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Abstract 

In this thesis the numerical study of the effect of temperature dependent physical 

properties on MHD natural convection flow of viscous incompressible fluid along a 

uniformly heated vertical wavy surface with heat generation has been investigated. The 

governing boundary layer equations are first transformed into a non-dimensional form 

using suitable set of dimensionless variables. The resulting nonlinear system of partial 

differential equations are mapped into the domain of a vertical flat plate and then solved 

numerically employing the implicit finite difference method, known as Keller-Box 

scheme. The numerical results of the surface shear stress in terms of skin friction 

coefficient and the rate of heat transfer in terms of local Nusselt number have been 

presented graphically for some selected values of appeared parameters consisting of 

thermal conductivity variation parameter XLi, heat generation parameter Q, magnetic 

parameter M, amplitude to the length ratio of wavy surface a and Prandtl number Pr. 

Some numerical results of the skin friction coefficient and the rate of heat transfer also 

have been presented in tabular forms. 
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CHAPTER 1 

Introduction 

The characteristics of natural convection flow of electrically conducting fluid in the 

presence of magnetic field along a wavy surface is important from the technical point of 

view and such type of problems have received much attention of many researchers. 

Natural convection occurs due to the variations in density, which is caused by the non-

uniform distribution of temperature or/and concentration of a dissolved substance. The 

natural convection procedures are governed essentially by three features namely the body 

force, the temperature difference in the flow field and the fluid density variations with 

temperature. The manipulation of natural convection heat transfer can be deserted in the 

case of large Reynolds number and very small Grashof number. Alternately, the natural 

convection should be the governing aspect for large Grashof number and small Reynolds 

number. The analysis of natural convection has been of considerable interest to engineers 

and scientists since it is important in many industrial and natural problems. There are 

many physical processes in which buoyancy forces resulting from thermal diffusion play 

an important role in the convective transfer of heat. Few examples of the heat transfer by 

natural convection can be found in geophysics and energy related engineering problems 

such as natural circulation in geothermal reservoirs, refrigerator coils, hot radiator used for 

heating a room, transmission lines, porous insulations, solar power collectors, spreading of 

pollutants etc. A very common industrial application of natural convection is free air 

cooling without the aid of fans, which can happen on small scales to large scale process 

equipment. 

Some times it is necessary to study the heat transfer from an irregular surface. If the 

surface is roughened the flow is disturbed by the surface and this alters the rate of heat 

transfer. Irregular surfaces are often present in many applications. It is often encountered 

in heat transfer devices to enhance heat transfer. Laminar natural convection flow from 

irregular surfaces can be used for transferring heat in different heat transfer devices, for 

examples, flat-plate solar collectors, flat-plate condensers in refrigerators, heat exchanger, 

functional clothing design, geothermal reservoirs and other industrial applications. They 

are widely used in space heating, refrigeration, air conditioning, power plants, chemical 



plants, petrochemical piants, petroleum refineries and natural gas processing. One 

common example of a heat exchanger is the radiator used in car/vehicles, in which the 

heat generated from engine transferred to air flowing through the radiator. Heat exchanger 

also widely used in industry both for cooling and heating large scale industrial processes. 

Another industrial application of wavy surface is injection molding system. Injection 

molding is used to create many things such as wire spools, packaging, bottle caps, 

automotive dashboards, pocket combs and plastic products available now a days. 

In heat transfer, sinusoidal wavy surface can be shown approximately in practical 

geometries. A good example is a cooling fm. Since cooling fins have a larger area than a 

flat surface, they are better heat transfer devices. Another example is a machine-roughened 

surface for heat transfer enhancement. The interface between concurrent or countercurrent 

two-phase flow is another example remotely related to this problem. Such an interface is 

always wavy and momentum transfer across is by no means similar to that across a 

smooth, flat surface, and neither is the heat transfer. Also a wavy interface can have an 

important effect on the condensation process. 

The word magnetohydrodynamics (MHD) is derived from magneto- meaning magnetic 

field, hydro-meaning liquid and dynamics meaning—movement. Magnetohydrodynamics 

(MHD) is the branch of continuum mechanics, which deals with the flow of electrically 

conducting fluids in presence of electric and magnetic fields. Probably the advance 

towards an understanding of such phenomena comes from the field of astrophysics and 

geophysics. It has long been assumed that most of the matter in the universe is in the 

plasma or highly ionized state and much of the basic knowledge in the area of 

electromagnetic fluid dynamics evolved from these studies. 

The motion of the conducting fluid across the magnetic field induced electric currents 

which change the magnetic field and the action of the magnetic field on these currents give 

rise to mechanical forces, which modify the fluid flow. The interaction of the magnetic 

field and the moving electric charge carried by the flowing fluid induces a force, which 

tends to oppose the fluid motion near the leading edge. The velocity is very small, so that 

the magnetic force that is proportional to the magnitude of the longitudinal velocity and 

acts in the opposite direction is also very small. Consequently, the influence of the 
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magnetic field on the boundary layer is exerted only through induced forces within the 

boundary layer itself without additional effects arising from the free stream pressure 

gradient. Thus there is a two-way interaction between the flow field and the magnetic 

field, the magnetic field exerts force on the fluid by producing induced currents and 

induced currents change the original magnetic field. 

Many natural phenomena and engineering problems are susceptible to MHD analysis. It is 

useful in astrophysics. Geophysical encounter MHD phenomena in the interactions of 

conducting fluids and magnetic fields those are present in and around heavenly bodies. 

Engineers employ MHD principles in the design of heat exchanger, pumps and flow 

meters, in space vehicle propulsion, control and re-entry, in creating novel power 

generating systems and developing confinement schemes for controlled fusion. The most 

important application of MIlD are in the generation of electrical power with the flow of an 

electrically conducting fluid through a transverse magnetic field, electromagnetic pump, 

the MHD generator using ionized gas as an armature, electromagnetic pumping of liquid 

metal coolants in nuclear reactors. Other potential applications for MHD include 

electromagnets with fluid conductors, various energy conversion or storage devices and 

magnetically controlled lubrication by conducting fluids etc. 

As a branch of plasma physics, the field of MHD consists of the study of a continuous 

electrically conducting fluid under the influence of electromagnetic fields. A related 

application is the use of MHD acceleration to shoot plasma into fusion devices or to 

produce high-energy wind tunnels for simulating hypersonic flight. Originally, MHD 

included only the study of strictly incompressible fluid, but today the terminology is 

applied to studies of partially ionized gases as well. 

Most of the liquids and gases are poor conductors of electricity. In the case when the 

conductor is either a liquid or gas, electromagnetic forces will be generated which may be 

of the same order of magnitude as the hydrodynamical and inertial forces. Thus the 

electromagnetic force will have to take into account with the other forces in the equation 

of motion. 

Joule heating is the heating effect of conductors carrying currents. Joule heating 
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occurs when electric current passes through a material and material's resistivity to the 

current causes heat generation. When current flows in an electrical conductor such as wire, 

electrical energy is lost due to the resistance of the electrical conductor. This lost electrical 

energy is converted into thermal energy called Joule heating. One common example of 

Joule heating is light bulb where electrical energy converts to thermal energy. 

Joule heating is caused by interactions between the moving particles that form the current 

(usually, but not always, electrons) and the atomic ions that make up the body of the 

conductor. Joule heating is also referred to as Ohmic heating or Resistive heating because 

of its relationship to Ohm's law. 

It was first studied by James Prescott Joule in 1841. It is the process by which the passage 

of an electric current through a conductor releases heat. Joule's first law is also known as 

Joule effect. It states that heat generated by a constant current passing through a resistive 

conductor for a time whose unit is Joule. It is also related to Ohm's first law. The SI unit 

of energy was subsequently named the Joule and given the symbol J. The commonly 

known unit of power, the watt, is equivalent to one joule per second. 

Physical properties like viscosity and thermal conductivity may be changed significantly 

with temperature. The viscosity of liquids decreases and the viscosity of gases increases 

with temperature. The viscosity of air is 1.3289 kg m 1s 1 , 2.671 kg m's and 3.625 kg m 

1s 1  at 1000C, 500 °C and 8000C temperature respectively. The viscosity of water is 

1006.523 poise, 471.049 kg m 1s', 282.425 kg ms and 138.681 kg ms at 200C, 600C, 

100°C and 200°C temperature respectively (Cebeci and Bradshow (1984)). For a liquid, it 

has been found that the thermal conductivity k varies with temperature in an 

approximately linear maimer in the range from 0 to 400°F (Kays (1966)). To predict the 

behavior of flow accurately, it is necessary to take into account viscosity and thermal 

conductivity. 

A scalar function whose contour lines define the streamlines is known as the stream 

function. The stream function t,u is constant along a streamline. 

Fluids, which obey Newton's law of viscosity, are called as Newtonian fluids. Common 
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fluids like water, air, and mercury are all Newtonian fluids. Fluids, which do not obey 

Newton's law of viscosity, are called as non-Newtonian fluids. For such fluids the shear 

stress is not proportional to the velocity gradient. Fluids like blood, Paints, coal tar, liquid 

plastics and polymer solution are all non-Newtonian fluids. 

Taking the x-axis to be horizontal and the y-axis to be vertically upwards, a motion in 

which the equation of the vertical section of the free surface is of the form 

Y. = U(X) = asin(i) when a = 0, the profile is y = 0 which is the mean level. The 

maximum value of y, namely a, is known as the amplitude-to-length ratio of the wave. 

The elevation is known as crest. The distance between two consecutive crests is known as 

the wavelength and is denoted by L = 21r/n, where n is the wave number. 

1.1 Temperature Dependent Physical Properties 

The viscosity and thermal conductivity of the fluid to be proportional to a linear function 

of temperature. Two semi-empirical formulae were proposed by Charraudeau (1975). 

Arunachalam and Rajappa (1978) studied thermal boundary layer in liquid metals with 

variable thermal conductivity. Gray et al. (1982) studied the effect of significant viscosity 

variation on convective heat transfer in water—saturated porous media. Transient free 

convection flow with temperature dependent viscosity in a fluid saturated porous media 

has shown by Mehta and Sood (1992). As per their investigation the flow characteristics 

substantially change when the effect of temperature dependent viscosity considered. 

Mehta and Sood (1993) extended their works by considering effect of temperature 

dependent viscosity on the free convective flow across an impermeable partition. The 

effect of temperature dependent viscosity on the free convective laminar boundary layer 

flow past a vertical isothermal flat plate in the region near the leading edge have been 

studied by Kafoussius and Williams (1995). Kafoussius and Rees (1995) also studied 

numerical study of the combined free and forced convective laminar boundary layer flow 

past a vertical isothermal flat plate with temperature dependent viscosity. Hady, Balder et 

al. (1996) studied mixed convection boundary layer flow on a continuous flat plate with 

variable viscosity. Chaim (1998) investigated heat transfer in a fluid with variable thermal 

conductivity over a linearly stretching sheet. Elbashbeshy (2000) analyzed the free 



convection flow along a vertical plate, taking into account the variation of the viscosity 

and thermal diffusivity with temperature in the presence of the magnetic field. Hossain et 

al. (2000) investigated the natural convection flow past a permeable wedge with uniform 

surface heat flux for the fluid having temperature dependent viscosity and thermal 

conductivity. They considered the various configurations of wedge from Blasius flow to 

Hiemenz flow. They used three distinct methodologies; namely, the perturbation method 

for small values of the transpiration parameter 4, the asymptotic solutions for large values 

and an implicit finite difference method for all values of 4 to solve the equations. They 

concluded that the dimensionless dynamic viscosity as well as the thermal conductivity of 

the fluid approach unity at the outer edge of the boundary layer for values of all the 

pertinent parameters, which was trivial. Hossain and Munir (2000) presented mixed 

convection flow from a vertical flat plate with temperature dependent viscosity. Unsteady 

flow of viscous incompressible fluid with temperature dependent viscosity due to a 

rotating disc in presence of transverse magnetic field and heat transfer is studied by 

Hossain and Wilson (2001). Hossain and Munir (2001) have studied numerically natural 

convection flow of a viscous fluid about a truncated cone with temperature dependent 

viscosity and thermal conductivity. They used the perturbation method to obtain the 

solution in the regimes near and far away from the point of truncation. They also used the 

implicit finite difference method for solving the governing equations numerically. They 

compared the perturbation solutions with the finite difference solutions and found in 

excellent agreement. Hossain et al. (2001) investigated the effect of radiation on the free 

convection flow of fluid with variable viscosity from a porous vertical plate. Munir et al. 

(2001 a) studied natural convection of a viscous fluid with viscosity inversely proportional 

to linear function of temperature from a vertical wavy cone. They considered the 

boundary-layer regime when the Grashof number was very large and assumed that the 

wavy surfaces have 0(1) amplitude and wavelength. They also considered the buoyancy 

forces assist the flow for various values of the viscosity variation parameter e, with the 

Prandtl number Pr = 0.71 and 7.0 which are appropriate for air and water respectively. 

They found the difference between the flow and heat transfer characteristics over a flat 

cone and a wavy one, respectively. For a wavy cone the isotherms showed a sinusoidal 

behavior, while for a flat cone these are parallel lines. Considering natural convection with 

variable viscosity and thermal conductivity from a vertical wavy cone Munir et al. (2001b) 



extended their works using the Kellar box method. The problem of natural convection of 

fluid with temperature dependent viscosity from a heated vertical wavy surface has been 

studied by Hossain et al. (2002). Mamun et al. (2005) investigated natural convection 

flow from an isothermal sphere with temperature dependent thermal conductivity. Molla et 

al. (2005) considered natural convection flow from an isothermal horizontal circular 

cylinder with temperature dependent viscosity. They considered the effects of viscosity 

variation parameter e and Prandtl number Pr on the velocity and viscosity distribution of 

the fluid as well as on the local rate of heat transfer in terms of the local Nusselt number 

Nu and the local skin-friction for fluids having Prandtl number, Pr ranging from 1.0 to 

30.0. They concluded that the assumption of the constant fluid properties might introduce 

severe errors in the prediction of surface friction factor and heat transfer rate. Rahman et 

al. (2008) investigated the effects of temperature dependent thermal conductivity on MHD 

free convection flow along a vertical flat plate with heat conduction. The numerical 

calculation was proceeding in finite-difference method and the effect of various 

parameters on the velocity, temperature, local skin friction co-efficient and surface 

temperature profiles were shown by Rahman and AIim (2009) considering the numerical 

study of magnetohydrodynamic free convective heat transfer flow along a vertical plate 

with temperature dependent thermal conductivity. Nasrin and Aiim (2009) investigated 

MHD free convection flow along a vertical flat plate with thermal conductivity and 

viscosity depending on temperature. Numerical study on a vertical plate with variable 

viscosity and thermal conductivity has been investigated by Palani and Kim (2009). They 

assumed that the viscosity of the fluid is an exponential function and the thermal 

conductivity is a linear function of the temperature. They considered the unsteady 

boundary layer equations on neglecting the viscosity and thermal conductivity variation 

and they found substantial errors and concluded that the effects of the variation viscosity 

and thermal conductivity should be considered to predict more accurate results. 
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1.2 Computational Method 

The heat transfer and its governing equations including conservation forms of the Navier-

Stoke's system of equations and energy equation derived from the first law of 

thermodynamics, expressed in terms of the control volume/surface integral equations, 

which represents various physical phenomena. In order to visualize these thermo fluid 

flow scenarios, an approximate numerical solution is needed, which can be obtained by the 

Computational Fluid Dynamics (CFD) code.The governing equations of fluid mechanics 

and convective heat transfer are discretized in order to obtain a system of approximate 

algebraic equations, which then can be solved on a computer. The approximate values are 

applied to small domain in space and / or time so the numerical solution provides results at 

discrete locations in space and time. The accuracy of the experimental data depends on the 

quality of the tools used; the accuracy of numerical solution is dependent on the quality of 

discretization used. The CFD computation involves the creation of a set of numbers that 

constitutes a realistic approximation of a real life system. The result of the computation 

work improves the understanding of the behavior of a system. So, the CFD codes are very 

useful tools by which researcher can produce physically realistic result with good accuracy 

in simulation with fmite grids. The broad field of Computational Fluid Dynamics are the 

activities which cover the range from automation of well established engineering design 

methods to the use of detailed solution of the Navier-Stokes equations as substitutes for 

experimental research into the nature of complex flows. A wide range of Fluid Dynamics 

problems have been solved using CFD codes. CFD codes are more frequently used in the 

field where the geometry is complicated or some important feature that can not be dealt 

with standard methods. The complete Navier-Stokes equations are considered as the 

correct mathematical description of the governing equations of fluid motion. Most of the 

accurate numerical computations in fluid dynamics come from solving the Navier —Stokes 

equations, since the Navier-Stokes equations represent the cons. vation of momentum. 

There are four discretization methcis available for the high performance numerical 

computation of CFD. 

. Finite Volume Method (FVM) 

0 Finite Element Method (FEM) 



. Finite Difference Method (FDM) 
A 

. Boundary Element Method (BEM) 

1.3 Prandtl's Boundary Layer Theory 

An important contribution to fluid dynamics was made by L. Prandtl in 1904 by 

introducing the concept of boundary layer. He clarified the essential influences of 

viscosity in flows at high Renold's numbers by showing how the Navier-Stokes equation 

could be simplified to yield approximate solutions for overcoming the limitation. 

For convenience, consider laminar two-dimensional flow of fluid of small viscosity (large 

Renold's number) over a fixed semi infinite plate. It is observed that, unlike an ideal (non 

viscous) fluid flow, the fluid does not slide over the plate, but "sticks" to it. Since the plate 

is at rest, the fluid in contact with it will also be at rest. As we move outwards along the 

normal, the velocity of the fluid will gradually increase and at a distance far from, consider 

the plate the full stream velocity U is attained. However, it will be assumed that the 

transition from zero velocity at the plate to the full magnitude U takes place within the thin 

layer of the fluid in contact with the plate. This is known as the boundary layer. 

1.4 Some Useful Dimensionless Number 

Besides the inertia force, there always exist some additional forces which are responsible 

for fluid motion. The required conditions for dynamic similarity can always be obtained 

by considering the ratio of the inertia force and any one of the remaining forces (e.g., 

viscous force, gravity force, pressure force, elastic force and so on). Since ratios of two 

forces will be considered, we obtain some dimensionless number as discussed below: 

1.4.1 Reynold's Nniber 

The Reynold's number Re is defined as 

Re 
Inertia force 

= ________ 

Viscous force 



= 
Massx Accieration 

Shear stress x Crosssectional area 

= 
Volume x Density x (Velocity/Time) 

Shear stressx Crosssectional area 

Cross sectional area x Linear dimension x p x Velocity  
Time 

shear stress x crosssectional area 

(Velocity)2  x p V 2 p = VLp
= 
 VL 

p(i3u/ôy) ,u(V/L) p v 

where L and V denote the characteristic length and characteristic velocity respectively so 

that velocity will be proportional to V and ôu/ôy will be proportional to V/L. If for any 

flow problem Re is small then we can ignore the inertia force, whereas if Re is large then 

we can neglect the effect of the viscous force and consequently the fluid may be treated as 

non-viscous fluid. When the viscous-force is the predominating force, Reynolds number 

must be the same for dynamic similarity of two flows. 

1.4.2 Grashof Number 

The Grashof number is a dimensionless quantity used in analyzing the velocity 

distribution in free convection systems. In free convection, the driving force is a buoyancy 

force caused by a temperature gradient, as the fluid would be at rest in the absence of 

temperature .'ariations. The Grashof number is analogous to the Reynolds number in 

forced convection. 

Essentially, the Grashof number is a ratio of buoyant forces to viscous forces. 

Gr = Buoy ancy force 

Viscous force 
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pv?  

gf3ATV 

V 2  

When Gr >> 1, the viscous force is negligible compared to the buoyancy and inertial 

forces. When buoyant forces overcome the viscous forces, the flow starts a transition to 

the turbulent regime. For a flat plate in vertical orientation, this transition occurs around 

Gr= lOe+9. 

In terms of viscosity, the Grashof number can be defined as in the following 2 ways: 

Gr B
2

7  
/1 

where zip = total change in density betwecn regions of high temperature and low 

temperature. This can be obtained by expanding p in a Taylor series about the mean 

temperature. The most useful form for Mat lab application is: 

Gr= 
B3  p2  EJ/3g 

II 

where, 

fi = the inverse of the film (mean) temperature 

p = the density evaluated at the mean temperature 

g = the gravitational constant 

4 T = the temperature difference 

I- 



B = the distance between regions of high temperature and low temperature 

/1 = the viscosity of the convective fluid 

1.4.3 Prandtl Number 

The Prandtl number Pr is defined by 

Pr = 
Viscous discipation rate 

Thermal discipation rate 

Or, Pr= 
,ugc 

k 

where C, is the specific heat at constant pressure and k is the thermal conductivity. 

Evidently Pr depends only on the properties of the fluid. For air Pr = 0.71 approx. and for 

water (at 15°c) Pr = 7 approx., whereas for oils it is of the order of 1000 due to large 

values of p for oils. Prandtl number is the ratio of viscous force to the thermal force. It 

throws light on the relative importance of viscous dissipation to the thermal dissipation. 

1.4.4 Nusselt Number 

In heat transfer at a boundary (surface) within a fluid, the Nusselt number is the ratio of 

convective to conductive heat transfer across (normal to) the boundary. Named after 

Wilhelm Nusselt, it is a dimensionless number. The conductive component is measured 

under the same conditions as the heat convection but with a (hypothetically) stagnant (or 

motionless) fluid. 

A Nusselt number close to unity, namely convection and conduction of similar magnitude, 
is characteristic of "slug flow" or laminar flow. A larger Nusselt number corresponds to 
more active convection, with turbuint flow typically in the 100-1000 range. The 
convection and conduction heat flows are parallel to each other and to the surface normal 
of the boundary surface, and are all perpendicular to the mean fluid flow in the simple 

case. 

Convective heat transfer hL 
NuL =  

Conductive heat transfer k 
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where: 

• L = characteristic length 
• k = thermal conductivity of the fluid 
• h = convective heat transfer coefficient of the fluid 

Selection of the characteristic length should be in the direction of growth (or thickness) of 

the boundary layer. Some examples of characteristic length are: the outer diameter of a 

cylinder in (external) cross flow (perpendicular to the cylinder axis), the length of a 

vertical plate undergoing natural convection, or the diameter of a sphere. For complex 

shapes, the length may be defined as the volume of the fluid body divided by the surface 

area. The thermal conductivity of the fluid is typically (but not always) evaluated at the 

film temperature, which for engineering purposes may be calculated as the mean-average 

of the bulk fluid temperature and wall surface temperature. For relations defined as a local 

Nusselt number, one should take the characteristic length to be the distance from the 

surface boundary to the local point of interest. However, to obtain an average Nusselt 

number, one must integrate said relation over the entire characteristic length. Typically, 

for free convection, the average Nusselt number is expressed as a function of the Rayleign 

number and the Prandtl number, written as Nu =J(Ra, Pr). Else, for forced convection, te 

Nusselt number is generally a function of the Reynolds number and the Prandtl number as 

Nu = fiRe, Pr). Empirical correlations for a wide variety of geometries are available that 

express the Nusselt number in the aforementioned forms. The mass transfer analog of the 

Nusselt number is the Sherwood number. 
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CHAPTER 11 

Literature Review 

Natural convection heat transfer has gained considerable attention because of its numerous 

applications in the areas of energy conservations, cooling of electrical and electronic 

components, design of solar collectors, heat exchangers and many others. The most 

important application of MHD is in the generation of electrical power with the flow of an 

electrically conducting fluid through a transverse magnetic field. In case of natural 

convection flows, now a days, MHD analysis is playing a vital role. Sparrow and Cess 

(1961) investigated the effect of magnetic field on free convection heat transfer. Kuiken 

(1970) investigated MHD free convection in a strong cross field. Gebhart and Pera (1971) 

investigated the nature of vertical natural convection flows resulting from the combined 

buoyancy effects of thermal and mass diffusion. They indicated that buoyancy effects 

from concentration gradients could be as important as those from temperature gradients. 

There are applications of interest in which combined heat and mass transfer by natural 

convection, such as design of chemical processing equipment, design of heat exchangers, 

formation and dispersion of fog, distributions of temperature and moisture over 

agricultural fields, pollution of the environments and thermoprotection systems. Wilks 

(1976) presented MHD free convection about a semi-infinite vertical plate in a strong 

cross field. Ingham (1978) investigated free convection boundary layer on an isothermal 

horizontal cylinder. Raptis and Kafoussius (1982) analyzed MHD free convection flow 

and mass transfer through a porous medium bounded by an infinite vertical porous plate 

with constant heat flux. Pozzi and Lupo (1988) explored the coupling of conduction with 

laminar convection along a flat plate. By means of two expansions, the entire thermo-fluid 

dynamic field was studied. The first one, describing the field in the lower part of the plate, 

was a regular Sc: CS. The radius of convergence of which was determined by means of 

approximant techniques. The second expansion, an asymptotic one required a different 

analysis because of the presence of eigensolutions. Hossain and Ahmed (1990) considered 

MHD forced and free convection boundary layer flow near the leading edge. Hossain 

(1992) analyzed the viscous and Joule heating effects on MHD free convection flow with 

variable plate temperature and found that temperature varied linearly with the distance 



from the leading edge in presence of uniformly transverse magnetic field. The equations 

governing the flow were solved and the numerical solutions were obtained for small 

Prandtl numbers, appropriate for coolant liquid metal, in the presence of a large magnetic 

field. Hossain et al. (1997) considered MHD forced and free convection boundary layer 

flow along a vertical porous plate. Hossain et al. (1998) studied heat transfer response of 

MHD free convection flow along a vertical plate to surface temperature oscillation. Al-

Nimr and Hader (1999) studied MHD free convection flow in open-ended vertical porous 

channels. Chowdhury and Islam (2000) presented MHD free convection flow of visco-

elastic fluid past an infinite porous plate. The conjugate conduction-natural convection 

heat transfer along a thin vertical plate with non-uniform internal heat generation 

presented by Mendez and Trevino (2000). El-Amin (2003) analyzed combined effect of 

viscous dissipation and Joule heating on MHD forced convection over a non isothermal 

horizontal cylinder embedded in a fluid saturated porous medium. Ahmed and Zaidi 

(2004) presented magnetic effect on overback convection through vertical stratum. Molla 

et al. (2006) also investigated MHD natural convection flow on a sphere with uniform heat 

flux in presence of heat generation. Viscous dissipation effects on MHD natural 

convection flow over a sphere in the presence of heat generation have been investigated by 

Alam et al. (2007). Aiim et al. (2007) investigated Joule heating effect on the coupling of 

conduction with MHD free convection flow from a vertical flat plate. Combined effects of 

viscous dissipation and Joule heating on the coupling of conduction and free convection 

along a vertical flat plate have also studied by AIim et al. (2008). Entropy generation 

during fluid flow in a channel under the effect of transverse magnetic field presented by 

* Damseh et al. (2008). Mamun et al. (2007) studied combined effect of conduction and 

viscous dissipation on MHD free convection flow along a vertical flat plate. Parveen and 

Chowdhury (2009) considered stability analysis of the laminar boundary layer flow. 

Recently AIim et al (2012) studied the heat generation effects on MHD natural convection 

flow along a vertical wavy surface with variable thermal conductivity. Very recently Kabir 

et al (2013) also investigated the effect of viscous dissipation on MHD natural convection 

flow along a vertical wavy surface. 

Further, the problems of natural convective heat and mass transfer flows under the 

influence of a magnetic field, which is subject matter of MHD, have been paid 
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attention of number of researchers because of possible applications in many branches of 

science, engineering and geophysical process. Considering this numerous application of 

MUD, Alam et al (1997) have been studied the problem of convection from a wavy 

vertical surface in presence transverse magnetic field. Tashtoush and Al-Odat (2004) 

investigated magnetic field effect on heat fluid flow over a wavy surface with a valuable 

heat flux. The problem of free convection from a vertical wavy surface embedded in a 

uniform porous media in presence of an external magnetic field and internal heat 

generation/absorption effects was formulated by Haddy et al (2006). Ahmed (2008) 

investigated MMD free convection flow along heated vertical wavy surface with heat 

generation. The viscosity and thermal conductivity of the fluid have been assumed to be 

constant in most of the above studied. However it is known that these physical properties 

may be changed significantly with temperature. Parveen and Aiim (2011) investigated 

Joul heating dependent on temperature. AIim et al (2012) investigated the heat generation 

effects on MI-ID natural convection flow along a vertical wavy surface with variable 

thermal conductivity. From the above investigation it is found that variation of viscosity 

with temperature in presence of magnetic field is an interesting macroscopic physical 

phenomenon in fluid dynamics In most of the above investigations the effect of 

temperature dependent physical properties on MMD natural convection flow along wavy 

surface with heat generation have been ignored. 

The main objective of the present work is to analyze the effect of temperature dependent 

physical properties on MHD natural convection flow along a uniformly heated vertical 

wavy surface with heat generation. There are five parameters of interest in the present 

problem, namely, the thermal conductivity parameter y, heat generation parameter Q, 

magnetic parameter M, the amplitude of the waviness a of the surface and Prandtl number 

Pr. The numerical solutions regarding the velocity and temperature fields will be presented 

for different selected values of the established dimensionless parameters. The influences 

of these various parameters on the velocity and temperature fields will be exhibited in the 

present analysis. Also numerical values of local shearing stress and the rate of heat transfer 

will be calculated in terms of the skin-friction coefficient Cfr and Nusselt number Nu 

respectively for a wide range of the axial distance x starting from the leading edge for 

different values of the relevant parameters mentioned above and these are shown in tabular 

Ef1 



form. It may be expected that the temperature-dependent physical properties and the 

waviness of the surface have a great influence on the velocity and temperature fields, so 

that their effects should be taken into account with other useful parameters associated. 

Thus this thesis is composed of Six Chapters. An introduction and basic concept of 

boundary layer theory, natural convection flows, and temperature dependent physical 

properties are presented in CHAPTER I. Earlier researches i.e. literature review related to 

our present problem are presented in CHAPTER II. Methodology of the problem, basic 

governing equation, physical model of the problem, formulation of the problem, and 

dimensional analysis with simplifying assumptions are given in CHAPTER III. The 

general Finite Difference procedure has given in CHAPTER IV. CHAPTER V is 

concerned with the detailed of results discussions, Figures and Tables. In CHAPTER VI 

the conclusions gained from this work have been discussed. 
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CHAPTER III 

Temperature Dependent Thermal Conductivity on MHD Natural Convection Flow 
along a Vertical Wavy Surface with Heat Generation 

3.1 Methodology of the Problem 

The finite-difference methods are numerical methods for approximating the solutions of 

differential equations using finite difference equations to approximate derivatives. We use 

the Keller Box method to obtain the solutions of the coupled momentum and energy 

equations for external flows. The numerical method and computer program are presented 

in such a way reader can easily apply them to other problems including internal flows. 

3.2 Derivatives 

Finite-difference methods approximate the solutions to differential equations by replacing 

derivative expressions with approximately equivalent difference quotients. That is, the 

first derivative of a function f is defined by the definition: 

f(x.+Ax1 )—f(x1 ) 
f'(x1 ) = lim 

Ar-4O 

Then the approximation for that derivative is 

f'(x1) f( +Ar1 )—f(x,) 
Axi  

for some small value of Axe , in fact, this is the forward difference equation for the first 

derivative. Using this and similar formulae to replace derivative expressions in differential 

equations, we can approximate their solutiOns without the need for calculus. 

3.3 Governing Equations 

Magnetohydrodynamic equations are the ordinary electromagnetic and hydrodynarnic 

equations modified to take account of the interaction between the motion of the fluid and 

electromagnetic field. Formulation of electromagnetic theory in mathematical form is 



known as Maxwell's equations. Maxwell's basic equations show the relation of basic field 

quantities and their production. But it is assumed that all velocities are small in 

comparison with the speed of light. Before writing down the MHD equations it is essential 

to know about the ordinary electromagnetic equations and hydromagnetic equations, 

which are as follows (Cramer and Pai (1974)). 

Charge Continuity: V.D = Pe (3.1) 

Current Continuity: V.J = (3.2) 
at 

Magnetic field continuity: V.B = 0 (3.3) 

Ampere's Law: V A H = J + 
aD (3.4) 
at 

Faraday'sLaw: VA E =-
ah  (3.5) 
at 

Constitutive equations for D and B: D = rYE and B = pH (3.6) 

Total current density flow: I = cr(E + 4 A )+ pq (3.7) 

The above equations (3.1) to (3.7) are Maxwell's equations where D is the electron 

displacement, Pe is the charge density, E is the electric field, B is the magnetic field, i 

is the magnetic field strength, J is the current density, 35/ôt is the displacement current, 

e' is the electric permeability of the medium, /Ie is the magnetic permeability of the 

medium, 4 is the velocity vector and C0 is the electric conductivity. 

The electromagnetic equations as shown above are not usually applied in their present 

form and require interpretation and several assumptions to provide the set to be used in 

MHD. In MHD a fluid is considered that is grossly neutral. The charge density Pe in 
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Maxwell's equations must then be interpreted, as an excess charge density, which is 

generally not large. If it is disregard the excess charge density then it must disregard the 

displacement current. In most problems the displacement current, the excess charge 

density and the current due to convection of the excess charge are small. Taking into this 

effect the electromagnetic equations can be reduced to the following form: 

4 

Ji 

V.j=0 

VAH=J 

- 

VA E 
ah 
at 

D=e'E and =pBo 

J = + q A 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

We shall now suitably represent below the equations of fluid dynamics to take account of 

the electromagnetic phenomena. 

The continuity equation 

The MHD continuity equation for viscous incompressible electrically conducting fluid 

remains same as that of usual continuity equation 

Om 
(3.15) 

The Navier-Stokes equation 

The motion of the conducting fluid across the magnetic field generates electric currents, 

which change the magnetic field and the action of the magnetic field on these current give 

rises to mechanical forces, which modify the flow of the fluid. Thus, the fundamental 
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equation of the magneto-fluid combines the equations of the motion from fluid mechanics 

with Maxwell's equations from electrodynamics. 

Then the Navier-stokes equation for a viscous incompressible fluid in the time 

independent form may be written in the following form: 

(3.16) 

where p is the fluid density, p is the viscosity and P is the pressure, 4 = (u, v), u and v 

are the velocity components along the x and y directions respectively, F is the body force 

per unit volume which is defined as -pg, the terms J and are respectively the current 

.4 density and magnetic induction vectors and the term jxJ is the force on the fluid per unit 

volume produced by the interaction of the current and magnetic field in the absence of 

excess charges. Here B = p Bo, 1u being the magnetic permeability of the fluid, Bo is 

the uniformly distributed transverse magnetic field strength.The first term on the right 

hand side of equation (3.16) is the pressure gradient, second term is the viscosity, third 

term is the body force per unit volume and last term is the electromagnetic force due to 

motion of the fluid. 

The energy equation 

The energy equation for a viscous incompressible fluid is obtained by adding the 

electromagnetic energy term into the classical gas dynamic energy equation. This equation 

can be written as 

pc(V)T=V.(kVT)±(Jxi) (3.17) 

where, ij = (u, v), u and v are the velocity components along the x and y directions 

respectively, k is the thermal conductivity, Cp is the specific heat with constant pressure. T 

is the temperature of the fluid in the boundary layer. The left side of equation (3.17) 

represents the net energy transfer due to mass transfer, the first term on the right hand side 

represents conductive heat transfer and second term is Joule heating term due to the 
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resistance of the fluid to the flow of current. Also V is the vector differential operator and 

p 
is defined for two dimensional case as 

I. t:3 - ô 
V =i—+j— 

ox ay 

where I and ] are the unit vectors along x and y directions respectively. When the 

external electric field is zero and the induced electric field is negligible, the current density 

is related to the velocity by Ohm's law as follows 

i = crx) (3.18) 

where (jx) is electrical fluid vector and co denotes the electric conductivity of the fluid. 

Under the condition that the magnetic Reynolds number is small, the induced magnetic 

field is negligible compared with applied field. This condition is well satisfied in terrestrial 

applications, especially so in (low velocity) free convection flows. So it can be written as 

B=B01 (3.19) 

Bringing together equations (3.18) and (3.19) the force per unit volume JxB acting along 

the x-axis takes the following form 

I xJ = cr0B0uk (3.20) 

10, 3.4 Physical Model of the Problem 

In this study the steady of two dimensional laminar free convection boundary layer flow of 
a viscous incompressible and electrically conducting fluid along a vertical wavy surface in 

presence of uniform transverse magnetic field of strength Bo with temperature dependent 

physical properties like viscosity and thermal conductivity is considered. It is assumed that 

the wavy surface is electrically insulated and is maintained at a uniform temperature Tw. 

Far away the wavy plate, the fluid is stationary and is kept at a temperature T00. The 

surface temperature T is greater than the ambient temperature TM that is T. > T. A 

uniform magnetic field of strength is imposed along the y-axis i.e. normal direction to the 

surface and x -axis is taken along the surface. 

A 
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The flow configuration of the wavy surface and the two-dimensional Cartesian coordinate 

system are shown in figure 2.1. 
x 

V 

T. 

Figure 3.1: Physical model and coordinate system 

The boundary layer analysis outlined below allows 5(X) being arbitrary, but our detailed 

numerical work assumed that the surface exhibits sinusoidal deformations. The wavy 

surface may be described by 

Yw =ff(X)=asml 
(n,rK 
 

L) 
(3.21) 

where a is the amplitude and L is the wave length associated with the wavy surface. 

3.5 Formulation of the Problem 

The conservation equations for the flow characterized with steady, laminai and two-

dimensional boundary layer; under the usual Boussinesq approximation, the continuity, 

momentum and energy equations can be written as: 

aw o 
- 

(3.22) 

I aP 2- u—+v—=+i'Vu+g/J (T-rj-° (3.23) 
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_a _ôi7 2- u— + v—=---+iNv (3.24) 
aj pO 

i7- +: = 
Q0 (T—T) 

(3.25) 

where (, 5) are the dimensional coordinates along and normal to the tangent of the 

surface and (17, i) are the velocity components parallel to (, j), V2  (= Ô2  / 2 + o 2  / 2) 

is the Laplacian operator, g is the acceleration due to gravity, P  is the dimensional 

pressure of the fluid, p is the density, Bo is the strength of magnetic field, co is the 

electrical conduction, k is the thermal conductivity of the fluid in the boundary layer 

region depending on the fluid temperature, /1 is the coefficient of thermal expansion, 

v ( = pip) is the kinematic viscosity, 1u is the dynamic viscosity, C, is the specific heat due 

to constant pressure and Q0  is the source parameter. 

The boundary conditions relevant to the above problem are 

i7=0,i=0,T=T at==&(i) 

17=0, T=T,, as 
(3.26) 

where Tv  is the surface temperature, T. is the ambient temperature of the fluid and pco is 

the pressure of fluid outside the boundary layer. 

There are very few forms of thermal conductivity variation available in the literature. 

Among them we have considered that one which is appropriate for liquid introduced by 

Hossain et al. (2001) as follows: 

k=k,[l+y(T—T)] (3.27) 

I  ( LIk 
where k,, is the thermal conductivity of the ambient fluid and y 

= 
is a 

constant evaluated at the film temperature of the flow?'1  = 1/2(T, ± T,,). 

Using Prandtl's transposition theorem to transform the irregular wavy surface into a flat 

surface as extended by Yao (1983) and boundary-layer approximation, the following 

dimensionless variables were introduced for non-dimensionalizing the governing 

Ok equations: 
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Lx, =LGry+ã,Grp 

(3.28) 
pL pL 

0. 
 dó r

,O
T-T 

d dx v2 T- T, 

where 0 is the non-dimensional temperature function and (u, v) are the dimensionless 

velocity components parallel to (x, y). 

nL _/ 

u---Gr /2j 

[.. 0Y TtGr )' 
axa a3 a Pco [ ö. L 

Grl 1 (3.28i) 
pL2 Lax xoyj 

pL 
v=—Gr (v-cru) 

II 

+=Gr[ - 1 [.=-Gr -14  
ôy axa5 P. [ j [ pL2  ay 

pL2  LöY 

ôu1 F•• --'-Gr' 1 (3.28ii) 
;j 
 = -- GrIV2  + Gro -] L - L 

10- 

v=(GrY2u+GrY4 v) 
pL' 

=
P.  + (3.28i1i) 

31  pL aya)J pL axa ai) 

P-  [GrY4 "v  - Gry2ax  ~'v  + Gr Y2 
I' au 2

Na 

1 
u+Gr/'2r --Gr'4 - pL2 [ ax 

= -b-- Gr at' (3.28iv) 
ôpL2 ay 
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) = —Grpv,
I—Grc7 

.J 

(3.28v) 
ôï L3  x otv 

=ap-  .e V, Gr Y, E. (3.28vi) 
äL3 oly 

ox ôx a ox O 

- _Gr{!cr (3.28vii) 

L. oxaya oyoy 

=_GrY2_2oGr 02u 
(3.28viii) --Gr (7x, —+ 

L3 Ox 2 OxOy X,
2  

= Gr4[)  oly  + --( 
au  

2  L2 L0Y5Y05 ôxay0 

v 8 2u =—Gr— 
L3 2 

=[() + --(- 1 
ox2 [Ox 01 01 Oy 01 01] 

I

V Ov V Oi' V 1/ 
Gr 4 --Gr"2o --2Gr72o —+Gr'2cr u 

Ox 2 xaxay  

)/ Ou ,V 02u oul V +2Gr 2o—+Gr 2o -3Gr 
_F [ Ox 

-- 
Ox 

3 02u 
- 2Grcr ---- + Gro 4 + Gras 

(3.28ix) oxay tv 

a2i[oaiox 0 Oi y] 

=---[Gr Ov Ou 
L3 

+ Gro 
(3.28x) 
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(

VV2jj 
- 

 u

2
U 

2- 

=v—+-- 

(a2  

L3  ax2  
L I--2aGr I 

 a2 
--ci Gr2 a 2Gr ô2 +Gr2_lGr2u 
axay x ay ay2jL 

(3.28 xi) 

- 

v 
2 1 a2 ! 

2xGr 2 --cr Gr2  
ôxay xx +cr 2Gr x 

a2  a2  
ay  2 j L 

+Gr2 _II-1Gr 4v+-cy 2ul 
Y 

L ) 
(3 .28xii) 

g/3(T - T) = g/3(T - 7)O = GrJ (3.28xiii) 
Ll  

T + (T - )O 

[:T —T =AT] (2.28xiv) 
ax (axai yôi) 

AT1ae Grcr x
ay) 

: AT(ao  "X  + "o  ay  
x5jay5j 

aT AT "ae 
Or, —=—Gr" - (3.28xv) 

a2ra(arax a(aflay 
2 - I-+-I I- 

Arra2o ac 2Grc (3.28xvi) =—I---Gr ci 
L2 [a 2 x

y 
x aay xay2j 

a2 T -  a(araxa(aTay 
2 &) 

a2r Gr AT 
Or, —  = (3.28xvii) 
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Introducing the above dimensionless dependent and independent variables given in 

equations (3.28) - (3.28xvii), into equation (3.22) - (3.25) the following dimensionless 

form of the governing equations are obtained after ignoring terms of smaller orders of 

magnitude in Gr, the Grashof number defined in (3.28). 

OuOv 
- +—=O 
OxOy 

(3.29) 

au OU ap
Grcr u— + v—= 

- X + + l+oj
alu 

 _Mu-I-G (3.30) 0)
,
2 

, 
 

1' Ou Ou'

) 
Y4 + 2 

)---o- 
U (3.31) alu—+v—I Gr 

ax 0)1 0),2 

00 00 1 / 2 )OO +Qe (3.32) U - + V - = - (l + a- 
Ox 0);Pr a)' 

C/I 
where Pr = —a-- is the Prandtl number, Q 

= L2
1/2 

is the heat generation parameter, 
pcGr 

aBL2  
y = y (T - T) is the thermal conductivity variation parameter and M = is the 

1uGr' 2  

magnetic parameter. 

It can easily be seen that the convection induced by the wavy surface is described by 

equations. (3.29) - (3.32). We further notice that, equation. (3.31) indicates that the 
'7 

pressure gradient along the y-direction is of O(Gr 
I'

), which implies that lowest order 

pressure gradient along x -direction can be determined from the inviscid flow solution. For 

the present problem this pressure gradient (Op/Ox = 0) is zero. Equation. (3.31) further 

shows that GrOp/Oy is of 0(1) and is determined by the left-hand side of this equation. 

Thus, the elimination of OplOy  from equations. (3.30) and (3.31) leads to the following 

equation: 
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4 

ÔU 
+ v

2 
U 

u— —= (l+cr )-- 
xo-xx 

M 
2' (3.33) 

x  ôy2  1+cr2 1+o 
1 

2 l+cy 

The corresponding boundary conditions for the present problem then turn into 

u=v=O, 0=1 at y=O 1 
(3.34) 

u=6=0, p=O as 

Now we introduce the following transformations to reduce the governing equations to a 

convenient form: 

w = xf(x,)7), 77 = 6= 0(x,ii) (3.35) 

wherej(x, ,) is the dimensionless stream function, i is the pseudo similarity variable and 

çu is the stream function that satisfies the equation (3.29) and is defined by 

u=—, v=—
aql  (3.36) — 

y u=x 4i+ C)f =x"f' (3.36i) 
ax y aioy) 

v = 
I8x iaxJ 

(3 .36bii) 

=1x'—x—xf 
r i 

17 
1 

ox 4 

(3.36iii) 
av 2 4x ) 

(3.36iv) 
oy 

(3.36v) 
OY 

13)7 OyJ 

aO  = (aO  + aO 
) Ox Ox a  77 Ox (3.36vi) 

06 1 =---z8 
Ox 4x 
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-
x 

 _y40' (3.36vii) 
-  
ay 

Cy 

(3.36viii) 

Introducing the transformations given in equation. (3.35) and calculations given above 

equations (3.36) — (3.36viii) into equations. (3.33) and (3.32) the following system of non 

linear equations is obtained: 

(1+o.x2)f*+.ff_[.+ Xax7XJf2 

+ 1.+O. 2 f'= xff__f")(3.37) 

_(1+o2)8??+.fOt+xQ9 = 
ao (3.38) 

Pr 4 ax & ) 

The boundary conditions (3.34) now take the following form: 

f(x,o) = f'(x,o) 0, O(x,o) = 1 

f'(x,00) =0, O(x,c) =0 

In the above equations prime denote the differentiation with respect to il. 

Solutions of the local non-similar partial differential equations (3.37) and (3.38) together 

with the boundary condition (3.39) are obtained numerically by using implicit fmite 

difference method with Keller-Box Scheme. 

In practical applications, the physical quantities of principle interest are the shearing stress 

Tw. in terms of the skin-friction coefficients Cj and the rate of heat transfer in terms of 

Nusselt number Nu which can be written as: 

C = and Nu = (3.40) 
fx  pU 2 

X 

wherer =( .Vi), 0  andq. --k(n.VT) 0 (3.41) 

where 

ki 

A 
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= —k(i.VT) 0  

- 

(-or or) 
- - 

/i + h 
+ 

where h(i,) = 5 -c) 

(3.4 ii) 

Now, 

+= [==o 
a Ox Ox ay  a Ox [Ox ay ox 

= Lh = —Lo s  

- =h=—c (i) 

Oxoy oyay oy ay lay OxOy 

=: LGrh = LGr 

h,, =1 

- ih + 3h 
- - +3  

Icr+1 

- 

= .I
(
i 

ih + j/i, or 
+ j 

- or" 
— _I (nVT) jh 

+ a ) 

A T 
[- a 

10 
 + l
g
r
Y4 (U2 a81 

+1)—I 
LVax2 +1 ay 

 

:.(i.VT),0 =4 x Gr Jcr  +1 9'(x,O) 
- L 

tT)/4G)/ g-+ 1 O'(x,O) 

where AT=(T—T,) 

 

•.• ()yO 0, ()= = x"0'(x,0)
ay  

(3.4 lii) 

11 
Now, 
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VW  = [du;i.v)J
=0 

 

i+ji -a 
= p(1+y) 

+
> 
[ ly=O 

=--Gr'(l+y)x"/1+o f"(x,o) (3.41iii) 
pL 

lh +3h, 
Here i 

X 
. is the umt normal to the surface. Using the transformations (3.35) 

Jh+h 

and calculations (3.41i) to (3.4liv) into equation (3.40), the local Nusselt number, Nu 

and the local skin friction coefficient, C1  take the following forms: 

Cfr(Gr / x)/4 / 2 =(1+y)Jl+ oX2  f"(x,o) (3.42) 

Nu(GrIx) Y4 = _sJl+crx 2 9(X,O) (3.43) 

Finally, it should be mentioned that for the computational purpose the period of 

oscillations in the waviness of this surface has been considered to be r. 

3.6 Numerical Procedure 

The transformed boundary layer equations solved numerically with the help of implicit 

finite difference method together with the Keller-Box scheme (1978) and used by Hossain 

et al. (1996, 1997, 1999, 2000, 2001). To begin with, the partial differential equations are 

first converted into a system of first order differential equations. Then these equations are 

expressed in finite difference forms by approximating the functions and their derivatives 

in terms of the center differences. Denoting the mesh points in the x and i-p1ane by X 

andnj where i = 1, 2 ........, Mandj = 1, 2 ........ N, central difference approximations are 

made, such that those equations involving x explicitly are centered at (xi-1/2 T7j.I/2) and the 

remainder at (Xi,flj1/2), where rjj1/2 = 1/2(nj +nj.j) etc. The above central difference 

approximations reduce the system of first order differential equations to a set of non-linear 

difference equations for the unknown at X1 in terms of their values at X1.J. The resulting set 
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of non-linear difference equations are solved by using the. Newton's quasi-linearization 

method. The Jacobian matrix has a block-tridiagonal structure and the difference equations 

are efficiently solved using a block-matrix version of the Thomas algorithm. In the 

program test, a finer axial step size is tried and find to give acceptable accuracy. A 

uniform grid of 201 points is used in x- direction with Ax = 0.05, while a non-uniform 

grid of 76 points lying between q = 0.0 and 10.0 17 is chosen. Grid points are concentrated 

towards the heated surface in order to improve resolution and the accuracy of the 

computed values of the surface shear stress and rate of heat transfer. During the program 

test, the convergent criteria for the relative errors between two iterations are less 1 0. It 

means that iterative procedure is stopped when the maximum change between successive 

iterates is less then I 0. 

3.7 Implicit Finite Difference Method (IFDM) 

To apply the aforementioned method, equations (3.37) and (3.38) and the boundary 

condition (3.39) are first converted into the following system of first order equations. For 

this purpose we introduce new dependent variables u (4, 77), v(, '7), p(, ') and g(, q) 

so that the transformed momentum and energy equations can be written as: 

f'=u (3.44) 

U =V (3.45) 

g'=.9=p (3.46) 

(au ÔJ 
p1 V+O2 fV •••J33U +p4g —p6u =4I  u--v-I (3.47) 

(a4 j 

I ag .Li) - (3.48) p+ 2 P59= (u —p 
Pr C,  

where x, O=g and 

1 Mx' 2  I xcrcr 
2' =-+ =(i~), 2 

' 2 1+ 1+a 

and QF 
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and the boundary conditions (3.39) are 

f(,0) = 0, u (,0) = 0, g(,0) =1 

u(,cc)=0, g(,cx)=O 

Now consider the net rectangle on the (,i) plane shown in the Figure 3.2 and denote the 

net points by 

o =0, 4" = ' +k n=l,2 .............. N 

= 0, 77 = _ 

+ h j = 1,2,.............J 

-4 

L. 

'ii 

171-h 

'li-I 

Figure 3.2: Net rectangle of difference approximations for the Box scheme. 

Here n and j are just sequence of numbers on the ( i) plane, k,1 and hj are the variable 

mesh widths. Approximate the quantities f u, v and p at the points (", ii) of the net by 

u, v, p which call net function. It is also employed that the notation P7 for the 

quantities midway between net points shown in figure 3.2 and for any net function as 

n-1/2 1(fl + fl1) (3.51) 

77j-l/2 = (, + i) (3.52) 
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n-1J2 I 
g + g7') 

(3.53) 

1 
g-112 = .. (g + g;-1) (3.54) 

The finite difference approximations according to box method to the three first order 

ordinary differential equations (3.44) - (3.46) are written for the midpoint (4', nm) of the 

segment P1P2 shown in the figure 3.2 and the finite difference approximations to the two 

first order differential equations (3.47) and (3.48) are written for the midpoint (4714/2,  rjI/2) 

of the rectangle PJP2P3P4. This procedure yields 

fin 
jI 

= 
u +u;,2 

(3.55) 
hj 

112 = 
2 

u;  — u_1 v;_, +v; 
(3.56) 

= = 2 h 

Pn 
g - g, 

, - ;, + (3.57) 
2 

,i--If 2 
(P 

)n_1/2 I J J ____________ 
1 (' V J J 

+(Pfr j-1/2 'i-112 1 2 2 j-1/2 
h, ) 

n-1/2 n-/2 n-I/2 I n-II2 U1_112 U1112
- 

n-I/2 fJII2 —fin  
+ (P4g)112 

- ( Fu)_11 = 47j-I/2 vi_I/2

)(3,51) 

k,1  

1 { 
pn1_pn 

1  -
I/2 

+ I 
+ (Pfp1 _112  

2Pr 2Pr - h1 ) 

\n-l/2 n_I/2( p112 g_112 - g,2 
- 

pn_l/2 fj' L/2 - 
+ (P5g)1112 = 47J-I/2 j_I/2 

k 
j-1/2 

k,1 

/2 (3.59) 

Now the equation (3.58) can be written as 
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n n 1 ( J j-1 D I +! )- /2 h 
() 

 
-  i /2 (fr)'/2 I i-I/2 

n-I 

hj   2 
j 

( 

 

n-I 
- {p3  u 2) I , 2  + (P3u2)I12 }~!{(p4g;112)+ (P4g;::,2)}— {(i f-lU) +' f-lU) } 

1 jn-I/2 nI 

- j-iI2 (u; 112  + u;,2  )(u; 1/2 UJII/2) 
2k n 

1 nI/2(fl 
+vfl/2)(ffI/2ff/2) j-I/2 \ f-lU 

2k n 

I n n (  

2 f-l/2 (fr)1 1/2 I f 
H (J/2I + 

(P )fl cic); II2 (p)nI n-I 
Or, ().1/2 h h. 

2 j-i/2 

-4 

- (II/2 
(u2) lI2  -(FI,2  (u2)

i-I
,2 + (p4 ) 112  g,2  + (r)n:/2 g1,2 

(p 'n 'n 
—(P 

)n_I n-I 
6Jji/2' ijI/2 6 

= a {(u )1_112 — (u ) 112 _(fr)_112 +f_112v1112 1112 v_112I +(fr)I,2 } 2 n 2 n-I n n-I n [n n- 

(n n 
I V. —V. 

{(-II2± a}(fr)112— {(-I/2+ 
an}(u2)II2 

Or,(I I 

h I 
I I 

n-i n n-i 
+( 4)_112  g_112 - ()_112(u)_112  + + afJ112v_112 - 

2 n-i 
n-I

n-I  
= a {{- (u  )j-II2 + (fr),2 }1 (,j-2(fr)1-112 

( 'in-I (p)n_I 2 n-I 
- 

(p 
)n_I n-I 

+(I),2 (u )j_I/' 1_112g-12 + (F)212 U,1I,2 - 6 f_i/2(P1')f_I/2 

- (T) 
- 

h  ) 

(u2 
n-I }—L —' (say) (3.60) i.e., R j-I/2  a {(frI12 - )j-l/2 j-I/2 

I n-l/2 where a,:  = - j-l/2 
kn  

(3.61) 

j-I/2 (-I/2 hJ' (v; R _v; 1 )+{(P2) ii, 1  - 

- { (P112 + }(u 2 ) I/2  +(P4 ) 112 g 112  - (P5 ) 12 (u) 112 (3.62) 

n ii I n -I 
+ (P6 )_112(pv)_112  +a, &j_I/2 Vf1/2 —v1_112f1

n
_112) 
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n-I 
- (P yi-I 2 n-I 

and L - (P) hJ' —v )+(P2) 12  (fr)-112 3/j-I/2 (u )J1/2 I j-I/2 

+(P4)I,2gI,2  -(P5)1,2 
(U)n-: + (P )fl_I 

(pv)';::12 ' 6 j-II2 
(3.63) 

Again from the equation (3.59) then 

I{(),I 

}(P_PI J+{(y -II2 +(j);} 
n-I n-I 

Pr 
 j-II2 t\ h3 

j 

+ (P5g); 112  + 
(I:g)I12 

)(f n "' n-I n-I 
= 

aJ(u' t + un-h )(g,, n-I 

L 

+ 
p n-I Pj — p1

-1 I(p)n (fp);-112 Or, -(P — P_1 1 
 

Pr 
)j_I12 

h1 ) Pr I j-I/ 2 h1 ) 
+ (p2),, (fi-')1,2 

+ (JL);_112(9);_112 + (PS I9,)_12 

(ug) 112  - UJ1/2  g1n-I  112  + g-112 - (ug)I12 - ()I,2 1 
=an [ e n-I 

+ p;-112 Jj-I/2
n-I 
 - fl-Il2

n 
P)-1,2 + (ffi);I,, I 

n n 

Or,{()112 
(111 

) +/ +a,}() 112  —a,1(ug) 112  
Pr hj  

n-I n n-I 
+ a [u;_,,2  g1_112 - g1_12 u_1,2 

- p_112 f1_112 + fj 1,2 p;::,2J+ (P5);_112(g);_112 

- hl(p)n-I ( p1  — p1-1 
Il2(I:,2 + a E(f)12 - ug)' 1- (I,,(g)I,2 1-1/2 

- Prt I j-I12 h ) 
Tn_I = i.e., 1-1/2 - M_112  +an  {(fp);:,2  _(ug)I,2 }(say) (3.64) 

1 n-I/2 wher; a = 2 (3.65) 
n 

Ml-
= 

 

 
I ) i;:}+( _ (P5 ,2 (3.66) 1yi — P_ , 2(g) i)

-
2 lP (ft+ j_/ P   

37 



= 1F_112h;' p;  —p;_3~ {PJJII2  + a }();_1/2 - j—l/2 Pr (3.67) 
n—I n n—I 

+a (u;_112  gj,2 _g;_112 u;:,2)— a(p;_112 f j_1i 2  J j-1/2 Pf_1/2)+ (Y_112(g_112 

The boundary condition becomes 

f'=O, u=O,gl (3.68) 
u'=O, g;=O 
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CHAPTER 1V 

General Procedure 

4.1 The Finite Difference Procedure 

çn-I n-I n-I n-I n-I It is assumed that j , uj  ,v3 ,g ,p , for 0 :!~ j :!~ J are known. Then equations 

(3.51) to (3.68) form a system of (5J+5) non linear equations for the solutions of the 

(5J+5) unknowns (/7, u, v, g, p ), j = 0, 1, 2, 3.......J. These non-linear systems of 

algebraic equations are to be linearized by Newton's Quassy linearization method. The 

, u, v, g, p), i = 0, 1, 2, 3......N are defined with initial values equal iterates (fj  

those at the previous x-station (which is usually the best initial available). For the higher 

iterates the following forms can be written 

f(i+I)fi +ofi (4.1) 

u = + 5u, (4.2) 

= 1  v, +8v, (4.3) 

g(1) 
= g +

1. 
(4.4) 

= + Sp', (4.5) 

Now by substituting the right hand sides of the above equations in place of f , u' , v and 

g in equations (3.55)-(3.57) and in equations (3.60) and (3.64) dropping the terms that 

are quadratic in 8f, 8u, 8v and 8p, then take the following linear system of 

algebraic form 

I 

'V.  

p 



f(t) 
- f i)  8f 1  - 8j•:J_I  = + = -- + + + 8u } Or, J_I + 

h1 i- i- 

Or, fJ +of] - f f —8 +8u°  +u 1  +8 1 } j1 2 ' 

5f.(z) -SfJ' _?(öu()  +öu 1 )=@i)(say) (4.6) 
2 

where, (i ) = fJ 
- 
f(i) + 

Similarly, 

8u °  —Su —-(ovc' +o 01 )= (r4 )J (47) 
2 ' 

ög — 8g21 _.L(o0 + op?)= (':) 
2 

(4.8) 

where, (r4)1  = u(i) 
- 

 

UW + 
h. 

and 

(') =g 1  

Then equation (3.62) becomes, 

N1 

(F) 112 hJ1  (v°+8v —v i-I -5v 1 )+{(P2)_i12+a*fi')1 1i2 +ö(fi') 112 } 

- {(p3) ,2+an }u 2YJ )ii2 
 +8(u2Ji,2}+(P4)i2 {g 112  +8g?112} 

_(p n 
5/j-1/2 

(i) 
 )

n R' ff-I/2 = j-I12 
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_112hJ' (v' +5v' —v,' 1  —Si,',) Or, (P)" 

± {(i ) a + ! (f(il) + + f1,v + vöf )} 
{(

p3
) ')  - j_I/2+

n a ju 
2 

)j_II2 + + u 'i_ i' &  i-Il 

5(u) +8(u ))} +(P4 ) i ,2 {g2ti2 ±(og +og1) j—(P')--."j(U fJ'i)1/2+! 1 ( 

+ (P6) t/2{  (pv  )I/2 + + VJ  q3J  + J  ISVJI  + v5P i )} 

+an{ 11"
n-I R'1 ii2 ~!(! +of)} v1j2 _an(v ii2  ~i(8v +ov1))f12 = j-I/2 

Or, (s1 )1  ôv/ + (s2)1  8v 1  + (s3)1 5f7) + (s4)1  öf3  + ($5 ))  8u 
(say)( 4.9) 

+ (S6)J 8u 1  + (s7) 5gl) + (s8) 5g 1  + (s9)5p + (s10)5p 1  = (r2) 

where 

(r2) = - (P1' h {(';_I/2 +a11 }(fr)1112  j f-I/2 tj-/2 j 

+{(');/2 
+a}(u2Ji,2 (p)n  - •112gi)112 + (F 112u 112 (4.10) 

(s) n-I -- (F 112(pv) 112  —a (fJR,2v;:,2 - 

(F); 112 a 1 
(s1 ) = hJ' (P1 )1112  + 

- f(s)  +—(F , (s) _!L is-I 

2 ' 2 - 
- -' 2 

_112 (4.11) 

J(s2)) = —h)112 + 
(P2 ),12  +a 

fJ  + )I,2pl 
— n-I 

_112 
2 
f (4.12) 

2 

(D "_21
fl
j-l/2 v +a (i) an  nI (4.13) (s3 ) = j  + ----v 112  

__________ 
n-I (4.14) - (P2  ) /2 +a 

, 

+ - (s4 ) 
2 

'I n 

(55 ) = -{( )i +a - (P5 /j-I/2 (4.15) 
2 
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12  

(s) —{I/2 +C'n }2, - 
(P) 1 ,2 

(4.16) 
2 

) 
= 

(P412  (4.17) (s), 
2 

= 
(P4 )_112  (4.18) 

(sa ) j 
2 

(s9)3 = 
(P6 )' 112  

VW (4.19) 
2 

- 

(F)_112 (i) 
(s10)3 

 - 2 
(4.20) 

Similarly by using the equations (4.1) to (4.5), then the equation (3.67) can be written as 

---hT' (I 112 (p +8p° Pi — 2)+—I/2 +a}{( I,2  +8(ffi)1112 } 
Pr 

+ 8(u (I) 1+ a 
{(u  /2 ± 

(a)  ) n1 n—I 
-all {(ug)1_112 g)1112; u_112 g112 -u1112(gi—I ,2 +sg12)} 

- 
- P-i ff—I/2  P-iiz(fJi2 + I/2} 

afl{(p 
±8 (1) ) ' 

V -._hJ'(.F'Y' (pi+8 (a) (a) 
Jj—II2 \ Pi - 

Pr 

+ {(F1/2 + a(fi)3112 + .{s(fp) + 8(fi21}} 

(a)  1 n—I 1(i) 
_an{(u,jii2 + {s(ug) ~ 8(ug) i }} ±an{uii2 + -( 80)  +8u 11g 112  

- an{ii2± (sg + 8g 1)}ui i2  + (l,2{ + 

1 n—I 
- an{P. i i2 + (5p1) +8PI)}fJ2 + a71 {fJ i2  + (8f ~8f)p112= f—If 2 
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i.e., 

(t1 ) 8 + (t2)8 p 1  + 03)3  8fJ' +(t4)8fj + (t5) 8u 

+(t6)15u1+(t7)18g)+(t8)ög1+ (t9)1Sv"+(t10)15vi 1 (4.21) 

= (r3)(say) 

where 

(r3) = TJ ---h'(F)_,,2 (pi) 
- 
p1)_P 

Pr 
)_112  +afl . 3)J_I12 

-  
n—I n—I (/) n-1 n—I 

+ ag5?,2u_112 — g_112u1_112)+ a(p112 1-1/2 — Pjl/2fJ/Z) (4.22) 

— (p5)_112 gL,2  

(F,_1,2 +a a
n c&) _!.. n-i 

(t1)1 
Pr j 

(c's )j_I/2 + 2 2- 
fj/2 

(4.23) 

'A 

= ---h(F I'2 + 
(j_If 2 +a j.(i) (t2 ) 

Pr - 2 f-i  2 
(4.24) 

(p2); 
- 1/2 +a a 

— 
n 

(t3) 
2 Pi2 

( P2 ) 1/2 +a n a - () 
'V 

(t4) = 
2 

Pd-I + 'Pf-I/2 

=--2--91 + 
a
---g 112  

(1) a n-i =----g11 +---g 112  

(4.25) 

(4.26) 

(4.27) 

(4.28) 

43 



a.   = 
a 

2 ' 2 
(4.29) 

- 
a 

+ 
(p5)_112 

(4.30) ---- -u_ ----u12 
2 

09 ) =0 (4.31) 

(t10 )1  =0 (4.32) 

The boundary conditions (3.68) becomes 

5f0'=0, öu=0, sgg=O 
(4.33) 

8u=0, o9;=0 

which just express the requirement for the boundary conditions to remain during the 

iteration process. Now the system of linear equations (4.6)-( 4.9) and (4.21) together with 

the boundary conditions (4.33) can be written in matrix or vector form, where the 

coefficient matrix has a block ti-i-diagonal structure. The whole procedure, namely 

reduction to first order followed by central difference approximations, Newton's Quasi-

linearization method and the block tn-diagonal representation Thomas algorithm, is well 

known as the Keller-box method. 
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CHAPTER V 

Results and Discussions 

The effect of temperature dependent physical properties on MHD natural convection flow 

along a vertical wavy surface with heat generation has been investigated. Using the 

aforementioned numerical procedure, the numerical results obtained using the governing 

equations (3.37) and (3.38) with the boundary conditions (3.39) are displayed through 

graphs and tables below. There are five parameters of interest in the present problem, 

namely, the thermal conductivity parametery, heat generation parameter Q, magnetic 

parameter M, the amplitude to length ratio of the wavy surface a of the surface and 

Prandtl number Pr. The numerical solutions regarding the velocity and temperature 

distributions are presented for different selected values of the established dimensionless 

parameters. The influences of these various parameters on the velocity and temperature 

fields are presented in Figure 5.1 through Figure 5.20 and some of the numerical results 

regarding coefficients skin friction and heat transfer are given in tabular form in Table 5.1 

and Table 5.2. 
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Figure 5.1: Velocity profiles .1' against dimensionless distance q for 

different values of Prandtl number Pr while a = 0.2, M = 0.5, y= 3.0 and 

Q = 0.5. 
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Figure 5.2: Temperature distribution 0 against dimensionless distance  17 
for different values of Prandtl number Pr while a= 0.2, M= 0.5, y=3.0 
and Q=0.5. 
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Figure 5.3: Variation of skin fiction coefficient Cj against dimensionless 
distance x for different values of Prandtl number Pr with M = 0.5, a = 0.2, 

3.0 and Q= 0.5. 
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Figure 5.4: Variation of rate of heat transfer Nu against dimensionless 
distance x for different values of Prandtl number Pr with M = 0.5, a = 0.2, 
y=3.0 and Q = 0.5. 
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Figure 5.5: Velocity profiles F against dimensionless distance q for 
different values of magnetic parameter M with Pr = 0.72, a = 0.2, y=3.O 
and Q-0.5. 
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Figure 5.6: Temperature distribution 0 against dimensionless distance 
for different values of magnetic parameter M with Pr = 0.72, a = 0.2, 

3.0 and Q= 0.5. 
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Figure 5.7 Variation of skin fiction coefficient Cfr against dimensionless 
distance x for different values of magnetic parameter M with Pr = 0.72, 
a0.2, 73.OandQo.1. 
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Figure 5.8 Variation of rate of heat transfer Nux  against dimensionless 
distance x for different values of magnetic parameter M with Pr = 0.72, 
a=0.2, 7=3.0 and Q=0.l. 
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Figure 5.9: Velocity profiles f against dimensionless distance q for 

different values of thermal conductivity parameter y with Pr = 0.72, 
a0.2,Mz0.5 andQ=0.l. 
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Figure 5.10: Temperature distribution C against dimensionless distance  il 
for different values of thennal conductivity parameter y with Pr = 0.72, 
a=O.2,M=0.5 andQ0.l. 
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Figure 5.11 Variation of skin fiction coefficient Cjx against dimensionless 
distance x for different values of thermal conductivity parameter y with 
Pr= 0.72, a=0.2,M-0.5 and Q=0.l. 

1 

>( 

z 
0.5 

- t 
, 

0 2 4 6 8 10 

x 

Figure 5.12 Variation of rate of heat transfer Nu1 against dimensionless 
distance x for different values of thermal conductivity parameter y with 
Pr= 0.72, a= 0.2,M0.5 and Q0.l. 

51 



0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

() 
0 1 2 3 4 5 6 7 8 9 

'11 
Figure 5.13: Velocity profiles f against dimensionless distance 17 for 

different values of heat generation parameter Q with Pr = 0.72, a = 0.2, 
M= 0.5 and y= 0.5. 
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Figure 5.14: Temperature distribution 0 against dimensionless distance i for 
different values of heat generation parameter Q with Pr = 0.72, a = 0.2, M 
0.5 and y= 0.5. 
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Figure 5.15: Variation of skin fiction coefficient Cjx against 
dimensionless distance x for different values of heat generation parameter 

Q with M= 0.5, Pr = 0.72, y= 0.0 and a= 0.2. 
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Figure 5.16: variation of rate of heat transfer Nu against dimensionless 
distance x for different values of heat generation parameter Q with M = 0.5, 
Pr = 0.72, y = 0.0 and a = 0.2. 
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Figure 5.17: Velocity profiles f against dimensionless distance q for 

different values of amplitude to the length ratio of wavy surface Cr with 
Pr = 0.72, Q = 0.5, M = 0.5 and y=  0.0. 
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Figure 5.18: Temperature distribution 0 against dimensionless distance 
for different values of amplitude to the length ratio of wavy surface a 
with Pr = 0.72, Q = 0.5, M= 0.5 and y= 0.0 



Numerical results for velocity and temperature fields and the shearing stress in terms of 

skin friction coefficients Cj and the rate of heat transfer in terms of the Nusselt number 

Nu are obtained for different values Prandtl number Pr = 0.72, 1.5, 3.0, 4.5 and 7.0 (Pr = 

0.72 which corresponds to the air at 200C, Pr = 3.0 and 7.0 which correspond to water at 

600C and 200C respectively), the magnetic parameter M = 0.0 (non magnetic field), 0.5, 

1.0, 1.5 and 2.0, the thermal conductivity parameter y= 0.0, 0.5, 1.0, 4.0 and 7.0, the heat 

generation parameter Q = 0.1, 0.5, 1.0, 1.2 and 1.5 and the amplitude to length ratio of the 

wavy surface ranging from a = 0.0 (flat plate) to 0.2 are displayed in Figure 5.1 to Figure 

5.20. 

Figure 5.1 and Figure 5.2 deal with the effect of Prandtl number (Pr = 0.72, 1.5, 3.0, 4.5, 

7.0) with other fixed controlling parameters, such as, magnetic parameter M = 0.5, thermal 

conductivity parameter y = 3.0, heat generation parameter Q = 0.5 and amplitude to length 

ratio of the wavy surface a = 0.2, on the velocity f'(x,) and the temperature 9(x,ij) 

fields respectively. Prandtl number is the ratio of viscous force and thermal force. 

Increasing values of Pr, increases viscosity and decreases thermal action of the fluid. If 

viscosity increases, then fluid does not move freely. Because of this fact, it is observed 

from Figure 5.1 that the velocity of the fluid decreases quickly against j for increasing 

values of Prandtl number. The maximum values of velocity are 0.72978 (for Pr = 0.72) 

and 0.44170 (for Pr = 7.0) and maximum values of temperature are 1.00000 (for Pr = 0.72) 

and 1.00928 (for Pr = 7.0). Here velocity decreases by 39.47% when Pr increases from 

0.72 to 7.0. From figure 5.2, we see that very close to the surface, temperature increases 

with increasing Pr but away from it temperature decreases quickly with the increase in Pr. 

This is due to the formation of the thermal boundary layer close to the surface. In uigures 

5.3 and 5.4, the surface shear stress in terms of the local skin friction coefficient Cfr and 

the rate of heat transfer in terms of Nusselt number Nu.T are depicted graphically for 

different values of Prandtl number (Pr 0.72, 1.5, 3.0, 4.5 and 7.0) with other fixed 

controlling parameters M = 0.5, y = 3.0, Q = 0.5 and a = 0.2. From Figure 5.3, it is 

observed that as the Prandtl number increases the skin friction coefficient decreases 

monotonically up to the position x = 2.50 and then crosses the side and increases with 

increasing values of the Prandtl number Pr. From Figure 5.4, a reverse situation is 

observed for the rate of heat transfer. It is evident that increasing values of Prandtl number 

Pr, speed up the decay of the temperature field away from the heated surface with a 
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consequent increase in the rate of heat transfer. The maximum values of local skin friction 

coefficient are 1.12901, 1.45073 and the rate of heat transfer in terms of the local Nusselt 

number are 0.64631 and and 1.44945 for Pr = 0.72 and 7.0 respectively. It is seen that the 

local skin friction coefficient increases by 28.49% and the rate of heat transfer decreases 

as Pr increases from 0.72 to 7.0. Figure 5.5 shows the effect of magnetic parameter M on 

the velocity field. It is observed from the figure that magnetic field acting along the 

direction normal to the surface and for the fixed controlling parameters Pr = 0.72, y= 3.0, 

Q = 0.5 and a = 0.2, the fluid velocity decreases with the increase of the magnetic 

parameter. Here it also observed that the position of peak velocity moves toward the 

interface with increasing M and crosses the side at about I = 3.50. As electrically 

conducting fluid in presence of magnetic field generates electrical current, the magnetic 

field is changed and the fluid motion is moderated. The interaction of the magnetic field 

and moving electric charge carried by the flowing fluid induces a force, which tends to 

oppose the fluid motion. Figure 5.6 observes the effect of magnetic parameter M on the 

temperature field. It is observed that at the surface the temperature is maximum, it 

decreases away from the surface and finally leads to zero asymptotically against 'i From 

figure it is seen that the temperature increases sgnificantly as M increases. It is evident 

that the induced magnetic fields decrease the temperature gradient at the wall and increase 

the temperature in the flow region due to the interaction. The influence of magnetic field, 

on the local skin friction coefficient and local rate of heat transfer are illustrated in Figure 

5.7 and Figure 5.8 respectively for fixed values of other controlling parameters Pr = 0.72, 

y = 3.0, Q = 0.5 and a = 0.2. Figure 5.7 shows the effect of magnetic parameter on the 

local rate of skin friction coefficient for fixed values of controlling parameters. Since 

electrically conducting fimi in presence of magnetic field generates electrical current, as a 

result, the velocity gradient f'(x, 0) increases with the effect of magnetic field. It is 

observed that the local rate of skin friction coefficient decreases at different position of x 

due to increasing values of the magnetic parameter M. The maximum values of local skin 

friction coefficient Cfr is 1.54970 and 0.64631 for M = 0.0 and 2.0. It is shown that the 

skin friction coefficient decreases by 58.29% when M increases from 0.0 to 2.0. On the 

other hand, Figure 5.8 shows the effect of magnetic parameter on the local rate of heat 

transfer for fixed values of controlling parameters Pr = 0.72, r= 3.0, Q = 0.5 and a = 0.2. 

As electrically conducting fluid in presence of magnetic field generates electrical current, 

as a result, the rate heat transfer in terms of the local Nusselt number Nu decreases 
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due to increasing values of the magnetic parameter M at different position of x. However, 

PI the local rate of heat transfer remain unchanged in its initial position as M increases from 

0.0 to 2.0. Therefore, the magnetic field acts against the direction of fluid flow and reduce 

both the skin friction and the rate of heat transfer. Figure 5.9 and Figure 5.10 deal with the 

effect of thermal conductivity parameter (y = 0.0, 0.5, 1.0, 4.0, 7.0) with other fixed 

controlling parameters Pr = 0.72, M = 0.5, Q = 0.1 and a = 0.2, on the velocity f'(x, i) 

and the temperature O(x,) against i, respectively. It is observed from Figure 5.9 that 

velocity increases with the increasing values of thermal conductivity parameter y and in 

Figure 5.10 it is noted that the temperature increases significantly in the upstream with 

increasing yand converse to zero asymptotically for large ij. 

The effect of temperature dependent thermal conductivity (y = 0.0, 0.5, 1.0, 4.0, 7.0) on 

the surface shear stress in terms of the local skin friction coefficient Cfr and the rate of heat 

transfer in terms of the local Nusselt number Nu are depicted graphically in Figures 5.11 

and 5.12 respectively, against the axial distance of x fixing all other parameters Pr = 0.72, 

M = 0.5, Q = 0.5 and a = 0.2. Figure 5.11 indicates that increasing values of the thermal 

conductivity sharply increased the surface shear stress in terms of the frictional force in 

the direction of x and a increase in the values of y, the rate of heat transfer along the wavy 

surface is observed increasing as is seen from Figure 5.12. Moreover, the maximum values 

of local skin friction coefficient fx are 0.88315, 0.92273, 0.95112, 1.03825, 1.07745 for 

r= 0.0, 0.5, 1.0, 4.0, and 7.0 respectively which occurs at x = 0.5 and it is seen that the 

local skin friction coefficient Cfr increases by 22.00% as the value of thermal conductivity 

parameter grows up from 0.0 to 7.0. Furthermore, maximum values of local the rate of 

heat transfer are 0.32836 for y = 0.0 and 0.93787 for y = 7.0, respectively each of which 

occurs at different position of x. The rate of heat transfer increases by 183.62% as the 

value of thermal conductivity parameter enhances from 0.0 to 7.0. Here it is concluded 

that the higher the value of thermal conductivity parameter, the skin friction coefficient 

and the corresponding rate of heat transfer are also higher. 

Figure 5.13 and Figure 5.14 deal with the effect of heat generation parameter (Q = 0.1, 

0.5, 1.0, 1.2, 1.5.), with other fixed controlling parameters Pr = 0.72, M = 0.5, y = 0.5 and 

a = 0.2, on the velocity f'(x,ij) and the temperature O(x,) against il. It is observed from 
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Figure 5.13 that with the increasing values of heat generation parameter Q, velocity 

increases and in Figure 5.14 the same situation it noted, that is, increasing values of heat 

generation parameter Q also increased the temperature. 

Figures 5.15 and 5.16 show respectively the effect of heat generation parameter (Q = 0.1, 

0.5, 1.0, 1.2, 1.5.) on the local skin friction coefficient Cj- and the local heat transfer rate in 

the direction of x keeping all other parameters fixed (Pr = 0.72, M = 0.5, y = 0.5 and 

a = 0.2 ). Figure 5.15 and Figure 5.16 indicate that with the increasing values of the heat 

generation parameter Q, the skin friction in terms of Cfr increases but the rate of heat 

transfer in terms of Nux  decreases very slowly. However, the maximum values of the skin 

friction coefficient and the heat transfer rate are 0.92273 and 0.39386 for Q = 0.1 which 

occurs at the surface and 3.89676, 0.39388 for Q = 1.5 which occurs at the axial position 

of x = 0.50. It is seen that the skin friction coefficient increases up to 322.30% and the heat 

transfer rate is unchanged in its initial position as Q increases from 0.1 to 1.5. 

Figure 5.17 demonstrates the velocity variation for variation of the amplitude to length 

ratio of the wavy surface (a 0.0, 0.05, 0.1, 0.15, 0.2) with Pr = 0.72, M = 0.5, y= 0.0 an 

Q = 0.5 and the corresponding temperature O(x,) distribution is shown in Figure 5.18 

From Figure 5.17, it is revealed that the velocity f'(x,i) increases slowly against il with 

the increase of a. From Figure 5.18 we see that no significant effect on the temperature 

O(x,) for increasing values of the amplitude to length ratio of the wavy surface. Figures 

5.19 and 5.20 show that the increase in the value of the amplitude to length ratio of wavy 

surface (a = 0.0, 0.05, 0.1, 0.15, 0.2) leads to decrease the value of the skin friction 

coefficient Cft and the rate of heat transfer in terms Nu while Pr = 0.72, M = 0.5, r= 0.0 

and Q = 0.5. Fricticnal force depends on the smoothness of the surface, temperature and 

nature of fluid. Surface becomes more roughened for increasing values of amplitude to 

length ratio of wavy surface. and velocity decreases at the local points. However, the 

maximum values of the skin friction coefficient and the heat transfer rate are 0.95584 and 

0.35680 for a= 0.0 which occurs at the surface and 0.88351, 0.32836 for a= 0.2 which 

occurs at the axial position of x = 0.50. It is seen that the skin friction coefficient and the 

heat transfer rate decrease by 7.60% and 7.97% respectively as a increases from 0.0 to 

0.2. 



Numerical values proportional to the coefficients of skin friction Cfr and the rate of heat 

transfer in terms of the Nusselt number Nu, are obtained for different values of the Prandtl 

number Pr (= 0.72, 1.5, 3.0, 4.5 and 7.0) with fixed values of other controlling parameters 

(M = 0.5, y3.0, Q = 0.5 and a= 0.2) are given in Table 5.1 and 5.2, respectively. It is 

observed that with the increase in Pr, the coefficient of skin friction decreases as well as 

the rate of heat transfer decreases except at x = 0. 

Table 5.1: Comparison of the values proportional to the coefficient of skin friction Cfx 

against x for the variation of Prandtl's number Pr with other fixed controlling values M = 

0.5, y= 3.0, Q = 0.5 and a= 0.2. 

x Pr = 0.72 Pr =1.5 Pr--3.0 Pr=4.5 Pr = 7.0 

0.00 0.87961 0.80045 0.72108 0.67452 0.62447 

0.50 1.07772 1.01989 0.96042 0.92636 0.89151 

1.00 0.83974 0.80387 0.76800 0.74869 0.73059 

1.50 1.05084 1.02512 1.00010 0.98816 0.97937 

2.00 0.84175 0.82765 0.81266 0.80592 0.80228 

2.50 1.04651 1.04260 1.03961 1.04202 1.05070 

3.00 0.84784 0.85067 0.85296 0.85709 0.86595 

3.50 1.05040 1.06471 1.07989 1.09372 1.11596 

4.00 0.85682 0.87411 0.89093 0.90432 0.92406 

4.50 1.05874 1.08894 1.11996 1.14374 1.17762 

5.00 0.86774 0.89785 0.92743 0.94889 0.97816 

5.50 1.06989 1.11436 1.15952 1.19221 1.23647 

6.00 0.88003 0.92175 0.96279 0.99148 1.02925 

6.50 1.08297 1.14048 1.19846 1.23923 1.29292 

7.00 0.89331 0.94570 0.99719 1.03247 1.07795 

7.50 1.09741 1.16700 1.23675 1.28494 1.34729 

8.00 0.90730 0.96960 1.03074 1.07210 1.12467 

8.50 1.11285 1.19371 1.27440 1.32946 1.39983 

9.00 092181 0.99340 1.06352 1.11053 1.16969 

9.50 1.12901 1.22050 1.31140 1.37289 1.45073 

10.0 0.93669 1.01705 1.09558 1.14789 1.21322 



Table 5.2: Comparison of the values proportional to the rate of heat transfer in terms of 

Nusselt number Nu against x for the variation of Prandtl number Pr with other fixed 

controlling values M = 0.5, y = 3.0, Q = 0.5 and a = 0.2. 

x Pr = 0.72 Pr =1.5 Pr = 3.0 Pr = 4.5 Pr = 7.0 

0.00 0.64613 0.85781 1.09851 1.25825 1.44945 

0.50 0.15918 0.11968 -0.02458 -0.20232 -0.52440 

1.00 -0.13729 -0.33399 -0.72459 -1.12278 -1.78679 

1.50 -0.39220 -0.72103 -1.31364 -1.89509 -2.85176 

2.00 -0.63028 -1.08991 -1.88430 -2.64817 -3.89442 

2.50 -0.87466 -1.46881 -2.47523 -3.43507 -4.99720 

3.00 -1.11085 -1.83261 -3.03048 -4.16099 -5.99285 

3.50 -1.35945 -2.22358 -3.64447 -4.98339 -7.15541 

4.00 -1.60137 -2.59610 4.20903 -5.71837 -8.15692 

4.50 -1.86123 -3.00689 -4.85481 -6.58312 -9.38065 

5.00 -2.11145 -3.39199 -5.43651 -7.33833 -10.40513 

5.50 -2.38555 -3.82659 -6.11822 -8.24963 -11.69265 

6.00 -2.64555 -4.22679 -6.72049 -9.02917 -12.74725 

6.50 -2.93512 -4.68660 -7.44011 -9.98947 -14.10083 

7.00 -3.20511 -5.10337 -8.06515 -10.79574 -15.18740 

7.50 -3.51108 -5.58867 -8.82269 -11.80466 -16.60571 

8.00 -3.79222 -6.02286 -9.47137 -12.63927 -17.72564 

8.50 -4.11414 -6.53338 -10.26602 -13.69495 -19.20506 

9.00 -4.40758 -6.98549 -10.93911 -14.55 832 -20.35892 

9.50 -4.74457 -7.52137 -11.77129 -15.66192 -21.90264 

10.0 -5.04957 -7.99156 -12.46893 -16.55427 -23.09071 

1- 
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CHAPTER VI 

Conclusions and Recommendations 

The effect of temperature dependent physical properties on MHD natural convection flow 

of viscous incompressible fluid along a uniformly heated vertical wavy surface with heat 

generation has been investigated in this study. The numerical procedure based on the 

implicit finite difference method, known as Keller-Box scheme is adopted to solve the 

nonlinear system of partial differential equations. The numerical results of velocity and 

temperature fields, the surface shear stress in terms of skin friction coefficient and the rate 

of heat transfer in terms of local Nusselt number have been presented graphically for some 

selected values of appeared parameters consisting of thermal conductivity variation 

parameter y LI, heat generation parameter Q, magnetic parameter M, amplitude to the 

length ratio of wavy surface a and Prandtl number Pr. Some numerical results of the skin 

friction coefficient and the rate of heat transfer also have been presented in tabular forms. 

On the basis of the figures, it is concluded that: 

the velocity of the fluid decreases quickly against for increasing values of Prandtl 

number. 

• temperature increases with increasing Pr very close to the surface, but away from it 

temperature decreases quickly with the increase in Pr. 

• the skin friction coefficient decreases monotonically with the increases of Prandtl 

number within x = 2.50 and then crosses the side and increases with increasing 

values of the Prandtl number Pr. 

• a reverse situation is observed for the rate of heat transfer. 

• the fluid velocity decreases with the increase of the magnetic parameter Al. 

• the temperature increases significantly as M increases. 

• the local rate of skin friction coefficient decreases at different position of x due to 

increasing values of the magnetic parameter Al. 



• the rate heat transfer in terms of the local Nusselt number Nu decreases due to 
40,  

increasing values of the magnetic parameter M at different position of x. 

• velocity increases with the increasing values of thermal conductivity parameter y. 

• the temperature increases significantly in the upstream with increasing y  and 

converse to zero asymptotically for large q. 

• increasing values of the thermal conductivity sharply increased the surface shear 

stress in terms of the frictional force in the direction of x. 

• with a increase in the values of y, the rate of heat transfer along the wavy surface is 

observed increasing. 

• velocity increases with the increasing values of heat generation parameter Q. 

• increasing values of heat generation parameter Q increased the temperature of the 

fluid. 

• with the increasing values of the heat generation parameter Q, the skin friction in 

terms of Cft increases but the rate of heat transfer in terms of Nu decreases very 

slowly. 

the velocity increases slowly against with the increase of the amplitude to length 

ratio of the wavy surface a. 

• there is no significant effect of a on the temperature field. 

• the increase in the value of a leads to decrease the value of the skin friction 

coefficient Cft and the rate of heat transfer in terms Nu. 

On the basis of the tables, it is concluded that: 

• with the increase in Pr, the coefficient of skin friction decreases. 

• the rate of hea' transfer decreases except at x = 0. 
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