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Abstract

Design of Experiment (DoE) is an important issue for developing mathematical model of
any physical problem especially when there exist large numbers of factors. Optimal Latin
Hypercube Design (LHD) {s one of the well-known and used tools among the experimental
designs. For obtaining optimal LHD, Iterated Local Search (ILS) is one of the best way
among the heuristic approaches. Grosso et al. (2009) showed that ILS approach has the
ability to obtain a large number of maximin (Optimizations by maximizing minimum pair-
wise distance) LHD where distances are measured in terms of Euclidian distance measure.
Several authors showed that rather than Euclidean distance measure other measures may
suitable for good DoE. Manhattan distance measure is one-of them [Morris and Mitchell
(1995)]. In this research work, the main objective is to study the optimality of the maximin
LHD obtained by ILS approach regarding Manhattan distance measure. For this purpose,
ILS approacﬁ is implemented in windows environment (rather than Sun cluster, as Gross et
al. (2009) done). Extensive experiments are performed to obtain maximin LHD measured
in Euclidian distance measure. Then further experiments are reformed on those LHDs to
find the minimum pair-wise distance of each LHD measured in Manhattan distance. Those
values are compared with available one in the literature. It is noted that few values
(maximin LHD measured in Manhattan distance measure) are available in the literature. It
seems that the minimum pair-wise distance measured in Manhattan distance measure of the
maximin LHDs obtained by ILS approach, optimized in Euclidian distance measure are
comparable with those maximin LHDs obtained through other approaches but optimized in
the Manhattan distance measure. Moreover some further experiments are performed to find
out some new characteristics of those LHDs which may be used for further study. Some

improved maximin LHDs are also obtained in this experimental arena and are presented in

the thesis.
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CHAPTER1

Introduction

1.1 Background

In the design of complex systems, compufer experiments are the only practical approach to
obtain a solution. Typically, a simulation model of system performance is constructed
based on knowledge of how the system operates. Performance measures are specified to be
incorporated into optimization criteria and constraints, and the design parameters which
affect performance are identified. The design solution method depends on the
computational demands of the simulation model. In the simplest case, the simulation model
may be used directly to calculate performance measures and optimize the system. If a
performance measure is not straightforward to calculate, such as one that involves an
integral, then sampling via computer experiments may be employed to estimate the
measure. If the simulation model is computationally expensive, then the optimization may
instead rely on a metamodel, i.e., a mathematical model surrogate of system performance,
to approximate the relationship between system performance and the design parameters
[Chen et al. (2003)]. In computer experiments, instead of physically doing an experiment
on the product, mathematical models describing the performance of the product are
developed using laws of engineering/physics and solved on computers through numerical
methods. As simulation programs are usually deterministic so the output of a computer
experiment is not subject to random variations, which makes the design of computer
experiments different from that of physical experiments [(Fang et al. (2006); Sacks et al.
(1989)]. Many simulation models involved several hundred factors or even more. It is
desirable to avoid replicates when projecting the design on to a subset of factors. This is
because a few, out of the numerous factors in the system, usually dominate the
performance of the product. Thus a good model can be fitted using only these few
important factors. Therefore, when projecting the design on to these factors, replication is

not required.



Secondly, the design should be non-collapsing. When one of the design parameters has
(almost) no influence on the function value, two design points that differ only in this
parameter will collapse, i.c., they can be considered as the same point that is evaluated
twice. For deterministic functions this is not a desirable situation. Therefore, two design
points should not share any coordinate value when it is not known a priori which
parameters are important. There is another important property for the design of
experiments — the multicollinearity property. That is the factors /coordinates should be
uncorrelated or they are mutually (approximately) orthogonal. The multicollinearity
property is also important, because if two factors are correlated then it will not possible to

distinguish between the effects of the two factors based on this experiment.

For the design of computer experiments Latin Hypercube Design (LHD), first introduced
by McKay and his coauthors in 1979, fulfill the non-collapsing property. LHDs arc
important in the design of computer-simulated experiments [Fang et al. (2006)]. Here LHD
is defined a bit different than McKay et al. (1979) but similar to Johnson et al. (1990),
Husslage et al. (2006), Morris and Mitchell (1995), Grosso et al. (2008). It is assumed that
there are N design points have to be placed and each point has £ distinct parameters. The
points are placed such a way that they are ﬁniformly spread when projected along each
single parameter axis. It is assumed that each parameter range is normalized to the interval
[0, N-1]. Then, a LHD is made up by N points, each of which has k integer coordinates
with values in 0,1, . .., N-1 and such that there does not exist two points with one commlon
coordinate value. This allows a non-collapsing design because points are evenly spreaded
when projected along a single parameter axis. Note that the number of possible LHDs are
huge: there are (N!Y* possible LHDs (where N is number of design point and & is number

of factors). A configuration

with all x, ={0,1,---N-1} is a LHD if each column has no duplicate entries. This one-
dimensional projective property ensures that there is little redundancy of design points

when some of the factors have a relatively negligible effect (sparsity principle).



Unfortunately, randomly generated LHDs almost always show poor space-filling properties
or / and the factors are highly correlated. On the other hand, maximin distance objective
based designs proposed by Johnson et al. (1990), have very good space-filling properties
but often no good projection properties under the Euclidean (LY or the
Rectangular/Manhattan (L") distance. To overcome this shortcoming, Morris and Mitchell
(1995) suggested for searching maximin LHDs which has both the impértant properties
when looking for “optimal” designs. The definition of optimal LHDs through the maximin
criterion has been proposed in Johnson et al. (1990): given a point-to-point distance metric

d(x,,x;).i,jel (Iis the index set), then the maximin LHD problem is to find a LHD such

that the minimum point-to-point distance occurring in such cl:onﬁguration is maximized (as
large as possible). In the literature the optimal criterion for maximin LHDs are defined in
several ways [Grosso et al. (2009)] but the main objective is identical i.e. searching the -
LHD with maximizing the minimum pair-wise distance. Note that, there exist several

distance measures in literature.

As mention earlier, for the presence of combinatorial nature, the number of possible LHDs
are very high - (N!)*. For example, to optimize the location of 20 samples in two
dimensions, the algorithm has to select the best design from more than 10%° possible
designs. If the number of variables are increased to 3, the number of possible designs are
more than 10°°. Consequently, when number of factors and/ or number of design points are
large then it requires hundreds of hours by the brute-force approach to find out the optimal
design. So researchers choose heuristic approaches to find out optimal designs. Here,
Iterated Local Search (ILS) heuristic approach will be considered to find the optimal
(maximin) LHDs [Grosso et al. (2009)]. For the optimal criterion the following maximin
optimal will be considered which is similar to Johnson et al. (1990) but a quite different

regarding computational effort:

q»;,{xpii[ﬁ]” (1.1)

where d, =d(x,,x,) be the distance between points x, and \ and p is a positive integer

parameter and which can be computed without the need of detecting and ordering all D;



(pair-wise inter side distance) values which is required in Johnson et al. (1990). This

optimal criterion is denoted as Opt(p). Under this criterion, LHD Y is better than X if
DL(V)<DL(X) (1.2)

In Johnson et al. (1990) the definition of maximin optimal criterion is as follows:

Ll g0 |-
.cbx,m=2[ﬁ} , (1.3)

where D, (X) < D,(X),=-- , < Dp(X) (pair-wise inter side distances), R is the number of
different distances in LHD X. Whereas Grosso et al. (2008), Grosso et al. (2009)
considered another maximin optimal criterion denoted as Opt (D1), which isalso
considered in Johnson et al. (1990), is given below.
maxD(X) such that
D, =D,(X)=mind(x,,x;) i#j;XeLHD (1.4)
with min  J =|, j)|:d(x,,x,)=D,(X)

Under this criteria, LHD Y is better than X if

D,(Y)> D, (X) or
D,(Y)>D,(X) and J,(¥) <.J,(X) : (15]
and so on.

An apparent drawback of the Opt(¢) criterion, for maximin values (maximum D, value), is
that LHDs with smaller (better ) ¢, may héwe a worse (smaller) D, value, i.e. for X and Y,
though @p(X) < ¢p(Y ) but D|(X) < D(Y). This phenomenon has been frequently observed
in the computational experiments [Grosso et al. (2009)]. Nevertheless, a profitable choice
is to work in order to minimize the @, function, but at the same time, keep track of the best
(Dy, Jy) values observed during such minimization. This way the search in the solution
space is guided by a kind of heuristic function. Such a mixed approach might appear
strange but, as it will be demonstrated experimentally, it can be extremely effective. Such

objective will be denoted as Opt(¢p, D).




Different methods (e.g. the book of Santner et al. (2003), the article of Ye et al. (2000);
Levy and Steinberg (2010) etc.) can be found in the literature to detect maximin LHDs.
Grosso et al. (2009), successfully implemented Iterated Local Search (ILS) approach for
finding maximin LHDs for £ =3, 4, . .. ,10 and N=3,...... , 100. ILS is a meta-heuristic
designed to embed another, problem-specific, local search as if it were a black box. This
allows ILS to keep a more general structure than other meta-heuristics currently used in
practice. The rationale behind ILS is supported by the proximate optimality principle. This
principle assumes that good solutions are similar. This assumption is reasonable for most

real-world problems.

A lot of improved values (maximin LHDs values) obtained by the ILS approaches
proposed by Grosso et al. (2009) are optimized in Euclidean distance measure. The

improved  values are  available in the  well-known  web  portal

http://www spacefillingdesigns.nl. Jamali et al. 2010, analyzed the multicollinearity of the
maximin LHD obtained by the ILS approach; where it has been shown that the ILS
approach not only able to obtain good LHD in the sense of maximin property but also the
multicollinearity among the factors of the designs are negligible i.e. the average
coefficient of correlations are low. Moreover Mridha (2013) performed several
experiments for analyzing the time complexity of the ILS approach for finding maximin
LHDs (as the number of possible LHDs are very high - (N!)*). Experimentally, he showed
that the time complexity of the ILS algorithm is of polynomial time.with order four (O(N‘*))
when algorithm considered Opt(¢p,D,) criterion and O(Nj) when algorithm considered Opt

(Dy,Jy) criterion.

1.2 Literature Review

1.2.1 Experimental Designs

Since physical experiments are inevitably very expensive and time consuming, computer
experiments are widely used for simulating physical characteristics and for the design and
development of products (for examples, [Fang et al. (2006)]). A computer experiment is
modeled as a realization of a stochastic process, often in the presence of nonlinearity and
high dimensional inputs [Sacks et al. (1989)]. In order to perform efficient data analysis

and prediction and in order to determine the best settings for a number of design



parameters that have an impact on the response variable(s) of interest and which influence
the critical quality characteristics of the product or process, it is often necessary to set a
good design as well as to optimize the product or process design. In computer experiments,
instead of physically doing an experiment on the product, mathematical models describing
the performance of the product are developed using laws of engineering/physics. Then the
mathematical models are solved on computers thr(;ugh numerical methods such as the
finite element method. A computer simulation of the mathematical models is usually time-
consuming and there is a great variety of possible input colmbinations. For these reasons
meta-models, Barthelemy and Haftka (1993), Sobieski and Haftka (1997) model with the
quality characteristics as explicit functions of the design parameters, are constructed. Such
a meta-model, also called a (global) approximation model or surrogate model, is obtained
by simulating a number of design points. Since a meta-model evaluation is much faster
than a simulation run, in practice such a meta-model is used, instead of the simulation
model, to gain insight into the characteristics of the product or process and to optimize it.
Therefore, a careful choice of the design points at which performing simulations in order to

build the meta-model is of primary importance.

As it is recogniéed by several authors, the choice of th;: design points for computer
experiments should at least fulfill two requirements (details can be found in Johnson et al.
(1990) and Morris and Mitchell (1995)). First of all, the de§ign should be space-filling in
some sense. When no details on the functional behavior of the response parameters are
available, it is important to be able to obtain information from the entire design space.
Therefore, design points should be evenly spread over the entire region. Secondly, the
design should be non-collapsing. When one of the design parameters has (almost) no
influence on the function value, two design points that differ only in this parameter will
collapse, i.e., they can be considered as the same point that is evaluated twice. For
deterministic functions this is not a desirable situation. Therefore, two design points should

not share any coordinate value when it is not known a priori which parameters are

important.

The latter requirement is fulfilled by employing Latin Hypercube Designs (LHDs). Such
designs, proposed by McKay and his coauthors (1979), are evenly distributed in each one-

dimensional projection and are thus non-collapsing. Unfortunately, randomly generated



LHDs almost always show poor space-filling properties. On the other hand, maximin
distance designs, proposed by Johnson, Moore and Ylvisaker (1990), have very good
space-filling properties but often no good projection properties under the Euclidean or the
Rectangular distance. To overcome this shortcoming, Morris and Mitchell (1995)
suggested searching for maximin LHDs when looking for “optimal’ designs. Although the
search for maximin LHDs will be one of the problems discussed in this thesis, it will be
important to point out that also other definitions of “optimality” for designs exist in the
literature. These are not discussed in detail throughout the thesis (detail can be found in
Santner et al. (2003)), but, for the sake of completeness, in the following literature review
some of them will be mentioned, together with a short discussion of the methods employed

to return “optimal” (according to the selected definition) designs.

Fang et al. (2000a), Fang et al. (2000b) defined a uniform design as a design that allocates
experimental points uniformly scattered on the domain. Uniform designs do not require
being orthogonal. They considered projection uniformity over all sub dimensions. In Fang

et al. (2000b) they classified uniform designs as space-filling designs.

Lee and .Jung (2000) proposed maximin eigen value sampling, that maximizes minimum
eigen value, for Kriging model where maximin eigen value sampling uses eigen values of
the correlation matrix. The Kriging model is obtained from sampled points generated by
the proposed method. The Kriging model [Kri;ge (1951)] is used to compare the

characteristics of proposed sampling design with those of maximum entropy sampling. -

The maximin design problem has also been studied in location theory. In this area of
research, the problem is usually referred to as the max-min facility dispersion problem
(detail can be found in [Erkut (1990)]); facilities are placed such that the minimal distance
to any other facility is maximal. Again, the resulting solution is certainly space-filling, but

not necessarily non-collapsing.

In statistical environments Latin Hypercube sampling is often used. In such an approach,
points on the grid are sampled without replacement, thereby deriving a random

permutation for each dimension (detail can be found in [McKay et al. (1979)]).



Giunta and his coauthors (2003) gave an overview of pseudo- and quasi-Monte Carlo
sampling, Latin hypercube sampling, orthogonal array sampling, and Hammersley

sequence sampling.

McKay et al. (1979), Stein (1987) and Owen (1994)] had shown that LHDs perform much
better than completely randomized designs. More recently, algorithms have been used to
construct systematic LHDs under various optimality criteria. A LHD always has non-
collapsing properties but not necessarily good space-filling property. In particular, as
already remarked, randomly generated LHDs often show poor space-filling properties.
Therefore, the search for “optimal” LHDs has attracted attention (detail can be found in
Morris and Mitchell (1995), Park (1994), Tang (1994), Ye (1998), Ye et al. (2000)).
Different optimality criteria for LHDs have been proposed, including maximum entropy

designs [Shewry and Wynn (1987), Currin et al. (1991)], Integrated Mean Squared Error
- (IMSE) of prediction [Sacks et al. (1989)] and minimax and maximin distance designs .
[Johnson et al. (1990)].

Lin and Steinberg (2006) proposed several methods for extending the uniform sampling to
higher dimensions. The method has also been used to construct LHDs with low correlation
of first-order and second-order terms. It generates orthogonal LHDs that can include many

more factors than those proposed by Ye (1998).

Cioppa (2002), in his dissertation, developed a set of experimental designs by considering
orthogonal Latin hypercube and uniform designs to create designs having near
orthogonality and excellent space-filling properties. Muitiplé measures were used to assess

the quality of candidate designs and to identify the best one.

Morris (1991) and Kleijnen (1997) made it clear that many simulation models involve
several hundred factors or even more. Consequently, factor screening is useful in computer
experiments for reducing the dimension of the factor space before carrying out more

detailed experiments. Butler (2001) proposed optimal and orthogonal LHDs which is

suitable for factor screening. \



Olsson (2003) suggested Latin Hypercube sampling as a tool to improve the efficiency of
different importance sampling methods for structural reliability analysis. Stocki (2005) and
Liefvendahl and Stocki (2006) proposed probabilistic search algorithm, namely Column-
wise Pair-wise (CP) search algorithms and Genetic algorithms to construct optimal LHDs.
For the optimal criterion they considered energy function (the sum of the norms of the
repulsive forces if the samples are considered as electrically charged particles) as proposed
by Audze and Eglais (1977). To improve the reliability, Stocki (2005) considered the
pairwise correlation. Liefvendahl and Stocki (2006) also compared the performance of the

CP and genetic algorithms for optimal LHDs.

By using the Latin Hypercube sampling method, Hwan Yang (2007) performed the
uncertainty and sensitivity analysis for the time-dependent effects in concrete structure.
The results of the Latin Hypercube simulations were used to determine which of the model
parameters are most significant in affecting the uncertainty of the design [Iman and Helton
(1985)]. For each sample, a time-dependent structural analysis was perf;)rmed to produce

response data, which were then analyzed statistically.

Wang (2003) used the Latin Hypercube Design (LHD) instead of the Central Composite
Designs (CCD), for improvement of Adaptive Response Surface Method (ARSM). Note
that ARSM was developed to search for the global design optimum for computation-
intensive design problems. Also note that Response Surface Method (RSM) plans a group
of design alternatives and performs the ‘design analysis and simulation simultaneously on
these design alternatives. Then an approximation model, called a response surface, is

constructed.
1.2.2. Optimal Criteria and Approaches

Some literature reviews will be presented here regarding optimal criteria as well as the
solution approaches regarding experimental design. As the complexity of the problem is, to
the authors’ knowledge, open (but suspected to be NP-complete [Grosso et al. (2008)]. So,
for detecting optimal experimental designs, several heuristics approaches (rather than exact

optimization methods) have been proposed in the literature.



Fang et al. (2006) considered Simulated Annealing approach to detect maximin LHD. Li
and Wu (1997) proposed a class of algorithms based on column pair-wise exchange to
build supersaturated designs. In Ye et al. (2000) an exchange algorithm for finding
approximate maximin LHDs has been proposed with the further restriction to Symmetric
LHDs (SLHDs). A general formulae for maximin LHDs with k= 2 are given by Dam and
his coauthors (2007a) with the 1-norm (L") and infinite norm (L) distances. Morover, for
the Euclidean distance maximin LHDs up to N = 1000 design points are obtained by
(adapted) periodic designs, while, using a branch-and-bound algorithm, exact solutions
have been obtained for N up to 70. Inspired by Dam et al. (2007a), Husslage et al. (2006)
proposed (adapted) periodic designs and simulated annealing to extend the known results
and construct approximate maximin latin hypercube designs for k up to 10 and N up to 100.

All these designs are available in the website http:// www.spacefillingdesigns.nl. In

Husslage et al. (2006),it has been shown that the periodic heuristic tends to work when the
number N of design points gets above some threshold which depepds on the dimension k of
the design (more precisely), such threshold increases with k. Viana and his coauthors
(2010) proposed the translational propagation algorithm, a new method for obtaining
optimal or near optimal Latin hypercube designs (LHDs) without using formal
optimization. For the optimal criterion they also considered Opt(¢) to maximin LHD.
Monte Carlo simulations were used to evaluate the performance of the algorithm for
different design conﬁguration.s where both the dimensionality and the point density were
studied. Grosso and his coauthors (2008) successfully implemented Iterated local search
(ILS) approach for finding maximin LHDs for & = 3, 4, . .10, and N = 3, ..., 100. For the
optimal criterion they considered maximin LHDs with Opt(Dy, J;) and Opt(¢}) optimal
criteria with Euclidian distance measure (Eq. (1.1) to . Eq. (1.4)).

Dam and his coauthors (2007b) proposed some bounds, for the separation distance of
certain classes of maximin LHDs, which are useful for assessing the quality of approximate
maximin LHDs. By using some of the special properties of LHDs, they were able to found
new and tighter bounds for maximin LHDs. Besides these bounds, they presented a method
to obtain a bound for three-dimensional LHDs that is better than Baer’s bound for many
values of N. They also constructed maximin LHDs attaining Baer’s bound for infinitely

many values of N in all dimensions.
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Johnson (1990), Morris and Mitchell (1995) proposed the maximin distance criterion
which maximizes the minimum distance between design points. Morris and Mitchell
(1995) adopted a simulated annealing to find approximate maximin LHDs for up to five
dimensions and up to 12 design points, and a few larger values, with respect to the ¢'- and
£*-distance measure. In Morris and Mitchell’s algorithm, a search begins with a randomly
chosen LHD, and proceeds through examination of a sequence of designs, each generated
as a perturbation of the preceding one. A perturbation D, of a design D is generated by
interchanging two randomly chosen elements within a randomly chosen column in D. The
perturbation D, will replace D if it leads to an improvement. Otherwise, it will replace D
with probability n = exp[—{@(Dy,) — @ (D)} /f], where ¢ is the preset parameter known as
the “temperature “and ¢ is some measure of the quality of the design. Li and Wu (1997)
considered a class of Column-wise Pair-wise (CP) algorithms in the context of the
construction of optimal supersaturated designs. A CP algorithm makes exchanges on the
columns in a design and can be particularly useful for designs that have structure
requirements on the columns. Note that each column in a I;HD is a permutation of {0, 1, . .
., N— 1}. At each step, another permutation of {0, 1, ..., N— 1} is chosen to replace a

column so that the LHD structure is retained.

Husslage et al. (2005) constructed nested maximin designs in two dimensions. They
showed that different types of grids should be considered when constructing nested designs

and discussed how to determine which grid is the best for a specific computer experiment.

Using (adapted) periodic designs and simulated annealing, Husslage et al. (2006) extended
the known results and construct approximate maximin Latin hypercube designs for up to
ten dimensions and for up to 100 design points. All these designs can be downloaded from

http://www.spacefillingdesigns.nl. Inspired by the paper of Morris and Mitchell (1995), in

which authors show that LHDs often have a nice periodic structure, Husslage et al. (2006)
developed adapted periodic designs. By considering periodic and adapted periodic designs,
approximate maximin LHDs for up to seven dimensions and for up to 100 design points
are constructed. They have shown that the periodic heuristic tends to work well even for a
small number N of design points at low values of the dimension &, but as k increases the
periodic heuristic tends to get better than other approaches like simulated annealing only at

large N values.
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In the simulated annealing algorithm, Husslage et al. (2006) considered four different
neighborhoods. In all four neighborhoods the main idea is to change two points of the
current LHD by exchanging one or more coordinate values. In three of the four
neighborhoods, one point is required to be a critical point (a critical point is a point which
is at separation distance, i.c., at a distance equal to the minimal one, from one of the other
points). In the first neighborhood, one point j; is selected randomly from all critical points
and the other point j, randomly from all remaining points. This implies that the second
point can either be a critical or noncritical point. Once the points are selected, the number
of coordinates to change are randomly selected. Due to symmetry, at most [A/2]
coordinates are changed. Subsequently, the coordinates to change are randomly selected.
The values of the two points in these coordinates are then exchanged, which results in a
new LHD. The second neighborhood is very similar to the first. The only difference is that
always one coordinate is selected instead of a random number of coordinates. Note that for
k = 3 the two neighborhoods are the same. In the third neighborhood, also one coordinate is
changed, however, now the coordinate is not randdmly selected. Instead, all coordinates are
tried and the one which results in the neighbor with the largest separation distance is
selected. If more coordinates result in the same separation distance, the one with the lowest
index is selected. The fourth neighborhood is again very similar to the second
neighborhood. The difference is that the first point is randomly selected from all points,
instead of only the critical points. Although simulated annealing algorithms have been used
before to deal with this type of problem, this adapted neighborhood structure, which is

based on critical points, and the use of a different objective function, turned out to work

well.

Jin [Jin et al. (2005)] proposed an enhanced stochastic evolutionary algorithm for finding
maximin LHDs. They also applied their method to other space-filling criteria, namely the

optimal entropy and centered L, discrepancy criteria.

Dam et al. (2007a) derived general formulas for two-dimensional maximin LHDs, when
the distance measure is £ or £', while for the ¢>-distance measure, (approximate) maximin
LHDs up to 1000 design points are obtained by using a branch-and-bound algorithm and

constructing (adapted) periodic designs.
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Stinstra and his coauthors (2003) proposed sequential heuristic algorithms for constrained
maximin designs by considering high number of design sites with small volume of feasible
design space and other constraints. They also used their methods in many practical

situations.

It is remarked that the maximin criterion is not the only one used in the literature. Other
criteria are the maximum entropy [Shewry and Wynn (1987)], the integrated mean squared
error [Crary (2002)], the minimum correlation between components [Owen (1994)] and a
mixed criterion involving both maximin distance and correlation [Joseph and Hung (2008)].
For more details the book [Santner et al. (2003)] will be referred buit for the completeness,
in the following literature review, some articles will be mentioned in which criteria related

to correlation are considered.

Dam van (2005) derived interesting results for two-dimensional minimax LHDs. Bates
Bates and his coauthors (2004) proposed a permutation genetic algorithm to find optimal
Audze-Eglais LHDs. Crary and his coauthors (2000) developed I-OPTTM to generate
LHDs with minimal IMSE.

Iman and Conover (1982a) proposed a design by minimizing a linear correlation criterion
for pairwise factors. This is modified into a polynomial canonical correlation criterion by
Tang (1.998). Tang (1998) proposed a LHD by the extension of the concept of Iman and
Conover (1982a), namely minimizing a polynomial canonical correlation criterion for pair-

wise factors.

Park (1994)] and Sacks (1989) constructed optimal LHDs in which IMSE and entropy
optimization criteria were considered. To construct optimal LHDs, Park presented an
approach based on the exchanges of several pairs of elements in two rows. His algorithm
first selects some active pairs which minimize the objective criterion value by excluding
that pair from the design. Then, for each chosen pair of two points i, and iy, the algorithm

considers all possible exchanges between factors and find the best exchange among them.

Ye (1998) constructed orthogonal LHDs in order to enhance the utility of LHDs for

regression analysis. Ye defined an Orthogonal Latin Hypercube (OLHC) as a Latin
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Hypercube for which every pair of columns has zero correlation. Furthermore, in Ye’s
OLHC construction, the element-wise square of each column has zero correlation with all
other columns, and the element-wise product of every two columns has zero correlation
with all other columns. These properties ensure the independence of estimates of linear
effects of each variable and the estimates of the quadratic effects and bilinear interaction

effects are uncorrelated with the estimates of the linear effects.

Joseph and Hung (2008) proposed a multi-objective optimization approach to find good
LHDs by combining correlation and distance performance measure. They proposed a
modified simulated annealing algorithm with respect to ‘Morris and Mitchell (1995).
Instead of randomly choosing a column and two elements within that column, Morris and
Mitchell (1995) chose them judiciously in order to achieve improvement in their multi-

objective function.

Ye and his coauthors (2000) and Li -and Kenny (2009) proposed an exchange algorithm for
finding approximate optimal LHDs, but they consider symmetric Latin hypercube designs
(SLHDs). The symmetry property is used as a compromise between computing effort and
design optimality. However, one important change had made to accommodate the special
structure of SLHD. For a SLHD two simultaneous pair exchanges were made in each
column to retain the symmetry. Ye and his coauthors (2000) considered maximin as an
6ptimal criterion, whereas Li and Kenny (2009) considered both the maximin and the

entropy optimal criterion.

Fang and his coauthors (2000a) proposed threshold accepting heuristic approaches for
optimal LHDs to produce low discrepancy designs compared to theoretic expectation and

variance. They considered centered L,-discrepancy for optimizing the designs.

Sebastiani and Wynn (2000) considered maximum entropy sampling criterion for the
optimal Bayesian experimental design. The main contribution of this paper is the extension
of the MES-principle for the estimation of the problems. Currin and his coauthors (1991)
also considered an entropy-based design criterion for Bayesian prediction of deterministic
functions. Crombecq and his coauthors (2011) considered space-filling and non-collapsing

sequential design strategies for simulation based modeling.
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Hongquan Xu (1999) introduced the concept of universal optimality from optimum design
theory into computer experiments, and then exhibited some universally optimal designs
with respect to different distance measures. He showed that Latin Hypercube and saturated
orthogonal arrays are universally optimal with respect to Hamming distance [Hamming
(1950)] and that universally optimal designs with respect to Lee distance [Lee (1958)] are

also derived from Latin Hypercubes and saturated orthogonal arrays.

Recently, Jourdan and Franco (2010) proposed a space-filling LHD design, where they
considered a new optimal criterion called Kullback—Leibler criterion. This Kullback—
Leibler criterion is relatively very new proposed by Jourdan and Franco (2009). The new

designs are compared with several traditional optimal Latin hypercube designs.

Leary et al. proposed orthogonal-array-based LHDs for obtaining better space-filing
property. As an optimal criterion, they considered the sum of (square of) reverse inter-site
distances. Ye (1998) constructed orthogonal LHDs in order to enhance the utility of LHDs
for regression analysis. Author defined an Orthogonal Latin Hypercube (OLHC) as a Latin
Hypercube for which every pair of columns has zero correlation. Furthermore, in Ye’s
OLHC construction, the element-wise square of each column has zero correlation with all
other columns, and the element-wise product of every two columns has zero correlation
with all other columns. These properties ensure the independence of estimates of linear
effects of each variable and- the estimates of the quadratic effects and bilinear interaction

effects are uncorrelated with the estimates of the linear effects.

Steinberg and Dennis (2006) constructed LHDs in which all main effects are orthogonal.
Their method can also be used to construct LHDs with low correlation of first-order and
second-order terms. It also generates orthogonal LHDs that can include many more factors
than those proposed by Ye (1998). Butler (2001) proposed optimal and orthogonal LHDs
which are suitable for factor screening. Fang and his coauthors (2000a) proposed threshold
accepting heuristic approaches for optimal LHDs to produce low discrepancy designs
compared to theoretic expectation and variance. They considered centered Lz-discrepancy

for optimizing the designs.
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On the other hand Joseph and Hung (2008) showed that maximization of inter-site
distances criteria and minimizing the pair-wise correlation criteria need not necessarily
agree with each other. In fact, maximization of inter-site distances can result in LHDs
where the variables are highly correlated and vice versa. But it has been already discussed
above that for the present of high correlation, the design has failed to analysis individual

effect of the factors.

1.2.3 Distance Measure

Grosso et. al. (2009) considered only Euclidian distance measure. But in the literature
several authors have considered DoE in rectangular (Manhattan) distance measure or more
than one distance measure. Morris and Mitchell (1995) adopted a simulated annealing to
find approximate ma)_(imin LHDs regarding both Euclidian als well as Rectangular distance.
Chan et al. proposed an efficient algorithm for constructing Optimal Design of computer
experiments but they considered both Euclidean distance as well as Manhattan distance.
Crombecq et al. (2011) considered both Euclidean as well as rectangular distance measure
for space-filling and non-collapsing sequential dcsign‘ strategies for simulation-based
modeling. It is worthwhile to mention here that Rectangular (Manhattan) distance measure
1s also one of the important issues considered in several fields like in location theory. In
this area of research, the problem is usually referred to as the max-min facility dispersion
problem, see Erkut (1990), facilities are placed such that the minimal distance to any other
facility is maximal. Manhattan distance matrix for a rectangular grid arise frequently from
communications and facility locations and are known to be among the hardest discrete
optimization problems. Mittelmann and Pengy (2001) estimated bounds for quadratic
assignment problems associated with hamming and Manhattan distance matrices based on
semi definite programming. Philip et al. (2009) showed that a new precision-weighted
Manhattan distance and the Canberra distance are the most repeatable and they are most in
agreement with the expected pattern rather than unweighted Manhattan or Euclidean
distance measures. To analyze Time series correlation in Network Structure, Miskiewicz
(2010) considered Manhattan Distance (MD). He showed that MD allows investigating a
broader class of correlation and is more robust to the noise influence. Hasnat et al. (2014)

described the comparative study of performance between the existing distance metrics like
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Manhattan, Euclidean, Vector Cosine Angle and Modified Euclidean distance for finding
the similarity of complexion by calculating the distance between the skin colors of two
color facial images. From the above discussion it may be concluded that ILS approach is a
state-of-art method to find out the maximin LHDs regarding Euclidian distance measure.
The maximin LHDs obtained by ILS approach also comparable enough regarding
muliticolinearity property. But how much those LHDs are fine (optimal) regafding
Manhattan (Rectangular) distance measure is still unknown and require extensively
analysis. Moreover, for any design, optimality measured in Euclidian distance may not be
optimal regarding Manhattan distance. This is why several authors search optimal
experimental measured in Manhattan distance measure rather than Euclidean distance
measure. Moreover, for any design, optimality measured in Euclidian distance may not be
optimal regarding Manhattan distance. This is why several authors search optimal

experimental measured in Manhattan distance measure rather than Euclidean distance

measure.
1.3 Goals of the Thesis

After the invention of hi-speed computer the dcsign of computer experiments is likely to
grow as more and more simulation models to carry out research. Many simulation models
involve several hundred factors or even more. It is desirable to avoid replicates when
projecting the design on to a subset of factors. This is because a few, out of the numerous
factors in the system, usually dominate the performance of the product. Thus a good model
can be fitted using only these few important factors. Therefore, when projecting the design
on to these factors, replication is not required. The experimental design should fulfill three
important properties — Non-collapsing, Space-filling, and non-multicollinearity. Latin
Hypercube Design (LHD) has good non-collapsing property. But randomly generated LHD
often has poor space-filling. So researchers seek LHD with good space-filling property.
Many researchers have shown that optimal LHD mainly maximin LHD has good space-
filling including non-collapsing property. But recently some researchers have shown that
maximin LHD are highly correlated among the factors i.e. there exist multicollinearity. It is
mentioned earlier that the multicollinearity property is also important, because if two
factors are correlated then it will not possible to distinguish between the effects of the two

factors based on this experiment. Several approaches existed in literature to find out the
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maximin LHD such as simulated annealing, Tabu search, Iterated Local Search (ILS) etc.
In the paper of Grosso et al. (2008), authors have shown that ILS approach able to find out
a remarkable improved optimal experimental design (maximin LHD) regarding available
one in the literature as multicollinearity can have serious effects on the estimates of the
regression coefficients and on the general applicability of the model in this study, the
multicollinearity among the factors of the design obtained by the ILS approach is

investigated.

It is mentioned earlier that ILS approaches are able to find out very good DoE namely
optimal LHDs regarding maxirmin optimal criterion and thos;e LHDs are also good enough
regarding multicolinearity as those have poor coefficient of muliticolinearity [Apparna
(2012)]. It is also mentioned earlier that Manhattan Measure is another important approach
regarding finding out optimal DoE which are frequently used in practical application.
Morris and Mitchell (1995) and Bates et al. (2004) showed that though one approach may
find obtimal DoEs regarding on some distance measure but those DoEs may be poor
enough regarding other distance measure. In this thesis, our main aim is to study the
optimality of the maximin LHDs obtained by ILS approach on the basis of Manhattan
distance measure. It is noted that those maximin LHDs obtained by ILS approach are
optimal on the basis of Euclidean distance measure. Several experiments are performed to

analyse and to compare our results with available ones in the literature.

Therefore the main objectives of this research are as follows:
(i) Implementation of the ILS approach to find out the optimal LHDs regarding
maximin optimal criteria in Euclidean distance measure.
(i) Analysis of those optimal maximin LHDs regarding Manhattan distance measure.
(iii) Comparison of those Manhattan distance measured LHDs (which are actually
optimal regarding Euclidian distances measure) with available one in the literature.
(iv) Perform several experiments to find out several new characteristics of those optimal

LHDs which might be used for further studies in future.
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1.4 Structure of the Thesis

After the introduction which is incorporated in the chapter I, the remaining thesis is

organized as follow:

Chapter 2 presents the overview of several distance measures. In this chapter, the
definitions of distances, metric and norms are presented. Moreover several distance
measures are discussed briefly in this chapter. Mainly this chapter points out Manhattan
distance measure as well as its application and schematic view of circle in different

distance measures are given in this chapter.

In Chapter 3, at first the main concept of Iterated Local Search (ILS) approach is
discussed briefly. Then several optimal criteria are also discussed briefly in this chapter.

Moreover the maximin LHD is showed pictorially and is discussed briefly. ILS approach

-for optimizing LHD is also elaborately presented here.

In Chapter 4, optimality analysis of the experimental results regarding Euclidean distance
is discussed briefly. In this chapter, several experiments are carried out for analysis the
performance of ILS approach regarding Euclidian distance measure. At first the
performance of the algorithm is compared with available one in the literature regarding
inter-site Euclidian distance measure. From the experimental results it is shown that the
algorithm is state-of-arts regarding maximin LHD in Euclidean distance measure.
Moreover some more experiments have been performed to analyze the multicbllincarity

among the factors of each maximin design obtained by ILS approach.

In Chapter 5, the optimality analysis of maximin LHDs obtained by ILS approach is
discussed elaborately in experimental point of views. Extensive experiments have been
performed in maximin LHDs obtained by ILS approach regarding Manhattan distance
measure and compare the experimental results with available one in the literature.
Moreover some more experiments have been carried out to find out some more interesting

characteristics of those maximin LHDs which might be important for further research.

References are included in the last of the thesis and publications are mentioned before the

index of the thesis as well.



CHAPTER TWO

Overview of Distance Measure

2.1 Introduction

Distance is a numerical description of how far apart objects are. In physics or everyday
discussion, distaﬁce may refer to a physical length, or estimation based on other criteria
(e.g. "two counties over"). In mathematics, a distance function or metric is a generalization
of the concept of physical distance. A metric is a function that behaves according to a
specific set of rules, and is a concrete way of describing what it means for elements of
some space to be "close 'to" or "far away from" each other. In most cases, "distance from A

to B" is interchangeable with "distance between B and A".
2.2 Definition of Distance Function (Metric)

Mathematically, the definition of distance measure is given bellow:
Let X # @ be any given space.
Letx, y, z € X be arbitrary.
A function d : XxX — R having the properties listed below :
(i)d(x,»)=0 (non negative)
(i)d (x, y)=0iffx=y (identical)
(i) d (x, y) =d (y, x) (reflection)
(V)d@x »+d@p z)=>2d(x 2) (triangle inequality)
is called a distance function (in brief distance) or a metric for X. Instead of saying, “Let X
be a non-empty sct with a metric d defined on it, ” we always say, “Let (X, d) be a metric
space.”
Evidently d is a real valued map and d denotes the distance between x and y. A set X,

together with a metric defined on it, is called metric space [Gupta (2000)].
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Example : Let X = R and p (x, y) = Ix — yl for all x, y € X. Then p is a metric on X. This
metric is defined as usual metric on R. Before classifying distance measure, it is

worthwhile to discuss about norm.
2.3 Norm

In linear algebra, functional analysis and related areas of mathematics, a norm is a function
that assigns a strictly positive length or size to each vector in a vector space, other than the
zero vector (which has zero length assigned to it). A semi-norm, on the other hand, is
allowed to assign zero length to some non-zero vectors (in addition to the zero vector). A
simple example is the 2-dimensional Euclidean space R equipped with the Euclidean
norm. Elements in this vector space are usually drawn as arrows in a 2-dimensional
Cartesian coordinate system starting at the origin (0, 0). The Euclidean norm assigns to
each vector is the length of its arrow. Because of this, the Euclidean norm is often known
as the magnitude. A vector space with a norm is called a normed vector space. Similarly, a

vector space with a seminorm is called a seminormed vector space.

2.3.1 Definition of Norm
Given a vector space V over a subfield F of the complex numbers, a norm on V' is a
function p: ¥ — R with the following properties: '
Forall a €F and all u, v €V,
(i) plav) =la| p(v), (positive homogeneity or positive scalability).
(i) p(u+v) < p(u) + p(v) (triangle inequality or subadditivity).

(iii) If p(v) = 0 then v is the zero vector (separates points).

There are mainly four classes norm as follows:

n

lei_y£|

i=1

n 1{2
- 1 » = 2
2-norm distance = (Z lx; =] )
i=1

Il

l-norm distance
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= max(lx; = y1l, Ixz — yal, oo, Ity — 1)

p need not be an integer, but it cannot be less than 1, because otherwise the triangle
inequality does not hold. Note that for p = 1 we get the taxicab (Manhattan) norm, for p =2
we get the Euclidean norm, and as p approaches o the p-norm approaches the infinity norm

Or maximum norm.

In the above brief discussion, it is observed that norm also gives the distance function.

Anyway among several distance measures, here we will briefly discuss some of them.

2.4 Euclidean Distance

In mathematics, the Euclidean distance or Euclidean metric is the "ordinary" distance
between two points that one would measure with a ruler, and is given by the Pythagorean
formula. By using this formula as distance, Euclidean space (or even any inner product
space) becomes a metric space. The associated norm is called the Euclidean norm. Older
literature refers to the metric as Pythagorean metric. |

On an n-dimensional Euclidean space R", the intuitive notion of length of the vector x

=(X/,X2,...........,X) 1s captured by the formula

[ixlf = Ja& #afsr === = = +xG 2.1)
This gives the ordinary distance from the origin to the point x, a consequence of the
Pythagorean theorem. The Euclidean norm is so far the most commonly used norm on R,
but there are other norms on this vector space as will be shown below. However all these
norms are equivalent in the sense that they all define the same topology. On an n-

dimensional complex space C" the most common norm 1is
P p

Izl := 12112 + = === +|2a|? = V2121 + — = — + 2,2, (2.2)
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In both cases we can also express the norm as the square root of the inner product of the

vector and itself:
llx]l == Vx*x : (2.3)
where x is represented as a column vector ([xy, x2, ..., X,])', and x* denotes its conjugate

transpose.

This formula is valid for any inner product space, including Euclidean and complex spaces.
For Euclidean spaces, the inner product is equivalent to the dot product. Hence, in this
specific case the formula can be also written with the following notation:

x|l := Vx.x (2.4)
The Euclidean norm is also called the Euclidean length, L? distance, ¢* distance, I® ndrm,

or £2 norm.

The Euclidean distance between points p and q is the length of the line segment connecting
them (p, q). In Cartesian coordinates, if p = (py, pa2,..., p») and q = (41, g2,-.., gn) are two

points in Euclidean n-space, then the distance from p to g, or from q to p is given by:

d(p.q) = V(q1-P1)? + (@2~ P2)%> + -+ (@n-Pn) 2 = Z(QE - p)? (2.5)
i=1

The position of a point in a Euclidean n-space is a Euclidean vector. So, p and q are
Euclidean vectors, starting from the origin of the space, and their tips indicate two points.

The Euclidean norm, or Euclidean length, or magnitude of a vector measures the length of

the vector:
lpll = Vp+p3+ ———+pPi=p.p (2.6)
where the last equation involves the dot product.
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Figure 2.1: Schematic view of a circle with unit radius in Euclidean distance measure
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The schematic view of a circle with unit radius in Euclidean distance measure is given in

figure 2.1. Euclidean distance is a Minkowski distance which is discussed later.
2.4.1 Squared Euclidean Distance

The standard Euclidean distance can be squared in order to place progressively greater

weight on objects that are farther apart. In this case, the equation becomes

d*(p, @) = (P1- 1) + (P2-42)* + + (P~ 4) * + =+ + (Pn — qn)? (2.7)
Squared Euclidean Distance is not a metric as it does not satisfy the triangle inequality,
however it is frequently used in optimization problems in which distances only have to be

compared. Note that Euclidean distance is also called L, —norm.

2.5 Minkowski Distance

The Minkowski distance is a metric on Euclidean space which can be considered as a

generalization of both the Euclidean distance and the Manhattan distance.

2.5.1 Definition
The Minkowski distance of order p between two points

P = (x1,%3, .., xy) and Q = (31, ¥2, .-, Yn) € R"
is defined as:

dy(x,y) = By |x: —y:[P) /P (2.8)

N(1,1)

L(0,0) M(1,0)

Figure 2.2: Graphical representation of the points to measure Minkowski distance for p=0.50
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For p > 1, the Minkowski distance is a metric as a result of the Minkowski inequality. For
p <1, it is not the distance. For example, let p = % and L(0,0), M(1,0) and N(1,1) are three
points (see Figure 2.2). Then

dp(L,N) = (0=1]P + [0 —1]P) /P = (1 +1)2 = 4
dy(L,M) = (0-1]P + [0 = 0]P) /P = (1 +0)? = 1
dpy(M,N) = (1=1)P + [0 —1]P) /P = (0+1)2 = 1

Therefore, d,(L,M) +d,(M,N) =1+4+1=2 < d,(L,N) ,I which violates the triangle

inequality.

Minkowski distance is typically used with p being 1 or 2. The latter is the Euclidean
distance, while the former is sometimes known as the Manhattan distance. In the limiting
case of p reaching infinity, we obtain the Chebyshev distance which is discussed later, on

the other hand, for p reaching negative infinity, we have:
. 1
Jim (57 b =3ilP) P = il = il (2.9)

The Minkowski distance can also be viewed as a multiple of the power mean of the

component-wise differences between two points P and Q.

The following figure shows unit circles with various values of p:

Manhattan distance ' Euclidean distance ‘Chebyshev distance
[ L : : ¢ f 1 i ! I
- -t-:---—— et P2 § el B 07~ prl W patdld | pe2 j p=2.828 J fad p=3.657 l =8 | e ! pam |
L Y ] ] 1
i : ; A

Figure 2.3: Schematic view of circles in Minkowski distance measure with several p values

Note that a circle is a set of points with a fixed distance, called the radius, from a point
called the center. It is noted that Minkowski distance is refered to L, metric. Anyway in

one dimension, all L, metrics are equal. They are just the absolute value of the difference.



2.6 Chebyshev Distance

Minkowski distance reduces to Chebyshev distance when p— oo i.e. The Chebyshev
distance between two vectors or points P and Q, with standard coordinates x; and y;
respectively, is

de(6,y) = Jim(Ehy 1 —ilP) 77 = nlic 0 = il (2.10)

Hence it is also known as the L., metric.

Mathematically, the Chebyshev distance is a metric induced by the supremum norm or
uniform norm. It is an example of an injective metric.

In two dimensions, i.e. plane geometry, if the points P and Q have Cartesian coordinates
(x1, 1) and (x2, y2), their Chebyshev distance is

deo(x,¥) = max(lx; — x,1, [y, — y:1) = max(|1 = 2|, |1 — 3]) = max(1,2) = 2
[say, (x1.y1) = (2,3) and (x2,2) = (1,1)]

Under this metric, a circle of radius », which is the set of points with Chebyshev distance »
from a center point, is a square whose sides have the length 2r and are parallel to the
coordinate axes. 3

On a chess board, where one is using a discrete Chebyshev distance, rather than a
continuous one, the circle of radius r is a square of side lengths 2r, measuring from the
centers of squares, and thus each side contains 2r squares; for example, the circle of radius
| on a chess board is a 2x2 square.The Chebyshev distance refers to L., metric or norm.

The Chebyshev distance is sometimes used in warehouse logistics.
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Figure 2.4: Schematic view of a circle of radius | in Chebyshev distance
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2.7 Rectangular / Manhattan / Taxicab Distance

Manhattan distance also a special case of Minkowski distance (Eq. (2.8)) where p =I.
Taxicab geometry, considered by Hermann Minkowski in the 19th century is a form of
geometry in which the usual metric of Euclidean geometry is replaced by the taxicab
. metric. Taxicab norm or Manhattan norm of a point x measured from origin is given by
[Ixll == By |xi] @.11)
The name relates to the distance a taxi has to drive in a rectangular street grid to get from
the origin to the point x.
The set of vectors, whose 1-norm is a given constant, forms the surface of a cross polytope
of dimension equivalent to that of the norm minus 1. The Taxicab norm is also called the
L, norm. The distance derived from this norm is called the Manhattan distance or L,

distance. It is noted that },7, x; is not a norm because it may yield negative results.
2.7.1 Formal Definition

The taxicab distance, d|, between two vectors x, y in an n-dimensional real vector space

with fixed Cartesian coordinate system, is the sum of the lengths of the projections of the

line segment between the points onto the coordinate axes. More formally, |
di(xy) = |lx=yll = X, xi — il (2.12)

Where X = (xy, %3, ..., Xp) and Y = (y1, Y3, ..., ¥) are vectors.

For example, in the plane, the taxicab distance between (x;,y;) and (x;,y,) is

X1 = y1l + |22 — y5l.
2.7.2 Properties

Taxicab distance depends on the rotation of the coordinate system, but does not depend on
its reflection about' a coordinate axis or its translation. Taxicab geometry satisfies all of
Hilbert's axioms (a formalization of Euclidean geometry) except for the side-angle-side
axiom, as one can generate two triangles each with two sides and the angle between them

the same, and have them not be congruent.

In taxicab geometry, distance is determined by a different metric than in Euclidean

geometry and the shape of circles changes as well. Taxicab circles are squares with sides
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oriented at a 45° angle to the coordinate axes. The image to the right shows why this is
true, by showing in red the set of all points with a fixed distance from a center, shown in
blue. As the size of the city blocks diminishes, the points become morc numerous and
become a rotated square in continuous taxicab geometry. While each side would have
length V2 using a Euclidean metric, where 7 is the circle's radius, its length in taxicab
geometry is 2r. Thus, a circle's circumference is 8r. Thus, the value of a geometric analog

to 7 is 4 in this geometry. The formula for the unit circle in taxicab geometry is x| +ly| =1

’ . : 1 ; ;
in Cartesian coordinates and r = —————— in polar coordinates.
|sin 8]+ cos 8]

A circle of radius » for the Chebyshev distance (L, metric) on a plane is also a square with
side length 2r parallel to the coordinate axes, so planar Chebyshev distance can be viewed
as equivalent by rotation and scaling to planar taxicab distance. However, this equivalence
between L; and L., metrics does not generalize to higher dimensions. A sphere formed
using the Chebyshev distance as a metric is a cube with each face perpendicular to one of
the coordinate axes, but a sphere formed using Manhattan distance is an octahedron: these
are dual polyhedra, but among cubes, only the square (and 1-dimensional line segment) are
self-dual polytopes.The Chebyshev distance refers to L, metric or norm. The Chebyshev

distance is sometimes used in warehouse logistics.
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Figure 2.5: Circles in continuous and discrete taxicab geometry

Whenever each pair in a collection of these circles has a nonempty intersection, there exists
an intersection point for the whole collection; therefore, the Manhattan distance forms an
injective metric space. A circle of radius 1 (using this distance) is the von Neumann

neighborhood of its center; see figure (2.5).
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2.7.3 Applications

It is worthwhile to mention here that Rectangular (Manhattan) distance measure is also one
of the important issues considered in several fields like in location theory. In this area of
research, the problem is usually referred to as the max-min facility dispersion problem
[Erkat, 1990]; facilities are placed such that the minimal distance to any other facility is
maximal. Manhattan distance matric for a rectangular grid arise frequently from
communications and facility locations and are known to be among the hardest discrete
optimization problems. Mittelmann and Pengy (2001) estimated bounds for quadratic
assignment problems associated with hamming and Manhattan distance matrices based on
semi definite programming. They considered the issue of how to obtain lower bounds for
those two classes of Quadratic Assignment Problems (QAPs) based on Semi Definite
Programming (SDP). Philip et al. (2009) showed that a new precision-weighted Manhattan
distance and the Canberra distance are the most repeatable and the most in a.grt:emcnt with
the expected pattern rather than unweighted Manhattan or Euclidean distance measures. To
analyse Time series correlation in Network Structure, Miskiewicz (2010) considered
Manhattan Distance (MD). He showed that MD allows investigating a broader class of
correlation and is more robust to the noise influence. Hasnat et al. (2014) described the
comparative study of performance between the existing distance metrics like Manhattan,
Euclidean, Vector Cosine Angle and Modified Euclidean distance for finding the similarity
of complexion by calculating the distance between the skin colors of two color facial
images. Vadivel and Majumdar (2003) described the performance comparison of distance
metrics in content-based image retrieval applications. They have done a detailed study of
the performance of different distance metrics for a number of color histograms on a large
database of images. They use Ménhattan distance, Euclidean distance, Vector Cosine
Angle distance and Histogram Intersection distance for performance comparison. Five
standard and well-known color histograms were considered for evaluation and the results
show that the Manhattan distance performs better than the other distance metrics for all the
five types of histograms. Manhattan distance is also use for measure the change of

geometry of objects and clustering [Singla and Karambir (2012)].
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2.7.4 Taxicab Distance Versus Euclidean Distance

in taxicab geometry all three pictured lines (red, yellow, and blue) have the same length
(12) for the same route. In Euclidean geometry, the green line has length 6V2 = 8.48, and is

the unique shortest path.,
Q(6,6)

7

P(0,0)
Figure 2.6: Distance measure between point P(0,0) and Q(6,6) ; in Euclidean measure
d>(P,Q) = V72 and in Manhattan measure d;(P,Q)= 12.

Taxicab geometry, considered by Hermann Minkowski in the 19th century, is a form of
geometry in which the usual distance function or metric of Euclidean geometry is replaced
by a new metric in which the distance between two points is the sum of the absolute
differences of their Cartesian coordinates. The taxicab metric is also known as rectilinear
distance, L, distance or L) norm, city block distance, Manhattan distance, or Manhattan
length, with corresponding variations in the name of the geometry.The latter names allude
to the grid layout of most streets on the island of Manhattan, which causes the shortest path
a car could take between two intersections in the borough to have length equal to the

intersections' distance in taxicab geometry.

Now for completeness some other well-known distances will discuss below.
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2.8 Hamming Distance

In information theory, the Hamming distance between two strings of equal length is the
number of positions at which the corresponding symbols are different. In another way, it
measures the minimum mumber of substitutions required to change one string into the
other, or the minimum number of errors that could have transformed one string into the

other.

2.8.1 Special Properties

For a fixed length n, the Hamming distance is a metric on the vector space of the words of
length n, as it fulfills the conditions of non-negativity, identity of indiscernibles and
symmetry, and it can be shown by complete induction that it satisfies the triangle
inequality as well. The Hamming distance between two words a and b can also be seen as

the Hamming weight of @ — b for an appropriate choice of the operator.

For binary strings a and b the Hamming distance is equal to the number of ones
(population count) in @ XOR b. The metric space of length-n binary strings, with the
Hamming distance, is known as the Hamming cube; it is equivalent as a metric space to the
set of distances between vertices in a hypercube graph. One can also view a binary string
of length n as a vector in R” by treating each symbol in the string as a real coordinate; with
this embedding, the strings form the vertices of an n-dimensional hypercube, and the
Hamming distance of the strings is equivalent to the Manhattan distance between the

vertices.

Examples
The Hamming distance between:
- "toned" and "roses" is 3.

1011101 and 1001001 is 2.

2173896 and 2233796 is 3.
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Figure 2.7: Graphical view of measuring Hamming distance
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2.8.2 Applications

The Hamming distance is named after Richard Hamming, who introduced it in his
fundamental paper on Hamming codes Error detecting and error correcting codes in 1950.
It is used in telecommunication to count the number of flipped bits in a fixed-length binary
word as an estimate of error, and therefore is sometimes called the signal distance.
Hamming weight analysis of bits is used in several disciplines including information
theory, coding theory, and cryptography. However, for comparing strings of different
lengths, or strings where not just substitutions but also insertions or deletions have to be
expected, a more sophisticated metric like the Levenshtein distance is more appropriate.
For g-ary strings over an alphabet of size ¢ > 2 the Hamming distance is applied in case of
orthogonal modulation, while the Lee distance is used for phase modulation. If g=2 or
q = 3 both distances coincide.

The Hamming distance is also used in systematics as a measure of genetic distance.

On a grid such as a chessboard, the Hamming distance is the minimum number of moves it

would take a rook to move from one cell to the other.

2.9 Levenshtein Distance

In information theory and computer science, the Levenshtein distance is a string metric for
measuring the difference between two sequences. Informally, the Levenshtein distance
between two words is the minimum number of single-character edits (insertion, deletion,
substitution) required to change one word into the other. The phrase edit distance is often
used to refer specifically to Levenshtein distance. It is named after Vladimir Levenshtein,

who considered this distance in 1965. It is closely related to pairwise string alignments.

2.9.1 Definition

Mathematically, the Levenshtein distance between two strings a, b is given by
lev(|al|b))where

max(i, j) if min(i,j) = 0,

Ievajb(i_i,j)‘l‘l

min levy(i,j —1)+1 otherwise.
Ieva.b(i - 1,}' — 1) + [al- + b;]

I"'e.""’a,.lb ('E: f) =




Note that the first element in the minimum corresponds to deletion (from a to b), the
second to insertion and the third to match or mismatch, depending on whether the

respective symbols are the same.

Example
For example, the Levenshtein distance between "kitten" and "sitting" is 3, since the

following three edits change one into the other, and there is no way to do it with fewer than

three edits:

I kitten — sitten (substitution of "s" for "k")
2. sitten — sittin (substitution of "i" for "e")
3. sittin — sitting (insertion of "g" at the end).

Upper and Lower Bounds

The Levenshtein distance has several simple upper and lower bounds. These include:

. It is always at least the difference of the sizes of the two strings.

. It is at most the length of the longer string.

. It is zero if and only if the strings are equal.

. If the strings are the same size, the Hamming distalnce is én upper bound on the

Levenshtein distance.

. The Levenshtein distance between two strings is no greater than the sum of their

Levenshtein distances from a third string (triangle inequality).

2.9.2 Applications

In approximate string matching, the objective is to find matches for short strings in many
longer texts, in situations where a small number of differences is to be expected. The short
strings could come from a dictionary, for instance. Here, one of the strings is typically
short, while the other is arbitrarily long. This has a wide range of applications, for instance,
spell checkers, correction systems for optical character recognition, and software to assist
natural language translation based on translation memory.

The Levenshtein distance can also be computed between two longer strings, but the cost to

compute it, which is roughly proportional to the product of the two string lengths, makes



this impractical. Thus, when used to aid in fuzzy string searching in applications such as
record linkage, the compared strings are usually short to help improve speed of

comparisons.
2.10 Lee Distance

In coding theory, the Lee distance is a distance between two strings xi, X2,..., xn and yi,
V2,...., ¥n Of equal length n over the g-ary alphabet {0, 1, ...,g— 1} of size g=2. Itis a

metric, defined as

n
Z min(|x; — y:l,.q — | x; — yi).
=1

If ¢ = 2 the Lee distance coincides with the Hamming distance.

The metric space induced by the Lee distance is a discrete analog of the elliptic space.

Example

If g = 6, then the Lee distance between 3140 and 2543 is 1 +2+0+3 = 6.
The Lee distance is named after C. Y. Lee. It is applied for phase modulation while the

Hamming distance is used in case of orthogonal modulation.




CHAPTER III

[terated Local Search Approach for Maximin Latin Hypercube Designs

3.1 Introduction

The Latin hypercube design is a popular choice of experimental design when computer
simulation is used to study a physical process. These designs guarantee uniform samples
for the marginal distribution of each single input. A number of methods have been
proposed [Lourenco et al. (2002), Martin and Otto(1996)] for extending the uniform
sampling to higher dimensions. We show how to construct Latin hypercube designs in
which all main effects are orthogonal. Our method can also be used to construct Latin
hypercube designs with low correlation of first-order and second-order terms. Our method
gencerates orthogonal Latin hypercube designs that can include much more factors than

those proposed by Ye [Ye (1998)].
3.2 Iterated Local Search

The importance of high performance algorithms for tackling difficult optimization
problems cannot be understated, and in many cases the only available methods are
metaheuristics. The word metaheuristics contains all heuristics methods that show evidence
of achieving good quality solutions for the problem of interest within an acceptable time.
Metaheuristic techniques have become more and more competitive. When designing a
metaheuristic, it is preferable that it be simple, both conceptually and in practice. Naturally,
it also must be effective, and if possible, general purpose. The main advantage of this

approach is the ease of implementation and the quickness.

As metaheuristics have become more and more sophisticated, this ideal case has been
pushed aside in the quest for greater performance. As a consequence, problem-specific
knowledge (in addition to that built into the heuristic being guided) must now be

incorporated into metaheuristics in order to reach the state of the art level. Unfortunately,
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this makes the boundary between heuristics and metaheuristics fuzzy, and we run the risk

of losing both simplicity and generality.

Here a well-known metaheuristics approaches, namely general Iterated Local Search (ILS)
has been discussed. Iterated Local Search is a metaheuristic designed to embed another,
problem specific, local search as if it were a black box. This allows Iterated Local Search

to keep a more general structure than other metaheuristics currently in practice.

The essence of metaheuristic - the iterated local search - can be given in a nut-shell: one
iteratively builds a sequence of solutions generated by the embedded heuristic, leading to
far better solutions than if one were to use repeated random trials of that heuristic. This
simple idea [Baxter (1981)] has a long history, and its rediscovery by many authors has led
to many different names for iterated local search like iterated descent [Baum (1986a),
Baum (1986b)], large-step Markov chains [Martin et al. (1991)], iterated Lin-Kernighan
[Johnson (1990)], chained local optimization [Martin and Otto (1996)], or combinations of
these [Applegate et al. (1999)]. There are two main points that make an algorithm an
iterated local search: (i) there must be a single chain that is being followed (this then
excludes population-based algorithms); (ii) the search for better solutions occurs in a
reduced space defined by the output of a black box heuristic. In practice, local search has
been the most frequently used embedded heuristic, but in fact any optimizer can be use(.i,

be-it deterministic or not.

The purpose of this review is to give a detailed description of iterated local search and to
show where it stands in terms of performance. So far, in spite of its conceptual simplicity,
it has led to a number of state-of-the art results without the use of too much problem-
specific knowledge; perhaps this is because iterated local search is very malleable, many
implementation choices being left to the developer. In what follows we will give a formal

description of ILS and comment on its main components.



Procedure lterated Local Search

5y = Generate Initial Solution

s~ = Local Search(sy)
repeat

s' = Perturbation(s")

s"' = Local Search(s’)

§F = Acceptance Criterion (s', s“)
until termination condition met

end

ILS involves four main components:
1. Creating an initial solution;
2. A black-box heuristic that acts as a local search on the set S;
3. The perturbation operator, which modifies a local solution;
4. The acceptance criterion, which determines whether or not a perturbed solution will

become the starting point of the next iteration.

Local search applied to the initial solution s, gives the starting point s~ of the walk in the
set S Starting with a good s~ can be important if high-quality solutions are to be reached
as fast as possible. The initial solution s, used in the ILS is typically found one of two
ways: a random starting solution is generated or a greedy construction heuristic is applied.
A “random restart” approach with independent samplings is sometimes a useful strategy (in
particular when all other options fail), it breaks down as the instance size grows because in
that time the tail of the distribution of costs collapses. A greedy initial solution sg has two
main advantages over random starting solutions: (i) when combined with local search,
greedy initial solutions often result in better quality solutions s; (ii) a local search from
greedy solutions takes, on average, less improvement steps and therefore the local search

requires less CPU time.

The current 5*, we first apply a change or perturbation that leads to an intermediate state s’
(which belongs to S where S is set of all local optimum). Then Local Search is applied to s*
and we reach a solution s™" in §”. If 5™ passes an acceptance test, it becomes the next

element of the walk in S”; otherwise, one returns to s". The resulting walk is a case of a
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stochastic search in S, but where neighborhoods are never explicitly introduced. This
iterated local search procedure should lead to good biased sampling as long as the
perturbations are neither too small nor too large. If they are too small, one will often fall
back to s” and few new solutions of S will be explored. If on the contrary the perturbations
are too large, s’ will be random, there will be no bias in the sampling, and a random restart

type algorithm will be recovered.

In practice, much of the potential complexity of ILS is hidden in the history dependence. If
there happens to be no such dependence, the walk has no memory: the perturbation and
acceptance criterion do not depend on any of the solutions visited previously during the
walk, and one accepts or not s with a fixed rule. This leads to random walk dynamics on
S that are “Markovian”, the probability of making a particular step from s,  to S5
depending only on s;" and 5;". Most of the work using ILS has been of this type, though the
studies show unambiguously that incorporating memory enhances performance [Stutzle
(1998)]. | ‘

The main drawback of any local search algorithm is that, by definition, it gets trapped in
local optima that might be signiﬁcaﬁtly worse than the global optimum. The strategy
employed by ILS to escape from local optima is represented by perturbations to the current
local optima. The perturbation scheme takes a locally optimal solution, s, and produces
another solution from which a local search is started at the next iteration. Hopefully, the
perturbation will return a solution outside the basins of attraction of previously visited local
minima. That is, it will be “near” a previously unvisited local optimum. Choice of the
correct perturbation scheme is of primary importance, because it has a great influence on
the intensification/diversification characteristics of the overall algorithm. Generally, the
local search should not be able to undo the perturbation; otherwise one will fall back into
the local optimum just visited. Perturbation schemes are commonly referred to as “strong”
and “weak”, depending on how much they affect the solution that they change. A
perturbation scheme that is too strong has too much diversity and will reduce the ILS to an
iterated random restart heuristic. A perturbation scheme that is too weak has too little
diversity and will result in the ILS not searching enough of the search space. The
perturbation scheme should be chosen in such a way that it is as weak as possible while

still maintaining the following condition: the likelihood of revisiting the perturbed solution
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on the next execution of Local Search should be low [Lourenco et al. (2002)]. The strength
should remain as low as possible to speed up execution time. The desired perturbation
scheme will return a solution near a locally optimal value. If this is the case, the local
search algorithm should take less time to reach the next locally optimal value. Components
from other meta-heuristics can sometimes be incorporated into the perturbation phase.

Battiti and Protasi [Battiti and Protasi (1997)] proposed memory structures to control the

. perturbation. In doing so, one can force intensification when globally good values are

reached and force diversification when the search stagnates in an area of the search space.
Borrowing from Simulated Annealing [Kirkpatrick et al. (1983)], temperature controlled
techniques have been used to force the perturbation to change in a deterministic manner.
Basic variable neighborhood search employs a deterministic perturbation scheme. Just as
perturbation can range from too much intensification (no perturbations) to too much
diversification (perturb all elements of the solution), acceptance criterion choices affect the
search in a similar way. The most dramatic acceptance criterion on the side of
diversification is to accept all perturbed solutions. This type of practice can undermine the
foundations of ILS, since it encourages a “random-walk™ type search. Contrasting with
this, the algorithm accepts only solutions that are improvements to the globally optimal
value (a sort of greedy stratégy). Many implementations of ILS employ this type of
acceptance strategy [Rossi-Doria et al. (2002)]. This type of criterion, especially with a
weak perturbation scheme, can restrict the search from escaping the current basin of
attraction. Moreover, with this type of scheme the probability of rcaching- the same locally
optimal value increases a trait that reduces the algorithm’s overall effectiveness. When the
search stagnated, the random restart is a good way to ensure some diversification and to
counterbalance the (possible) negative effects of too greedy a search. Large perturbations
are only useful if they can be accepted. This only occurs if the acceptance criterion is not
too biased toward better solutions [Lourenco et al. (2001)]. Stutzle (1998) showed that
acceptance criteria that accept some worse solutions outperform their best-only

counterparts.

For what concerns the stopping rule, generally the algorithm executes until one of the

following conditions is met:
 a fixed number of cycles have finished;

» the best solution has not changed for a predefined number of cycles;

40



e a solution has been found that is beyond some predefined threshold.

ILS has many of the desirable features of a metaheuristic: it is simple, easy to implement,
robust, and highly effective. The essential idea of ILS lies in focusing the search not on the
full space of solutions but on a smaller subspace defined by the solutions that are locally
optimal for a given optimization engine. The success of ILS lies in the biased sampling of
this set of local optima. How effective this approach turns out to be depends mainly on the
choice of the local search, the perturbations, and the acceptance criterion. Interestingly,
even when using the most naive implementations of these parts, ILS can do much better
than randorﬁ restart. But with further work so that the different modules are well adapted to
the problem at hand, ILS can often become a competitive or even state of the art algorithm.
This dichotomy is important because the optimization of the algorithm can be done
progressively, and so ILS can be kept at any desired level of simplicity. This, plus the
modular nature of iéerated local search, leads to short development times and gives ILS an
edge over more complex metaheuristics in the world of industrial applications. As an
example of this, recall that ILS essentially treats the embedded heuristic as a black box;
then upgrading an ILS to take advantage of a new and better local search algorithm is
nearly immediate. Because of all these features, we believe that ILS is a promising and
powerful algorithm to solve real world complex problems in industry and services, in areas
ranging from finance to production management and logistics. Finally, notice that although
all of the present review is given in the context of tackling combinatorial optimization
problems, in reality much of what is covered can be extended in a straight-forward manner

to continuous optimization problems.
3.3 Maximin Latin Hypercube Designs

We will denote as follows the p-norm distance between two points x;and x;, Vi, j=1,2, "
, V:

dy=[lxi— x|, - 3.1)
Unless otherwise mentioned, we will only consider the Euclidean distance measure (p = 2)
and Rectangular distance (p =1). In fact, we will usually consider the squared value of d,

. . . rd ¥ - a a
(in brief d), i.e. d° (saving the computation of the square root) in case of Euclidean
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distance. This has a noticeable effect on the execution speed since the distances & will be
evaluated many times.

3.4 Definition of LHD

A Latin Hypercube Design (LHD) is a statistical design of experiments, which was first
defined in 1979 [McKay et al. (1979)]. An LHD of k-factors (dimensions) with N design
points, x7= (x;7, xi2- - -, xg) 1 i=0, 1,. .., N-1,is given by a N>k- matrix (i.e. a matrix
with N rows and & columns) X, where each column of X consists of a permutation of
integers 0, 1, - - -, N—1 (note that each factor range is normalized to the interval [0, N —1])
so that for each dimension j all x;;, i =0, 1, - - -, N—1 are distinct. We will refer to each row
of X as a (discrete) design point and each column of X as a factor (parameter) of the design
points. We can represent X as follows:

Xy Xo1 > Xgi

X=l : |5 : : (3.2)

X Xov-mm 7 Xowank
such that for each je {1,2,---,k} andforall p, ge {0, 1, - - - ,N— 1} with p # q; x,;# x
holds. Given a LHD X and a distance d, let D = {d(x; x;): 1 <i <j <Nj}.

Note that |D| 5(;} We define D(X) as the »-th minimum distance in D, and J{X) as the

number of pairs {x; x;} having d (x; x;) = D/(X) in X.

Figure 3.1 show the randomly generated LHD (Fig(a)) and maximin LHD (Fig(c))
regarding Euclidean distance measure obtained by ILS approach. Fig(b) shows the
intermediate semi optimal LHD during ILS algorithm run.

(snmnmnnel i .
: 'Y 4 &— s 3§ i
,.._..¢ . G ** %
+ 1 |
| i | 42 128 1 T
' Y o ? _ o = T |

® i I 3 - : L] L§ 5

X x
Fig: (2) D (X)=2, 1,(X,)~4 Fig: () D /(X,0)=8, 1 (X n)=4 Fig: (¢) D;*0w)=8, J;¥(Xp)=2
and DX 2. 3, X4 and D, /(X =4, 1 (X.)=13 and Dy '(Xa)=4, 1 (Xa=9

Figure 3.1: Some LHDs and their corresponding (D, J;) values in L” and L' distance measures
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The maximin LHD problem aims at finding a LHD X" such that Dy(X) is as large as
possible. However, a search which only takes into account the D, values is certainly not
efficient. Indeed, the landscape defined by the D, values is “too flat”. For this reason the
search should be driven by other optimality criteria, which take into account also other

values besides D;.
3.5 Optimality Criteria

In order to drive the search through LHDs we need some criterion to compare them. Below

we will describe some of the criteria employed in the literature.

Opt(D,, Ji) Optimality Criterion : Under this criterion a LHD ¥ can be considered better

than another one X if a lexicographic ordering holds:

D\(Y)>Dy(X) or
Di(Y)=D(X) and Ji(Y) </ i(X). (3.3)

We illustrate this optimality criterion as follows. Note that we consider here only Euclidean
distance measure. In Figure 3.1(a) X, is a randomly generated LHD with (N, k) = (9,2)
where Dy(X,) = 2 and J(X;) = 4; Figure 3.1 (b) presents an improved configuration X
where Di(Xsm) = 8 with J(Xsm) = 4. A third LHD Xy is given in Figure 3.1 (c) where
D(Xm) = 8 and J;(Xn) = 2; by the Opt(D,,J;) criterion this is the best configuration among
the three.

By generalizing this approach, we can consider the problem like a multi-objective problem
with priorities: maximize the objective with highest priority D,; within the set of optimal
solutions with respect to Dy, minimize the objective with second highest priority J;. Note

that Johnson et al. [Johnson et al. (1990)] first proposed this optimality criterion.

Opt(¢) Optimality Criterion : As previously remarked, if there exist different LHDs with
equal D; and J; values, i.e. in case there exist at least two LHDs X, Y such that D\(X) =
D\(Y) = Dy and J,(X) = Ji(Y) = J;, we could further consider the objective D, and

maximize D>(X), the second smallest distance in X, and, if equality still holds, minimize
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J2(X), the number of occurrence of Dy(X), and so on. Then an optimal design X
sequentially maximizes D;; and minimizes Jj; in the following order: D), Jy; D2, J2, * +*, D,
Jn. Morris and Mitchell [Morris and Mitchell (1995)] have used all the above measures to
define a family of scalar-valued functions (to be minimized), which can be used to rank
competing designs in such a way that a maximin design receives the highest ranking. This

family of functions, indexed by p, is given by

5 J(X)
8, (x)= ZLD O } (3.4)

where p is a positive integer parameter. Under this criterion, LHD Y is better than X if
#p(Y) < (X).

Note that for large enough p, each term in the sum in (3.4) dominates all subsequent terms.

Through p we can control the impact of the different D, distances: as p increases, the

impact of distance D, becomes more and more relevant. In the form (3.4), the evaluation of

¢ p would be computationally costly. However, it has a computationally cheaper form (see

[Jin et al. (2005)]). Indeed, (3.4) can be simplified as

)ID) } (3.5)

i=l j=i+l

B (X)=

which can be computed without the need of detecting and ordering all the D, values.

An apparent drawback of the Opt(¢ ) criterion, if ‘we are interested in maximin values
(maximum D, value), is that LHDs with smaller (better ) ¢ ,can have a worse(smaller) D,
i.e. we can have X and Y such that @,(X) < @,(Y) and D(X) <D;(Y). This phenomenon
has been frequently observed in our computational experiments. Nevertheless, a profitable
choice is to work in order to minimize the ¢, function but, at the same time, keep track of
the best (D), J,) values observed during such minimization. This way the search in the
solution space is guided by a kind of heuristic function. Such mixed approach might appear

strange but, as we will demonstrate experimentally, it can be extremely effective.

While the two criteria above are strictly related to maximin values and they will be widely
employed in the definition of approaches for detecting maximin solutions, for the sake of

completeness, we also mention that also other optimality criteria, not necessarily related
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with maximin values, are available in the literature. We present a couple of them as well as

the approaches for constructing the optimal Latin hypercube design in Table 3.1.

Table 3.1: Some well know approaches as well as optimal criterion for optimal

experimental designs

Researchers Year Algorithm Objective functions
Audze and Eglajs | 1977 Coordinates  Exchange | Potential Energy
Algorithm
Park 1994 A 2-stage(exchange-and | Integrated mean squared
Newton-type) algorithm | error and entropy criteria
Morris and | 1995 Simulated annealing ¢p criterion
Mitchell
Ye et al. 2000 Columnwise-pairwise ¢p and entropy criteria
Fang et al. 2000(a) | Threshold accepting | Centered [, -discrepancy
algorithm
Bates et al. 2004 Genetic algorithm IPotential energy
Jin et al. 2005 Enhanced stochastic ¢p criteria, entropy and
evolutionary algorithms .
[, discrepancy
Liefvendahl and | 2006 Columnwisé—paimisc Minimum distance and
Stocki and genetic algorithms Audze-Eglajs function
Dam et al. 2007(b) | Branch-and-bound I-norm and infinite norm
algorithm distances
Grosso et al. 2008 Iterated local search and é,. criterion
simulated annealing
algorithms

3.6 ILS Heuristic for Maximin LHD

In Section 3.2 we have discussed a general scheme for ILS-based algorithms. Now we

present the ILS based procedure for maximin Latin hypercube design. As we have stated
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carlier, the main components of ILS heuristic approaches are Initialization ([s), Local

Search (Ljy), Perturbation Move (Pyy), and the Stopping Rule (Sk).

The pseudo-code of the proposed ILS heuristic for maximin LHD problems is given
bellow:

Step 1. Initialization : X =I5{0, 1,... ,N—1})
Step 2. Local Search : X' = Ly(X)

while Sz not satisfied do
Step 3. Perturbation Move : X" = Py(X)
Step 4. Local Search : X™ = LX)
Step 5. Improvement test : if X" is better than X,
set X=X

end while

Return X'

Each component of the algorithm is briefly discussed below.

3.6.1 Initialization (Is)

The initialization (/5) procedure embedded in our algorithm is extremely simple: the first
initial solution is randomly generated. In particular, the first initial solution generation is
built as follows. For each component he {1, 2, . . ., k} a random permutation vg,v;, . . . ,vy;
of the integers 0, 1, . . ., N— 1 is generated and we set

xu=v forallre {0,1,... ,N—1}.

Although more aggressive procedures could be designed, we chose random generation

because it 1s fast and unbiased.

3.6.2 Local Search Procedure (Ls)

In order to define a local search procedure (Ls), we need to define a concept of

neighborhood of a solution. Given a LHD X= (x,, x3, . . ., xw), its neighborhood is made of
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all other LHDs obtained by applying local moves to X. Before introducing some local

moves, we first introduce the notion of critical point.

Critical point: We say that x;is a critical point for X, if
min d(x;, x;) = Dy(X), .
J#i

1.e., the minimum distance from x; to all other points is also the minimum one among all

the distances in X. We denote by I(X) {1, 2, ..., N} the set of indices of the critical points
in X.

3.6.3 Local Moves (Ly)

A local move is an operator that applies some form of slight perturbation to a solution X, in
order to obtain a different solution. Different local moves define different neighborhoods
for local search. In the literature two different local moves are available: Rowwise-
Pairwise (RP) exchange [Park (1994)] and Columnwise-Pairwise (CP) exchange [Morris
and Mitchell (1995)]. In Park’s algorithm [Park (1994)] some active pairs (pairs of critical
points, in our terminology) are selected. Then, for each chosen pair of two active rows, say
iy and i, the RP exchange algorithm considers all the possible exchanges of corresponding

elements as follows:

x”_PH x,-g_q‘v’p, g = 1, 2, . k p?ﬁ q,

and finds the best exchange among them. The CP algorithm proposed by Morris and
Mithchell [Morris and Mitchell (1995)] exchanges two randomly selected elements within
a randomly chosen column. But in [Li and Wu (1997)], Li and Wu defined the CP
algorithm in a bit different way: they randomly choose a column and replace it by its

random permutations if a better LHD is obtained.

It is observed that the effect of CP based local search and RP based local search is not
significance [Jamali (2009)]. So, here, RP based local move is considered as defined in
[Jamali (2009)] which is a bit different than that of [Park (1994)]. For optimal criteria we

consider Opt(¢ ) optimal criteria.
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The definition of Rowwise-Pairwise Critical Local Moves (we call it LMg,p;) as follows.
The algorithm sequentially chooses two points (rows) such that at least one of them is a
critical point, then exchanges two corresponding clements (factors) of the selected pair. It
elX),r,je {1,2,...,N} h £e {1,2,...,k}, swapping the £-th component gives the
neighbor Y defined by
Jx,b ifr#ior h#/¢

x, ifr=jandh=/¢ 3.6)
Ixﬂ, ifr=iandh="/

Y=

It 1s remarked that, if Opt(D, J;) be the optimality criterion, it perfectly makes sense to
avoid considering pairs X; and x; such that J(X) N {x; x;} = & since any swap involving
two non-critical points cannot improve the D) value of the current LHD.

Initial solution — LHD A After single Local Move, nbh sol. LHD B After complete LS — LHD €
$ #_ . & l_l ‘ @ i -;

i < &

* ¥:2 ’ i L 55 ]

Fig: (2) D,¥(X)=2, ,P(X)=3  Fig: (b) D,(Xp)=2, J;(Xp)=1 Fig: (c) D\O(Xc)=8, I, P(Xc)~4

Figure 3.2: [llustration of Neighborhood solutions for LMgpp; based local search
(LS) procedure

We now illustrate the RP based local moves by considering a randomly generated initial
design A: (N, k) = (7, 2) (see Figure 3.2(a)). Then a neighborhood solution of A, by
considering points (0, 2), (4, 4) (here both are critical points), is LHD B, obtained after
swapping the second coordinate of the points (0, 2) and (4, 4) (See Figure 3.2 (b)).

Also note that LHD B is an improving neighbor of LHD A, since (D), J))(B) = (2, 1)
whereas (D, J1)(A) = (2, 3). Finally Figure 3.2 (c¢) shows the maximin LHD produced by
the Local search procedure. Though the algorithm optimized the LHD regarding Euclidean
distance measure but the LHD is improved regarding Manhattan distance measure too (see

the figures).
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3.6.4 Acceptance Rule

Among the two type of local moves [Jamali (2009)], we considered Best Improve (BI)
acceptance rule as there are no significant difference regarding output (see [Jamali
(2009)]). For the BI acceptance rule, the whole neighborhood of the current solution is
searched for the best iﬁproving neighbor. We warn again the reader that the meaning of “Y
is better than X” can be defined accordingly with the Opt(D), J;) or Opt(¢) optimality
criterion. So for the Opt(D,, J) optimality criterion: “Y is better than X" if

D(Y) >Di(X) or (Di(X) = Di(Y) and J(X) >Ji(Y)).
On the other hand for Opt( ¢ ) optimality criterion : “Y is better than X" if

P (Y ) <¢ p(X),
where ¢, is defined by (5).

3.6.5 Perturbation Move (Pyy)

Perturbation is the key operator in ILS, allowing the algorithm to explore the search space
by jumping from one local optimum to another. Basically, a perturbation is similar to a
local move, but it must be somehow less local, or, more precisely, it is a move within a
neighborhood larger than the one employed in the local search. Actually the perturbation
operator produces the initial -solutions for all the local searches after the first one. Among
the two types of perturbation operators, say, (i) Cyclic Order Exchange (COE) and (ii)
Pairwise Crossover (PC) proposed in [Jamali (2009)], we consider COE.

(D Cyclic Order Exchange (COE): Our first perturbation move procedure is Cyclic
Order Exchange (COE). The operator COE produce a cyclic order exchange upon a
randomly selected single component (column) of a randomly selected portion of the design
points (rows). Among the three variant of COE perturbation move techniques: Single
Cyclic Order Exchange (SCOE) perturbation operation, Multiple Components Cyclic
Order Exchange (MCCOE), and Multiple Single Cyclic Order Exchange (MSCOE) [Jamali
(2009)], we consider here only SCOE tcéhnique.
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Figure 3.3: Tllustration of Cyclic Order Exchange perturbation technique

(Ia) Single Cyclic Order Exchange (SCOE): For SCOE, we randomly choose two
different rows (points), say x; and x;, such that i <j and j — i > 2, in the current LHD X
Then, we randomly choose a column (component), say m. Finally, we swap in cyclic order
the valuc of component m from point x;to point x;. The pseudo-code structure for SCOE is

the following.

The pseudo-code structure for SCOE is the following.
Step 1: randomly select two different points x; and x;
such thati<jandj—i>2
Step 2: Randomly choose a component m
Step 3a: set temporarily x;m= K
fort=j,j—1,...,i—1do
Step 3b: Replace the component xy, by X—1jm
end for

Step 3c: and replace X by X

Note that we require j — i > 2 because otherwise the perturbation would be a special case
of the local move employed in the local search procedure. We illustrate the SCOE

perturbation by an example. Assume we have the current LHD X" with N = 6 and & = 8(see
Eq. (3.7)).
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(02 1 355 42
X
. 1322023854
21 4524138
X'=|%s| = . (3.7)
X 34503101
Xs 5041420
X)) \50 31405735

Now we randomly choose two rows (points), say x; and x5 and we randomly choose the
column (component) m = 4. Then, after the SCOE perturbation we get the following LHD
X' (Eq. ( 3.8), note that bold faces indicate the values modified with respect to X").

x) (02135542
o (35240334
wolml_ (21422213 .
x| 134553101
Xs| |4 5001 420
X \5 0 3 14055

Note that SCOE only slightly modifies the current LHD X but this exactly follows the
spirit of ILS, where the perturbation should keep unchanged large portions of the current

solution and should not completely disrupt its structure.

2. Pairwise Crossover

The second type of perturbation move that we consider is the Pairwise Crossover (PC). It is
similar to biological crossover —we randomly select two points (rows) and then randomly
selected portions of them which are interchanged. Here we propose three variant of PC

namely Single Pair Crossover (SPC) and Multiple Pair Crossover (MPC).

(x) (5 2 1 3 55 4 2)
X.| |03 240334
geoXf|t 1422213 3.9)
x| |2 4553101
Xs| [3 5001 420
Xo) \4 031405 5)
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(2a) Single Pair Crossover (SPC): For SPC, we first randomly select two rows, say, x; and
xj, i #j, in the current LHD X*; then we randomly select a component, say / > 2. Finally all
the components 1, 2, . . ., / of x; are swapped with the corresponding components of x—
refer to Figure 3.4. Note that we require / > 2, since otherwise it would be a single local
move. It is also worthwhile to remark that the PC perturbation is meaningful only when
number of factors of the LHD is greater than three. The pseudo code structure of SPC is as

follows:;

Step I: randomly select two different points x; and x; such that i # j
Step 2: Randomly choose a component / such that / > 2
fork=1,2,...,1do
Step 3: swap(xix, Xjx)

end for

Before Crossover

ix{=10 3{2 4 0 3 3 4]

fx]=14 0]3 1 4 0 5 5]

After Crossover
[x;]=]4 0]2 4 0 3 3 4]

I/ ]=j0 3|3 1T 4 0 5 5|

Figure 3.4: Illustration of Single Pair Crossover perturbation technique

(x,) (021355 42)
X 45040334

wo x| |2 1452213 550
X4 34503101 |
Xs 13221420
X)) G 03140535
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Now we illustrate the SPC perturbation by an example; we again consider the LHD X' (Eq.
(3.10)). We randomly choose a pair of rows (points), say x; and xs, and randomly fix a
column, say /= 2. Then after SPC perturbation on X" we get the following final LHD X '
(Eq. (3.11) note that the bold faces denote the values modified with respect to X*).

X f0r2: 1 3 5 5 4 2)
X, 50040334
pie|X| o201 45 2213 G.11)
Xa 254 50" 3 1001
X 1 320 14320
X 4 531405 5)

3.6.6 Stopping Rule (S¢)

We use a very simple stopping Rule (Sz). We introduce an integer parameter called
MaxNonImp (MNI) and the algorithm will stop if the currently best local optimizer X

cannot be improved for MaxNonlmp consecutive perturbations.
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CHAPTER IV

Optimality Analysis of the Experimental Results Regarding

Euclidean Distance

4.1 Introduction

In this chapter we will discuss about the optimality of the experiméntal results obtained by
ILS approach. At first we will display the optimal LHDs to show the performance of ILS
approach regarding Euclidean distance measure. Then we will also briefly discuss about

the multicollinearity of the optimal LHDs obtained by ILS approach.

4.2 Experimental Results and Discussion for Euclidean Measure

The parameter setting for the experiments, as Jamali (2009)I considered, is given in Table
4.1 and 4.2. For the comparison of ILS approach with the existing literatures, we will
refer to [Jamali (2009)]. In that dissertation the approach in [Morris and Mitchell (1995)]
denoted as SA_M (simulated Annealing (modified), and the approaches proposed in
[Husslage et al. (2006)] denoted as PD (periodic Design), SA (simulated Annealing) and
MS denoted multi-start random generated approaches. We have also denoted the updated
website values as Web (or Best known) values. The improvements obtained through the

PD and SA approaches are discussed in Husslage et al. (2006).

Table 4.1: Parameter setting for the experiments of ILS approach

Experimental design |LHD Perturbation Technique |SCOE

Method ILS Stopping Rule MaxNonImp parameter value

Optimal Criteria Opt(¢) | |MaxNonlmp setting 100

Local Move RP Parameter , p 20
Acceptance Rule BI
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Table 4.2: The setting of number of runs (R) for the ILS approach

k N R
3-10 2-25 500
3-10 26-50 100
34,5 51-100 50
6-10 51-100 10

The experimental results of ILS approach regarding Euclidean measure [Jamali, 2009] are
given in the Table 4.3 and Table 4.4. We observe that ILS is able to detect a very large
amount of improved solutions with respect to the best klnown ones. It is worthwhile to
remark that for large (k, N) values the improvement of each LHD obtained by ILS
approach is very significance. For the better visualization of the above results, Table 4.5
displays the summary of the performance of the several approaches. In the first row of
Table 4.5 identical means, ILS approach able to identical solution compare to the best
known results available in the literature whereas Worse means the solution obtained by
ILS approach are worse compare to best known results. The performance of ILS approach
regarding maximin LHDs in L* measure is remarkable compare to other approaches
available in the literature. This is, especially, true at large k values. For k > 6, with the
exception of few numbers of low N values, all the solutions returned by ILS are better
compare to the best known results. Though the performance of ILS approach is
significantly better compare to other approaches consider }Iuare, but the approach will be
effective if it is efficient i.e. the algorithm performs the job within acceptable time. So it
is needed to comment about the computation times. It is worthwhile to mention here that
there is no information regarding times to obtain the Web’s results. Anyway for this
demand, the computational cost of the approaches is reported in the Table 4.6. It is,
however, quite clear that ILS is more computationally demanding with respect to PD and
SA. Such higher costs are clearly rewarded in terms of quality of the results but the quality
of the results might be wondered if the time restrictions are imposed on ILS. According to
some further experiments that were performed, it would be realized that, especially at large
k values, equivalent or better results with respect to the PD and SA ones, could quickly be
reached by ILS. Therefore, it seems that at large k values even few and short runs of ILS
are able to deliver results better than those reached by PD énd SA. That is ILS approach

outperforms compare to other approaches.
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Table 4.3: Comparison among PD, SA, Web and ILS approaches regarding maximin
LHDs in Euclidean distance measure for =3 - 6
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Table 4.4: Comparison among PD, SA, Web and ILS approaches regarding maximin
LHDs in Euclidean distance measure for k=7 - 10
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Table 4.5: Summary of the comparison among several approaches of finding maximin
LHDs for N=2 to 100

Number of best solutions  (maximin LHD) Identical Worse
k PD | SA Sii: M Web MS ILS ILS ILS
3 61 0 0 65 0 14 20 65
4 [02] o 0 47 0 34 18 47
5 00 0 0 11 0 78 10 i1
6 00 0 0 00 0 90 09 00
7 00 0 0 00 0 92 07 00
8 0 0 00 0 93 06 00
9 0 0 00 0 93 06 00
10 0 0 00 0 92 07 00
Table 4.6: Comparison of computational cost
Total Elapsed Time {hirs)

k PD SA ILS

3 145 500 164

4 61 181 507

5 267 152 767

6 108 520 1235

T 232 246 698

8 - 460 846

9 - 470 1087

10 - 470 1166

Average Correlation for k =4,6,8,10

| —k=10

[ 4 7T0B16B2BWIMNHH6258606M00NT00HERIY
L N

Figure 4.1: Muliticollinearity analysis of the LHDs obtained by ILS approach
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From the above discussion it is clear that ILS approach is state-of arts for optimality
analysis regarding Euclidian distance measure as well as computational cost. Aparna
(2012) also analyzed the performance of ILS approach regarding multicollinearity of the
optimal LHD measured in Euclidean distance. The experimental results regarding average
correlation are given in the Figure 4.1. It is noted that the average coefficient of correlation
are calculated as define in [Aparna 2012]. We observe that, except few LHDs, the average
coefficients of correlations among factors are less than 0.2. It may conclude that the
optimal LHDs optioned by ILS approach regarding Euclidean measure have poor
multicollinearity i.e. among the factors of each LHD exists good orthogonality property.

It is also remarkable that the avérage coeffient of correlations are decreses with the
increases of number of factors. It is whorthwhile to mention here that the performance of
ILS approach is increase with the increase of factors as well as incerasing of number of

design points (see Table 4.5).
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CHAPTER 5

Optimality Analysis and Discussion of the Experimental Results

Regarding Manhattan Distance

5.1 Introduction

In the previous section we have performed several experiments in ILS approach for LHDs
regarding Euclidean distance measure. In this chapter at first we will perform several
experiments on the LHDs obtained by ILS approach regarding Manhattan distance
measure. Then we will compare the experimental results with available ones in the
literature. Moreover we also perform some more experiments on the maximin LHDs

obtained by ILS approach to find out some more interesting characteristics.

5.2 Experimental Results and Compai-ison for Manhattan Measure

It is noted that finding optimal LHD in Manhattan (Rectangular) distance measure 'is more
complicated [Toth (1971)]. Anyway the purpose is not to perform experiments to optimize
LHD by ILS in Manhattan distance measure; rather the maximin LHD in Rectangular
distance measure will be studied where the designs are optimized by ILS approach

regarding Euclidian distance measure.

Actually in this study, the optimal LHD namely maximin LHD obtained by the ILS
approach (MLH-ILS) will be considered in which distance is measured in Euclidian
distance measure (L?). Then the minimum inter-site distance will be measured among the
design points of the MLH-ILS design by Rectangular distance measure (L'). In what
follow the notation — D, or Dl(Jl)(L”and D, or Dl(Jt)("Z’ denote the minimum inter-
site distance of an LHD measured by the Manhattan distance measure and Euclidean
distance measure respectively. Note that in the above notation J; means number of

duplications of D, value in the LHD. In these experiments we considered p, puax, D1(J1)™",
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@ ™ D)™ and ® ™ properties. Here the notation p and py.y denote average pair-
wise correlation maximum pair-wise correlation among the factors of the LHD measured

as follows(Aparna 2012):

ko i-l 5

2 i=2 f 1‘0!;
=—-/=__ and =max 0.,
kk—1y/2 T P T g ja b

Jol
where pj; be the pairwise linear product-moment coeffient of corelation between factors i
and j.

The notation ®,"" and @, indicate the value of ®, (see Eq. (1.1)) measured by
Manhattan distance measure and Euclidean distance measure respectively. The optimal
criterion (Dy, p®) denotes the multi-objective function where the algorithm optimized wipt+
w>®, criterion [Joseph and Hung (2008)] where @, w;are weight factors (optimized both
minimum distance criterion as well as correlation criterion). On the other hand the optimal
criterion (@, D1) indicates optimized @, value but tracking the best Dy(J;) during algorithm
searches feasible space. That is though ILS algorithm optimize @, criterion but it does not
consider LHD which corresponding to best @, rather it considers LHD which has best
Di(J,) value in the track of search. The optimal criterion p = 0 means the optimal LHD

must has zero correlation among the factors.

For the first experiment, we first consider optimal LHD (with (¥, &) = (5, 3)) denoted as
MLH-ILS. Now we have performed experiments on that LHD to find out D,(J;)*" and
characteristics as indicated with first column of the Table 5.1. The experimental result is

given in the Table 5.1.

It is observed in the Table 5.1 which is also eventually true that MLH-SA is better in
D,(J))" value as it is optimized regarding L' measure; similarly OMLH —MSA is better
than others LHDs regarding correlation. Similar case is occurred in the Table 5.2 also. It
is worthwhile to mention here that OLH-Y is better compare to OMLH — MSA, off course,
as well as to other LHDs regarding multicollinearity because the LHDs, considered in
OLH- Y, has inherently zero multicollinearity. It is also no doubt that MLH -ILS is the
best compare to all other LHDs regarding D;(J;)™* and (Dp(m as ILS approach considered
L? distance measure. But it is remarkable that D,(J)® value is significantly better in MLH

-ILS obtained by ILS approach. It is also noted that though, in MLH-SA, SA approach
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considered L' measure whereas, in MLH —ILS, ILS approach considered L? measure for
obtaining maximin LHD, the D,(1)™" value of MLH -ILS is comparable with MLH-
SA. Moreover the D,(J,)"" value of ILS approach is almost identical with other approach
in both the design considered here. It is observed in the table that though in MLH-ILS,
considered L* distance measure, the ®*" values of MLH-ILS design is comparable of the
other two designs. On the other hand the 0™ values of MLH-ILS design is significantly
better than those of the other two designs. It is also observed that the design OMLH-MSA is
best than the other two regarding multicollinearity, since the designs are optimized regarding
average correlation p value. But MLH-ILS design is better than the design MLH-SA

regarding both p and pmax values.

Table 5.1: The comparison of MLH-ILS vs MLH-SA and OMLH — MSA for (N, k) = (5, 3)

Method 2> MLH-SA OMLH-MSA MLH-ILS

Optimal Latin Hypercube I 12 1 2. 3 -
Design Matrix > 2 5 3 2 45 222
3 2 5 3 5 1 35 1
4 3 1 4 1 2 4 4 4
5 4 4 53 4 5 13
Optimal Criteria > D, (@,,p°) (®, Dy)
Distance measure > L' L’ 12
PROPERTIES |
p > 0.265 0.0816 0.200
Prias=? 0.4 0.1 0.200
D, (1) > 5(3) 5(4) 5(6)
o, > 0.2170 2201 0.21879
DI "> (1) 9(2) 11(6)
B, 0.1113 0.1151 0.09956

Similarly we have again performed experiment on optimal LHD (with (N, k) = (9, 4))

denoted as MLH-ILS. The experimental results are given in the Table 5.2,
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Téble 5.2: The comparison ofMLH-ILS vs MLH-SA, OMLH — MSA and OLH-Y for

(N. ky=(9.4)
Method > | MLH-SA OMLH-MSA | OLH-Y | MLH-ILS
Optimal Latin Hypercube 1334 1333 1263 1584
Design Matrix = 2588 2258 2976 2749
3862 3975 3429 3216
4716 4381 | 4712 | 4833
5293 5717 5555 5151
69509 6699 6398 6378
7147 7124 7681 7692
8421 8842 8134 8967
9675 9466 9847 9425
Optimal Criteria = @, (®,,p") p=0 ®,, D,
Distance measure > L' P L' Lz
PROPERTIES |
p > 0.108 0.063 0.000 0.151
Pmax=> 0.217 0.117 0.000 0.233
Di(J)™"> 11(3) 11(4) 10(8) 10(4)
o, > 0.105 0.105 0.115 0.108
D,(J)™> 33(2) 31(1) 30(8) 42(6)
@, o 0.031 0033 0.037 0.026

Again in the Table 5.2, it is observed that the designs MLH-SA, OMLH-MSA and OLH-Y
are optimized regarding Rectangular distance measure (L') whereas the proposed design —
MLH-ILS is optimized regarding Euclidian distance measure (L?). It is observed in the table
that though L? distance measure is considered in MLH-ILS design, the D|(Jl)”“” and @ 9
values of MLH-ILS design are comparable with respect to the other three designs. On the
other hand D;(J))™ and ® ™ values of MLH-ILS dcsi.gn are significantly better than
the other three designs considered. It is also noticed that regarding correlation parameters p
and pmax, OLH-Y design is better comparing with the other three designs but regarding
DI(JI)(LE), OLH-Y design is worst one. It is noted that in the design OMLH-MSA, correlation
criterion p is partially minimized and in the OLH-Y design, designs are chosen so that p be

zero. On the other hand MLH-ILS design is comparable with both the designs MLH-SA and
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OMLH-MSA with respective to corrclation parameter p and pp.x. That is except OLH-Y

the multicolinearity of MLH- ILS is comparable with other approaches.

Now some experiments will be performed for comparison of D,(J 1)"‘“ values (minimum

mter-site distance measured in Manhattan distance measure) of the designs available in the

web www.spacefillingdesigns.nl. The Manhattan distance measure (L") based maximin
LHDs, available in the web, are denoted by MLH-Web. Note that the maximin designs,

considered here from the web, are optimized regarding Manhattan distance measure. On the

other hand it is mentioned here again that the proposed designs MLH- ILS is optimized

regarding Euclidian distance measure (L?).

Table 5.3: The comparison of MLH-ILS vs MLH-Web regarding Manhattan distance
measure (L') for k=3, 4, 5,6

N =3 k=4 k=5 k=6
MLH- MLH- MLH- MLH-
MLH-Web MLH-Web MLH-Web MLH-Web
ILS ) {LI]) ILS D (LI)) ILS (D u,n) ILS D (l..t})
o O @ o | ety

4 - 4 6 6 8 8 10 10
5 5 5 7 7 10 10 11 12
6 6 6 8 8 10 11 14 14
7 6 6 8 10 12 12 14 16
8§ 7 7 10 13 16

9 8 8 10 13 17

1 i 8 12 15 19

1 8 8 11 15 19

1 8 9 13 17 23

1 9 10 12 17 21

i 9 10 14 19 24

1 i0 11 14 17 22

1 9 11 14 19 24

1 10 14 19 26

1 10 16 19 27

1 10 16 21 26

2 10 18 21 29

2 11 20 25 29

2 11 17 23 31

2 11 18 26 32

2 11 19 26 33

2 13 19 27 34




1) values are just calculated from the MLH-ILS designs which

So in this experiments the D,
is optimized regarding Euclidean distance measure. For this experiments, we consider
factors : k=3, 4, ..., 6 and number of points : N=4, 5, ..., 25 are considered. Now we have
performed experiment on those optimal (MLH-ILS) LHDs to find out D,™") values. The
experimental results are shown in the Table 5.3. Note that in the Table 5.3 the symbol D,™"
denotes minimum inter-site distance among the points of a design in which distance is
measured in Rectangular distance measure. It is noted that there are few values are available
in the literature regarding Manhattan distance measure.
Table 5.4: The comparison of MLH-ILS vs MLH-Web regarding Euclidian distance

measure (L?) for k=3, 4, 5, 6

N k=3 k=4 k=5 k=6
MLH-ILS | MLH-Web | M5 | MrH-web | MM | MLH-Web |MLH-ILS | MLH-Web
B o™ R o PR o™ )| o™

(D, (D,

3 6 6 T 7 8 8 12 8

4 6 6 12 12 14 14 20 18

5 =¥ 9 15 13 24 22 27 24

6 14 14 22 18 32 27 40 36

7 17 12 28 26 40 32 52 52

8] 2l 21

b 22 22

10 27 22

11 30 22

12 36 27

13| 41 36

14 42 34

I5 48 41

16| 50 A1

Again some experiments will be performed to find out the D™ values of the MLH-Web
designs considered in the previous experiment. Note that, the designs MLH-Web are
optimized regarding Rectangular (L") distance measure rather than Euclidean (L*) distance
measure whereas MLH-ILS designs are optimized regarding Euclidian distance measure

2 values of MLH-ILS, which is optimized in > measure,

{L?) measure. Now regarding D,
are compared with MLH-Web, which is optimized in L' measure. The experimental results
are reputed in the Table 5.4. As mentioned earlier that there are few designs are available
in the web regarding Manhattan distance based optimized. It is observed that the designs

MLH- ILS’s outperform the designs MLH-web regarding Euclidean distance measure
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significantly. It is remarked that when number of N and/ or & of LHD are large, the
performance of ILS approach is much better. It is worthwhile to mention here that in the
research paper Morris and Mitchell (1995), few points were considered with Euclidian
distance measure, and results of the column Web are taken from the “Archived results for
3-10 dimensional L? -maximin Latin hypercube designs —14/3/2006” of the web
www.spacefillingdesigns.nl. Note that this web }:.)Drtﬁl is updated by Grosso et al. (2009) for

maximin LHDs, where updated values are obtained by the proposed ILS approach.
5.3 Experimental Results of Optimal LHDs Regarding Manhattan Measure

Now we will perform several experiments on optimal LHDs obtained by ILS approach
regarding Manhattan distance measure. In these experiments we have considered those
optimal LHDs obtained by ILS approach which are better than available ones obtained by
other abproaches. The experimental results are reputed in the Tables 5.5 and 5.6. In the
tables k denotes number of dimension, N denotes number of design points, D;'"" denotes
D, (minimum inter-site distance) value of the maximin LHD measure in Manhattan
distance anld @, denotes optimal @, value of the maximin LHD measured in Euclidean

distance measure. As there is no more available data regarding D,(tY

and @, values except
displayed in above section, so we cannot able to compare the computational results. But
these results may be used for further experimental studies regarding Manhattan distance
measure. Anyway though we could not comment about the D,‘*Y and @, displayed in the
tables, but we may expect that these values might be comparable with other values of
LHDs which will be optimized in Rectangular distance measure.

Table 5.5: The D;*Y and @, values of maximin LHD obtaining by ILS approach for
k= 3,4,5and 6

k=3 k=4 k=35 k=6

N Q. [ N 9. D, N [2) pity N 0. D,
17 0.051031 10 14 0.06428 14 11 0.068843 |. 15 9 0.077615 17
18 0.048795 10 15 005607 14 12 0.066372 17 10 0070186 17
19 0.044324 10 16 0.05109 14 13 0.060302 17 11 0.0635 19
20 0.041345 10 17 0.04569 14 14 0.055385 19 12 0.059131 23
21 0041523 11 18 0.04467 16 15 0.053376 17 13 0.05547 21
22 0.040456 11 19 0.04449 16 16 0.050833 19 14 0.052632 24

3 0.037063 11 20 0.04068 18 17 0047782 19 15 0.048168 22
24 0.035136 11 21 0.03904 20 18 0.045549 19 16 0.045268 24
27 0.030571 13 22 0.03719 17 19 0.040723 21 17 0.041849 26
28 0.029722 13 23 0.03526 18 20 0.040291 21 18 0.041849 27
29 0.02794 13 25 0.03272 19 21 0037716 25 19 0.039841 26
30 0.026603 13 26 0.03028 19 22 0.032325 23 20 0.036911 29
31 0.025846 13 27 0.02972 20 23 0.031466 26 21 0.035669 29
32 0.0254 13 28 0.02863 20 24 0.030151 26 22 0.034606 3
33 0.024261 14 29 0.02666 19 25 0.02921 27 23 0.033205 32
35 0.023669 14 30 0.02602 20 26 0028548 29 24 .031342 33

_ _ Continuing
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N 2, DD N 0, D, N @, D, N 0, D,
36_| 0.023076 15 31 0.02489 | 21 27 0.027503 29 25 0.030964 34
39 | 0.020806 16 32 | 0.02461 21 23 0.026594 28 26 0.02954 35
40 | 0.01983% 15 33 002393 | 22 29 0.025624 30 27 0.02815 34
51 | 0.015833 17 34 [ 002238 | 22 30 0.024419 33 28 | 0.024522 36
52 | 0.01532 18 35 002172 | 23 31 0.024398 31 29 | 0022233 37
53 | 0.014543 17 36 | 0.02121 22 32 0.023505 31 30 | 0.022559 40
54 | 0.014677 19 37 1 0.02009 [ 20 33 0.02257 31 31 0.02176 37
56 | 0.014004 19 38 | 0.01918 | 25 34 0.022394 28 32 | 0.021186 35
70 | 0.011102 21 39 | 0.01911 22 35 0.021724 30 33 0.020628 42
71| 0.010706 21 40 0.01898 | 25 36 | 0.020833 30 34 | 0.020129 44
75 | 0.010239 22 41 0.01738 | 25 37 | 0.020633 31 35 | 0.019153 46
77 | 0.010107 22 42 0.01848 | 25 38| _0.019988 34 36 | 0.019136 45
43 001765 | 24 39 | 0.019548 35 37 | 0.018474 45

44 001733 | 25 40 | 0.018888 35 38 0.017929 49

45 0.01584 | 26 41 0.018679 34 39 | 0.017803 47

46 | 0.01533 | 26 42| 0.017963 34 40 | 0.017265 43

47 | 001494 | 25 43 0.017683 37 41 0.016857 54

48 0.0161 27 44| 0.017387 39 42 | 0.016582 56

49 | 001476 | 29 45 0.016935 36 43 0.01599 46

50| 0.01457 | 29 46 0.016167 16 44 | 0014822 49

51 0.01519 | 30 47 0.015766 36 45 0.014799 48

52 | 001458 | 29 48 0.014306 38 46 0.01378 50

53 | 001437 | 29 49 0.014979 37 47 | 0.014362 50

54 | 001388 | 29 50 0.014178 41 48 0.01457 49

55 | 0.01384 | 29 51 0.014258 40 49 | 0.014236 55

56| 0.01361 31 53 0.013691 41 S0 | 0.014066 53

60 | 001211 32 54 0.012908 42 51 0.013388 52

61 0.01226 | 30 55 0.013169 42 52 | 0.013563 56

64 001167 | 35 S6__| 0.012613 44 53 0.013061 54

65 001127 | 36 57 | 0.012019 42 54 | 0.013009 57

68 | 0.01055 | 37 58 | 0.012092 42 55 | 0.012788 59

71 0.01003 | 36 59 0.01213 42 56 | 0.012595 56

72 [ 001009 | 38 60 | 0.011536 44 57 | 0.012413 57

74 | 0.00965 | 37 61 0.011664 43 58 | 0.012051 58

77| 0.00929 | 38 62 | 0.011011 46 59 | 0.011886 62

78 | 0.00893 | 36 63 0.010711 45 60| 0.011795 55

79 | 0.00944 | 38 64 0.010744 49 61 0.011451 60

Bl 0.00880 | 37 65 0.010822 45 62 | 0.011391 59

83 | 000877 | 38 66 0010615 49 63 0.011224 61

86 | 0.00788 | 39 63 0.009962 57 64 | 0.010866 61

B9 | 0.00808 | 39 69 0.010026 52 65 0.01081 65

91 0.00775 | 42 70 0.0099 14 53 66| 0.01044] 58

92| 000771 | 41 71 0.00957 51 67 | 0.010272 66

93 0.00771 40 72| 0.009662 |' 49 68 | 0.010439 66

94 | 0.00770 | 42 73 0.009345 62 69 | 0.010105 65

95 0.00737 |43 74 0.009019 52 70| 0.009885 70

100 | 000692 | 43 75 0.009219 56 71 0.00967 64

76| _0.008919 51 72| 0.009625 69

77 0.00897 57 73 0.00937 64

78 0.008537 51 74| _0.009135 70

79 0.00878 55 75 | 0.009259 74

81 0.008384 59 76 | 0.008735 72

82 0.008597 56 77 | 0.008791 71

83 0.00833 53 78 | 0.008937 68

84 0.008281 56 79 | 0008872 71

85 0.008301 56 80 | 0.008582 75

86 0.008095 61 81 0.008204 79

88 0.007715 62 82 | 0.008008 83

89 | 0.007977 60 83 0.008213 80

90| 0.007684 62 84 | 0.008172 77

91 0.00765 63 85 | 0.007885 18

92 0.007322 60 86| 0.007632 70

93 0.007409 62 87 | 0.007518 71

94 0.007223 64 88 | 0.007438 85

96 0.007207 68 89 [ 0.007413 81

97 0.006933 67 90| 0.007407 79

98 0.006973 64 91 0.007353 77

9y 0.007136 63 92 0.00701 79

93 | 0.007152 84

94| _0.006767 81

95 |_0.006602 88

96 | 0.006794 81

97 | 0.006547 75

98 | 0.006562 80

. 99 [ 0.006411 83
. = 100 | 0.006638 83
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Table 5.6: The D, and @, values of maximin LHD obtaining by ILS approach
' for k= 7,8,9and 10

=7 k=8 k=9 k=10
N 0, D,th N o, D~ | N a, DM | N 0, D,V
7 1012126 | 18 7 0.0845 | 14 8 | 0064018 [ 23 9 | 0.053683 29
8 |0.10206 | 18 8 0.0944 | 22 9 | 0.080064 | 27 10_| 0.07036 33
9 10.06757 | 19 9 0.0857 | 23 10 | 0.074125 [ 29 11| 0.06455 32
10 | 0.06166 | 22 10 0.0581 | 24 11| 0.049447 | 31 12| 0.042993 37
11 | 0.05822 | 23 11 0.0529 | 27 12 [ 0.045883 [ 33 13 [ 0.039968 38
12 | 0.05407 | 26 12 0.0497 | 28 13 [0.043234 [ 35 14 | 0.037716 44
13 [ 0.04975 [ 26 13 0.0462 | 30 14 | 0.040825 | 37 15 | 0.035944 43
14 | 0.04647 | 29 14 0.0429 [ 30 15 [ 0.038152 [ 39 16 | 0.033748 47
15 | 0.04335 [ 28 15 0.0401 | 35 16 | 0.035852 | 42 17 | 0.031814 46
16 | 0.04252 [ 30 16 0.0379 [ 39 17 [ 0.033768 | 43 18 | 0.030179 52
17 | 0.04022 [ 30 17 0.0358 | 38 | 18 | 0.031863 | 47 19 | 0.028607 57
18 10.03843 | 34 18 0.0346 | 38 19 | 0.030248 | 49 20 | 0.027096 59
19 | 0.03625 [ 31 19 0.0326 | 40 20 | 0.029828 | 48 21 | 0.026189 59
20 | 0.03483 | 35 20 0.0328 | 39 21 | 0.028502 | 51 22 | 0.025616 59
21 (003369 34 | 21 0.0310 [ 42 22 [0.027514 [ 53 23 | 0.024671 63
22 10.03186 [ 38 22 0.0299 | 44 23 [ 0026803 [ 54 24 [ 0.024105 61
23 [0.03020 [ 36 23 0.0285 [ 49 24 | 0.025854 | 56 25 | 0.023383 64
24 |0.02909 | 38 24 0.0277 | 49 25 10.024822 [ 60 26| 0.022911 68
25 10.02794 | 40 25 0.0262 | 50 26| 0.023662 [ 58 27 | 0.021552 69

26 | 0.02706 42 26 0.0253 52 27 | 0.023076 59 28 | 0.021124 70
27 | 002616 43 27 0.0242 51 28 | 0.022086 61 29 | 0.020563 69

28 | 0.02475 45 28 0.0235 54 29 | 0.021219 64 30 | 0.019699 72
29 | 0.02418 46 29 0.0229 58 30 | 0.020952 67 31 0.019245 81
30 | 0.02401 48 30 0.0221 57 32 | 0.019869 67 32 0.01844 78
31 0.02218 40 31 0.0213 58 33 0.01916 70 33 ] 0017739 76
32 | 0.02191 51 32 0.0209 58 34 | 0.018634 69 34 | 0017541 75
33 | 0.02153 53 33 0.0201 61 35 | 0.017969 72 35 0.01685 81

34 | 0.02059 55 34 0.0195 56 36 | 0.017555 71 36 | 0.016602 88
35 10.02031 54 35 0.0187 57 37 | 0.016966 17 37 | 0.016195 87

36 | 0.01886 48 36 0.0188 64 38 | 0.016611 81 38 0.0158 94
37 | 0.01808 59 37 0.0182 63 39 | 0.016254 78 39 | 0.015719 98
38 | 0.01637 52 38 0.0177 65 40 | 0.015875 75 40 | 0.015361 94
39 | 0.01662 56 39 0.0170 68 41 0.015597 80 41 0.014781 90
40 | 0.01574 55 40 0.0168 75 42 0.014952 88 42 | 0.014183 101
41 0.01551 57 41 0.0163 75 43 0.014987 91 43 0.013928 97
42 | 0.01498 59 42 0.0161 76 44 | 0.014608 82 44 | 0.013626 101
43 | 0.01464 66 43 0.0153 73 45 0.01439 90 45 0.013447 105
44 | 0.01428 59 44 0.0148 73 46 | 0.013861 94 46 | 0.013058 99
45 | 0.01419 62 45 0.0132 69 47 | 0.013727 94 47 | 0.012876 108
46 | 0.01395 62 46 0.0129 72 48 | 0013314 | 93 48 | 0.012634 110
47 | 001358 67 47 0.0131 84 49 | 0.012929 91 49 | 0.012359 114
48 | 0.01331 69 48 0.0123 77 50 | 0012578 96 50 | 0.01227] 106
49 | 0.01316 70 49 0.0122 84 il 0.012339 93 51 0012019 112
50 | 0.01286 69 50 0.0118 80 52 0.011894 | 107 52 | 0011703 121
51 0.01257 67 51 0.0116 80 53 0.010515 | 108 53 | 0011464 122
52 | 0.01228 75 52 0.0114 84 54 | 0.011299 | 106 54 | 0011334 127
53 1001214 81 53 0.0113 85 55 0.011392 95 55 | 0011022 130
54 | 0.01193 80 54 0.0110 88 56 | 0.010885 107 56 | 0.010744 123
55 | 0.01163 82 55 0.0109 86 57 0.010233 | 111 57 1 0.010747 130
56 | 0.01146 88 56 0.0106 80 58 0.01015 116 58 | 0.010344 131
57 1001114 89 57 0.0105 89 59 | 0.009988 110 59 [ 0010219 132
58 ] 0.01054 81 58 0.0103 92 60 | 0.009572 | 106 60 0.01019 124
59 | 0.01067 64 59 0.0102 99 61 0.009546 | 110 61 0.009884 131
60 | 0.01028 82 60 0.0100 102 62 | 0.009083 | 122 62 | 0.009609 142
61 0.01023 68 61 0.0098 97 63 0.009193 | 113 63 | 0.009476 137
62 | 0.01034 73 62 0.0096 90 64 | 0.008898 | 124 64 | 0.009186 138
63 | 0.01001 74 63 0.0094 107 65 0.00865 127 65 | 0.008483 132
64 | 0.01001 73 64 0.0093 104 66 | 0.008565 | 112 66 | 0.008871 144
65 | 0.00981 77 65 0.0091 106 67 0.008428 | 120 67 | 0.008658 147
66 | 0.00966 82 66 0.0090 112 68 0.008355 116 68 | 0.008615 152
67 | 0.00958 74 67 0.009 105 69 0.008166 | 115 69 | 0.008463 150
68 | 0.00951 77 68 0.0088 106 70 1 0.008086 | 125 70 | 0.008233 150
69 | 0.00934 76 69 0.0086 109 71 0.007978 123 71 0.007847 152
70| 0.00907 87 70 0.0085 124 72 | 0.007898 138 | 72 | 0.007614 152

__ Continuing |



N O, D" N Q, D[ N 0, D[ N o, p,™

71 | 0.00919 89 71 0.0084 121 73 | 0.007772 | 129 73 | 0.007951 159
72 | 0.00895 82 72 0.0083 129 74 | 0.007714 | 130 74 | 0.007341 160
73 | 0.00895 85 73 0.0082 124 75 | 0.007559 | 142 75 0.00718 145
74 | 0.00882 84 74 0.0078 116 76 | 0.007457 | 134 76 | 0.007081 156 |
75 | 0.00855 85 75 0.0079 110 77 | 0.007389 | 140 77 | 0.007038 156

76 | 0.00364 94 76 0.0077 | 116 78 | 0.007322 | 141 78 0.00693 163
77 1 0.00843 88 77 0.0077 | 112 79 1 0.007153 | 142 79 0.006% 156
78 | 0.00837 94 78 0.0076 111 80 | 0.007117 | 151 80 | 0.006748 168 |
79 | 0.00821 87 79 0.0074 117 81 0.007051 149 81 0.006693 160
80 | 0.00795 91 80 0.0073 127 82 | 0.006954 | 156 82 | 0.006638 155
81 | 0.00813 100 81 0.0070 115 B3 | 0.006912 | 150 83 | 0.006505 171
82 | 0.00785 97 82 0.0070 126 B4 | 0.006745 | 158 84 | 0.006396 171
83 | 0.00798 103 83 0.0072 116 85 | 0.006671 144 85 | 0.006379 174
84 | 0.00786 89 84 0.0070 | 123 86 | 0.006579 | 154 86 | 0.006256 176
85 | 0.00774 90 85 0.0071 124 87 | 0.006484 | 165 87 | 0.006182 176
86 | 0.00771 102 86 0.0070 125 88 0.00633 167 88 | 0.006138 174
87 | 0.00763 96 87 0.0070 130 89 | 0.006388 | 166 89 | 0.006065 182
88 | 0.00746 | 104 88 0.0069 132 90 | 0.006301 | 173 90 | 0.006024 163
89 | 0.00740 | 102 89 0.0068 121 91 0.006223 | 168 91 0.00595 189
90 | 0.00726 | 103 90 0.0068 132 92 | 0.006063 | 175 92 | 0.005876 181
91 | 000732 [ 103 91 0.0067 128 93 | 0.005961 169 93 | 0.005823 192
92 | 0.00708 110 92 0.0066 128 94 | 0.006024 | 167 94 | 0.005771 195
93 | 0.00716 109 93 _0.0065 128 95 0.0059 167 95 | 0.005708 193
94 | 0.00692 | 101 94 0.0065 123 96__| 0.005852 | 161 96 | 0.005648 195
95 | 0.00672 105 93 0.0064 131 97 | 0.005838 | 181 97 | 0.005594 194
96 | 0.00679 107 96 0.0064 130 98 | 0.005726 | 166 98 | 0.005505 212
97 | 0.00676 99 97 0.0064 122 99 | 0.005672 | 181 99 | 0.005493 204
98 | 0.00671 113 98 0.0063 128 100 | 0.005594 | 182 100 | 0.005436 205
99 [ 0.00662 | 105 99 0.0062 135
100 | 0.00654 99 100 0.0061 130

5.4 Experimental Study for Impact of Trials

Now we have performed further experiments to study the effect of trials in the ILS
algorithm for finding maximin LHDs. In the same time, we would like to find some new
characteristics of the maximin LHDs obtained by ILS approach. At first we would like to
observe about the effect of trials on D, values of maximin LHD. For this experiments
we have considered dimension k =3 to 9. The experimental results are displayed in Figures
5.1(a) - 5.1(g). The N values for each experiment are shown in the right side of the figures.
It is noted that the abscissa of each figure indicates number of trials on the other hand
ordinate indicates D,"*” values. Now it is observed in the Figure 5.1(a), in which we have
considered dimension of LHD is k = 3, for N = 5 to 25, that the D" values are almost

"
(L2} yalues are not almost

identical for all trials. Moreover for N = 30 to 50 though the D,
identical but not significantly different. We also observed that the increase of trials do not
increase the D,‘"? values monotonically. It is noted that for N = 50 few trial corresponds
good D, values rather than large trial value namely frial = 40. It means a good initial

solution has significant effect on good optimal solution for ILS heuristic approach.
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Figure 5.1(a): Impact of trials in ILS approach regarding D,"® values for k=3

Now in the Figure 5.1(b) we have considered dimension of LHD is k= 4, for N=5 to 15,
in the Figure 5.1(c) we have considered dimension of LHD is k=5, for N =5 to 25, in the
Figure 5.1(d) we have considered dimension of LHD is k = 6, for N=5 to 15, in the Figure
5.1(e) we have considered dimension of LHD is k =7, for N =5 to 25, in the Figure 5.1(f)
we have considered dimension of LHD is k£ = 8, for N = 5 to 15. It is observed that the
D"? values are almost identical for all trials.
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Figure 5.1(b): Impact of trials in ILS approach regarding D;™? values for k = 4
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Figure 5.1(c): Impact of trials in ILS approach regarding D, values for =5
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Figure 5.1(d): Impact of trials in ILS approach regarding D,"? values fork=6
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Figure 5.1(e): Impact of trials in ILS approach regarding D,"® values for k=7
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Figure 5.1(f): Impact of trials in ILS approach regarding D;™® values for k=8
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Figure 5.1(g): Impact of trials in ILS approach regarding D;"? values for k=9

Similarly in the Figure 5.1(g) we have considered dimension of LHD is k=9, for N=5to
20. Here we also observed that the impact of trial regarding the D,"” values is not
significant.

D values. For

Now we would like to observe about the effect of trials on corresponding Dy
this experiments we have considered dimension k = 3 to 9. The N values for each
experiment are shown in the right side of the figures. The experimental resuits are
displayed in figures 5.2(a) — 5.2(g). It is noted that the abscissa of each figure indicates
number of trials on the other hand ordinate indicates D;™" values. Now it is observed in
all the Figure 5.2(a) — 5.2(g) except few N values, the impact of trial on LHD regarding

D" values are not significant.
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Figure 5.2(a): Impact of trials in ILS approach regarding D,"*"’ values for k =3
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Figure 5.2 (b): Impact of trials in ILS approach regarding D™ values for k=4
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Figure 5.2 (c): Impact of trials in ILS approach regarding D Y values for k=5
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Figure 5.2 (d): Impact of trials in ILS approach regarding D, vales for k=6
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Figure 5.2 (e): Impact of trials in ILS approach regarding D™ values for k=7
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Figure 5.2 (f): Impact of trials in ILS approach regarding D" values for k= 8
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Figure 5.2 (g): Impact of trials in ILS approach regarding D,""" values for k=9

Table 5.7 (a): Impact of trials in ILS approach regarding Dy and Dy™" values for k=3

k=3
= N=10 N=15 N=20 N=25
' Trials Dulu ) DBI(LI ) Du(u) Da? DM{LZ) Do | D™ Du(u ) D™ D_M(L] :

1 24 8 114 16 266 28 561 39 977 53

5 24 8 104 16 218 28 561 39 827 49

10 24 8 104 16 278 28 554 40 929 51
15 24 8 104 16 278 28 507 38 929 S
20 24 8 104 16 278 28 507 38 929 5
25 24 8 104 16 278 28 507 38 929 31

‘ 30 24 8 104 16 278 28 507 38 929 51
35 24 8 104 16 278 28 507 38 929 51
40 24 8 104 16 278 28 507 38 929 21
45 24 LR 104 16 278 28 507 38 929 51
50 24 8 104 16 278 28 507 38 929 51
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Now we have performed further experiments to find out some new characteristics of those
maximin LHDs. The experimental results are given in the Tables 5.3(a) — 5.3(h). In the
tables Dy and Dy“* denote Dy value (maximum inter-site pair-wise distance value of
LHD) of the maximin LHD regarding Manhattan and Euclidean distance measure
respectively. It is remarked that the D™ and Dy"? values, shown in the tables are new
characteristics of the maximin LHDs which are not available in the literature. So we could
not compare the results. It is observed in the tables that the impact of trials is not
significance regarding the Du™ and Du™ values too. But there is one important

(L2) (L2) DI(LH

observation is that when D, value is unchanged then corresponding Dy

Dy and Dy™ values are also almost unchanged regarding number of trials.

Table 5.7 (b): Impact of trials in ILS approach regarding DM(IH’ and Dy"" values for k=3

N =30 N =35

= N =40 =45 =50
Tl’ials .DM[U-"J-J1 I DM(LI} DM(u) | DM(LU D]\J(LEJ | DM{L” DM(LZ) | DM(LI) DM(u) | DM(L”

1 1341 63 1785 7] 2561 87 3140 94 4371 113

5 1341 63 2025 77 2718 90 3158 96 4371 113

10 1358 61 1883 75 2718 90 3158 96 4083 | 108

15 1358 61 1883 75 2718 90 3181 97 4083 108

20 1358 61 1883 75 2718 90 3181 97 4083 108

25 1358 61 1883 75 2718 90 3181 97 4083 108

30 1358 61 1883 75 2718 90 3181 97 4083 108

35 1358 61 1770 72 2718 90 3181 97 4083 108

40 1358 61 1770 72 2718 90 3181 97 4580 114

45 1358 61 1770 72 2406 84 3181 97 4371 113

50 1358 61 1770 72 2406 84 3181 97 4371 113

Table 5.7 (c): Impact of trials in ILS approach regarding Dy and Dy"" values for k =4

N=5 N=10 N=15
Trials DM(LZ) DM(L” DM[LTJ Du(Ln DM{u} DM(LI)
| 25 9 138 21 305 33
5 25 9 138 21 290 32
10 25 9 138 21 290 32
15 25 9 138 21 290 32
20 25 9 138 21 290 32
25 25 9 138 2] 290 32
30 25 9 138 21 290 32
35 25 9 138 22 290 32
40 25 9 138 22 290 32
45 25 9 138 22 290 32
50 25 9 138 i 290 32

75




Table 5.7 (d): Impact of trials in ILS approach regarding Dy'"> and D" values for k=5

= N=10 N=15 = =25
Trials DM'(LZJ DMI'(LI) DM(LZ) DM(LI} DM(LE) DM{L” DM(LZ) DM(L]) DM(LE) DM{L”

1 26 10 | 173 | 27 | 376 | 42 | 640 | 54 | 1165 [ 73
5 26 10 | 165 | 25 | 333 | 38 | 622 | 53 | 1165 | 73
10 | 26 10 | 165 | 25 | 333 | 38 | 622 | 53 | 1165 | 73
15 [ 26 10 | 165 | 25 | 333 | 38 | 615 | 53 | 1165 | 73
20 | 26 10 | 165 | 25 | 333 | 38 | 615 | 53 | 1148 | 67
25 | 26 10 | 165 | 25 | 333 | 38 | 615 | 53 | 1119 | 69
30 | 26 10 | 165 | 25 | 333 | 38 | 618 | 54 | 1119 [ &9
35 | 26 10 | 165 | 25 | 33 | 38 | 754 | 60 [ 1119 | &9
40 | 26 10 | 165 | 25 | 33 | 38 | 754 | 60 | 1119 | 69
45 | 26 10 | 165 | 25 | 336 | 38 | 754 | 60 | 1119 | 69
50 [ 26 10 | 165 | 25 | 336 | 38 [ 754 | 60 69

1119

Table 5.7 (e): Impact of trials in ILS approach regarding D™ and Dy values for k=6

N=5 = N=15
Trials DM{LE) DM(L” Du(u} D\.-'I(L” DM“J'J DM{L])

1 36 14 217 3l 420 48
5 36 14 214 34 420 48
10 36 14 215 34 418 45
15 36 14 206 32 406 48
20 36 14 206 32 422 48
25 36 14 206 32 422 48
30 36 14 206 32 422 48
35 36 14 206 32 422 48
40 36 14 206 32 422 48
45 36 14 214 30 413 48
50 14 214 30 413 48

36

Table 5.7 (f): Impact of trials in ILS approach regarding Dy*> and Dy values for k =7

N =5 N=10 N=15 N =20 =25
Trials DM(LE) DM(LU DM(L"I) DM‘L” DM(LIJ DM(U) Du(u) DM(LI) DM(L“ DM(U)

1 39 15 253 39 535 56 845 72 1305 90
5 39 15 253 39 529 55 840 70 1304 90
10 39 15 262 39 534 56 gl1 73 1304 90
15 39 15 255 39 534 56 811 73 1304 90
20 39 15 255 39 534 56 811 73 1304 50
25 39 15 255 39 534 56 811 73 1304 90
30 39 15 255 39 535 55 811 73 1304 90
35 39 15 255 39 546 58 811 73 1304 90
40 39 15 255 39 546 58 821 71 1304 90
45 39 15 255 39 546 58 821 71 1304 90
50 39 15 255 39 546 58 821 71 1304 . 90
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Table 5.7 (g): Impact of trials in ILS approach regarding Dy and Dy values for k= 8

N=5 N=10 N=15
Trials Dy Dy Dy Dy Dy Dy

1 40 16 295 45, 616 66
5 40 16 314 48 616 66
10 40 16 314 48 616 66
15 40 16 314 48 616 66
20 40 16 314 48 615 63
25 40 16 314 48 615 63
30 40 16 314 48 615 63
35 40 16 314 48 612 64
40 40 16 314 48 612 64
45 40 16 314 48 612 64
50 40 16 314 48 612 64

Table 5.7 (h): Impact of trials in ILS approach regarding Dy and Dy values for k=9

N=5 N =10 =15 N =20
Trials | D™ | D™ | D™ | D™ | D™ | D™ | D™ [ D™

1 46 13 179 36 692 72 1145 90
5 46 13 179 36 692 | 72 1145 90
10 46 13 177 37 692 g5 1138 93
15 46 18 177 37 692 72 1138 93
20 46 B 177 37 692 72 1138 93
25 46 18 177 37 692 72 1138 93
30 46 18 174 33 692 72 1138 94
35 46 13 174 38 692 72 1138 94
40 46 13 174 38 692 72 1138 94
45 46 13 174 38 692 72 1138 94

50 46 18 174 38 692 72 1138 94

5.5 Some New Best Op'timal LHDs Regarding ILS Approach

In the experimental study we have obtained some best’ maximin LHDs compare to

available one in the literature namely web portal http://www.spacefillingdesigns.nl. The

experimental results are displayed in the Table 5.8. In the table 5.8 Pre D, denotes
maximin LHDs given in (Grosso et al. 2009) measured in Euclidean distance measure and
New D,™® denotes the maximin LHDs obtained by our experiments measured in
Euclidean distance measure too. It is noted that the initial solution of Grosso et al. (2009)
and that of our experiments for the ILS algorithm are might be different. From this
observation it may again conclude that the initial solution may effect on finding the optimal

solution.
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Table 5.8: Some improved LHDs values compared to previous ones by ILS approach

k N Pre D,™ New D,,J,"*?
3 30 105 [109,2]
3 40 152 [161,1]
5 15 131 [133,1]
5 25 286 [291,1}
7. 20 360 [368.2]

Improved maximin LHD (D1= 161, N=40, k=3)
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Figure 5.3: Improved maximin LHD for (N, k) = (40, 3) where D, =161

Improved maximin LHD (D1= 109, N=30, k= 3)

Figure 5.4 : Improved maximin LHD for (N, k) = (30, 3) where D,*?=109
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Now we have displayed graphically two three-dimensional improved maximin LHDs in
Figure 5.3 and 5.4 for (N, k) = (40, 3) and (30, 3) respectively. Since for more than three
factors it is impossible to display the LHD graphically, so we have displayed other
improved maximin LHDs in tabular form. Table 5.9, 5.10 and 5.11 display remaining

improved maximin LHDs namely (N, k) = (16, 5), (25, 5) and (20,7).

Table 5.9: Improved (Best) maximin LHD for (N, k) = (16, 5) obtained by ILS approach

Points Factor 1 Factor 2 Factor 3 " Factor 4 Factor 5
Xp 0 16 9 20 15
Xy i5 8 5 4 9
X2 2 5 22 | 9 7
X3 3 20 15 8 . 2
X4 4 7= =~ 17 3 19
X5 5 0 8 19 10
X5 6 7 4 11 24
X7 7 21 24 17 ' 13
Xg 8 23 2 7 12
Xo 38 6 20 18 20
X10 10 9 19 24 3
Xy 11 1 _ 16 2 18
X1z 12 11 3 15 0
x13 13 24 10 | 22 6
X4 14 22 12 16 23
X5 15 10 13 0 4
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Table 5.10: Improved (Best) maximin LHD for (N, k) = (25, 5) obtained by ILS approach

N Factor 1 Factor 2 Factor 3 Factor 4 Factor 5
Xo 0 16 9 20 15
X) 1 8 5 4 9
X 2 5 22 9 7
X3 3 20 _ 15 8 2
X4 4 17 17 3 19
Xs 5 0 19 10
X 6 7 doie, 11 24
7 7 21 2 o 13
Xg 8 23 2 7 12
Xg 9 6 20 18 20
X10 10 9 19 24 3
X1 11 1 16 2 18
X1 12 11 3 15 0
¥ig 13 24 10 2 6
X14 14 922 12 16 23
X1s 15 10 13 0 4
iz 16 12 1 21 16
x17 17 3 0 5 11
X8 18 15 7 . 1 21
X19 19 18 21 12 1
X20 20 13 23 6 17
X1 21 2 14 14 5
X2 22 14 18 23 14
X2 23 4 11 13 22
X2 24 19 6 10 8
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Table 5.11: Improved (Best) maximin LHD for (N, k) = (20, 7) obtained by ILS approach

N Factor 1 Factor 2 Factor 3 Factor4 Factor5 Factor6 Factor7

X0 0 18 8 8 T2 12 6
x1 1 7 12 12 14 4 0
X 2 13 2 16 12 3 15
X3 3 4 14 4 6 6 16
X4 4 2 4 18 4 14 7
Xs 5 16 6 0 18 8 8
X6 6 10 16 14 17 16 14
X7 7 5 9 2 s 19 1
Xs 8 11 0 6 8 18 17
X9 9 19 18 11 10 0 10
X10 10 0 1 8 19 9 9
X1l 11 8 19 13 1 11 2
x12 12 14 £ 40 17 © 0 10 18
x13 13 9 3 5 3 2 5
X14 14 3 13 19 11 1 11
Y15 15 17 15 1 5 15 12
X16 16 15 5 15 13 13

Xt7 17 6 17 3 16 7 a4
X138 18 12 7 7 15 5 19
“Xi 19 1 11 10 7 17 13

81



01.

02.

03.

04.

05.

06.

07.

08.

09.

10.

11.

REFERENCES

Aparna D., 2012, “Iterated Local search Approaches For Maximin Latin Hypercube
Designs”, M. Phil thesis, Department of Mathematics, Khulna University . of
Engineering & Technology, Khulna.

Applegate D., W. Cook and A. Rohe, 1999, “Chained Lin-Kernighan for large
traveling salesman problems”, Technical Report No. 99887, Forschungsinstitut fur
Diskrete Mathematik, University of Bonn, Germany.

Arora S., B. Barak, M. Brunnermeier and R. Ge., May 2011, “Computational
Complexity and Information Asymmetry in Financial Products”, Communication of
the ACM, Vol. 54, pp. 101-106.

Audze P. and V. Eglais, 1977, “New approach to planning out of experiments,
problems of dynamics and strength”, Vol. 35, pp. 104-107.

Barthelemy J. F. M. and R. T. Haftka, 1993, “Approximation concepts for optimum
structural design — A review”, Structural Optimization, Vol. 5(3), pp. 129-144.

Bates S. J., J. Sienz and D. S. Langley, 2003, “Formulation of the Audze-Eglais
Uniform Latin Hypercube design of experiments”, Advanced in Engineering Software,

Vol. 34, Issue 8, pp. 493-506.

Bates S. J., J. Sienz and V. V. Toropov, 2004, “Formulation of the optimal Latin
hypercube design of experiments using a permutation genetic algorithm”, AIAA 2004,
pp- 1-7.

Battiti R. and M. Protasi, 1997, “Reactive search, a history-based heuristic for the
MAX-SAT”, ACM Journal of Experiments Algorithmic, Vol. 2.

Baum E. B., 1986(a), “Towards practical “neural” computation for combinatorial
optimization problems”, In J. Denker, editor, Neural Networks for Computing, AIP
conference proceedings, pp. 53—64.

Baum E. B., 1986(b), “Iterated descent: A better algorithm for local search in

combinatorial optimization problems”, Technical report, Caltech, Pasadena, CA

Manuscript.

Baxter J., 1981, “Local optima avoidance in depot location”, Journal of the

Operational Research Society, Vol. 32, pp. 815-819.

82




12.

13

14.

15.

16.

17.

18.

1.9z

20.

22.

Blondel V. D., J. N. Tsitsiklis, 2000, “A survey of computational complexity results in

systems and control”, Vol. 36, pp. 1249-1274, www.elsevier.com/locate/automatic.

Butler N. A., 2001, “Optimal and orthogonal Latin Hypercube designs for computer
experiments”, Biometrika, Vol. 88(3), pp. 847-857.

Cha S. H., 2007, “Comprehensive Survey on Distance/Similarity Measures between
Probability Density Functions”, International Journal of Mathematical Models And

Methods In Applied Sciences, Issue 4, Vol. 1, pp. 34-40.

Chen V. C. P., K. L. Tsui, R. R. Barton and J. K. Allen, 2003, “A review of design and
modeling in computer Experiments”, The University of Texas at Arlington, Arlington,
TX 76019, USA., published in Handbook of Statistics, Elsevier Science. Vol. 22, pp.
231-261.

Cioppa T. M., 2002, “Efficient nearly orthogonal and space-filling experimental
designs for high-dimensional complex models”, PhD thesis, Naval postgraduate school

Monterey, California, USA.

Crary S. B., P. Cousseau, D. Armstrong, D. M. Woodcock, E. H. Mok, O. Dubochet,
P. Lerch and P. Renaud, 2000, “Optimal design of computer experiments for
metamodel generation using I-OPTTM”, Computer Modeling in Engineering &
Sciences, Vol. 1(1), pp. 127-139.

Crary S. B., 2002, “Design of computer experiments for metamodel generation”,

Analog Integrated Circuits and Signal Processing, Vol. 32(1), pp. 7 - 16.

Crdmbecq K., E. Laermans and T. Dhaene, 2011, “Efficient space-filling and non-
collapsing sequential design strategies for simulation-based modeling”, European
Journal of Operational Research, Vol. 214(3), pp. 683-696.

Currin C., T. Mitchell, M. D. Morris and D. Ylvisaker, 1991, “Bayesian prediction of
deterministic functions, with applications to the design and analysis of computer '

experiments”, Journal of the American Statistical Association, Vol. 86, pp. 953-963.

. Dam E. R. van, 2005, “Two-dimensional minimax Latin hypercube designs”, CentER

Discussion Paper 2005-105. Tilburg University.

Dam E. R. van, B. G. M. Husslage, D. den Hertog and J. B. M. Melissen, 2007(a),
“Maximin Latin hypercube designs in two dimensions”, Operations Research, Vol.

55(1), pp. 158-169.

83



23,

24.

28

26.

2.

28.

29.

30.

31

32

33.

34,

35,
36.

Dam E. R. van, G. Rennen and B. Husslage, 2007(b), “Bounds for maximin Latin
hypercube designs”, Department of Econometrics and Operations Research, Diss.
Paper, Tilburg University, The Netherlands.

Erkut E., 1990, “The discrete para-dispersion problem”, European Journal of
Operational Research, Vol. 46(1), pp. 48-60.

Fang K. T., C. Ma and P. Winker, 2000(a), “Centered L2-Discre[;)ancy of Random
Sampling and Latin Hypercube Design, and Construction of Uniform Designs”,
Mathematics of Computation, Vol. 71(237), pp. 275-296.

Fang K. T., D. K. J. Lin, P. Winkler and Y. Zhang, 2000(b), “Uniform design: theory

‘and application”, Technometrics, Vol. 42, pp. 237-248.

Fang K. T., R. Li and A. Sudjianto, 2006, “Design and Modeling for Computer
Experiments”, CRC Press, New York.

Felipe A., C. Viana and G. Venter, 2009(Oct), “An Algorithm for Fast Optimal Latin
Hypercube Design of Experi'ments“, Dol: 10.1002/nme.2750, pp.1-4.

Fuerle F. and J. Sienz, 2011, “Formulation of the 'Audze-Eglais Uniform Latin
Hypercube design of experiments for constrained design spaces”, Advanced in
Engineering Software, Vol. 42, pp. 680-689.

Giunta A. A., S. F. Wojtkiewicz and M. S. Eldred, 2003, “Overview of modern design
of experiments methods for computational simulations”, ATAA 20030649, pp. 1-17.
Glover F. and M. Laguna, 1993, “Modern heuristic techniques for combinatorial
problems”, Oxford: Blackwell, pp. 701-715.

Grassberger P., 1997, “Pruned-enriched Rosen bluth method: Simulations of &
polymers of chain length up to 1000000”, Phys. Rev., Vol. 56(3), pp. 3682-3693.
Grosso A., A. R. M. J. U. Jamali and M. Locatelli, 2008, “ Iterated Local Search
Approaches to Maximin Latin Hypercube Designs”, Innovations and Advanced
Techniques in Systems, Computing Sciences and Software Engineering, Springer
Netherlands, pp. 52-56.

Grosso A., A. R. J. U. Jamali and M. Locatelli, 2009, “Finding Maximin Latin
Hypercube Designs by Iterated Local Search Heuristics”, European Journal of
Operations Research, Elsevier, Vol. 197, pp. 541-547.

Gupta K. P., 2000, “Topology”, Pragati Prakashan (10th Ed.), India, Chapter 8, pp. 64.

Hadzilacos V., 2015, “Time complexity of algorithms”, http://www.cs.toronto.edu

/~vassos/teaching /c73/handouts/brief-complexity.pdf.

84



=

37

38.

39,

40.

41.

42.

43.

44,

45.

46.

47.

48.

Hamming R. W., 1950, “Error Detecting and Error Correcting Codes”, Bell System
Technical Journal, Vol. 26(2), pp. 147-160.

Hasnat A., S. Halder, D. Bhattacharjee, M. Nasipuri and D. K. Basu, 2014,
“Comparative study of distance metrics for finding skin color similarity of two color
facial images”, Computer Science and Engineering, Government College of
Engineering and  Textile  Technology, India, [oflline] http://airccj.org/
CSCP/vol3/csit3210.pdf.

Helton J. C. and F. J. Davis, 2000, “Sampling-based methods, in Sensitivity Analysis”,
Ed. A. Saltelli, K. Chan and E. M. Scott, Chichester: John Wiley & Sons.

Heylighen F.-, 1990, “Relational Closure: a mathematical concept for distinction-
making and complexity analysis”, in: Cybemetics and Systems '90, R. Trappl (ed.),
(World Science Publishers), pp. 335-342.

Hongquan Xu, 1999, “Universally optimal designs for computer experiments”,
Statistica Sinica, Vol. 9, pp. 1083-1088.

Husslage B., E. R. van Dam and D. den Hertog, 2005, “Nested maximin latin
hypercube designs in two dimensions”, CentER Discussion Paper No. 2005-79.
Husslage B., G. Rennen, E. R. van Dam and D. den Hertog, 2006, “Space—Filling
Latin Hypercube Designs for Computer Experiments”, CentER Discussion Paper No.
2006-18. '

Hwan 1. Y., 2007, “Uncertainty and sensitivity analysis of time-d_ependent effects in
concrete structures”, Engineering Structures, Vol. 29, pp. 1366-1374.

Iman R. L. and W. J. Conover, 1982(a), “A distribution-free approach to inducing rank
correlation among input variables”, Comm. Stat. Part B — Simulation Computation,
Vol. 11, pp. 311-334.

Iman R. L. and W. J. Conover, 1982(b), “Small-sample sensitivity analysis techniques
for computer models, with an application to risk assessment. Communications in
Statistics — Part A”, Theory and Methods 17, 1749-1842.

Iman R. L. and .J. C. Helton, 1985, “A comparison of uncertainty and sensitivity
analysis techniques for computer models”, Report NUREG/CR-3904, - 1461.
Albuerque: Sandia National Laboratories.

Jamali A. R. M. J. U., 2009, “Heuristic Approaches for Maximin Distance and Packing
Problems”, Ph.D. dissertation, Dipartimento di Informatica, Universitd degli Studi di

Torino, Turin, Italy.

85



49.

50.

31

i .

53.

54.

53.

56.

Y

58.

59,

60.

6l.

Jamali A. R. M. J. U, A. Dey, A. Grosso and M. Locatelli, 2010, “Correlation
Analysis of the Latin Hypercube Designs Obtaining by ILS Approach”, International
Conference on Mechanical, Industrial an Energy Engineering 2010, Khulna,
BANGLADESH, pp. MIE10-078-1-6.

Jin R.,, W. Chen and A. Sudjianto, 2005, “An efficient algorithm for constructing
optimal design of computer experiments”, Journai of Statistical Planning and
Inference, Vol. 134(1), pp. 268-287.

Johnson M. E., L. M. Moore and D. Ylvisaker, 1990, “Minimax and maximin distance
designs”, Journal of Statistical planning and inference, Vol. 26, pp.131-148.

Joseph V. R. and Y. Hung, 2008, “QOrthogonal-Maximin Latin Hypercube Designs”,
Statistica Sinica, Vol. 18, pp. 171-186.

Jourdan A. and J. Franco, 2009, “Plans d’experiences numeriques d’information de
Kullback—Leibler minimale”, J. Soc. Fr. Stat., Vol. 150(2), pp- 52-64.

Jourdan A. and J. Franco, 2010, “Optimal Latin Hypercube designs for the Kullback-
Leibler Criterion”, AStA Advances in Statistical Analysis, Springer-Verlag, DOL
10.1007/s10182-010-0145-y, Vol. 94, pp. 341-351.

Kirkpatrick S., J. C. D. Gelatt and M. P. Vecchi, 1983, “Optimization by Simulated
Annealing”, Science, Vol. 220, pp. 671-680.

Kleijnen J. P. C., 1997, “Sensitivility analysis and related analysis: a review of some
statistical techniques”, Journal of Statistics Computer Simul_ation, Vol. 57, pp. 111- 47,
Krige D. G., 1951, “A statistical approach to some mine valuations and allied
problems at the Witwatersrand”, Master’s thesis, University of Witwatersrand.

Lee C. Y., 1958, “Some properties of non-binary error-correcting codes”, IRE
Transactions on Information Theory, Vol. 4, pp. 77-82.

Lee T. H. and J. J. Jung, 2000, “Maximin Eigenvalue Sampling of Kriging model”,
10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, 30
August- 1 September 2004, Albany, New York.

Levy S.,D. M. Steinberg, 2010, “Computer experiments”, Adv. Stat. Anal. Vol. 94(4),
pp. 311-324.

Li W. W. and C. F. J. Wu, 1997, “Columnwise-Pairwise Aigorithms With
Applications to the Construction of Supersatufatcd Designs”, Technometrics,
American Society for Quality Control and American Statistical Association,

Alexandria, Va, USA, Vol. 39(2), pp. 171-179.

86



62. Li W. and Q. Y. Kenny, 2009, “Optimal Symmetric [atin Hypercube Designs’s

Available in hit :Nwww.csom.umn.edufWWWPaoesKFacult /W Li/research/super.ps.

63. Liefvendahl M. and R. Stocki, 2006, “A study on algorithms for optimization of Latin
hypercubas“, Journal of Statistical Planning and Inference, Vol. 136 (9), pp- 3231-
3247.

64. Lin D. K.J. and D. M. Steinberg, 2006, “A Cohstmction Method for Orthogonal Latin
Hypercube Designs’, Biometrika, Oxford University Press, Vol. 93(2), pp- 279 -288.

65. Lourenco H. R, 0. C. Marting and T. St"utzle, 2001, “A beginner’s introduction to

 Iterated Local Search”, In Proceedings of MIC’2001-Meta-heuristics [nternational
Conference, Porto-Portugal, Vol. 1, pp- 1-6.

66. Lourenco H. B 0. G Martin and T. Stutzle, 2002, “In Tterated Local Search
Handbook of Metaheuristics”, ISORMS 57(Eds.: Glover F. and G. Kochenberger),
Kluwer, pp- 321-353.

67. Martin O., S. W. Otto and E. W. Felten, 1991, “Large-step Markov chains for the
traveling salesman problem”, Complex Systems, Vol. 5(3), pp. 299-326.

68. Martin O. and S. W. Otto, 1996, “Combining simulated annealing with local search
heuristics”, Annals of Operations Research, Vol. 63, pp. 57-175.

69. McKay M. D., R. J. Beckman and W. J. Conover, 1979, “A comparison of three
methods for selecting values of input variables in the analysis of output from a
computer code”, Techno metrics, Vol. 21, pp. 239-245.

70. Miskiewicz, 2010, «Analysis of Time Series Cc;nelafion, The Choice of Distance
Metrics and Network Structure”, Acta Physica Polonica, Vol. 121 No. 2-B, pp. 25-
27. |

71. Mittelmann H. and J. Pengy, 2001, “Egtimating Bounds for Quadratic Assignment
Problems Associated with Hamming and Manhattan Distance Matrices based on Semi
definite Programming’’, WWW.ogtimization-online.org! DB FILE/2008/05/ 1980.pdf.

72. Morris M. D., 1991, “Factorial plans for preliminary computational experiments”,
Technometers, Vol. 33, pp.161-174.

73. Morris M. D. and T. J. Mitchell, 1995, “Exploratory designs for computer
experiments”, Journal of Statistical Planning and Inference, Vol. 43, pp. 381-402.

74. Mridha P., 2013, “Complexity analysis of iterated local search algorithm in
experimental domain for optimizing Latin hypercube designs”, M. Phil. Thesis Dept.
of Mathematics, KUET.

87



19

76.

I

78.

‘9.

80.

81.

82.

83.

84.

85.

86.

Nicolas  S., 2006-2007(Nov), “Algorithms & Comp1exity-1ntroduc{iun",
nstropa@computing.dcu.ie, CA313@Dubai City University.

Oliveto P. S., J. He and X. Yao, 2007, “Time Complexity of Evolutionary algorithms
for Combanatories Optimization: A Decade of Results”, International Journal of
Automation and Computing, Dol: 10.1{}0?;’511633-007-0281-3, Vol. 04(1), pp. 281-
293,

Olsson A., G. Sandberg and O. Dahlblom, 2003, “On Latin hypercube sampling or
structural reliability analysis”, Structural Safety, Elsevier, Vol. 25(1), pp. 47-68.

Owen A. B., 1994, «“Controlling correlations in Latin hypercube samples”, Journal of

the American Statistical Association, Vol. 89, pp. 151 7-1522.

Park J. S, 1994, “Optimal Latin hypercube designs for computer experimenfs",
Journal of Statistical Planning and Inference, Vol. 39, pp. 95-111.

Philip M. D., L. W, M. P. Widrlechne and E. S. Wurtele, 2009, “Weighted distance
measures for metabolomic data”, Bioinformatics, Vol. 00 no. 00, pp- 1-8.

Rossi-Doria O., M. Samples, M. Birattari, M. Chiarandini, J. Knowles, M. Manfrin,
M. Mastrolilli, L. Paquete, B. Paechter and T. Stutzle, 2002, “A Comparison of the
ﬁerformance of different metaheuristics on the timetabling problem”, In Proceedings
of PATAT 2002, The 4th international conference on the Practice and Theory of
Automated Timetabling, Gent, Belgium, pp. 115-1 19.

Sacks J. and D. Ylvisaker, 1985, “Model robust design in regression: Bayes theory”. In
Proc. of the Berkeley Conference in Honor of Jerzy Neyman and Jack Kiefer,
Wadsworth, Monterey, Calif (L. M. Le Cam and R. A. O_lshen, eds.), Vol. 2, pp. 667-
679.

Sacks J., J. William, Welch, Toby, J. Mitchell and H. P. Wynn, Nov. 1989, “Design
and Analysis of Computer Experiments”, Statistical Science, Vol. 4, No.4, pp. 409-
423.

Santner T. J., B. L. Williams and W. L. Notz, 2003, “The design and aﬂalysis of
computer experiments”, Springer Series in Statistics, Sprlinger-Verlag, New York.
Sebastiani P. and H. P. Wynn, 2000, “Maximum: entropy sampling and optimal
Bayesian experimental design”, J. R. Statist. Soc., Vol. 62(1), pp- 145-157.

Shewry M. and H. Wynn, 1987, “Maximum entropy design” Journal of Applied
Statistics, Vol.14, pp. 165-170.

88



87.

88.

89.

90.

91

92,

93.

94.

95:

96.

9.

98.

Singla A. and M. Karambir, 2012, “Comparative analysis & evaluation of Euclide_an
distance function and Manhattan distance function”, [nternational journal of advanced
research in computer science and software engineering, Vol. 2, Issue 7, pp.25-34.
Sobieski S. J. and R. T. Haftka, 1997, “Multidisciplinary aerospace design
optimization: Survey of recent developments”, Structural and Multidisciplinary
Optimization, Vol. 14(1), pp. 1-23.

Stein M., 1987, “Large sample properties of simulation using Latin hypercube
Sampling”, Technometrics, Vol. 29, pp. 143-51.

Steinberg G. D. M. and K. 1. N. Dennis, 2006, “A construction-method for orthogonal
Latin hypercube designs”, Biometrika, Vol. 93 (2), pp- 279-288.

Stinstra E. D., D. den Hertog, H. P. Stehouwer and A. Vestjens, 2003, “Constrained
maximin designs for computer experiments”, Technometrics, Vol. 45(4), pp. 340-346.
Stocki R., 2005, “A method to improve design reliability using optimal Latin
hypercube sampling”, CAMES, Vol. 12, pp. 393-411.

St'utzle T., 1998, “I ocal Search Algorithms for Combinatorial Problems —
Analysis, Improvements and New Applications™. PhD thesis, Darmstadt University of
Technology, Department of Computer Science.

Tang B. X., 1994, “A theorem for selecting oa-based latin hypercubes using a distance
criterion”, Communications in Statistics—Theory and Methods, Vol. 23, pp- 2047-

2058.

Tang B. X., 1998, “Selection Latin® hypercube designs using correlation criteria”,
Statist. Sinica, Vol. 8, pp- 65-77.

Toath F. L., 1971, « punktverteilungen in Einem Quadrat”, Studia Sci. Math,,
Hung., Vol. 6, pp- 439-442.

Vadivel A., A. K. Majumdar and S. Sura, 2003, “Performance comparison of distance
metrics in content-based Image retrieval applications”, Dept. of Computer Science
and Engineering, Indian Institute of  Technology, Kharagpur, India [online]

httD:ﬁwww.researchga_te.netf@licationf228576043 Performance comparison of dist

ance metrics_in content-based_image retrieval agglications.

Viana F. A. C., G. Venter and V. Balabanov, 2010, “An algorithm for fast optimal
Latin hypercube Design of experiments™, International Journal for Numerical Methods

in Engineering, Wiley inter science (DOL: 10.1002/nme.2750), Vol. 82, pp. 135-156.

89



“Adaptive Response Surface Method Using Inherited Latin

99. Wang G. G, 2003,
of the ASME, Journal of Mechanical Design,

Hypercube Design Points”,
Vol. 125, pp. 210-220.
/w/wiki.phtm?tittle=Big O notation.

Transactions

100.www.wikipedia.or

101.www.cs.toronto. cduf»—v?assosfteachinpf ¢73/handouts/brief-com.

102.www.spaceﬁllingdesiggs.nl.

103.Ye K. Q., 1998, “Orthogonal column Latin Hypercubes and their application in
computer experiments”, merican Statistical Association, Vol. 93,

pp.1430-1439.

journal of the A

104.¥e K. Q, W. Li and A. Sudjainto, 2000, «Algorithmic construction of optimal

Journal of Statistical Planning and Inference,

symmetric Latin hypercube designs”,

Vol. 90(1), pp. 145-159.

90



