measure is not straightforward to calculate, such as one that involves an 

integral, then sampling via computer experiments may be employed to estimate the 

measure. If the simulation model is computationally expensive, then the optimization may 

instead rely on a metamodel, i.e., a mathematical model surrogate of system performance, 

to approximate the relationship between system performance and the design parameters 

[Chen et al. (2003)]. In computer experiments, instead of physically doing an experiment 

on the product, mathematical models describing the performance of the product are 

developed using laws of engineering/physics and solved on computers through numerical 

methods. As simulation programs are usually deterministic so the output of a computer 

experiment is not subject to random variations, which makes the design of computer 

experiments different' from that of physical experiments [(Fang et al. (2006); Sacks et al. 

(1989)]. Many simulation models involved several hundred factors or even more. It is 

desirable to avoid replicates when projecting the design on to a subset of factors. This is 

because a few, out of the numerous factors in the system, usually dominate the 

performance of the product. Thus a good model can be fitted using only these few 

important factors. Therefore, when projecting the design on to these factors, replication is 

not required. 



Secondly, the design should be non-collapsing. When one of the design parameters has 

(almost) no influence on the function value, two design points that differ only in this 

parameter will collapse, i.e., they can be considered as the same point that is evaluated 

twice. For deterministic functions this is not a desirable situation. Therefore, two design 

points should not share any coordinate value when it is not known a priori which 
A 

parameters are important. There is another important property for the design of 

experiments - the multicollinearity property. That is the factors /coordinates should be 

uncorrelated or they are mutually (approximately) orthogonal. The multicollinearity 

property is also important, because if two factors are correlated then it will not possible to 

distinguish between the effects of the two factors based on this experiment. 

For the design of computer experiments Latin Hypercube Design (LHD), first introduced 

by McKay and his coauthors in 1979, fulfill the non-collapsing property. LHI)s are 

important in the design of computer-simulated experiments [Fang et al. (2006)]. Here LHD 

is defined a bit different than McKay et al. (1979) but similar to Johnson et al. (1990), 

Husslage et al. (2006), Morris and Mitchell (1995), Grosso et al. (2008). It is assumed that 

there are N design points have to be placed and each point has k distinct parameters. The 

points are placed such a way that they are uniformly spread when projected along each 

single parameter axis. It is assumed that each parameter range is normalized to the interval 

[0, N-l]. Then, a LHD is made up by N points, each of which has k integer coordinates 

with values in 0,1,. . . , N-I and such that there does not exist two points with one common 

coordinate value. This allows a non-collapsing design because points are evenly spreaded 

when projected along a single parameter axis. Note that the number of possible LHDs are 

huge: there are (N!)k  possible LHDs (where N is number of design point and k is number 

of factors). A configuration 

x l  x ll  

x= 
X 1 

 x1il 

... 

XN 

.N—I} is a LHD if each column has no duplicate entries. This one- with all x 1  = {o, 1,• 

diiiiensional jroecUe property ensures that there is little icdirndaiiev o design 1_)011lt  

when some of the luiclors ha\ e it relatively negligible effect (sparsity principle). 



Unfortunately, randomly generated LHDs almost always show poor space-filling properties 

or / and the factors are highly correlated. On the other hand, maximin distance objective 

based designs proposed by Johnson et al. (1990), have very good space-filling properties 

but often no good projection properties under the Euclidean (L2) or the 

Rectangular/Manhattan (L') distance. To overcome this shortcoming, Morris and Mitchell 

(1995) suggested for searching maximin LHDs which has both the important properties 

when looking for "optimal" designs. The definition of optimal LHDs through the maximin 

criterion has been proposed in Johnson et al. (1990): given a point-to-point distance metric 

d(x , x j  ) ., je i (I is the index set), then the maxiniin LHD problem is to find a LHD such 

that the minimum point-to-point distance occurring in such configuration is maximized (as 

large as possible). In the literature the optimal criterion for maximin LHDs are defined in 

several ways [Grosso et al. (2009)] but the main objective is identical i.e. searching the 

LHD with maximizing the minimum pair-wise distance. Note that, there exist several 

distance measures in literature. 

As mention earlier, for the presence of combinatorial nature, the number of possible LI-IDs 

are very high - (N!)k. For example; to optimize the location of 20 samples in two 

dimensions, the algorithm has to select the best design from more than 1036  possible 

designs. If the number of variables are increased to 3, the number of possible designs are 

more than 1055.  Consequently, when number of factors and/ or number of design points are 

large then it requires hundreds of hours by the brute-force approach to find out the optimal 

design. So researchers choose heuristic approaches to find out optimal designs. Here, 

Iterated Local Search (ILS) heuristic approach will be considered to find the optimal 

(maximin) LHDs [Grosso et al. (2009)]. For the optimal criterion the following maximin 

optimal will be considered which is similar to Johnson et al. (1990) but a quite different 

regarding computational effort: 

(D,,(X) 
= N N 

(1.1) 

where cl = d(.v , .v,) be the distance between points x, and x and p is a positive integer 

parameter and which can be computed without the need of detecting and ordering all D1  

3 



(pairvise inter side distance) values which is required in Johnson et al. (1990). This 

optimal criterion is denoted as Opt((p). Under this criterion, LI-ID Y is better than X if 

(1.2) 

In Johnson et al. (1990) the definition of maximin optimal criterion is as follows: 

(D"(X)=;;[D,(X)P (1.3) 

where D1 (X) < D2 (X) ........ < D(X) (pair-wise inter side distances), R is the number of 

different distances in LHD X. Whereas Grosso et al. (2008), Grosso et al. (2009) 

considered another maximin optimal criterion denoted as Opt (Dl), which is also 

considered in Johnson et al. (1990), is given below. 

maxD1 (X) such that 

D1 =D1 (X)=rnind(xx) i;tj;XeLHD (1.4) 

with min J =I(',J)I :d(x1,x) = D1 (X) 

Under this criteria, LHD Y is better than X if 

D(Y)>D(X) or 

D(Y)>D(X) and 11 (Y)<11 (X) (1.5) 

and so on. 

An apparent drawback of the Opt((p) criterion, for maximin values (maximum D1  value), is 

that LHDs with smaller (better) Tp  may have a worse (smaller) D1  value, i.e. for X and Y, 

though p(X) < p(Y ) but D1 (X) <D1 (Y). This phenomenon has been frequently observed 

in the computational experiments [Grosso et al. (2009)]. Nevertheless, a profitable choice 

is to work in order to minimize the pfunction, but at the same time, keep track of the best 

(D1 , J1 ) values observed during such minimization. This way the search in the solution 

space is guided by a kind of heuristic function. Such a mixed approach might appear 

strange but, as it will be demonstrated experimentally, it can be extremely effective. Such 

objective will be denoted as Opt((p, D1 ). 

4 



Different methods (e.g. the book of Saritner et al. (2003), the article of Ye et al. (2000); 

Levy and Steinberg (2010) etc.) can be found in the literature to detect maximin LFIDs. 

Grosso et al. (2009), successfully implemented Iterated Local Search (ILS) approach for 

finding maximin LHDs for k =3, 4, . . . ,10 and N= 3......., 100. ILS is a meta-heuristic 

designed to embed another, problem-specific, local search as if it were a black box. This 
.01 

allows ILS to keep a more general structure than other meta-heuristics currently used in 

practice. The rationale behind ILS is supported by the proximate optimality principle. This 

principle assumes that good solutions are similar. This assumption is reasonable for most 

real-world problems. 

A lot of improved values (maximin LHDs values) obtained by the ILS approaches 

proposed by Grosso et al. (2009) are optimized in Euclidean distance measure. The 

improved values are available in the well-known web portal 

http://www.spacefillingdesigns.nl. Jamali et al. 2010, analyzed the multicol linearity of the 
11 

maximin LHD obtained by the ILS approach; where it has been shown that the ILS 

approach not only able to obtain good LHD in the sense of maximin property but also the 

multicollinearity among the factors of the designs are negligible i.e. the average 

coefficient of correlations are low. Moreover Mridha (2013) performed several 

experiments for analyzing the time complexity of the ILS approach for finding maximin 

LHDs (as the number of possible LHDs are very high - (N!)k). Experimentally, he showed 

that the time complexity of the ILS algorithm is of polynomial time with order four (0(N4)) 

when algorithm considered opt((,D1 ) criterion and 0(N) when algorithm considered Opt 

(D1 ,J1 ) criterion. 

1.2 Literature Review 

1.2.1 Experimental Designs 

Since physical experiments are inevitably very expensive and time consuming, computer 

experiments are widety used for simulating physical characteristics and for the design and 

development of products (for examples, [Fang et al. (2006)]). A computer experiment is 

modeled as a realization of a stochastic process, often in the presence of nonlinearity and 

high dimensional inputs [Sacks et al. (1989)]. In order to perform effkient data analysis 

and prediction and in order to determine the best settings for a number of design 

5 



parameters that have an impact on the response variable(s) of interest and which influence 

the critical quality characteristics of the product or process, it is often necessary to set a 

good design as well as to optimize the product or process design. In computer experiments, 

instead of physically doing an experiment on the product, mathematical models describing 

the performance of the product are developed using laws of engineering/physics. Then the 

mathematical models are solved on computers through numerical methods such as the 

finite element method. A computer simulation of the mathematical models is usually time-

consuming and there is a great variety of possible input combinations. For these reasons 

meta-models, Barthelemy and Haftka (1993), Sobieski and Haftka (1997) model with the 

quality characteristics as explicit functions of the design parameters, are constructed. Such 

a meta-model, also called a (global) approximation model or surrogate model, is obtained 

by simulating a number of design points. Since a meta-model evaluation is much faster 

than a simulation run, in practice such a meta-model is used, instead of the simulation 

model, to gain insight into the characteristics of the product or process and to optimize it. 

Therefore, a careful choice of the design points at which performing simulations in order to 

build the meta-model is of primary importance. 

As it is recognized by several authors, the choice of the design points for computer 

experiments should at least fulfill two requirements (details can be found in Johnson et at. 

(1990) and Morris and Mitchell (1995)). First of all, the design should be space-filling in 

some sense. When no details on the functional behavior of the response parameters are 

available, it is important to be able to obtain information from the entire design space. 

Therefore, design points should be evenly spread over the entire region. Secondly, the 

design should be non-collapsing. When one of the design parameters has (almost) no 

influence on the function value, two design points that differ only in this parameter will 

collapse, i.e., they can be considered as the same point that is evaluated twice. For 

deterministic functions this is not a desirable situation. Therefore, two design points should 

not share any coordinate value when it is not known a priori which parameters are 

iniportant. 

The latter requirement is fulfilled by employing Latin Hypercube Designs (LHDs). Such 

designs, proposed by McKay and his coauthors (1979), are evenly distributed in each one-

dimensional projection and are thus non-collapsing. Unfortunately, randomly generated 



LHDs almost always show poor space-filling properties. On the other hand, maximin 

distance designs, proposed by Johnson, Moore and Ylvisaker (1990), have very good 

space-filling properties but often no good projection properties under the Euclidean or the 

Rectangular distance. To overcome this shortcoming, Morris and Mitchell (1995) 

suggested searching for maximin LHDs when looking for "optimal" designs. Although the 

search for maximin LHDs will be one of the problems discussed in this thesis, it will be 

important to point out that also other definitions of "optimality" for designs exist in the 

literature. These are not discussed in detail throughout the thesis (detail can be found in 

Santner et al. (2003)), but, for the sake of completeness, in the following literature review 

some of them will be mentioned, together with a short discussion of the methods employed 

to return "optimal" (according to the selected definition) designs. 

Fang et al. (2000a), Fang et al. (2000b) defined a uniform design as a design that allocates 

experimental points uniformly scattered on the domain. Uniform designs do not require 

being orthogonal. They considered projection uniformity over all sub dimensions. In Fang 

et al. (2000b) they classified uniform designs as space-filling designs. 

4- 

Lee and Jung (2000) proposed maximin eigen value sampling, that maximizes minimum 

eigen value, for Kriging model where maximin eigen value sampling uses eigen values of 

the correlation matrix. The Kriging model is obtained from sampled points generated by 

the proposed method. The Kriging model [Krige (1951)] is used to compare the 

characteristics of proposed sampling design with those of maximum entropy sampling. 

The maximin design problem has also been studied in location theory. In this area of 

research, the problem is usually referred to as the max-min facility dispersion problem 

(detail can be found in [Erkut (1990)]); facilities are placed such that the minimal distance 

to any other facility is maximal. Again, the resulting solution is certainly space-filling, but 

not necessarily non-collapsing. 

In statistical environments Latin Hypercube sampling is often used. In such an approach, 

points on the grid are sampled without replacement, thereby deriving a random 

permutation for each dimension (detail can be found in [McKay et al. (1979)]). 

J. 
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Giunta and his coauthors (2003) gave an overview of pseudo- and quasi-Monte Carlo 

sampling, Latin hypercube sampling, orthogonal array sampling, and l-laminersley 

sequence sampling. 

McKay et al. (1979), Stein (1987) and Owen (1994)] had shown that LHDs perform much 

better than completely randomized designs. More recently, algorithms have been used to 

construct systematic LHDs under various optimality criteria. A LHD always has non-

collapsing properties but not necessarily good space-filling property. In particular, as 

already remarked, randomly generated LHDs often show poor space-filling properties. 

Therefore, the search for "optimal" LI-IDs has attracted attention (detail can be found in 

Morris and Mitchell (1995), Park (1994), Tang (1994), Ye (1998), Ye et at. (2000)). 

Different optimality criteria for LHDs have been proposed, including maximum entropy 

designs [Shewry and Wynn (1987), Currin et al. (1991)], Integrated Mean Squared Error 

(IMSE) of prediction [Sacks et al. (1989)] and minimax and maximin distance designs 

[Johnson et al. (1990)]. 

Lin and Steinberg (2006) proposed several methods for extending the uniform sampling to 

higher dimensions. The method has also been used to construct LHDs with low correlation 

of first-order and second-order terms. It generates orthogonal LHDs that can include many 

more factors than those proposed by Ye (199.8). 

Cioppa (2002), in his dissertation, developed a set of experimental designs by considering 

orthogonal Latin hypercube and uniform designs to create designs having near 

orthogonality and excellent space-filling properties. Multiple measures were used to assess 

the quality of candidate designs and to identify the best one. 

Morris (1991) and Kleijncn (1997) made it clear that many simulation models involve 

several hundred factors or even more. Consequently, factor screening is useful in computer 

experiments for reducing the dimension of the factor space before carrying out more 

detailed experiments. Butler (2001) proposed optimal and orthogonal LHDs which is 

suitable for factor screening. 
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Olsson (2003) suggested Latin Hypercube sampling as a tool to improve the efficiency of 

different importance sampling methods for structural reliability analysis. Stocki (2005) and 

Liefvendahl and Stocki (2006) proposed probabilistic search algorithm, namely Column-

wise Pair-wise (CP) search algorithms and Genetic algorithms to construct optimal LHDs. 

For the optimal criterion they considered energy function (the sum of the norms of the 
& 

repulsive forces if the samples are considered as electrically charged particles) as proposed 

by Audze and Eglais (1977). To improve the reliability, Stocki (2005) considered the 

pairwise correlation. Liefvendahl and Stocki (2006) also compared the performance of the 

CP and genetic algorithms for optimal LHDs. 

By using the Latin Hypercube sampling method, Hwan Yang (2007) performed the 

uncertainty and sensitivity analysis for the time-dependent effects in concrete structure. 

The results of the Latin Hypercube simulations were used to determine which of the model 

parameters are most significant in affecting the uncertainty of the design [Iman and Helton 

(1985)]. For each sample, a time-dependent structural analysis was performed to produce 

response data, which were then analyzed statistically. 

Wang (2003) used the Latin Hypercube Design (LHD) instead of the Central Composite 

Designs (CCD), for improvement of Adaptive Response Surface Method (ARSM). Note 

that ARSM was developed to search for the global design optimum for computation-

intensive design problems. Also note that Response Surface Method (RSM) plans a group 

of design alternatives and performs the design analysis and simulation simultaneously on 

these design alternatives. Then an approximation model, called a response surface, is 

constructed. 

1.2.2. Optimal Criteria and Approaches 

Some literature reviews will be presented here regarding optimal criteria as well as the 

solution approaches regarding experimental design. As the complexity of the problem is, to 

the authors' knowledge, open (but suspected to be NP-complete [Grosso et al. (2008)]. So, 

4 for detecting optimal experimental designs, several heuristics approaches (rather than exact 

optimization methods) have been proposed in the literature. 



Fang et al. (2006) considered Simulated Annealing approach to detect maximin LHD. Li 

and Wu (1997) proposed a class of algorithms based on column pair-wise exchange to 

build supersaturated designs. In Ye et al. (2000) an exchange algorithm for finding 

approximate maximin LHDs has been proposed with the further restriction to Symmetric 

LHDs (SLHDs). A general formulae for maximin LHDs with k = 2 are given by Dam and 

his coauthors (2007a) with the 1-norm (L) and infinite norm (Lx) distances. Morover, for 

the Euclidean distance maximin LHDs up to N = 1000 design points are obtained by 

(adapted) periodic designs, while, using a branch-and-bound algorithm, exact solutions 

have been obtained for N up to 70. Inspired by Dam et al. (2007a), Husslage et al. (2006) 

proposed (adapted) periodic designs and simulated annealing to extend the known results 

and construct approximate maximin latin hypercube designs fork up to 10 and Nup to 100. 

All these designs are available in the website http:// www.spacefillingdesigns.nl. In 

Husslage et al. (2006),it has been shown that the periodic heuristic tends to work when the 

number N of design points gets above some threshold which depends on the dimension k of 

the design (more precisely), such threshold increases with k. Viana and his coauthors 

(2010) proposed the translational propagation algorithm, a new method for obtaining 

optimal or near optimal Latin hypercube designs (LHDs) without using formal 

optimization. For the optimal criterion they also considered Opt() to maximin LHD. 

Monte Carlo simulations were used to evaluate the performance of the algorithm for 

different design configurations where both the dimensionality and the point density were 

studied. Grosso and his coauthors (2008) successfully implemented Iterated local search 

(LS) approach for finding maximin LHDs for k = 3, 4, . .10, and N = 3, ..., 100. For the 

optimal criterion they considered maximin LHDs with Opt(D, J1 ) and Opt() optimal 

criteria with Euclidian distance measure (Eq. (1.1) to . Eq. (1.4)). 

Dam and his coauthors (2007b) proposed some bounds, for the separation distance of 

certain classes of maximin LHDs, which are useful for assessing the quality of approximate 

maximin LHDs. By using some of the special properties of LHDs, they were able to found 

new and tighter bounds for maximin LHDs. Besides these bounds, they presented a method 

to obtain a bound for three-dimensional LHDs that is better than Baer's bound for many 

values of N. They also constructed maximin LI-IDs attaining Baer's bound for infinitely 

many values of N in all dimensions. 

1€ 



Johnson (1990), Morris and Mitchell (1995) proposed the maximin distance criterion 

which maximizes the minimum distance between design points. Morris and Mitchell 

(1995) adopted a simulated annealing to find approximate maximin LHDs for up to five 

dimensions and up to 12 design points, and a few larger values, with respect to the €L  and 

l 2-distance measure. In Morris and Mitchell's algorithm, a search begins with a randomly 

chosen LHD, and proceeds through examination of a sequence of designs, each generated 

as a perturbation of the preceding one. A perturbation of a design D is generated by 

interchanging two randomly chosen elements within a randomly chosen column in D. The 

perturbation D11.y  will replace D if it leads to an improvement. Otherwise, it will replace D 

with probability m = exp[ — {(D,..) - q!.' (D)} It], where t is the preset parameter known as 

the "temperature "and (J) is some measure of the quality of the design. Li and Wu (1997) 

considered a class of Column-wise Pair-wise (CP) algorithms in the context of the 

construction of optimal supersaturated designs. A CP algorithm makes exchanges on the 

columns in a design and can be particularly useful for designs that have structure 

requirements on the columns. Note that each column in a LHD is a permutation of {0, I,. 

N— 11. At each step, another permutation of {0, 1, . . . , N— l} is chosen to replace a 

column so that the LHD structure is retained. 

Husslage et al. (2005) constructed nested maximin designs in two dimensions. They 

showed that different types of grids should be considered when constructing nested designs 

and discussed how to determine which grid is the best for a specific computer experiment. 

Using (adapted) periodic designs and simulated annealing, Husslage et al. (2006) extended 

the known results and construct approximate maxirnin Latin hypercube designs for up to 

ten dimensions and for up to 100 design points. All these designs can be downloaded from 

http://www.spacefillingdesigns.nl. Inspired by the paper of Morris and Mitchell (1995), in 

which authors show that LHDs often have a nice periodic structure, 1-lusslage et al. (2006) 

developed adapted periodic designs. By considering periodic and adapted periodic designs, 

approximate maximin LHDs for up to seven dimensions and for up to 100 design points 

are constructed. They have shown that the periodic heuristic tends to work well even for a 
A 

small number N of design points at low values of the dimension k, but as k increases the 

periodic heuristic tends to get better than other approaches lii.e simulated annealing only at 

large N values. 



In the simulated annealing algorithm, 1-lusslage et al. (2006) considered four different 

neighborhoods. In all four neighborhoods the main idea is to change two points of the 

current LHD by exchanging one or more coordinate values. In three of the four 

neighborhoods, one point is required to be a critical point (a critical point is a point which 

is at separation distance, i.e., at a distance equal to the minimal one, from one of the other 

points). In the first neighborhood, one point j' is selected randomly from all critical points 

and the other point j2  randomly from all remaining points. This implies that the second 

point can either be a critical or noncritical point. Once the points are selected, the number 

of coordinates to change are randomly selected. Due to symmetry, at most [k/2] 

coordinates are changed. Subsequently, the coordinates to change are randomly selected. 

The values of the two points in these coordinates are then exchanged, which results in a 

new LHD. The second neighborhood is very similar to the first. The only difference is that 

always one coordinate is selected instead of a random number of coordinates. Note that for 

k = 3 the two neighborhoods are the same. In the third neighborhood, also one coordinate is 

changed, however, now the coordinate is not randomly selected. Instead, all coordinates are 

tried and the one which results in the neighbor with the largest separation distance is 

selected. If more coordinates result in the same separation distance, the one with the lowest 

index is selected. The fourth neighborhood is again very similar to the second 

neighborhood. The difference is that the first point is randomly selected from all points, 

instead of only the critical points. Although simulated annealing algorithms have been used 

before to deal with this type of problem, this adapted neighborhood structure, which is 

based on critical'points, and the use of a different objective function, turned out to work 

well. 

3m [Jin et al. (2005)] proposed an enhanced stochastic evolutionary algorithm for finding 

maxirnin LHDs. They also applied their method to other space-filling criteria, namely the 

optimal entropy and centered L2  discrepancy criteria. 

Dam et al. (2007a) derived general formulas for two-dimensional maximin LHDs, when 

the distance measure is Cor C1 , while for the C2-distance measure, (approximate) maxirnin 

.61 LHDs up to 1000 design points are obtained by using a branch-and-bound algorithm and 

constructing (adapted) periodic designs. 

4 
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Stinstra and his coauthors (2003) proposed sequential heuristic algorithms for constrained 

maximin designs by considering high number of design sites with small volume of feasible 

design space and other constraints. They also used their methods in many practical 

situat ions. 

It is remarked that the maximin criterion is not the only one used in the literature. Other 

criteria are the maximum entropy [Shewry and Wynn (1987)], the integrated mean squared 

error [Crary (2002)], the minimum correlation between components [Owen (1994)] and a 

mixed criterion involving both maximin distance and correlation [Joseph and I-lung (2008)]. 

For more details the book [Santner et al. (2003)] will be referred but for the completeness, 

in the following literature review, some articles will be mentioned in which criteria related 

to correlation are considered. 

Darn van (2005) derived interesting results for two-dimensional minimax LHDs. Bates 

Bates and his coauthors (2004) proposed a permutation genetic algorithm to find optimal 

Audze-Eglais LHDs. Crary and his coauthors (2000) developed I-OPTTM to generate 

LHDs with minimal IMSE. 
I 

Iman and Conover (1982a) proposed a design by minimizing a linear correlation criterion 

for pairwise factors. This is modified into a polynomial canonical correlation criterion by 

Tang (1998). Tang (1 998) proposed a LHD by the extension of the concept of Iman and 

Conover (1982a), namely minimizing a polynomial canonical correlation criterion for pair-

wise factors. 

Park (1994)] and Sacks (1989) constructed optimal LHDs in which IMSE and entropy 

optimization criteria were considered. To construct optimal LHDs, Park presented an 

approach based on the exchanges of several pairs of elemetts in two rows. His algorithm 

first selects some active pairs which minimize the objective criterion value by excluding 

that pair from the design. Then, for each chosen pair of two points ij and i,, the algorithm 

considers all possible exchanges between factors and find the best exchange among them. 

Ye (1998) constructed orthogonal LHDs in order to enhance the utility of LHDs for 

regression analysis. Ye defined an Orthogonal Latin 1-lypercube (OLHC) as a Latin 
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Hypercube for which every pair of columns has zero correlation. Furthermore, in Ye's 

OLI-IC construction, the element-wise square of each column has zero correlation with all 

other columns, and the element-wise product of every two columns has zero correlation 

with all other columns. These properties ensure the independence of estimates of linear 

effects of each variable and the estimates of the quadratic effects and bilinear interaction 

effects are uncorrelated with the estimates of the linear effects. 

Joseph and Hung (2008) proposed a multi-objective optimization approach to find good 

LHDs by combining correlation and distance performance measure. They proposed a 

modified simulated annealing algorithm with respect to Morris and Mitchell (1995). 

Instead of randomly choosing a column and two elements within that column, Morris and 

Mitchell (1995) chose them judiciously in order to achieve improvement in their multi-

objective function. 

Ye and his coauthors (2000) and Li and Kenny (2009) proposed an exchange algorithm for 

finding approximate optimal LHDs, but they consider symmetric Latin hypercube designs 

(SLHDs). The symmetry property is used as a compromise between computing effort and 

design optimality. However, one important change had made to accommodate the special 

structure of SLHD. For a SLHD two simultaneous pair exchanges were made in each 

column to retain the symmetry. Ye and his coauthors (2000) considered maximin as an 

optimal criterion, whereas Li and Kenny (2009) considered both the maximin and the 

entropy optimal criterion. 

Fang and his coauthors (2000a) proposed threshold accepting heuristic approaches for 

optimal LHDs to produce low discrepancy designs compared to theoretic expectation and 

variance. They considered centered L2-discrcpancy for optimizing the designs. 

Sebastiani and Wynn (2000) considered maximum entropy sampling criterion for the 

optimal Bayesian experimental design. The main contribution of this paper is the extension 

of the MESprinciple for the estimation of the problems. Currin and his coauthors (1991) 

k also considered an entropy-based design criterion for Bayesian prediction of deterministic 

functions. Crombecq and his coauthors (2011) considered space-filling and non-collapsing 

sequential design strategies for simulation based modeling. 
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Hongquan Xu (1999) introduced the concept of universal optirnality from optimum design 

theory into computer experiments, and then exhibited some universally optimal designs 

with respect to different distance measures. He showed that Latin Hypercube and saturated 

orthogonal arrays are universally optimal with respect to Hamming distance [Hamming 

(1950)] and that universally optimal designs with respect to Lee distance [Lee (1958)] are 

also derived from Latin Hypercubes and saturated orthogonal arrays. 

Recently, Jourdan and Franco (2010) proposed a space-filling LHD design, where they 

considered a new optimal criterion called Kuilback—Leibler criterion. This Kullback—

Leibler criterion is relatively very new proposed by Jourdan and Franco (2009). The new 

designs are compared with several traditional optimal Latin hypercube designs. 

Leary et al. proposed orthogonal-array-based LHDs for obtaining better space-tiling 

property. As an optimal criterion, they considered the sum of (square of) reverse inter-site 

distances. Ye (1998) constructed orthogonal LHDs in order to enhance the utility of LHDs 

for regression analysis. Author defined an Orthogonal Latin Hypercube (OLHC) as a Latin 

Hypercube for which every pair of columns has zero correlation. Furthermore, in Ye's 

OLHC construction, the element-wise square of each column has zero correlation with all 

other columns, and the element-wise product of every two columns has zero correlation 

with all other columns. These properties ensure the independence of estimates of linear 

effects of each variable and the estimates of the quadratic effects and bilinear intcraction 

effects are uncorrelated with the estimates of the linear effects. 

Steinberg and Dennis (2006) constructed LHDs in which all main effects are orthogonal. 

Their method can also be used to construct LHDs with low correlation of first-order and 

second-order terms. It also generates orthogonal LHDs that can include many more factors 

than those proposed by Ye (1998). Butler (2001) proposed optimal and orthogonal LHDs 

which are suitable for factor screening. Fang and his coauthors (2000a) proposed threshold 

accepting heuristic approaches for optimal LHDs to produce low discrepancy designs 

It compared to theoretic expectation and variance. They considered centered L2-discrepancy 

for optimizing the designs. 

15 



On the other hand Joseph and I-lung (2008) showed that maximization of inter-site 

distances criteria and minimizing the pair-wise correlation criteria need not necessarily 

agree with each other. In fact, maximization of inter-site distances can result in LUDs 

where the variables are highly correlated and vice versa. But it has been already discussed 

above that for the present of high correlation, the design has failed to analysis individual 

effect of the factors. 

1.2.3 Distance Measure 

Grosso et. al. (2009) considered only Euclidian distance measure. But in the literature 

several authors have considered DoE in rectangular (Manhattan) distance measure or more 

than one distance measure. Morris and Mitchell (1995) adopted a simulated annealing to 

find approximate maximin LHDs regarding both Euclidian as well as Rectangular distance. 

Chan et al. proposed an efficient algorithm for constructing Optimal Design of computer 

experiments but they considered both Euclidean distance as well as Manhattan distance. 

Crornbecq et al. (2011) considered both Euclidean as well as rectangular distance measure 

for space-filling and non-collapsing sequential design strategies for simulation-based 

modeling. It is worthwhile to mention here that Rectangular (Manhattan) distance measure 

is also one of the important issues considered in several fields like in location theory. In 

this area of research, the problem is usually referred to as the max-min facility dispersion 

problem, see Erkut (1990), facilities are placed such that the minimal distance to any other 

facility is maximal. Manhattan distance matrix for a rectangular grid arise frequently from 

communications and facility locations and are known to be among the hardest discrete 

optimization problems. Mittelmann and Pengy (2001) estimated bounds for quadratic 

assignment problems associated with hamming and Manhattan distance matrices based on 

semi definite programming. Philip et al. (2009) showed that a new precision-weighted 

Manhattan distance and the Canberra distance are the most repeatable and they are most in 

agreement with the expected pattern rather than unwcighted Manhattan or Euclidean 

distance measures. To analyze Time series correlation in Network Structure, Miskiewicz 

(2010) considered Manhattan Distance (MD). He showed that MD allows investigating a 

broader class of correlation and is more robust to the noise influence. Hasnat et al. (2014) 

described the comparative study of performance between the existing distance metrics like 
1 
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Manhattan, Euclidean, Vector Cosine Angle and Modified Euclidean distance for finding 

A. the similarity of complexion by calculating the distance between the skin colors of two 

color facial images. From the above discussion it may be concluded that ILS approach is a 

state-of-art method to find out the maximin LHDs regarding Euclidian distance measure. 

The maximin LHDs obtained by ILS approach also comparable enough regarding 

muliticolinearity property. But how much those LHDs are fine (optimal) regarding 

Manhattan (Rectangular) distance measure is still unknown and require extensively 

analysis. Moreover, for any design, optimality measured in Euclidian distance may not be 

optimal regarding Manhattan distance. This is why several authors search optimal 

experimental measured in Manhattan distance measure rather than Euclidean distance 

measure. Moreover, for any design, optimality measured in Euclidian distance may not be 

optimal regarding Manhattan distance. This is why several authors search optimal 

experimental measured in Manhattan distance measure rather than Euclidean distance 

measure. 

1.3 Goals of the Thesis 

After the invention of hi-speed computer the design of computer experiments is likely to 

grow as more and more simulation models to carry out research. Many simulation models 

involve several hundred factors or even more. It is desirable to avoid replicates when 

projecting the design on to a subset of factors. This is because a few, out of the numerous 

factors in the system, usually dominate the performance of the product. Thus a good model 

can be fitted using only these few important factors. Therefore, when projecting the design 

on to these factors, replication is not required. The experimental design should fulfill three 

important properties - Non-collapsing, Space-filling, and non-rnulticollinearity. Latin 

1-lypercube Design (LHD) has good non-collapsing property. But randomly generated LHD 

often has poor space-filling. So researchers seek LHD with good space-filling property. 

Many researchers have shown that optimal LHD mainly maximin LHD has good space-

filling including non-collapsing property. But recently some researchers have shown that 

maximin LHD are highly correlated among the factors i.e. there exist multicollinearity. It is 

mentioned earlier that the multicollinearity property is also important, because if two 

factors are correlated then it will not possible to distinguish between the effects of the two 

factors based on this experiment. Several approaches existed in literature to find out the 

4 
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maximin LIID such as simulated annealing, Tabu search, Iterated Local Search (ILS) etc. 

in the paper of Grosso et al. (2008), authors have shown that ILS approach able to find out 

a remarkable improved optimal experimental design (maximin LUD) regarding available 

one in the literature as multicollinearity can have serious effects on the estimates of the 

regression coefficients and on the general applicability of the model in this study, the 

multicollinearity among the factors of the design obtained by the ILS approach is 

investigated. 

It is mentioned earlier that ILS approaches are able to find out very good DoE namely 

optimal LHDs regarding maximin optimal criterion and those LHDs are also good enough 

regarding multicolinearity as those have poor coefficient of muliticolinearity [Apparna 

(2012)]. It is also mentioned earlier that Manhattan Measure is another important approach 

regarding finding out optimal DoE which are frequently used in practical application. 

Morris and Mitchell (1995) and Bates Ct al. (2004) showed that though one approach may 

find optimal DoEs regarding on some distance measure but those DoEs may be poor 

enough regarding other distance measure. In this thesis, our main aim is to study the 

optimality of the maximin LHDs obtained by ILS approach on the basis of Manhattan 

distance measure. It is noted that those maximin LHDs obtained by ILS approach are 

optimal on the basis of Euclidean distance measure. Several experiments are performed to 

analyse and to compare our results with available ones in the literature. 

Therefore the main objectives of this research are as follows: 

Implementation of the ILS approach to find out the optimal LHDs regarding 

maximin optimal criteria in Euclidean distance measure. 

Analysis of those optimal maximin LHDs regarding Manhattan distance measure. 

Comparison of those Manhattan distance measured LHDs (which are actually 

optimal regarding Euclidian distances measure) with available one in the literature. 

Perform several experiments to find out several new characteristics of those optimal 

LHDs which might be used for further studies in future. 

-4 
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1.4 Structure of the Thesis 

After the introduction which is incorporated in the chapter 1, the remaining thesis is 

organized as follow: 

Chapter 2 presents the overview of several distance measures. In this chapter, the 

definitions of distances, metric and norms are presented. Moreover several distance 

measures are discussed briefly in this chapter. Mainly this chapter points out Manhattan 

distance measure as well as its application and schematic view of circle in different 

distance measures are given in this chapter. 

In Chapter 3, at first the main concept of Iterated Local Search (ILS) approach is 

discussed briefly. Then several optimal criteria are also discussed briefly in this chapter. 

Moreover the maximin LHD is showed pictorially and is discussed briefly. ILS approach 

for optimizing LHD is also elaborately presented here. 

In Chapter 4, optimality analysis of the experimental results regarding Euclidean distance 

is discussed briefly. In this chapter, several experiments are carried out for analysis the 

performance of ILS approach regarding Euclidian distance measure. At first the 

performance of the algorithm is compared with available one in the literature regarding 

inter-site Euclidian distance measure. From the experimental results it is shown that the 

algorithm is state-of-arts regarding maximin LHD in Euclidean distance measure. 

Moreover some more experiments have been performed to analyze the multicolliriearity 

among the factors of each maximin design obtained by ILS approach. 

In Chapter 5, the optimality analysis of maximin LHDs obtained by ILS approach is 

discussed elaborately in experimental point of views. Extensive experiments have been 

performed in maximin LHDs obtained by ILS approach regarding Manhattan distance 

measure and compare the experimental results with available one in the literature. 

Moreover some more experiments have been carried out to find out some more interesting 

characteristics of those maximin LHDs which might be important for further research. 

References are included in the last of the thesis and publications are mentioned before the 

index of the thesis as well. 
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CHAPTER TWO 

Overview of Distance Measure 

2.1 Introduction 

Distance is a numerical description of how far apart objects are. In physics or everyday 

discussion, distance may refer to a physical length, or estimation based on other criteria 

(e.g. "two counties over"). In mathematics, a distance function or metric is a generalization 

of the concept of physical distance. A metric is a function that behaves according to a 

specific set of rules, and is a concrete way of describing what it means for elements of 

some space to be "close to" or "far away from" each other. In most cases, "distance from A 

to B" is interchangeable with "distance between B and A". 

2.2 Definition of Distance Function (Metric) 

Mathematically, the definition of distance measure is given bellow: 

Let X # 0 be any given space. 

Let x, y, z E X be arbitrary. 

A function d : XXX -* R having the properties listed below: 

(1) d (x, y)? 0 (non negative) 

d (x, y) = 0 iffx =y (identical) 

d (x, y) = d (y, x) (reflection) 

d (x, y) + d (y, z)> d (x. z) (triangle inequality) 

is called a distance function (in brief distance) or a metric for X. Instead of saying, "Let X 

be a non-empty set with a metric d defined on it, " we always say, "Let (X, ci) be a metric 

space." 

Evidently d is a real valued map and d denotes the distance between x and y. A set X, 

together with a metric defined on it, is called metric space [Gupta (2000)]. 
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Example : Let X = IR and p (x. ) = Ix —v for all x, y E X. Then p is a metric on X. This 

metric is defined as usual metric on R. Before classifying distance measure, it is 

worthwhile to discuss about norm. 

2.3 Norm 
4 

In linear algebra, functional analysis and related areas of mathematics, a norm is a function 

that assigns a strictly positive length or size to each vector in a vector space, other than the 

zero vector (which has zero length assigned to it). A semi-norm, on the other hand, is 

allowed to assign zero length to some non-zero vectors (in addition to the zero vector). A 

simple example is the 2-dimensional Euclidean space fl2  equipped with the Euclidean 

norm. Elements in this vector space are usually drawn as arrows in a 2-dimensional 

Cartesian coordinate system starting at the origin (0, 0). The Euclidean norm assigns to 

each vector is the length of its arrow. Because of this, the Euclidean norm is often known 

as the magnitude. A vector space with a norm is called a normed vector space. Similarly, a 

vector space with a seminorm is called a seminormed vector space. 

2.3.1 Definition of Norm 

Given a vector space V over a subfield F of the comple* numbers, a norm on V is a 

function p: V —+ IR with the following properties: 

For all a EF and all u, v EV, 

(i) p(av) = a p(v), (positive homogeneity or positive scalability). 

p(u + v) p(u) +p(v) (triangle inequality or subadditivity). 

If p(v) = 0 then v is the zero vector (separates points). 

There are mainly four classes norm as follows: 

1-norm distance 

F 
-  YJ 

1' 
In '2 

2-norm distance Ixi  
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norm distance 
= ( 1x1 

in i/p 

Infinity norm distance 
urn k P-*00   

= max(Ix1 
- Yi" Ix2 - Y2'. --- . ' IXn 

- Ynl) 

p need not be an integer, but it cannot be less than 1, because otherwise the triangle 

inequality does not hold. Note that forp = I we get the taxicab (Manhattan) norm, forp = 2 

we get the Euclidean norm, and asp approaches oo the p-norm approaches the infinity norm 

or maximum norm. 

In the above brief discussion, it is observed that norm also gives the distance function. 

Anyway among several distance measures, here we will briefly discuss some of them. 

-10 2.4 Euclidean Distance 

In mathematics, the Euclidean distance or Euclidean metric is the 'tordinary" distance 

between two points that one would measure with a ruler, and is given by the Pythagorean 

formula. By using this formula as distance, Euclidean space (or even any inner product 

space) becomes a metric space. The associated norm is called the Euclidean norm. Older 

literature refers to the metric as Pythagorean metric. 

On an n-dimensional Euclidean space IR", the intuitive notion of length of the vector x 

=(x1,x2  .... ... ...... .v,,) is captured by the formula 

lixil = --
2
--

1- -------2 (2.1) 

This gives the ordinary distance from the origin to the point x, a consequence of the 

Pythagorean theorem. The Euclidean norm is so far the most commonly used norm on 

but there are other norms on this vector space as will be shown b1ow. 1-lowever all these 

norms are equivalent in the sense that they all define the same topology. On an n-

dimensional complex space C the most common norm is 

IIzII:=JIziI 2 + ---- = ,Jz11 + ___+z, (2.2) 

22 



In both cases we can also express the norm as the square root of the inner product of the 

vector and itself: 

IxII:=V (2.3) 

where x is represented as a column vector ([x j , x2,...,x]), and x denotes its conjugate 

transpose. 

This formula is valid for any inner product space, including Euclidean and complex spaces. 

For Euclidean spaces, the inner product is equivalent to the dot product. Hence, in this 

specific case the formula can be also written with the following notation: 

lxii (2.4) 

The Euclidean norm is also called the Euclidean length, L2  distance, €2  distance, L2  norm, 

or l2  norm. 

The Euclidean distance between points p and q is the length .of the line segment connecting 

them (p, q). In Cartesian coordinates, if p = (ps, p2,•..,  p,,) and q = (qi, q,..., q,,) are two 

points in Euclidean n-space, then the distance from p to q, or from q to p is given by: 

d(p,q) = J1_p1)2 + (q2- P2)2  + + (q —  p) 2 = (qi 
- pt)2 (2.5) 

The position of a point in a Euclidean n-space is a Euclidean vector. So, p and q are 

Euclidean vectors, starting from the origin of the space, and their tips indicate two points. 

The Euclidean norm, or Euclidean length, or magnitude of a vector measures the length of 

the vector: 

ll = Ip+p+ ---+ (2.6) 

where the last equation involves the dot product. 
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Figure 2.1: Schematic view of a circle with unit radius in Euclidean distance measure 
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The schematic view of a circle with unit radius in Euclidean distance measure is given in 

figure 2. 1. Euclidean distance is a Minkowski distance which is discussed later. 

2.4.1 Squared Euclidean Distance 
1*1 

The standard Euclidean distance can be squared in order to place progressively greater 

weight on objects that are farther apart. In this case, the equation becomes 

d 2(p,q) = (p1-q1)2  + (p2-q2)2  + + (pj-qj) 2 + + (p - q.)2 (2.7) 

Squared Euclidean Distance is not a metric as it does not satisfy the triangle, inequality, 

however it is frequently used in optimization problems in which distances only have to be 

compared. Note that Euclidean distance is also called L2 -nonn. 

2.5 Minkowski Distance 

The Minkowski distance is a metric on Euclidean space which can be considered as a 

generalization of both the Euclidean distance and the Manhattan distance. 

2.5.1 Definition 

The Minkowski distance of order p hetwen two points 

P = (x1,x2, ...,x) and Q = (Y1'Y2' ...,y) E lR 

is defined as: 

d(x,y) = (1px1__yP)1/P (2.8) 

N( 1,1) 

L(O,O) M(l,O) 

Figure 2.2: Graphical rcprescntation of the points to measure Minkowski distance for p=0.50  
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For p ? 1, the Minkowski distance is a metric as a result of the Minkowski inequality. For 

p < 1, it is not the distance. For example, letp = V2 and L(0,0), M(1,0) and N(1,1) are three 

points (see Figure 2.2). Then 

d(LN) = (10-11 P + 10— 11P)1/P = (1+ 1)2 = 4 

d(L, M) = (I01IP + 10—  OIP)'/P = (1 + 0)2 = 1 

d(M,N) = (I1-11P + JO - 11P)/P = (0+1)2 = 1 

Therefore, d(L, M) + d(M, N) = 1 + 1 = 2 <d(L, N) , which violates the triangle 

inequality. 

Minkowski distance is typically used with p being 1 or 2. The latter is the Euclidean 

distance, while the former is sometimes known as the Manhattan distance. In the limiting 

case of p reaching infinity, we obtain the Chebyshcv distance which is discussed later, on 

the other hand, forp reaching negative infinity, we have: 

urn 
... 

Jx1 _yJP)1/P 
= mn JX - yJ (2.9) 

p.4 i=1 

The Minkowski distance can also be viewed as a multiple of the power mean of the 

component-wise differences between two points P and Q. 

The following figure shows unit circles with various values of p: 

Manhattan distance Euclidean distance 
F

Chebyshev distance 

; -2 j283J 
) 

;;5657 P 

Figure 2.3: Schematic view of circles in Minkowski distance measure with severaip values 

Note that a circle is a set of points with a fixed distance, called the radius, from a point 

called the center. It is noted that Minkowski distance is refered to L metric. Anyway in 

4 one dimension, all L1, metrics are equal. They are just the absolute value of the difference. 
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2.6 Chebyshev Distance 

Minkowski distance reduces to Chebyshev distance when p— i.e. The Chebyshev 

distance between two vectors or points P and Q, with standard coordinates x1  and y 

respectively, is 

d(x,y) = lim(> 1  lxi _yP)'/P = rnax lX - Yl (2.10) 
(=1 

Hence it is also known as the L. metric. 

Mathematically, the Chebyshev distance is a metric induced by the suprcmum norm or 

uniform norm. It is an example of an injective metric. 

In two dimensions, i.e. plane geometry, if the points P and Q have Cartesian coordinates 

(x1  ,y)  and (x2,y2), their Chebyshev distance is 

d(x,y) = max(Ix2 - xli, ly - l) = max(11 - 21,11 - 31) = max(1,2) = 2 

[say, (x1,y1) = (2,3) and (x2,y2) = (1,1)] 

Under this metric, a circle of radius r, which is the set of points with Chebyshev distance r 

from a center point, is a square whose sides have the length 2r and are parallel to the 

coordinate axes. 

On a chess board, where one is using a discrete Chebyshev distance, rather than a 

continuous one, the circle of radius r is a square of side lengths 2r, measuring from the 

centers of squares, and thus each side contains 2r squares; for example, the circle of radius 

I on a chess board is a 2x2 square.The Chebyshev distance refers to L metric or norm. 

The Chebyshev distance is sometimes used in warehouse logistics. 

0.5 

a 
.5 -1 -d.s 9 05 1. 1 

I -0.5 L 

t 

Figure 2.4: Schematic view of a circle of radius I in Chebyshev distance 
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2.7 Rectangular / Manhattan I Taxicab Distance 

Manhattan distance also a special case of Minkowski distance (Eq. (2.8)) where p  =1. 

Taxicab geometry, considered by Flermann Minkowski in the 19th century is a form of 

geometry in which the usual metric of Euclidean geometry is replaced by the taxicab 

31, metric. Taxicab norm or Manhattan norm of a point x measured from origin is given by 

lixiR := YU=1 IxI (2.11) 

The name relates to the distance a taxi has to drive in a rectangular street grid to get from 

the origin to the point x. 

The set of vectors, whose 1-norm is a given constant, forms the surface of a cross polytope 

of dimension equivalent to that of the norm minus I. The Taxicab norm is also called the 

L 1  norm. The distance derived from this norm is called the Manhattan distance or L 1  

distance. It is noted that x1  is not a norm because it may yield negative results. 

2.7.1 Formal Definition 

The taxicab distance, d 1  between two vectors x, y in an n-dimensional real vector space 

with fixed Cartesian coordinate system, is the sum of the lengths of the projections of the 

line segment between the points onto the coordinate axes. More formally, 

d 1(x,y) = lix - ylli = =lIXiYLI (2.12) 

Where X = (x1, x2, ..., x) and Y = (yi' Y2, ... ,   y7 ) are vectors. 

For example, in the plane, the taxicab distance between (x1,y1 ) and (x2 ,y2 ) is 

IX1Y1I+ IX2Y2I. 

2.7.2 Properties 

Taxicab distance depends on the rotation of the coordinate system, but does not depend on 

its reflection about a coordinate axis or its translation. Taxicab geometry satisfies all of 

1-lilbert's axioms (a formalization of Euclidean geometry) except for the side-angle-side 

axiom, as one can generate two triangles each with two sides and the angle between them 

the same, and have them not be congruent. 

In taxicab geometry, distance is determined by a different metric than in Euclidean 

geometry and the shape of circles changes as well. Taxicab circles are squares with sides 

4 

4 

4 
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11 

oriented at a 45° angle to the coordinate axes. The image to the right shows why this is 

true, by showing in red the set of all points with a fixed distance from a center, shown in 

blue. As the size of the city blocks diminishes, the points become more numerous and 

become a rotated square in continuous taxicab geometry. While each side would have 

length I2r using a Euclidean metric, where r is the circle's radius, its length in taxicab 

geometry is 2r. Thus, a circle's circumference is 8r. Thus, the value of a geometric analog 

to it is 4 in this geometry. The formula for the unit circle in taxicab geometry is N +[vl = 

in Cartesian coordinates and r = in poiar coordinates. 
lsinol+lcosej 

A circle of radius r for the Chebyshev distance (L., metric) on a plane is also a square with 

side length 21- parallel to the coordinate axes, so planar Chebyshev distance can be viewed 

as equivalent by rotation and scaling to planar taxicab distance. However, this equivalence 

between L1  and L. metrics does not generalize to higher dimensions. A sphere formed 

using the Chcbyshev distance as a metric is a cube with each face perpendicular to one of 

the coordinate axes, but a sphere formed using Manhattan distance is an octahedron: these 

are dual polyhedra, but among cubes, only the square (and 1-dimensional line segment) are 

self-dual polytopes.The Chebyshev distance refers to L metric or norm. The Chebyshev 

distance is sometimes used in warehouse logistics. 

. . 
• S 

• . • • • • 

E. 

• 
• S 

Figure 2.5: Circles in continuous and discrete taxicab geometry 

Whenever each pair in a collection of these circles has a nonempty intersection, there exists 

an intersection point for the whole collection; therefore, the Manhattan distance forms an 

4 
injective metric space. A circle of radius 1 (using this distance) is the von Neumann 

ncighborhood of its center; see figure (2.5). 



2.7.3 Applications 

It is worthwhile to mention here that Rectangular (Manhattan) distance measure is also one 

of the important issues considered in several fields like in location theory. In this area of 

research, the problem is usually referred to as the max-min facility dispersion problem 

Erküt, 1990]; facilities are placed such that the minimal distance to any other facility is 

maximal. Manhattan distance matric for a rectangular grid arise frequently from 

communications and facility locations and are known to be among the hardest discrete 

optimization problems. Mittelmann and Pengy (2001) estimated bounds for quadratic 

assignment problems associated with hamming and Manhattan distance matrices based on 

semi definite programming. They considered the issue of how to obtain lower bounds for 

those two classes of Quadratic Assignment Problems (QAPs) based on Semi Definite 

Programming (SDP). Philip et at. (2009) showed that a new precision-weighted Manhattan 

distance and the Canberra distance are the most repeatable and the most in agreement with 

It the expected pattern rather than unweighted Manhattan or Euclidean distance measures. To 

analyse Time series correlation in Network Structure, Miskiewicz (2010) considered 

Manhattan Distance (MD). He showed that MD allows investigating a broader class of 

correlation and is more robust to the noise influence. Hasnat et al. (2014) described the 

comparative study of performance between the existing distance metrics like Manhattan, 

Euclidean, Vector Cosine Angle and Modified Euclidean distance for finding the similarity 

of comp1e,ion by calculating the distance between the skin colors of two color facial 

images. Vadivel and Majuindar (2003) described the performance comparison of distance 

metrics in content-based image retrieval applications. They have done a detailed study of 

the performance of different distance metrics for a number of color histograms on a large 

database of images. They use Manhattan distance, Euclidean distance, Vector Cosine 

Angle distance and Histogram Intersection distance for performance comparison. Five 

standard and well-known color histograms were considered for evaluation and the results 

show that the Manhattan distance performs better than the other distance metrics for all the 

five types of histograms. Manhattan distance is also use for measure the change of 

geometry of objects and clustering [Singla and Karambir (2012)]. 

a 
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2.7.4 Taxicab Distance Versus Euclidean Distance 

In taxicab geometry all three pictured lines (rcd, yellow, and blue) have the same length 

(12) for the same route. In Euclidean geometry, the green line has length 642 z 8.48, and is 

the unique shortest path. 
Q(6,6) 

P(O,O) 

Figure 2.6: Distance measure between point P(O,O) and Q(6,6); in Euclidean measure 

d2(P,Q) = /72 and in Manhattan measure d1 (P,Q) = 12. 

Taxicab geometry, considered by Hermann Minkowski in the 19th century, is a form of 

geometry in which the usual distance fi.inction or metric of Euclidean geometry is replaced 

by a new metric in which the distance between two points is the sum of the absolute 

differences of their Cartesian coordinates. The taxicab metric is also known as rectilinear 

distance, L1  distance or L1  norm, city block distance, Manhattan distance, or Manhattan 

length, with corresponding variations in the name of the gcomctry.The latter names allude 

to the grid layout of most streets on the island of Manhattan, which causes the shortest path 

a car could take between two intersections in the borough to have length equal to the 

intersections' distance in taxicab geometry. 

Now for completeness some other well-known distances will discuss below. 

-4 
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2.8 Hamming Distance 

In information theory, the Hamming distance between two strings of equal length is the 

number of positions at which the corresponding symbols are different. In another way, it 

measures the minimum number of substitutions required to change one string into the 

other, or the minimum number of errors that could have transformed one string into the 

other. 

2.8.1 Special Properties 

For a fixed length n, the Hamming distance is a metric on the vector space of the words of 

length n, as it fulfills the conditions of non-negativity, identity of indiscemibles and 

symmetry, and it can be shown by complete induction that it satisfies the triangle 

inequality as well. The Hamming distance between two words a and b can also be se-en as 

the Hamming weight of a - b for an appropriate choice of the operator. 

For binary strings a and b the Hamming distance is equal to the number of ones 

(population count) in a XOR b. The metric space of length-n binary strings, with the 

Hamming distance, is known as the Hamming cube; it is equivalent as a metric space to the 

set of distances between vertices in a hypercube graph. One can also view a binary string 

of length n as a vector in ir by treating each symbol in the string as a real coordinate; with 

this embedding, the strings form the vertices of an n-dimensional hypercube, and the 

Hamming distance of the strings is equivalent to the Manhattan distance between the 

vertices. 

£xamp1es 

The Hamming distance between: 

"toned and rosest  is 3 

1011101 and 1001001 1s2. 

2173896 and 2233796 is 3. 
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(a) 3-bit binary cube for finding 
Hamming distance 

.11  Hamming Distance 

From 100 to 011 has distance 3 (red path); and 

form 010- to 111 has distance 2 (blue path) 

101 

(b) 4-bit binary tesseract for finding Hamming distance 

lii 
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- 
• :1-lamming Distance: 

From 0100 to 1001 has distance 3 (red path); and 

From 0110-to 11 10 has distance I (blue path) 

Figure 2.7: Graphical view of measuring Hamming distance 
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2.8.2 Applications 

The Hamming distance is named after Richard Hamming, who introduced it in his 

fundamental paper on Hamming codes Error detecting and error correcting codes in 1950. 

It is used in telecommunication to count the number of flipped bits in a fixed-length binary 

word as an estimate of error, and therefore is sometimes called the signal distance. 

Hamming weight analysis of bits is used in several disciplines including information 

theory, coding theory, and cryptography. However, for comparing strings of different 

lengths, or strings where not just substitutions but also insertions or deletions have to be 

expected, a more sophisticated metric like the Levenshtein distance is more appropriate. 

For q-ary strings over an alphabet of size q? 2 the Hamming distance is applied in case of 

orthogonal modulation, while the Lee distance is used for phase modulation. If q = 2 or 

q = 3 both distances coincide. 

The Hamming distance is also used in systematics as a measure of genetic distance. 

- On a grid such as a chessboard, the Hamming distance is the minimum number of moves it 

would take a rook to move from one cell to the other. 

ki 

2.9 Levenshtein Distance 

In Information theory and computer science, the Levenshtein distance is a string metric for 

measuring the difference between two sequences. Informally, the Levenshtein distance 

between two words is the niinimuin number of single-character edits (insertion, deletion, 

substitution) required to change one word into the other. The phrase edit distance is often 

used to refer specifically to Levenshtein distance. It is named after Vladimir Levenshtein, 

who considered this distance in 1965. It is closely related to pairwise string alignments. 

2.9.1 Definition 

Mathematically, the Levenshtein distance between two strings a, b is given by 

iev,h(Ia!,IhI)where 
4 

max(i,j) if min(i,j) = 0, 

levb(i,j) = I 
leva b(i 1,j) + 1 

I ruin leva b(i,j - 1) + 1 otherwise. 

lleva. h(i - 1,] - 1) + [ai  # b1 ] 
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Note that the first element in the minimum corresponds to deletion (from a to b), the 

second to insertion and the third to match or mismatch, depending on whether the 

respective symbols are the same. 

Example 

For example, the Levenshtein distance between "kitten" and "sitting" is 3, since the 

following three edits change one into the other, and there is no way to do it with fewer than 

three edits: 

I. kitten -+ sitten (substitution of "s' for 'k") 

sitten -p sittin (substitution of "i" for "e") 

sittin -p sitting (insertion of"g" at the end). 

Upper and Lower Bounds 

The Levenshtein distance has several simple upper and lower bounds. These include: 

• It is always at least the difference of the sizes of the two strings. 

• It is at most the length of the longer string. 

• It is zero if and only if the strings are equal. 

• If the strings are the same size, the Hamming distance is an upper bound on the 

Levenshtein distance. 

• The Levenshtein distance between two strings is no greater than the sum of their 

Levenshtein distances from a third string (triangle inequality). 

2.9.2 Applications 

In approximate string matching, the objective is to find matches for short strings in many 

longer texts, in situations where a small number of differences is to be expected. The short 

strings could come from a dictionary, for instance. Here, one of the strings is typically 

short, while the other is arbitrarily long. This has a wide range of applications, for instance, 

spell checkers, correction systems for optical character recognition, and software to assist 

natural language translation based on translation memory. 

The Levenshtein distance can also be computed between two longer strings, but the cost to 

compute it, which is roughly proportional to the product of the two string lengths, mnakes 
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this impractical. Thus, when used to aid in flizzy string searching in applications such as 

record linkage, the compared strings are usually short to help improve speed of 

comparisons. 

2.10 Lee Distance 

In coding theory, the Lee distance is a distance between two strings Xi, X2,..., Xn and  y, 

Y2....., Yn of equal length n over the q-ary alphabet {O, I, ..., q - I } of size q ? 2. It is a 

metric, defined as 

min(Ixj — yjI,q — Ixt  — y). 

If q = 2 the Lee distance coincides with the Hamming distance. 

The metric space induced by the Lee distance is a discrete analog of the elliptic space. 

Example 

Ifq = 6, then the Lee distance between 3140 and 2543 is I + 2 + 0 + 3 = 6. 

The Lee distance is named after C. Y. Lee. It is applied for phase modulation while the 

Hamming distance is used in case of orthogonal modulation. 

a 
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CHAPTER III 

Iterated Local Search Approach for Maximin Latin Hypercube Designs 

3.1 Introduction 

The Latin hypercubc dcsign is a popular choice of experimental design when computer 

simulation is used to study a physical prcess. These designs guarantee uniform samples 

for the marginal distribution of each single input. A number of methods have been 

proposed [Lourenco et al. (2002). Martin and Ouo(1996)] for extending the uniform 

sampling to higher dimensions. We show how to construct Latin hypercube designs in 

which all main effects are orthogonal. Our method can also be used to construct Latin 

hypercube designs with low correlation of first-order and second-order terms. Our method 

generates orthogonal Latin hypercubc designs that can include much more factors than 

those proposed by Ye [Ye (1998)]. 

3.2 Iterated Local Search 

The importance of high performance algorithms for tackling difficult optimization 

problems cannot be understated, and in many cases the only available methods are 

metaheuristics. The word metaheuristics contains all heuristics methods that show evidence 

of achieving good quality solutions for the problem of interest within all acceptable time. 

Metaheuristic techniques have become more and more competitive. When designing a 

metaheuristic, it is preferable that it be simple, both conceptually and in practice. Naturally, 

it also must be effective, and if possible, general purpose. The main advantage of this 

approach is the ease of implementation and the quickness. 

As metaheuristics have become more and more sophisticated, this ideal case has been 

pushed aside in the quest for greater performance. As a consequence, problem-specific 

knowledge (in addition to that built into the heuristic being guided) must now be 

incorporated into metaheuristics in order to reach the state of the art level. Unfortunately, 

4- 
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this makes the boundary between heuristics and metaheuristics fuzzy, and we run the risk 

of losing both simplicity and generality. 

Here a well-known metaheuristics approaches, namely general Iterated Local Search (ILS) 

has been discussed. Iterated Local Search is a metaheuristic designed to embed another, 

problem specific, local search as if it were a black box. This allows Iterated Local Search 

to keep a more general structure than other metaheuristics currently in practice. 

The essence of metaheuristic - the iterated local search - can be given in a nut-shell: one 

iteratively builds a sequence of solutions generated by the embedded heuristic, leading to 

far better solutions than if one were to use repeated random trials of that heuristic. This 

simple idea [Baxter (1981)] has a long history, and its rediscovery by many authors has led 

to many different names for iterated local search like iterated descent [Baum (1986a), 

Baum (1986b)], large-step Markov chain [Martin et al. (1991)], iterated Lin-Kernighan 

[Johnson (1990)], chained local optimization [Martin and Otto (1996)], or combinations of 

these [Applegate et al. (1999)]. There are two main points that make an algorithm an 

iterated local search: (i) there must be a single chain that is being followed (this then 

excludes population-based algorithms); (ii) the search for better solutions occurs in a 

reduced space defined by the output of a black box heuristic. In practice, local search has 

been the most frequently used embedded heuristic, but in fact any optimizer can be used, 

be-it deterministic or not. 

The purpose of this review is to give a detailed description of iterated local search and to 

show where it stands in terms of performance. So far, in spite of its conceptual simplicity, 

it has led to a number of state-of-the art results without the use of too much problem-

specific knowledge; perhaps this is because iterated local search is very malleable, many 

implementation choices being left to the developer. In what follows we will give a formal 

description of ILS and comment on its main components. 
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Procedure lierated Local Search 
a. 

So = Generate Initial Solution 

Local Search(s,) 

repeat 

s' = Perturbation(s* )  

s" = Local Search(s') 

s = Acceptance Criterion 
(*, 

sm') 

until termination condition met 

end 

ILS involves four main components: 

L Creating an initial solution; 

A black-box heuristic that acts as a local search on the set S; 

The perturbation operator, which modifies a local solution; 

The acceptance critcrion, which determines whether or not a perturbed solution will 

become the starting point of the next iteration. 

I! 

Local search applied to the initial solution so  gives the starting point s' of the walk in the 

set S'. Starting with a good .c can be important if high-quality solutions are to be reached 

as fast as possible. The initial solution Sf) used in the ILS is typically found one of two 

ways: a random starting solution is generated or a greedy construction heuristic is applied. 

A "random restart" approach with independent samplings is sometimes a useful strategy (in 

particular when all other options fail), it breaks down as the instance size grows because in 

that time the tail of the distribution of costs collapses. A greedy initial solution so has two 

main advantages over random starting solutions: (i) when combined with local search, 

greedy initial solutions often result in better quality solutions s; (ii) a local search from 

greedy solutions takes, on average, less improvement steps and therefore the local search 

requires less CPU time. 

The current s, we first apply a change or perturbation that leads to an intermediate state s' 

(which belongs to S where S is set of all local optimum). Then Local Search is applied to s' 

and we reach a solution s" in S. If s' passes an acceptance test, it becomes the next 

element of the walk in S*;  otherwise, one returns to s.  The resulting walk is a case of a 
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stochastic search in S', but where neighborhoods are never explicitly introduced. This 

iterated local search procedure should lead to good biased sampling as long as the 

perturbations are neither too small nor too large. If they are too small, one will often fall 

back to s' and few new solutions of S*  will be explored. If on the contrary the perturbations 

are too large, s' will be random, there will be no bias in the sampling, and a random restart 

type algorithm will be recovered. 

In practice, much of the potential complexity of ILS is hidden in the history dependence. If 

there happens to be no such dependence, the walk has no memory: the perturbation and 

acceptance criterion do nt depend on any of the solutions visited previously during the 

walk, and one accepts or not s" with a fixed rule. This leads to random walk dynamics on 

S' that are "Markovian", the probability of making a particular step from Sj to S2 

depending only on sj' and S2'.  Most of the work using ILS has been of this type, though the 

studies show unambiguously that incorporating memory enhances performance [Stutzle 

(1998)]. 

The main drawback of any local search algorithm is that, by definition, it gets trapped in 

local optima that might be significantly worse than the global optimum. The strategy 

employed by ILS to escape from local optima is represented by perturbations to the current 

local optima. The perturbation scheme takes a locally optimal solution, s', and produces 

another solution from which a local search is started at the next iteration. Hopefully, the 

perturbation will return a solution outside the basins of attraction of previously visited local 

minima. That is, it will be "near" a previously unvisited local optimum. Choice of the 

correct perturbation scheme is of primary importance, because it has a great influence on 

the intensification/diversification characteristics of the overall algorithm. Generally, the 

local search should not be able to undo the perturbation; otherwise one will fall back into 

the local optimum just visited. Perturbation schemes are commonly referred to as "strong" 

and "weak", depending on how much they affect the solution that they change. A 

perturbation scheme that is too strong has too much diversity and will reduce the ILS to an 

iterated random restart heuristic. A perturbation scheme that is too weak has too little 

diversity and will result in the ILS not searching enough of the search space. The 

perturbation scheme should be chosen in such a way that it is as weak as possible while 

44 
still maintaining the following condition: the likelihood of revisiting the perturbed solution 

39 



on the next execution of Local Search should be low [Lourenco et al. (2002)]. The strength 

11 should remain as low as possible to speed up execution time. The desired perturbation 

scheme will return a solution near a locally optimal value. If this is the case, the local 

search algorithm should take less time to reach the next locally optimal value. Components 

from other meta-heuristics can sometimes be incorporated into the perturbation phase. 

Battiti and Protasi [Battiti and Protasi (1997)] proposed memory structures to control the 

perturbation. In doing so, one can force intensification when globally good values are 

reached and force diversification when the search stagnates in an area of the search space. 

Borrowing from Simulated Annealing [Kirkpatrick et al. (1983)], temperature controlled 

techniques have been used to force the perturbation to change in a deterministic manner. 

Basic variable neighborhood search employs a deterministic perturbation scheme. Just as 

perturbation can range from too much intensification (no perturbations) to too much 

diversification (perturb all elements of the solution), acceptance criterion choices affect the 

search in a similar way. The most dramatic acceptance criterion on the side of 

diversification is to accept all perturbed solutions. This type of practice can undermine the 

foundations of ILS, since it encourages a "random-walk" type search. Contrasting with 

this, the algorithm accepts only solutions that are improvements to the globally optimal 

value (a sort of greedy strategy). Many implementations of ILS employ this type of 

acceptance strategy [Rossi-Doria et al. (2002)]. This type of criterion, especially with a 

weak perturbation scheme, can restrict the search from escaping the current basin of 

attraction. Moreover, with this type of scheme the probability of reaching the same locally 

optimal value increases a trait that reduces the algorithm's overall effectiveness. When the 

search stagnated, the random restart is a good way to ensure some diversification and to 

counterbalance the (possible) negative effects of too greedy a search. Large perturbations 

are only useful if they can be accepted. This only occurs if the acceptance criterion is not 

too biased toward better solutions [Lourenco et al. (2001)]. Stutzle (1998) showed that 

acceptance criteria that accept some worse solutions outperform their best-only 

counterparts. 

For what concci'ns the stopping rule, generally the algorithm executes until one of the 

following conditions is met: 

a fixed number of cycles have finished; 

• the best solution has not changed for a predefined number of cycles; 
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a solution has been found that is beyond some predefined threshold. 

1 

ILS has many of the desirable features of a metaheuristic: it is simple, easy to implement, 

robust, and highly effective. The essential idea of ILS lies in focusing the search not on the 

full space of solutions but on a smaller subspace defined by the solutions that are locally 

optimal for a given optimization engine. The success of ILS lies in the biased sampling of 

this set of local optima. How effective this approach turns out to be depends mainly on the 

choice of the local search, the perturbations, and the acceptance criterion. Interestingly, 

even when using the most naive implementations of these parts, ILS can do much better 

than random restart. But with further work so that the different modules are well adapted to 

the problem at hand, ILS can often become a competitive or even state of the art algorithm. 

This dichotomy is important because the optimization of the algorithm can be done 

progressively, and so ILS can be kept at any desired level of simplicity. This, plus the 

modular nature of iterated local search, leads to short development times and gives ILS an 

edge over more complex metaheuristics in the world of industrial applications. As an 

example of this, recall that ILS essentially treats the embedded heuristic as a black box; 

then upgrading an ILS to take advantage of a new and better local search algorithm is 

nearly immediate. Because of all these features, we believe that ILS is a promising and 

powerful algorithm to solve real world complex problems in industry and services, in areas 

ranging from finance to production management and logistics. Finally, notice that although 

all of the present review is given in the context of tackling combinatorial optimization 

problems, in reality much of what is covered can be extended in a straight-forward manner 

to continuous optimization problems. 

3.3 Maximin Latin Hypercube Designs 

We will denote as follows the p-norm distance between two points x1 and .j, V i,j = 1, 2, 

,N: 

d, .v,—  x1 (3.1) 

Unless otherwise mentioned, we will only consider the Euclidean distance measure = 2) 

and Rectangular distance (p =1). In fact, we will usually consider the squared value of d 

(in brief d), i.e. d2  (saving the computation of the square root) in case of Euclidean 
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distance. This has a noticeable effect on the execution speed since the distances ci will be 
I 

evaluated many times. 

3.4 Definition of LHD 

-'1 

A Latin Hypercube Design (LHD) is a statistical design of experiments, which was first 

defined in 1979 [McKay et a]. (1979)]. An LHD of k-factors (dimensions) with N design 

points, xj= (x,1, x 2,......) : i = 0, 1,.. . , N—I is given by a Nxk matrix (i.e. a matrix 

with N rows and k columns) X, where each column of X consists of a permutation of 

integers 0, l, , N—I (note that each factor range is normalized to the interval [0, N —1]) 

so that for each dimensionj all x j, i = 0, 1, ,N —I are distinct. We will refer to each row 

of X as a (discrete) design point and each column of X as a factor (parameter) of the design 

points. We can represent X as follows: 

XoI X0  

X= : = (3.2) 

XN_I X(N_l )l X_ 

such that for each jE{i,2, . ,k} and forallp, qE{0, 1, - ,N — 11 with ptq;x,,j-,kx 

holds. Given a LHD X anda distance d, let D = {d(x,x): 1 i <jN}. 

Note that ID
(2 

We defme Dr(X) as the r-th minimum distance in D, and ,J1(X) as the 

number of pairs {x1, x1 } having d (x1. x) = Dr(X) in X. 

Figure 3.1 show the randomly generated LHD (Fig(a)) and maximin LHD (Fig(c)) 

regarding Euclidean distance measure obtained by ILS approach. Fig(b) shows the 

intermediate semi optimal LHD during ILS algorithm run. 

81 I. 

a . 
. 

Fig: (a) D 2 Xr 2, J1 2 (X7 4 Fig: (b) D(X=8, J(X,)=4 Fig: (C) D 2 (XM)=8, J 2 (XM)=2 

and 01"(X,)-2. J(X4 and D1 W(X,,)=4, J1 W(X)13 and D;W(X)4.  J1 '(X.)-9 

Figure 3.1: Some LHDs and their corresponding (Di, J3 ) values in L2  and L' distance measures 



The maximin LHD problem aims at finding a LI-ID X such that D i (X) is as large as 

possible. Flowever, a search which only takes into account the D 1  values is certainly not 

efficient. Indeed, the landscape defined by the D values is "too flat". For this reason the 

search should be driven by other optimality criteria, which take into account also other 

values besides D 1 . 

3.5 Optimality Criteria 

In order to drive the search through LHDs we need some criterion to compare them. Below 

we will describe some of the criteria employed in the li.terature. 

Opt(D1 , J1 ) Optimality Criterion : Under this criterion a LHD Y can be considered better 

than another one Xifa lexicographic ordering holds: 

D1 (Y)>D1 (X) or 

D 1 (Y)=D1 (X) and J1(Y)<J(X). (3.3) 

We illustrate this optimality criterion as follows. Note that we consider here only Euclidean 

distance measure. In Figure 3.1(a) Xr is a randomly generated LHD with (N, Ic,) = (9,2) 

where Di(Xr) = 2 and J(Xr) = 4; Figure 3.1 (b) presents an improved configuration Xsm  

where D1(X,) = 8 with J(X) = 4. A third LHD XM is given in Figure 3.1 (c) where 

D 1 (X 1) = 8 and J1 (X 1 ) = 2; by the Opt(D,,J1 ) criterion this is the best configuration among 

the three. 

By generalizing this approach, we can consider the problem like a multi-objective problem 

with priorities: maximize the objective with highest priority D 1 ; within the set of optimal 

solutions with respect to D 1 , minimize the objective with second highest priority J1 . Note 

that Johnson et al. [Johnson et at. (1990)] first proposed this optimality criterion. 

Opt(p) Optimality Criterion : As previously remarked, if there exist different LHDs with 

equal D 1  and J values, i.e. in case there exist at least two LFIDs X, V such that D L (X) = 

D1 (V) = D 1  and 11 (X) = J(Y) = i, we could further consider the objective D2  and 

maximize D(X), the second smallest distance in X, and, if equality still holds, minimize 
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.12(X). the number of occurrence of D2(X), and so on. Then an optimal design X 

sequentially maximizes D 5  and minimizes Ji, in the following order: D 1 , J 1 ; D2, J2, 

Irn. Morris and Mitchell [Morris and Mitchell (1995)] have used all the above measures to 

define a family of scalar-valued functions (to be minimized), which can be used to rank 

competing designs in such a way that a maximin design receives the highest ranking. This 

family of functions, indexed byp, is given by 

Ø 
 

(x) 
1/ 

(3.4) 

where p is a positive integer parameter. Under this criterion, LHD V is better than X if 

O(Y) < RP) 

Note that for large enough p, each term in the sum in (3.4) dominates all subsequent terms. 

Through p we can control the impact of the different D, distances: as p increases, the 

impact of distance D1  becomes more and more relevant. In the form (3.4), the evaluation of 

Op would be computationally costly. However, it has a computationally cheaper form (see 

[Jin et al. (2005)]). Indeed, (3.4) can be simplified as 

N N 1 " 

q(X)= (3.5) 
i1 j=i--i dip 

which can be computed without the need of detecting and ordering all the Dvalues. 

An apparent drawback of the Opt(Ø) criterion, if we are interested in maximin values 

(maximum D 1  value), is that LHDs with smaller (better) Ø1,can have a worse(srnaller) D, 

i.e. we can have X and V such that ø,,(X) < ø(Y) and D 1 (X) <D 1 (Y). This phenomenon 

has been frequently observed in our computational experiments. Nevertheless, a profitable 

choice is to work in order to minimize the O p function but, at the same time, keep track of 

the best (D1  J1 ) values observed during such minimization. This way the search in the 

solution space is guided by a kind of heuristic function. Such mixed approach might appear 

strange but, as we will demonstrate experimentally, it can be extremely effective. 

While the two criteria above are strictly related to maximin values and they will be widely 

employed in the definition of approaches for detecting niaxirnin solutions, for the sake of 

completeness, we also mention that also other optimality criteria, not necessarily related 
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with maximin values, are available in the literature. We present a couple of them as well as 

the approaches for constructing the optimal Latin hypercube design in Table 3.1. 

Table 3.1: Some well know approaches as well as optimal criterion for optimal 

experimental designs 

Researchers Year Algorithm Objective functions 

Audze and Eglajs 1977 Coordinates Exchange Potential Energy 

Algorithm 

Park 1994 A 2-stage(exchange-and Integrated mean squared 

Newton-type) algorithm error and entropy criteria 

Morris and 1995 Simulated annealing 
0 criterion 

Mitchell / 

Ye et al. 2000 Columnwise-pairwise 
OP and entropy criteria 

Fang et al. 2000(a) Threshold accepting Centered L2 -discrepancy 

algorithm 

Bates et al. 2004 Genetic algorithm Potential energy 

Jin et al. 2005 Enhanced stochastic 
OP criteria, entropy and 

evolutionary algorithms 

L2 discrepancy 

Liefvendahl and 2006 Columnwise-pairwise Minimum distance and 

Stocki and genetic algorithms Audze-Eglajs function 

Dam et al. 2007(b) Branch-and-bound 1-norm and infinite norm 

algorithm distances 

Grosso et al. 2008 Iterated 'ocal search and 
op criterion 

simulated annealing 

algorithms 

3.6 ILS Heuristic for Maximin LHD 

In Section 3.2 we have discussed a general scheme for ILS-based algorithms. Now we 

present the ILS based procedure for rnaximin Latin hypercube design. As we have stated 

I. 

t 
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earlier, the main components of ILS heuristic approaches are Initialization (Is),  Local 
It 

Search (L 1), Perturbation Move (Pif), and the Stopping Rule (SR). 

The pseudo-code of the proposed ILS heuristic for maximin LHD problems is given 

bellow: 

Step 1. Initialization : X = J({O, 1,. . . ,N - 1)) 

Step 2. Local Search : A' = LM(X) 

while SR not satisfied do 

Step 3. Perturbation Move : X' = PM(X) 

Step 4. Local Search : A' = LM(X') 

Step 5. Improvement test if A' is better than X, 

set X = A' 
end while 

Return X 

It 
Each component of the algorithm is briefly discussed below. 

3.6.1 Initialization (Is) 

The initialization (is) procedure embedded in our algorithm is extremely simple: the first 

initial solution is randomly generated. In particular, the first initial solution generation is 

built as follows. For each component h e { 1, 2..... k} a random permutation V0,VJ 

of the integers 0, 1.....-  N - I is generated and we set 

Xr/ vfor all 1E 1.0, 1, . . . , N I }. 

Although more aggressive procedures could be designed, we chose random generation 

because it is fast and unbiased. 

- 3.6.2 Local Search Procedure (Ls) 

In order to define a local search procedure (L5), we need to define a concept of 

neighborhood of a solution. Given a LHD X= (x,, X2. ....  xv), its neighborhood is made of 
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all other LHDs obtained by applying local moves to X. Before introducing some local 

moves, we first introduce the notion of critical point. 

Critical point: We say that x1  is a critical point for X, if 

mm d(x(, x) =D1 (X),. 
'. j~'i 

i.e., the minimum distance from x1  to all other points is also the minimum one among all 

the distances in X. We denote by 1(X) { 1, 2, . . . ,N} the set of indices of the critical points 

in X. 

3.6.3 Local Moves (L f ) 

A local move is an operator that applies some form of slight perturbation to a solution X, in 

order to obtain a different solution. Different local moves define different neighborhoods 

for local search. In the literature two different local moves are available: Rowwise-

Pairwise (RP) exchange [Park (1994)] and Columnwise-Pairwise (CP) exchange [Morris 

and Mitchell (1995)]. In Park's algorithm [Park (1994)] some active pairs (pairs of critical 

points, in our terminology) are selected. Then, for each chosen pair of two active rows, say 

i t  and i2, the RP exchange algorithm considers all the possible exchanges of corresponding 

elements as follows: 

XII,p *Xi2.q Vp,q1,2,...,k:p:Aq. 

and finds the best exchange among them. The CP algorithm proposed by Morris and 

Mithchell [Morris and Mitchell (1995)] exchanges two randomly selected elements within 

a randomly chosen column. But in [Li and Wu (1997)], Li and Wu defined the CP 

algorithm in a bit different way: they randomly choose a column and replace it by its 

random pern-tutations if a better LHD is obtained. 

It is obscrvcd that the effect of CP based local search and RP based local search is not 

significance [Jamali (2009)]. So, here, RP based local move is considered as defined in 

[Jarnali (2009)] which is a bit different than that of [Park (1994)]. For optimal criteria we 

consider Opt( 0) optimal criteria. 
I 
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The definition of Rowwise-Pairwise Critical Local Moves (we call it LMRPDI) as follows. 

The algorithm sequentially chooses two points (rows) such that at least one of them is a 

critical point, then exchanges two corresponding elements (factors) of the selected pair. If I 

EI(X), r,je {l, 2,. . . , N}, Ii, € E {l, 2,. . . , k}, swapping the (-th component gives the 

neighbor Y defined by 

I Xrh ifr'i or h  

ythHxth ifr=j and h=€ (3.6) 

Xjh ifr=iandh=e 

It is remarked that, if Opt(D1 , J,) be the optimality criterion, it perfectly makes sense to 

avoid considering pairs x1  and xj such that 1(X) fl {x1, x} = 0 since any swap involving 

two non-critical points cannot improve the D1 value of the current LHD. 

Initial solution - LHD A Aflcr single L.xal Move, nbh so!. LHD B After cornpletc LS - LHD C 

U 

 

I 

  

  

I 

 

Fig: (a) D 2 (X)=2, J1 2 (X5)=3 Fig: (b) D3 2'(X)2, J,(X)=I Fig: (c) D(X)=s, J1 (X)4 

Figure 3.2: Illustration of Neighborhood solutions for LMRDI based local search 

(LS) procedure 

We now illustrate the RP based local moves by considering a randomly generated initial 

design A: (N, k) = (7, 2) (see Figure 3.2(a)). Then a neighborhood solution of A, by 

considering points (0, 2), (4, 4) (here both are critical points), is LHD B, obtained after 

swapping the second coordinate of the points (0, 2) and (4, 4) (See Figure 3.2 (b)). 

Also note that LHD B is an improving neighbor of LHD A, since (D1 , J1 )(B) = (2, 1) 

whereas (D1. J1 )(A) = (2, 3). Finally Figure 3.2 (c) shows the maxirnin LHD produced by 

the Local search procedure. Though the algorithm optimized the LHD regarding Euclidean 

distance measure but the LHD is improved regarding Manhattan distance measure too (see 

the figures). 



3.6.4 Acceptance Rule 

Among the two type of local moves [Jamali (2009)], we considered Best Improve (BI) 

acceptance rule as there are no significant difference regarding output (see [Jamali 

(2009)]). For the BI acceptance rule, the whole neighborhood of the current solution is 

searched for the best improving neighbor. We warn again the reader that the meaning of "Y 

is better than X" can be defined accordingly with the Opt(Di , Jj) or Opt(Ø) optimality 

criterion. So for the Opt(Di , J1 ) optimality criterion: "Y is better than X" if 

D 1 (Y) >D1 (X) or(D i (X) =D 1 (Y) and Ji (X) >J 1 (Y)). 

On the other hand for Opt() optimality criterion: "Y is better than X" if 

çb,)(Y ) <0(X)1  

where 0 is defined by (5). 

11 3.6.5 Perturbation Move (P41) 

Perturbation is the key operator in ILS, allowing the algorithm to explore the search space 

by jumping from one local optimum to another. Basically, a perturbation is similar to a 

local move, but it must be somehow less local, or, more precisely, it is a move within a 

neighborhood larger than the one employed in the local search. Actually the perturbation 

operator produces the initial solutions for all the local searches after the first one. Among 

the two types of perturbation operators, say, (i) Cyclic Order Exchange (COE) and (ii) 

Pairwise Crossover (PC) proposed in [Jamali (2009)], we consider COE. 

(I) Cyclic Order Exchange (COE): Our first perturbation move procedure is Cyclic 

Order Exchange (COE). The operator COE produce a cyclic order exchange upon a 

randomly selected single component (column) of a randomly selected portion of the design 

points (rows). Among the three variant of COE perturbation move techniques: Single 

Cyclic Order Exchange (SCUE) perturbation operation, Multiple Components Cyclic 

Order Exchange (MCCOE), and Multiple Single Cyclic Order Exchange (MSCOE) [Jamali 

(2009)], we consider here only SCOE technique. 

4 
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X(J1J,i 

xi,!  

Figure 3.3: Illustration of Cyclic Order Exchangc perturbation technique 

(Ia) Single Cyclic Order Exchange (SCOE): For SCOE, we randomly choose two 

different rows (points), say xi  and X j, such that I <j andj - I ~! 2, in the current LHD X*. 

Thcn, we randomly choose a column (component), say m. Finally, we swap in cyclic ordcr 

the value of component m from point xi  to point x1. The pseudo-code structure for SCOE is 

the following. 

The pseudo-code structure for SCOE is the following. 

Step 1: randomly select two different points x1  and x 

such that i<j andj - i ~ 2 

Step 2: Randomly choose a component m 

Step 3a: set temporarily X'  = Xjm jM 

for t=j,j-1..... i—ldo 

Step 3b: Replace the component X(m by X(t-J)m 

end for 

Step 3c: and replace X,m by Xtjm 

Note that we requirej - I ? 2 because otherwise the perturbation would be a special case 

of the local move employed in the local search procedure. We illustrate the SCOE. 

perturbation by an example. Assume we have the current LFID X with N = 6 and k = (see 

Eq. (3.7)). 
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x 
02135542 

1 3 2 2 0 3 3 4 

21452213 
X=X3 = (3.7) 

3 4 5 0 3 1 0 1 

x5 4 5 0 4 1 4 2 0 

5 0 3 1 4 0 5 5 

Now we randomly choose two rows (points), say X2 and x5  and we randomly choose the 

column (component) rn = 4. Then, after the SCOE perturbation we get the following LHD 

X' (Eq. (3.8), note that bold faces indicate the values modified with respect to X). 

02135542 
xI 

x. 1 3 2 4 0 3 3 4 

21422213 
x'= X3 

= (3.8) 
x4 3 4 5 5 3 1 0 1 

x5 4 5 0 0 1 4 2 0 

X6 5 0 3 1 4 0 5 5 

Note that SCOE only slightly modifies the current LHD X but this exactly follows the 

spirit of ILS, where the perturbation should keep unchanged large portions of the current 

solution and should not completely disrupt its structure. 

2. Pairwise Crossover 

The second type of perturbation move that we consider is the Pairwise Crossover (PC). It is 

similar to biological crossover —we randomly select two points (rows) and then randomly 

selected portions of them which are interchanged. Here we propose three variant of PC 

namely Single Pair Crossover (SPC) and Multiple Pair Crossover (MPC). 

i 
(5 2 1 3 5 5 4 2 

I x2 10 3 2 4 0 3 3 4 

Ix
.
J Ii 1 4 2 2 2 1 3 

x *=I 1=1 

x41 12 4 5 53 1 0 1 

x51 3 5 0 0 1 4 2 0 

l%  xj 4 0 3 1 4 0 5 5 

t.  
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(2a) Single Pair Crossover (SPC): For SPC, we first randomly select two rows, say, x1  and 

x, i :Aj, in the current LHD X*;  then we randomly select a component, say I ~! 2. Finally all 

the components 1, 2,. . . , / of xi are swapped with the corresponding components of x3_. 

refer to Figure 3.4. Note that we require 1>— 2, since otherwise it would be a single local 

move. It is also worthwhile to remark that the PC perturbation is meaningful only when 

number of factors of the LHD is greater than three. The pseudo code structure of SPC is as 

follows: 

Step I: randomly select two different points x1  and Xj such that i #j 

Step 2: Randomly choose a component 1 such that 1~! 2 

fork=1,2,. . . ,ldo 

Step 3: swap(xjk, Xjk) 

end for 

Before Crossover 

JxaNIO 3 1 2  4 0 3 3 4 1 

1x1)=)4 013 1 4 0 5 5) 

After Crossover 

lx1114 0 1 2  4 0 3 3 4 1 

IxjJ=Io 313 1 4 0 5 sj 

Figure 3.4: Illustration of Single Pair Crossover perturbation technique 

(xi') (0 2 1 3 5 5 4 2' 

x2) J4 5 0 4 0 3 3 

x _1x1I =12 1 4 5 2 2 1 3 
(3.10) 

Ix4j 4 5 0 3 1 0 II 

x51 
I 3 2 2 1 4 2 

0! 
x6) 0 3 1 4 0 5 

52 



Now we illustrate the SPC perturbation by an examp1e we again consider the LI-ID X (Eq. 

a (3.10)). We randomly choose a pair of rows (points), say X2 and x6, and randomly fix a 

column, say 12= 2. Then after SPC perturbation on X we gçt the following final LHD X 

(Eq. (3.11) note that the bold faces denote the values modified with respect to X*). 

x1 0 2 1 3 5 5 4 2 

x2 0 0 4 0 3 3 4 

21452213 
X'= = (3.11) 

x4 3 4 5 0 3 1 0 1 

x5 1 3 2 2 1 4 2 0 

4 5 3 1 4 0 5 5 

3.6.6 Stopping Rule (SR) 

We use a very simple stopping Rule (SR). We introduce an integer parameter called 

MaxNonlmp (MNI) and the algorithm will stop if the currently best local optimizer Xa 

cannot be improved for MaxNonlmp consecutive perturbations. 

53 



CHAPTER IV 

Optimality Analysis of the Experimental Results Regarding 

Euclidean Distance 

4.1 Introduction 

In this chapter we will discuss about the optimality of the experimental results obtained by 

ILS approach. At first we will display the optimal LHDs to show the performance of ILS 

approach regarding Euclidean distance measure. Then we will also briefly discuss about 

the multicollinearity of the optimal LHDs obtained by ILS approach. 

4.2 Experimental Results and Discussion for Euclidean Measure 

The parameter setting for the experiments, as Jamali (2009) considered, is given in Table 

4.1 and 4.2. For the comparison of ILS approach with the existing literatures, we will 

refer to [Jamali (2009)]. In that dissertation the approach in [Morris and Mitchell (1995)] 

denoted as SA_M (simulated Annealing (modified), and the approaches proposed in 

[Husslage. et  al. (2006)] denoted as PD (periodic Design), SA (simulated Annealing) and 

MS denoted multi-start random generated approaches. We have also denoted the updated 

website values as Web (or Best known) values. The improvements obtained through the 

PD and SA approaches are discussed in Husslage et al. (2006). 

Table 4. 1: Parameter setting for the experiments of ILS approach 

Experimental design LHD Perturbation Technique SCOE 

Method ILS Stopping Rule MaxNonlmp parameter value 

Optimal Criteria Opt(q5) MaxNonlmp setting 100 

Local Move RP [Parameter , 
 , p 20 

Acceptance Rule BI  
-7 

a 



Table 4.2: The setting of number of runs (R) for the ILS approach 

k N R 

3-10 2-25 500 

3-10 26-50 100 

3,4,5 51-100 50 

6-10 51-100 10 

The experimental results of ILS approach regarding Euclidean measure [Jarnali, 2009] are 

given in the Table 4.3 and Table 4.4. We observe that ILS is able to detect a very large 

amount of improved solutions with respect to the best known ones. It is worthwhile to 

remark that for large (k, N) values the improvement of each LHD obtained by ILS 

approach is very significance. For the better visualization of the above results, Table 4.5 

displays the summary of the performance of the several approaches. In the first row of 

Table 4.5 identical means, ILS approach able to identical solution compare to the best 

known results available in the literature whereas Worse means the solution obtained by 

ILS approach are worse compare to best known results. The performance of ILS approach 

regarding maximin LHDs in L2  measure is remarkable compare to other approaches 

available in the literature. This is, especially, true at large k values. For k? 6, with the 

exception of few numbers of low N values, all the solutions returned by ILS are better 

compare to the best known results. Though the performance of ILS approach is 

significantly better compare to other approaches consider here, but the approach will be 

effective if it is efficient i.e. the algorithm performs the job within acceptable time. So it 

is needed to comment about the computation times. It is worthwhile to mention here that 

there is no information regarding times to obtain the Web's results. Anyway for this 

demand, the computational cost of the approaches is reported in the Table 4.6. It is, 

however, quite clear that ILS is more computationally demanding with respect to PD and 

SA. Such higher costs are clearly rewarded in terms of quality of the results but the quality 

of the results might be wondered if the time restrictions are imposed on ILS. According to 

some further experiments that were performed, it would be realized that, especially at large 

k values, equivalent or better results with respect to the PD and SA ones, could quickly be 

reached by ILS. Therefore, it seems that at large k values even few and short nins of ILS 

are able to deliver results better than those reached by PD and SA. That is ILS approach 

outperforms compare to other approaches. 
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Table 4.3: Comparison among PD, SA, Web and ILS approaches regarding maximin 

Li-IDs in Euclidean distance measure for k3 - 6 
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Table 4.4: Comparison among PD, SA, Web and ILS approaches regarding rnaximin 
LHDs in Euclidean distance measure for k = 7- 10 
A.7  6-9 6-9  8'.))! 

N 

1.13 SA v,, 1.9 SA ILS 47, ILS SA  \9'), ILS 
7 7 -i 7 0 3 3 9 9 9 0 I)) 
7  0 I) 5 13 14 4 6 18 8 9 19 19 

16 2) 2> 2) 26 20 26 2% 28 25 35 13 33 

E 

In 32 52 37 40 10 40 43 43 43 50 50 50 

29 47 47 47 54 54 54 6) 61 61 68 68 60 

3! 1.! 6I 6I 70 70 77 0)) 81) 8I 89 09 90 
46 79 79 71) '5) 90 91 07 0) *02 114 114 11$ 

-- - 47 92 92 93 112 112 II) 126 126 129 141 142 1.43 
*0 68 110 II)) III 71) II! 33 54 54 57 72 172 74 
II 1,9 1 19  59 32 57 752 154 76 I 16 11;) 766 706 209 

42 95 IS)) 132 159 176 177 IA! 21)4 21)4 21)9 235 235 240 

II 95 174 170 IS! 2111 206 210 212 235 242 261 1 268 275 
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I. 

Table 4.5: Summary of the comparison among several approaches of finding maximin 

LHDs for N=2 to 100 

Number of best solutions (niaxirnin_LHD) Identical Worse 
k PD SA SA_ M Web MS ILS ILS ILS 
3 ]61} 0 J 0 65 0 14 [ 20 65 
4 ]02} 0 0 47 0 34 18 47 

0 0 II 0 'is 10 11 
6 OOj 0 0 00 0 90 09 00 
7 00 0 0 f 00 0 92 07 00 
8 0 [ 0 } 00 0 93 06 00 
9 0 [ 0 00 0 f 93 06 00 
10 0 [ 0 00 0 } 92 07 00 

Table 4.6: Comparison of computational cost 

TotalElansedTime thrs 

k PD SA ILS 

3 145 500 IM 

4 61 181 507 

5 267 152 767 

6 108 520 1235 

7 232 246 698 

8 - 460 846 

9 -- 470 1087 

10 -- 470 1166 

Figure 4.1: Muliticollinearity analysis of the LHDs obtained by ILS approach 
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From the above discussion it is clear that ILS approach is state-of arts for optiinality 

analysis regarding Euclidian distance measure as well as computational cost. Apama 

(2012) also analyzed the performance of ILS approach regarding multicollinearity of the 

optimal LHD measured in Euclidean distance. The experimental results regarding average 

correlation are given in the Figure 4.1. It is noted that the average coefficient of correlation 

are calculated as define in [Aparna 2012]. We observe that, except few LHDs, the average 

coefficients of correlations among factors are less than 0.2. It may conclude that the 

optimal LHDs optioned by ILS approach regarding Euclidean measure have poor 

multicollinearity i.e. among the factors of each LHD exists good orthogonality property. 

It is also remarkable that the avarage coeffient of correlations are decreses with the 

increases of number of factors. It is whorthwhile to mention here that the performance of 

ILS approach is increase with the increase of factors as well as incerasing of number of 

design points (see Table 4.5). 

59 



CHAPTER 5 

Optimality Analysis and Discussion of the Experimental Results 

Regarding Manhattan Distance 

5.1 Introduction 

In the previous section we have performed several experiments in ILS approach for LHDs 

regarding Euclidean distance measure. In this chapter at first we will perform several 

experiments on the LHDs obtained by ILS approach regarding Manhattan distance 

measure. Then we will compare the experimental results with available ones in the 

literature. Moreover we also perform some more experiments on the maximin LHDs 

obtained by ILS approach to find Out some more interesting characteristics. 

5.2 Experimental Results and Comparison for Manhattan Measure 

It is noted that finding optimal LHD in Manhattan (Rectangular) distance measure is more 

complicated [Toth (1971)]. Anyway the purpose is not to perform experiments to optimize 

LHD by ILS in Manhattan distance measure; rather the maximin LHD in Rectargular 

distance measure will be studied where the designs are optimized by ILS approach 

regarding Euclidian distance measure. 

Actually in this study, the optimal LHD namely maximin LHD obtained by the ILS 

approach (MLH-ILS) will be considered in which distance is measured in Euclidian 

distance measure (L2). Then the minimum inter-site distance will be measured among the 

design points of the MLH-ILS design by Rectangular distance measure (L'). In what 

follow the notation - D1 M or  D1(J1)UM  and D1 '2  or D1 (J1 ) 2  denote the minimum inter- 

site distance of an LHD measured by the Manhattan distance measure and Euclidean 

distance measure respectively. Note that in the above notation J1  means number of 

duplications of D1  value in the LHD. In these experiments we considered p. Pn;tx,  D1 (J 1 ), 
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(LI) D1(J1)(L2) and (12) properties. 1-lere the notation p and Prnax  denote average pair- 

wise correlation maximum pair-wise correlation among the factors of the LI-ID measured 

as follows(Aparna 2012): 

k i-I 

pt 
= i=2 j=1 and p = max p.. 

k(k - 1)/2 I5i,j5k '' 

where py be the pairwise linear product-moment coeftient of corelation between factors i 

andj. 

The notation and j,2)  indicate the value of cbs, (see Eq. (1.1)) measured by 

Manhattan distance measure and Euclidean distance measure respectively. The optimal 

criterion p2) denotes the multi-objective function where the algorithm optimized 1p2-F 

W2I1) criterion [Joseph and Hung (2008)] where C0j, co, are weight factors (optimized both 

minimum distance criterion as well as correlation criterion). On the other hand the optimal 

criterion (t, Dl) indicates optimized c  value but tracking the best D1 (J1 ) during algorithm 

searches feasible space. That is though ILS algorithm optimize I criterion but it does not 

consider LHD which corresponding to best b, rather it considers LHD which has best 

D1 (J1 ) value in the track of search. The optimal criterion p = 0 means the optimal LHD 

must has zero correlation among the factors. 

For the first experiment, we first consider optimal LHD (with (N, k) = (5, 3)) denoted as 

MLH-ILS. Now we have performed experiments on that LHD to find out D1 (J1 ) and 

characteristics as indicated with first column of the Table 5.1. The experimental result is 

given in the Table 5.1. 

It is observed in the Table 5.1 which is also eventually true that MLH-SA is better in 

D1 01 )"1  value as it is optimized regarding L' measure; similarly OMLH —MSA is better 

than others LI-IDs regarding correlation. Similar case is occurred in the Table 5.2 also. It 

is worthwhile to mention here that OLH-Y is better compare to OMLH - MSA, off course, 

as well as to other LI-IDs regarding multicollinearity because the LHDs, considered in 

OLH- Y, has inherently zero multicollinearity. It is also no doubt that MLH -ILS is the 

best compare to all other LHDs regarding D1 (J1 ) 2  and b °2 as ILS approach considered 

L2  distance measure. But it is remarkable that D1 (J1 )12  value is significantly better in MLII 

-ILS obtained by ILS approach. It is also noted that though, in MLH-SA, SA approach 
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considered L measure whereas, in MLII —ILS, ILS approach considered L2  measure for 

obtaining maximin LHD, the D1(J1) 1)  value of MLH -ILS is comparable with MLH- 

SA. Moreover the DL(JI) value of ILS approach is almost identical with other approach 

in both the design considered here. It is observed in the table that though in MLH-ILS, 

considered L2  distance measure, the c1 values of MLH-ILS design is comparable of the 

other two designs. On the other hand the (1-2)  values of MLH-ILS design is significantly 

better than those of the other two designs. It is also observed that the design OMLH-MSA is 

best than the other two regarding multicollinearity, since the designs are optimized regarding 

average correlation p value. But MLH-ILS design is better than the design MLH-SA 

regarding both p and Pmax  values. 

Table 5. 1: The comparison of MLH-ILS vs MLH-SA and OMLI-I - MSA for (N, k) = (5, 3) 

Method - MLH-SA OMLH-MSA MLH-ILS 

Optimal Latin Hypercube 

Design Matrix - 

1 1 2 

2 5 3 

325 

431 

544 

1 2 3 

2 4 5 

351 

412 

534 

1 3 5 

2 2 2 

351 

444 

513 

Optimal Criteria - (D p  ((I) 
, p2 ) 

. T 
(, D1) 

Distance measure 
- 

L' LL L2  

PROPERTIES 

 

p - 0.265 0.0816 0.200 

Pmax 0.4 0.1 0.200 

D1(J1) 1-* 5(3) 5(4) 5(6)] 

) (Lt) 
- 0.2170 .2201 0.21879 

D1 (J1 ) 2 -)' 9(1) 9(2) 
7~~ 

(,(1-2) -) 0.1113 0.1151 0.09956 

Similarly we have again performed experiment on optimal LHD (with (N, k) = (9, 4)) 

denoted as MLH-ILS. The experimental results are given in the Table 5.2. 
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I. 

Table 5.2: The comparison of MLI-1-ILS vs MLH-SA, OMLH MSA and OLH-Y for 

(N. k)=(9.4) 

Method 
- 

MLH-SA OMLH - MSA OLH- Y I  MLH- ILS 

Optimal LatinHypercube 1 3 3 4 1 5 3 3 1 2 6 3 1584 

Design Matrix - 2 5 8 8 2 2 5 8 2 9 7 6 2 7 4 9 

3862 3975 3429 3216 

4716 4381 4712 4 83 3 

5293 5717 5555 5 15 1 

6959 6699 6398 6 37 8 

7147 7124 7681 7692 

8421 8842 8134 8967 

9675 9466 9847 9425 

Optimal Criteria - (I, (' = CI),, D1  

Distance measure - L' L' L' L2  

PROPERTIES 

L p - 0.108 1 0.063 0.000 0.151 

pmaX4 0.217 0.117 0.000 0.233 

1 11(3) 11(4) 10(8) 10(4) 
_____ 

(1-1) 0.105 0.105 0.115 0.108 

33(2) 31(1) 30(8) 42(6) 

(J (1,2) 
- 0.031 0.033 0.037 0.026 

Again in the Table 5.2, it is observed that the designs MLH-SA, OMLH-MSA and OLH-Y 

are optimized regarding Rectangular distance measure (L) whereas the proposed design - 

MLH-ILS is optimized regarding Euclidian distance measure (L  2).  It is observed in the table 

that though L2  distance measure is considered in MLH-ILS design, the D1(J1)"  and (LI) 

values of MLE-l-ILS design are comparable with respect to the other three designs. On the 

other hand D1 (J 1 )t12  and 1 21  values of MLH-ILS design are significantly better than 

the other three designs considered. It is also noticed that regarding correlation parameters p 

and Prnax,  OLH-Y design is better comparing with the other three designs but regarding 

D1 (J1 ) 2 , OLH-Y design is worst one. It is noted that in the design OMLH-MSA, correlation 

criterion p is partially minimized and in the OLH-Y design, designs are chosen so that p be 

zero. On the other hand MLH-ILS design is comparable with both the designs MLH-SA and 
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OMLH-MSA with respective to conclation parameter p and p. That is except OLH-Y 

the multicolinearity of MLH- ILS is comparable with other approaches. 

Now some experiments will be performed for comparison of D1 (J1) values (minimum 

inter-site distance measured in Manhattan distance measure) of the designs available in the 

web www.spaccfiflingdesigns.nl. The Manhattan distance measure (L') based maximin 

LHDs, available in the web, are denoted by MLH-Web. Note that the maxirnin designs, 

considered here from the web, are optimized regarding Manhattan distance measure. On the 

other hand it is mentioned here again that the proposed designs MLH- ILS is optimized 

regarding Euclidian distance measure (L2). 

Table 5.3: The comparison of MLH-ILS vs MLH-Web regarding Manhattan distance 

measure (L) fork = 3, 4, 5, 6 

v]______ k=3  k=4  k=5 J k=6 
- 

- 

MLH- 

ILS 

(D' 

MLH-Web 

(D) 

MLH- 

ILS 
MLFI-Web 

(D1  

MLH- 

ILS 
MLH-Web 

(D1  

MLH- 

ILS  

(D1  

MLH-Web 

(D 

141 4 1 4 j 6 6 f 8 10 10 
5 5 1 5 1 7 7 ]_10  10 II 1 12 

1 61 (i 6 1 8 1 8 ] 10 1 1 14j 14 
11 71 6 1 6 1 8 1 10 1 12 1 12 1 14 116 

7 1_7 10  13  16 
191  8 1 8 10  IS 17 
ft 1, 7 8 12  15 19  

8 f ii [ 19 1  

8 1 9 13 
_ 

 17  23  

1 9 1 10 12  17  21  

11 9  10 14 19  24  
_17  

11 14  19  241  

ji 0 1 14 [ 19 26  

II 10  16f  [ 19 27  

1 1 , o j  16]  2!  26  

2 10 18 21 29  

2 1 _II  20  25  ] 29  

H 17  23 J 31 
21 II 1  IX  26 32  

21 H 1 1 19  26 [ J 33  

13 1 [ 19 f 27 [  34  

4 
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So in this experiments the D1  values are just calculated from the MLH-ILS designs which 

is optimized regarding Euclidean distance measure. For this experiments, we consider 

factors : k = 3, 4... . . , 6 and number of points : N= 4,5....., 25 are considered. Now we have 

performed experiment on those optimal(MLH-ILS) LHDs to fmd out 131 ) values. The 

experimental results are shown in the Table 5.3. Note that in the Table 5.3 the symbol D' 

denotes minimum inter-site distance among the points of a design in which distance is 

measured in Rectangular distance measure. It is noted that there are few values are available 

in the literature regarding Manhattan distance measure. 

Table 5.4: The comparison of MLH-ILS vs MLH-Web regarding Euclidian distance 

measure (L) fork = 3, 4, 5, 6 

N I k=3  k=4 k=5 k=6 

MLH-ILS MLH-Web 

(D1) 

M1J1-  

ILS 

(D 

MLH-Web 

(D1 ) ILS 
MLH-Web 

(D1 ) 

MLH-ILS 

(I) 

MLH-Web 

(D y) 

6 7 7 8 8 12 8 
4  6 12 12 14 14 20 18 
5 11 9 15 13 24 22 27 24 

6  14 22 18 32 27 40 36 
7 7 12 28 26 40 32 52 52 
8 2 1 21  

9  22  

10 27 22  

Ii 30 22  

12 36 27  

13 41 36  

14 42 34  

15 48 41  

16 50 41  

Again some experiments will be performed to find out the values of the MLH-Web 

designs considered in the previous experiment. Note that, the designs MLH-Web are 

optimized regarding Rectangular (L') distance measure rather than Euclidean (L2) distance 

measure whereas MLH-ILS designs are optimized regarding Euclidian distance measure 

(L2) measure. Now regarding D1 2  values of MLH-ILS, which is optimized in L2  measure, 

are compared with MLH-Web, which is optimized in L' measure. The experimental results 

are reputed in the Table 5.4. As mentioned earlier that there are few designs are available 

in the web regarding Manhattan distance based optimized. It is observed that the designs 

* MLH- ILS's outperform the designs MLI-I-web regarding Euclidean distance measure 
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significantly. It is remarked that when number of N and/ or k of U-IL) are large, the 

performance of ILS approach is much better. It is worthwhile to menlion here that in the 

research paper Morris and Mitchell (1995), few points were considered with Euclidian 

distance measure, and results of the column Web are taken from the "Archived results for 

3-10 dimensional L2  -maximin Latin hypercube designs -14/3/2006" of the web 

v.spacefillingdesigns.nl. Note that this web portal is updated by Grosso et al. (2009) for 

maximin LHDs, where updated values are obtained by the proposed ILS approach. 

5.3 Experimental Results of Optimal LHDs Regarding Manhattan Measure 

Now we will perform several experiments on optimal LHDs obtained by ILS approach 

regarding Manhattan distance measure. In these experiments we have considered those 

optimal LHDs obtained by ILS approach which are better than available ones obtained by 

other approaches. The experimental results arc reputed in the Tables 5.5 and 5.6. In the 

tables k denotes number of dimension, N denotes number of design points, D1 LI)  denotes 

D1  (minimum inter-site distance) value of the maximin LHD measure in Manhattan 

distance and Ø, denotes optimal ø value of the maximin LHD measured in Euclidean 

distance measure. As there is no more available data regarding D1( LI)  and ø, values except 

displayed in above section, so we cannot able to compare the computational results. But 

these results may be used for further experimental studies regarding Manhattan distance 

measure. Anyway though we could not comment about the D1 
(LI)  and ø displayed in the 

tables, but we may expect that these values might be comparable with other values of 

LHDs which will be optimized in Rectangular distance measure. 

Table 5.5: The D1 ' and ø values of maximin LI-ID obtaining by ILS approach for 
k = 3, 4, 5 and 6 

k=3   k =4 _ k = I k=6 __ 

p [)LI) 
, ç D,LI)  ç  p 

7 051031 - 10 4 0.06428 14 II 0.068843 15  9 0.077635 17 

048795 10 15  005607 14 ._J2_.. 0.066372 17 _10_ 0.070186 17_ 

J.L 044324 - 10 6 0.0509 14 3 0.1)60302 
- 17 Ii 0,0635 19 

20 .041345 - 10 _12_ 004569 14 1 4 1 0.055385 19 _12 0.059131 23 

0.041523 11 _1..... 0.04467 16 j 0.053376 - 17 33 0.05547 21 

22 
- 

0040456 _11 _  19 0.04449 16 16 0.050833 - 19 _1 0.052632 24 

23 0 037063 1 _I - 20 0.04068 18 j7 _ 0.047782 
- 19 15 0.04$ 168 1 22 

24 
- 

035136 11 1 ,., 0.03904 20 - '.045549 19 36 _ft045268 24 

L 0.030571 _l_ 22 0.1)3719 Il 9 0.040723 1 21 17 _2041849  26 

L 0.029722 _11_ 0.03526 I 18 20 0 040291 1 21 _1 _0.041849 I27_ 
29 0.02794 13 _5_ 0.03272 19 . _iL 0,037716 25 _12._ 039841 16 

....Q... 0026603 13  0.03028 19 22 (1.032325 23 20 0 036931 29 

.L 0 025846 13 27 0.02972 20 23 0.033466 26 21 035669 
_ L 

32 0.0254 13 29 0.02863 1 20 _24 0.030151 1 26 22 1 0.034606 31 

33   0.024261 14 29 0.02666 19 _ 
0.1)2923 27 21 1 0.033205 32 

_ 

35 0.023669 14 30 0.02602 1 20 1 261 o.o2548 29 24 1 (1.1)31342 J 3 
(,oriniiin 
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iiN 0, D''' \ 0, fl
1
(11I 

• 0,, [)(lJ) j\f Ø, D ( t.I)  

36 0.023076 15 31 0.02489 21 27 0.027503 29 25 0.030964 34 
39 0.020806 16 32 0,02461 21 28 0.026594 28 26 0.02954 35 
40 0.019838 15 33 0.02393 22 29 0.025624 30 27 0.02815 34 
51 0.015833 17 34 0.02238 22 30 0.024419 33 28 0.024522 36 
52 0.01532 18 35 0.02172 23 31 0.024398 31 29 0.022233 37 
53  0.014543 17 36 0.02121 22 32 0.023505 31 30 0.022559 40 
54 0.014677 19 37 0.02019 20 33 0.02257 31 1 0.02176 37 
56 0.014004 19 38 0.01918 25 34 0.022394 28 0.021186 35 
70  011102 - 21 39 0.01911 22 35 0.021724 30 0.020628 42 
71 010706 21 40 0.01898 25 36 0.020833 30 

M35 
0.020129 44 

75 010239 
- 22 41 0.01738 35 37 0.020633 31 0.019153 46 

77  .010107 22 42 0.01848 25 38 0.019988 34 0.019136 45 
43 0.01765 24 39 0.019548 35 0.018474 45 
44 0.01733 25 40 0.018888 35 38 0.017929 49 
45 0.01.584 26 41 0.018679 34 39 0.017803 47 
46 0.01533 26 42 0.017963 34 40 0.017265 48 
47 0.01494 25 43 0.017683 37 41 0.016857 54 
48 0.0161 27 44 0.017387 39 42 0.016582 56 
49 0.01476 29 45 0.016935 36 43 0.01599 46 
50 0.01457 1 29 46 0.016167 36 44 0.014822 49 
51 0.01519 30 47 0.015766 36 45 0.014799 48 
52 0.01458 29 48 0.014306 38 46 0.01378 50 
53 0.01437 29 49 0.0 14979 37 47 0.014362 50 
54 0.01388 29 50 0.014178 41 48 0.01457 49 
55 0.01384 29 51 0.014258 40 49 _0.014236 55 
56 0.01361 31 53 0.013691 41 50 _0.014066 53 
60 0.01211 32 54 0.012908 42 51 0.013388 52 
61 0.01226 30 55 0.013169 42 52 _0.013563 56 
64 0.01167 35 56 0.012613 44 0,013061 54 
65 0.01127 36 57 0.012019 42 0.013009 57 
68 0.01055 37 58 0.012092 42 0.012788 59 
71 0.01003 36 59 0.01213 4 0.012595 56 
72 0.01009 38 60 0.011536 44 

N60 --O-.O 

0.012413 57 
74 0.00965 37 61 0.011664 43 0.012051 58 
77 0.00929 38 62 0.011011 46 0.011886 62 
78 0.00893 36 63 0.010711 45 11795 55 
79 0.00944 38 64 0.010744 49 0.011451 60 
81 0.00880 37 65 0.010822 45 1 62 0.011391 59 
83 0.00877 38 66 0.010615 49 63 0.011224 61 
86 0.00788 39 68 0.009962 57 64 0.010866 61 
89 0.00808 39 69 0.010026 52 65 0.01081 65 
91 1 0.00775 42 70 0.009914 53 66 0.010441 58 
92 0.00771 41 71 0.00957 51 67 0.010272 66 
93 0.00771 40 72 0.009662 49 68 0.0 10439 66 
94 0.00770 42 73 0.009345 62 69 0.010105 65 
95 0.00737 43 74 0.009019 52 70 0.009885 70 
100 0.00692 43 75 0.009219 56 71 0.00967 64 

76 0.008919 51 72 0.009625 69 
77 0.00897 57 73 0.00937 64 
78 . 0.008537 51 74 0.009135 70 
79 0.00878 55 75 0.009259 74 
81 0.008384 59 76 0.008735 72 

82 0.008597 56 77 0.008791 71 

83 0.00833 53 78 0.008937 68 
84 0.008281 56 79 0.008872 71 
85 1 0.008301 56 80 0.008582 75 
86 0.008095 61 81 .008294 79 
88 0.0077(5 62 82 0.008008 83 
89 1 0.007977 60 83 008213 80 
90 0.007684 62 84 0.008172 77 

91 0.00765 63 85 0.007885 78 
92 0007322 60 86 0.007632 70 
93 0007409 62 87 0.007518 71 
94 0.007223 64 88 0.007438 85 

96 0007207 68 89 0.0(174 13 81 
97 1 0.006933 67 90 0.007407 79 

98 0.006973 64 91 0.007353 77 
99 0.007136 65 92 0.00701 79 

93 0.007 152 84 
94 0.006767 81 
95 0.006602 88 
96 0.006794 81 
97 0.006547 75 
98 0.006562 80 
99 0.006411 83 
100 _I 0066381 83 
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Table 5.6: The D1 and ø values of maximin LI 11) obtaining by ILS approach 
for k= 7,8,9and10 

k=7 - k =8 _ k = 9  k= 10  

0 D(.0 N 0 (L) N O D(I 1  N 
7 0.12126 18 7 0.0845 14 8 0.064018 23 9 

- - 0.053683 29 
8 0.10206 18 8 0.0944 22 9 0.080064 27 0_ - 0.07036 33 
9 0.06757 19 9 0.0857 23 _10_ 0.074125 29 I 

- - 0.06455 32 
10 0.06166 22 10 0.0581 24 - - 

0.049447 31 2 - 0.042993 1 37 
11 0.05822 23 II 0.0529 27 2 - 

0.045883 33 3_ - 0.039968 38 
12 0.05407 26 12 1 0.0497 28 3 - 

0.043234 35 14 0.037716 44 
13 0.04975 26 13 1 0.0462 30 14 0.040825 37 15 0.035944 43 
14 0.04647 29 _14 0.0429 30 15 0.038152 39 16 0.033748 47 
15 0.04335 28 15 0.0401 35 16 0.035852 42 17 0.031814 46 
16 0.04252 30 16 0.0379 39 17 0.033768 43 18 0030179 52 
17 0.04022 1 30 _17_ 0.0358 1 38 18 1 0.03 1863 47 1 19 0.029607 57 
18 0.03843 34 18 0.0346 1 38 19 0.030248 49 20 0.027096 59 
19 0.03625 31 _19_ 1 0.0326 40 20 0.029828 48 21 0.026189 1 59 
20 0.03483 35 20 0.0328 39 21 0.028502 1 51 22 0.025616 59 
21 0.03369 34 1 21 0.0310 42 22 0.027514 53 23 0.024671 63 
22 0.03186 38 22 0.0299 44 23 0.026803 54 24 0.024105 61 
23 0.03020 36 23 0.0285 49 24 0.025854 56 25 0.023383 64 
24 0.02909 1 38 24 0.0277 49 25 0.024822 60 1 26 0.022911 68 
25 0.02794 40 25 0.0262 5)) 26 0.023662 58 27 0.021552 69 
26 0.02706 42 26 0.0253 52 27 0.023076 59 28 0.021124 70 
27 0.02616 43 27 0.0242 51 28 1 0.022086 61 29 0.020563 69 
28 0.02475 45 28 0.0235 54 29 1 0.021219 64 30 0.019699 72 
_. 0.02418 46 29 0.0229 58 30 1 0.020952 67 31 0.019245 81 

30 0.02401 48 30 0.0221 57 32 0.019869 67 32 0.01844 78 
31 0.02218 40 31 0.0213 58 33 0.01916 70 33 0.017739 76 
32 0.02191 51 32 0.0209 58 34 0.018634 69 ...4...  0.017541 75 
33 0.02153 53 33 0.0201 61 35 0.017969 72 35 0.01685 81 
34 0.02059 55 34 0.0195 56 36 0.017555 77 36 0.016602 88 
35 0.02031 54 35 0.0187 57 37 0.016966 77 37 0.016195 87 
36 0.01886 48 36 0.0188 64 38 0.016611 81 38 0.0158 94 
37 0.01808 1 59 37 0.0182 63 39 0.016254 78 39 0.015719 98 
38 0.01637 52 38 0.0177 65 40 0.015875 75 40 0.015361 94 
39 0.01662 56 39 0.0170 68 41 0.015597 80 41 0.014781 90 
40 0.01574 55 40 0.0168 75 1 42 1 0.014952 88 42 0.014183 lOt 
41 0.01551 57 41 1 0.0163 75 1 43 1 0.014987 91 43 0.013928 1 97 
42 0.01498 59 42 1 0.0161 76 44 10.014608  82 1 44 0.0)3626 101 
43 0.01464 66 43 1 0.0153 73 451 0.01439 90 1 45 0.013447 105 
44 0.01428 1 59 44 1 0.0148 73 46 0.013861 94 1 46 0,013058 99 
45 0.01419 62 45 0.0132 69 47 On 3727 94 47 0.012876 108 
46 0.01395 62 46 0.0129 72 48 0.013314 ' 93 48 0.012634 110 
47 0.01358 67 47 0.0131 84 . 49 0.012929 91 49 0.012359 114 
48 0.01331 69 48 0.0123 1 77 50 0.012578 96 1 50 0.012271 106 
49 0.0)3)6 70 49 0.0122 84 51 0012339 93 1 SI 0.012019 112 
50 0.01286 69 50 0.0118 80 52 0.011894 107 1 52 0.011703 1 121 
51 0.01257 67 51 0.0116 80 53 0.010515 108 1 53 0.011464 1 122 
52 0.01228 75 52 0.0114 84 54 0.011299 106 54 0.011334 127 
53 0.01214 81 53 0.0113 85 55 0.011392 95 55 0.011022 130 

. 54 ... 0.01193 80 54 0.0110 88 56 010885 _10_ 56 0.010744 123 
55 0.01163 82 55 0.0109 86 57 0.010233 111 57 0.010747 130 
56 0.01146 88 56 0.0106 80 58 1 0.01015 116 58 0.010344 131 
57 0.01114 89 57 0.0105 89 59 1 0.009988 110 59 0.010219 132 
58 0.01054 81 58 0.0103 92 60 1 0.009572 106 1 60 0.01019 1 124 
59 0.01067 64 59 0.0102 j. 99 61 0.009546 110 61 0.009884 1 131 
60 0.01028 82 60 0.0100 1_102 62 0.009083 122 62 9.009609 142 
61 0.01023 68 1 61 0.0098 1_.27 _ 63 0.009193 113 63 0.009476 1 137 
62 0.01034 73 62 0.0096 

0.0094 
0.0093 

L_20 64 0.008898 124 64 0.009186 138 
63 0.01001 74 63 107 65 0.00865 127 65 0.008483 132 
64 0.01001 73 64 104 66 0.008565 112 66 0.00887 1  144 
65 0.00981 77 65 0.0091 106 67 0.008428 120 67 0.008658 147 
66 0.00966 82 66 0.0090 112 68 0.008355 116 68 0.008615 152 
67 0.00958 74 67 0.009 105 69 0.008166 115 69 0.008463 150 
68 0.00951 77 68 0.0088 106 70 0.008086 125 70 0.008233 150 
69 1 0.00934 1 76 1 69 0.0086 1 109 71 1 0.007978 123 7) 0.007847 152 
70 t 0.00907 1 87 1 70 0,0085 1 72 1 0.007898 138 72 0.0076).) 1 152 

(intl iii 
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IV D v ø N 0 D1 °  
71 0.00919 1 89 71 0.0084 121 73 0.007772 129 73 0.007951 1 159 
72 0.00895 82 72 0.0083 129 74 0.007714 130 ...24.. 0.007341 1 160 
73 0.00895 85 73 0.0082 124 75 0.007559 142 75 0.00718 145 
74 0.00882 84 74 0.0078 116 76 0.007457 134 76 0.007081 156 
75 0.00855 85 75 00079 110 77 0.007389 140 77 0.007038 156 
76 0.00864 94 76 0.0077 116 78 0.007322 141 78 0.00693 163 

••jj_.  0.00843 88 77 QQIL •0 j.  0.007 153 ...fli... _79 0.0069 156 
78 0.00837 94 78 0 

- 

II - 
80 0.007117 151 80 0.006748 168 

79 0.00821 87 7.9 0.0074 117 81 0.007051 149 81 0.006693 160 
80 0.00795 91 80 0.0073 127 82 0.006954 156 82 0.006638 155 
81 0.00813 100 81 0.0070 115 83 1 0.006912 .50 83 0.006505 171 
82 0,00785 97 82 0.0070 126 1 84 0.006745 158 1 84 0.006396 171 
83 0.00798 103 83 0.0072 116 85 0.006671 _1..4. ........ 

0.006379 174 
84 0.00786 89 84 0.0070 123 86 0.006579 154 86 0.006256 176 
85 0.00774 90 85 0.0071 124 87 0.006484 165 87 0.006182 176 

0.00771 102 86 0.0070 125 88 0.00633 167 88 0.006138 174 
87 0.00763 96 87 0.0070 130 89 0006388 .J..... •..j8_..  0.006065 182 
88 0.00746 104 88 0.0069 132 90 0006301 ..J.73. ..90..... 0.006024 163 
89 0.00740 102 89 0.0068 121 91 0.006223 168 ...2.L. 0.00595 189 
90 0.00726 103 90 0.0068 132 92 0.006063 175 1 92 0.005876 181 
91 0.00732 103 91 0.0067 128 93 0.005961 169 93 0.005823 192 
92 0.00708 110 92 0.0066 _1_. 94 0.006024 167 94 0.005771 195 
93 0.00716 109 93 0.0065 28 

- 
95 0.0059 167 95 0.005708 193 

94 0.00692 101 94 1 0.0065 23 - 
96 0.005852 161 96 0.005648 195 

95 0.00672 105 95 0.0064 31 
- 

97 0.005838 1 181 jj 0.005594 194 
96 0.00679 107 96 0.0064 30 

- 
98 0.005726 1 166 98 0.005505 212 

97 0.00676 1 99 97 0.0064 22 
- 

99 0.005672 181 99 0.005493 204,_,., 
98 0.00671 113 98 0.0063 128 100 0.005594 182 J.QQ.. 0.005436 205 
99 0.00662 105 99 0.0062 135  

100 0.00654 1 99 100 0.0061 130  

5.4 Experimental Study for Impact of Trials 

Now we have perfonued further experiments to study the effect of trials in the ILS 

algorithm for finding maximin LHDs. in the same time, we would like to find some new 

characteristics of the maximin LHDs obtained by ILS approach. At first we would like to 

observe about the effect of trials on D1 2  values of maxirnin LHD. For this experiments 

we have considered dimension k = 3 to 9. The experimental results are displayed in Figures 

5.1(a) - 5.1(g). The N values for each experiment are shown in the right side of the figures. 

It is noted that the abscissa of each figure indicates number of trials on the other hand 

ordinate indicates D1 2  values. Now it is observed in the Figure 5.1(a), in which we have 

considered dimension of LHD is k = 3, for N = 5 to 25, that the D1 '2  values are almost 

identical for all trials. Moreover for N = 30 to 50 though the D1 21  values are not almost 

identical but not signiticantly different. We also observed that the increase of trials do not 

increase the D1 "21  values monotonically. It is noted that for N= 50 few trial corresponds 

good D 21  values rather than large trial value namely trial = 40. It means a good initial 

solution has significant effect on good optimal solution for ILS heuristic approach. 
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rigure .t(a): Impact of trials in ILS approach regarding D1 ' values for k= 3 

Now in the Figure 5.1(b) we have considered dimension of LHD is k =4, for N = 5 to 15, 

in the Figure 5.1(c) we have considered dimension of LHD is k= 5, for N= 5 to 25, in the 

Figure 5.1(d) we have considered dimension of LHD is k = 6, for N = 5 to 15, in the Figure 

5.1(e) we have considered dimension of LHD is k= 7, for N= 5 to 25, in the Figure 5.1(0 

we have considered dimension of LHD is k = 8, for N = 5 to 15. It is observed that the 

D1" values are almost identical for all trials. 

)O 

01  

1 6 11 16 21 26 31 36 41 46 

Figure 5.1(b): Impact of trials in ILS approach regarding D1 2  values for k = 4 
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Figure 5.1(c): Impact of trials in ILS approach regarding D1 values for k--5 

. X  K X X 

< x x x x x X X X X . X 

A A A A A .f 

•I • • . B B B U • U U 
50 -*-'N=25 

. . . . . . . . . . 

Figure 5.1(d): Impact of trials in ILS approach regarding D1 values for k= 6 

600 - 

500 1 

400 - 

300  

200  - 

100 

0 
1 

N=5 

x X X X X X X X X --.N=10 

N=15 

- 

. U 
, , , 

• - 

6 11 16 21 26 31 36 41 46 

A 

300 

Figure 5.1(e): Impact of trials in ILS approach regarding Di('M  values for k 7
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Figure 5.1(f): Impact of trials in ILS approach regarding D1 values for k = 8 
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Figure 5.1(g): Impact of trials in ILS approach regarding DI 2  values for k = 9 

Similarly in the Figure 5.1(g) we have considered dimension of LHD is k= 9, for N= 5 to 

20. Here we also observed that the impact of trial regarding the D1 ' values is not 

significant. 

Now we would like to observe about the effect of trials on corresponding D1  values. For 

this experiments we have considered dimension k = 3 to 9. The N values for each 

experiment are shown in the right side of the figures. The experimental results are 

displayed in figures 5.2(a) - 5.2(g). It is noted that the abscissa of each figurc indicates 

number of trials on the other hand ordinatc indicates D' values. Now it is observed in 

all the Figure 5.2(a) - 5.2(g) except few N values, the impact of trial on LHD regarding 

D1 M values are not significant. 
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Figure 5.2(a): Impact of trials in ILS approach regarding D' values for k = 3 
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Figure 5.2 (b): Impact of trials in 11_S approach regarding D1(IM  values for k =4 
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Figure 5.2 (d): Impact of trials in ILS approach regarding D1 ' values for k = 6 
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Figure 5.2 (f): Impact of trials in ILS approach regarding D1L  values for k 8 
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Figure 5.2 (g): Impact of trials in ILS approach regarding D1 values fork = 9 

Table 5.7 (a): Impact of trials in ILS approach regarding D 11  and DMM  values for k = 3 

k=3 
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Now we have performed further experiments to find out some new characteristics of those 

maximin LHDs. The experimental results are given in the Tables 5.3(a) - 5.3(h). In the 

tables DM'' and DM2  denote DM value (maximum inter-site pair-wise distance value of 

LHD) of the maximin LHD regarding Manhattan and Euclidean distance measure 

respectively. It is remarked that the DMD  and DM'2  values, shown in the tables are new 

characteristics of the maximin LHDs which are not available in the literature. So we could 

not compare the results. It is observed in the tables that the impact of trials is not 

significance regarding the DM1  and D 1 '2  values too. But there is one important 

observation is that when D1"2  value is unchanged then corresponding DM"2 , 

DM"°  and DM2>  values are also almost unchanged regarding number of trials. 

Table 5.7 (b): Impact of trials in ILS approach regarding D 1 and DM°  values for k = 3 

N=30 N=35 N=40 W=45 N=50 
rial T 1

s  M (L2) (LI) (L2 ) (LI) 2) r M
(LI) (L 

L) M 
(L2) (Li) (L2) (Li) DM 

1 1341 63 1785 71 2561 87 3140 94 4371 113 
5 1341 63 2025 77 2718 90 3158 96 4371 113 
10 1358 61 _1 75 2718 90 3158 96 4083 108 
15 1358 61 1883 75 2718 90 3181 97 4083 108  
20 1358 61 _1 75 2718 90 3181 97 4083 108  
25 1358 61 _13. 75 2718 90 3181 97 4083  108 
30 1358 61 _1 75 2718 90 3181 97 4083 10_ 
35 1358 61 1770 72 2718 90 3181 97 4083 _1 
40 1358 61 1770 72 2718 90 3181 97 4580 _1.14....  
45 1358 61 1770 72 2406 84 3181 97 4371 _113 
50 1358 61 1770 72 2406 84 3181 97 4371 1 13  

Table 5.7 (c): Impact of trials in ILS approach regarding DM 12  and DM values fork = 4 

N=5 =10 N=15 
T riats (L2)  D1  

(LI)  (LI) (L2) (LI)  Dm  
25 9 M13 21 305 33 

5 25 9  21 290 32 
10 25 9 21 290 32 
15 25 9 138 21 290 32 
20 25 9 138 21 290 32 
25 25 9 138 21 290 32 
30 25 9 138 21 290 32 
35 25 9 138 22 290 32 
40 25 9 138 22 290 32 
45 25 9 138 22 290 32 
50 25 9 38 22 290 32 
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Table 5.7 (d): Impact of trials in ILS approach regarding DMP and D 1 " values for k= 5 

N=5 N=10 N=15 N=20 N=25 
T riaLs (L2) 

M  

(LI) (L2) (LI) 
1 

(L2) Dm  (LI) (LI) (L2) 
M 

(LI) 
LJM 

1  26 1Q 73 27 376 42 54 11 73 
5 26 10 65 25 333 38 

E61 

53 1 65 73 
10 26 10 65 25 333 38 53 1 65 73 
15 26 10 165 25 333 38  53 1165 73 
20 26 10 165 25 333 38 615 53 1148 67 
25 26 10 165 25 333 38 615 1 53 1119 69 
30 26 10 1_ 25 333 38 68 54 1119 69 
35 26 10 165 25 336 38 754 60 1119 69 
40 26 10 165 25 336 38 754 60 1119 69 
45 26 10 165 25 336 38 754 60 1119 69 
50 26 10 165 25 1 336 1 38 754 60 1119 69 

Table 5.7 (e): Impact of trials in ILS approach regarding DM 21  and DMM  values fork = 6 

N=5 N=10 N=15 
TrIas (L2) (LI) 

______ 

(L2) 
M(
U)  (L2) (LI) 

 _______ 

1 36 14 217 31 420 48 
5 36 14 214 34 420 48 
10 36 14 215 34 418 45 
15 36 14 206 32 406 48 
20 36 14 206 32 422 48 
25 36 _14 206 32 422 48 
30 36 14 206 32 422 48 
35 36 14 206 32 422 48 
40 36 14 206 32 422 48 
45 36 14 214 30 413 48 
50 36 14 214 30 413 48 

Table 5.7 (1): Impact of trials in ILS approach regarding DM21  and D 1  values for k = 7 

N=5 N=10 N=15 N=20 N=25 
Trials DM DM 2  DM 2  D '  D12 •:F15•1;(L1-)--  DM 21  DM U 

1 39 _15_ 253 39 5 56 845 72 1305 90 
5 39 15 253 39 7529  55 840 70 1304 90 
10 39 5 262 39 4 56 811 73 1304 90 
15 39 5 255 39 4 56 .811 73 1304 90 
20 39 5 

- 
255 39 534 56 811 73 1304 90 

25 39 5 
- 

255 39 534 56 811  
- 

73 1304 90 
30 39 5 

- 
255 39 535 55 811  

- 
73 1304 90 

35 39 5 
- 

255 39 546 58 811 
- 

 73 1304 90 
40 39 15 255 39 546 58 821 

- 
 71 1304 90 

45 39 15 255  1 39 546 58 821  71  1304 90 
50H  i 39 15 255 39 54 66 58 82 

- 
7 304 90 
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Table 5.7 (g): Impact of trials in ILS approach regarding DM2  and values fork = 8 

N=5 N=10 N=15 
Trials DM'2  D(LL ) DM 2  DM(U)  

________ DK411  

1 40 16 295 45. 616 66 
5 40 16 314 48 616 66 

10 40 16 314 48 616 66 
15 40 16 314 48 616 66 
20 40 16 314 48 615 63 
25 40 16 314 48 615 63 
30 40 16 314 48 615 63 

35 40 16 314 48 612 64 
40 40 '16 314 j 48 1 6.2 1 64 
45 40 16 314 48 612 64 
50 40 16 314 48 612 64 

Table 5.7 (h): Impact of trials in ILS approach regarding DM 2  and DM values fork = 9 

N=5 N=10 N=15 N=20 
T nags 

(L2) r (LI) 
 LJM 

(L2) (LI) (L2) (Li) (L2) 
 A___ 

(LI) 
M 

1 46 18 179 36 692 72 114_ 90 
_5 46 18 179 36 692 ' 72 114_ 90 

10 46 18 177 37 692 72 1138 93 
15 46 18 177 37 692 72 1138 93 
20 46 _18_ 77 

- 
37 692 72 1138 93 

25 46 18 177 37 692 72 1138 93 
30 46 8 

- 
74 

- 
38 692 72 1138 94 

35 46 18 174 38 692 72 1138 94 
40 46 _1_  174 38 692 72 1138 94 
45 46 18 174 38 692 72 1138 94 
50 46 18 _174 38 692 1 72 1 1138_L 94 

5.5 Some New Best Optimal LHDs Regarding ILS Approach 

In the experimental study we have obtained some best maximin LHDs compare to 

available one in the literature namely web portal http://www.spacefillingdesigns.nl. The 

experimental results are displayed in the Table 5.8. In the table 5.8 Pre_D1 2  denotes 

maximin LHDs given in (Grosso et at. 2009) measured in Euclidean distance measure and 

New D 1 2  denotes the maximin LHDs obtained by our experiments measured in 

Euclidean distance measure too. It is noted that the initial solution of Grosso et al. (2009) 

and that of our experiments for the ILS algorithm are might be different. From this 

observation it may again conclude that the initial solution may effect on finding the optimal 

solution. 
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Table 5.8: Some improved LHDs values compared to previous ones by ILS approach 

k N PreD1  NewD1 , J1  
3 30 105 1199,21 
3 40 152 1161,11 
5 15 131 1133,11 
5 1 25 286 1291,11 
7 1 20 360 1368,21 

Improved maximin LHD (DI= 161, N40, k=3) 

S 
•5  

S 
31 

S 

S • 
3,: 

• • 

.5 

: , •• • 

•. • 
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S 
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IISN • 

8 

Figure 5.3: Improved maximin LHD for (N, k) = (40, 3) where D1 2 =16l 

Improved maximin LHD (Dl= 109, N30, k= 3) 

Figure 5.4 : Improved maximin LHD for (N, k) = (30, 3) where D1 2  = 109 
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Now we have displayed graphically two three-dimensiona' improved maximin LHDs in 

Figure 5.3 and 5.4 for (N, k) = (40, 3) and (30, 3) respectively. Since for more than three 

factors it is impossible to display the LHD graphically, so we have displayed other 

improved maximin LHDs in tabular form. Table 5.9, 5.10 and 5.11 display remaining 

improved maximin LHDs namely (N, k) = (16, 5), (25, 5) and (20,7). 

Table 5.9: Improved (Best) maximin LHD for (N, k) = (16, 5) obtained by ILS approach 

Points Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 
XO  0 16 9 20 15 

1 8 5 4 9 

X2 2 5 22 9 7 

X3 3 20 15 8. 2 

x4  4 17 17 3 19 

X5 5 0 8 19 10 

X6 6 7 4 11 24 

X7 7 21 24 17 13 

X8 8 23 2 7 12 

X9 9 6 20 18 20 

10 9 19 24 3 

11 1 16 2 18 

12 11 3 15 0 

X13 13 24 10 22 6 

X14 14 22 12 16 23 

15 10 13 0 4 
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Table 5. 10: Improved (Best) maximin LHD for (N, k) = (25, 5) obtained by ILS approach 

It 

N Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 

XO  0 16 9 20 15 

X1  1 8 5 4 9 

X2 2 5 22 9 . 7 

X3 3 20 15 8 2 

4 17 17 3 19 

5 0 8 19 10 

X6 6 7 4 . 11 24 

X7 7 21 24 17 13 

X8 8 23 2 7 12 

X9 9 .6 20 18 20 

xJO 10 9 19 24 3 

11 1 16 2 18 

X/2 12 11 3 15 0 

X13 13 24 10 22 6 

X14 14 22 12 16 23 

X15 15 10 13 0 4 

X15 16 12 1 21 16 

X/7 17 3 0 5 11 

X18 18 15 7 . 1 21 

X19 19 18 21 12 1 

X20 20 13 23 6 17 

X2/ 21 2 14 14 5 

X22 22 14 18 23 14 

X23 23 4 11 13 22 

X24 24 19 6 10 8 



4 

4 

Table 5.11: Improved (Best) maximin LHD for (N, k) = (201  7) obtained by ILS approach 

N Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Factor 7 

XO  0 18 8 8 2 12 6 

1 7 12 12 14 4 0 

X2 2 13 2 16 12 3 15 

X3 .3 4 14 4 6 6 16 

X4 4 2 4 18 4 14 7 

X5 5 16 6 0 18 8 8 

6 10 16 14 17 16 14 

X7 7 5 9 2 9 19 1 

X8 8 11 0 6 8 18 17 

X9 9 19 18 11 10 0 10 

xjO 10 0 1 9 19 9 9 

Xjj 11 8 19 13 1 11 2 

X12 12 14 10 17 0 10 18 

X/3 13 9 3 5 3 2 5 

X14 14 3 13 19 11 1 11 

X15 15 17 15 1 5 15 12 

X16 16 15 5 15 13 13 3 

X/7 17 6 17 3 16 7 4 

X18 18 12 7 7 15 5 19 

X19 19 1 11 10 7 17 13 
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