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Abstract 

A perturbation method known as "the asymptotic averaging method" in the theory of 

nonlinear oscillations was first presented by Krylov and Bogoliubov (KB) in 1947. Primarily, 

the method was developed only to obtain the periodic solutions of the second order weakly 

nonlinear differential systems. Later, the method of KB has been improved and justified by 

Bogoliubov and Mitropolaskii in 1967. In literature, this method is known as the Krylov-

Bogoliubov-Mitropolaskii (KBM) method. Now a days this method is used for obtaining the 

solutions of second, third and fourth order nonlinear differential systems for oscillatory, 

damped oscillatory, over damped, critically damped and more critically damped cases by 

imposing some proper restrictions, in this thesis, an analytical approximate technique is 

extended to find out the second approximate solutions of third order weakly nonlinear 

differential systems in the presence of strong linear damping and slowly varying coefficients 

based on the KBM method. Also, the KBM method is presented to fmd out the solutions of a 

fourth order weakly nonlinear differential systems in the presence of strong linear damping 

and slowly varying coefficients including some limitations. To justify the presented method, 

the approximate solutions have been compared to those solutions obtained by the fourth 

order Runge-Kutta method graphically. 
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CHAPTER I 

Introduction 

Differential equation is a mathematical tool, which has its application in many branches of 

knowledge of mankind. Numerous physical, mathematical, economical, chemical, biological, 

biochemical, and many other relations appear mathematically in the form of differential 

equations that are linear or nonlinear, autonomous or non-autonomous. Generally, in many 

physical phenomena, such as spring-mass systems, resistor-capacitor-inductor circuits, 

bending of beams, chemical reactions, the motion of pendulums, the motion of the rotating 

4 mass around another body, etc, the differential equations are occurred. Also, in ecology and 

economics the differential equations are vastly used. Basically, many differential equations 

involving physical phenomena are nonlinear. Differential equations, which are linear, are 

comparatively easy to solve and nonlinear are laborious and in some cases it is impossible to 

solve thern analytically. In such situations mathematicians, physicists and engineers convert 

the nonlinear equations into linear equations by imposing some conditions. In case of small 

oscillation, linearization is a well known technique to solve the problems. But, such a 

linearization is not always possible and when it is not possible, then the original nonlinear 

equation itself must be used. The study of nonlinear equations is generally confined to a 

variety of rather special cases, and one must resort to various methods of approximation. 

At first van der Pol [1] paid attention to the new (self-excitations) oscillations and indicated 

that their existence is inherent in the nonlinearity of the differential systems characterizing 

the procedure. This nonlinearity appears, thus, as the very essence of these phenomena and 

by linearizing the differential equation in the sense of the method of small oscillation, one 

simply eliminates the possibility of investigating such problems. Thus, it is necessary to deal 

with the nonlinear problems directly instead of evading them by dropping the nonlinear 

tenns. To solve nonlinear differential equations, there exist some methods such perturbation, 

technique, harmonic balance, multiple time scale, homotopy perturbation etc. Among the 

methods, the method of perturbations, i.e., asymptotic expansions in terms of a small 

parameter are foremost. Perturbation methods have received much attention as these methods 

for accuracy and quickly computing numerical solutions of dynamic, stochastic, economic 
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equilibrium models for both single-agent or rational expectations models and multi-agent or 

game theory models. A perturbation method is based on the following aspects: the equations 

to be solved are sufficiently "smooth" or sufficiently differentiable a number of times in the 

required regions of variables and parameters. 

The Krylov-Bogoliubov-Mitropolaskii (KBM) [3, 41 method was developed for obtaining the 

periodic solutions of second order nonlinear differential equations. Now a days, the KBM 

method is used to obtain oscillatory as well as damped, critically damped, over damped, near 

critically damped, more critically damped oscillatory and non-oscillatory solutions of second, 

third, fourth etc, order nonlinear differential systems by imposing some restrictions to obtain 

the uniform solution. The method of KB [3] is an asymptotic method in the sense that 

e --> 0. An asymptotic series itself may not be convergent, but for a fixed number of terms, 

the approximate solution tends to the exact solution as & —> oo. It may be noted that the term 

asymptotic is frequently used in the theory of oscillations in the sense that & —* 0. But, in 

this case, the mathematical method is quite different. It is an important approach to the study 

of such nonlinear oscillations in the small parameter expansion. Two widely spread methods 

in this theory are mainly used in literature; one is averaging asymptotic KBM method and 

other is multiple time scale method [131. The KBM method is particularly convenient and is 

the extensively used technique to obtain the approximate solutions among the methods used 

to study the nonlinear differential systems with small nonlinearity. The KBM method starts 

with the solution of linear equation (sometimes called the generating solution of the linear 

equation), assuming that in the nonlinear case, the amplitude and the phase variables in the 

solution of the linear differential equations are time dependent functions instead of constants. 

So, this method introduces an additional condition on the first derivative of the assumed 

solution for determining the solution of a second order nonlinear differential equation. The 

KBM [3, 41 method requires that the asymptotic solutions are free from secular terms. These 

asswnptions are mainly valid for second and third order nonlinear differential equations. But 

for the fourth order differential equation the correction terms sometimes contain secular 

terms, although the solution is generated by the classical KBM asymptotic method. For this 

reason, the traditional solutions fail to explain the proper situation of the systems. To remove 

the presence of secular terms and to obtain the desired results, we need to impose some 
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conditions. The main objective of this thesis is to find out these limitations and to fill these 

gaps and to determine the desired solutions under some special conditions. In this thesis, 

KBM method has been extended for obtaining the second order analytical approximate 

solution of the third order weakly nonlinear ordinary differential systems in the presence of 

strong linear damping and slowly varying coefficients including the effects of small 

damping. Also the KBM method has been presented to solve the fourth order weakly 

nonlinear ordinary differential systems in t he presence of strong linear damping and slowly 

varying coefficients including the effects of small damping. The results may be used in 

mechanics, physics, chemistry, plasma physics, circuit and control theory, population 

dynamics, economics, etc. 

The chapter outline of this thesis is as follows: In chapter II, the review of literature is 

presented. In chapter III, the KBM method has been developed for obtaining the second 

approximate solution of third order weakly nonlinear differential system in the presence of 

strong linear damping and slowly varying coefficients. First approximate solution of a fourth 

order weakly nonlinear differential systems has been presented in the presence of strong 

linear damping and slowly varying coefficients based on the KBM method in chapter IV. 

Finally, some concluding remarks are included in chapter V. 

-4 
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PIS 
CHAPTER II 

Literature Review 

The characteristics of nonlinear differential equations are peculiar. But mathematical 

formulations of physical and engineering problems often results in differential equations that 

are nonlinear. However, in many cases, it is possible to replace a nonlinear differential 

equation with a related linear differential equation that approximates the actual equations 

closely enough to give useful results. In many cases, such a linearization is not possible or 

feasible, when it is not, the original nonlinear differential equations must be tackled directly. 

4 During the last several decades a number of famous Russian scientists, Mandelstam and 

Papalexi [2], Krylov and Bogoliubov [3], Bogoliubov and Mitropolaskii [4] worked jointly 

and investigated nonlinear mechanics. To solve nonlinear differential equations there exist 

several methods. Among the methods, the method of perturbations, i.e. an asymptotic 

expansion in terms of small parameter is foremost. Firstly, Krylov and Bogoliubov [3] 

considered the following nonlinear differential equation of the form 

.+w 2 x = (2.1) 

where over dotes denote ordinary derivative with respect to 1,E is a small positive parameter 

and f is a power series in c, whose coefficients are polynomials in x,i,sint and cost. In 

general, f does not contain either s or t. To describe the behavior of nonlinear oscillations 

by the solutions obtained by perturbation method, Liridstedt [6], Glyden [7], Liapounoff [8], 

Poincare [9] discussed only periodic solutions, transient were not considered. Most probably, 

Poisson initiated to find the approximate solutions of nonlinear differential equations around 

1830 and the technique was established by Liouville. The KBM [3, 4] method starts with the 

solution of the linear equation assuming that in nonlinear systems the amplitude and phase 

variables in the solution of linear equation are time dependent functions rather than constants. 

This procedure introduces an additional condition on the first derivative of the assumed 

solution for determining the desired results. Some meritful works are done and the 

elaborative uses have been made by Stoker [10], McLachlan [11], Minorsky [12], Nayfeh 

[13], and Bellman [14]. Duffing [15] has investigated many significant results about the 

periodic solutions of the following nonlinear damped differential equation named after him. 
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• 2 x+2kx+a x=—sx 3 
. (2.2) 

Sometimes different types of nonlinear phenomena occur, when the amplitude of the 

dependent variable of the dynamic system is less than or greater than unity. The damping is 

negative when the amplitude is less than unity and the damping is positive when the 

amplitude is greater than unity. The governing nonlinear differential equation having these 

phenomena is 

I—e(1—x 2)±+x = 0. (2.3) 

The equation (2.3) is known as van der Pol equation. Kruskal [16] has extended the KB [3] 

method to solve the fully nonlinear differential equation of the following form 

I = F(x,.*,). (2.4a) 

Cap [17] has studied nonlinear systems of the form 

X + 002f(X) = eF(x,±). (2.4b) 

Generally, since f does not contain either e or I thus the equation (2.1) becomes 

I+o 2x=ef(x,x). (2.5) 

In the treatment of nonlinear oscillations by perturbation method, only periodic solutions 

were discussed, transients were not considered by different investigators, where as Krylov 

and Bogoliubov [3] have discussed transient response firstly. When E = 0, the equation (2.5) 

reduces to linear equation and its solution is 

x = a cos(cot + ). (2.6) 

where a and çi are arbitrary constants to be determined by using the given initial conditions. 

\Vhen c # 0, it is sufficiently small, then Krylov and Bogoliubov [3] assume that the solution 

of equation (2.5) is still given by equation (2.6) together with the derivative of the form 

= —a a sin(w t + ). (2.7) 

where a and (p are the function of I, rather than being constants. In this case, the solution of 

equation (2.5) is 
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4 
x = a(1)cos(wl -i-(i)). (2.8) 

and the derivative of the solution is 

= —a(1)wsin(wl + (P(r)). (2.9) 

Differentiating the assumed solution equation (2.8) with respect to time 1, we obtain 

I = —àcosyi —a o.sinyl —afr.sinyi,whereyi = o +q7(t) (2.10) 

Using the equations (2.7) and (2.10), we get 

àcosi,i=asinyi. (2.11) 

Again, differentiating equation (2.9) with respect to time!, we have 

= -áwsinç' -aá?cosili - agcosw. (2.12) 

Putting the value of time I from equation (2.12) into the equation (2.5) and using equations 

(2.8) and (2.9), we obtain 

a(OSiflW acoo = -sf(acost,i,-awsinw). (2.13) 

Solving equations (2.11) and (2.13), we have 

a = --f-sin yi f(acosçu,—aasin u), (2.14) 
co 

= ---cosy! f(acosii,-aa sin i,'i). (2.15) 
aa 

It is observed that, a basic differential equation (2.5) of the second order in the unknown x, 

reduces to two first order differential equations (2.14) and (2.15) in the unknown a and q. 

Moreover, a and are proportional to s; a and -p  are slowly varying functions of the time 

with period 7' 77r = ---. it is noted that these first order equations are now writing in terms of 
0.) 

the amplitude a and phase q as dependent variables. Therefore, the right sides of equations 

(2.14) and (2.15) show that both a and (o are periodic functions of period T. In this case, the 

right-hand terms of these equations contain a small parameter c and also contain both a and 

Ei 



p, which are slowly varying functions of the time i, with period T = 
2,r 

. We can transfer 
a) 

the equations (2.14) and (2.15) into more convenient form. 

Now, expanding sin çi'f(a cos yi,—a(osin ii)and cos ytf(a cos i,ii,—awsin yi) in Fourier series 

in the total phase yt, the first approximate solution of equation (2.5), by averaging equations 

(2.14) and (2.15) with period 7' = is 
(0 

(•) 
- sin y f(a cosi/i,—ao) sin yi)dyi, 

2,ra f  

0 
2,r 

- 2wa f cosif(acosy,—awsini)dw 
(2.16) 

0 

where a and are independent of time t under the integrals. Later, the KB[3] technique has 

been extended and justified by Bogolibov and Mitropolskii [4], and has been extended to 

non-stationary vibrations by Mitropolskii [5]. They have assumed the solution of the 

nonlinear differential equation (2.5) of the following form 

(2.17) 

where uk (k = 1,2,• . . ,n) are periodic functions of sii with a period 27r, and the quantities a 

and ii are functions of time t and defined by the following first order ordinary differential 

equations 

a = sA1 (a)+ e2 A2(a)+... + e'A(a)+ o(e"'), 
(2.18) 

= w + e131 (a)+e2B2(a) + + e"B,7 (a) + 

The functions u, A and B,(k = I, 2, - . ,n) , are to be chosen in such a way that the 

equation (2.17), after replacing a and yt by the functions defined in equation (2.18), is a 

solution of equation (2.5). Since there are no restrictions in choosing functions Ak  and Bk,  it 
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-'K generates the arbitrariness in the definition of the functions Uk  (Bogoluibov and Mitropolskii 

[4]). To remove this arbitrariness, the following additional conditions are imposed 

f Ilk (b, y/) cosy/ dV1 =0, 

2,r (2.19) 

f uk(a,W) sin  I/.fdfI  =0. 

0 

Absences of secular terms in the all successive approximations are guaranteed by these 
14 

conditions. Differentiating equation (2.17) two times with respect to 1, substituting the 

values of x, and i into equation (2.5), using these relations in equation (2.18) and 

equating the coefficients of 6k 
, (k = 1,2,• , n) one will obtain 

2' co ((uk)  + uk)= f'(a,yi) + 2w(aBk  cosyi + Ak  sin u), (2.20) 

where (Uk ) denotes partial derivatives with respect to ti', 

J'(0) (a, yt) = f(a cos y/,—aa) sin yi), 

f° (a,yi) = U1  /(acosyi,—aw sin yi) + (A1  cosw - a B1  sin ti + co 
ayi 

2 dA  
x f(acosyI,—awsin u)+(aB1  - Al  !)cosyi 

dyi 

+(2A1 B1 —aA1 -)  sin ii-2co(A1 
aU, 

dyí Will ôyi 

Here f is a periodic function of with period 2r which depends also on the amplitude 

a. Therefore, f( and Uk  can be expanded in the Fourier series as 

= g(a)+ 11 (g(k_l)(a)cosnyf + h(a)sinn), 

(2,22) 

uk(a,I) = v(a) + (v'(a)cosn yt + co D(a)sin  n ), 

4 where, 
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-I' 
(k-I) 

2, 

g0 = Jf(k_1) (a cosw,—aw  sin yi) dyt, 
2,r 

1  
(k-I) 

g,, = -'- 

 2,r 

$f(acosyi,—awsin yi)cosn yidy.i, (2.23) 

2ff 

h 
(/c -I) = ff (aco',— sin i'sin n yid', n ~ 

'T o  

Here = w> = 0 for all values of k, because both integrals of equation (2.19) are 

vanished. Substituting these values into the equation (2.20), we obtain 

1  

cc 
2 (k-I) 

a) v0 (a)+a)2(1—n2)[v k-I)  (a) cos nyi+w (k-i)  (a) sin nt'] 
n1 

(k-I) (k-I) (k-I) 
=g0 (a)+(g1  (a)~2waB)cosnyi+(h1  (a)+2a)A,) sin nyi) 

cc 

+ I (g(a) cos n i' + h,,  (a) sin n 

Now, equating the coefficients of the harnionics of the same order, yield 

(2.24) 

(gi(k_i)(a)+ 2a)aB/c ) 0, 
(k-i) 

V0  (k-I)  (a)= 
g0 (a) 

 
0) 2 

(k-I) fl (k-I)  (a) 
w (a) 

= 0)2 (1 
- n2 )' 

(/;(kI)() 
+ 2a)A/c ) = 0, 

(k-I) 
- 

g (a) 

- co 2 (1—n 2 ) 

n>'. 

(2.25) 

These are the sufficient conditions to obtain the desired order of approximation. For the first 

approximation, we have 

h °>(a) 2ff 

A i. i  
- 20) 2'Ta) 

f(acosty/,—aa) sin y/) sin y/dy/, 

(2.26) 
2ff 

B = _g °>() I 
ff(a cos tyiaw sin vi) cos vidvi 

2aw 2'Taa) 

Thus, the variational equations in (2.18) become 

a = - ff'(acosb',—aa)siny/)suwdw, 
2w 

(2.27) 

= Jf(acosyi,—awsinyi)cosyid. 
2,raw 
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I It is seen that, the equations (2.27) are similar to the equation (2.16). Thus, the first 

approximate solution obtained by Bogoluibov and Mitropolskii [4] is identical to the original 

solution obtained by Krylov and Bogoliubov [3]. In literature, this method is known as 

Krylov-Bogoliubov-Mitropolskii (KBM) [3, 4] method. Also, higher approximate solutions 

can be found easily. The colTection term u1  is obtained by equation (2.22) by using equation 

(2.25) in the following form 

g1;O) (a) cos n ç' + (a) sin n 
U1 
 - 0)2 

n=2 CO 2 (1 - /12 ) 
(2.28) 

The solution equation (2.17) together with U1  is known as the first order improved solution in 

which a and yl are obtained from the equation (2.27). If the values of the functions A1  and 

B1  are substituted from equation (2.26) into the second relation of the equation (2.21), the 

function •f and in the similar way, the functions A21 B2  and u2  can be found. Therefore, the 

determination of the higher order approximation is completed. The KB [3] method is very 
similar to that of the van der Pol [I] and related to it. van der Pot [1] has applied the method 

of variation of constants to the basic solution x = a cos w/ + b sin &t of i + 0)2x = 0, on the 

other hand Krylov-Bogoliubov [3] have applied the same method to the basic solution 

x = a cos(o) S + 0) of the same equation. Thus, in the KB [3] method the varied constants are 

a and q, while in the van der Pot's [1] method the constants are a and b. The method of 

KB [3] seems more interesting from the point of view of applications, since it deals directly 

16 with the amplitude and phase of the quasi-harmonic oscillation. 

The solution of the equation (2.4a) is based on recurrent relations and is given as the power 

series of the small parameter. Cap [17] has solved the equation (2.4b) by using elliptic 

functions in the sense of Krylov-Bogohiubov [3]. The KBM [3, 4] method has been extended 

by Popov [18] to damped nonlinear differential systems represented by the following 

equation 

I + 2k± + = (2.29) 

where - 2k 1 is the linear damping force and 0 < k <w. It is noteworthy that, because of the 

importance of the Popov's [18] method in the physical systems, involving damping force, 

Mendelson [19] and Bojadziev [20] have retrieved Popov's [18] results. Bojadziev [20] has 

used the KBM [3, 4] method to investigate the solutions of nonlinear differential systems 
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If raised from biological and biochemical systems. In case of damped nonlinear differential 

systems, the first of equation (2.18) has been replaced by 

a = —ka+ cA1 (a)+c2A1(a) +•••+ e"A(a)+o(e"). (2.18a) 

Murty and Deekshatulu [211 have developed a simple analytical method to obtain the time 

response of second order nonlinear over damped systems with small nonlinearity represented 

by the equation (2.29), based on the KBM [3, 4] method of variation of parameters. Alam 

[22] has extended the KBM method to find the solutions of over damped nonlinear 

differential systems, when one root of the auxiliary equation becomes much smaller than the 

other root. According to the KBM method, Murty et al. [23] have found a hyperbolic type 

asymptotic solution of an over damped system represented by the nonlinear differential 

equation (2.29), i.e., in the case k > w. They have used hyperbolic functions, cosh and 

sinh instead of their circular counterpart, which are used by Krylov-Bogoliubov [3], 

Mitropolskii [5], Popov [18] and Mendelson [19]. In case of oscillatory or damped 

oscillatory process these may be used arbitrarily for all kinds of initial conditions. But, the in 

case of non-oscillatory systems, cosh q' or sinh should be used depending on the given set 

of initial conditions. Bojadziev and Edwards [24] have investigated solutions of oscillatory 

and non-oscillatory systems represented by equation (2.29) when k and co are slowly 

41 
varying functions of time I. Murty [25] has presented a unified KBM method for solving the 

second order nonlinear differential systems represented by the equation (2.29), which covers 

the undainmed, damped and over damped cases. Arya and Bojadziev [26, 27] have examined 

damped oscillatory systems and time dependent oscillating systems with slowly varying 

parameters and delay. Sattar [28] has developed an asymptotic method to solve a second 

order critically damped nonlinear differential system represented by equation (2.29). He has 

found the asymptotic solution of the equation (2.29) in the following form 

x = a(l+ii)+ eu1 (a,qi)+.'.+s' u(a,yi)+ o(e F1 ), (2.30) 

where a is defined by the first equation of (2.18) and ill is defined by 

,fr = 1+ eC(a) + E2 (.2(a) +• -• + ? (',,(a) + o(e). (2.1 8b) 
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Osiniskii [29] has extended the KBM [3, 41 method to the following third order nonlinear 

differential equation 

+ c1  I + c., + x = ef(I,.,x) (2.31) 

where 6 is a small positive parameter and f is a given nonlinear function. He has assumed 

the asymptotic solution of equation (2.31) in the form 

x = a + bcosyi + eu1 (a,b,ti) + + s"u,(a,h,yi) + o(s"), (2.32) 

where each u,(k = 1,2,• •,n) is a periodic function of yi with period 2r and a, b and t,u 

are functions of time 1, and they are given by 

a=-2a+sA1 (a)+sA2(a)+••+ n A(a)+o(&n-I-I 
), 

h=—pa+eB1 (h)+e2B2(b)+...+e'B(b)+o(e'), (2.33) 

where - 2, - 2±10) are the eigen values of the equation (2.31) when s = 0. 

By using the KBM [3, 41 method, Bojadziev [301 has investigated asymptotic solutions of 

nonlinear differential equation with time lag delay function. Bojadziev and Lardner [31] have 

also found solutions in mechanical systems governed by hyperbolic differential equation with 

small nonlinearities. Bojadziev [32], Bojadziev and Chan [33] have applied the KBM [3, 4] 

method to solve the problem of population dynamics. Lin and Khan [34] have also used the 

KBM method to some biological problems. Proskurjakov [35] and Bojadziev et al. [36] have 

investigated periodic solutions of nonlinear systems by the KBM [3, 4] and Poincare [9] 

methods and they have compared the two solutions. Bojadziev and Lardner [37, 38] have 

investigated mono-frequent oscillations in mechanical systems including the case of internal 

resonance, governed by hyperbolic differential equations with small nonlinearities. Bojadziev 

and Lardner [38] have also investigated solution for a certain hyperbolic partial differential 

equation with small nonlinearity and large time delay including unperturbed and perturbed 

parts of the equation. Rauch [39] has studied oscillations of a third order nonlinear 

autonomous system. Bojadziev [40] and Bojadziev and Hung [41] have developed a 

40 
technique by using the method of KBM [3, 4] to investigate a weakly nonlinear differential 

12 



4 system with strong damping. Osiniskii [42] has also extended the KBM [3, 4] method to third 

order nonlinear partial differential equation with internal friction and relaxation. Mulholland 

[43] has studied nonlinear oscillations governed by third order differential equation. Lardner 

and Bojadziev [44] have investigated nonlinear damped oscillations governed by a third 

order partial differential equation. They have introduced the concept of "couple amplitude" 

where the unknown functions Ak,  A. and - k depend on both the amplitudes a and b. Alam 

[45] has used the KBM method for solving nih order nonlinear differential system with 

slowly varying coefficients. Alam et al. [46] have presented a general form of the KBM [3, 

4] method for solving nonlinear partial differential equations. Raymond and Cabak [47] have 

examined the effects of internal resonance on impulsive forced nonlinear systems with two-

degree-of-freedom. Alam [48] has also presented a compact form of the KBM [3, 4] unified 

method for solving an nih, n ~! 2,3 order nonlinear differential systems. The formula 

presented in [48] is compact, systematic, practical, and easier. Bojadziev [49] has presented a 

damped forced nonlinear vibration of systems with delay. Alam [50] has presented a method 

to obtain the solution of nih, n ~! 2,3 order over damped nonlinear systems under some 

special conditions. Later, Alamn [50, 53] has extended the KBM method to nih, n ~> 2,3 order 

nonlinear differential systems. Alam [51] has presented a perturbation method based on the 

KBM [3, 4] method to find the approximate solutions of second order nonlinear differential 

systems with large damping. Alarn et al. [52] have investigated perturbation solution of a 

second order time dependent nonlinear system based on the KBM method. Alarn and Alam 

[53] have developed an asymptotic method for certain third-order non-oscillatory non-linear 

systems. Lirn and Wu [54] have also presented a new analytical approach to the Duffing 

harmonic oscillator. Uddin and Sattar [55] have presented an approximate solution of a 

fourth order weakly nonlinear differential system with strong damping slowly varying 

coefficients by unified KBM method but they have not followed their impose restriction 

strictly. Alam and Sattar [56] have developed a simple method to obtain the time response of 

third order over damped nonlinear systems together with slowly varying coefficients under 

some special conditions. Alam and Sattar [57] have presented a unified KBM [3, 41 method 

for solving  third order nonlinear systems. Alam [58] has also presented a unified KBM [3, 4] 

method, which is not the fonnal form of the original KBM method for solving nih, n ~! 2,3 

13 



order nonlinear systems. The solution contains some unusual variables, yet this solution is 

very important. Alam [59] has redeveloped the KBM method presented in [56] to find the 

approximate solutions of critically damped nonlinear systems in the presence of different 

damping forces by considering different sets of variational equations. Alam [59] has also 

extended the KBM method for a third order over damped nonlinear system when two of the 

eigen values are almost equal (i.e., the system is near to the critically damped) and the rest is 

small. Alam [60] has presented oscillating processes of third-order non-linear differential 

systems. Uddin and Sattar [61] have developed an approximate technique for solving Duffing 

type equation with small damping and slowly varying coefficients. Akbar et al. [621 have 

presented the KBM method for solving fourth order more critically damped nonlinear 

systems. Uddin and Sattar [63] have developed an approximate technique for solving 

strongly nonlinear biological systems with small damping effects. Alam [64] has presented a 

perturbation theory of nt/i order nonlinear differential systems with large damping. Uddin et 

al. [65] have developed an approximate technique for solving suongly nonlinear differential 

systems with small damping effects. Alam [66] has presented a unified KBM method for 

solving n/h, n ~! 2, 3 order nonlinear differential systems. Recently, Alom and Uddin [67] 

have presented an approximate tecimique for solving fourth order near critically damped 

nonlinear systems with special conditions based on the KBM method. 

PI 

A 
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CHAPTER III 

Second approximate solution of a third order weakly nonlinear differential system 

in the presence of strong linear damping and slowly varying coefficients based on 

the KBM method 

3.1 Introduction 

The study of nonlinear problems is of crucial importance not only in different areas of 

physics but also in engineering and applied mathematics, since most phenomena in our 

world are nonlinear and are described by nonlinear differential equations. It is very 

IF difficult to solve nonlinear problems and in general, it is often more difficult to get an 

analytical approximate solution than a numerical one for a given nonlinear problem. The 

several methods are used to find approximate solutions of nonlinear problems, such as the 

perturbation techniques [24, 45] and harmonic balance method [68], etc. Bojadziev and 

Edward [24] have presented an asymptotic method for non-oscillatory and oscillatory 

processes. Arya and Bojadziev [26] have studied a system of second order nonlinear 

hyperbolic differential equation with slowly varying coefficients. Arya and Bojadziev 

[27] have also studied a time-dependent nonlinear oscillatory system with damping, 

slowly varying coefficients and delay. Alam [45] has investigated a unified KBM method 

for obtaining the first approximate solution of nih order nonlinear systems with slowly 

varying coefficients. Uddin and Sattar [55] have obtained an approximate solution of a 

fourth order weakly non-linear differential system with strong damping and slowly 

varying coefficients by the unified KBM method. Roy and Alam [69] have studied the 

effect of higher approximation of Krylov-Bogol i ubov-Mitropolski i's solution and 

matched asymptotic solution for second order nonlinear differential system with slowly 

varying coefficients and damping near to a turning point. Alam and Sattar [70] have also 

presented an asymptotic method for obtaining the first approximate solution of a third 

order nonlinear differential system with varying coefficients. Akbar et al. [71] has 

established a technique for solving nih order nonlinear differential equation under some 

special conditions including the case of internal resonance. Feshchenko et at. [72] have 

Al presented a brief way to determine the KBM solution (first order) of nih, n = 2, 3, 

order linear differential systems. Sometimes the first approximate solutions give desired 
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results when the linear damping effect is very small. Otherwise, the solutions give 

incorrect results after a long time I >> 1, where the reduced frequency becomes small. 

From our study, it is seen that most of the researchers have been carried out to obtain the 

first approximate solutions for both constants and varying coefficients [24, 45, 46, 72]. 

The complicated but not less important case of second order approximate solution of a 

third order nonlinear differential systems in the presence of strong linear damping and 

slowly varying coefficients has remained almost untouched. The main goal of this chapter 

is to fill this gap based on the KBM method. 

3.2 The method 

Let us consider a third-order weakly nonlinear ordinary differential equation with slowly 

varying coefficients in the following form 

+k1 (r)+k7 (r)i+k3(r)x= 6f(x,i,I,r) (3.1) 

where the over dots represent the time derivatives, e is a small positive parameter which 

measures the strength of the nonlinearity, r = 61 slowly varying time, k(r) ~! O,j = 1,2,3 

and f is a given nonlinear function which satisfies f(—x,—,—I,r) = —f(x,i,I,r). The 

coefficients are varying slowly in the sense that their time derivatives are proportional to 

e [57]. 

By putting e =O,r = r0  = constant in equation (3.1), we obtain the solution of the 

unperturbed equation (i.e., linear equation) with constant coefficients. The unperturbed 

equation of equation (3.1) has three eigen values 2,(r0 ),f = 1,2,3, where 2,(r0 ) are 

constants, but if s # 0 then it is assumed that 2(z-) are varying slowly with time I. The 

solution of the linearrized equation of equation (3.1) is obtained in the following form 

x(1,0) = a10e (3.2) 

where a 05  j = 1,2,3 are arbitrary constants. 

Now we are going to choose a solution of equation (3.1) that reduces to equation (3.2) as 

a limit e —* 0 in accordance with the KBM method in the following form: 

x(I,e)= a 1(l)+Eu1 (a 1 ,a2 ,a 3 ,r)+6 2u 2(a 1 ,a2,a,r)+.... (3.3) 
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where each a satisfies the following first order differential equation 

6 1 =A1 a 1 +A1 (a1 ,a2 ,a3 )+ 2 B1(a 1 .a2 ,a3 )+••. (34) 

Confining only to the first few terms, (1, 2, 3) in the series expansions of equation(3.3) 

and equation (3.4), we evaluate the functions z,,  112 ,•• and A, B,,••,j = 1, 2, 3 such 

that each a,(1) appearing in equation (3.3) and equation (3.4) satisfy the given 

differential equation (3.1) with an accuracy of ' [66]. Theoretically, the solution can 

be obtained up to any order of approximations but owing to the rapidly growing algebraic 

complexity for the derivation of the formula, the solution is in general confined to a low 

order, usually the first order. In order to determine these functions it is assumed that the 

functions u1 , u., do not contain the fundamental terms which included in the series 

expansions equation (3.3) at order e° . Now differentiating equation (3.3) three times with 

respect to time i and using the relations equation (3.4) and substituting the values of 

, 1, i together with x into the original equation (3. 1) with the slowly varying 

coefficients k1 (r) = —(2(r) + ,L,(r) + A(r)), k2  (r) = A1  (r)A2(r) + 22(r)A,(r) + A1  (r)A.(r), 

k1(r) = —A1(r)22(r)A.1(r) and expanding the right hand side of equation (3.1) by Taylor's 

series and equating the coefficients of E and e2  on both sides we obtain the following 

equations 

-4 

fl(—,)u+( fl(Q-2k )AJ ) 
j=1 

u-2 

j=1 k=I,kj 
(..5) 

P1 1 
+ —((n - k)(n - k - 1)ck 2 )2 a1  = f ° (a1 ,a2,a3,r) 

j=I k=O 

fl(c2-A,.)u2  +( fl(Q-2k )BJ )+2 A1+A a=fW(a,a2,a3,r)  (3.6) 
j=1 j=1 k=I.kj j=1 j=I 

where f(x, 0,i0,r) = , x0  = = A,a, , 

d2. 
= —i- and n = 3 is the order of the differential equation. 

dr 

We have already assumed that u1  and u2  do not contain the fundamental terms and for 

this reason the solution will be free from secular terms, namely / cos/,I sini and / e' 
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Since the solution will be non-uniform in the presence of secular terms. Under these 

restrictions, we are able to solve equation (3.5) and equation (3.6), by separating this into 

n + 1 individual equations for the unknown functions u1 , u.,, A and B,. In general, the 

functions f(0)
, 
 fW, u1  and u,  are expanded in Taylor series in the following forms 

= .m2iz3 (v)a" a317 (3.7) 

u1  = (r)ar'aa' (3.8) 
in1  -0.111, =0.......ni,, =0 

rn, 7713  
= (3.9) 

fl11  =O,rn, =0 ......  in,, =0 

and 

XM''C 

= (3.10) 
fl,1  =0, m, =0, In3  =0 

The eigen values of the unperturbed equation can be written as 2(r0 ) and 

i, (r0 ) ± /a, (r0 ) where / = 1. For the above restrictions, it guarantees that u1  and u2  must 

l?i be excluded all terms with a21U?,!  a21 j.1  of f (()  and f' where m21  - rn211  = ±1. Since as a 

linear approximation (i.e. e —> 0) becomes en" when m21  - m21+1  = 1 or e-U)!  I 
21+1 

when m21  - = —I. It is noticed that e' are known as the fundamental terms [3, 4]. 

Usually these are included in equations A. and B. Moreover, it is restricted (by Krylov 

and Bogoliubov [3]) that the functions A1  and B1  are independent of the fundamental 

terms. Now to determine the equations for A1  and B1 , we follow the assumption of 

Bojadziev [40] that u1  and u2  do not contain a tenri e' (as limit p, —), 0) and we obtain 

the following equations 

2 2)  
L2-2' 

+((n_k)(n_k_1)ck 21-1 )Ai a, 

(3.11) 
= 

n1 ,rn,1,rn,11 a"  a' a'?. ' n2, = 

in 1  =.11121  "0.I131, 1=0 



Il 
(21-k -2) 

(fl()—A.))B1 )A a 
k=2 2 k=O 

111,1+1 
= EG aç  21 a2l a21~1  , in21  = in21+1 . 

fl,1  =0,m 1=0,m,,,, =0 

Then the equations for u1 , u2, A and B, j = 1,2,....n are obtained as 

P1 

[J (Q - 2)u1 = (r)a"aaj' in21  - 
11121+1  # 0, ± 1 (3.13) 

W 1  =0,11121 0,1117f,I 

1 ,z-2  
( f1(-2k))A2I +—((n- k)(n - k —1)ck 2! 

22/2)2, a2, 
k=I.k*21 2 k=0 

(3.14) 

= 1'':n21m211 
a21 a7' , m21 - 11121.F1 = 

11121 =0,1112, 1 =0 

11 I 112 

( [J( 2 - A))A21+1  + -   -((n - k)(n - k - 1)ckA. 
A 2),. a21+1 

k=l./i#2/+1 2 k=0 
(3.15) 

a '2In2I 011' 
' 21,1 m - m - 

2/ a211 , 21 211  = —1 
fl,2 , =0.rn 1,1 =0 

and 

II 

(Q - )t,  )u2  = Gfl,1fl,2177121  (r)aç11 U 21 aj', 'n21  - 'n2 # 0 + 1 (3.16) 1+1 

11 1 

( fl(Q-2k ))B2, + !((nk)(nk 1)ck A 2 )A..,a2, 
k=l.k~2/-I 2 k=0 4' (3.17) 

= 
2l 

a '1121  a'h'2/. I m2, - = I 
1112/=0. m2I. i  =0 

- 2/ 21+1 
 

21+1 

and 

n '7 2  

( fT - 'k ))B211  + --((n - k)(n - k - 1)ckA21 
 2 )2, 1  a211  

k=J.k*2/+1 k=0 
(3.18) 

Co 
)7121 = G

,,,21117217
a 2 / a 1 ,  m21  -  

fl1210. fl12/+I=° 

To obtain the particular solutions of equations. (3.11)- (3.18), we replace the operator  92 

by rn since we know that c(ar' a2l a2  2jj ) = rn2 (ar a11 a'21 j
21 

). Hence the 

determination of second order approximate solution of equation (3.1) is completely 

determined. 

19 



But it is noticed that the solution equation (3.3) is not a standard form of the KBM 

method. To reduce the solution of equation (3.3) to the standard form of the KBM 

method, we need to use the following substitutions 

a1  = a 

a21  ='he"", (3.19) 

a21 =±!be',1=(n-1)I2, 

where a, b represent the amplitudes and q represents the phase of the nonlinear physical 

differential systems. 

3.3 Example 

For the practical importance of the above method, we consider the following third order 

weakly nonlinear differential equation in the presence of strong linear damping and 

slowly varying coefficients 

;+k1(r)+k,(r)+k3(r)x= ex3 (3.20) 

Comparing this with equation (3.1) we have n = 3, J = 1, 2, 3; f(x, ±,I,r) = x3  and 

a1 +a2  +a3 . Now we obtain 

f(x,)= f(a1  + a, + a3  + c u, A1a1  + Aa2  + A3 a3  + (A1  + A., + 43  +Qu1)) 

= f(a1  + a2  + a3 , A a1  + A., a2  +23  a3) + u1  f ja ,  + a2  + a3 , 

A1a1  + ,ta2  + A1a3 ) + e(A1  + A2  + A3  + u1 )  

xfr(ai+a2 +a:,A1a1 +Aa2  +23 a3 )+... 

= 
j.(0) + 

where 

j(0)  =f(a1 +a2  +a3 ,21('1 +Aa2  +Aa3 )=a +3aa2 a +3a1  +a +3aa3  
.22) ( 

+6a a2  a3  +3aa3  +3a1 a +3a2 a; +a, 

and 

= 3u/T(a1  + a, + a3 ,A1a1  + A.2 a2  + A3 a3 ) 

=3u1 (a1 +a2 +a3)2  

=  3k
32 4 22 23 3 

a a2  +(rj + 2r3)a1 a, +(r +r2)a1a2a3  +(2, + ,)a1  a2  +2(ij +r3 )a1 a2 a3  (3.23) 

+ 2rj a aa3  + i aa + (r2  + 2r )a1  a + 2r2a a2  a + 2(r, + , )a1  a2  

+ r4)aa 3 + r3 a + raa + 2r3 aa3  + r4 a,2  a + r4 a + 2,a2 aI, 
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where 

3 

= 2A3(3A3 —A1 )(322  23 ) 

3 
r2  = 

2A(21 +A3)(21 -22  +2A) 

I 
r4  = 

22(3A3 —2)(32, '2) 

(3.24) 

Substituting the values of n, j and  f in equation (3.5) and according to our 

restrictions [equations (3.13)-(3.18)], we obtain four equations for A1 , A2, A3  and u1  

whose solutions are respectively given by the following equations 

A + 
(2A1  —A2  —A.3 )A1'a1 a3 6a1 a2 a3  I +  
(A -A2)(A1 —A3) (3A1 -A2)(A1 —A3)  (A1 +A2)(A1 +23 ) 

A 
(2A2—A1— A3)Aa2 

 + 
3aa2 

+ 
3aa3 

(3.25) 2 
(A2A1)(A2A3) (A1+A2)(2A1+A2 — A3) 2A2)(2A2+A3 — A1) '  

A - 

(2A3-  A1 -  A2 )2a3 
 + 

3aa3 
+ 

3a2 a 

(A3-A1)(23-A2) (A1+A3)(2A1+A3 — A2) 2A3(2),+A2 — A1)' 

and 

3a1  a 
+ 

3a1a 

2A2(A1+A2)(A1+ 2A2 -23) 2A3(A1+A3)(A1 — A2+ 2A3) (3.26) 

+ + 
2A3(3A3 - )4)(A2 -A3) 2A3(3A3  - )4)(3A3 -A2) 

Also substituting equation (3.25) into equations (3.17)- (3.18) and according to our 

restrictions [equations (3.13)-(3.18)], we obtain three equations for B1 , B2  and B whose 

solutions are respectively given by the following equations 

81  = 
9

[ 
 (A1+A2+2A3)(A1+2A2+A3) 222(A1+A2)(A1+2A2—A3) 

+ 
I 

ja a2a2 + (2A1 _A2 — A3)A1'2 a 

2A3(A1+ A3)(A1—A2+2A3) 
1 2 3 

(A1—A2)2(A1-23)2 

6211a1 a2 a3  

(3A1 -A2)2 (3 A1 A.)2  (A1 +A3)2(Al +2)2 (A1 -A2)(A1 -A3)' 
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82 - 
3aa 

2A,(322  —A1 )(3A., —A)(3A2  +21 )(3A.., +2A2  —2) 

+ 
18aaa3 (2A2 —A-23 )2 2a2  

4A2 (A +A2 )2 ()1 +222  +A3 )(A1 +2A2  —As ) (A2  —A)2( A2 _,)2 

- ,2 t 2 I? i2a 3A2a2a3 A2 a2 

(A1+A2 )2 (2)1 +A2 -2)2 4(222+A—A)2 

aa 

B 
 

2A(323  —21)(3A —A2)(A  +323 )(2A2  +3A —A1 ) 

+ 
3aa2a  

2A +22 )(A1 +))(A1 +22  +223 )(A1 +2A2 - A2) 
(2 

A1) 2 (A2 -A2) 2  

11  
-

3Aaa3 - 3A3'a2a 
- 

 

(Al +A2)2 (2A1 +23 -A2) 2 
 4A(A2 +2A2 

A1) 2  (

A
l 
 

A1 )( 1 -A2) 

(3.27) 

We are not interested to determine the correction term it,. So, we are ignoring it. Now 

substituting the values of A1 , A2, B  and 82  from equation (3.25) and equation (3.27) into 

equation (3.4), we obtain the following equations 

(2A1 - 23 -  2)A1'a1 + + 
6a1  a2  a3  

= A1a + (- 
( A1 - A2 )( A1 - 23) (3A1 -A

2
)( A1 - 23 )  (A1 ±A2)(A1 ± 23) 

9 1 

-K 

1 
]aaa + A1 -A2_ (2 ,))'2 a 

+ 
223(A1+A3)(A1 — A2 +2A) -. (A1-A2)2(A1-23)2  

- 4a - 

621'a1 a2a3 
-  

(A1 -23
Val  

)2(A1 
,)2 

(A1 +A.,)2(A1 +23)2  

02 23a2 
( (223_ A -  23)2a2 3aa.. 3aa3  

+ 1 + 
()2-A1)(23 -)-_3) (A1 +23)(22+23-23)  222)(223+23—A1) 

+62 [ 23 
223(323 -A1)(323 —23 )(323 +A.l )(323 +223 -A1) 

+ 
18aaa3 (222 —A1-2.3232 a2  

+ 23)2(A1 + 223 +A)(A1 + 223-23) (23- A1)2(A2 - 

- 

323 a1 a2 - 323 aa3 - 402 

(A1 +A2)2(2A1 +23 
23)2 423(223 +23 -A1)2  (23 -A1)(A2_23)1 

(3.28) 

(3.29) 

For a damped nonlinear system, substituting A1 = —2(r), A1.2 = —1u(r) ± icv(r) and 

a1  = a, 02 = a3  = into equation (3.26) and equations (3.28) - (3.29) and then 
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-K 

simplifying them, we obtain the following equations for the amplitudes, phase variable 

and the correction terms as the forms 

o = —2(r)a + e(I0a + 11a3  + 12ab2  ) + + 14a3  + 15ab2  + 16ab4 ), 

b = —p(r)h + + m1a2b + m2b3 ) + e2(rn3b + m4a2b + m5b3  + ,n6a2b3  + in7b5 ), (3.30) 

= w(r) + g(n0  + n1a2  + n2h2 )+ e2(n + n.a2  + n5b2  + n6a2h2  + n7h4 ), 

and 

= ab2  (c2 c052(o+ d2 sin2q)+ b3(c. cos3(o+ d3 sin3), (3.31) 

where 

- 
2(A. —p)A.' I 

- 
3 

- - 

- 

)2 + w )2 
- (32 - )2 + w2' 

2 
- 2((2 + )2 + (02) 

- - 
2(2 - p)'2  ((2 p)2 + (02 )2n 

- 

At 
- 

32' 
2 2' ,14 _ 

- ' ' , '5 ' ' ' 

((2— eu) +w ) ((3,t—p)+ar) 

- - 
9(p((2 + 1 )2  - 3w2 ) - 4w 2(2 + eu)) 

' 16(p +w2 )((2+p)2  +w2 )((2+p)2  +9w2 )((2+3p)2  +w2 )' 

- 
(3jJw - oi(2 - 1u))(A - ii) - w(p'(2 - p) + 3ww') 

- 
3(2(2 + ,u) - w2 ) 

'nO 
- 2 2 ' 

- 2 2 ' ' 
2w((2—p) +w ) 2(2 +w )((2+1u) +w) 

—3(p (2-3p)+w2) 
= 

 
2 2 2 2' 8(p +0) )((2 

- 
3p) + w) 

—((2— p)((2 - p)2  + 52  )(p' 2  - 0),2 ) + 2p'ww'((A - 
)2 
- 

32) 

+ 2w(/w + w"(2 - u))((2 + )2 + 2)) 

40)2  ((2—p)2 2)2 

3(p'((22 - 0)2)((2 +p)2 
- D2)— 420)2 (2 + i) )+ 2ww' ((2 + p)(22  - 1 )2 ) 

+2((2+p)2 2))) 

4(22 + 2 )2((2+1u)2 
2)2 

3(p'((p2 - W2)((2 3,)2 
- 

2) 41uw2  (2 —3p))+ 2ww' (p((2 3p)2  - 2) 

in = 

(2 0)2)(231u))) 

16(p2  +w2)2((2-3p)2 ± 
 CO 

2)2 

in6  = 

—9((p((2+p)2 w2)_2w2(2  +p))((2+p)(2 +3p)-3w2 ) 

—602 (42+10p) ((2+p)(2+3p)—w 2 )) 

8(p2  +w2 )((2+p)2  +w2 )((2+3p)2  +w2)((2+p)2 
92)  

92 
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- 
- 

3,u) + 3w2 )(,2 
- 

(2 
) - s1.,c,2  (2— 61i))(2 - 5,u) 

+0)2 (2(2-61u)(,u2  —w2 )+5p((2-3)+3w2 ))) 
2 2 2 2 2 2 2 2 2 2' 

128(a +w )(p  +4w )(4u +w )((2-3,u) +9w )((2-5,u) +w ) 

- p)+ 3ww')(2 - u)+ w(3p'w - w'(A. - 
n. 2 2 ,nl  

2w((2—,u) +w) 

- 3w(2 - 4/1) 
fl )  = 

- 8(i2 +w2 )((%-3p)2 +w2 )' 

3w(22 + ,u)) 
2(22 + CO? )((2 + )2 

+ w 2 ) 

- (w((2 
- 

p)2 - 3w 2  )(du'2 - w' 2 ) - 2,u'aY(2 - 1u)((2 
- 

+ 5w 2 ) 

n +2w(p"(2—p)—ww")((2—p)2+w2)) 

4w2 ((Ap)2  +w2)2 

3(2p'w((2 + u)(22  - w 2 ) + 2((2 + )2 
- w 2 )) 

- 
—w'(((2+p)2  —w 2 )(22  —w 2 )-42w 2 (2+p))) 

2 22 2 22 4(2 +w ) ((2+i) +w) 

3(2p'w( 1u((2 - 3)2 
- w2) 

- 

(2 
- w 2  )(2 

- 
3p)) - ((/j2 

- w 2  )((2 - 3p)2  - w 2 ) 

+4pw2(2-3p)))  

16(1u2  +w 2 )2 ((2-3p)2  +0)2 )2  

—9w((((2+p)(2+3p)—w 2 )2  +(42+l0p)(p((2+p)2  —w 2 )-2w 2 (2+p))) 
6 

8cu 2  +w 2 )((2+p)2  +w 2 )((2+3,u)2  +w 2 )((%+1u)2  +9w 2 ) 

n5  = 

10. 

- 3w((2(2 - 6p)(dU2 - w 2 ) + 51u(p(2 
- 

3p) + 3(2 ))(2 
- 

5p) 

- 
- 2Cu2  w 2 )(p(2 —3p)+3w 2 )+ 5,uw 2  (2 —6p)) 

2 2 2 2 2 2 2 2 ' 2' 128(p +w )(,u +4w )(4p +w )((2-3p) +9w )((2-5p) +w ) 

and 

- 

3(_p(2+p)2  + 0)2(42+7/I)) 
C2 
- 4(2 + w2  )((2 + 

)2 + 0)2  )((2 + )2 + 9  CO  2) 

- 
3w((2+p)(2+5p)-3w 2 ) 

2 4(2 +w2)((2+p)2 +w2)((2+p)2 92) 

- 

/I2(23,1)+( 2(22+1sP)) 

- l6(p 2)(p2 +4w2)((2_3p)2 92) 

d3  = 
- 3w(p(2 - 4p) + 20)2 ) 

16(p2 +w2)(u2 +40)2)((23p)2 92) 

Thus, the second approximate solution of equation (3.20) is obtained by 

(3.32) 

(3.33) 

a +bcos + eu1 (3.34) 

where a, b and (, are the solutions of equation (3.30) and u1  is given by equation (3.31). 
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3.4 Results and Discussion 

We have solved two simultaneous differential equations for the amplitude and phase 

variables, and a partial differential equation for u1  involving three independent variables, 

amplitude and phase. We are also able to solve all the equations of A. B,, I = 1,2,3 and 

u. In particular case, we are forced to assume that 2(r), 1u(r) are constants and 

w(r) = w0e '  is varying slowly with time 1, where W()  is constant. The amplitude and 

phase variables change slowly with time t. The behavior of amplitudes and phase 

variables characterizes the oscillating processes and they keep an important role to the 

nonlinear dynamical systems. The amplitudes tend to zero as I - cc (i.e. when time is 

very large) in the presence of damping. Figures (3. 1, 3.3, 3.5) are drawn to compare 

between the first approximate solutions obtained by the KBM method and those solutions 

obtained by the numerical procedure for several damping. We observe that the first 

approximate solutions show good agreement with those solutions obtained by the 

numerical procedure in the presence of strong linear damping with slowly varying 

coefficients. Also figures (3.2, 3.4, 3.8) are drawn to compare between the second 

approximate solutions obtained by the KBM method and those solutions obtained by the 

corresponding numerical solution (fourth order Runge-Kutta method) for several 

damping. We observe that the second approximate solutions also show good agreement 

with those obtained by the numerical procedure in the presence of strong linear damping 

with slowly varying coefficients but the analytical approximate solutions (1 " & 2' 

approximate solutions) deviate from the numerical solutions when the linear damping 

effect is small (Figs. 3.5, 3.6). Moreover, this method is able to give the required result 

when the coefficients of the given nonlinear systems become constants (h = 0, Figs. 3.7, 

3.8). The limitation of the presented method is that it is valid only for weakly nonlinear 

system in the presence strong linear damping and converges rapidly to the numerical 

solution otherwise it deviates from the numerical solution. Most of the researchers [24, 

45, 57, 72] have not discussed this limitation of the KBM [3, 4] method. According to the 

theory of nonlinear oscillations, higher order approximate solutions give the better results. 
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Fig.3.1 First approximate solution (-. - dotted lines) of equation (3.20) is compared 

with the corresponding numerical solution (- solid line) obtained by fourth-order Runge-

Kutta method for 2=0.5, p=O.15, w0  =1.0, h=0.25,s=0.1 and f=x3 with the initial 

conditions [x(0) = 1.50838, 1(0) = —0.38079, 1(0) = —0.97857] or a0  = 0.5, b0  = 1.0 and 

(00  = 0 . 
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-0.5 

-1 

Fig.3.2 Second approximate solution (-. - dotted lines) of equation (3.20) is compared 

with the corresponding numerical solution (- solid line) obtained by fourth-order Runge- 

Kutta method for 2 = 0.5, p =0.15, w0  =1.0, h= 0.25,s = 0.1 and f=x3 with the initial 

conditions [x(0)= 1.50838, x(0)= —0.37974, 1(0)= —0.984981 or a0  = 0.5, b0  = 1.0 and 

(00  =0. 
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Fig.3.3 First approximate solution (-. - dotted lines) of equation (3.20) is compared 

with the corresponding numerical solution (- solid line) obtained by fourth-order Runge- 

Kutta method for ,=O.7, 1a=O.25,co0 =1.0,h=0.25,s=0.1 and j=x3 with the 

initial conditions [x(0) = 1.50848, .i(0) = —0.58075, 1(0) = —0.84 1691 or a0  = 0.5, 

b0 =1.0 and (#0 =0 

1.5 

0.5 

10 15 

Fig.3.4 Second approximate solution (-. - dotted lines) of equation (3.20) is compared 

with the corresponding numerical solution (- solid line) obtained by fourth-order Runge-

Kutta method for 2=0.7, 1u=0.25,w0 =1.0,h=0.25,e=0.l and f=x3  with the 

initial conditions [x(0) = 1.50838, ±(0) = —0.57933, 1(0) = —0.84885] or a0  = 0.5, 

b0 =1.0 and q 0 =0. 

27 



1.5 

I 

0.5 

0 

-0.5 1 

5 

Fig.3.5 First approximate solution (-. — dotted lines) of equation (3.20) is compared 

with the corresponding numerical solution (- solid line) obtained by fourth-order Runge-

Kutta method for 2=0.2, ,u=0.1, (O =l.0,h=0.25,e=0.l and f=x 3 with the initial 

conditions [x(0) = 1.50578, 1(0) = —0.17768, 1(0) = —1.05083] or a0  = 0.5, b0  = 1.0 and 

= 0 . 

-k 

t 

Fig.3.6 Second approximate solution (— . — dotted lines) of equation (3.20) is compared 

with the corresponding numerical solution (- solid line) obtained by fourth-order Runge-

Kutta method for 2=0.2, p =0.1, co = 1.0, h=0.25,E=0.l and I =x3 with the initial 

conditions [x(0)=l.50578, (0)=-0.17715, 1(0)=-1.05717] or a0  =0.5, h0  =1.0 and 

JPO  =0. 
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Fig.3.7 First approximate solution (-. - dotted lines) of equation (3.20) is compared 

with the corresponding numerical solution (- solid line) obtained by fourth-order Runge-

Kutta method for 2=O.5,p=0.15,w0  =1.0,h=0.,e=0.1 and f=x3 with the initial 

conditions [x(0) = 1.50838, 1(0) = —0.4 1556, 1(0) = —0.95255] or a0  = 0.5, h0  = 1.0 and 

=0. 

1.5 

0.5 

Fig.3.8 Second approximate solution (-. - dotted lines) of equation (3.20) is compared 

with the corresponding numerical solution (- solid line) obtained by fourth-order Runge-

Kutta method for 2=0.5,1i=0.15,w0 =1.0,h=0.,e-0.l and f=x3 with the initial 

conditions [x(0)= 1.50838, 1(0)= —0.41611, x(0)= —0.94904] or a0  = 0.5, b0  = 1.0 and 

ço0  = 0 . 



CHAPTER LV 

Ir First approximate solution of a fourth order weakly nonlinear differential in the 
presence of strong linear damping and slowly varying coefficients based on the KBM 
method 

4.1 Introduction 

KBM [3, 4] method is convenient and one of the widely used and popular technique to 

obtain the analytical approximate solutions of weakly nonlinear differential systems. It is 

perhaps noteworthy that because of importance of physical problems involving damping, 

Popov [18] have extended this method to weakly damped nonlinear oscillatory 

differential systems. Murty [25] has used Popov's method to obtain over-damped 

solutions of weakly nonlinear differential equations based on unified theory of Murty et 

al. [23]. Later, this method has been extended to damped oscillatory and purely non 

oscillatory differential systems with slowly varying coefficients by Bojadziev and Edward 

[24]. Arya and Bojadziev. [26] have studied a system of second order weakly nonlinear 

hyperbolic partial differential equation with slowly varying coefficients. Arya and 

Bojadziev [27] have also studied a time-dependent nonlinear oscillatory system with 

damping, slowly varying coefficients and delay. Alarn [45] has investigated a unified 

KBM method for solving weakly nonlinear system of order n ~! 3 with slowly varying 

coefficients. Uddin and Saftar [55] have obtained an approximate solution of a fourth 

-41 order weakly non-linear differential system with strong damping and slowly varying 

coefficients by unified KBM method but they have not followed strictly their imposed 

restrictions. Akbar et al. [62] have studied a fourth order weakly nonlinear differential 

equation with constant coefficients. Alarn [66] has investigated a unified KBM method 

for solving nih order weakly nonlinear differential system. Alam and Sattar. [70] have 

also presented an asymptotic method for third order weakly nonlinear system with 

varying coefficients. Feshchenko et al. [72] have presented a brief way to determine 

KBM solution for weakly nonlinear differential systems. Most of the researchers have 

studied the second and third order weakly nonlinear differential systems for both constant 

and varying coefficients to obtain the first approximate solutions. 

n 
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4.2 The method 

Ir Let us assume a fourth order weakly nonlinear ordinary differential equation with slowly 

varying coefficients in the following form 

x 4  + k1 (r): + k2(0i + k 3(1- ). + k4(r)x = sJ(x,,I,,r), (4.1) 

where the over dots represent the time derivatives, e <<1 is a small positive parameter 

which measures the strength of the nonlinearity, r = et is the slowly varying time, 

k 1(z-) ~: 0, / = 1, 2, 3,4 are slowly varying coefficients and f is a given nonlinear 

function. The coefficients are slowly varying in the sense that their time derivatives are 

proportional to s [57]. 

The unperturbed solution of equation (4.1) is obtained by setting e = 0, r = constant. 

We assume that the unperturbed equation of equation (4. 1) has four eigen 

values 2(r0 ),j = 1, 2, 3,4; where 21(r0 ) are constants, but if s # 0 then 2(r) are 

varying slowly with time t. The solution of the linearized equation of equation (4.1) has 

the following form: 

x(i3O) = (4.2) 

where a10 , ./ = 1, 2, 3,4 are arbitrary constants. 

4.. Now we are going to choose a solution of equation (4.1) that reduces to equation (4.2) as 

a limit s —* 0 in accordance with the KBM method in the following form: 

x(t,) =E a1(t)+su1 (a,a2 ,a3 ,a4 ,r)+s2u2(a1 ,a,,a3 ,a4 ,r)+•••, (4.3) 

where u, u2,. are small correction terms. Each a, satisfies the following first order 

ordinary differential equation: 

à =21a1+&A1(a1 ,a2,a3,a4,r)+s2B1(a1,a7 ,a3,a4,r)+... (4.4) 

Confining only to the first few terms (1. 2, 3...) in the series expansions of equation (4.3) 

and equation (4.4), we evaluate the functions u1, u2,••• and A1, Ri,. ,j = 1, 2, 3,4 

such that each a,(t) appearing in equation (4.3) and equation (4.4) satisfies the given 
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differential equation (4.1) with an accuracy of SmFl  [66]. In order to determine these 

Ir 
functions, it is assumed that the functions u1 , u2,••• do not contain the fundamental terms 

which are included in the series expansions equation (4.3) at order Co . Differentiating 

equation (4.3) four-times with respect to time I and using the relations equation (4.4) and 

substituting the values of x, y, 1, and x into the original equation (4.1) with the 

slowly varying coefficients k1  (r) = —(A'  (r) + 22 (r) + 2 (r) + 24 (r)), 

k2(r) = 2(r)22(r)+21 (r)23 (r)+21 (r)24 (r)+22(r)A(r)+22(1_)21(1)+23(1_)24(r), 

k3(r) —(A1(r)22(r)23(r)+A1(r)22(r)24(r)+A1(r)23(r)24(r)+2,(r)2.(r)24(r)) and 

k4 (z-) = 2(r)22 (r)23 (z-)24 (r) and expanding the right hand side of equation (4.1) by 

Taylor series and equating the coefficients of E on both sides, we obtain the following 

equation: 

ft(A_21)u1  +( fl(A-Ak )Af )+ !((4_k)(3_k)c A.(2)2i.  a 
j=1 j=1 k=I.k*j j=I k=O (4.5) 

=1  (0)  (a1 ,a2,a3,a4,r), 

d2 
where A=2,a1 —, 2=--, J=1,2,3,4,J'° (a1 ,a2,a3,cs4 ,r)=f(x0,±Ø , ),i),r), 

j=I aUJ 2 

and x0 =a1. 

We have already assumed that u1  does not contain the fundamental terms and for this 

reason the solution will he free from secular terms, namely I cos I, (sin! and 1e' . In the 

presence of secular terms, the solutions will be non uniform, so we have to ignore these 

terms. According to these restrictions, we are able to solve equation (4.5) by separating 

this into five individual equations for the unknown functions u1  and A,. In general, the 

functions j(0)  and U1  are expanded in Taylor's series in the following forms: 

f
(0) nh ni. fl,1 

= (r)a1  a2  a3  a4 11I4 (4.6) 

it ,  = (r)a1 '' a211  a3 'a4113 (4.7) 
ni l  =0,1,1=0 .......  rn, =0 

As- 

A 
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The eigen values of the unperturbed equation can be written as - ,u,(r0 ) ± iw,(r0 ), where 

I = 1, 2. For the above restrictions, it guaranties that u1  must exclude all terms with 

a
211

?"2/  a21"121  of f(0),  where in21  — in21  = ±1. Since according to the linear 

approximation (i.e. 6 -+ 0) , a21_1
"221I  a21"':! becomes e"" when rn21 _1  — in21  = 1 or e' 

when in211  — in2,  = —1. It is noticed that e"t  are known as the fundamental terms [3, 4]. 

Usually these are included in equations A1  . Also, it is restricted (by Krylov and 

Bogoliubov [3]) that the functions A, are independent of the fundamental terms. 

Then the equations for u1  and A, j = 1,2,3,4 are written as 

U( — ) ' = ,,,21  
 (r)a2,_1'"' a

21
m2

, n2,_1 —"121 # 0, ± 1 (4.8) 
1=1 fli,, - =0.ii1,, =0 

and 

( fl — 2k ))A211 + I((4 
 - k)cA  — .A2  1-1 ),1a21 1  

(21-k--2) 

k=1,k*21-1 2 k=0 
(4.9) 

2I-1 
= m21 a2,_i a 21  2 , , m21 _1  — m2, = 1 

,,,, =0.n,11  =0 

fl(A - Ak))A,I + !((4 k)(3— k)ck 22 )X,a7, 
A-=l,k~21 2 k.O 

(4.10) 
= m21_1  — m21  

=0 

The particular solutions of equations (4.8) - (4.10), are determined by replacing the 

operator A by I M. jA j  , (since A(a2jm2a2ifu2/1 ) = equation (4.3) 

is not a standard form of KBM [3, 4] method and is presented in terms of some unusual 

variables. Therefore, the solution obtained by formula of equation (4.1) is transformed to 

the formal form by replacing the unusual variables by amplitudes and phases in the 

form: a211  = !b,e', a2, = ±1h,e', 1 = 1, 2  

Thus, the first order analytical approximate solution of equation (4.1) is completed. The 

method can be carried out to higher order approximations in a similar manner. 
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4.3 Example 

Let us assume the following fourth order weakly nonlinear differential equation with 

slowly varying coefficients 

+ k1 (r)1 + k2(r)I+ k3(r)i+ k4(r)x = ex3 , (4.12) 

where f(x,i,I,,r)=x 3  and x0  =a1  +a2  +a3  +a4 . 

Now 

f(0) 
 = a13  + a23  + a 33  + a + 3(a1 2a2  + aa22  + a 1 2a + 2a1 612  a3  + 

+a1 2a4  +2a1  a2 a1 +a22a4  +a1  032  +2a1  a3  a4  +a1  a42 (4.13) 

+ a2  a32  + 2a2 (13  a4  + a2  a42  + a32  a4  + a3  a42 ). 

Putting the values of j(0)  in equation (4.5) and imposing restrictions [equations (4.8)- 

(4.10)], we obtain five equations for A1 , A27  A3, A1  and u1  whose solutions are obtained 

as follows: 

A 
(23 -22 )(21 —A.3 )(21 -24 ) 

+ 
3a1 2a2 

+ 
6a1  a3  a4  

22(22+2—A.3 )(2A3 +2-24 ) (A+A.)(2+24 )(21 +A1 +24 -2,) 

A 2 
(2-23(22 —A)(2-24 ) 

+ 
A.. 3a1  a2 2 

+ 
6a2  a3  a4  

(A+A.)(A,+21 )(A+A+24 -21 ) 

A 
(322-221-22,23-22324+A2+)A4+2,24)2a3 

+ 
3a 32a4 

+ 
6a1 a3 a4  

(A+)(A+))(21 +A2 +2-24 )' 

A 
(322 72 24 -222 24 -223 24  +21 A,+A1 A1 +22 23 )2a4  

(24 -2)(24 —A2)(24 —A3 ) 

+ 
3a3 a4 2 

+ 
6a1 a2 a4 (4.14) 

224(A+224 —A1)(A3 +224 —A2 ) (A+24 )(2+24 )(A+A2 +24 —A)' 

and 

* 2 
= C1  a1 3  + Ci*a23 + c2  a33  + C2'a1 3  + C3  a1  a32  + (7 ta2  a42  + C4  a1  a42  + (74  a2  a 3  

(4.15) 
+ C ai 2a3  + C5'a22a3  + c6  ai 2a4  + Cs*a22a4, 
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where 

c = 
221 (32, - 23 )(32, - )L. )(32, - /1.4 ) 

Ci*= 
2/12 (3)2  — ')(2 —23)(322 —23) 

c2 = 
2/13 (323  —21)(323  —23)(323  —24 ) 

C2 
= 

1 

224(324  —2,)(324  — 22 )(324  —2 

2)-3(2,+23 )(2,+223—),)(2+223 -24 ) 

c3*  = 
224 (2, +24 )(22 +224  —2,)(2 +224   

c4 
= 

3 
22(2, +24 )(2, +224  —22 )(21  +224  23 ) 

(4 
= 

3 
223( +23 )(22  +223  —2,)(2 +223-24)' 

(75 = 
3  

22,(2, +23)(22, +23 —22 )(221 +23-24 ) 

3 
223(23 +23)(222 +23 —2,)(223 +)3  (4.16) 

3 
2A(2, +24 )(22 +24 22 )(221 +24 23 ) 

(7 * 3 

223(22 +24 )(223 +24  —2,)(223 +24 -23 ) 

Inserting the values of A,, A2, A3  and A4  from equation (4.15) into equation (4.4), we 

obtain 

(32,222,23 —2A23 —2/13 24 +22 23+2324  +23 24 )211 a, 
(2, —22)(2, -23)(2, -23) 

., 2 

+ 
.,a, a2 

+ 
6a1  a3  a4  

22,(22,+ 22 -23)(22,+22 -24) (2,+23)(23+24)(23+23+24_ 22Y'  

à
2=

22a2+s(_(323 22,23 22323 223 A4 + 2, 23 + 2, 24 + 23 24)1 2 a2 

(22 — 2,)(22 -23)(23 —2) 
2 

+ 
3a1  a2 6a2  a3  a4  

+ 
223(23+223 -23)(2, +223-24 ) (22  +23 )(22  +24 )(22  +23  +24  
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á
3=

A3
a3

+e(_ (3232A32 A3 A3 3 2A33 2 3 24 +2tI24 +243C1  

(A —2)(A3 —A3)(A3  —24 ) 
3 

+ 
3cz3 2 

 a4 
+ 

6a1  a3  a4  

2A3(2A3+24 —)(2A3+A4 —A3) (+A3)(A3+A3)(+A3+23 —A4)' 

(322 —2A24-2A324-2A324++AA3+A3A3)2a4 
64  =24  a4  + s(— 

(A.4 —A1 )(24 —A2 )(24 —A3 ) 

(4.17) 

+ 
3 a 3 a42 

+ 
6a1  a2  a4 

) 
224 (A3+224 -21 )(A3+224 —A3) (A3+24 )(22 +24 )(21 +A3+24 —A3) 

For a damped solution of equation (4.12), substituting  

2 4  =—p2(r)±iw2 (r) and using the transformation equations a1  = aeIW1,a2 = 

1 1 -i . . 

a3  = , a4  = _jbe into equatIon (4.17) and then simplifying and separating the 

real and imaginary parts, we obtain the following variational equations for the amplitudes 

and phase variables and these forms are very important for any physical system as the 

systems are characterized by amplitude and phase variables: 

a = —,ua+(l1  a+12 a3  +13 ab2 ), 

01 =w1 (r)+g(rn1 +,n2 a2 +rn1 b2), 
(4.18) 

h =-1u2 b+&(p1 b+p2 a2b+p3 b3 ), 

2(r)+(q1 +q2 a2  +q3 b2), 

and the first correction term u1  is obtained as 

= a3(c cos3q1 + d1  sin3 1)+h3(c2  cos3(p2 + d2 5in3q 2)+ •••, (4.19) 

where 

(w1 (((p1 — p2 ) 5(D 2 +w 2 )((p 2 )2  w1 2 +w2 2 )+12w1 2 (p12  

= 
+4p1  w1(p1 —i'2)((1 P2) +(01 2  +(022)) 

1 
2w ((Ja1 /2 )2 +(0)1 - w2 )2 

)((,LI J2 
)2 +(0)1  + 6)2 )2 ) 

I / 

4w w1  (i's — i'2)(Ca1 /2) 
2 

)Pl ((Ca1 M2) 
52  +w2  )( i 2 ) 

w 2  +w2 )+ l2w12(u1 ,i2)2) 
m1  = 

2w1((p1 P2) +(w —w2))((p1  i'2)2 +(wI+W2)2) 

- 3(Pi ((3Pi - /12 )2  - + Cl)  2 2 ) - 2w12  (3p - /12)) 
2 2 2 2 2 2' + w1 )((i'i - P2) + (i - 2) )((i - P2) + + 2) ) 
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n12
- 391((3p1 ThU2)(5/11  /12)w1 2)  

2 2 2 2 2 2' 8(p +w )((3u1 —112)  +(w1 '02)  )((3u1  112) +(" +a) ) 

3(,i2(Cui +112) 
_2 +co2)2w2(p1 ±112)) 

13— - 
2 2 2 2 2 

4(u2 +w1  )(Cui +/'2) +(w1  —wi) )((,u +/12) +(w1  +a)) 

- 
3a((t1 +p2)(t1 +3/17) — w12  +w,2) 

2 2 ' 2 2 2' 
4(,112 +W )(

(
ui P2) +(w —) )(U'i /'2) +(w1 +w) ) 

(a(((p1 /2) 2)((/11 — /12) 52)+122(,J /2) 

= — *2 02(/I —1'2)((P1 —112) + co,  2 )) 

2a((ji1 —112)  +(a)1 — °2) )((i'i —112) +(w +co-,) 

(4a)2o)2 (/'i —p2)(Cui —112) (2 +a2)+p21 (((u1 —112) CO2 —112) 

- 

2w2 (Cui — 112Y + (w — )
2 
 )((ui — /12)

2  + (w1 + w.,)2 
 ) 

- 3Cui((i'i +112) +(O +112)) 
P2-- 2 2 2 2 2 2' 4(p +a )((u /12) +(wj  +) )((/1I +/1) +(w —a)2) ) 

- (("i /'2)(P +/12)+(V1 
2 )  

q2-- 2 2 2 2 2 
(pi + )(Cui +112) +(w1 +c) )(Cui +/'2) +(co w2)) 

- 
3(ji2((,ui  —3p2)2 +a 2 —w22)+2a 2(p1 -3p2)) 

2 2 2 2 2 
8(/12 +c )(Cui /'2) +(w1 —at) )(Cui —3/12)  +(a.}  +a)) 

- 
3w2((ji1 'P2)(1'I —5i2)+w12 _(2) 

q3 
2 ' ' 2 2 2 

(4.20) 
8(//2 +w,)((i1 — /'2) +(cvi —wa) )(Cui P2) +(w1  +(m) ) 

and 

2 
(1u1  - 20)1 2  )((3 112 )2  — 

2 
+ 2 ) —1 8p (1)12(3 — 

I 6(u, 
2 
 + 

2 )(2 
+ 4w2 )( 1J2 

)2 
+ (3wI — (02 )2  )((3p — //2 )2  + (3w + 2 

)2)' 

2 2 2 3w, ((3p, P2) - 9w + 2 ) + 2(3p, P2 
2 
 — 2w12 )) 

16(p 2 2 )( 2 42)((3 _112 )2  +(3w1  w2 )2 )((3p, _112)2  +(3w  + 2 )2 )'  

(1122 —2w2 2 )(Cu _3112 )2  +w1 2  _922)+1811222(pl —3112) 
2 

16(112 +2
2 
 )Cu22 +4w2 2 )((p1  _3//2 )2  +(w — 3 2 )2 )((JIl  _3112 )2  +()1  +3(02 )2 ) '  

3w2Cu2((u1 
3)2 —9 22 )-2(u, —3p2 )Cu22  —2w22 )) 

d2 
16(1122  +w22)(p22 +422)((pl  _3112 )2  +(w1 -3w2 )2 )(( 3)2 

+(w, + 3w2 )2 ) 

Thus, the first order analytical approximate solution of equation (4.12) is obtained by 

x(t,e)=acos 1 +bcosq 2  +gu1 , (4.22) 

where the amplitudes a, b and phases are the solutions of equation (4.18) and zi 

is given by equation (4.19). 
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4.4 Results and Discussion 

Based on the KBM method, first order analytical approximate solution is obtained for 

fourth order weakly nonlinear differential equations in the presence of strong linear 

damping and slowly varying coefficients. We have solved four simultaneous differential 

equations for amplitude and phase variables and a partial differential equation for u1  

involving four independent variables of amplitudes and phases. Also we are able to solve 

all the equations of A, .1 = 1, 2, 3,4 and u by a unified formula. In a particular case, we 

are forced to assume that u1 (r), I = 1,2 are constants and w1 (r) = co0e' and 

= 2@1 (r) are varying slowly with time 1, where w  and h are constants. Figs.4.1- 

4.4 are plotted to compare between the first approximate solutions obtained by the KBM 

method and those obtained by the numerical procedure for several damping effects since 

the graphical representation is very important to visualize the physical systems. 

Moreover, this method is also able to give the desired results when the coefficients of the 

given nonlinear differential equation become constants (h = 0). It is also noticed that the 

presented method is valid only in the presence of strong linear damping and deviate from 

the numerical solutions in the presence of small linear damping. From the Figs. (4.1)-

(4.2), it is seen that the first approximate solutions show a good agreement with the 

corresponding numerical solutions obtained by the fourth order Runge-Kutta method in 

the presence of strong linear damping effects and it is deviated from the numerical 

solutions in the presence of small linear damping effects (Figs. 4.3-4.4). Also it is 

mentioned that u1  is small correction term, so we can ignore this term as it has no 

appreciable effect on the solution. We have observed that the researchers [45, 57, 66, 71] 

have not discussed the limitation of their presented methods which is found in our study. 

-I.. 
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Fig.4.1 First approximate solution (denoted by - -) of equation (4.12), with the initial 

conditions [x(0)= 1.49992, ±(0) = —1.43063, (0) = —1.44426, i(0) = 8.77149] or 

a0  =0.5, q1  =O,b=1.O,,2  =0,1u =1.5, p2  —O.75,o.0  =1.0,h=0.5,e=0.1,a1 =cv0e 

(02 = 2w , r = t and f = x3 . Corresponding numerical solution is denoted by - (solid 

line). 
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Fig.4.2 First approximate solution (denoted by—. -) of equation (4.12), with the initial 

conditions [x(0) = 1.50000, *(0) = —1.55838, 1(0) = —1.02503, (0) = 9.27385] or 

a0  = 0.5, q = 0, 5 = 1.0, = 0,1u1  1.75, ,u2 = 0.75, coo = I.O, h = 0.5, 6 = 0.1,col = cooe = 

Co2  = 2a1, z = .r and f = x3. Corresponding numerical solution is denoted by - (solid 

line). 
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Fig.4,3 First approximate solution (denoted by - # -) of equation (4.12), with the initial 

conditions [x(0) = 1.50056, .k(0) = —0.53420, 2(0) = —2.71155, (0) = 4.557 16] or 

ao= 0.5,i=0,b = l .0,2=O,pi= O.75,2=0.5, .wo= 1.0, h = 0.5,e= O.1,coi=woe 1t, 

a,2  = 2a 1, r = .t and f = x3. Corresponding numerical solution is denoted by - (solid 

line). 
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Fig4.4 First approximate solution (denoted by—. -) of equation (4.12), with the initial 

conditions [x(0)= 1.50055, i(0)= —0.52839, x(0)= —2.75067, x(0)= 4.30002] or 

a0=O.5, q,1=0,b=1.0,ço2=0,p1=O.7,p2=O.25,ao=l.O,h=0.5,s__O.1,w,=c,oeh1T, 

2w1 , v = et and f = x3 . Corresponding numerical solution is denoted by - (solid 

line). 
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CHAPTER V 

CONCLUSIONS 

Usually, it is so much difficult to formulate the KBM method for obtaining the higher order 

approximate solutions of a third order nonlinear differential systems. We have presented a 

general formula for the second approximate solutions by the KBM method for obtaining the 

transient's response of a third order nonlinear differential systems with slowly varying 

coefficients in the presence of strong linear damping. We have also presented the KBM 

method for solving fourth order weakly nonlinear differential systems in the presence of 

- strong linear damping and slowly varying coefficients. Also we have followed the impose 

restriction strictly. From the figures, it is seen that the analytical approximate solutions in the 

presence of strong linear damping obtained by the KBM method are shown good agreement 

with those numerical solutions obtained by the fourth order Range-Kutta method. It is also 

noticed that the analytical approximate solutions deviate from the numerical solutions in the 

presence of small linear damping obtained the presented method. 

The determination of amplitudes and phases variables is very important in all physical 

problems. The amplitudes and phases characterize the oscillating processes. Moreover, the 

variational equations of amplitudes and phases are important to investigate the stability of 

differential systems. In general, the variational equations for the amplitudes and phases are 

solved numerically. In this case, the KBM method facilitates the numerical method and it 

also requires the numerical calculation of a few numbers of points. On the contrary, a direct 

attempts dealing with some harmonic terms requires the numerical calculation of a great 

number of points. 

-p 
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