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AB STRACT 

The composite action between masonry wall and its supporting beam 

concentrates the vertical loading applied on the top of wall close to the beam supports. 

This produces bending moments much less than would be expected when the full load 

is acting directly on the beam. The study of this composite action is of economic 

importance since if the concept is utilised, a rational design of the beam will be 

achieved. 

This thesis presents a comprehensive material model and its incorporation into 

non-linear finite element computer model for the analysis of wall-beam structures 

made with brickwork of solid brick subjected to uniformly distributed load. The 

program is incremental in nature and capable of reproducing the non-linear behaviour 

caused by material non-linearity and progressive local cracking and crushing. The 

program is thus capable of modelling the behaviour of wall-beam structures subjected 

to non-linear load from first crack to final failure. The material model used in this 

program is derived from tests on representative samples of brick, mortar and small 

samples of brickwork. 

In the finite element model brick, mortar, concrete and steel are treated as 

separate materials along with the simulation of actual directional effects of mortar 

joints. A series of failure criteria have been adopted to model the different modes of 

failure experienced in the constituent materials. Due to the crack sensitive nature of 

the problem, particular emphasis has been given to the modelling of cracking and the 

post-cracking behaviour of the materials, especially the manner in which the local 

stresses in the fractured region are redistributed. 

The results of finite element model have been verified by comparison with 

experiments on brick masonry wall-beam structures subjected to uniformly distributed 

load applied at the top and extending over the full length and thickness of the wall. 

Comparison with published literature reveals that the present method can provide a 

more comprehensive prediction of behaviour of the wall-beam structure up to failure 

load. 

Sensitivity analyses of the various parameters defining the material model and 

the boundary conditions have been canied out. With the important parameters thus 

obtained, the finite element model has been used to carry out a comprehensive 

parametric study of the behaviour of storey height wall-beams subjected to uniformly 

distributed load. Based on the findings of this study, design recommendations have 

been proposed. As the computer program developed can handle general cases with 

arbitrary geometry, loading and boundary conditions, recommendations for 

investigations of various other wall-beam structures have been made. 
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NOTATION 

The following general terminology has been adopted. 

{ } Denotes a column vector 

[ ] Denotes a row vector or a matrix 

[ 
]T  Denotes the transpose of a matrix or a column vector 

a5 , a 1 Constant of normal stress defining inelastic stress-strain equation 

[B] Strain-displacement transformation matrix 

B Width of support along the span 

b5, b Constants of shear stress defining inelastic stress-strain equation 

c1 , c2  Non dimensional characteristic parameter 

D Equivalent diameter 

[D] Material constitutive matrix 

[ D f ] Modified material eonstitutive matrix after failure 

{d} Displacement vector 

E Youngs modulus of elasticity 

EA Elastic Analysis 

E 5  Secant modulus of elasticity 

Initial tangent modulus 

Et  Instantaneous tangent modulus 

Fm Compressive strength of masonry 

FN1-I Fine mesh for non-homogeneous solutions 

FR Clear span ratio 

{ F} Vector of nodal forces 

fm Maximum vertical stress in wall 

f5  Ultimate shear strength of masonry 

Shear bond strength 

G Shear modulus 

I-I Height of brick wall 

h Depth of supporting beam 

H' Hardening parameter 

I Moment of inertia of supporting beam 

K Coefficient for maximum tie force in supporting beam 

Ki Coefficient for maximum moment in supporting beam 

[K] Stiffness matrix 

L Length of wall-beam structure 

M Maximum bending moment in supporting beam 

ix 
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MH Medium size mesh for homogeneous solutions 

m Modular ratio of brick to mortar 

NLA Non-linear Analysis using Strain Softening 

Permissible masonry compressive stress 

P Cracking load 

pm Permissible steel bending stress 

S Standard deviation 

Sc Shear stress concentration 

T maximum tie force in supporting beam 

Tb  Thickness of brick 

T. Thickness of mortar 

[T] Transformation matrix 

t Thickness of wall 

u Horizontal displacement 

Vc Vertical stress concentration 

v Vertical displacement 

W Total vertical top loading including wall self weight 

w Intensity of load on top of wall 

X Global co-ordinate (normally horizontal) 

Y Global co-ordinate (normally vertical) 

Z Section modulus of supporting beam 

c Strain 

a.  Compressive stress 

Angle of cracking 

Co-efficient of friction 
Natural co-ordinate (normally vertical for rectangular element) 

E. Natural co-ordinate (horizontal for rectangular element) 

TM  Maximum shear stress 

v Poisson's ratio 

Subscripts 

b Brick 

c Concrete 
/ 

cr Cracking 

m Mortar 

n Normal direction 

p Parallel direction 

x 



x X-direction 

y Y-direction 

w mason!)' or prism 

1 Major principal direction 

2 Minor principal direction 

Superscripts 

e Elastic 

p Plastic 

T Transpose 

t Total 

rgI1e )j/ 

xi 
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CHAPTER 1 

INTRODUCTION 

1.1 INTRODUCTION 

Masonry wall supported on reinforced concrete or steel beam is a common 

feature of residential, commercial and factory buildings. Yet the attention of the 

designers on the wall-beam composite system is very inadequate. Lack of rational 

analysis and well-defined design procedures, and limited test data are the main 

reasons behind this; as a result this structural component is over designed in most 

of the cases. During a series of tests carried out by Building Research Station, 

U. K., very low amount of anticipated stresses have been observed by Mainstone 

(1960). It is of course in a broader sense evident that the stress reductions were 

produced as a result of the composite action between the elements. However, it is 

necessary to determine how these reductions take place and to what extent. 

The wall-beam structure can be categorised as any type of masonry wall that 

transfers in-plane vertical loads applied on the top of the masonry wall down to 

the supporting beam. Masonry may be of any combination of materials, e.g. stones, 

clay bricks, concrete block, lime mortar (calcium silicate) block with mortar made 

from cement sand of any practical proportion (with or without additives). The 

supporting member may be reinforced concrete or steel beam. The walls are 

mainly looked upon as space separator or at best a load transferring media. But 

when the proper interaction between wall and its supporting beam is considered, 

the material consumption in the supporting beam can be reduced considerably. 

Until recently, it was customary to design beams and lintels carrying 

brickwork walls so as to be capable of supporting a triangular load of brickwork 

where the base of the triangle is the span of the beam, provided that the remainder 

of the brickwork is adequately supported, (see Fig. 1.1). If the wall was carrying 

any superimposed load above the apex of the triangle, it was not clear what portion 

if any of the extra load should be taken into account and it was frequently ignored. 

More conservative approach was to distribute the total superimposed load 

uniformly on top of the supporting beam. However this is far from the actual 

behaviour. Since 1952, this traditional concept has become questionable. The 

theoretical and experimental studies in previous years have resulted in a better 

understanding of the problem. It was found that due to arching effect (see Fig. 1.2) 
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in brickwork the brick panel and supporting beam form a composite deep beam, 

with the supporting beam acting as a tie for the panel as a whole. A greater overall 

stiffness is thus achieved. As a result a smaller share of the applied load is 

transmitted to the supporting beam. With this small share of load it was possible to 

recommend a design moment for the supporting beam as low as WL/ 100. It was 

also observed that the bending moment induced in the beam depend on the relative 

stiffness of the beam and wall. Stiffer the beam greater is the amount of load 

transmitted on the beam at the mid span. Thus for a very flexible supporting beam 

considerable degree of arching action can be expected to occur in the panel. The 

bond between the beam and the panel is of prime importance for the proper 

interaction between wall and the supporting beam. In case of bond failure, the 

supporting beam at the interface level will carry the superimposed load and the 

load of the masonry wall as uniformly distributed over the span. As a result the 

interactive response of the wall-beam disappears. 

1.2 BACKGROUND OF RESEARCH 

The behaviour of wall-beam structure was first investigated in 1952 by 

Wood. Later Rosenhaupt (1962) and Burhouse (1969) carried out similar tests. All 

of them agreed that the moment in the supporting beam of such structure will be 

much less than if the same load be distributed on the beam. Recently, Annamalai, 

et.al.,(1984) carried out tests on reinforced brick wall thin lintels to study the 

composite action. Their experimental results also supported the conclusion made 

by the previous investigators. 

All these investigators observed the concentration of vertical stress near the 

support that initiated the failure before yielding of supporting beam. They 

recommended that the moment in the beam supporting the wall was much less than 

if the load would be uniformly distributed on the span. But these recommendations 
vary widely from country to country reflecting the empirical nature of the problem. 

This is possibly due to the size, type and variability in the material properties of the 

specimens adopted during the experiments. 

In the previous years due to the variability in test results the researchers 

simultaneously worked with the mathematical and computer modelling to model 

the actual behaviour of wall-beam structure. The analytical works in the field 
includes the Airy's stress function of Rosenhaupt (1964), variational approach of 

Coull (1966), the lattice analogy of Colbourne (1969), equivalent stress block of 
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Wood and Simms (1969) and shear lag method of Yettram and Hirst (1974). 

Ramesh et al. (1970) analysed the problem by expressing the displacement in the 

form of multiple Fourier series and Green (1972) unlike other analysts considered 

the wall-beam system as a beam on elastic foundation. 

With the advent of electronic computer, finite element method of stress 

analysis for wall-beam structure was adopted by the researchers (Ahmed (1977), 

Davies and Ahmed (1978), Stafford Smith and Riddington (1977), Yisun et al. 

(1985) and Kamal (1990)) to make a close study of such highly indeterminate 

structure. 

All the analyses performed at that time were hampered due to lack of 

representative material model for masonry. In most of the cases the masonry was 

considered as a homogeneous media with the assumption of isotropic linear elastic 

behaviour for the constituent material. But in wall-beam structure the brickwork 

consists of brick and mortar joints (bed joints and header joints). The beam consists 

of concrete and reinforcement and interface between the wall and supporting beam. 

All these components behave differently when loaded. Therefore, the idea of 

considering the brick wall as a homogeneous material cannot fully represent the 

actual material of the wall-beam. In addition, at failure stage the load response of 

the structure is non-linear. With this type of elastic model the local behaviour near 

the support of the wall-beam where the stress gradients are high, cannot be 

predicted. Moreover, this type of model cannot predict failure load. Therefore, for 

accurate prediction of failure load the material non-linearity and the non-linearity 

due to progressive cracking of the component materials must be considered. 

Page (1979) proposed a non-linear non-homogeneous finite element model 

to predict the overall behaviour of wall-beam structures. His model simulated the 

propagation of the crack, only through the mortar joints. Thus it was incapable of 

modelling fracture through the bricks that constitute about 90 % of the brickwork. 

Therefore, the model could not predict the failure load. With the background 

mentioned above there lies a wide scope for doing research on wall-beam structure. 

1.3 OBJECTIVE OF THE RESEARCH 

To develop a computer based finite element model that can analyse the 
composite behaviour of wall-beam structure from elastic range to ultimate 

failure. 



• To verify and compare the predicted ultimate loads and failure pattern with the 

experimental results obtained in the laboratory from tests on wall-beam. 

• To perform a comprehensive parametric study considering the important 

parameters involved in the composite behaviour of wall-beam structure. 
• Finally, to propose a new design recommendation and to compare with the 

existing ones. 

1.4 ESSENTIAL FEATURES FOR THE ANALYSIS OF WALL-BEAM 

STRUCTURE 

The realistic interaction between masonry wall and its supporting beam 

have the following features: 

I. The thickness of the wall being negligible in comparison to the masonry height 

and length of the supporting beam and the applied load being in the plane of 

the wall, a two-dimensional idealisation of the wall-beam is therefore, 

considered realistic. 
The mechanical behaviour of most of the component materials is non-linear. A 

linear elastic approach oversimplifies the problem. A realistic approach must 

therefore adopt an acceptable stress-strain representation. 
The wall-beam is non-homogeneous. The component materials have different 

properties. The assumption of a homogeneous continuum to represent the wall-

beam is not realistic. The non-homogeneous nature must therefore be 

considered in the analysis. 
The masonry is weak in tension. Local stresses provide tensile bond or shear 

bond failure. These result in a complete redistribution of stresses within the 

structure. An iterative analysis should be performed for this. 

The distribution of stresses at the interface of wall and the supporting beam is 

complex. The assumption of a simple pressure distribution may not be 

acceptable. A realistic analysis should therefore be performed to predict the 

actual stress distribution at the interface. 
The finite element method is particularly suitable in this case and is adopted 

here. The brick, mortar joints, supporting beam and the reinforcement of the 

beam are represented by an assemblage of suitable finite elements and analysed 

as one complete system. This scheme of analysis is logical and allows for the 

inclusion of all the essential features of the wall-beam structure. 
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1.5 ASSUMPTIONS AND LIMITATIONS OF PROPOSED APPROACH 

The following assumptions have been made for the proposed finite element 

analysis of composite behaviour of wall-beam structure. 

• The central vertical plane of the wall is continuous at every point before and 

after distortion and there are no holes in it. 

• Perfect integrity exists at the various components of the wall-beam structure. 

• Effects of temperature, shrinkage, creep and dynamic loading are ignored. 

• Deformation is small in comparison to the wall dimension. 

• Concrete is homogeneous and isotropic with reinforcement being modelled 

separately. 

• Bricks and mortar joints are homogeneous and isotropic. 

• The material behaviour of the component materials are represented sufficiently 

accurately by the laboratory tests. 

• The material non-linearity and non-linearity due to progressive fracture of the 

component materials are considered in this investigation. While the geometric 

non-linearity due to large deformations are excluded. 

1.6 METHODOLOGY 

In an attempt to investigate the behaviour of wall-beam structure and to 

recommend a rational design procedure, a survey of the related literature has been 

made in the next chapter. Some of the analytical approaches are studied in detail in 

order to delineate the differences among those design approaches, thus enabling a 

comparison with the findings of the present study. 

Comprehensive analysis of a prototype wall-beam structure has been made 

using finite element technique. in the finite element approach the constituent 

materials are idealised separately to represent nonhomogeniety. In all the cases 

four-noded rectangular isoparametric elements have been used to analyse the 

panel. The analysis is made for several possible parameters in order to determine 

the critical conditions. 

To realistically predict failure, the model must reflect the inelastic nature of 

the constituents as well as the progressive failure that occurs as the applied load is 

increased. The material model therefore adopted in the analysis is "microscopic" 

rather than "macroscopic" in nature with bricks and joints being modelled 
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separately. This is essential if the high stress gradients and localised failure which 

occur in wall-beam are' to be modelled. The properties needed to define this 
material model have been obtained from various simple tests on samples of bricks, 

mortar joints and small brick masonry specimens, thus avoiding the need for more 

complex testing apparatus. The model incorporates elastic and inelastic 

deformation characteristics and failure criteria. Series of failure criteria have been 

adopted to model the different modes of failure experienced in the masonry 

constituents together with appropriate technique for crack modelling. Due to the 

nature of the problem, consideration has also been given to the post-cracking 

behaviour of the materials, particularly the region where the redistribution of stress 

takes place due to fracture of the component material. Solid clay bricks have been 

used in conjunction with a mortar consisting of 1 part of cement and 4 parts of sand 

by volume. Due to the relatively simple nature of the tests required to define the 

material model, it would not be difficult to reproduce the behaviour of other types 

of solid masonry. 

The adequacy of the finite element model has been verified by comparison 

with load tests on wall-beam panels made of solid clay brick supported on 

reinforced concrete beam. The configuration of the wall-beam panel (height, 

opening and framing) has been varied to produce variations in behaviour and 

different failure modes. Finite element model has been modified to incorporate 

strain softening which allows the more gradual release of the stresses in the region 

of a crack. Sensitivity analyses of the various parameters used in the finite element 

model have been carried out. These analyses highlight the importance of the 

accurate evaluation of the modulus of elasticity and the strength parameters of the 

masonry constituents. 

The finite element model was then used to carry out a comprehensive 

parametric study of the behaviour of storey-height wall subjected to uniformly 

distributed load. From the results of the parametric study, design rules to predict 

the ultimate uniformly distributed loads on wall-beam have been proposed. 

1.7 STRUCTURE OF THE THESIS 

With a view to maintain a systematic way and clarity in the presentation of 

the study, the structure of the thesis is summarised as follows: 
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A review of the state of the art of the in-plane behaviour of wall-beam structure 

with particular emphasis on areas significant to this study. 
(chapter 2) 

The establishment of critical parameters influencing the behaviour of wall-
beam structure subjected to uniformly distributed loads through the use of two- 

dimensional linear elastic finite element analyses. (chapter 3) 

The experimental determination of the material parameters from the 

representative samples of brick, mortar and brick masonry. (chapter 4) 

The derivation of a material model for the constituents of the wall-beam 

structure from the tests of step (3). (chapter 5) 

The development of non-linear finite element model incorporating the material 

model derived in step (4). (chapter 6) 

Verification of the proposed finite element model with the results of tests on 

wall-beam panels. (chapter 7) 

Sensitivity analysis of the critical parameters of the finite element model. 
(chapter 8) 

The application of the finite element model to a parametric study of the 

behaviour of storey-heigh wall-beam panels subjected to uniformly distributed 

load. (chapter 9) 

Design recommendation for wall-beam structures and comparison with existing 

formulae. (chapter 9) 

r 



4 CHAPTER 2 

REVIEW OF LITERATURE 

2.1 INTRODUCTION 

A masonry wall and its supporting beam form an integral unit - typically 

known as wall-beam structure. A study of the interaction between the two 

components leads to a better understanding of the behaviour of these composite 

materials. Traditionally, the supporting beam has been treated as a separate 

member having superimposed load acting at the top of the beam. Thus, any 

interaction that may take place between the two has been overlooked until recent 

past. This inherent irrationality of the conventional method ignoring the 

contribution of the wall results in an uneconomical design of the supporting 

member. 

Wood (1952) for the first time, appreciated the interaction of masonry wall 

with its supporting beam. A growing interest has since been shown in this field that 

has become increasingly important with the necessity of building more economic. 

The masonry wall may be a combination of any of the materials - stones, 

concrete blocks, clay bricks (burnt and unburned) and lime mortar bricks laid with 

any of the suitable mortar made from cement and sand with or without lime, lime 

surki (pulverised clay brick) mortar and mud mortar with or without other 

indigenous locally used additives. The supporting beams may be of steel or 

reinforced concrete or concrete encased steel beam. The use of timber or bamboo 

as supporting beam for wall made of unburned brick or brick with surki can be 

noticed in rural areas or in old buildings. 

Wall-beam structure subjected to in plane uniformly distributed load 

typically fails by crushing of the masonry block vary close to the end support. The 

failure mechanism also involves the failure of bond of mortar joint (bed joint and 

header joint) and the separation of wall from the supporting beam near the centre 

of the span. In view of the large number of variables in the wall-beam structure, it 

does not seem realistic to predict its capacity on the basis of experimental data. 

Therefore, a numerical model capable of predicting in-plane behaviour from elastic 

level to ultimate failure is required. Since the components of the wall (the mortar 
joints and the brick) exhibit different deformation characteristics under load, the 

model should incorporate the material properties of the constituents throughout the 
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loading history. For the analysis of composite masonry wall-beam structure a 

thorough knowledge of the deformation characteristics of individual materials and 

that of the masonry assemblage is important. Since the initiation of crack occurs in 

very localised area in the region of high stress gradient and approaches to failure in 

a typical pattern, it seems logical to model brick and joint separately rather than 

treating the masonry as a continuum with average properties. 

This chapter reviews previous literature that have been published on various 

relevant aspects of this problem. Because, solid clay brickwork has been used in 

this investigation, review of material properties of clay brick, mortar and 

brickwork is emphasised. Previous studies, both experimental and analytical, 

including finite element analysis of wall-beam structure subjected to in-plane loads 

are then described. This ranges from simple isotropic elastic analysis to 

sophisticated models that include provisions for non-linear deformation 

characteristics and progressive local failure. It is shown that design rules for wall 

beam structure subjected to in-plane loads are empirical, approximate and vary 

considerably from country to country and in some cases are non conservative, 

justifying the need for a comprehensive study in this area. 

2.2 MATERIAL PROPERTIES 

Masonry due to its typical assemblage inherits the properties from its 

constituents bricks and the mortar. These constituent materials work 

compositely yet retaining their own identity and qualitative characteristics. A brief 

review of material properties relevant to the in-plane composite behaviour of wall-

beam is carried out in this section. 

/ . 

2.2.1 Brick Properties 17 
u1 \ 

V ) 
Compressive Strength 

Like concrete, the compressive strength test has been traditionally used for 

brick quality control and specification, since it is easy to perform. It is a good 

indication of general quality of brick and the compressive capacity of the resulting 

masonry. 

The standard test for determining compressive strength of brick (BDS 208: 

1980, Common Building Clay Brick) is influenced by several factors such as 
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loading rate (Harding et.al., 1973); specimen size (Anderson, 1969; Francis, 1969 

and Page, 1984); perforation pattern (West, 1968; West et.al.. 1968 and Anderson, 

1969) and specimen end conditions (Farrar, 1971; Beech et.al., 1973; Hegemier 

et.al., 1978 and Page, 1981). Because of the influences of these effects the 

compressive strength obtained from a standard test is not necessarily the true 

compressive strength of the material. Despite these differences, however, the 

nominal compressive strength obtained from the standard test provides a good 

form of quality control and can be correlated with other brick masonry properties, 

such as brick masonry compressive strength. 

In standard test the result is also influenced by the stiffness of the packing 

material on top and bottom faces of the specimen and by the frictional resistance 

imposed by the solid platen producing artificial compressive strength. To minimise 

the effect of platen resistant several investigators used variable stiffness platens 

(Newman andLachance, 1964 and Farrar, 1971) and/or capping materials 

(Scrivener and Williams, 1971; Beech et.al., 1973 and Harding et.al., 1973). 

Flexible steel brush platens have also been used successfully for the testing of both 

concrete (Kupfer et.al., 1969) and masonry (Hegemier et.al., 1978; Page, 1981; and 

Page, 1983). An indication of the magnitude of the strengthening effect due to 

platen restraint has also been given by Page, (1984) from compression tests on 

calcium silicate bricks. Steel brush and solid platens were used in his tests on 

bricks of varying size and shape. For standard bricks (230 mm x 110 mm x 76 

mm) the unconfined compressive strength (with brush platen) was found to be 

almost half the confined compressive strength (with solid steel platen). The effect 
should therefore be considered when assessing the compressive strength of a 

material. Later Page and Marshal (1985) carried out uniaxial unconfined and 

confined compressive test on calcium silicate bricks and prisms and confirmed the 

influence of aspect ratio on the evaluation of compressive strength. They derived 

simple relationship for an aspect ratio correction factor. For unconfined test they 

used brush platen (as shown in Fig. 2.1) to maintain low resistance to lateral 

movement. 

Tensile Strength 

Since final failure very often occurs in biaxial tension split in the brick at 

the zone of high stress gradient near the support of the wall-beam structure, brick 
1
• 

tensile strength has significant influence on the behaviour of such structure. The 

failure mechanism of solid masonry (as discussed by Hi1sdorf,  1969, Khoo and 
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Hendry, 1973) indicates that the tensile strength of the brick also governs the 

uniaxial compression test of masonry. 

Tensile strength of brick is investigated by various tension tests, e.g. 

modulus of rupture tests, splitting tests (Double punch or Brazilian tests) and 

various forms of shear tests including indirect tension. 

The effect of size, shape and distribution of perforations on the tensile 

strength of brick has been studied by West (1968) and Anderson, (1969). 

Significant reductions in the tensile strength were reported with perforation 

patterns which produced significant stress concentrations. 

Fig. 2.1 Test Set-up for Unconfined Compressive Strength of Brick 
(Page and Marshal, 1985). 

Although the lower tensile strength of brick is indirectly the cause of 

masonry failure in compression, no reliable relationship between brick tensile 

strength and brick masonry has emerged despite the extensive research. Therefore, 
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brick compressive strength is still the prime indication of the compressive strength 

of the masonry. 

Other Brick Properties 

Most of other properties of brick e.g. brick growth pitting, efflorescence, 

penneability, dimensional changes etc. do not influence the masonry strength. But 
brick suction or initial rate of absorption (IRA) significantly affects both 
compressive and tensile strength of the masonry. It seems that free water on the 

surface of saturated bricks results in formation of cavities at the brick-mortar 

interface on drying . These cavities are filled with air resulting in weak bond 

between brick and mortar. For this phenomenon brickwork built with saturated 

bricks develops poor adhesion between bricks and mortar and is susceptible to frost 

damage and other deterioration. On the other hand high IRA of brick hinders 
hydration of mortar and results in a weak mortar. Some specifications recommend 
limiting suction rate or alternatively the use of high retentivity mortar to control the 

extraction of water from the mortar. 

2.2.2 Mortar Properties 

Mortar in brick masonry has three main functions: 

• To provide an even bed for the brick. 

• To bond the bricks effectively. 

• To seal the joints against weather. 

In order to perform the above functions mortar has to possess various 

properties both in plastic and hardened state. 

Workability, water retentivity and early strength of mortar are the required 

properties in plastic state for proper bond and easiness for work. Good water 
retention is also required to prevent brick from suction of water from mortar, to 
prevent bleeding of water from mortar, to prevent stiffening of the mortar bed 
before placement of the brick and to ensure the retention of sufficient water in the 

mortar for proper hydration. 

Water cement ratio - an important factor which is normally determined by 
workability in a given mix. The range of water/cement ratio provided by Hendry 

et.al. (1981) for different grades of mortar for satisfactory workability is shown in 
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Fig. 2.2 and can be taken as a preliminary guide. Lime is added to these mortars to 

improve the workability, water retention and bonding properties. In U. K., the type 

of lime used is designated by BS 890. 

In hardened state the required properties are compressive, tensile and the 

bond strength. Like brick the compressive strength of mortar serves as a good 

indicator of its quality. Grimm (1975), has expressed the compressive strength of 

mortar as a function of shape, curing age, air content and initial flow rate of mortar. 

The response of mortar to the applied load in the masonry structure indicates that 

the bond between mortar and brick is also very important. 

2.2.3 Brick Masonry Properties 

Like other structural materials, compressive, tensile and shear strength of 

masonry are the strength characteristics to ensure satisfactory performance of 

masonry structures. The deformation characteristics of masonry are also required 

to assess the stress distributions and relative movements at working loads. 

Masonry Compressive Strength 

Since brick structures are mainly stressed in compression, the compressive 

strength of masonry is an important factor. Numerous experimental investigations 

have been carried out to examine the variables affecting the brickwork strength. 

The relevant literature was reviewed by Hendry (1981) and Ali (1987). Different 
formulae have been derived on the basis of elastic analysis of stack bonded prism. 

Excepting the limitation of the fact that the mortar is not elastic up to failure and 

that these theories are based on stack bonded prisms, may not be applicable to 

bonded brickwork, it is observed by Hendry (1981) that the agreement between 

formulae and test results are favourable, provided the brick strength exceeds the 

mortar strength. 

In practice the compressive strength of brick masonry is determined from 

approximate relationship between brick strength, mortar type and brick masonry 

strength or from compressive test on prisms. Finite element analysis of the brick-

mortar composite subjected to axial compression, carried by Khoo (1972) revealed 

that stress concentration occurs at the edge of the brick-mortar interface, causing 

high stress gradients in both materials in this region. He observed that the edge 

face of an axially loaded prism, when the width / depth ratio of brick is lower, 
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contains high values of lateral stresses in the region of stress concentration than the 

front face section and consequently suggested that the initial tensile cracking of the 

brick prism will occur along a plane at the edge of the end face in the direction of 

the brick length resulting a rise in the spal1ing' failure. This phenomenon is 

frequently observed in prism tests and in the tests of masonry columns under axial 

load. 

Masonry Tensile Strength 

The tensile strength of brick masonry is low thus restricting its load carrying 

capacity. In-plane loading produces a uniform tensile stress through the wall 

thickness whereas out-of-plane loading produces a non-uniform stress distribution 

through the wall thickness. Regardless of the loading direction the tensile strength 

is dependent on the bond characteristics of the brick masonry. Considerable 

variation in tensile bond strength for any one brick-mortar combination can be 

expected due to variable nature of the parameters which influence bond strength. In 

particular the two properties like water retentivity of mortar and the initial rate of 

absorption of the brick have a marked effect on the bond strength of the resulting 

masonry. Factors affecting brick masonry bond and hence its tensile strength have 

been extensively studied and are reviewed elsewhere (Hendry, 1981; Hendry et.al., 

1981 and All , 1987). Hendry et.al., 1981 observed that grading of sand is important 

and very fine sands are unfavourable for adhesion. The moisture content of the 

brick at the time of laying is also important. Both very dry and fully saturated 

bricks lead to low bond strength. 

Under in-plane loading tensile failure may occur either normal or parallel to 

bed joint depending upon the direction of loading . Tensile failure under inclined 

loading will normally occur in a stepped manner along bed and header joints. The 

in-plane masonry tensile strength was first studied by Johnson and Thomson(1969) 

by using diametral splitting test on circular specimens swan from a wall. Using this 

technique, by rotating the orientation of bed joint to the splitting force, tensile 

stress could be applied at varying angles to the jointing direction. 

The flexural tensile strength of clay brickwork ranges from about 2.0 to 0.8 

MPa in the vertical direction, while the strength in bending across the bed joints 

being about one third of this (Hendry et.al., 1981). 

)j 

cengai 
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Masonry Shear Strength 

The strength of brickwork in combined shear and compression is of 

importance in relation to resistance of buildings to lateral forces. The case has been 

studied by many investigators. They range from tests on small sample of masonry 

to tests on completely shear wall systems. These tests have been reviewed 

elsewhere (Sinha and Hendry, 1969; Hendry and Sinha, 1971; Page et.al., (1982) 

and Hamid and Drysdale, (1980) and more recently by All (1987). 

From these investigations a simple Coulomb type failure criterion has been 

proposed as follows: 

t=t0+JtOn (2.1) 

Where, t0 is the shear bond strength at zero pre-compression, p. is a constant often 

referred to as the frictional coefficient and a,, is the normal stress. 

Hendry et.al. (1981) observed that this relationship holds for values of 

compression stress up to levels in excess of 2.0 MPa for clay bricks, but eventually 

the ultimate shear stress must be less than the value given by this formula. In the 

limit when the compressive stress produces the crushing strength of the brickwork, 

the shear resistance will fall to zero. They also observed that the shear strength 

depends on the mortar strength, and for brickwork built with clay bricks of 

crushing strength between 20 MPa and 50 MPa the value of to will be 

approximately 0.3 MPa for strong mortar (cement : lime: sand = 1:1/4:3 by 

volume) and 0.2 MPa for medium strength mortar (1:1:6). The average value of p. 

is 0.4. Double frogged or perforated bricks will give higher strength at low pre 

compression on account of the mechanical key established between bricks and 

mortar. It is also observed by Sinha (1967) that the degree of saturation of solid 

clay bricks at the time of laying has an effect on the initial bond strength. The 

strength is very small and variable in the case of saturated or completely dry 

bricks. 

Samarasinghe (1980) and later Dhanashekar et.al. (1985), determined the 

influence of the parallel stress () on the shear stress/normal stress relationship. 

From the investigation made by Dhanasekar et.al. (1985) a three dimensional 

failure surface in terms of 0n'  UP  and t was derived from a large number of 

biaxial test on masonry panels. 



Deformation Characteristics of Masonry 

Knowledge of stress-strain relationship for brickwork in compression is 

important in predicting the deflection of masonry structures and further structural 

design. For the numerical modelling also for the masonry behaviour this property 

is required. A good number of experimental works have been carried out in the 

past relating modulus of elasticity of brick masonry to its compressive strength on 

an empirical basis. These are reviewed by All (1987) and Hendry (1981). 

The difference between the initial tangent modulus and the secant modulus 

at two-thirds to three quarters of maximum compressive strength is indicative of 

the non-linear stress strain relation of the brickwork. The mortar joint in the 

brickwork mostly undergoes non-linear deformation, while the surface clay burnt 

bricks often exhibit linear stress-strain characteristics. Some authors (Plowman, 

1965; Sahlin, 1971) have related the modulus of elasticity of brick masonry to its 

compressive strength on an empirical basis, having value between 400 to 1000 

times the masonry crushing strength, while Sinha and Pedreschi (1983) suggested 

a non-linear relationship between the Young's modulus of elasticity of brick 

masonry and its compressive strength as follows: 

Ew = II 80(F 1 )083 (2.2) 

Dhanasekar ct.al. (1985) from their results of biaxial tests on half scale brick 

masonry panels concluded that the masonry behaves approximately isotropic in 

elastic range. However in the inelastic range a formulation assuming isotropic 

behaviour was found to be unsatisfactory. 

The studies done by the authors (Lenczner (1971); Lenczner (1973); 

Lenczner et.al. (1975); Lenczner and Salahuddin (1976) and Wyatt et.al. (1975)) 

on long term loading which results creep strain in brickwork, have shown that the 

ratio of long term to instantaneous strain is between 2 and 4. Higher values were 

found for walls than for piers. 

Recently Kawsar (1991) carried out a research on deformation 
characteristics of brick masonry under compressive load. The study reveals that in 
case of five brick high prism, the effect of platen restraint is substantially 
minimised. It was found in his study that the deformation characteristics of 
masonry can be represented by a parabolic equation of best fit curve which was 
obtained by minor modification of Saenz's stress-strain relation originally 
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p proposed for axially loaded concrete. Assuming brick, mortar and the assemblage 
to be elastic he proposed the following fonnula to predict the initial tangent 
modulus of brick masonry. 

Eb 

(j + p) 

where, p.= 4= 13k and L= -  (Tb and Tm  are thickness of brick 

and mortar respectively). 

2.3 WALL-BEAM STRUCTURE 

While the need for an interactive analysis of wall-beam structure is 

appreciated a few studies are available. Mostof these simplify the behaviour of the 

masonry wall or the supporting beam. This approaches the problem as a two-phase 

system. The masonry wall is one and the supporting beam is the other. Attempts 

are then made to account for the interaction between these two phase system by 

simplified approach. Either the wall is analysed, with the supporting beam being 

represented by an artificial model or the beam is supported by a continuous elastic 

foundation and the system is analysed. Some laboratory tests have also been 

undertaken in the past to account for the influence of important parameters. 

Though some of the test-results gave valuable information, yet, these laboratory 

investigations and theoretical analyses are not sufficient to predict the proper 

interaction between masonry wall and supporting beam. The following articles 

give a thorough and comprehensive review of experimental investigation and 

theoretical analyses, of the problem. 

2.3.1 Experimental Investigation 

Wood (1952) carried out tests to study the composite action of brick panel 

walls supported on reinforced concrete beams. On the basis of test results he 

recommended that the bending moment in the supporting beam is equal to WL/30 

for window and door openings near the support and is equal to WL/ 100 for plain 

walls or opening in the middle. Wood also proposed another design method for 

beams supporting walls without openings. The method was based on the deep 

beam theory, and was referred to as the 'limiting moment-arm method'. It suggests 

that a limiting moment-arm approximately equal to 0.7 times span for deep beams. 

For continuos beam the moment-arm is equal to 0.47 times span at the mid span 

and at the support equal to 0.34 times span. He also recommended that for 

composite action to occur the depth of the supporting beam be varied from 1/15th 
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to 1/20th of the span. He also advised that when the superimposed load is applied 

not on the top of the wall rather at the level of the beam (as the case may often be 

in conjunction with the load at the top due to floor systems) tensile connectors 

between wall and beam be used. But he prescribed neither the amount nor the 

mechanism of providing such connectors. 
Rosenhaupt (1962) tested masonry walls on point supported beams under 

uniformly distributed load. He observed that in addition to crushing of masonry 

another cause of failure is the vertical shear near the support which is indicated by 

cracking in vertical direction through the vertical joints. He observed that the shear 

resistance of the wall depends on the strength of the masonry, the height of the wall 

and the inclusion of vertical ties. The vertical ties shift the location of the crack 

away from the support thus reducing the, force acting in the ruptured section. 

Unlike other investigators he found that in the high walls the maximum stress at 

the supports is approximately four times higher than the external uniformly 

distributed load acting at the top of the wall. 

Later Rosenhaupt and Sokal (1965) published the test results of 2 masonry 

walls on point supported continuous beams. They observed that the walls behave 

like a composite diaphragm girder in which the foundation beam acts as a tension 

tie. They also observed that the reactions at interior supports arc much smaller than 

those of ordinary beams and as a result the external moments are positive 

throughout the length of the wall. In this case also crushing of the masonry above 

the support was the main cause of failure of the composite structure. 

Plowman et.al. (1967), carried out a series of full scale tests on composite 

cantilever box beams having reinforced concrete slabs as flanges and reinforced 

brick walls as webs. The results indicated that in all tests failure was slow and was 

due to diagonal cracking and crushing of the brickwork in the vertically reinforced 

specimens and pulling away of the bottom slab in those specimens which are 

diagonally reinforced. The horizontal reinforcement used in conjunction with 

vertical steel increased the failure load in these specimens but had no effect on the 

deflection or the behaviour at working loads. Finally, they suggested that box 

beams with brickwork webs in corporation with either vertical or diagonal 

reinforcement can be used as structural units with satisfactory factor of safety. 

Burhouse (1969) in his experiments on composite action between brick 

panel walls and their supporting beam noticed the fact of vertical stress 

concentration near the support . By measuring the vertical strain and assuming 
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linear relationship between stress and strain he calculated the ratio of maximum 

stress to the average applied stress which varied with the applied load. Burhouse 

obtained this ratio varying from 6.26 to 14.8 in only five tests and cautioned that 

the permissible loads on wall of wall beam composite should be less than the load 

derived by CP 111 which assumes a rigid foundation. Like others Burhouse also 

concluded that for composite action to occur HIL ratio should not be less than 0.6 

and with the lower value the sliding at wall-beam interface may occur. From test 

results he found that the moment arm is approximately equal to one half the wall 

height. 

Stafford Smith et.al. (1978) carried out tests on three full size masonry 

walls supported on encased steel beams to study the influence of the beam stiffness 

on the arching effect of the wall and on the ultimate strength of the structure when 

subjected to vertical load. Their test results revealed that stiffer the beam, the larger 

the distribution of interaction stresses at the interface and the higher the resulting 

bending moment. The bending moment obtained was found to be approximately 

proportional to 4Ji of the beam. The tie force was found almost independent of 

the beam stiffness and its magnitude was approximately W/4. 

Annamalai et.al. (1984) carried out tests on reinforced brick thin lintels 

having simply supported span of 1.2 in over doors and windows of residential 

buildings. Tests revealed that moment varied from WL/33 to WL/50 which is 

comparatively unconservative with respective to the value obtained by Wood. Due 

to limited number of test data they did not prescribe any coefficient for moment 

arm. Failures of tests were mostly observed by crushing of bricks over the support 

followed by shear failure. Among the two types of brick, the wire cut brick walls 

contributed about 50% increase in composite strength as compared to that of 

chambered brick walls. They also observed that lintels made of reinforced 

perforated brickwork (one 6 mm MS rod was provided in each of three elliptical 48 

x 32 mm holes with sufficient cover) was adequate in strength for application in 

residential buildings. In general the reinforced brickwork thin lintels built with 

solid bricks recommended to have the same strength as reinforced concrete thin 

lintels besides, giving considerable saving in concrete. 

Govindan and Santha Kumar (1985) carried out tests on brick infilled beams 

to compare the stiffness and load carrying capacity with traditional RCC beams. 
They observed that the infilled beam is similar to that of the solid beam at low 

loads before cracking. In the post cracking stages the stiffness of the infihl is less 
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than the stifThess of solid beam by 15 %. The ductility of the infilled beam is 80 % 

of that of solid beam which is adequate for using them in foundations. They 

observed that the strength of infihl governed the ultimate load and that shear failure 
preceded the formation of flexural hinge resulting unsatisfactoty failure mode. The 

ultimate load predicted by them compared well with those of observed values. 
Experiments performed by Ranjit (1992) on nine wall-beams investigated 

the composite action between wall and its supporting beam. Wall length, bond 
pattern and provision for vertical reinforcement in wall-beam were the main 

variables in his study. Unlike previous investigators he proposed minimum HIL 

ratio of wall-beam to be 0.5 for proper composite action. He observed better 

performance for running bonded brickwork in wall-beam composite action in 

comparison to stack bond for both cases of with or without vertical ties. 

The number of variables and their range which influence the stress history 

until failure of the composite system and the failure modes are so many that 

experimental investigation covering all these factors is a monumental task and 

usually associated with expensive instruments and thus increasing the cost of the 
experiments. The researchers therefore, preferring to consider analytical tools 
simultaneously with the laboratory investigations for the solution of the wall-beam 
interaction problem, though they faced restriction about the detailed stress analysis 

due to the lack of computational facilities and appropriate material model. The 

available works of some of these researchers are reviewed in the following articles. 

2.3.2 Analytical Investigations 

Rosenhaupt (1961, 1964) pioneered the analysis of wall-beam structure. In 
his analysis he neglected the bending rigidity of the supporting beam and assumed 
that the tensile stresses are concentrated in the supporting beam of the wall which 
acts solely as a tie beam and compressive stresses are distributed over the whole 
height of the masonry. The vertical compression forces are transferred by the wall 
to the supports, where high vertical stresses concentrate. With the above 
assumption his solution was based on numerical finite difference method using a 
very coarse mesh. He also concluded that the vertical shear stresses are taken by 
the masonry part of the wall and the horizontal shear stresses between the 

supporting beam and the panel, concentrate near the supports. 

In 1964 Raab applied the lattice analogy method, proposed by Hrennikoff 
(1941) to the analysis of composite walls. In the method the continuous material of 
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the elastic body is replaced by a framework of linear elements. The cross-sectional 

properties of the bars which comprises the lattices of the frame-work are chosen so 

as to ensure the framework and the elastic body distort under load in the same 

manner. He performed the analysis on four different cases of the composite 

problem and concluded that the assumption made by Rosenhaupt (1964) that the 

supporting beam has no flexural stiffness can be accepted in many applications 

with minor modifications. 

An alternative numerical approach for the solution of the composite 

problem was presented by Coull (1966). The analysis was based on the 

minimization of the strain energy of the system using the variational method. The 

procedure consisted of expressing the stresses in the wall by a power series in the 

horizontal direction, the coefficients of the series being the function of the height 

only. To solve a typical wall on beam problem, Coull chose a simple stress 

polynomial as a result of which the horizontal and shear stresses had the same form 

at all levels in the wall. This seems unlikely in practice, however, the accuracy 

could have been improved if more terms were used which, as Coull pointed out, 

would be at the expense of extra computational difficulty involved in the solution 

of the resulting set of simultaneous differential equations. From the analysis he 

concluded that the wall stresses are mainly affected by the wall height-to-span ratio 

and the relative stiffness of the wall and beam. 

Colbourne (1969) with the help of lattice analogy derived equilibrium 

equations at interior points, considering the wall beam system homogeneous and 

elastic. The analogy was then used to derive the equilibrium equations for points 

near the edges of the wall and for points affected by beam. These equations are 

identical with the finite difference equations. These equations were solved by 

computer program to give displacements which were used to find stresses in the 

wall and stress resultants in the beam. Results were compared with earlier 

theoretical studies. The method seemed to be useful for beam supporting panels 

without opening (continuous beams) and for the case when loads are applied at any 

point of the wall or beam. 

Wood and Simms (1969) made a very simple analysis assuming a 

rectangular stress block at supports as shown in Fig. 2.3. The stress concentration 

factor C was derived as L/2X, where L= Span and X = base of the stress block. 

The bending moment was derived from Figure 2.3 as 
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M=WL/K=(W/2).(X/2)=WX/4 (2.3) 

where K is moment factor. Simplifying the above equation the relation between 

moment factor (K), base of the stress block (X) and stress concentration factor (C) 

was derived as follows: 

l/K=X/4L=1/8C (2.4) 

From this relation for any desired stress concentration factor the corresponding 

moment factor and the width of the stress block can be obtained. For example, for 

no composite action (i.e. K=8) the value of C=l and X/L =1/2, likewise for 
maximum composite action (i.e. K100) the value of C=12.5 and X/L =1/25. They 
also proposed that the stress concentration factor due to arching action should not 

exceed the allowable bearing stress as suggested by CP 111, 1964. This can be 
mentioned that in the method suggested by Wood and Simms (1969) the moment 
in the beam is over- estimated while the vertical stress concentration at the wall-
beam interface is less than the actual. 

Uniform loading 

Fig. 2.3 Assumed Equivalent Beam Loading at Failure of Wall 
(Wood and Simms, 1969) 

Ramesh et.al. (1970) expressed the displacements in the form of multiple 
Fourier series which satisfied all the boundary conditions of compatibility at wall-
beam interface. The method being perfectly general involving no simplifying 
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assumptions. They suggested that all the boundary conditions will be satisfied if a 

large number of harmonics in the series are considered. But this is not possible 

without large computing facility. Their experimental investigations comprised full 

scale and model tests on brickwork walls on reinforced concrete beams. The tests 

showed that, the failure load of a wall loaded at the beam level, depends on the 

amount of reinforcement in the vertical tensile connectors. 

Based on the results obtained by Ramesh et.al., Achyutha (1971) proposed 

an approximate method of analysis for the reinforced wall-beam structure. He 

assumed the system to be analogous to truss in which the beam was represented by 

the bottom chord of the truss, and the tensile connectors by the vertical members 

with length equal to half the wall height. The stresses in the reinforcement of the 

supporting beam were calculated using the total concrete area including the 

equivalent concrete area due to steel reinforcement. 

Yettram and Hirst (1971) presented a paper describing a numerical method, 

known as shear-lag method, for the solution of the composite problem. The method 

4 

consists of dividing the wall into equally spaced vertical stringers. These are 

assumed to carry the direct load and are connected by shear-carrying panel, acting 

between them. They showed that the bending moment in the supporting beam 

substantially increases as the stiffness of the beam increases and for a highly stiff 
beam the moment may rise to as niuch as WL/8 for a uniformly distributed load 

applied on the top of the wall. 

A more rigorous analytical procedure for the analysis of composite wall, 

with and without openings was presented by Levy and Spira (1973). The analysis 

was based on the determination of stress functions using the finite difference 

method. They also proposed an approximate solution relating the maximum 

vertical stress in the wall to the relative stiffness parameter. Presence of vertical 

ties in their study was shown to reduce both the compression in the wall and the 

bending moment in the supporting beam. 

Smith and Riddington in 1973 published a paper in which they proposed a 

design method for steel beams supporting masonry walls. The method was based 
on the assumptions that the length of contact between the wall and the beam is 

governed mainly by relative stiffness parameter [K = 4. The smaller its 

value, in other words, the stiffer being the beam, the longer is the length of contact. 
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In view of this and the results from model tests of plaster walls on steel beams, the 

following design formula was proposed: 

w4  
9.5Lt3 b4 

(2.5) 

in which I is the second moment of area of the beam, W is the total load, t is the 

wall thickness and Pb is the permissible vertical stress in the wall. 

In 1976, Chandrashekhara and Jacob presented the results of photoelastic 

analysis on composite walls, with and without openings. Columbia resin (CR-39) 

was used to represent the supporting beam and Araldite (CY 230) to represent the 

wall. The modular ratio obtained by such combination at 1150C was 23.5. The 

tests showed that the interface stresses depend on the beam stiffness and the 

presence of opening in the wall. 

2.3.3 Finite Element Approach 

With the progress of time, the computer based finite element method of 

stress analysis is adapted by the researchers due to its versatile capacity of handling 

the various types of problems. In the field of interaction problem of wall-beam 

structure the finite element is being used since the late sixties. A well-documented 

finite element analysis supported by experimental studies can be a good 

replacement of the experiments which often are laborious and expensive. 

At the present stage of knowledge numerical simulations are fundamental to 
provide insight into the structural behaviour and support the derivation of rational 
design rules. Nevertheless, the step towards the development of reliable and 
accurate numerical models cannot be performed without a thorough numerical 
description and a proper validation by comparison with a significant number of 
experimental results. Non-linear finite element analysis will always be helpful for 
the validation of the design of complex masonry under complex loading 
conditions. Masonry is a composite material that consists of units and mortar 
joints. A detailed analysis of masonry hereby, denoted micro-modelling, must then 
include representation of units , mortar, and the unit/ mortar interface. The primary 
aim of micro-modelling is to closely represent masonry from the knowledge of the 
properties of each constituents and the interface. The necessary experimental data 
must be obtained from laboratory tests in the constituents and small masonry 
samples. 
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In large and practice-oriented analysis the knowledge of the interaction 
between units and mortar is generally negligible for the global structural behaviour. 
In these cases a different approach can be used, hereby denoted macro-modelling, 
where the material is regarded as an anisotropic composite and a relation is 
established between average masonry strains and average masonry stresses. This 
clearly a phenomenological approach, meaning that the material parameters must 
be performed in masonry tests of sufficiently large size under homogeneous state 
of stress. 

Therefore, for efficient execution of the parametric study of wall-beam 

structure a finite element idealisation is necessary in which the important 

parameters may be easily varied. The relevant finite element approaches for the 

solutions of wall-beam structure are reviewed in the following articles. 

2.3.3.1 Linear Elastic Finite Element Analysis (Homogeneous Case) 

Male and Arbon (1969, 1971) carried out studies using finite element 

technique to analyse the composite action of masonry wall (solid or with opening) 

with supporting beam. The beam was idealised by four layers of rectangles, 

subdivided into triangles. The wall on the other hand was represented by coarser 

subdivisions. The element used in the program was triangular elements with two 

degrees of freedom per nodes. From the analysis it was shown that for full 

composite action to develop, shear stresses across the boundary between wall and 

beam, must be efficiently transmitted. Moreover, tensile connectors should be 

provided when the load is applied at the beam level. The presence of a central 

opening in the wall, was shown not to greatly influence the stress distribution in 

the wall. However, when the opening was situated near to the supports, very high 

tensile stresses occurred in the vicinity of the opening. The interaction between 

wall, footing and soil has also been studied by them, taking into account the 

swelling of the soil. 

The finite element method was also used by Green (1970, 1972) for the 

analysis of shear walls supported on framed structures. The stiffness matrix of the 

standard flexural element was modified to include the effect of the horizontal force 

at the wall-beam boundary. A study of the effect of different parameters on the 

behaviour of the composite structure was undertaken. These variables included the 

beam stiffness, the beam support width and the size and position of the opening in 

the wall. Approximate formulae for the estimation of the behaviour of the wall at 

its base and of the supporting beam were developed on the basis of this finite 



element parameter study. From the analysis, Green estimated the minimum tie 

force in the beam as wL/4.4. The finite support width was found to influence the 

stress distribution in the wall and the forces in the beam. The stress concentration 

over the supports was reduced to the order of 1.5, when the finite support width 

had been introduced. Furthermore, the effect of the central opening in the wall was 

found to be negligible. The axial force in beams supporting walls with offset 

openings was however 75 % more. Comparisons were made between the results of 

finite element analyses and the experimental results on Perspex models and then 

between finite element idealisation and the approximate formulae. In all the cases 

agreements are reasonably satisfactory. 

In 1974 Saw also applied the finite element method for the analysis of 

interactive behaviour between walls and their supporting beams. The element used 

for idealising the wall, was derived from 144 basic rectangular finite elements. The 

element formulated, termed tmacro' had four corner nodes with two degrees of 

freedom at each node. In order to combine the beam line elements with those of 

the wall, the stiffness matrix of the standard line element was modified so as to 

relate the forces and the displacements at the wall-beam boundary. Results 

obtained by solving a typical wall on beam problem using a total of 42 nodes with 

30 macro elements in conjunction with 5 line elements, were comparable with 

those obtained by Male and Arbon using a total of 313 nodes with 576 triangular 

elements. Unlike Male and Arbon he found that horizontal stress varies linearly 

across the beam depth which was further illustrated by a photo elastic test. He 

concluded that the use of line element to represent the relatively flexible supporting 

beam is a better approach than the use of large number of plane elements. He also 

noted that the beam depth to span ratio has a more pronounced effect on bending 

moments than the modular ratio of wall to beam and for reasonable range of 

problem the beam moment increases with a decrease in the beam depth. 

Riddington in 1974 made a study on the interaction between walls and their 

supporting beams, using the finite element method. A finite element program 

allowing for the automatic generation of separation cracks at the wall-beam 

interface was developed. This was either achieved by reducing the modulus of 

elasticity of wall-beam interface elements to zero or separating nodes on the wall-

beam interface. The separation crack was formed automatically by first analysing 

the structure with all nodes connected and then starting from the centre of the 

beam, the elements above the beam were checked for vertical tensile stresses. If a 

tension element was found, the analysis and separation were repeated until no 
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further elements became tensile. By adopting rectangular finite elements with two 

degrees of freedom per node, for both wall and beam, Riddington carried out 

parametric study for the composite problem. From the analysis and the result 

obtained from model tests of plaster and Araldite walls on steel beams together 

with results from tests conducted at the Building Research Establishment, a 

simplified design procedure for the composite structure has been proposed. 

In 1974 Yettram and Hirst carried out an elastic analysis on the composite 

action of walls supported on encastre beams and portal frames. They used both the 

finite element method and the shear lag method previously used by them (1971). In 

applying the finite element program to a standard wall on beam, the inter-element 

nodal forces taken as an output was converted to average stress at nodes by 

dividing by the relevant element edge areas. This method compared favourably 

with the shear lag method. The analysis revealed that the beam stiffness and the 

flexural rigidity of the columns, had a considerable influence on the stress pattern 

of the wall. The effect of the columns was most marked at the ends of the 

supporting beam, while the mid-span bending moment being affected relatively 

little. 

Stafford Smith and Riddington (1976, 1977) developed a finite element 

program for the problem using a four-node rectangular element, with two degrees 

of freedom at each node and with linearly varying displacement functions along the 

boundaries. The program also allows for tensile cracking at the wall-beam 

interface. This work confirmed that the total behaviour of the system remains 

unchanged when the height to length ratio exceeds 0.7. These investigators pointed 

out that the composite wall-beam is the same type of problem as the beam on and 

elastic foundation and infilled frame in so far as the distribution of stress between 

the elements depends on their relative stiffness. Also, in these problems 

separations of the elements are possible, the lengths remaining in contact being a 

function of the relative stiffness. It is therefore essential that this parameter should 

enter into the analysis. Thus representing the length of contact between wall and 

beam as 

E1L 
acc4ll 

Et 
(2.6) 

where, El is the flexural rigidity of the beam 

Ew  is the elastic modulus of the wall material in compression 
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t is the thickness of the wall 

L is the length of the wall 

From this, 

a a B 
—ct4!I I or — = — (2.7) 
L 1E,tL3) L K 

where K =fE  w  tO /EI) and B is a constant, found as a result of experimental 

investigation to have an average value of unity, in which case 

(2.8) 

It will be seen from the above that the stiffer the beam relative to the wall, the 

longer the length of contact and this in turn increases the bending moment in the 

beam and reduces the wall stresses. The results of Stafford Smith and Riddington's 

study covered a wide range of wall-beam combination. It was found that 

conservative estimates of the stresses in the wall and in the beam could be 

calculated from the following formulae 

w 
Maximum stress in wall = 1.63 --(EtL3/EI)°28  (2.9) 

Lt 

Maximum bending moment in beam 
WL 

4(t? 
w 4L3/EI)V3  

(2.10) 

Maximum tie force in beam = W/3.4 (2.11) 

The effect of extending the beam into the surrounding brickwork was also 

examined, and this led to the conclusion that the stresses on both elements would 

be reduced in this case, although negative bending moments could be induced in 

the beam near its supports. 

Ahmed (1977) carried out a linear elastic finite element study on the 

composite action between masonry panel and supporting beam. The work included 

experimental and analytical investigations of the composite behaviour of walls 

with and without opening and their supporting beams. The computer program he 
used was 'STRUDL' which is a part of the I.C.E.S. package. For idealisation of the 
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wall he used rectangular plane stress element type 'PSRCSH' having four corner 

nodes with only two translational degrees of freedom per node. The element 

stiffness matrix is computed based on the following displacement function: 

U =c+a2 X+a3Y+a4 XY (2.12a) 

V =a5 +a6X+a 7Y+aXY (2.12b) 

This function produces liner displacement variation along the edges. The computer 

output was the displacements, strains, stresses, and principal stresses at the centroid 

of the element. To represent the supporting beam line elements in bending were 

used. The basic assumptions of composite action, e.g. the composite beam behaves 

as a tied arch; the wall taking the compression and the beam acting as a tie are also 

confirmed by Ahmed (1977). He observed that the maximum bending moment in 

the beam occurs very near to the supports and the vertical shear extends from the 

support sections to about one-tenth to one-fifth of the span. He also investigated 

the influence of size and position of opening in the wall and various support 

conditions. Based on the theoretical results he proposed an approximate design 

recommendation. 

Stafford-Smith and Riddington (1977) considered the wall as linear elastic 

homogeneous material supported on simply supported elastic beam. He idealised 

the wall using four noded rectangular element with two degrees of freedom per 

node and linearly varying displacement functions along the boundaries. In order to 

allow cracking along the wall-beam interface for the finite element representation 

they introduced linkage element along the wall at interface of the wall-beam. 

Unlike others they introduced finer meshes near the support, and introduced a 

iEtL  
characteristic parameter, K = , to describe maximum moment and tie 

EI 
force in the beam and stress in the wall. The influence of various physical 

parameters on the wall stress and deflection of the system has been examined. 

Model tests made of small size Araldite epoxy resin wall on simply supported 

beam had also been undertaken to verify the accuracy of the analytical results. He 

concluded that if beam flexural stiffness is reduced, tie force in the beam, 

compression and shear stress in the wall above the beam supports increases, with a 

result of less bending moment. He also observed that restraining of the beam end 

lowers the peak stress and sagging bending moment at the mid span. The use of 

fine mesh near the support for the homogeneous solution may be questionable. To 
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represent homogeneity, the element must have full representation from the 

component materials, e.g. brick and mortar joint. 

Davies and Ahmed (1978) developed approximate method for calculating 

vertical stress concentration factor, maximum vertical stress in the wall, maximum 

tension force in the beam, maximum shear stress, maximum bending moment and 

moment at the centre in terms of flexural stiffness parameter and axial stiffness 

parameter. The other constants (a, 13, y) associated in the equations were 

obtainable from graph derived from finite element results depending on H/L 

values. To derive these constants ((x, 13, y) they did not consider the material 

properties. They observed that the degree of vertical stress concentration in the 

wall is mainly influenced by a flexural stiffness parameter defined by: 

' 
R = 4/ tE _W For a very slender beam (i.e., for high value of R) the stress 

\ IE 

distribution is triangular with large vertical stress concentration over the support. 

For relatively stiff beam (i.e., low R) the contact spreads more with less 

concentration at the support resulting a third degree parabola and that for 

intermediate R, is a simple parabola. The moment as proposed by them slightly 

overestimates when R > 5. This may be due to the underestimation of the axial 

force which they assumed to be linearly distributed, nearly zero at the support to a 

maximum at the centre. The stress concentration factor as predicted by them 

compares favourably with lattice analogy of Colbourne (1969) and stress function 

of Levy and Spira (1973) and the experimental results from full scale tests carried 

out by Burhouse (1969). Later in 1980 Davies and Ahmed graphically reproduced 

their approximate (1978) method so that it can be used easily as a design 

procedure. 

Riddington and Stafford-Smith (1978) published a design method for 

heavily loaded wall-beam structure particularly for masonry wall on steel beam. 

On the basis of wall-beam relative stiffness, they predicted the distribution of 

interacting stresses and estimated the maximum wall stresses and beam bending 

moment. Finally in combination with experimental and theoretical observation for 

the purpose of design of wall-beam structure, they proposed to select the section of 

the supporting beam so as to satisfy the following two conditions. 

w4  
4. I~ (2.13) 

9.5Lt3Pb4 
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w2  w 
and Z~ + (2.14) 

3P5tPbt Ust  

which offers a F. S. of 1.33 for maximum compressive stress for wall and F. S. of 

1.5 for maximum bending moment in the beam. 

2.3.3.2 Linear Elastic Finite Element Analysis (Non Homogeneous Case) 

Masonry being non-homogeneous, its realistic representation, for the finite 

element model should consist of an assemblage of element representing the 

individual masonry units and the adjacent mortar joints. However, such 

representation requires considerable amount of effort for the preparation of the 

input data, as well as an enormous computer storage capacity. Smith et.al. (1970, 

1972) used this type of idealisation for the analysis of small brickwork segments 

under axial compression. They showed that any analysis based on the assumption 

of a homogeneous material may lead to a substantial underestimation of the 

maximum stress. Recently, Au (1987) also adopted non homogeneous idealisation 

of masonry in his study. 

Karnal (1990) developed a linear elastic finite element model to study the 

composite action of wall beam structure. Isoparanietric elements were used in his 

work to model the bricks, mortar joints, supporting beam and interface elements. 

The brickwork was modelled both as homogenous and non homogeneous material. 

He studied with particular emphasis on the variation of vertical stress, shear stress 

and bending moment due to the variation of H/L ratio, size of the beam, stiffness 

and wall-beam modular ratio. His observations agreed favourably with previous 

researchers. He also observed that maximum moment occurs at a distance of about 

1/15th of the span from the either supports. In addition he observed that for elastic 

analysis the brickwork can be considered as a homogenous material provided a 

finite element contains at least one brick, one vertical joint and bed joint. 

2.3.3.3 Non-linear Finite Element Analysis (Homogeneous Case) 

All the analyses discussed above have been hampered by the lack of 

representative material model for masonry. In most cases, isotropic linear elastic 

behaviour has been assumed, with the masonry being considered as an assemblage 

of bricks and mortar with average properties. 
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In 1975 Saw investigated the effect of material non-linearity on the 

interaction between masonry walls and their supporting beams. The material non-

linear behaviour was investigated by the incremental method of initial stress. 

Results for a typical wall/beam system within linear elastic range were compared 

with existing solutions. Although the order of magnitude for wall stresses 

calculated by various methods were found to be comparable but considerable 

discrepancies were found to exist in the predictions of bending moment for the 

supporting beam. He emphasised to consider the influence of beam depth to span 

ratio for a rational design since the effect of this point is ignored in empirical 

methods. Two failure criteria based on the octahedral shearing stress function have 

been suggested for use in the elasto-plastic analysis. One for biaxial tension and 

tension compression stress state, the other for biaxial compression. Elastoplastic 

finite element solutions are shown to provide good correlation with his 

experimental results. But he did not propose any design recommendation from this 

finite element analysis. 

2.3.3.4 Non-linear Finite Element Analysis (Non Homogeneous Case) 

4 

Page (1979) first proposed a non-linear non homogenous finite element 

model capable of predicting non-linear deformation and progressive cracking of-

joints. The non-linear characteristics of the masonry are produced by the non-linear 

deformation properties of the mortar and the progressive failure andlor slip that 

occurs in the joints when the shear or tensile bond failure criteria are violated. 

Although his model was better than the previous analytical models in predicting 

the stress distribution of deep masonry beams it could not predict final failure 

which will occur after substantial failure andlor slip in a number of joints and 

bricks. For accurate prediction of ultimate load a criterion for brick failure would 

have to be included, since cracks after initiation from mortar joints propagate 

through the bricks also. 

Several attempts to use interfaces for the modelling of masonry were carried 

out in the last decade with reasonably simple models, (Anthonie,1992; and 

Lourenco, 1994) for references. In particular, gradual softening behaviour and all 

failure mechanism, namely tensile, shear and compressive failure, have not been 

fully included. 

Lourenco (1996) carried out a research on different numerical tools and 

published a comprehensive review on the state-of -art of micro and macro 
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modelling for the analysis of un reinforced masonry structures. Constitutive micro 

model including softening and failure mechanism, viz., tensile, shear and 

compressive failure developed so far have been reviewed. Adequacy of using 

homogenisation techniques which predicts macro behaviour of composite from the 

macro properties of masonry was discussed in his work. Validation of models by 

comparing the predicted behaviour with the behaviour obtained in experiments on 

different types of structures were also reviewed. He observed that masonry 

experimental results show typically a wide scatter not only in large structures but 

also in small tests. The main concern of his work was to demonstrate the ability of 

the models to capture the behaviour observed in the experiments and not a sharp 

reproduction of the experimental results in the form of load displacement curve. 

The models proposed in the past failed to be widely accepted due to 

difficulties of formulating robust numerical algorithm and representing 

satisfactorily the inelastic behaviour. However it is believed that computations 

beyond the limit load down to a possibly lower residual load are essential to asses 

the structural safety. 

a 

2.4 SUMMARY 

A review of literature relevant to this investigation has been presented in 

this chapter. The properties of brick masonry and similar materials have been 

reviewed with particular emphasis on the previous investigations (both analytical 

and experimental) on the composite action of wall-beam structure. 

From the literature review, it is clear that much remains unknown about the 

interaction problem of wall-beam structure. Most experimental investigations have 

not been comprehensive because of the large number of variables involved. These 

have illustrated some parameters which are important. Many critical parameters are 

yet to be investigated. The existing design rules differ widely, which indicates lack 

of comprehensive information in this area. 

Previous theoretical investigations including most of the finite element 

analyses have been limited due to considering the masonry as a homogeneous 

material. Those are linear elastic in nature. Due to lack of proper analytical tools 

and computational facilities available in those days, no attempt was made to model 

t -v the non-linear characteristics of the constituent materials, consequently having no 

non-linear fracture model. 
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It is apparent from the literature that the model for predicting the failure 

load of wall-beam structure which incorporates non-linearity due to non-linear 

deformation characteristics of the material and progressive cracking of the 

constituent materials was not available in the past. If a suitable finite element 

model could be developed to predict failure of wall-beam structure subjected to 

uniformly distributed load and concentrated load, a large number of tests could be 

simulated and the significance of parameters influencing the behaviours of wall-

beam could be studied. The need for a large number of tests could then be avoided. 

This thesis is an attempt to address this problem by developing a model of this 

nature. In the subsequent chapters, the development and verification of finite 

element models are described. 



CHAPTER 3 

ELASTIC FINITE ELEMENT ANALYSIS 

3.1 INTRODUCTION 

The finite element study outlined in this chapter is aimed at establishing the 

critical parameters which influence the behaviour of wall-beam structure. Two 

types of two-dimensional finite element analyses have been used. One assumes 

masonry to be a homogeneous continuum, the other considers masonry to be an 

assemblage of elastic bricks and joints each with different material properties (non-

homogeneous). The non-homogeneous discretization of masonry for the detailed 

parametric study is the significant aspect of this chapter. The elastic analysis 

considering non-homogeneity of the constituent materials made for detailed 

parametric study of wall-beam structure confirms the results reported by several 

previous investigators who assumed masonry as a homogeneous material. Since 

different properties of component materials are incorporated in the present model it 

became possible to study the effects of constituent materials (brick, mortar, 

concrete and reinforcing bar) on the interaction behaviour of wall-beam structures. 

The study in this chapter includes additional parameters which have not been used 

by previous investigators. Particularly, the support length of the beam and the 

height of the supporting column carrying the beam of wall-beam structure. The 

influence of the following parameters on the stress distribution within a wall-beam 

structure are studied in this chapter: mesh size, height of brick wall, modulus of 

elasticity of the constituent materials, depth of supporting beam, reinforcement of 

the supporting beam, opening in the wall and support condition. In the comparison, 

emphasis has been made on the variation of vertical stress concentration and shear 

stress concentration at the interface level of wall and the supporting beam. The 

linear elastic finite element models are used to study the nature of the stress 

distributions. It should be mentioned here that an elastic analysis may not be 

adequate to realistically reproduce masonry behaviour for the full range of stress 

up to failure but very helpful to determine the important factors which influence 

the interaction behaviour of wall-beam structures. 

3.2 GENERAL DESCRIPTION OF FINITE ELEMENT METHOD 

The limitations of classical mathematics in solving continuum problems 

have led to the development of two categories of discretization techniques. In the 
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first, the differential equations governing the continuum are fonned directly and 

solved by a mathematical discretization method, such as the finite difference 

approximations. The second method is based on a imaginary division of the 

continuum into finite elements. This method has become popular particularly 

among the engineers because of the more physical nature of the discretization. 

The present analytical procedure is based on the finite element method. The 

application of this method has become very common and many texts have been 

written on the subject (Desai and Abel, 1972; Hinton and Owen, 1977; 

Zienkiewicz, 1977; Irons and Ahmad, 1980; and Cook, 1981). The finite element 

method can be thought of as a general thethod of structural analysis by means of 

which the solution of a problem in continuum mechanics may be approximated by 

analysing a structure consisting of an assemblage of properly selected finite 

elements interconnected at a finite number ofjoints or nodal points (see Fig. 3.1). 

The steps in the finite element approximation of a continuum are 

summarised below after Zienkiewicz (1977). The continuum is divided by 

imaginary lines or surfaces into a number of finite elements. These are assumed to 

be interconnected at discrete number of nodes situated at their boundaries. In the 

stiffness approach, the displacements of these nodes are the basic unknowns. A set 

of functions is chosen to describe the internal displacements of the element in 

terms of the nodal displacements. The internal strains are also expressed in terms 

of the nodal displacements by using the displacement functions. The state of stress 

is defined by these and any initial sftains. The concentrated forces at the nodes are 

determined by the equilibrium of the boundary stresses and the distributed loads. 

This gives the characteristic stiffness relationship of the continuum. 

The application of finite element method requires the use of a computer to 

carry out the numerical processes. The steps in the finite element analysis of a 

wall-beam structure are described below. 
The brick, the mortar, the supporting beam and the reinforcement are 

idealised as an assemblage of a number of elements. 

The element displacement functions are chosen to specify the pattern 

in which the elements deform. On the basis of these displacement 

functions the element stiffness matrices relating the element nodal forces to 

the element nodal displacements are evaluated. 

IV (c) The element stiffness matrices are assembled to develop the overall 

stiffness matrix of the total structure. 
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Fig. 3.1 Structure Composed of Two-dimensional Elements 

(d) The joint displacements of the complete system are obtained by solving 

a set of linear simultaneous equations governing the equilibrium 

conditions at the nodes. This takes the form: 

[K]{8} = {R} (3.1) 

IN where { R} is the vector of applied loads at the joints, [K] is the overall 

stiffness matrix and {s} is the vector of unknown joint displacements. 



EM 

a 

(e) The joint displacements are used to calculate the other required values 

such as the strains, the stresses, and the forces at various points in the 

system. 

The accuracy of the finite element method depends on the fineness and the 

accuracy of the discretization of the continuum. Therefore, each element of the 

mesh should be chosen carefully to represent the various components of the wall-

beam system closely. When a large number of elements are required, the mesh-

refinement technique proposed by Anand and Shaw (1980) is useful. The general 

procedure for the formulation of a finite element model is summarised in the 

ensuing sections. 

3.3 TWO-DIMENSIONAL LINEAR ELASTIC FINITE ELEMENT 

MODEL 

Two types of linear elastic finite element analyses have been performed. 

One assumes masonry to be a homogeneous continuum, the other models bricks 

and joints separately. It should be mentioned that, very few experimental 

investigations on the behaviour of wall-beam structures furnished the detailed 

material properties. The most extensive series of tests are those of Rosenhaupt 

(1962) and Wood (1952). 1-lowever, Rosenhaupt's investigation furnishes the 

material properties as required in a finite element analysis. Several previous 

investigators have used the experimental data of Rosenhaupt. Although not 

representative for normal brick masonry, Rosenhaupt's test values were utilised in 

this study for the sake of comparison of analytical results. The material properties 

proposed by Rosenhaupt are typical of light weight brick wall on RCC beam. 

However, since the model incorporates properties of all constituent materials any 

brick-mortar combination can be modelled provided their material properties are 

known. 

For the homogeneous case, an elastic modulus of 670 MPa and Poisson's 

ratio of 0.2 as obtained by Rosenhaupt (1962) were taken for the masonry. For the 

non-homogeneous case, the finite elements corresponding to bricks and joints were 

assigned different values of elastic modulus and Poisson's ratio. For brick, modulus 

of elasticity as obtained by Rosenhaupt (1962) was taken as 1165 MPa. For mortar 

the modulus of elasticity and Poisson's ratio were assumed to be 500 MPa and 0.17 
14 respectively while the Poisson's ratio of brick was assumed to be 0.184. In the 

latter part of this analysis the material properties obtained from the extensive 
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laboratory tests on small burnt clay bricks and brick prisms (discussed in Chapter 

4), were incorporated in the model. 

The tow-dimensional elastic finite element program was adopted for this 

preliminary study. The frontal method of solution of the equilibrium equations 

were adopted from Hinton and Owen (1977). In the program most of the data can 

be generated automatically, including the fine mesh at the locations of higher stress 

gradient. The nodal displacements, the strains and the stresses at the Gauss points 

of each element are calculated, as well as the average value at the centre of the 

element. When the sizes of the meshes are very fine particularly required to 

represent nonhomogeneity of mortar and brick, Gauss sampling points were not 

used. Thus a considerable saving in computer time was achieved during 

nonhomogeneous solutions at the cost of negligible sacrifice of accuracy. 

3.3.1 Selection of Finite Element Mesh 

Proper representation of brickwork is very important in the finite element 

analysis of wall-beam structure. In the past the brickwork has been considered as a 
IR homogeneous material by majority of the researchers with average properties for 

both fine and coarse meshes. It should be mentioned that an element should 

encompass at least a header joint and a bed joint along with a portion of brick to 

represent the brickwork as a homogeneous continuum, in this chapter the masonry 

part of wall-beam has been modelled as homogeneous and nonhomogeneous 

material. Various mesh sizes ranging from very coarse to fine have been used to 

study the influence of mesh refinement on the analytical results. Coarse meshes of 

different sizes as shown in Fig. 3.2 to Fig. 3.4 have been used to represent the 

brickwork as a homogeneous material and the fine mesh shown in Fig. 3.5 has 

been used to represent the brickwork as a nonhomogeneous material. 

Due to symmetry only half of the wall-beam panel has been considered for 

the finite element analysis. Typical boundary conditions have been shown in Fig. 

3.6(a).and the physical and elastic properties of the beam tested by Rosenhaupt is 

shown in Fig. 3.6(b) 

The vertical stress at the interface as obtained by elastic analysis is shown in 

Fig. 3.7. To keep similarity with previous authors, the vertical compressive 

stresses at interface is represented by positive sign. The typical vertical stress 

distribution along the span as shown in Fig. 3.7 agrees favourably with other 
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authors (Rosenhaupt, 1962; Stafford Smith and Riddington, 1976, 1977; Davies 

and Ahined, 1978; Page, 1979 and Kamal, 1990). Fig. 3.7 shows that the stress 

does not exhibit any considerable variation near the centre of the span irrespective 

of the size of the mesh used in the analyses. But for a length of 1/4 th of the span 

from the supports the variation is quite considerable depending on the size of the 

mesh and the material characterisation. From these observations it can be 

concluded that the choice of fine mesh near the supports and the coarse mesh 

towards the centre of the span can be accepted for the analysis. Since the stresses 

are concentrated near the support of the wall-beam panel, a nonhomogeneous 

representation of the material with very fine mesh near the support (see Fig. 3.5 for 

Mesh FNH) is advisable. 

Number of clements=48 

Fig. 3.2 Very Coarse Mesh (XCII) for Homogeneous Analysis 

Top beam 

Fig. 3.3 Coarse Mesh (CH) for Homogeneous Analysis 
II 
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jjop beam 

Number of elements=620 

Fig. 3.4 Medium Coarse Mesh (MH) 

(Homogeneous) 

Fig. 3.5 Fine Mesh (FNH) 
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3.3.2 Reinforcement of the Supporting Beam 

In developing a finite element model for a reinforced concrete member, 

mainly three alternative representations of the reinforcement can be used 

(Scordelis, 1972; Al-Mahaidi and Nilson, 1979) (a) Distributed, (b) Embedded, 

(c) Discrete. 

For a distributed representation, as shown in Fig. 3.8(a) the steel is assumed 

to be distributed over the concrete element, with a particular orientation angle 0. A 

composite concrete-reinforcement constitutive relation is used in this case. To 

derive such a relation, perfect bond must be assumed between the concrete and 

steel. 

An embedded representation, as shown in Fig. 3.8(b) may be used in 

connection with higher order isoparametric concrete elements. The reinforcing bar 

is considered to be an axial member built into the isoparametric element such that 
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its displacements are consistent with those of the element. Again perfect bond must 

be assumed in this case. 

A discrete representation of the reinforcement using one dimensional 

element, as shown in Fig. 3.8(c) has been widely used. Axial force members or bar 

links may be used and assumed to be pin connected with two degrees of freedom at 

the nodal points. Alternatively, beam element may also be used. In either case, the 

one-dimensional reinforcement elements are easily superimposed on a two-

dimensional finite element mesh such as might be used to represent the concrete. A 

significant advantage of the discrete representation, in addition to its simplicity, is 

that it can account for possible displacement of the reinforcement with respect to 

surrounding concrete. 

The stress-strain curves for steel are assumed to be identical in tension and 

compression. And for simplicity it is often necessary to idealise the steel stress-

strain curve. Three different idealisations shown in Fig. 3.9 are in use depending on 

the accuracy required. For each idealisation it is necessary to determine 

experimentally the values of the stress and strains at the onset of yielding, strain 

hardening, and the ultimate tensile strength. 

The basis on which the reinforcement is incorporated into the finite element 

model depends upon whether a discrete, embedded, or distributed representation of 

the steel is adopted. The discrete representation of the steel is adopted in this study. 

The idealisation of discrete representation is described below. 

The cross section of beam is shown in Fig. 3.10(a). This includes three main 

tensile reinforcing bars with its width b, each bar having diameter db.  For 

convenience in lying out the finite element mesh, each round bar is replaced by a 

rectangular bar having the same area as suggested by Fig. 3.10(b). A plane stress 

idealisation is adopted for the analysis, and the actual beam is reduced to a beam of 

unit width as shown in Fig. 3.10(c). The bar area tributary to a unit width of 

concrete is established as in Fig. 3.10(d), based on the number of bars. included in 

the original beam of width b. The reduction of concrete volume resulting from the 

presence of the bars can be accounted for by using a reduced thickness for the 

concrete at the level of the reinforcement. In the analysis this effect is achieved by 

reducing the stiffness of the concrete elements at that level, in proportion to the 

• reduction in concrete thickness. 
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Thus a three-dimensional concrete beam is replaced for purposes of analysis 

by an approximate two-dimensional plane stress model. With this approach, the 

stress-strain laws for constituent materials of reinforced concrete are uncoupled 

pennitting efficient and convenient implementation in a finite element program. In 
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addition, the method proves convenient to investigate the relative contributions of 

the concrete and steel components in resisting loads. Similar method of 

descretizing the reinforcement in reinforced concrete structure was successfully 

applied by Buyukorturk (1977) using the doubly-curved isoparametic thin shell 

elements. In the present work the application of the method is demonstrated by the 

use of plane stress elements with two translational degrees of freedom defined at 

each node. Thus the actual reinforcing bars are represented by equivalent 

anisotropic steel layers by making appropriate adjustments to the thickness of the 

reinforcing bar (rebar) elements and having no adjustments of the [D] matrix for 

the rebar element. The steels in layers carry uniaxial stress in the same direction as 

the actual bars along with the consideration of its dowel action. Strain 

compatibility between steel and concrete 'is maintained assuming that there is a 

sufficient strong bond between the two materials so that no relative movement of 

the steel and the surrounding concrete can occur. The stiffness of the reinforcement 

is included to the member stiffness by direct superposition. Reinforcement has 

been considered to be connected directly to the concrete at the nodal points in this 

study. 

The presence of secondary reinforcement (stirrup) has not been considered 

in finite clement model. 

It should be mentioned that the flexural cracking of concrete will reduce the 

stiffness of the beam. Although no allowance has been made in the elastic model, 

the effect has been taken care by modifying the model in the subsequent chapters. 

This has been particularly addressed in chapter 5 where the behaviour of materials 

after failure has been discussed. 

3.3.3 Finite Element Discretization and Boundary Condition 

The basic wall-beam structure considered in this theoretical study is simply 

supported at its ends (see Fig. 3.6(a)). In practice this situation rarely exists. 

Usually the beam has some rotational restraint at its supports, due to either being 

built in to a wall or being connected, with some degree of rigidity, to supporting 

columns. In other cases , the wall is continuous over the supports. The numbers of 

factors affecting the rotational restraint and thereby controlling the behaviour of 

the structures under these conditions are therefore large. When the beam is built in, 

these factors include the extent of inbuilding and the height, physical properties 

and horizontal restraint of the wall below the support. When the beam is connected 
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to the columns the influencing factors include the rigidity of the fixing and the 

properties and the length of the columns. Other parameters affecting the structural 

behaviour include the length and height of the wall beyond the support. 

Comprehensive studies of these parameters is carried out at the end of this chapter. 

However, the basic wall-beam idealised for analysis in the elastic finite element 

study is shown in Fig. 3.6(b). The brickwork has been considered as an assemblage 

of bricks set in mortar matrix (homogeneous). The beam has been considered to be 

simply supported. The height of the wall is approximately equal to the 0.6 times 

the length of the wall. 

Since the overall system is symmetric with respect to loading and geometry, 

only half of the structure has been discretized for the present study Fig. 3.6(a). The 

appropriate boundary conditions have been provided for nodes at the centre line of 

symmetry. 

3.4 VERIFICATION OF THE COMPUTER MODEL 

To verify the accuracy of the present finite element model developed to 

analyse the wall-beam structure, the results of linear elastic solutions obtained by 

the present model are compared with the results obtained from theory and 

empirical equation and with those obtained from test results. For this purpose the 

deflection of a simply supported beam, the split tensile strength of masonry prism 

and the results of a wall-beam panel tested by Rosenhaupt (1962) are compared. 

The comparison reveals satisfactory performance of the model. 

3.4.1 Deflection of a Simply Supported Concrete Beam 

To check the adequacy of the finite element program in bending the 

deflection of a simply supported beam has been modelled. The data used for the 

beam is given below. 

Dimensions: 

Length of the beam = 1297.5 mm 

Width of the beam = 100 mm 

Height of the beam = 75 mm 

Loads: 

Dead Load = Not considered 

Superimposed Load = 9.612 Newtonlmm 
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Material properties: 

Modulus of Elasticity of Concrete = 28672 MPa 

Poissonts Ratio of Concrete 0.16 

5L4  
Maximum Deflection at Midspan : = 

W 
= 3.51 mm 

384E1 

The linear elastic finite element analysis has been carried out by using the 

proposed model for the above beam. Using normal rectangular element maximum 

deflection at midspan is 3.37 mm. using QM-6 element the value obtained is 3.49 

mm. The finite element discretization and boundary condition adopted for the 

analysis of the beam is shown in Fig. 3.11. 

3.4.2 Splitting Test of Brickwork Triplet 

In masonry structures vertical joints are very critical. Under vertical load 

most of the vertical joints undergo tensile stress which initiates bond failure at the 

interface of brick and mortar joint. In the laboratory tensile bond strength of 

brickwork is normally determined by splitting test of brick prism (discussed in 

article 4.4.5). The stress state (transverse stresses) in the prism is nonuniform due 

to the presence of bed joint. In this study the splitting test of brickwork prism has 

' been investigated to check the adequacy of the present finite element program in 

modelling nonuniform stress field. 

Tensile bond strength is obtained indirectly by splitting tensile test on 

brickwork prism, using the following equation. 
c 

Tensile stress, o7T = 
Dl 

where P = applied load 

1 = specimen thickness 

D = equivalent diameter 

h.a 

\1 7r14 
h,a = specimen height and width 

C =constant = 0.648 (for homogeneous material) 

Finite element study made by Au (1987), revealed that the value of C varies 

from 0.648 to 0.71 as E. tErn  varies from ito 4 and suggested the value of C to be 

0.67 for average practical condition. 
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Two specimens were considered for the comparison, one modelling bricks 

and mortar joints as separate materials and the other treats brickwork as 

homogeneous material. The finite element discretization of the specimen is shown 

in Fig. 3.12. 

Fig. 3.11 Finite Element Discretization and Boundary Condition of a Simply 

Supported Beam 

Fig. 3.12 Finite Element Discretization and Boundary Condition for Splitting 

Test of a Brickwork Triplet 

The results obtained from the present finite clement analysis are in 

agreement with those calculated from the above equation. The tensile stress pattern 

across the vertical section through the vertical mortar of the prism (both for 

homogeneous and nonhomogeneous conditions) is shown in Fig. 3.13. The model 

predicts the stress pattern with reasonable agreement. 
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3.4.3 Comparison with Experimental Results 

In the previous articles the accuracy of the finite element program has been 

verified with bending characteristics of simply supported concrete beam and 

splitting test of masonry prism. In this article the program will be used to model the 

experiment perfonned by Rosenhaupt (1962) on wall-beam structure. Experiments 

carried out on wall-beam structures by other researchers like Wood (1952), 

Burhouse (1969) and Stafford Smith Ct al., (1978) are also widely known. It is 

mentioned earlier that the series of tests performed by Rosenhaupt (1962) provides 

the related material properties suitable to incorporate in the finite element models. 

Fig. 3.6(b) shows physical properties of a wall-beam (light weight concrete block 

on reinforced concrete beam) tested by Rosenhaupt (1962). This beam was later 

analysed by other authors. The results of the present finite element analysis of the 

same beam of Fig. 3.6(b) are compared with the experimental results and the 

analytical results obtained by Rosenhaupt (1964), Coull (1965-66), and finite 

element analyses of Male and Arbon (1971) and Saw (1975). 

Rosenhaupt recorded vertical strain at the first course of brickwork from the 

bottom and horizontal strain at the mid vertical section of the panel at about half of 

the failure load. At this load the wall and the beam arc assumed to remain in the 

elastic range. The comparison of these strains with those predicted by the present 

finite element analyses and by the finite element analysis made by Male and Arbon 

are shown in Fig. 3.14(a) and Fig. 3.14(b). It is to be mentioned that the finite 

element analysis performed by Saw (1975) has not been included in his 

comparison since the wall stresses obtained by him are nearly identical to Male 

and Arbon (1971). From the comparison it is seen that the agreement of horizontal 

strain at mid vertical section is quite satisfactory for both homogeneous and 

nonhomogeneous models, while the agreement between the test results and the 

finite element analysis regarding vertical strain at first brick course near the 

support is poor when the brickwork is considered as a homogeneous material. This 

may be due to the fact that, the panel section close to the support experiences high 

stress gradient in comparison to the middle third as can be seen from Fig. 3.7. At 

the lightly stressed zone of the middle of the panel the horizontal strain is very 

small in comparison to the vertical strain at the ends of the span. This low stress or 

strain a the middle is likely to be insensitive to the type of finite element model or 

size of mesh used. However, at the zone of high stress gradient near the support the 

prediction of stress by various models may vary due to different material 

representation and mesh size. It is also seen from Fig. 3.14(a) that the results of 
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nonhomogeneous solution using fine mesh agrees favourably with the test results. 

In addition, Fig. 3.14(b) shows that the vertical mortar joints experience much 

more horizontal strain in comparison to that of the brick elements located just at 

the top and bottom. It is generally very difficult to measure this local variation of 

deformation in these thin vertical mortar joints in the laboratory. This variation can 

not also be predicted by the homogeneous finite element model. Therefore, 

nonhomogeneous representaion of the materials is required in the finite element 

analysis of wall-beam structure. 

3.4.4 Comparison with Analytical results 

Most of the previous authors considered brickwork in wall-beam structure 

as homogeneous material. In this article the comparison therefore has been made 

with the result of the analysis considering brickwork as a homogeneous material 

with those of previous investigators (Male and Arbon, 1971; Saw, 1974, 1975). 

The element discretization adopted in the present article and by other authors are 

shown in Fig. 3.15. 

I' 

Vertical stress in Masonry wall 

The concentration of vertical stress is given by, o )  / w, where w is 

average stress applied on the top of the wall and is the vertical stress induced at 

the interface level of wall and the supporting beam. The comparison of 

concentration of vertical stress in the wall, obtained by previous authors 

(Rosenhaupt, 1964; Coull, 1965-66; Male and Arbon, 1971; Saw, 1975) and the 

present analysis can be seen from Fig. 3.16(a) that confirms reasonable agreement 

between the results. But the distribution of vertical stress in the zone close to the 

support as obtained by the present analysis differs appreciably from those of 

Rosenhaupt (1964). This is due to the assumption of Rosenhaupt (1664), that 

vertical forces at wall-beam interface are concentrated at the ends of the beam. It is 

clear in Fig. 3.16(a) that this assumption is not correct. 

4 
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(a) Present study (b) Male and Arbon (1971) 
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(c) Saw (1974) 

Fig. 3.15 Finite Element Discretization of Beam Tested by Rosenhaupt (1962) 



Horizontal Stress in Masonry wall 

The concentration of horizontal stress is given by ox  I w, where, w is 

average stress applied on the top of the wall and o is the horizontal stress induced 

at the interface level of the wall and the supporting beam. Fig. 3.16(b) shows the 

distribution of concentration of horizontal stress in the panel and confirms 

reasonable agreement between the present finite element analysis and that of Male 

and Arbon (1971). While the agreement is poor between the present finite element 

solution and those of Coull and Rosenhaupt in predicting the horizontaJtresses  of 

the panel. This fact however seems to present doubt regarding acceptance of the 

assumption made by Coull that the stresses can be expressed as a power series with 

coefficients being function of height only. 

Shear Stress in Masonry wall 

The concentration of shear stress is given by t,, I w where, w is average 

stress applied on the top of the wall and is the shear stress induced at the 

interface level of wall and the supporting beam. From Fig. 3.16(c) it can be seen 

that the distribution of concentration of shear stress in the wall agrees favourably 

with the results of other authors (Rosenhaupt, 1964; Coull, 1965-66 and Male and 

Arbon, 1971) and indicates that the shear stress at wall-beam interface concentrates 

near the end. 

It should be mentioned here that the stresses obtained by Male and Arbon in 

the masonry part of the panel are nearly identical to those of Saw as it was 

reported by the latter. For this reason the stress obtained by Saw (1975) has not 

been shown in the above comparisons. 

Vertical Stress in Supporting Beam 

The stress distribution in the supporting beam from the present finite 

element analysis and the analysis made by Male and Arbon is shown in Fig. 

3.16(a). The vertical stress in the supporting beam agrees favourably with that of 

Male and Arbon except at section close to the support. 

11 



59 

4 

Horizontal Stress in Supporting Beam 

The horizontal stress (see Fig. 3.16b) obtained by the present analysis 

agrees favourably with those of Male and Arbon (1971) at the bottom part of the 

beam, while at the top of the supporting beam a minor deviation has been noticed. 

In the analysis of Male and Arbon, the fibre at the top of the supporting beam has 

been found to be in tension with a non-linear variation along the depth of the 

supporting beam. This of course is a deviation from results of the test carried out 

by Rosenhaupt (1962). The panel being the same in both cases. The horizontal 

strains measured by Rosenhaupt (1962) at different vertical sections intersecting 

the supporting beam confirms that the top of the beam is under compression. Saw 

(1975) has used line elements to simulate the supporting beam in his finite element 

model. From the analysis he found that the horizontal stresses vary linearly across 

the beam depth, which again does not comply with the findings of Male and Arbon 

(1971). This difference as he concluded, may be due to the fact that although a 

large number of triangular finite elements have been used by Male and Arbon to 

discretize the beam, but the size may not be fine enough for the region near the 

support where the stress gradient is very high. A simple photo elastic test was 

made by Saw to illustrate this point. The evenly spaced isochromatics in the 

supporting beam confirmed that horizontal stress varies linearly across the beam 

depth. The phenomenon of having tension throughout the depth is likely to occur 

for cases where the supporting beams are relatively shallow. It is also seen from 

Fig. 3.16(b) that the maximum stress in the beam does not occur at the middle of 

the span but close to the support. By the above discussion it is concluded that the 

supporting beam which is assumed as a tension tie by Rosenhaupt (1964) is not 

equally applicable to all cases, rather should depend on relative stiffness of the wall 

and the supporting beam. 

Shear stress in Supporting Beam 

Shear stresses obtained by Male and Arbon (1971) at sections close to the 

support of the beam are seen not to agree with the present finite element analysis 

(see Fig. 3.16(c). Saw did not show any shear stress variation in the supporting 

beam. The disagreement of the shear stress at section close to the support casts 

doubts on the suitability of triangular elements used by Male and Arbon (1971) to 

simulate the stress in this highly stressed region. It is important to note that for the 

linear displacement triangular elements used by them the strain and stress are 
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constant over the elements and makes the element relatively inefficient. This fact is 

also confirmed by Brebbia and Ferrante (1978). 

It is noteworthy that the present finite element analysis for homogeneous 

solution uses a total of 78 nodes with 60 elements to achieve results which are 

comparable with the finite element analyses of Male and Arbon who employed 

total of 313 nodes with 576 triangular elements and Saw who employed 42 nodes 

with 30 macro elements (each having 144 finite elements) in co with with 5 

line elements. 

3.4.5 Comparison of Bending Moment in the Supporting Beam 

The economy in the adoption of a wall-beam structure is mainly due to the 

saving of reinforcement and concrete of the supporting beam. From the discussion 

made so far, it is clear that due to wall-beam composite action the maximum 

portion of vertical load acting on the panel is directed towards the support thus 

relieving the middle portion of the beam. As a result bending moment reduces 
considerably compared to w12/8. Many investigators tried to quantify this reduced 

moment - both experimentally and analytically. But the variation of moment as 

obtained by different authors are noteworthy. 

Since the neutral axis of the wall-beam considered happens to be within the 

concrete beam section, the moment at different section is calculated on the basis of 

actual fibre stress at the top and bottom of the section. These fibre stresses were 
obtained by extrapolating the values of horizontal stresses from computer output at 

different depths of a section. From these fibre stresses the moment at a section is 

obtained from following equations: 

bottom = 

P 
+ 

MC
1 

(3.2a) 

P MC (3.2b) 
o_top = - 

where C # d / 2 is the position of neutral axis at the section considered. By putting 

the values of fibre stress and eliminating the term the moment at different 

sections can be found. 
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• Fig. 3.17 shows the variation of moment along the span for the beam of Fig. 

3.6(b) as obtained by different authors. Bending moment in the beam as proposed 

by Wood(1952) is based on experimental results having a constant value 

throughout the span. However, the moment at the mid span, as he derived from the 

horizontal strains measured at mid vertical section, can be assumed to represent the 

actual moment of the beam. Like others, the variation of moment along the span as 

obtained from the present finite element analysis follow the same trend with higher 

values nearer to support than at the middle . Nevertheless the anticipated moment 

is much lower in comparison to w0/8. The present analysis however agrees 

favourably with the results of Saw(1974, 1975), Colbourne(1969), Yettram and 

Hirst(1971) at the location nearer to the support and at the middle of the span. The 

moment coefficient obtained by the present analysis at mid-span agrees reasonably 

with that of Wood (1952) which was based on experimental study. 

3.4.6 Comparison with the Empirical Equations 

For this comparison equation for maximum vertical stress concentration 

derived by finite element analyses by Stafford Smith and Riddington (1973) and 

Davies and Ahmed (1978) are considered. The maximum vertical stress 

concentration within the brickwork is found to occur at the interface level near the 

supports. The comparison is shown on the basis of slenderness of the supporting 

beam which is a common and dominating parameter (discussed later). Fig. 3.18 

shows the vertical stress concentration for a wide range of wall height (brick wall 

height to span ratio varying from 0.23 to 0.84) and supporting beam depth (varying 

from 50 mm to 200 mm). Vertical stress concentration predicted by the present 

finite element model gives results which lie within the limits bounded by both 

Stafford Smith and Riddington (1973) and Davies and Ahmed (1978) for the case 

when non homogeneity is considered. For homogeneous solution the result agrees 

with the equation given by Davies and Ahmed. 

Comparison of results obtained by present analysis on the wall made of light 

concrete block on concrete beam (tested by Rosenhaupt) as discussed in the 

foregoing paragraphs indicate that the results of the present model agree 

favourably with other investigators. The following article describes the arching 

action in the aforementioned panel. 

I 
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3.5 ARCHING ACTION 

The composite action of the wall with the supporting beam produces 

arching action in the wall. The compression of the arch is mostly contained in the 

masonry wall, and the supporting beam being acted upon mostly by tension. Due to 

this arching action a major portion of the superimposed load concentrates towards 

the support providing a great relief of load on the beam at the middle of the span. 

This results in a considerable reduction of bending moment in the supporting 

beam. Reduction of moment in the supporting beam has been shown before. The 

arching action can be illustrated with the help of principal stress trajectories within 

the panel. Fig. 3.19(a) shows a typical plot of principal stresses obtained from the 

finite element analysis discussed earlier. Lines in the plot show the magnitude of 

major and minor principal stresses in terms of the average stress applied on top of 

the wall. The direction of the line represents the direction of the corresponding 

principal stress. Compressive stress is indicated by black colour and the tensile 

stress is indicated by red colour. From the figure it is clear that all the stresses 

concentrate towards the support while at the centre of the panel the magnitude of 

the stress is very small. It is also seen that the stress in the wall is mainly 
a compressive and those in the beam are mainly tensile, constituting an arch action in 

the wall-beam panel. Some of the analyses in this section show the presence of 
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tensile stresses. These tensile stresses depending on the load applied may be high 

enough to allow the formation of tensile cracking. 

Many authors recommended the presence of central opening in the wall-

beam structures. Principal stress trajectories for wall-beam with central opening as 
obtained in the present study (Fig. 3.19(b)) reveals that due to the presence of 

central opening of normal size the composite behaviour of wall-beam structure is 

not hampered. 

From non-homogeneous analyses the stresses in the brick unit, vertical joint 

and bed joint can be identified separately. Typical cases are shown in Fig. 3.19(b) 
to Fig. 3.19(d). On the basis of these analyses a zoning map can be developed for 
the principal stresses that will give feelings about the distribution of stresses within 
a wall-beam panel. In Fig. 3. 19(e) principal stress zoning for different types of 

wall-beam structures that are normally encountered are shown. 
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Fig. 3.19(a) Principal Stress Trajectories by Coarse Mesh Discretization 

• (Beam Tested by Rosenhaupt, 1962) 
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Note:- Principal Stress Trajectories for Beam are similar to Fig. 3.19(a). 

Fig. 3.19(d) Principal Stress Trajectories for Shallow Wall-beam by Fine 

Mesh Discretization (Elements of Brick) 

3.6 PARAMETRIC STUDY OF WALL-BEAM STRUCTURE 

The wall-beam structure is a highly complex type of composite structure 

comprising about haIfa dozen of different materials, each having different material 

properties. The composite action of masonry wall with the supporting beam 

depends on many parameters. The main influencing parameters are outlined as 

follows: 

The wall height to span ratio. 

The depth of the supporting beam to span ratio. 

Relative stiffness of masonry wall and its supporting beam. 

Vertical edge column and top beam. 

The size and position of opening in the wall. 

Reinforcement in the supporting beam. 

Width of the support for Beam. 
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The other parameters may include wall thickness, size of brick unit, 

thickness of mortar, modulus of elasticity and Poisson's ratio of constituent 

materials, support bearing and end conditions, anchorage of tension reinforcement 

and bond characteristics of mortar. The influences of the important parameters are 

presented below. 

3.6.1 Effect of Height of Brick wall 

Variation of maximum vertical stress concentration (o, I w) and shear 

stress concentration (txy 7w) and their distribution along the span for different 

height : length ratio of the wall is shown in Fig. 3.20(a) and Fig. 3.20(b) 

respectively. Shear stress concentration, Sc.is• obtained by dividing the shear stress, 

txy by the intensity of the vertical load, w applied on the.top of the wall, i.e., Sc = 

txy!W. The maximum shear stress concentration within the wall is found to occur 

at the interface level near the supports. The ratio of wall height to span length, 

(H/L) was varied from 0.23 to 0.92 keeping the span length constant. It is seen that 

the maximum vertical stress concentration and the nature of distribution of the 

vertical stress along the span do not differ appreciably, due to the variation of 

height of the brick wall. Similarly it is also clear from Fig. 3.20(b) that shear stress 

concentration, (Sc) and its distribution along the span is approximately the same 

irrespective of the height of the wall when H/L is greater than 0.54. 

Most of the previous investigators observed that for composite action to 

occur in wall-beam strucmre the height of the wall should not be less than 0.6 

times the length of the wall. Similar finding is also observed in the present 

investigation. When Hit ratio is less than 0.54 it is revealed from Fig. 3.20(b) that 

shear stress increases with the decrease of H/L ratio. This increase in shear stress is 

vulnerable to wall-beam structures. It is. seen from Fig. 3.20(b) that when the 

height of wall-beam structure is equal to 0.25 times its span the shear stress in the 

panel increases to the tune of two times the intensity of the load applied on the 

wall. Such high shear stress may cause sliding at the interface andlor shear failure 

of the panel. From this comparison it can be concluded that the composite action 

between wall and supporting beam should not be considered for the design purpose 

when H/L ratio is less than 0.54. 
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3.6.2 Effect of Modulus of Elasticity 

The effect of modulus of elasticity and hence the relative stiffness of the 

wall-beam was studied by changing the modulus of elasticity of the component 

materials while keeping all other parameters constant. The results of the 

investigations are ftirnished below. 

3.6.2.1 Mortar 

The natures of variation of vertical and shear stress, expressed in terms of 

Vc and Sc, due to the variation of modulus of elasticity of mortar are shown in Fig. 

3.21(a) and Fig. 3.21(b) respectively. These figures indicate that the maximum 

stress concentrations, Vc and Sc increase slightly with the increase of modulus of 

elasticity of mortar. 

3.6.2.2 Brick 

The variation of vertical and shear stress concentration along the span due to 

the variation of modulus of elasticity of brick is shown in Fig. 3.22(a), and Fig. 

3.22(b) respectively. The vertical and shear stress concentrations are found to 

increase with the increase of modulus of elasticity of brick. It can be seen from the 

figure the variation of modulus of elasticity of brick has a greater influence than 

that of modulus of elasticity of mortar as is evident from the steeper curves at 

higher modulus of elasticity of brick. 

3.6.2.3 Concrete 

The variation of vertical and shear stress concentration along the span with 

the variation of modulus of elasticity of concrete is shown in Fig. 3.23(a) and Fig. 

3.23(b) respectively. Unlike mortar and brick the vertical and shear stress 

concentrations are found to decrease slightly with the increase of modulus of 

elasticity of concrete. No noticeable variation of vertical stress distribution was 

observed along the panel due to the variation of modulus of elasticity of concrete. 

3.6.3 Effect of Depth of Supporting Beam 

The variation of vertical and shear stress concentration along the span with 

the variation of depth of supporting beam is shown in Fig. 3.24(a) and Fig. 3.24(b) 
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respectively. The vertical and shear stress concentrations, Vc and Sc are found to 

decrease considerably with the increase of depth of supporting beam. The 

distributions of stresses are also found to vary from steep gradient to flat with the 

increase of depth of beam. It is also seen that the stress concentration near the 

support increases with the decrease of beam depth. The increase of vertical stress 

and shear stress concentration, Vc and Sc, and their steeper distributions along the 

span were also observed by other investigators (Stafford Smith and Riddington 

(1977); Davies and Ahmed (1978) and Kamal (1990)) due to the increase of 

relative stiffness of the wall to that of the supporting beam. 

3.6.4 Effect of Reinforcement in Supporting Beam 

The relative stiffness of wall and the beam influences the behaviour of wall-

beam structure considerably. Although this fact was agreed in general by previous 

researchers, the contribution of steel towards the stiffness of reinforced concrete 

supporting beam was not considered in modelling the wall-beam structure. The 

structural purpose of supporting beam in a wall-beam structure is to resist tension 

and bending, both being produced due to arching effect of the wall-beam structure. 

The increase of axial stiffness and bending stiffness due to the contribution of 

embedded reinforcement should therefore be considered. The variation of vertical 

stress concentration, Vc (= GIw) and shear stress concentration, Sc (= t ,,/w) 

along the span and both calculated at the level of wall-beam interface is shown in 

Fig. 3.25(a) and Fig. 3.25(b) for both the cases of with steel and without steel. The 

figures show that when the effect of reinforcement is considered in the model, 

maximum Vc and Sc are decreased. It is concluded that modelling of 

reinforcement in supporting beam of wall-beam structure is required to simulate a 

real wall-beam structure. 

I 
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3.6.5 Effect of Vertical Edge Columns 

The wall-beam interaction can also exist in brick infihled beam-column 

frame system. The possible practical arrangements may be (1) the masonry wall 

supported by beam at the bottom and having columns at vertical edges, 

(abbreviated as 'BCOL'), (2) the masonry wall supported by beam at the bottom, 

having columns at vertical edges and slab or beam at the top (abbreviated as 

'FRM') and (3) the plane wall-beam structure i.e., the wall supported by beam at 

the bottom (abbreviated as 'WBM'). These arrangements are shown in Fig. 3.26(a). 

The above three systems were analysed to compare the stress. The distribution of 

vertical stress and shear stress along the span expressed as Vc and Sc are plotted in 

Fig. 3.26(a) and Fig. 3.26(b) respectively.. The comparison shows that the 'BCOL' 

and 'FRM' systems behave almost in identical manner. And in both of these 

systems the maximum vertical stress concentration and maximum shear stress 

concentration are found to reduce considerably within the masonry at bottom 

corner of the wall-beam. Therefore 'FRM' and 'BCOL' type of Wall-beam structure 

will enable the panel to resist against crushing of bottom corner of wall-beam more 

effectively, than if it is a 'WBM' type of simple wall-beam structure. For bricks 

having lower compressive strength such technique will be more effective. To 

investigate the effect of above three systems on the reinforcement of the supporting 

beam, the variation of tension () at bottom reinforcement, expressed as tensile 

stress concentration, Tc (= oJw) is shown in Fig. 3.26(c). It is seen that for all the 

three type of wall-beam structures ('WBM', 'FRM and 'BCOL') tension in the 

bottom reinforcement is practically unaltered. 

3.6.6 Effect of Opening in Wall-beam 

Masonry wall is often found to have door and window openings. When these occur 

in a wall-beam structure where composite action is considered, the stress state 

becomes complicated. A comparison of vertical and shear stresses at interface level 

of wall-beam and the tensile stress at the bottom rod of supporting beam have been 

studied for different size and position of openings. A window at the centTal 

position is abbreviated as WMID' and a door at the end of the span is abbreviated 

as 'DEND'. It is seen from Fig. 3.27(a) that the door opening at the end of the span 

produces very high compressive stress at the support and also high tensile stress at 

the bottom corner of the opening near the end of the span. Vertical tensile stress of 

: lower intensity is also produced at the mid span. Opening at the end also produce 
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maximum shear stress at mid span (see Fig. 3.27(b)) which is more than maximum 

Sc of a wall-beam without opening. Comparatively large tensile stress in 

reinforcement is also produced due to offset opening (see Fig. 3.27(c)). It is 

observed from Fig. 3.27(a-c) that the position of safest opening in the wall-beam 

structure is at the middle ('WMIDt), while the door at the end ('DEND') is observed 

to be the most dangerous opening. Since the normal opening at the central position 

does not materially change the interaction behaviour it can be designed like a solid 
wall-beam structure. For the design of wall-beam structure with offset opening, 

elaborate analytical and experimental study should be carried out. 

3.6.7 Effect of Support Width 

In practical cases supports always occupy some place. This parameter is 

studied to know the extent and nature of the effect of bearing area of support on the 

behaviour of wall-beam structure. For this purpose supports of contact length 

0.05L, 0.025L and end bearing support were considered at each end of the span. 
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The variations of vertical stress concentration, shear stress concentration at wall-

beam interface level and the tensile stress concentration in the bottom 

reinforcement of the supporting beam are shown in Fig. 3.28(a), Fig. 3.28(b) and 

Fig. 3.28(c) respectively. It is clear from these figures that the support contact 

length has great influence on distribution of stress near the bottom corner of wall. 

With the increase of contact length of support, vertical and shear stress 

concentration are found to decrease considerably. Due to the increase of contact 

length of support tensile stress in the reinforcement also decreases along with 

shifting of location of maximum stress. It is therefore concluded that, if support 

width in the direction of span is duly considered stress concentration can be 

reduced quite significantly. 

3.6.8 Effect of Column Height 

When supporting beam of a single span wall-beam is connected at its ends 

with columns, the height of the column will influence on interaction behaviour of 

wall-beam structure. Unlike other researchers, this height of the column was taken 
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IV as a parameter in this study. For this purpose wall-beam with varying height of 

columns (0 mm, 100 mm, 300 mm, 600 mm, 900 mm, 1200 mm) were analysed. 

The column cross-section was kept constant which provided a constant bearing 

length of 0.077L. The nodes at the interface of beam and column are assumed to 

have perfect bond. Simply supported condition at the ends of the column was 

assumed as before (i.e. the nodes at the support are restrained only in vertical 

direction). The variation of vertical stress concentration and shear stress 

concentration at wall-beam interface and the tensile stress of the bottom 

reinforcement of the supporting beam in terms of 'w' are shown in Fig. 3.29(a), 

Fig. 3.29(b) and in Fig. 3.29(c) respectively. It is seen from Fig. 3.29(a) that the 

maximum vertical stress concentration increases with the increase of column 

height up to a certain limit. These figures also show that with columns having 

greater length there is no appreciable change in this increase. Fig. 3.29(b) shows 

that effect of column height on the shear stress concentration is not significant. 

From Fig. 3.29(c) it is seen that with the change of column height the tensile stress 

concentration, Tc in the bottom reinforcement changes. This change is very sharp 

for column with small height (in comparison to wall-beam without column). While 

this change is very negligible for column with greater height (300 mm to 1200 mm 

for a span of 1300 mm). 

It seems from above discussion that when the ends of supporting beam of 

wall-beam structure are monolithic with column the degree of framing action 

occurring between wall-beam system and the column reduces with the increase of 

column length from zero to normal height. The length of the column reduces the 

stiffhess of the column and the wall-beam system. It is observed that wall-beam 

with column of normal length produces high vertical stress concentration at the 

ends. 
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3.7 SUMMARY 

In this chapter a comprehensive parametric study has been made on wall-

beam structure by using linear elastic finite element model. From this parametric 

study the following conclusions can be drawn. 

The mesh refinement is an efficient technique which permits the use of finer 

element mesh in the region of high stress gradients. 

A finite element model which treats bricks and joints separately is more 

effective, since it reflects the influence of the varying stiffness of its 

constituents. 

Due to the arching action in the composite wall-beam system, there occurs the 

concentration of vertical and shear stress in the masonry above the support. 

These forces may cause failure to the brickwork before the yielding of the 

supporting beam. 

The composite action can occur in a wall-beam structure with height/length 

ratio less than 0.6 provided the transfer of shear at wall-beam interface is 

4.. ensured. 

The stress distribution at interface level of wall-beam having H/L ratio greater 

than 0.6 is independent of the height of the wall for a particular depth of the 

supporting beam. 

The concentration of stresses at the support is found to increase with the 

increase of modulus of elasticity of brick, while the concentration decreases 

with the increase of modulus of elasticity of concrete. 

The stress near the support increases rapidly as the stiffness of the beam is 

decreased. 

Keeping all other factors constant the decrease of the depth of the supporting 

beam results in a higher and rapid rise of stress concentration towards the 

supports. 

The reinforcement in supporting beam increases its stiffness and reduces stress 

concentration near the bottom corner of the wall-beam. Therefore the 

reinforcement in the supporting beam should be incorporated in analytical 

models for appropriate simulation of real structure. 

Composite action of the wall-beam structure reduces the bending moment in 

the supporting beam quite significantly. 

The vertical columns of brick in-filled wall-beam panel receive maximum 

stresses and thus relieve the stresses in the masonry at bottom corner of the 



panel. This effect may enable the wall-beam to carry higher load in the case 

when the failure is mainly due to crushing of the brick unit near the support. 

The door openings at the ends of the panel produce maximum vertical 

compressive stress at the bottom corner of the wall to maximum vertical tensile 

stress at the bottom corner of the opening near the end. There is also a sharp 

change from high vertical compressive stress at the bottom corner near the mid 

span of an offset opening to high vertical tensile stress at the centre of the span. 

This rise in compressive or tensile stress concentration is noteworthy in 

comparison to a wall-beam structure with a central opening or without any 

opening. 

Due to the openings at the ends, the shear stress concentration is maximum at 

the bottom corner of the opening near the mid span. 

The openings at the ends of the wall-beam panel will produce higher bending 

moment with the shifting of its location from near the support towards the mid 

span. 
The stress concentrations in the masonry wall and in the reinforcement of 

supporting beam of a wall-beam structure decrease with the increase of width 

qr of support. Greater width of support will increase the load carrying capacity of 

the wall-beam panel. 

The vertical stress at wall-beam interface and the tensile stress in the 

reinforcement of the supporting beam increases with the increase of height of 

the supporting column. 

A significant number of parameters have been identified in this chapter which 

have influence on the stress distributions in wall-beam structures. From this 

preliminary study important parameters which influence the composite 

behaviour of wall-beam structures are identified. 

The linear elastic finite element analysis performed in this chapter has got 

limitations. It can be used to study the nature of stress distributions only and 

cannot be used to predict the failure and crack propagation. Non-linear 

behaviour due to crack propagation and material deformation characteristics 

cannot be modelled fruitfully by elastic analysis. For this purpose suitable 

material model should be incorporated in the finite element analysis to simulate 

the behaviour of wall-beam from first crack to failure. These will be discussed 

in the ensuing chapters. 

4 



CHAPTER 4 

BRICK, MORTAR AND BRICK MASONRY PROPERTIES 

4.1 INTRODUCTION 

Brick masonry is one of the man's oldest building material comparatively 

superior to other alternatives in terms of appearance, durability and cost. The 

bricks are manufactured locally by burning the surface clay. The manufacturing 

method is labour extensive and easily adopted one, resulting a huge employment in 

Bangladesh. Thus brick masonry plays a key role in construction trade particularly 

in Bangladesh where natural stones are normally not available. 

The finite element model which is developed later in this study applies to 

solid clay brick masonry. To allow its verification with actual load test a particular 

brick-mortar combination was chosen and used throughout the investigation. Brick 

masonry constructed from solid clay bricks and mortar consisting of 1 part cement 

and 4 part sand by volume was used. Ordinary building bricks prepared from 

surface clay, hand moulded and kiln burnt, were supplied by local manufacturer. 

Same brick was used throughout the study. For easy handling the dimension of 

brick was selected as half of the standard size with an averagc of 123 X 60 X 36 

mm. Frog mark was not indented during the moulding, however the interlocking 

benefit from the frog mark on the brick will add to the factor of safety of the real 

structure. 

To develop a finite clement model which considers brick masonry as an 

assemblage of bricks set in a mortar matrix, the properties of the bricks, the mortar 

and the bond between the brick and the mortar must be determined. These were 

derived from various types of tests performed on representative samples of the 

brick, mortar and brick masonry used in the investigation. These include standard 

tests, and other non conventional tests. Both types of tests are important to define 

the individual characteristics of clay brick and cement sand mortar. In this chapter 

the laboratory investigations of uniaxial compression tests on bricks and mortar 

cylinders and split tensile tests on bricks and mortar prisms were carried out along 

with the determination of deformation characteristics of the materials. The 

principal cause of composite behaviour of masonry is the bond between the brick 

and the mortar. This chapter also describes tests on prisms and triplets of masonry 

from which bond characteristics are derived. These include compression test on 
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t masonry prism, masonry triplet and on masonry couplets with sloping joints (to 

induce shear stress in the joint), and splitting tensile test on masonry prisms. 

4.2 BRICK PROPERTIES 

Like other masonry structures brick constitute the major part of the volume 

of the wall-beam structures. Therefore, maintenance of uniformity of material 

properties of bricks in the panel is important. All bricks were purchased from the 

same manufacturing company at a time and were stored in the laboratory 

throughout the study. 

4.2.1 Compressive Strength of Brick 

Brick compressive strength is an important property which has been 

traditionally used for quality control. Routine tests like compressive strength and 

absorption tests were done according to Bangladesh Standard Specification BDS 

208(1980). The important results are given in Table 4.1 and the detail results are 

Lo provided in Appendix II. 

In addition to standard test, compressive strength was also determined from 

uniaxial compression test on brick applying load in the direction parallel to bed 

joint orientation. The difference between compressive strength thus obtained from 

that of the standard test (load applied normal to bed joint) is due to the platen effect 

of the testing machine. Platen effect apparently increases the actual compressive 

strength. Study made by Page and Marshal, (1985) with brush platen reveals that 

for brick and prism having aspect ratio (Height/Least width) varying from 3 to 0.4, 

the actual compressive strength varies from 0.85 to 0.5 times the apparent strength 

obtained from a so called standard test. The compressive strength test of brick 

loaded on end and in the direction parallel to normal bed joint ensures minimum 

platen restraining effect at the middle of the specimen. Strength obtained from such 

tests on brick units used in this study is found to be close to the actual strength 

obtained by applying aspect ratio correction factor (proposed by Page and Marshal) 

to the apparent strength from standard test. The compressive strength of brick 

tested on end and applying vertical load along the length of the brick may roughly 

be considered as the actual compressive strength. Therefore, there may be two 

types of compressive strength tests. One the so called standard test the value being 

corrected by aspect ratio correction factor (proposed by Page and Marshal) and the 

other with the brick tested on end and applying vertical load along the length 
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(requiring no modification in test apparatus or the test value). The validity of the 

assumption that the bricks have comparable compressive strength in both the test 

mentioned above should be checked by further investigation which is beyond the 

scope of this study. 

4.2.2 Tensile Strength 

In most masonry structures final failure takes place in some form of tensile 

splitting in the brick. This property therefore carries importance in defining the 

behaviour of masonry structures. It is very difficult to perform direct tensile 

strength test on bricks. Splitting tensile strength test as suggested by Thomas and 

0' Leary (1970) for homogeneous prism was followed in this study and is given by 

Eqn. 4.1. ASTM C1006(1984) test method for splitting tensile strength of masonry 

unit, uses similar equation. 

Tensile stress, aT = 

CF 
 j5j (4.1) 

rM 
where P = applied load 

1 = specimen thickness 

D = equivalent diameter 

rha  
4 

h, a = specimen height and width 

C = constant = 0.648 (for homogeneous material) 

The value of C = 0.648 used in Eqn. 4.1 is proposed by O'Leary and also 

confirmed by a finite element analysis done by All (1987). 

A total of 10 bricks were tested. All bricks were tested dry and randomly 

selected from the batch. The load was applied through a steel bar of 6 mm square 

which is within 10 % of the width of the brick. The load was applied using a 

universal testing machine, with a loading rate of 25 kN/min. Failure occurred by 

vertical split directly beneath the loading plate. The mean tensile strength of the 

brick is shown in Table 4.1. Detailed experimental results are contained in 

Appendix 11. 
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10 4.2.3 Deformation Characteristics of Bricks 

Destructive uniaxial compression test was done on bricks to study its 

deformation characteristics. The load was applied both parallel and normal to bed 

joint. The load was applied at the rate of 100 kN /min until failure. The strains 

were measured by electric strain gauges (30 mm gauges along the length of the 

brick and 10 mm gauges in the transverse direction) attached to opposite faces of 

the bricks at mid height level. The strain readings were recorded on a data-logger 

giving simultaneous printout. The strain readings from opposite faces were 

averaged to eliminate the bending effect. The rate of loading and subsequent steps 

were common for both cases of loading. 

4.2.3.1 Load parallel to bed Joint 

For this test individual brick was loaded on end as shown in Fig. 4.1. Brick 

tested on end renders the central portion of the specimen relatively free from platen 

effect. The average stress-strain plot for bricks shown in Fig. 4.2 

exhibits linear load deformation characteristics under uniaxial compression. 

Fig. 4.1 Uniaxial Compression Test on Brick (Load Parallel to Bed Joint) 



The individual stress-strain plot of the bricks also exhibits linear load deformation 

characteristics under uniaxial compression. The individual stress-strain plot of the 

bricks is shown in Appendix II. Average modulus of elasticity of bricks, when the 

load is parallel to bed joint (Ebp), is given in Table 4.1. The values of the 

parameters for uniaxial stress-strain curve (loaded parallel to bed) of brick are 

given in Table 4.2 and detailed results are contained in Appendix 11. The variations 

in elastic modulus of individual brick and other parameters are inherent due to their 

material variability and manufacturing process. 

4.2.3.2 Load normal to bed Joint 

As discussed in compression test, due to significant effect of aspect ratio 

this deformation characteristics was studied in conjunction with that of the brick 

prism test as shown in Fig. 4.3. The elastic modulus is derived from the strain 

measured on the central brick of 5 brick-high prisms loaded in axial compression. 

Average modulus of elasticity, when the load is normal to bed Joint (Ebn), is given 

in Table 4.1. and the detail experimental results are contained in Appendix II. The 

p 

Table 4.1 Summary of Brick Properties 

Typeoftest X S C. of V. 

% 

Noof 

Specimen 

Size (mm) 122.7x59.6 

x35.8 

3.4, 1.2, 

.81  

3, 2, 2 10 

Weight of brick (gm) 448.7 11 2 10 

Absorption (%) 13.6 4 29 10 

Compressive Strength 

Parallel to bed Joint (MPa)  

40.2 5.44 13.5 10 

Compressive Strength 

(Standard Method) (MPa)  

66.2 6.94 10.5 10 

Indirect Tensile Strength 3.2 

(MPa)  

0.44 13.6 10 

Ebn (MPa) 12,930 3,280 25 10 

Ebp (MPa) 17,900 2,634 14.7 10 

Poisson's Ratio 0.141 ay. Plot of Fig. 4.4 10 



coefficient of variation of absorption and Ebn  reflect poor quality of brick 

specimens. However, these did not influence the present study as saturated surface 

dry bricks were used and the Ebn  value was not required in the analyses. The 

comparison of the deformation characteristics of brick for both the cases (load 

parallel and normal to bed joint) is shown in Fig. 4.2. The individual stress-strain 

plot of the bricks is shown in Appendix II. From prism tests, in-situ behaviour of 

mortar will be discussed later. 

Table 4.2 Values of Material Parameters from Uniaxial 

Stress-Strain Curve of Brick 

S C. of V. (%) 

Initial Tangent Modulus (E0) 17,900 2,630 14.7 

(MPa)  

Secant Modulus at Ultimate 17,510 2,680 15.3 

strength (Ecs) Mpa 11503*  

Ultimate compressive strain 227.5 20.56 9.0 

(c) X 10 

* From Prism Test 

Stress-Strain Curve 

The instantaneous axial deformation of specimen under load can be 

described conveniently by stress-strain diagram. The average stress-strain curve 

shown in Fig. 4.2 is approximately linear and can be represented by 

a = 17900 e MPa when the load is parallel to bed joint 

a = 12930 c MPa when the load is normal to bed joint 

The fired clay bricks used by Page(1978), was also found to exhibit elastic 

brittle behaviour, while the concrete solid bricks used in masonry unit by 

Ali( 1987), exhibited non-linear stress-strain characteristics near the failure. 

As was mentioned earlier most of the masonry structure the final failure 

takes place in some form of tensile splitting of brick. The stress strain 

characteristics of the brick in tension are therefore required for the finite element 
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models dealing with micro studies. Since the burnt clay bricks exhibit brittle 

behaviour both in compression and tension the stress-strain curve was assumed to 

be the same as the compression curve and can be expressed by the same foimula. 
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Fig. 4.2 Average Stress-Strain Curve for Brick 

4.2.4 Poisson's Ratio of Brick 

Poisson's ratio of the brick was calculated as the lateral strain/longitudinal 

strain from the values obtained from compression tests of bricks on end. A typical 

plot of average longitudinal strain against average lateral strain, measured from the 

compression test of brick unit is given in Fig. 4.4. The detail experimental results 

are contained in Appendix II. Poisson's ratio was found to remain approximately 

constant up to 82% of the ultimate load, having average value of 0.141. However, 

this value varies when the load is applied in the other direction as determined from 

prism test. It should be mentioned that in the latter case the result is influenced by 

the brick mortar interaction. Since the Poisson's ratio is not a sensitive parameter in 
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the finite element model for masonry structures, the consideration of Poisson's 

ratio in the orthotropic direction can be disregarded. 

Fig. 4.3 Compression Test of Stack Bonded Prism 

4.3 MORTAR PROPERTIES 

Like brick unit the estimate of compressive strength, tensile strength, and 

deformation characteristics of mortar are required to define the material model. 

Mortar was prepared from normal Portland cement and local sand 

(FM=l .5), mixed in ratio of 1:4 by volume. For preparation of workable paste, the 

amount of water required was determined from flow test of mortar as proposed by 

ASTM (1980), C109. The w/c ratio of 1.0 (by weight) was determined to prepare 

the mortar for use throughout the study. All the specimens were moist cured for 14 

days and tested at 28 days. 



4.3.1 Compressive Strength of Mortar 

The compressive strength of mortar was obtained from test on 2 inch cubes, 

according to test method specified in ASTM Cl 09(1980). The strength of mortar 

obtained from above mix satisfied the specification of Bangladesh National 

Building Code (BNBC), 1993 and corresponded to grade M2. The compressive 
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Fig. 4.4 Poisson's Ratio of Brick 

strength of mortar was also determined from uniaxial compression tests on 75 mm 

xl 50 mm mortar cylinders. Average compressive strength determined from cubes 
and cylinders are given in Table 4.3. Detailed results are contained in Appendix II. 

4.3.2 Tensile Strength of Mortar 

Tensile strength of mortar was determined from splitting test on 100 mm x 
50 mm x 40 mm mortar prism. The same method as mentioned earlier for 
determination of tensile strength of brick has been used to determine the mortar 
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tensile strength. The average tensile strength is 0.97 MPa, (See Table 4.3). The 

detail experimental results are contained in Appendix II. 

It should be mentioned that the prisms for tensile test are made in steel 

mould. But during laying the bricks may absorb water from mortar thus reducing 

the water-cement ratio which may change the tensile strength of the mortar. The 

development of test which in fact can estimate the true in-situ tensile strength of 

mortar is required in this case. However, the incorporation of the nominal tensile 

strength of mortar in the present model may underestimate the failure load of the 

panel. 

In addition to tensile failure in the mortar itself, tensile failure in masonry 

can take place due to tensile bond failure at the brick-mortar interface. This will be 

discussed later. A representative material model for mortar will also require this 

latter parameter to be considered. 

4.3.3 Deformation Characteristics of Mortar 

p 

The study of load deformation characteristics was aided by attaching 30 mm 

and 10 mm electric strain gauges in longitudinal and transverse direction 

respectively at mid height on the cylinders. Average stress-strain curves obtained 

from cylinders are shown in Fig. 4.5 along with the average insitu stress-strain 

curve for mortar obtained from prism tests (see article 4.4.3). Although, the 

deformation characteristics of mortar obtained from cylinder tests as depicted in 

Fig. 4.5 shows non-linearity, there is a marked difference between the deformation 

characteristics obtained from both the cases. It is therefore, clear that deformation 

characteristics obtained from mortar cylinder tests do not reflect the true behaviour 

of the mortar joints in the masonry. The average modulus of elasticity of mortar 

thus obtained is given in Table 4.3 and the detail results are contained in Appendix 

II. 

4.3.4 Poisson's Ratio of Mortar 

The Poisson's ratio of mortar was determined from the strains measured 

during uniaxial compression test on mortar cylinders. Simultaneous readings of 

longitudinal and lateral strain at mid height of the cylinder were recorded by 

previously attached electric strain gauges. A plot of average longitudinal strain vs. 

lateral strain of mortar obtained from cylinder tests is shown in Fig. 4.6. The figure 
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shows that Poisson's ratio is fairly constant up to approximately 65 % of the 

ultimate strength of the mortar. Beyond this limit the value increases slowly. The 

average value of Poisson's ratio of mortar within this elastic range is 0.182 and is 

given in Table 4.3. The details of experimental results are contained in Appendix 

II. 

rw 

Normal Strain (10-5 
 ) 

Fig. 4.5 Average Stress-Strain Curve for Mortar 

4.4 BRICK MASONRY TESTS 

4.4.1 General 

Generally the compression tests on brick masonry prism are carried out to 

establish relationship of masonry strength with the compressive strength of brick 

and mortar. In addition to this, the elastic modulus of brickwork obtained from 

prism test is required to determine deformation of important brickwork structures. 

This is also required in the cases where composite action between brickwork and 

steel or concrete member is a basis of design. 
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Fig. 4.6 Poisson's Ratio of Mortar (Cylinder Test) 

Table 4.3 Summary of Mortar Properties 

Type of Test x S C. of V. No of 

% Specimens 

Compressive Strength 12.5 0.66 5 10 

2 in. Cube (M Pa)  

Compressive Strength 3 in. 12.0 0.43 4 5 

X 6 in. Cylinder (M Pa)  

Indirect Tensile 0.97 0.04 4 10 

Strength (M Pa)  

Initial Modulus of Elasticity 9590 1587 16 3 

(M Pa) (from cylinder test)  

Initial Modulus of Elasticity 3270 703.4 21 9 

(M Pa) (from prism test)  

Poisson's Ratio 0.202 from Fig. 4.6 3 
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Since the finite element model developed in this study consider the bricks 

and mortar joints separately, the bulk of the masonry tests were aimed at obtaining 

brick and mortar properties indirectly and at establishing the basic bond parameters 

between bricks and joints. These involved compression tests on stack bonded 

prisms, compression tests on prisms with sloping bed joints, splitting tests on 

stretcher bonded prisms and compression tests on masonry triplets. 

4.4.2 Uniaxial Compression Tests of Stack Bonded Prism (Load 

Normal to Bed Joint) 

Five bricks high stack bonded prisms (208 mm height x 123 mm width x 60 

mm thick) with plywood capping at top, and bottom were loaded in uniaxial 

compression to failure. Longitudinal strains were measured on a central 86 mm 

gauge length on both sides of the prisms using Demec gauges. The gauge length 

encompassed 2 mortar joints, one full brick and two half bricks. Local strains were 

measured on the middle brick using electric strain gauges. The testing arrangement 

is shown in Fig. 4.3. Failure occurred by tensile splitting induced by the differing 

strain characteristics of the weaker mortar and stronger brick. A typical failure 

pattern is shown in Fig. 4.7. The average prism strength was 18.16 MPa with 

coefficient of variation 11% which agrees favourably with the empirical results of 

Hendry (1981). The average modulus of elasticity of the brick prisms tested was 

8070 MPa with coefficient of variation 15%. The modulus of elasticity of the brick 

work thus obtained from the prism tests can be expressed as Ebv = 2.02 O/ 

where is the average crushing strength of the prisms and c' is the corresponding 

strain obtained by extrapolating the average stress-strain curve of brickwork (See 

Fig. 4.8 below). This relation resembles with that proposed by Powell and 

Hodgkinson (1976). Details of the results of the prism tests are contained in 

Appendix II. 

4.4.3 Deformation Characteristics of Mortar Joint (from Prism Test) 

This section has described the derivation of deformation characteristics of 

mortar joints from stack bonded prisms. It is assumed that all the bricks 

encompassed by the demec gauge are in a uniform state of vertical stress and the 

difference between the total measured deformation and the brick eformation is 

attributed to the mortar. The mortar strain corresponding to the 
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Fig. 4.7 Typical Failure of Stack Bonded Prism 

stress level can be determined from Eqn. 4.2 below. 

- 

EL(  —c1 L1  
fl 

'U 

(4.2) 

in which c, = total measured strain; Cb = strain in the brick; L,, = total mortar 

thickness; 'b = total brick thickness; and L, total gauge length. Using Eqn. 4.2 

the net stress-strain curve for the mortar can be derived from the average measured 

masonry strain and brick strains for each prism. I)etailcd results of the tests for 

normal stress-strain reading of mortar joint in prisms are contained in Appendix II. 

The average initial tangent modulus of elasticity for the mortar thus obtained was 

3270 MPa with coefficient of variation 21 %. Complete results for all the curves 

are contained in Appendix II. The average stress-strain characteristics for mortar 

and brickwork as derived from the prism tests and for brick derived from uniaxial 

compression tests (load parallel to bed joint) are shown in Fig. 4.9. The stress-

strain curve for mortar is non-linear in nature. 
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The shape of the stress-strain curves for the in-situ mortar could be 

approximated by the relation used by Dhanasekar (1985). The relation predicts 

plastic strains throughout the stress range which is the sum of elastic strain 
CC = /E0  and the plastic strain (&) and is given by 

15 

a-10 

(I) 
(I) 
I) 

I .  
(I) 

0 

E 
0 

[i 

Normal Strain (iO) 

Fig. 4.8 Average Stress-Strain Curve for Brickwork 

= cr11  / E0  + (eb0 
- 1) (4.3) 

where c' = total strain; y = normal stress; E0  = initial tangent modulus and a 

and b are constants of stress-plastic strain equation determined from 

semilogarithmic plots of plastic normal strain against normal stress. The mean 

values of stress plastic strain constants with coefficients of variation are given in 

Table 4.4 and the detail results are contained in Appendix II. When the mean 

values of these constants are substituted in Eqn. 4.3 it can be simplified to 

EP =2.64x10(e6 —i) (4.4) 
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4.4.4 Shear Tests on Brick Masonry with Sloping Bed Joint 

This section has described the derivation of deformation characteristics of 

mortar joints from couplets with sloping bed joints. 

These can be obtained from a uniaxial test by loading a prism with a joint 

inclined to the direction of loading, thus inducing shear and normal stresses on the 

joint as shown in Fig. 4.10. 

Fig. 4.9 Stress-Strain Curve of Brick, Brickwork and Mortar 

The influence of normal stress was ignored and only one bed joint of 

orientation of 400  has been considered in this study. This steep angle ensured 
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04 significant shear deformations. For all the specimens failure was confined within 

the joint. Strains were measured in two diagonal directions on each side of the 

specimen using a Demec gauge with a 50 mm gauge length. Using the average 

value of strains on both faces the shear strains were determined from the strain 

transformation equation, Eqn. 4.4 below. 

- 

C, -C 
(4.4) 

where CA  and c. are the strains in the diagonal directions. The joint shear strain 

was then determined at a particular shear stress level by subtracting the brick shear 

deformation from the total shear deformation. Thus the mortar shear strain (cm)  at 

shear stress level (t) is given by the equaii6n 

r] 

Fig. 4.10 Uniaxial Compression Test on Shear Couplets 
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y 1L — 
Lb 

Ym = 

t. —  
b (4.5) 

Lm  

in which y = total measured shear strain and Gb  = shear modulus of brick. 

Substituting the appropriate value of L=37 mm, Lb =30 mm, Lm=7  mm and Gb  = 

9126 MPa, the mortar shear strain can be expressed as 

'Yrn = 5.286y—.0004696t (4.6) 

From the Eqn. (4.6) shear strains are calculated and the average experimental 

shear stress-strain curve obtained for the joint and the idealised curve are shown 

below in Fig. 4.11 together with the average curves for brick and brick masonry. 
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The shear stress-strain curve of mortar is non-linear in nature, with a linear 

region at low stress levels. The average initial shear modulus (G) for mortar was 

1817 MPa with coefficient of variation of 40%. The details of the experimental 

results are contained in Appendix II. The shape of the average shear stress-strain 

curve for the joint can be defined by similar relation for normal stress-strain curve 

for the mortar and is given 

i t =r /G +ea5(ebsv -1) (4.7) 

Where, y Total shear strain for mortar, r =Shear stress and a and b  are 

constants to be determined from semi-logarithmic plots of plastic shear strain 

against shear stress. The mean values of stress plastic strain constants with 

coefficients of variation are given in Table 4.4. When the mean values are 

substituted in Eqn. (4.7) the plastic shear strain is given by: 

21P = 8.11 x I0_5(ebsr  -1) (4.8) 

Table 4.4 Constants of Stress Plastic-Strain Equations 

(Normal Stress and Shear Stress) 

Constants Mean Standard Coefficient of 

Deviation Variation (%) 

a -8.24 -0.67 8 

bn  0.27 0.05 18 

as -9.42 -0.95 10 

b .845 0.04 5 

4.4.5 Simplified Approximation of the Bond Failure Surface 

A method for the derivation of an approximate two-dimensional bond 

failure surface in terms of cr,, and v obtained from splitting and shear tests 

respectively on brick masonry specimen have been described in this section. The 

surface is conservative in most cases. The approximate surface is therefore derived 

by obtaining the shear bond and tensile bond strength for the joint and assuming a 

linear relationship between these two limits. The following sections describe the 

relevant tests. 



109 

29 4.4.5.1 Tensile Bond Strength 

An estimate of the tensile bond strength can be obtained from a splitting test 

on a small masonry prism built in running bond. The method proposed by Au 

(1987) was adopted in this study. The genenhl arrangement of the test is shown in 

Fig. 4.12. A compressive load is applied through narrow steel plates of width 10% 

to 12% of the total width of the specimen inducing an indirect tensile stress on the 

vertical mortar joint. The prism is 3 bricks high providing the ratio of height to 

width of the specimen less than 1 .25. The load is applied until failure and the 

corresponding tensile bond strength is calculated from the Eqn. 4.1, with modified 

value for the constant C. The coefficient of homogeneity C has been taken from 

previous author (Au (1987)). Finite cicmen study made by All (1987), revealed 

that the value of C varies from 0.648 to 0.71 as Eb/Ern varies from I to 4 and 

suggested the value of C to be 0.67 for average practical condition. The mean 

Fig. 4.12 Splitting Test on Brick Masonry Prism 

'a 
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tensile bond strength calculated in this manner for 10 specimens was found to be 

1.443 MPa with coefficient of variation is 10%. Detailed experimental results are 

contained in Appendix II. 

Due to lack of facilities and because the small masonry prisms were made 

of burnt clay bricks resulting brittle nature of failure the load corresponding to de-

bonding of the vertical mortar from the brick face could not be observed. However, 

it has been found from the investigations made by All (1987) with masonry prisms 

made of concrete block, that the load corresponding to de-bonding of the vertical 

mortar from the face of the masonry unit (initial cracking load) is on average 87% 

of the failure load of the specimen. Therefore, as a rough guide the failure load 

thus obtained was taken for calculating the tensile bond strength. 

For many applications this type of test is more representative than direct 

tensile tests on masonry joints, since it reflects the restraining influence of the 

surrounding bricks and joints. 

4.4.5.2 Shear Bond Strength 

It is difficult to devise a simple test which will produce uniform shear stress 

on a mortar joint. However triplet test as suggested by many investigators was 

adopted for this study. A total of 10 triplets were tested. The general arrangement 

of the test is shown in Fig. 4.13 below. The average shear stress (tab)  is obtained 

by dividing the ultimate load by the total sheared area. The mean shear bond stress 

was found to be 0.594 MPa with coefficient of variation 15% in this study. 

Detailed results are contained in Appendix II. 

The important brick masonry tests along with the tests on bricks which are 

used to establish the basic material parameters are summarised in Table 4.5. All 

samples of brick masonry tests were moist cured for 14 days and tested at 28 days. 

The joint thickness for all specimen was 7 mm. 

4.5 PROPERTIES OF CONCRETE 

The concrete of all concrete members (supporting beams, ties and 

stanchions) were prepared using mix proportion of 1:1:2 (cement : sand : stone 

chips) and maximum aggregate size of 12 mm. The average cylinder strength was 

36.5 MPa. The average modulus of rupture was 4.88 MPa. ASTM methods were 



followed for these tests. The cylinders and prisms were tested simultaneously with 

the walls. The modulus of elasticity of concrete (28600 MPa) was obtained from 

standard equation and the Poisson's ratio was assumed to be 0.16. 

Fig. 4.13 Uniaxial Compression Test on Brick Masonry Triplet 
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Table 4.5 Summary of Brick and Brick-Masonry Tests 

Type of Tests Material Property Evaluated Section 

Compression test on brick Compressive Strength of Brick 4.2.1 

(load parallel to bed joint) Parallel to Bed Joint. 
Deformation Characteristics of Brick. 4.2.3 
Initial Tangent Modulus of brick. 4.2.3 
Ultimate Strain and Secant Modulus 
of Brick at Ultimate Strength. 4.2.3 
Poisson!s  Ratio of Brick. 4.2.4 

Split Tensile Te t of Brick Tensile Strength of Brick from 4.2.2 
Indirect Test 

Compression Test on Deformation Characteristics and 4.4.2 

Stack bonded brick Prism Compressive Strength of Masonry. 4.4.2 
In-situ Deformation Characteristics 

__ 
of Mortar Joint. 4.4.3 
In-situ Initial Modulus of Elasticity 
of Mortar Joint. 4.4.3 
Deformation Characteristics of Brick 
(Load normal to bed joint). Appendix 

III 

Shear Test on Brickwork Shear Deformation Characteristics 4.4.4 

Couplet of Mortar Joint 

Splitting Test of Tensile Bond Strength of Mortar Joint. 4.4.5 
Masonry Prism 

Compression Test on Triplet Shear Bond Strength of Mortar Joint 4.4.5 
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4.6 SUMMARY 

Finite element model for masonry in which bricks and mortars are 

considered separately requires brick and mortar properties individually and 

preferably in in-situ condition along with the bond parameters between bricks and 

joints. Material properties for both materials have been described in this chapter. 

The masonry was constructed from solid fired clay bricks and a 1:4 mortar. The 

same quality bricks and mortar were used throughout the investigation. The 

following is a brief summary of the important characteristics of the materials. 

Bricks: 

The average compressive strength of bricks was 66.15 MPa, using the standard 

testing method. When the load was applied parallel to the bed joint, the mean 

compressive strength was found to be 40.2 MPa. 
The compressive strength of brick determined by standard test overestimates 

the actual strength by approximately 1.65 times. 

The burnt clay bricks under investigation exhibited linear behaviour 

approximately upto 80% of ultimate strength after which the non-linear 

behaviour was observed. 
Some scatter was observed in all brick properties, with coefficients of variation 

up to 15%. This variability is predominantly caused by the manufacturing 

process, particularly due to forming and due to presence of local flaws. 

The elastic moduli of the bricks varied with loading direction, although the 

degree of orthotropy was not excessive. 
The Poisson's ratio of brick was fairly constant up to approximately 80% of the 

ultimate strength after which it gradually increased. 

The tensile strength of brick was found to be 5% of the compressive strength 

determined by standard test. 

Mortar: 

Mortar exhibited non-linear stress-strain characteristics with a relatively large 

deformation capacity. 
The Poisson's ratio of mortar was fairly constant up to approximately 65% of 

the ultimate strength after which it gradually increased. 
The mean value of elastic modulus of mortar obtained from uniaxial test on 

mortar cylinder is 9590 MPa and from prism test 3270 MPa. 
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Masonry: 

Since the finite element model developed in later chapters considers the 

bricks and mortar joints separately, the bulk of the masonry tests was aimed at 

either obtaining brick and mortar properties indirectly, or at establishing the basic 

bond parameters between bricks and joints. These involved compression tests on 

stack bonded prism, compression test on prisms with sloping bed joints, splitting 

tests on stretcher bonded prisms and compression tests on masonry triplets. 

This chapter has described the derivation of deformation characteristics of 

mortar joints from stack bonded prisms and couplets with sloping bed joints. A 

method for the derivation of an approximate two-dimensional failure surface in 

terms of r and o-  from splitting and shear tests on brick masonry specimen has 

been described. 

The use of these deformations and strength characteristics in the constitutive 

model of the finite element analysis will be described in the subsequent chapters. 

4' 



4 CHAPTER 5 

MATERIAL MODEL FOR NON-LINEAR FINITE ELEMENT 

ANALYSIS 

5.1 INTRODUCTION 

The non-linear behaviour of brick masonry is caused mainly by two major 

effects, cracking of the masonry and non-linear deformation characteristics of the 

masonry constituents, particularly in compression. For a finite element model to be 

representative of masonry behaviour, both of the effects must be included. 

In this chapter, the material model for the masonry constituents is described. 

The constitutive relations adopted depend upon the stress state and any previous 

local failures of either brick or joint. A schematic summary of the range of 

possibilities shown in Fig. 5.1 is used to develop a suitable material model which 

allows both non-linear deformation characteristics and progressive cracking. 

LA 
Because of the complex nature of the behaviour of the two materials, bricks and 

joints are being considered separately, some simplifying assumptions are made. 
. The finite element model incorporating these material characteristics is then 

described in chapter 6. 

5.2 MATERIAL DEFORMATION CHARACTERISTICS 

The brick, concrete, mortar and steel exhibit different deformation 

characteristics depending upon the stTesses to which they are subjected. It is 

assumed that the materials exhibit elastic-brittle behaviour when a biaxial tension-

tension or tension-compression stress state is present. When either of the materials 

are subjected to biaxial or uniaxial compression, non-linear characteristics are 

assumed in general. 

Unlike concrete and mortar the fired clay bricks exhibit almost linear 

deformation characteristics as it is seen in chapter 4. Such elastic brittle behaviour 

of fired clay bricks are not necessarily homogeneous or isotropic. This is also 

observed by Page (1978) who for the first time considered brick masonry as a two 

phase material which typically consists of elastic brittle bricks set in inelastic 

mortar joints. The reinforcing steel is assumed as elastic 
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I Material Deformation Characteristics I 

Brick I Mortar, Concrete Steel 

T-CIT.T CjC-C 

Elastic brittle 11 Elastic brittle 

T-T C 

Elastic brittle I I Inelastic  I 

TIC 

Elastic Ductile 

Note : T - T = Tension- Tension; C Uniaxial Compression; 
I - C = Tension-Compression , C - C = Compression - 

Compression 

Material Failure Criteria and Material Behaviour after Failure 

1 

Brick , Concrete 
I Mortar joi nt J 

Steel 

Cracking I  ICrushing  I  IBond Cracking 
failure I I failure I I failure failure 

Crushing Ductile 
failure failure 

Fig. 5.1 Schematic Subdivision of Material Model 

up to yield strength beyond which it is assumed as perfectly ductile material which 

corresponds to the elastic perfectly plastic idealisation of stress strain curve for 

steel, discussed in chapter 3 (see Fig. 3.9). The stress-stain curves for steel in 

tension and compression are assumed to be identical. 

5.2.1 Constitutive Relations for Brick and Concrete Before Failure 

Elastic-Brittle Behaviour 

The concrete and fired clay brick subjected to biaxial tension-tension or 

ic tension-compression stress state is assumed to behave elastically up to failure. In 
this case, in the finite element model, the constitutive matrix [D] is therefore kept 
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constant until the state of stress violates the failure criterion. Elastic modulus (E) 

of 28600 MPa and Poisson's ratio (v) of 0.16 were adopted for the constitutive 

matrix for concrete, while the elastic modulus (E) of 17900 MPa and Poisson's 

ratio (v) of 0.141 were adopted for the constitutive matrix for brick. The elastic 

properties of brick and concrete are determined experimentally in the laboratory 

and are explained in chapter 4. The behaviour of the materials after failure is 

described in section 5.5. It should be noted that the modulus of elasticity of brick in 

a direction normal to the bed joint was obtained indirectly from prism test (Table 

AII.3). Since the parameter cannot be obtained easily from conventional test it was 

decided not to use in the present model. However, it can be seen from chapter 3 

that the variation of modulus of elasticity of brick does not affect significantly the 

vertical stress and shear stress at the interface of wall and beam. 

Inelastic Behaviour 

It is mentioned earlier that the brick is assumed to be an elastic brittle 

material for the entire range of loading. For concrete it is known that when a stress 

state of biaxial or uniaxial compression is present, the concrete exhibits non-linear 

deformation characteristics at higher stress levels. It has been shown in chapter 3 

that the nature of stress experienced by the brickwork in the wall-beam when it is 

subjected to uniformly distributed vertical load on the top of the wall, is mainly 

one of the two forms: biaxial tension-compression and biaxial compression. 

Biaxial tension compression is encountered in the zone near the support while 

biaxial compression is experienced in a zone located at middle third of the panel at 

a level near the top of the wall. While the concrete in the supporting beam is 

mainly subjected to tension or biaxial tension-compression with only a small 

portion of the beam near the support being in a state of biaxial compression. In this 

case progressive cracking rather than inelastic material behaviour will be the main 

source of non linearity. The adoption of a simple non-linear stress-strain 

relationship for concrete, rather than an elaborate model using a conventional 

plasticity approach therefore seems justified. A simplified approach allows 

considerable saving of computer time with negligible loss of accuracy of the 

solution. 

Such simple formulation of inelastic behaviour has been used by several 

previous investigators (Bathe and Ramaswamy, 1979 and Chen and Saleeb, 1982) 

in a number of finite element studies of reinforced concrete structures. In this 

approach the incremental constitutive model is formulated directly assuming 
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If isotropic linear elastic behaviour using the instantaneous tangent modulus E in 

place of the elastic modulus E. Thus for the case of plane stress, the incremental 

stress-strain relations can be written as: 

ck  E lv 0 dc 

do =1_2 v 1 0 1dE Y (5.1) 

0 0 (1— v)/2 dy Xy 

In this equation, Poisson's ratio, v is assumed constant and the non-linear stress-

strain curve in compression is used to determine an appropriate value of E,. The 

results of the compression tests on the concrete bricks made by Ali (1987) show 

that this approach is also appropriate for concrete. 

The stiffness increase due to the contribution of the lateral compressive 

stress is not included with this simplified model. However, the error is known to be 

not great for this type of stress state (Chen and Saleeb, 1982). This error can be 

reduced by using biaxial or triaxial tests to determine the appropriate values of 

elastic moduli. However, the additional complexity of testing was not considered 

warranted in this case since inelastic behaviour in compression is only considered 

to be of secondary importance (this is confirmed in subsequent sensitivity analyses 

using the finite element model in chapter 8). 

5.2.2 Constitutive Relations for Mortar Joint Before Failure 

Elastic-Brittle Behaviour 

Mortar joints, subjected to biaxial tension or tension-compression are also 

assumed to behave elastically up to failure. As before, the constitutive matrix is 

kept constant until the state of stress violates the failure criterion. An elastic 

modulus (E) of 3270 MPa and a Poisson's ratio (v) of 0.202 was adopted for the 

constitutive matrix. These are the experimental values described in chapter 4. The 

behaviour after failure is described in section 5.5. 

Inelastic Behaviour 

When a stress state of biaxial or uniaxial compression is present, mortar 

exhibits non-linear deformation characteristics at higher stress levels. For 

simplicity a relatively simple non-linear stress-strain relationship has been adopted 
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similar to that used by Dhanasekar et al. (1985), allowing significant reductions in 

computing time. The simplified approach developed by Dhanasekar et al. (1985) 

was derived from a series of biaxial tests on brick masonry panels, and the 

relationships found to be sufficiently representative. In this approach the plastic 

strain components in each direction are assumed to be independent, and are treated 

separately. Thus the incremental strain-stress relations in the case of plane stress 

has been written (Dhanasekar et al. (1985)) as: 

de l/E+l/H. v/E 0 

de1  = —v/E l/E-Fl/H 0 du n (5.2) 

dy 0 0 l/G-i-l/H s. d-r 

in which G = E/(2(1 ± v)) is the shear modulus and 11, H 
• 

and H are the 

instantaneous slopes of the stress-plastic strain curves. The slopes may either be 

expressed as a function of the stresses or of the plastic strains. In the study by 

Dhanasekar, it was found that this technique more effectively reproduced inelastic 

behaviour than conventional plasticity theory (using yield criteria and a flow rule). 

This latter approach underestimated the actual shear strains and overestimated the 

normal and parallel strains. The stress-plastic strain relations for this investigation 

have been determined from the mortar stress-strain curves derived from the 

uniaxial compression tests on brick masonry prisms described in chapter 4 (see 

Fig. 4.9 and Fig. 4.11). The deformation characteristics in the normal and parallel 

directions have been assumed to be similar. Poisson's ratio is assumed to be 

constant and equal to 0.202. The values of the slopes of the curves expressed in 

terms of stresses are: 

H =

do 
= 14029e 

1.27  MPa 
P dEP 

H = = 14029 e-  0.21a.MPa (5.3) 
dcP 

dr 
H = = 14592 e O 845t MPa 

S  d 

The simplified method used to model the inelastic mortar deformation in 

compression is considered justified not only because of the savings in computer 

time, but also because the bulk of the non-linear behaviour of the wall is caused by 

progressive local failure rather than material nonliniriaty. This later assumption has 
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( been confirmed by sensitivity analyses performed on the finite element model and 

are described in detail in chapter 8. 

In the finite element model stress-strain relations instead of the strain-stress 

relations given in equation (5.2) are used. The stress-strain matrix in the non-linear 

range is given below. Note that terms in order of (v/E)2  have been neglected. 

EH EHHv 
d1 p p ' 

(E+H.) (E+H.)(E+H.) 

da11 = 
(E+H ;' 

EH. 
n 

n) 

dt 

0 

0 dr11  

GH 

(G+H.) dy 

(5.4) 

This inelastic constitutivc matrix is used to calculate the element stiffness matrix 

before failure. 

5.3 NON-LINEARITY DUE TO PROGRESSIVE CRACKING 

The tensile weakness of masonry and the cracking that results therefrom, is 

the most significant factor contributing to the non-linear behaviour of masonry 

structures. The failure of wall-beam subjected to in-plane vertical uniformly 

distributed load is characterised by the development of vertical cracks that start 

from vertical joints in the region near the support and then propagates through the 

bed joints and the bricks. In most of the cases these cracks in vertical joints are 

followed by flexural cracks in the supporting beam near the support which occur at 

higher loads. 

5.3.1 Crack Modelling 

In recent years a number of different models have been developed in 

conjunction with finite element analyses to represent cracking of reinforced 

concrete members. In this section the model, particularly suitable for use in the 

finite element analysis of the in-plane behaviour of wall-beam structures, will be 
discussed. 
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It The particular cracking model to be selected from the various alternatives 

depends upon the purpose of the finite element study, the nature of the output 

desired from the study and available computing facilities. A cracking model must 

have three components: a definition of crack initiation, a method of crack 

representation and a criterion for crack propagation. 

Crack Initiation 

Two criteria for crack initiation are commonly used, one based on the state 

of stress (stress criteria), the other on the state of strain (strain criteria). Most of the 

existing fracture (or failure) criteria for concrete and similar materials are 

expressed in terms of stresses, which may not be adequate for many cases 

especially if the compressive stress is very high. Owing to lack of sufficient 

available test data, the strain criteria required for the fracture of concrete under 

compression are usually developed by simply converting the failure criteria in 

terms of stresses directly into strains. A general strain criterion for the fracture of 

concrete and similar materials has still not been completely developed. Therefore, 

for this study the failure criteria for cracking type of failure are expressed in terms 

of stresses. 

Crack Representation 

Once cracking has occurred, it can be simulated using one of two 

techniques, either 'smearing' the effects of the crack over all or part of the relevant 

element (smeared crack modelling), or by making appropriate adjustments to the 

element topology by separation of the appropriate nodes (discrete crack 

modelling). The smeared crack model used in this study has been discussed in 

more detail later in this section. 

Crack Propagation 

After modelling the crack, its propagation will depend upon the state of 

stress in the region ahead of the crack. Two methods can be used to predict 

potential crack growth. The first uses a criterion based on the inherent strength of 

the material and the local state of stress. The second uses a criterion based on the 

fracture toughness of the material. 
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Any combination of the above criteria for crack initiation, crack 

representation and crack propagation can be used. The use of a strain criterion for 

crack propagation was not possible for this investigation due to the lack of 

experimental data. Two different models can be developed using combinations of 

the other criteria. These models are summarised in Fig. 5.2. Model # 1 uses stress 

criteria for crack initiation ü1 conjunction with smeared crack modelling and 

material strength criteria for crack propagation. Model # 2 is similar except the 

discrete crack modelling technique is used to simulate progressive cracking. The 

effectiveness of the two models is discussed and compared by Ali (1987). It is seen 

in his study that both Model #1 and Model #2 predicted approximately similar 

types of failure patterns in masonry wall. In this study smeared crack modelling 

(Model #1) has been adopted due to its simplicity, flexibility and less 

computational time required for implementation. Therefore, in the following 

sections only this particular crack modelling will be described. 

k 
CRACK MODELLING 

4 

Crack Crack Crack 

initiation representation propagation 

Stress Strain Smeared 
crack 

criteria criteria modelling 

Discrete Strength Fracture 
crack toughness 

I  modelling criteria criteria 

Adopted in  L/(~O~DEL # 
present study 

ODEL # 

Fig. 5.2 Combination of the Criteria for Crack Initiation, Representation and 

Propagation 
11 
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Smeared Crack Modelling 

The need for a cracking model which allows for the automatic generation of 

cracks without the need for a redefinition of the finite element topology, as well as 

the ability to model cracking in any direction, has led to a vast majority of 

investigators adopting the 'smeared' crack modelling approach. This approach can 

also allow for strain softening of the material after cracking. In the smeared 

cracking approach, the cracked material is assumed to remain as a continuum. 

Rather than representing a single discrete crack, the crack is represented as an 

infinite number of parallel fissures across the cracked element (see Fig. 5.3). Once 

cracking has occurred, the cracked material is assumed to be orthotropic with one 

of the principal directions being along the direction of cracking. 

For use of this technique in the finite element model, the appropriate 

modifications must be made to the material characteristics. Before cracking, the 

material is either linear elastic isotropic or non-linear elastic-plastic with the 

corresponding constitutive relations described in section 5.2.1 and 5.2.2. 1-lowever, 

the onset of cracking induces orthotropic material properties and a new incremental 

constitutive relationship must be derived. This is accomplished by modifying the 

material constitutive matrix [D]. For the case of plane stress the incremental stress-

strain relations become: 

dcv dE. 

d. = [D, I dE. (5.5) 

dt x  . dy 
xy y  

Where [Df } is the modified material constitutive matrix after failure. 

IN 
Fig. 5.3 Idealisation of a Single Crack in Smeared Crack Modelling 
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For stiffness calculations, it is necessary to transform the material stiffness 

matrix [DI.] into the global co-ordinate system (X-Y). 

That is: 

[D] = [T]T  [Df ] [T] (5.6) 

where [T] is a transformation matrix relating global directions to crack directions 

and is given by 

cos2  i s1n2  i cOs4i sin 145 

[T] = sin2 Y  co52  i —cos141 sin 141 (5.7) 

—sin24l s1n24f cos2 '4J — sin2 4/ 

where 'i'  is the angle of cracking. 

5.4 FAILURE CRITERIA 

Predictions of wall-beam behaviour subjected to in-plane loading must 

include consideration of the state of stress in the constituent materials as well as the 

orientation of the jointing planes to the stresses. In general, local failures can be 

separated into three types: 

Bond failure at the interface of the brick and mortar. This can occur when the 

stress normal to the joint is tensile. The value of the normal stress () 

therefore becomes the critical parameter. 
Tensile cracking of constituent materials (brick, mortar and concrete): This 

occurs when the stress state within the material is one of biaxial tension or 

tension-compression. For this type of failure, the principal tensile stress () is 

assumed to be the critical parameter. 
Crushing of constituent materials (brick, mortar and concrete): This type of 

failure occurs under compressive stresses (either uniaxial or biaxial 

compression). Crushing failures of the beam end may occur in wall-beams 

subjected to uniformly distributed loads, since the bulk of the material near the 

support is in highly compressive-stress state in vertical direction. The concrete 

of the beam at the support may also experience crushing failure due to lower 

bearing area. 
In this study the reinforcement in the supporting beam is idealised as an elastic 

perfectly plastic material. The principal tensile stress is assumed to be the 

critical parameter when it exceeds the yield stress of the reinforcement. 
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The different types of failures for the constituent materials of the wall-

beams and the corresponding controlling stresses assumed for this study are shown 

in the Fig. 5.4. 

Since the bricks and joints are being modelled separately series of failure 

criteria are required. These criteria, which cover possible joint bond failure and 

cracking or crushing of constituent materials are discussed in the ensuing sections. 

5.4.1 Joint Bond Failure 

The possibility of bond failure for each joint is checked when the jointing 

plane is subjected to shear stress and normal tensile stress. This is the case for most 

of the vertical joints in the masonry in the region near the support (as revealed by 

the elastic analyses described in chapter 3). 

The possibility of a shear bond failure in the presence of normal 

b 
compressive stress has not been included. For the problems being considered, this 

type of stress rarely arises in the vertical joints, so that the simplification was 

considered justified. When the normal stress is compressive, the joint is checked 

for possible cracking or crushing of the mortar itself (see Fig 5.4). 

Failure surface used in checking for bond failure in presence of shear stress 

and normal tensile stresses was derived from the tests described in chapter 4 

(section 4.4.5). The surface is a function of the shear stress (t) and normal stress 
on the joint, and ignores the contribution of the parallel stress (s). This 

surface has been incorporated into the finite element model. However, for the 

model is to be general and capable of modelling stepped failure (involving tensile 

failure in the vertical joint and sliding in the bed joints) the failure mode of joint 

shear/sliding should be included in the model. 

5.4.2 Cracking and Crushing of Brick, Mortar and Concrete 

Since both bricks and mortar joints when subjected to tensile or tension-

compression stress state behave as brittle materials, similar in properties to 

concrete, conventional concrete failure criteria have been adapted to model the 

failure of the masonry materials. 

V 
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I WALL-BEAM  I 

Joint 

Calculate 

o.n 

Tensile 

Brick, Concrete 

I Calculate 
Coni 

Tensile I 

I Steel I 

Crushing Calculate 
Failure? 

Bond Failure? Cracking Failure? I I Elastic-perfectly Plastic 

Gn Stresses Normal to Jointing Plane 
1Major Principal Stress 

Fig. 5.4 Selection of Failure Criteria from the Corresponding 

Controlling Stress 

In the past, extensive research has been carried out on the failure of concrete 

under multiaxial stress states. The most commonly used failure criteria are defined 

in stress space by a series of material constants, with the number of constants 

depending upon the sophistication of the model. Some of the failure criteria used 

for concrete subjected to biaxial stress in recent years (Kupfer et al. 1969; 

Nelissen, 1972; Argyris et al, 1976; Buyukorturk, 1977; Duncan and Johnarry, 

1979 and Chen and Saleeb, 1982) are summarised in Fig. 5.5. 

To predict failure of brick or mortar under a state of biaxial tension-tension 

or tension-compression, the failure surface shown in Fig. 5.6(a) has been adopted. 

For comparative purposes a typical surface for concrete (Chen and Saleeb, 1982) is 

also shown. The parameters for the Strength characteristics (f and f) were 

obtained from the uniaxial compression and splitting tests on brick and mortar 

specimens described in sections 4.2 and 4.3. 

To predict a crushing type of failure for brick or mortar under a state of 

biaxial compression the Von Mises failure surface has been used (expressed in 

terms of strain). The crushing surface is shown in Fig. 5.6(b) and can be defined as 

follows: 

C(s) = 
- 12 + - 

= 0 (5.8) 
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in which s1  and £2 are the principal strains and s is the ultimate strain 

determined from the uniaxial compression tests described in chapter 4. (sections 

4.2.3 and 4.3.1). 

Although the use of this surface may be conservative in many cases its use 

was considered justified, since a local crushing type of failure in wall-beam 

subjected to uniformly distributed vertical loads is confined in• very small area. 

When local crushing does occur, its influence on the overall behaviour of the panel 

is small compared to the effects of tensile cracking. 

(a) Cracking Surface (b) Crushing Surface 

Fig. 5.6 Typical Biaxial Failure Surface for Concrete, Brick and Mortar 

5.5 BEHAVIOUR OF THE MATERIALS AFTER FAILURE 

Once local failure has occurred in one of the modes previously described, 

appropriate modifications must be made to the assumed stress-strain 

characteristics. In addition, consideration must be given to the manner in which the 

local stresses in the failure regions are redistributed. 
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5.5.1 Stress-Strain Relations After Failure 

The schematic fracture model shown in Fig. 5.7 can be used to derive the 

incremental stress-strain relationships for the materials after failure. The slope of 

line 0-1 represents the material stiffness before failure. The slope of line 2-3 

represents the material stiffness after failure upon the application of a further 

increment of loading. The stresses to be released are denoted by the stress vector 

(o) (line 1-2 in Fig. 5.7). The stresses can be released suddenly or gradually 

depending on the type of collapse model used. This is discussed in detail in section 

5.5.2. The incremental stress-strain relationship after failure can be represented by 

the relationship: 

{do} = [D1] (ds) (5.9) 

where, [D f ] = material constitutive matrix after failure. 

The form of this matrix will depend on the mode of failure as discussed in the 

ensuing sections. The net stress change {Ad in the material after failure during 

the fracturing process can be wntten as: 

01 
{A} ={dd — {0}= [D1] {dc}— {c 0} (5.10) 

where fG,,j = the released stress vector 

Joint Bond Failure 

Bond failure occurs at the interface of the brick and the mortar. In this study 
it is assumed that this type of failure only occurs when the normal stress (c) in 

the joint is tensile. When bond failure occurs, the normal stress perpendicular to 

the crack and the shear stress along the cracked plane are released. The stiffness of 

the mortar joint is also modified to simulate cracking 

fq 
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EA Fig. 5.7 Stress-strain Model for a Fractured Material 

at the interface with the stiffness normal to the crack being reduced to 

approximately zero. The shear modulus is assumed to have a small residual value 

to simulate some frictional resistance due to aggregate interlocking. The modified 

stiffness matrix for this type of failure is shown in Table 5.1. 

Cracking of Brick, Mortar and Concrete 

A principal stress criterion has been used to define the initiation of cracking 

within the brick, mortar and the concrete. A crack is therefore assumed to form in 

the planes perpendicular to the direction of the maximum principal tensile stress 

(See Fig. 5.8). It is further assumed that at the instant of crack formation, only the 

normal stress perpendicular to the cracked plane is released, with the other stresses 

remaining unchanged. The material constitutive matrix [D] is modified 

accordingly to simulate this behaviour (See Table 5.1). This means that as a result 

of the modification, only a uniaxial stress state parallel to the direction of cracking 

remains. 
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Fig. 5.8 Pattern of Cracks and Stress Distribution in a Cracked Material 

Crushing of Brick, Mortar and Concrete 

As has been previously described, a crushing type of failure can occur in 

regions where the stress state is one of uniaxial or biaxial compression. In this case 

all local stresses are released completely and the material is assumed to lose all its 

capacity to transmit further loads. To simulate this behaviour all the terms of the 

material constitutive matrix [D] are reduced to approximately zero (see Table 5.1). 

5.5.2 Redistribution of Stresses in the failure Regions. 

When local failure occurs by cracking, the rate of crack propagation 

depends upon the manner in which the stresses in the cracked region are allowed to 

redistribute. The assumptions on the rate of stress redistribution can vary between 

immediate dissipation of stresses (a brittle collapse model), to no dissipation of 

stresses (a ductile model). there is a range of other possibilities between these two 

limits (intermediate or 'softening' models). These assumptions are shown 

schematically in Fig. 5.9. 

Previous work (Argyris et al., 1976) has shown that an intermediate type of 

collapse model is appropriate for concrete structures. It seems logical therefore to 

adopt a similar model for cracking in masonry part of wall-beam structure. The use 

of these different models in conjunction with the finite element analysis is 

described in detail in section 7.5. 
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Table 5.1 
[Df] Matrices for Different Modes of Failure of Wall-beam Components 

No Mode of Failure [Df] Failure Code 

Tension Bond 
1 Failure 

Normal to Bed Joint [E 0 0 1 
0 4E 0 

11 

r H Lo  

Tension Bond 
Failure 

2 Parallel to Bed Joint E 0 0 
1 11 

0 E 0 

I [0 0 p'Gj 

Cracking Failure 
11 

3 [E 0 ol 
(Brick, 

I 0 0 0 I 
Concrete) 

33 
0 'G] (Moar) 

Crushing Failure 

1E 0 0 
i 

#1 

0 1E 0 22 

Lo 0Gj 

Tensile Failure of 
Steel 1E 0 ol 

5 I 10 E 0 I 
11 

Lo 0 13Gj 

= 10 3  and 3' =0.10 (Aggregate interlock factor) 
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5.5.3 Further Cracking or Crushing of the Cracked Material 

After the formation of initial cracks, the structural element can often deform 

further without overall collapse. Thus the possibility of a crack closing and 

opening and the formation of further cracks can arise. Some possible cracking 

sequences that a material could experience during its loading history are illustrated 

in Fig. 5.10 . There is obviously a need for a representative material model to 

include this type of post4ailure behaviour. 

Formation of Secondary Cracks 

For a cracked material, the stress state reduces to a uniaxial one parallel to 

the direction of cracking. If upon further loading, the stresses in this direction 

violate the appropriate failure criterion (cracking or crushing), additional failure is 

assumed to occur with the appropriate modifications being made to the [Df ] 

matT]x. This means that either cracking or secondary cracks will occur 

perpendicular to the direction of primary cracks (see Fig. 5.10). 

I Opening and Closing of the Cracks 

If the normal tensile strain across the existing cracks remains constant or 

continues to increase the crack is assumed to remain open. If the strain reduces and 

becomes compressive, the crack is assumed to have closed, and the appropriate 
terms of the [Df ] matrix are modified back to their original values (see Fig. 5.10). 

Formation of a New Set of Cracks: 

If all cracks in the cracked material become closed it is assumed that the 

uncracked material is linearly elastic. For such a material, the original failure 

criteria for crushing or cracking can again be applied in ensuing load increments. 
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Fig. 5.9 Stress-strain Relations of wall-beam Components After Failure 
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Fig. 5.10 Opening and Closing of Existing Cracks and Formation of New 

Cracks in a Cracked Material 



136 

5.6 SUMMARY 

The non-linear response of wall-beam structure is caused by two major 

effects, progressive cracking and non-linear deformation characteristics of the 

component materials. Of these two effects, progressive cracking is the major 

source of non-linearity. 

This chapter has described the techniques used for the mathematical 

modelling of the in-plane behaviour of wall-beam structure in both of its uncracked 

and cracked states. The constitutive relations for brick, concrete, mortar and steel 

before and after failure have been described. Failure criteria for joint bond failure, 

tensile and compressive failure of constituent materials have been presented, as 

well as appropriate techniques for crack modelling. Considerations have been 

given to the manner in which the local stresses in the failure regions are 

redistributed. The possibility of crack closing and opening and the formation of 

secondary cracks have also been considered. The incorporation of these material 

characteristics into the appropriate finite element model is described in chapter 6. 

40 



It CHAPTER 6 

NON-LINEAR FINITE ELEMENT PROGRAMS 

6.1 INTRODUCTION 

Failure models, corresponding failure criteria and constitutive models for 

wall-beam components have been described in the previous chapters. The 

incorporation of the material model into appropriate finite element program is 

described in this chapter. 

The program is incremental in nature, allowing material non linearity and 

progressive cracking to be simulated as the applied load is increased. Final failure 

is indicated by either excessive cracking or lack of convergence of the solution. 

The program used the smeared crack modelling technique. 

6.2 FINITE ELEMENT SELECTION 

The selection of the element type for this study was based on the following 

thi-ee criteria: 

Efficiency in the formation of element stiffness matrix (in terms of computing 

time). 

The accuracy of the assumed displacement interpolation in reproducing the true 

stress distribution. 

The adaptability of the element geometry to brick masonry. 

Although in recent years the trend is towards the use of higher order 

elements it has been shown by Au (1987) that the use of higher order elements is 

not warranted for the analysis of masonry structures where the non-linearity is 

mainly due to the progressive cracking and not material characteristics, provided a 

relatively fine mesh is adopted. This agrees with the findings of Bazant and 

Cedolin (1980) in the fracture analysis of reinforced concrete. 

In view of the above findings, linear four noded elements were used 

throughout this investigation to model the constituent materials. Rectangular 

element was chosen as it was most suited to the geometric nature of the bricks and 

joins which constitute the major part of the wall-beam structure. To achieve 
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accuracy of solution a fine mesh was used in regions of high stress gradients. The 

element and mesh are shown in Fig. 6.1. 

2205 Elements 

Finite Element mesh 

4 3 

1 2 
4 Noded Rectangular Element 

Fig. 6.1 Typical Finite Element Mesh with 4 Noded Rectangular Elements 

6.3 NON-LINEAR ANALYSIS 

There are two major non-linearities usually encountered in structural 

analysis namely material and geometric non-linearities. Since this investigation is 
• confined to small deflection, geometric non-linearity is not considered and only 

procedures related to material non-linearities are described. 

'S 
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6.3.1 Solution Techniques 

Solution procedures for non-linear problems have been discussed by several 

authors (Ortega and Rheinboldt, 1970; Bergan and Soreide, 1973; Gallagher, 1973; 

and Bergan and Holand, 1979). In contrast to linear problems it is not possible to 

develop a single general method of solution. Several of the existing solution 

procedures are either limited to certain classes of non-linear problems or particular 

requirements must be satisfied in order to ensure convergence to the correct 

solution. The computer program adapted in this study utilises several solution 

algorithms for the non-linear wall-beam structures. Such a scheme provides 

increased flexibility and offers the experienced user the possibility of obtaining 

improved reliability and efficiency for the solution of a particular problem. 

There are three basic solution techniques to account for non-linearitics, 

namely incremental, iterative and combined methods (incremental - iterative). 

The Incremental Method 
11 

In the incremental method of solution, the external load is applied as a 

sequence of sufficiently small load increments so that the structure can be assumed 

to respond linearly within each increment. For the 'N loading step this may be 

written in matrix notation as: 

KN1  AdN =API1 (6.1) 

from which incremental displacements M N  are found. Here, 

APN  = 1N'N-1 
(6.2) 

The incremental stiffness KNI  is normally based on the displacement state dNl. 
The displacements at the new load level are 

d N  = dNI  + M N (6.3) 

The procedure is shown in Fig. 6.2(a) 

• Due to the ease with which the pure incremental method can be applied, it is 

still popular for problems with moderate non-linearity. However, this procedure 
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If has a serious disadvantage in that no estimate of the drift of the solution from the 

equilibrium path is generally available. More efficient incremental schemes can be 

obtained by combining the pure incremental method with a single equilibrium 

correction. Formally this procedure may be written as: 

KN1  M N  = APN + (P'.N-1 - PflN ,) (6.4) 

where the parentheses contain the discrepancy between external loads and internal 

forces at the beginning of load step number N. 

The iterative Method 

In the iterative method, the structure is fully loaded for each iteration and an 

approximate constant value of stiffness is used for the solution. The iterations are 

contained until equilibrium is satisfied. The disadvantage of the method is that it 

only gives a solution for a given load level. The procedure is shown in Fig. 6.2(b). 

Combined Method (Incremental Iterative Method) 

To ensure that the solution satisfies equilibrium throughout the loading, the 

incremental method can be combined with equilibrium iterations at each level of 

loading. This is known as the Incremental -Iterative method and is shown in Fig. 

6.2(c). For iteration cycle i at load level N the process may be written as 

KNl MNI = APNJ (6.5) 

where, 

APNI = extN pint N.j-I (6.6) 

yielding an improved solution vector 

dNJ =dNj  +M NI (6.7) 

The incremental -iterative procedure has been used in this investigation to 

account for non-linearity caused by both material deformation and progressive 

cracking. 
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1 6.3.2 Solution Method for the Incremental-Iterative Procedure 

The incremental-Iterative procedure usually uses one of three methods, 

namely: Newton-Raphson, Modified Newton-Raphson and the Initial stiffness 

method. These methods are shown in Fig. 6.3. Each of these methods has 

advantages and disadvantages with regard to convergence and computing time. 

In the current investigation, a combination of the initial stiffness method and 

the modified Newton-Raphson method have been used. For the early stage of the 

analysis, before any local failures occur, the initial stiffness method proposed by 

Zienkiewicz et al. (1969) was found to be the most effective in reproducing 

material non-linearities (see Fig. 6.3(a)). This approach used the initial stiffness 

matrix for all iterations and adjusts for non-linearity by applying a series of 

additional corrective forces for each successive iteration. 

However, once local failure occurs in the masonry constituents, 

convergence becomes very slow using the above method. Hence after the initiation 

of the first crack the solution procedure is changed to the Modified Newton-

Raphson method (sec Fig. 6.3(b)). Using this method the stiffness matrix [K] is 

updated at the first iteration for each load increment. 

6.3.3 Constitutive Equation for the Incremental-Iterative Solution 

Procedure 

As the finite clement program utilises an incremental loading procedure 

for solving the non-linear equations an incremental form of the constitutive 

relations is therefore needed. These incremental stress-strain relations must include 

the effects of non-linear material characteristics as well as the possible failure of 

the masonry components (Bond failure or a cracking or crushing type of failure): 

They can be expressed in matrix form as: 

= [Df ] {Ac} 
- {(Yo } (6.8) 

in which 

{ c} = Stress increment vector 

{ ic} = Strain increment vector 

{Df ] = Material constitutive matrix. This depends on the 

particular constitutive model used and is modified to 
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Load p 
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(a) Incremental Equilibrium Approach 
(b) Iterative Procedure 

Load p 

1 
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(c) Incremefltal_Iterati'e Procedure 

Fig. 6.2 Different Solution Techniques 
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4 Fig. 6.3 Different Solution Techniques for the Incremental Iterative 

Procedures. 
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reflect any changes of the martial stiffness due to the 

progressive failure in the brick masonry components. 

{crc } = The 'appropriatet released stress vector during 

fracture 

The above relationship has been shown diagramatically in Fig. 5.7. For typical 

loading increment [N, N-I], the equilibrium equation for the entire structure can be 

written as: 

[K] {Ad} = {AP} (6.9) 

in which 

[K] = Tangent structural stiffness matrix 

{ Ad} = Incremental nodal displacement vector 

(AP} = Incremental nodal force vector 

= {P}N —{R}N1 (6.10) 

where { P} N  is the applied external load vector at the end of the step under 

consideration (step N), while {R}N1  is the resisting nodal force at solution step N-

1, i.e. 

= J[B]T dv (6.11) 

Here, {a}N1  is the vector of internal element stresses at step N-i and [B] is the 

element strain-displacement matrix. 

6.3.4 Convergence criteria for Iterative Solution 

The convergence criterion for the iterative solution of non-linear structural 

problems can usually be classified as a force criterion, a displacement criterion or a 

stress criterion. 

A force criterion is normally based on a comparison of the current 

unbalanced or residual forces within the structure to the external loads. Making use 

of such a comparison is not always realistic, because the force quantities to be 

compared may be of a completely different order of magnitude or even in different 

directions (Bergan and Clough, 1972). In comparison of this nature, it is often 

difficult to establish what magnitude of forces is acceptable in a test for 
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convergence. The use of a displacement criterion involves the comparison of 

changes in displacements; these changes can be compared with the stiffness 

properties of the structure which in fact corresponds to the displacements. The 

stress criterion involves a check on changes in stress values during an iteration 

cycle; these changes can be compared with prescribed stress levels. This type of 

criterion is well suited for truss, cable and membrane structures during very large 

deformations. 

For this study, a displacement criterion has been used in the solution 

technique. However, the program also includes the optional use of a force criterion 

if required. For both cases a residual norm (si) has been used. The residual norm 

(N") may be define as: 

Displacement criterion, 
({}T {Md}/{d}T  {d}) 2 (6.12) 

Force criterion , N' = ({MP} {AP}/{P}T  (p) )1/2 (6.13) 

where, {oM} and {SAP} are the deformation and force vectors for the iteration and 

{d} and {p} are the total deformation and force vectors. The iteration is terminated 

when the norm becomes smaller than a specified value. For practical purposes a 

value of this norm is :!~ 1.0 (i.c.l %) is generally adequate (Owen and Hinton, 

1980). For this study a value of 1 % was found to be suitable. 

6.4 THE NON-LINEAR FINITE ELEMENT PROGRAM 

The elastic, plane stress finite element program for preliminary investigation 

of the problem (chapter 3) has been modified to incorporate the constitutive model 

described in chapter 5 and the solution algorithm described in this chapter. The 

variable names used in the program are similar to those used by Hinton and Owen 

(1977). 

The program uses smeared crack modelling and 'smears' the influence of a 

local crack across a part or the full element width. The program is capable of 

analysing wall-beam structure subjected to in-plane loading through the full 

loading range up to and including failure. 

The program has some flexibility with regard to the material model which 

can be used, depending upon the problem to be analysed. The user has the option 
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of choosing a linear-elastic fracture model, a fracture model incorporating either 

elasticity in brick and non-linearity in mortar, or non-linearity both in brick and in 

mortar. The concrete can be considered linear or non-linear as may be required. If 

desired, material non-linearity and failure characteristics can be omitted, thus 

limiting the analysis to be within the elastic range. The program is quite general 

and can be applied to any material if its basic material characteristics are known. 

This section describes the principal features of the program. More details of 

the program, including descriptions of important subroutines are given in 

Appendix III. 

6.4.1 Program "WBMCEN" 

The program is incremental (to allow the progressive application of the 

applied load) and iterative (to allow for material non-linearity and progressive 

cracking at a particular load level) in nature and capable of reproducing the non-

linear behaviour caused by material non-linearities and progressive local cracking. 

The program is thus capable of modelling the behaviour of wall-beam structures 

subjected to in-plane loads from first crack to final failure. As the bricks and joints 

are modelled separately, the finite element is suitable for any brick mortar 

combination if the material parameters are known. The material model used in this 

program was derived from tests on brickwork components (brick and mortar) and 

small brickwork specimens manufactured from clay bricks and mortar consisting 

of I part cement and 4 parts sand and without any water thickening additives. The 

model includes elastic and inelastic stress-strain relations, failure criteria and the 

post failure behaviour. The program uses the smeared crack modelling technique to 

model cracking. The program is also flexible since it has the capacity for changing 

the solution algorithm, convergence criteria, failure criteria, post-cracking 

characteristic and types of fracture analysis. The general logic of the program is 
shown in Fig. 6.4. 

In this program elastic behaviour is assumed for the first (small) load 

increment. Principal stresses were calculated at the centre of each element, and if 

any are tensile, the local behaviour is assumed to elastic brittle. For other cases 

non-linear material behaviour is assigned (these characteristics have been 
previously described in section 5.2.2). 
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In the program the load is applied incrementally for which the incremental 

nodal displacements are calculated using the initial stiffnes matrix (constant 

stiffness method) until the first crack forms in the panel. The stresses are then 

checked for violation of the failure criteria. If fracture is indicated the [D] matrix 

of the element is modified in accordance with its mode of failure and the stresses 

are released. In this model the stresses are released suddenly (Brittle collapse 

model, (see Fig. 5.9(a).). When cracking occurs, the sudden loss of tensile capacity 

creates more reduction in the element stiffness. As a result, convergence towards 

the tolerance is very slow if the initial stiffness method is continued. The modified 

Newton-Raphson method is therefore used after cracking starts in the panel (see 

section 6.3.2). 

Convergence is indicated by the use of either the force or displacement 

criterion described in section 6.3.4. Two different criteria are used to define final 

failure. Either the solution fails to converge, or a dominant crack or cracks 

propagate through a substantial portion of the panel. 

* The program ('WBMGEN') consists of sixty-two subroutines. lmportant 

subroutines are discussed in Appendix III. Most of the subroutines were adopted 

(Hinton and Owen, 1977 and Owen and Hinton 1980) and were written in 

FORTRAN 77. The program structure for new or modified subroutines are given 

in Appendix III. The program was run by FORTRAN compiler FTN77/386 

produced and updated by University of Salford 1990 for 80386 based Personal 

Computer using MS-DOS revision 3.30 and later. The program is also tested by 

following systems: 

FORTRAN compiler of the Mainframe computer iBM 4331 with 

VM/Sp operating system. 

FORTRAN compiler of the Mini computer RS/6000 with AIX 3.2 

operating system. 
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6.5 SUMMARY 

This chapter has described the finite element model for the analysis of wall-

beam structure subjected to in-plane distributed load. The model treats bricks and 

joints separately and incorporates the failure criteria and deformation 

characteristics reported in chapter 5. The model used the smeared crack modelling 

technique to simulate progressive cracking. 

The program is incremental and iterative in nature allowing material non-

linearity and progressive cracking to be simulated as the load is increased. 

The effectiveness of the program is assessed in chapter 7 where 

experimental results of the tests on wall-beam panels are compared to those 

predicted by the finite element model. In the light of these comparisons, program 

'WBMGEN' is refined to allow for strain-softening of the mortar joint after initial 

failure and adopted as the final model for the investigation. The program is then 

used to carry out a detailed investigation of storey- heigh walls subjected to 

uniformly distributed loads in chapter 9. 

V 



CHAPTER 7 

EXPERIMENTAL VERIFICATION OF THEORETICAL MODEL 

7.1 INTRODUCTION 

Verification of the finite element model has been carried out by comparing 

the results of uniformly distributed load tests on clay brick wall-beam panels with 

those predicted by the finite element model descried in the previous chapters. The 

objective of the test was to verif' the accuracy of the finite element models, (and 

hence the material models described in chapter 5), rather than to draw extensive 

conclusions about the general behaviour, of wall-beam panels subjected to 

uniformly distributed load. Once the model has been verified, a comprehensive 

theoretical study of the uniformly distributed load on wall-beam can be carried out. 

Such a study forms a later stage of the investigation and is described in chapter 9. 

A total of 3 panels were used in the verification tests. They were of 

different types of wall-beams subjected to uniformly distributed load. For each test 

the predicted and observed cracking load, failure load and mode of failure were 

compared. 

Two different finite element models were used in the comparison. Both 

models incorporated smeared crack modelling. The first model assumes the 

immediate release of the stresses in the region of a crack (a brittle collapse model, 

Model 'A'). The second is refinement of Model 'A' which assumes gradual release 

of the stresses in the region of a crack (a strain softening model or intermediate 

collapse model, Model 'B').The latter more realistically reflects the propagation of 

the crack which is inhibited to some extent by the more lightly stressed bed joints 

surrounding the vertical joint. The characteristics and development of strain 

softening model are described elsewhere (Al, 1987). Model 'B' is shown to be the 

most representative, and is adopted for all subsequent load analyses. 

7.2 TESTS ON WALL-BEAM PANELS 

As stated previously tests on full scale masonry panels have been used to 

verif' the theoretical models. Uniformly distributed load tests on wall-beam panels 
Gi which produce high stress gradient near the support were chosen as a means of 
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checking the validity of the finite element model, since this type of application of 

load is normally encountered in masonry buildings. 

7.2.1 Panel Details 

To realistically compare the test results of the derived theoretical model, the 

properties of the masonry panels must be similar to the small brick masonry 

specimens used to obtain the deformation and strength characteristics of the 

constituents. The panels were therefore constructed from the same type of clay 

bricks and mortar used in chapter 4. The construction procedures and curing 

history are also same as in the tests described in chapter 4. 

Three different wall-beam panels were used to verify the theoretical model. 

One with solid brick wall resting on reinforced concrete beam, one with opening in 

the wall and the third one solid wall confined with reinforced concrete frame. The 

aspect ratio (height: length) of all panels was 0.7. This aspect ratio was considered 

to be sufficient to be representative of real wall-beam. The panels were 19 courses 

p high with 10 bricks in length. This provides 9 perpendicular planes of weakness (in 

line with vertical mortar joints), which was considered to be sufficient to be 

representative. Horizontal and vertical mortar joints for all panels were 7 mm. The 

thickness of all panels was 60 mm which is equal to the breadth of the brick unit. 

The details of three different panels are shown in Fig. 7.1(a) to Fig. 7.1(c). These 

figures illustrate the critical dimensions, reinforcement details and loading 

arrangement for the panels tested. The wall-beam panel confined by concrete frame 

(Fig. 7.1(b)) was 9 bricks in length and 18 courses high. The overall dimensions 

for all the panels are same. 

7.2.2 Panel Construction 

The dimension of wall-beam panel was determined on the basis of some 

practical considerations such as safe brick laying, safe handling of the panel to the 

testing machine and the maximum height of the panel that the machine would 

accommodate. With equal projection of 25 mm at both ends the length of the 

supporting beam was chosen as 1350 mm having width of 100 mm and depth of 75 

mm. The bearing area for the support of the concrete beam was 100 mm X 100 mm 

in this case. The resulting effective span for the supporting beam was 1200 mm 

We, distance of supports) with depth to span ratio of 1/16. In the concrete beam 

nominal reinforcement of 4 numbers 10 mm 4 bars were used as main 
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reinforcement and 3 mm 4) at the rate of 50 mm c/c near the support and 100 mm 

c/c at the middle were used as shear reinforcement. The beam was cast using 1:1:2 
concrete mix (using 12 mm down graded stone chips) and moist cured for 7 days 

until the construction of wall on it. Construction of brick wall on this beam in 

stretcher bond was aided by means of a vertical wooden board. The constant 

thickness of vertical and horizontal mortar joint was maintained by using small 

piece of plastic sheet of required thickness. The bricks were immersed in water and 
then dried in air to make them saturated surface dry (SSD) condition. Brick courses 

being laid using 1:4 mortar without any admixture. To minimise workmanship 

effects and to be consistent with the procedure adopted for the small brick masonry 

samples, the panels were constructed by a professional brick layer. The panel under 

construction is shown below in Fig. 7.2. For quality control purposes three 25 mm 
mortar cubes were also made during construction of each wall. The results of these 

quality control tests for all panels are given in Appendix IV. 
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Fig. 7.1(a) Details of Panel and Testing Arrangement for Wall-beam 
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After construction, the panels were moist cured for 14 days and air cured in 

the laboratory for a further 14 days until the date of testing. Electrical strain gages 

were attached to both faces of the wall-beam to read vertical strain in alternate 

bricks of first layer and horizontal strain in alternate bricks at mid vertical section. 

Strain gages were also attached to the beam to measure the horizontal strain in 

concrete at mid span. The strain recorded from these gages are used to compare the 

results obtained from the finite element model and is discussed in later part of this 

chapter. 

7.2.3 Testing of the Panels 

The wall-beam structures were simply supported over a clear span of 1100 

mm andwere loaded under a monotonically increasing vertical load until failure. 

The vertical load was applied by means of two 500 kN capacity hydraulic jacks 

through a system of distributing steel beams (I-joists) arranged in steps on the top 

of the panel. A typical testing arrangement is shown below in Fig. 7.3. To ensure 

even bearing to the joists, they were seated on the top of the wall using a thin layer 

of mortar. Previously calibrated load cell was used to measure the applied load. 
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At the start of each test, a small load (20 kN) was applied and then released. 

The zero readings of the gages were then recorded. The load was applied in 

increments. The load was held constant at each increment and gage readings were 

taken. The procedure was repeated until failure. A summary of the cracking loads 

and failure loads is contained in Table 7.1 and Table 7.2 respectively. 

Fig. 7.3 A View of Uniformly Distributed Load Test 

7.2.4 Modes of Failure 

The failure modes of the wall-beam panels tested are shown in Fig. 7.4(a) to 

Fig. 7.4(c). As can be seen from the figures, that failure modes were usually of the 

same general form but depending on the type of the panels there were small 

variations. The distinct modes of failure exhibited by the test walls were as 

foIl ows: 

Diagonal shear failure in supporting beam and wall over the support along the 

entire height. 

Vertical tensile splitting and crushing of bricks over the support. in some cases 

crushing of the end of the supporting reinforced concrete beam may also occur. 



156 

Fig. 7.4(a) Failure of Wall-beam Panel (with opening). 

It is generally accepted that micro cracks initiates in the vertical joints due 

to inherent low tensile bond strength. These were not visible by the naked eye. The 

formation of flexural cracks in the supporting beam are the first visil)lc cracks. 

With the progress of loading the cracks then propagate through the bed joints, 

vertical joints and the bricks leading to ultimate failure of the system. At loads 

exceeding approximately half of the ultimate load the separation of the wall from 

supporting beam at mid-span was observed in general. But the continuous vertical 

crack at interface of vertical ties and the wall (see Fig. 7.4(b)) propagated at earlier 

stage of loading. 

7.3 FINITE ELEMENT ANALYSIS OF THE WALL-BEAM PANELS 

7.3.1 Modelling of the tests 

The typical finite clement mesh used for this investigation is shown in Fig. 

6.1. Only half of the panel was discretized because of symmetry. The effect of the 

element size on the non-linear fracture analysis is described in chapter 8. The 

applied load from the 1-joists was simulated by applying loads of equal intensity at 

the nodes at the interface of the panel and I-joists. These nodes were unrestrained 
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Fig. 7.4(b) Failure of Wall-beam Panel (with frame). 

in all direction. The nodes at the interlace of the support and the panel were 

restrained in Y-direction only while the nodes at the axis of symmetry were 

restrained in the X-dircction only. The sensitivity of these assumed boundary 

conditions in relation to the predicted behaviour is also studied in chapter 8. The 
applied load when simulated by the prescribed displacements of the nodes at the 
interface of the loading plate and the panel are also studied and no noticeable 

difference was found in predicting the failure load. 

7.3.2 Analysis and Results 

For all the analyses used to simulate the tests, the load was applied in 
incremental form. This increment was maintained at constant rate until an initial 
crack formed after which a smaller rate of load increment was used. This procedure 
of varying the increment produces the faster convergence of the solution and 
allows accurate prediction of the crack pattern, in the analytical plots of crack 
propagation, it is of interest to note the varying failure modes for different portions 
of cracks shown below in Fig. 7.5. It can be seen that local failure mode can 

include tensile cracking, bond failure and crushing. A similar terminology is used 

for all the subsequent plots of cracking patterns reported in this chapter. 



Fin. 7.4(c) Failure of Wall-beam Panel 

In analyses of all the panels the crack initiated from the vertical joints in the 

region near the support. This was a bond failure type of crack. The flexural cracks 

then initiated in a zone normally between the support and the middle of span. 

These can be seen from the progressive flow of cracks for different panels shown 

in Fig. 7.6. With the application of higher load cracking goes on through the 

vertical joints, bed joints and bricks responding to any of the three failure forms of 

localised failure (i.e., bond failure, cracking failure and crushing failure). And 

these elements which experience failure constitute a band in diagonal direction 

indicating the seat of the potential diagonal tension crack in the panel. 

Simultaneously the concrete elements in the supporting beam and the interface 

mortar elements of wall-beam experience tensile cracking. For each type of panel 

the loads at which failure commenced in the vertical joints are nearly equal. 

Similarly the load at which flexural cracks commence in the supporting beam is 

also nearly equal for all the panels tested. The panels continued to sustain further 

load much higher than the initial cracking load (discussed later) until the main 

diagonal crack propagated through a substantial portion of the height of the panel. 
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Fig. 7.5 Varying Failure Modes for Different Portion of Crack 

During the progress of the application of the load in all beams tested, at about 50 % 

of the ultimate load new crack opened at mid span and propagates horizontally 
through the bed mortar at wall-beam interface and continues both sides for a total 
length of about half of the span. Finally, the failure was indicated by lack of 
convergence of the solution or the propagation of the crack through the height of 
the wall. In the analyses of all the panels the final failure did not occur unless the 
major crack travelled through brick elements and in a diagonal direction for the full 
height of the wall. 

For all the analyses, the output is given after the full convergence of the 
solution is met. The output includes the nodal displacements, the reactions at the 
supports and the element stresses and strains. The output can be taken at any 
desired load increment and for the elements at any selective section. The mode of 
failure and stresses at failure for each element were also indicated. To facilitate the 
plotting of crack pattern an output file was created giving the failure mode, 

0 
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Load=186kN Load=327kN 

_ - I 
Crushing failure Cracking failure Bond failure 

Fig. 7.6(a) Sequence of Failure of Panel (Wall-beam with Opening) 
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Fig. 7.6(b) Sequence of Failure of Panel (Wall-beam with Frame) 
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Fig. 7.6(c) Sequence of Failure of Panel (Plane Wall-beam) 
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geometry and locations of elements which have been failed during each load 

increment. 

7.4 COMPARISON OF THEORY AND EXPERIMENT 

A comparison of the test results with the results of the corresponding finite 

element analyses is given in this section. For the comparison the initial cracking 

load, the ultimate load and the final failure pattern were considered. The strains 

measured at selected levels were also compared. Agreement between the 

experiment and theory is good. 

7.4.1 Initial Cracking Load 

In all the analyses of this study the cracks initially form at the interface of 

brick and vertical mortar due to bond failure. These take place near the supports. 

Due to presence of lightly stressed bed joints and bricks or concrete over these 

vertical cracks, they cannot propagate or open at low loads. These cracks at low 

loads could not be observed with naked eye during tests. Therefore, corresponding 

load is not designated as initial cracking load. 

In all tests of the present study the flexural cracks formed in the supporting 

RCC beam are visible due to the surface roughness of the crack. In the analyses the 

flexural cracks form at loads higher than the load causing local bond failure at the 

initial stage (see Fig. 7.6(a) to Fig. 7.6(c)). Since during tests these flexural cracks 
could be observed physically the load corresponding to these cracks are designated 

as initial cracking load hereafter. To check the accuracy of the model the initial 

cracking load as obtained from finite element prediction are compared to the 

experimental values in Table 7.1. 

The agreement between theory and experiment can be considered 

reasonable although the predicted results tend to be lower than the observed values. 

This is possibly due to the crack initiation criterion used for crack propagation in 
the material model. The micro cracks (and corresponding cracking load) are 

predicted by the model at a stage when the crack width does not grow sufficiently 

to be visible. With the progress of loading when the cracks become visible, by that 

time the load step reaches to higher value resulting a lower trend of the predicted 

value. 
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7.4.2 Failure Pattern 

Generally the wall-beam panels which were tested failed due to the 

formation of few dominant inclined cracks (see Fig. 7.4 and Fig. AIV.2 in 

Appendix IV). Vertical tensile splitting and crushing type of failure in the masonry 

close to the support was observed in most of the cases at a load approaching to 

failure. In all the cases the cracks commenced in the supporting beam as it was 

observed by the naked eyes. These cracks then propagated through the beam in 

inclined direction and finally through mortar joints and bricks. As the load 

approached to failure horizontal crack at wall-beam interface was observed for 

about half of the span length in the mid span. 

In all three walls tested, the shear crack appeared first in the supporting 

beam and then extended upward in the wall through the vertical mortar joints and 

the bricks. it follows that the factors influencing the shear strength of the wall are, 

the shear strength of the supporting beam, the height of the wall, the strength of 

vertical joints and bricks. In general, the final mode of failure is accompanied by 

• the vertical tensile splitting and crushing of corner bricks at end supports. This fact 

is mainly atiributed to high concentration of vertical stress over the supports at 

loads approaching to failure. The vertical tensile splitting can also occur as a result 

of the differential strength and deformation characteristics of bricks and mortar. 

The uniaxial compressive strength and modulus of elasticity of mortar are 

considerably lower than the corresponding values of bricks. Therefore, if the 
mortar could deform freely, its lateral strain will be larger than the strain in the 

bricks. However, because of bond and friction between brick and mortar, the 

mortar is confined. Thus an internal state of stress is developed which consists of 

axial compression and lateral tension in brick and triaxial compression in the 

mortar. If the transverse tensile stress exceeds the brick flexural tensile strength 

vertical tensile cracking would take place in the bricks. However, the wall at this 

stage is not considered to be failed because it can withstand more load. With the 

increase of further load the tensile cracks widen and when the compressive strength 

of the bricks is exceeded, failure will set in by both vertical splitting and crushing 

of the corner bricks over the supports. It can therefore be concluded that for wall in 

which the primary failure criterion is vertical splitting and crushing of corner 

bricks, the ultimate strength can be increased by strengthening the corner bricks. 

This can either be achieved by introducing bricks of very high compressive 

strength or providing horizontal reinforcement in the bed joints in that locality. 
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This provision however can cause vertical splitting at the end of the reinforced 

concrete supporting beam in orthogonal direction before failure. 

The failure of the panel due to external bending moment and due to axial 

tensile force in the supporting beam both being the result of the tied arch action, 

were not observed in this test series. 

In the present test series no failure through sliding of wall from beam was 

observed. Such mode of failure may be anticipated if the bond of the interface 

mortar joint is not capable of transferring the horizontal shear force across the 

wall-beam interface. In wall-beam structure the high stress concentration at the 

ends of the span produces proportionately high frictional resistance at wall and 

beam interface which counteracts sliding failure along the wall and beam interface. 

Since it was not possible to record the experimental cracking sequence, final 

cracking pattern rather than the sequence of cracking is compared. The final failure 

pattern of the panels as predicted by the present finite element models (brittle 

collapse model and intermediate collapse model) are shown in Fig. 7.7 to Fig. 7.9 

together with the observed experimental failure pattern. The predicted cracking 

pattern constitutes a general zone of cracking which corresponds with the localised 

cracking as shown in the panels tested. As it is mentioned earlier, the present study 

uses stress criteria for crack initiation, and strength criteria for crack propagation 

with smearing the effect on the whole element when it is cracked. The present 

study reproduces the separation at brick and vertical mortar interface which 

initiates at a load as low as 13% of the experimental failure load. These cracks at 

brick mortar interface are not observed by naked eye. The present study also 

reproduces cracking of horizontal and vertical mortar, concrete and brick. Crushing 

of these materials which occur at higher loads are also reproduced in the model. As 

a result a number of elements undergo failure resulting in a wider band. Again in 

the strength criteria, the element is declared failed as soon as the limiting strength 

is exceeded, while at that stage of loading the panel under test may not show 

cracking. The properties of any material in the analytical model is same throughout 

the panel, but in the test panel the material variability is inherent and the crack 

propagates through weak locations along its path showing a discrete nature of 

cracking. This is more prominent because the micro cracks (constituting large zone 

of general cracking) which are formed in addition to main diagonal crack are not 

visible and/or could not be measured. Considering the above facts the agreement 

between the predicted cracking patterns and experimental observations can be 
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considered reasonable. However, the discrete crack modelling with fracture 

toughness criteria for crack propagation will be able to track the individual crack in 

a better way with an increased computing cost. It should be noted that the failure of 

the horizontal bed mortar at the interface of wall and supporting beam is truly 

reproduced in the model. 

It is quite interesting to note that both model 'A' (brittle collapse model) 

and model 'B' (strain-softening model) predicted approximately similar types of 

failure patterns. In both models crack propagated in a band which was one or a few 

elements wide. As mentioned earlier the vertical joints typically experienced a 

bond type of failure and the brick and the bed joints experienced mainly cracking 

type of failure. 

7.4.3 Failure Load 

The theoretical ultimate load of the panels was predicted by both finite 

element models described in chapter 6 (i.e., brittle collapse model and intermediate 

collapse model). For both models the crack always started from the vertical joints 

near the support. At higher load increment, flexural cracks appeared at the bottom 

of the supporting beam. With the progress of loading the cracks then propagate 

through the bed joints, vertical joints and the bricks and finally propagate 

diagonally upward leading to ultimate failure. 

The predicted ultimate loads determined by brittle collapse model and 

intermediate collapse model are compared to the observed failure load in Table 7.2. 

There is a reasonable agreement between theory and experiment except for the 
wall-beam panel confined by frame. The experimental failure load for wall-beam 

with frame is higher in comparison to predicted failure load. The possible reason 

for this difference is due to the contribution of vertical end columns. The joists on 

the top of the wall used to apply load are placed on the full length of the wall (see 

Fig. 7.1(b)). As a result some load is being applied directly on the columns from 

the end joists. The uninterrupted vertical mortar joint between wall and column 

gets cracked at earlier load and the vertical load carried by columns are directly 

transferred to the supports. As a result the wall-beam panel with confinement fails 

at higher load resulting a large difference in prediction and test value. 

For Model 'A' (brittle collapse model) predicted results are consistently 

lower than those of observed values. This difference can be substantially attributed 
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to the assumptions used in modelling of the post-failure behaviour of the materials. 

In the brittle collapse model (Model 'A') with the onset of cracking (as shown 

schematically in Figure 5.9(a)) results in the immediate redistribution of the tensile 

stress in the fracture zones, since they are all immediately reduced to zero. Upon 

continued loading the complete redistribution of stress caused the cracks to 

propagate at an increasing rate through the height of the wall, causing early failure 

of the panel. Finite element Model 'A' was therefore modified to allow the more 

gradual release of these stresses using the alternative post-failure behaviour 

descried in chapter 5 (see Fig. 5.9c). The details of this model (gradual release of 

stress in masonry structure) can be found else where (Al, 1987). 
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Fig. 7.7(a) Modes of Failure of Wall-beam Panel with Opening 
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7.5 COMPARISON OF STRAINS 

In this section the strain predicted by the model is compared to the strain 

measured at different locations in the panels during the experiments. The discrete 

locations of measuring the strains on a typical wall-beam can be seen from Fig. 

7.10. As the zone near the end of the span experiences very high stress 

concentration, considerable joint cracking have occurred within comparatively low 

applied load. Thus for comparison between experimental and predicted results 

from the non-linear analysis it is justified that the comparison be made within a 

low range of applied load. 

in the analysis the load on the beam was applied at the rate of 15 

kN/increment at the beginning. After the first crack was opened the load was 

applied at the rate of 7.5 kN/increment until failure. This was needed for efficient 

convergence of the solution and for better simulation of the cracks. However, 

during experiment the load was applied before and after the first crack at rates 

different from those with the analysis. This was due to limitations of the machine 

and the operator. As a result the load at which the experimental strains were 

recorded by data logger and the load at which strains from analysis were available 

coincided in few cases. The comparison of strains at some of these load levels are 

shown in following sections. 

Comparison of strains obtained from elastic analysis and those of non-linear 

analysis considering progressive cracking and non-linear deformation 

characteristics of materials are discussed in Appendix IV. 

7.5.1 Horizontal strains along the centre line of the wall-beam: 

Horizontal strains in the bricks along the centre line of the panel were 

measured by electric strain gages at four locations along the height. For wall-beam 

with frame one extra location was fixed at top beam and for wall-beam with central 

opening intermediate two locations were not needed. These measured strains (front 

and back face reading being averaged) and predicted strains are compared in Fig. 

7.11 for all the three types of wall-beam panels. The agreement between the strains 

obtained by the tests and analyses are reasonable. The general pattern of increase 

of horizontal compressive strain in the upper regions of the panels, as predicted by 

the analytical model, is also confirmed by the experimental results. 
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Table 7.1 

Predicted and Observed Initial Cracking Load in kN 

Type of Wall-beam 
• 

Experiment Theory 
 Theory 

Experiment 

With openingl 151 142 0.94 

With frame! 200 186 0.93 

Plane# 156 134 0.85 

Table 7.2 

Comparison of Experiment and Theoretical Prediction 

Experiment 
Theory 

Types of (Model 'B') 
Theory 

Failure Failure Failure Failure Experiment Wall-beams 

Load Mode Load Mode 

(kN)  (kN)  

With openingl 362 Type 1 327 Type 2 0.90 

With frame! 434 Type 1 305 Type 2 0.70 

Plane# 467 Type 1 372 Type 2 0.80 

I Wall-beam panel with opening designated by Wall No. 415 

Wall-beam panel with frame designated by Wall No. 501 

# Plane wall-beam designated by Wall No. 428 

Failure mode :- 

Type 1:- Diagonal tension failure accompanied by crushing at an end at ultimate load. For 

wall-beam with frame crushing at end was not prominent. 

Type 2:- Bond failure at vertical joints accompanied by diagonal tension failure. For plane 

wall-beam crushing at the ends was recorded at ultimate load in addition to other failures 

of Type 2.. 
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Fig. 7.10 Locations of the Electric Strain Gages in the Panel 

Large horizontal strains in between the locations of gages correspond to the 

horizontal strains in vertical joints between the bricks. The local variations in strain 

in these thin vertical mortars are possible to be determined only by the non-

homogeneous analysis. 

7.5.2 Vertical strain along the first brick course: 

Vertical strains at the first brick course were measured by electric strain 

gages in four locations along the span. These measured strains and predicted 
strains are compared in Fig. 7.12. The measured strains on opposite faces of the 

wall were found to show acceptable difference (see Fig.AIV.3in Appendix IV) and 

were, therefore, averaged. General agreement is again evident, with some scatter in 

the experimental results. The maximum deviation from the predicted vertical strain 

is observed at the ends of the plane wall-beam, Fig. 7.10c. The difference can be 

attributed to possible experimental error which needs more tests to justify. 
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I -# However this was not attempted within the limited scope of this study as better 

agreement was observed in other walls. 
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Fig. 7.11(a) Horizontal Strain at Mid Vertical Section at a Load of 112 kN. 

(Wall-beam with Opening) 

7.5.3 Horizontal strain in the supporting beam: 

Horizontal strains at mid depth of the supporting beam are measured by 

electric strain gages in three locations along the span. These measured strains 

(front and back face reading being averaged) and predicted strains are compared in 

Fig. 7.13. The amount of tensile strain measured in different types of wall-beams 

tested in this study gives a general idea that the supporting beam remained in 
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tension between the supports. These measured strains are in general found to be 

greater than the predicted value. In few gages the lower value may be due to local 

crack or flaws. The fact that the measured tensile strain at the 
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Fig. 7.11(b) Horizontal Strain at Mid Vertical Section of Wall-beam with 

Frame (Load =45 kN) 

middle of the supporting beams, being higher than the predicted one, indicates that 

a higher magnitude of deformation is being induced in the beam. This may be due 

to shear deformation and /or premature joint failure. 
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1 7.6 SUMMARY. 

This chapter has described the verification and refinement of a finite 

element model for the analysis of wall-beam structure subjected to static load. 

Different types of panels were tested to produce variations in behaviour and 

different failure modes. The tests were simulated using the proposed non-linear 

finite element models and the results compared. Two different finite element 

models were used using the smeared cracking approach. The first model (Model 

'A') used a brittle collapse model in the post-failure region and the second model 

(Model 'B') was a refinement of the first one, which utilised tension softening in 

the post-failure region. 

In general the agreement between theory and experiment was good, thus 

indicating that the proposed material model developed in chapter 4 and chapter 5 is 

realistic. The final finite element model (Model 'B') is capable of predicting the 

initial cracking load, the failure load and the failure pattern with reasonable 

accuracy and thus can be considered appropriate for static load analysis on wall-

beam structure. 

Model 'B' has been adopted for the remainder of this investigation. A 

parametric study of the relative importance of the various properties used to define 

the model is carried out in chapter 8. The model is then used in chapter 9 to 

analyze the behaviour of story height walls subjected to uniformly distributed load 

to allow design recommendations to be derived. 

All panels failed by the development of few dominant inclined cracks. 

Hence, the capability of the finite element model to reproduce other types of failure 

(such as stepped type of failure for racking load) was not verified by these tests. 

The applicability of the model to other types of loading was considered to be 

outside the scope of this study. 

Horizontal and vertical strains at discrete locations were compared with the 

predicted strains. Considerable joint cracking occurred within low range of applied 

load. Therefore comparison was made between experimental and predicted strains 

within low range of applied loads and the agreement was found to be reasonable. 



CHAPTER 8 

SENSITIVITY ANALYSIS OF CIUTICAL PARAMETERS 

8.1 INTRODUCTION 

The finite element model developed in chapter 6 incorporated the material 

model derived from tests on individual components and small brick masonry 

specimens (chapter 4). The accuracy of the material model and the validity of the 

finite element program have been verified by canying out experiments on wall-

beam structures as described in chapter 7. Although the results of the tests 

compared well with the prediction of the finite element model, the relative 

importance of the parameters used to define the finite element model needs to be 

investigated to determine which parameters are particularly significant. In this 

chapter a study of the parameters affecting the non-linear fracture analysis of wall-

beam structures subjected to uniformly distributed vertical load has been 

performed. Individual parameters are changed in turn and the influence of each 

14 change is investigated. 

Two groups of parameters are considered for this sensitivity analysis. One 

which affect the material model and the other which relate directly to the finite 

element analysis. The main parameters which directly affect the material model are 

the elastic properties; the joint thickness; the tensile strength of the brick; the 

tensile strength of the mortar and the joint bond failure criterion. 

The second group consists of the parameters which do not affect the 

material model directly but affect the non-linear fracture analysis. These are the 

type of element; the element size and the boundary conditions. In all the analyses, 

comparisons are made on the basis of ultimate load and the final failure patterns. 

8.2 PARAMETERS AFFECTING THE MATERIAL MODEL 

8.2.1 Influence of Elastic Properties of the Constituents 

The properties of constituent materials used in the previous chapter were 

obtained from laboratory tests. These values are referred to as values of original 

material model. It was assumed that for practical cases properties of materials will 

remain within the limit bounded by 50 % lower and higher than the values of 
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original material model. Values thus obtained were taken for parametric study 

carried out in this chapter. 

The influence of elastic properties was studied by varying both the Young's 

Modulus and Poisson's ratio of the constituents. Only one parameter was varied at 

a time. A summary of the values used and the corresponding failure load in each 

casc is given in Table 8.1 

The ultimate load of the panel was influenced by changes in the value of 

modulus of elasticity of some of the constituents. However the mode of failure was 

not significantly affected. The final failure pattern for different values of Eb/Em 

and o are shown in Fig. 8.1 and Fig. 8.2.. Due to symmetry the ultimate failure 

pattern of half of the panel has been shown. For comparison, the failure pattern of 

original model is also shown in Fig. 8.1(d). In all the cases the crack started from 

the vertical joints near the support and then propagated through the bed joints and 

the bricks. The ultimate load for each case is given in Table 8.1 

The influence of the value of the Young's modulus of mortar, and hence the 

modular ratio of brick and mortar (Eb/Em) on the ultimate strength of the wall-

beam panel can be seen from Table 8.1. An increase of 100 % in the value of 

Eb/Em (Eb/Em = 11, obtained by decreasing the value of Em only) resulted in a 

decrease of 10 % of the ultimate load. When Eb/Em is reduced by 50 % (Eb/Em 

=2.74) by increasing the value of Em the ultimate load increases by 34 %. On the 

contrary, Eb/Em can also be changed by changing the modulus of brick. When 

Eb/Em is reduced by 50 % (Eb/Em =2.73) by decreasing the modulus of elasticity 

of brick the ultimate load decreases by 16 % which shows that different 
combination of modulus of brick and mortar will lead to different failure loads 

inspite of the fact that combinations may have the same value of modular ratio. 

Therefore, for realistic comparison of the effect of modulus of elasticity of brick 

and mortar on the ultimate load carrying capacity of the wall-beam structure the 

use of the ratio of these two parameters known as modular ratio (Eb/Em) is likely 

to mislead the interpretation. Rather these parameters should directly be related to 

the ultimate load capacity. It is also seen from Table 8.1 that the reduction of 

modulus of elasticity of concrete if reduced by as much as 31% reduces the 

ultimate load by only 2 %. Therefore this parameter is considered not to have any 

major effect on ultimate capacity of wall-beam structure. 
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Table 8.1 Parametric Study of Elastic Properties 

Material 
Poisson's Ratio 

(v) 
E 

(MPa) 

Eb 

Eni 

Pu  

(kN) 
Pu 

Pu* 

Mortar Brick Concrete Mortar Brick Concrete 

* * 0.12 * * * * 364 0.98 

* * 0.24 * * * * 364 0.98 

Concrete * * * * * 23256 * 342 0.92 

* * * * * 19655 * 342 0.92 

Mortar 

0.273 * * * * * * 431 1.16 

0.136 * * * * * * 335 0.90 

* * * 1635 * * 11 335 0.90 

* * * 6540 * * 2.74 497 1.34 

* .0.104 * * * * * 342 0.92 

Brick * 0.208 * * * * * 356 0.96 

* * * * 13425 * 4.1 371 0.99 

* * * * 8950 * 2.73 312 0.84 

0.182* 0.139* 0.16* 3270* 17900* 28600* 547*  372* 

* Indicates the value of the original Material Model 

The influence of Poisson's ratio is less significant in general (see Table 8.1 

and Fig. 8.2). A minor influence was observed due to variation of the Poisson's 

ratio of mortar. When u of mortar was reduced by 25% the ultimate load decreased 

by 10% and due to 50% increase of u the ultimate load increased only by 16%. 

It can be considered therefore that the analysis of wall-beam structure is not 

sensitive to all the elastic parameters of its constituents in general. The 

approximation made in the original evaluation of the elastic material properties in 

chapter 4 therefore seems justified. Poisson's ratio greater than 0.3 was not 

considered for this study because of the limitations of the element characteristics. 
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8.2.2 Influence of Joint Thickness 

Variations in joint thickness (and hence brick thickness/Joint thickness, 
Tb/Tm) have similar effects to the variations in the modulus of brick and mortar, 
since both vary the relative contribution of the two constituents. This was shown 

by the analysis of the panel described in section 8.2.1. The joint thicknesses 
considered in this case were 5 mm, 10 mm, and 12 mm resulting in a thickness 
ratio of the brick and the mortar (Tb/Tm) of 7.2, 3.6, 3.0 respectively. The original 

joint thickness was 7.5 mm (Tb/Tm = 4.8). The ultimate load of the panel for 
different joint thickness is given in Table 8.2. Final failure patterns for some of the 
panels are shown in Fig. 8.3. 

The results of Table 8.2 show thai the ultimate strength of the panel 

decreased with the increase of Joint thickness. However, within the practical range 

the effect was insignificant. A 50 % increasein the Tb/Tm ratio (Tb/Tm =7.2) 

resulted in a 7% increase of ultimate strength while 25 % decrease in the Tb/Tm 

(Tb/Tm = 3.6) resulted in a 15 % decrease of ultimate strength. From the above 

01 comparisons it seems that for higher values of Tb/Tm (i.e. with lower mortar 

thickness) the wall-beam panels carry higher loads. However, the excessive 

reduction of mortar joint thickness may not satisfy the mason's requirements. This 

fact will lead to an optimum ratio of Tb/Tm for a particular thickness of brick unit. 

Table 8.2 Influence of Joint Thickness 

Joint Thickness 
(mm) Tb/Tm 

Pu 
(kN) 

Vertical  

Pu/Pu 

Horizontal  

5 5 7.2 400 1.07 

75* 7 5* 4.8* 372*  

10 10 3.6 317 0.85 

12 12 3 298 0.80 

7.5 3.75 4.8 349 0.94 

7.5 12 4.8 305 0.82 

* Indicates the value of the panel using original material model 

Again for a particular thickness of bed mortar the influence of thickness of 

vertical joint (dominant plane of weakness) was studied by varying the thickness of 
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vertical mortar joint as shown in Table 8.2. From comparison it seems that within 

practical range the effect was insignificant. 

In all the cases the failure started from the vertical joints near the support and 

then propagated through the bed joints and the bricks. A mode of failure similar to 

that predicted for original beam (Tm = 7.5) was observed (see Fig. 8.1(d) and Fig. 

8.3). 

8.2.3 Influence of Brick Tensile Strength 

The influence of tensile strength of brick was studied by increasing and 

decreasing the original tensile strength of brick while holding all other parameters 

constant. Three different strengths and the original value were studied and 

summarised in Table 8.3 (together with ultimate loads). Final failure patterns are 

shown in Fig. 8.4. For comparison, the failure pattern for the original model has 

also been shown. As would be expected, changes to tensile strength of the brick 

affected the ultimate strength of the panel. This is evident because for this type of 

loading on wall-beam structure, failure involves tensile failure of both brick and 

joint. Results of Table 8.3 show that a 100 % increase in brick tensile strength 

resulted in 38 % increase in panel ultimate strength, and a 50 % decrease in brick 

tensile strength resulted in a decrease of 20 % in the ultimate strength. 

Table 8.3 Influence of Tensile Strength of Brick 

Tensile 

Strength 

(MPa) 

Ultimate 

Load, Pu 

(kN)  

pu/pu* 

3.24* 372*  

1.62 297 0.8 

4.86 490 1.31 

6.48 513 1.38 
* Indicates the value of the original Material Model 

The higher tensile strength of brick did not influence the mode of failure 

appreciably. However, in case of a brick with a lower tensile strength several 
elements cracked simultaneously at the crack front in a band of several elements 

wide. 
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(a) 1' (brick) 1.62 Mpa 

41 

(b) f (brick) = 6.48 MPa 

Fig. 8.4 Ultimate Failure Pattern of Wall-beam for Different Values of 
Tensile Strength of Brick 
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From the results, it can be concluded that the model is sensitive to this 

parameter. Therefore, the tensile strength of the brick should be incorporated if any 

design equation is deduced for ultimate load carrying capacity of wall-beam 

structure. Care should also be taken to evaluate this property during the 

experimental investigation. 

8.2.4 Influence of Mortar Tensile Strength 

In a vertically loaded wall-beam structure the initial failure typically occurs 

at the interface of vertical joints and the bricks. At higher loads tensile failure of 

mortar joints and bricks takes place. The tensile strength of mortar therefore is 

expected to exert a major influence on panel behaviour. 

The influence of the tensile strength of mortar on the behaviour of the wall-

beam panel was studied by increasing and decreasing the tensile strength 
of the mortar whilst keeping all other properties constant. The failure load of the 

panel for different values of tensile strength of the mortar is given in Table 8.4. 

Final failure patterns are shown in Fig. 8.5. 

It is interesting to note that the ultimate strength of the wall-beam panel 

increases significantly due to increase of tensile strength of mortar joint. The 

results of Table 8.4 show that a 50 % increase in mortar tensile strength resulted in 

42 % increase of panel strength. The failure pattern in this case is similar to the 

failure pattern predicted by the original model. It is also observed from Table 8.4 

and from Fig. 8.5 that the ultimate behaviour of the panel changes due to decrease 

of tensile strength of mortar joint. The table shows that a 25 % decrease in the 

value of tensile strength resulted in 18 % decrease of ultimate strength. Due to 

significant reduction in mortar tensile strength, almost all of the bed joints and 

some of the vertical joints experienced a material tensile failure rather than a bond 

failure. Therefore, it can be concluded that mortar tensile strength is also a 

significant parameter. The accurate evaluation of this parameter is therefore 

necessary. This parameter also should be incorporated if any design equation is 

deduced for ultimate load carrying capacity of the wall-beam structure. It was 

mentioned earlier that the mortar tensile strength was obtained using splitting test 

on a prism. But the in-situ tensile strength of the mortar in a joint which will have 

lower water-cement ratio due to brick suction likely to have higher tensile strength. 

This could be one explanation for the model under-predicting the strength of the 

panel in Chapter 7. 
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Table 8.4 Influence of Tensile Strength of Mortar 

Tensile 

Strength 

(MPa) 

Ultimate 

Load, Pu 

(kN)  

Pu/Pu* 

0.97* 372*  

0.73 305 0.82 

1.45 527 1.42 

* Indicates the value of the original Material Model of panel in Chapter 7. 

8.2.5 Influence of Bond Strength of Mortar Joint. 

The influence of joint bond strength was studied by increasing and 

decreasing the bond strength while keeping all other parameters constant. The 

initial cracking load and ultimate load are shown in Table 8.5. 

From the table it can he seen that initial cracking load is highly sensitive to 

this parameter. The initial cracking load of the panel is directly related to the bond 

strength of the mortar joint. Within practical limits of the bond strength the initial 

cracking load of the panel increases with the increase of bond strength and 

decreases with the decrease of bond strength of the mortarjoints. 

Table 8.5 Influence of Bond Strength 

Tensile Bond 

Strength 

(MPa) 

Shear Bond 

Strength 

(MPa)  

Pc (kN) Pu (kN) 

1.443* 0.594* 59.6* 372* 

1.082 0.446 44.68 350 

1.804 0.7425 74.5 364 

2.164 0.894 89.36 357 

* Indicates the value of the original Material Model 

From the table it is seen that although the initial cracking load is influenced 

by this parameter, the ultimate load carrying capacity of the wall-beam panel is 

found to be insensitive to this parameter. The vertical mortar joints which are the 
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dominant planes of weakness in the masonry part of wall-beam structure are 

always the prime seat for initial cracking, particularly near the support. The initial 

cracking is due to interface bond failure of vertical joints. 

As it is seen from the table that a reduction in joint bond strength by 25 % 

produced a corresponding reduction of 6 % in the ultimate load carrying capacity 

of the panel (Failure load = 350 kN). The ultimate load of the Original panel was 

372 kN. The failure mode did not change appreciably in this case (see Fig. 8.6). On 

the other hand a 25 % increase in bond strength decreased the ultimate load of the 

panel by 2%. The variation is insignificant. 

All (1987) carried out an elaborate study by biaxial test and finite element 

analysis on brick triplet and concluded that the approximate bond failure criterion 

is conservative in comparison to the exact bond failure surface which considers the 

effect of parallel stress on shear strength. This exact bond failure criterion could 

not be adopted in this study due to lack of biaxial tension-compression test values. 

It should be mentioned here that the bond failure criterion used in this study is 

linear and an approximate one which is determined from simple laboratory tests 

discussed in Chapter 4. 

It can be concluded therefore that accurate estimation of the bond properties 

of the joint is required if realistic prediction of the initial cracking load of wall-

beam panels subjected to uniformly distributed load are to be made. However, this 

parameter is less sensitive to the ultimate load of the panel. 

8.3 PARAMETERS AFFECTING THE FINITE ELEMENT ANALYSIS 

in general the result of a finite element analysis can be significantly 
influenced by the characteristics of the model itself. Element type and size and 
assumed boundary conditions, etc. can have an influence, with a subsequent 
distortion of the results. These aspects are investigated in this section. 

8.3.1 Element type, Size and Subdivisions 

In recent years the trend has been towards the use of higher order finite 
elements, particularly isoparametric elements. The adoption of more elaborate 
elements allows the use of a larger element size, but the computing time can be 
increased in comparison. The influence of element type on the ultimate strength of 
the masonry wall was investigated by Ali( 1987) by comparing the performance of 
8 noded isoparametric element and the 4 noded linear element. He concluded that 
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& the use of more elaborate elements in this case does not appear to be warranted. 
Similar findings were obtained by Bazant and Cedolin (1980), when element types 
were compared in the fracture analysis of plain concrete. Particularly for non-
homogeneous analysis of wall-beam structure comparatively small finite elements 
have to chosen for discretization of joints. In addition to this the high stress 
gradient near the support warrants the selection of finer meshes in this zone. 
Considering these practical reasons higher order element has not been adopted in 

this study. 

The influence of the element size on the non-linear fracture analysis is 

studied by changing the number of elements in the panel as shown in Fig. 8.7(a) 

and Fig. 8.7(c). Within the practical range of element numbers there was small 

difference in the predicted ultimate load. For example due to 14% reduction in 

number of elements (see Fig. 8.7(a)) the predicted failure load was 368 kN in 

comparison to the original analysis used in chapter 7 (Failure load 372 kN). A 

failure pattern similar to that predicted in the original analysis was obtained (see 

Fig. 8.7(b)). If bigger mesh size is used the predicted failure load increases 

considerably. For example due to 20% reduction in number of elements (see Fig. 

8.7(c)) the predicted failure load was increased by 11% in comparison to the 

original analysis used in chapter 7. Further reduction of number of elements 

(bigger element size) will further increase the ultimate load which does not model 

the actual composite behaviour of wall-beam structure. However, the effect of 

mesh configuration and element size on the analysis of wall-beam structure made 

of standard size of brick unit is discussed in details in the next chapter. 

When large elements are used, each element has a large influence on 

structure stiffness. When a single element of large size cracks, the stiffness of the 

entire element is reduced resulting in the softening of a relatively large portion of 

the structure. On the other hand large elements tend to be less sensitive to stress 

concentration than small elements resulting a crack which occurs at a higher load. 

When small element is cracked although stiffness of the entire element is reduced 

but being very small does not drastically affect the surrounding elements and the 

resulting softening is localised which ultimately carry less significant influence on 

the overall structural stiffness. Again small elements being sensitive to stress 

concentration undergoes cracking at lower loads. This balance between stress 

concentration and reduction of stiffness of the fractured elements is the probable 

cause of apparent effect of mesh size on the prediction of failure load. For analysis 

of wall-beam structure this fact is also valid when the variations of aspect ratio of 

the elements are within the usual limit. 
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8.3.2 Linear Elastic Fracture Analysis. 

This study was carried out to test the possibility of assuming linear elastic 

properties for all the constituents of the wall-beam structure in the finite element 

model. This has significant advantages in computing efficiency. Bricks, mortar and 

the concrete were assumed to remain linearly elastic in this case. Therefore, the 

progressive cracking is the only source of non-linearity in this case. Accordingly, 

an analysis of the wall-beam panel was carried out with the elastic properties of 

brick, mortar and concrete. The ultimate load in this case was 335 kN which is 

10% lower than that of original analysis. The failure pattern is shown in Fig. 8.8. 

For comparison the failure pattern predicted by the original model can be seen 

from Fig. 8.1(d). 

This sensitivity of the parameter could be due to the nature of the test 

adopted in the investigation. A considerable portion of the panel for this type of 

loading is subjected to biaxial compression and hence deforms in-elastically (see 

Fig. 3.19(e)). Since the zone affected by the biaxial compression corresponds to the 

zone of low stress gradient this sensitivity due to inelastic deformation is not of 

considerable amount. Therefore, it reveals from the foregoing discussion that the 

effect of material non-linearity is not of great importance for the analysis of wall-

beam structure. Previous investigators have shown that the effects of cracking tend 

to have a much greater influence on the non-linear behaviour than the material 

deformation characteristics (Page, 1978, 1979 and Dhanasekar, 1985). 

From this study it can therefore be concluded that the stress-plastic strain 

equations are not seriously important to predict the behaviour of wall-beam panels 

subjected to uniformly distributed load and that a linear elastic fracture model may 

be considered useful for wall-beam analysis. It can be noted here that under service 

condition the brickwork is stressed only to a fraction of its ultimate load. 

Therefore, the deduction of empirical equations based on elastic analysis can be 

considered as a useful aid for design purpose. The related derivations and their 

comparison with other authors are discussed in the next chapter. 

8.3.3 Boundary Conditions 

In this section the influence of the effects from boundary conditions on the 

• ultimate behaviour of the panel is investigated. The same panel and the material 

model as described in section 8.2 were adopted for this study. 
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Two separate analyses were performed. In the first case nodes at the base of 

the support unrestrained horizontally, and with the nodes at the interface of the 

loading plate and the panel restrained against horizontal movement. In the second 

case nodes at the base of the support was restrained horizontally while the nodes at 

the interface of the loading plate and the panel unrestrained against horizontal 

movement. The ultimate load and the final failure pattern are shown in Figure 8.9. 

For comparison see the failure pattern predicted by the original model as shown in 

Fig. 8.1(d). 

It is seen that for the first case there is no significant difference in the failure 

load or failure patterns when compared with the original model (see Fig. 8.9). The 

ultimate load in this case was decreased only by 6%. In the second case the crack 

propagation was slower at the interface of the wall and the beam since the base of 

the panel was restrained against horizontal movement and the failure load also 

increased by 30% (see Fig. 8.9). The differences between the second case and the 

original model appear to be quite significant and is not adopted in this study. The 

above discussion therefore reveals that modelling of boundary conditions of the 

test used to verify the original finite element model is not particularly sensitive to 
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lateral restraint at wall top and loading plate which may have been applied by 
testing apparatus. The boundaiy conditions assumed in chapter 7 therefore appear 

to be reasonable. 

8.4 SUMMARY 

In this chapter the finite element program with intermediate collapse model 

was used to study the relative importance of the various parameters used to define 

the non-linear fracture model. Two groups of parameters were considered for this 

investigation. The first group were the parameters which directly affect the 

material model and the second group were parameters which affect the finite 

element analysis. Since the investigation has been confined to the behaviour of the 
wall-beam panels subjected to uniformly distributed vertical load, the conclusions 

will relate specifically to the behaviour of wall-beam structure, although some of 

the conclusions will apply to masonry in general. The following conclusions can be 

drawn: 

The ultimate strength of the panel increases with the increase and decreases 

with the decrease of modulus of elasticity of brick and mortar. The final failure 

pattern of the panel was not influenced significantly by this parameter. The 
experimental evaluation of these parameters as described in Chapter 4 is 

therefore justified. 
The ultimate strength of the panel increases with the decrease ofjoint thickness 

and decreases with the increase of joint thickness, but within practical range 

this change is not of significant extent. 
The tensile strength of the brick influenced the load carrying capacity of the 

panel. The lower the tensile strength of the brick the lower is the ultimate load 

of the panel. This parameter is important since the crack propagates through the 
bricks when the wall-beam structure is subjected to uniformly distributed load. 

Accurate estimation of this property is important if it is to be used for the 

prediction of ultimate load carrying capacity of wall-beam structure. 
The tensile strength of mortar also affected the ultimate strength and failure 

pattern of the wall-beam panel. The accurate experimental evaluation of this 

parameter is also essential. 
The influence of material non-linearity of the constituent materials on the 

behaviour of masonry is not significant in general when compared to the effects 
of progressive cracking of the panel. Since a considerable portion of wall-beam 

panel is subjected to biaxial compression and hence deforms inelastically, the 

general assumption of elastic behaviour may not represent the actual stress 
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state of the panel. However, the zone affected by biaxial compression being of 

low stress gradient the linear elastic-fracture material model may be considered 

useful for analysing this type of problem if greater accuracy is not warranted. 

The bond strength of the mortar joint did not influence the ultimate load of the 

wall-beam panel subjected to uniformly distributed load. However, the initial 

cracking load of the panel is seriously affected by this parameter. The lower the 

bond strength the lower the initial cracking load of the panel. Since vertical 

joints typically experience a bond type of failure, this characteristic is 

extremely important for the prediction of local failure. 

A simple linear quadrilateral element with a reasonably fine mesh near the 

support in the regions of high stress gradient is suggested for the analysis of 

wall-beam structure. The use of higher order elements in this case is not 

required since the progressive fracture of the constituent materials is the main 

source of non-linearity in the vertically loaded wall-beam panel. 

The influence of the secondary effects from the boundary conditions of the 

loading plate is negligible. Therefore, the assumptions made for boundary 

conditions of the original model appear to be reasonable. 

14 



CHAPTER 9 

PARAMETRIC STUDY AND DESIGN RECOMMENDATIONS 

9.1 INTRODUCTION 

The assessment of the strength of wall-beam structure subjected to 

uniformly distributed load is a problem commonly encountered in design. At 

present the codes do not provide any straight forward equation and available 

empirical equations are based on limited number of experiments and/or simplified 

analysis of wall-beam structures. The simplifications arc necessary because of the 

large number of variables involved. 

For realistic analysis of the behaviour of story-height wall-beam structure 

proper constitutive relations and failure characteristics of the constituent materials 

are required together with efficient numerical method of modelling its behaviour. 

In this investigation such a material model has been derived and incorporated into 

a finite element model. A comprehensive parametric study is carried out on story-

height wall-beam structure composed of full size brick unit. From the results of this 

study, design rules incorporating the influence of important parameters are 

developed and presented in a series of design recommendation. To place this 

investigation in context, a review of previous research and existing design 

recommendations is also carried out and compared with the proposed 

recommendations. 

9.2 FINITE ELEMENT ANALYSIS OF STORY-HEIGHT PANEL 

This section describes the use of finite element model to carry out detailed 

parametric study of the behaviour of story-height wall-beam subjected to uniformly 

distributed load. For efficient execution of the parametric study an appropriate 

finite element idealisation is necessary in which the important parameters may be 

easily varied. The typical mesh configuration (see Fig. 6.1) which was used for the 

analysis of wall-beam made with half sized brick in the previous chapters may not 

be suitable for the accurate analysis of story-height wall-beam panel made with full 

size (240 mm X 115 mm X 70mm) brick. For a particular size of any structure, 

even though the aspect ratio and type of element used being same, the result will 

It vary significantly depending upon the number of nodes and number of elements 

(Brebbia and Ferrante, 1978). To select a suitable mesh configuration for the 
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present analyses a comparative study was made with a varying number of 

elements. A summary of this comparison is given in Table 9.1. It is seen that the 

failure loads decrease with the increase in the number of finite elements in the 

mesh. The pattern of convergence is shown if Fig. 9.1. Details of different mesh 

configuration can be seen from Fig. AV. 1 of Appendix V. In the mesh type 'f' of 

Fig. AV.1 instead of providing finer mesh throughout the height of wall, a 

relatively coarse mesh was provided at top 1/3 rd height of wall. The failure load in 

this case was quite comparable (see Table 9.1) with that of the walls having finer 

meshes althrough the panel. Therefore, a reasonable fine mesh near the support and 

a coarse mesh layout for the rest of the wall have been adopted for the 

comprehensive parametric studies. 

Once the mesh configuration was finalised a suitable height and span of the 

wall-beam representative of story-height wall-beam was selected to investigate the 

influence of main parameters on the moment and tie action in the supporting beam 

and vertical stress concentration and shear stress concentration at the wall-beam 

interface. From the results of this parametric study empirical formulae for moment, 

shear and tie force will be proposed. 

Table 9.1 Influence of Number of Elements on Failure Load. 

*Mesh 

Designation 
Number of 

nodes 
Number of 
elements 

Failure 
load (kN) 

a 777 720 528 
b . 1316 1242 482 
c 1596 1512 468 
d 1995 1904 430 

e 2613 2508 430 

f 1372 1296 468 

* Mesh configurations (a to f) are shown in Fig. AV.1 of Appendix V 

9.3 PARAMETRIC STUDY OF STORY-HEIGHT WALL-BEAM 

PANELS 

The important parameters influencing the composite behaviour of walls and 

their supporting beams have been discussed in the previous chapters. The 

incorporation of all these variables in a single equation will be very complex for 
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practical use. Therefore, simplifications have to be made to develop simple 

equation. However, care has been taken to ensure that such simplifications lead to 

a rational and conservative estimate of the most important interaction effects. 

It is shown by stress analyses in chapter 3 that the interaction between wall 

and supporting beam is independent of height of the wall-beam when HIL exceeds 

0.54. Similar finding was also observed by Wood, (1952). It was 

SI' 
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Fig. 9.1 Convergence of Failure Load with increasing Number of Elements 

therefore decided that the arching action be ensured by restricting the minimum 

height of the wall-beam to be 0.6 times the span. For the design of wall-beam this 

minimum height of 0.61, is also agreed by other researchers (Burhouse, 1969; 

Riddington and Stafford Smith, 1978). It was therefore decided that the 0.6L height 

of the wall-beam would be appropriate and convenient for the deduction of 

proposed design method. Height of the wall-beam greater than this value does not 

produce appreciable change in concentration of stresses and will eliminate the risk 

of sliding along the interface of beam and wall. 

It is also shown by stress analyses in chapter 3 that the wall-beam having a 

14 normal size opening at the middle of the span behaves like a solid wall-beam 
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element. This fact is also confirmed by other researchers (Wood, 1952; Riddington 

and Stafford Smith, 1978). 

In practice the support occupies a finite width. The support width along the 

span of the beam is an important parameter and has a significant effect on the wall-

beam interaction which is described in chapter 3. Unlike other researchers due 

consideration has been given to this parameter in this study. Finally, for the 

parametric study of story-height panels important variables like the span of the 

wall, modulus of elasticity of the constituent materials, depth of the supporting 

beam and the width of the support were considered for a solid wall-beam structure 

or wall with central opening of normal size. These parameters were varied 

individually while keeping all other variables constant. 

A total of 192 finite element analyses were performed to cover the practical 

ranges of important variables. A summary of the variables investigated is shown in 

Table 9.2 (a) to Table 9.2 (c). In all cases the height and thickness of the wall-

beams are kept constant. A typical wall-beam is shown in Appendix V. The gravity 

load and the superimposed load are assumed at the top to act uniformly distributed 

over the full thickness and length of the wall-beam. From these analyses the 

maximum tie force, bending moment in the supporting l)Cam and vertical stress and 

shear stress concentration in the wall have been obtained. These values are then 

plotted against non dimensional characteristic parameters c1  and c2  (discussed 

later). Thereafter, by means of regression analysis formulae were derived for 

maximum moment, maximum tie force in the supporting beam and maximum 

vertical stress concentration and maximum shear stress concentration in the 

masonry wall. The derivation of design curves and design constants are carried out 

in the following sections. 

9.4 DESIGN ASPECTS OF WALL-BEAM STRUCTURE 

The aim of design method is to determine the size of the wall and the beam 

so as to be economic whilst being adequate to withstand the actions resulting from 

the arching behaviour. This calls for the actions to be properly identified and then 

for any particular structure and system of loads, for the magnitude of actions to be 

estimated on a rational basis. 

4 
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9.4.1 Deduction of Non Dimensional Characteristic Parameters 

Characteristic Parameter c1  

It is seen from the parametric study that the stresses at the interface level of 

wall and beam of a solid wall-beam are dependent on many important factors. 

They can be represented by the expression: 

I L L-2B 
VccxcE111 , Eb, — , , 

L 

where, Vc = Maximum vertical stress concentration 

E1 = Modulus of elasticity of mortar 

Eb  = Modulus of elasticity of brick 

E = Modulus of elasticity of concrete 

Ii = Depth of the supporting beam 

B = Width of support at each end in the direction of span 

L = Length of supporting beam including support width 

The above parameters will be combined together to form a non-dimensional 

characteristic parameter, c1  to incorporate the relative stiffness of wall and the 

supporting beam. Since brick unit and mortar are acting together, their individual 

modulus of elasticity must contribute toward the combined effect of the resulting 

material (brickwork). However, the accuracy of incorporation technique of 

individual stiffness and size effect of brick and mortar will have influence on the 

modulus of elasticity of brickwork, Ew  to be a representative value. In the above 

expression Em  and Eb can be replaced by a combined modulus of elasticity of 

masonry wall, (E). This Ew  can be related with Em  and  Eb  by an expression 

given by Kawsar (1991) as shown below: 
E b  

(. + 

where, 
= 1a 

= and a = (Tb and Tm  are thickness of brick 

and mortar respectively). The expression for equivalent modulus of elasticity of 

masonry was derived from the linear portion of stress-strain deformation 

characteristics of brick and mortar. Since under service conditions brickwork is 

4 
stressed only to a fraction of its ultimate load this assumption is quite reasonable. 

Non-homogeneity of mortar and brick, and their relative thickness were also 
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considered in the expression for equivalent modulus of elasticity of masonly. Thus 

Em  and Eb  can be replaced by equivalent modulus of elasticity of wall E,  and 

finally the non dimensional characteristic parameter, c1  is represented by the 

expression as shown below in Eqn. 9.1. 

E, L-2B 
cl::-. h 

(9.1) 

Deduction for SR, FR and c2  

It has been found from the analyses that the interaction between wall and 

the supporting beam is greatly influenced by the width of support and depth of 

supporting beam. These parameters are considered in the design formulae in terms 

of the total length of the wall-beam and is expressed by 

Slenderness of the supporting beam, SR = hIL 

Clear span ratio, FR = (L-2B)/L and 

C2 = .J(1000.sR/FR) (9.2) 

9.4.2 Bending Moment in Supporting Beam 

The supporting beam is subjected to the action of vertical forces and 

horizontal shear at the wall-beam interface. The horizontal shear force at the 

interface is thus eccentric with respect to the centroid of the beam. This has the 

effect of causing a substantial reduction in the bending moment produced by the 

vertical forces. The moment in the supporting beam was calculated considering the 

vertical forces at the interface of the beam and wall due to wall-beam interaction. 

The moment is calculated at mid vertical section passing through each element at 

interface level considering all vertical forces on the left of the section. The 

subroutine MOMAX in the finite element program calculates the moment in the 

supporting beam according to the method just discussed, ignoring the shear force at 

wall-beam interface. Bending moment in the supporting beam due to shear force at 

the wall-beam interface is also calculated separately in the subroutine MOMAX. 

The moments calculated at different sections are stored in an array separately. 

From these values the maximum moment and its corresponding location is 

obtained. The maximum bending moment in the supporting beam of the wall-beam 
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14 structure thus obtained is expressed in terms of 'WL' traditionally in the form of 

WL/K1, where, W is the total load at the top of the wall and L is the span and K! is 

known as coefficient for maximum moment. The contribution of shear force in 

calculating Kl is not considered in this case with an aim to remain in the 

conservative side. It has been mentioned in chapter 7 during discussion of modes 

of failure of wall-beam and progressive flow of cracking that a major portion of 

the mortar joints at the interface level fail before reaching the failure load of the 

panel. Therefore, it seems justified not to consider the reduction of moment due to 

shear force acting at the interface of wall and the supporting beam. The variation 

of maximum moment coefficient with respect to elastic properties, support width 

and depth of supporting beam as obtained from finite element analyses can be 

observed from Table 9.2(a) to Table 9.2(c):  The value of KI is found to vary 

considerably with the width of support and depth of supporting beam. Therefore 

K I values are plotted against characteristic parameter ci for each value of beam 

depth and support width. The variation of coefficient for maximum moment with 

characteristic parameter c1  for a particular case of support width (B = 100 mm) and 

depth of supporting beam (h = 125 mm) can be seen from Fig. 9.2. Polynomial 

regression analysis (in the form of y=a+bx+cx2 , where y = Ki and x = c1 ) is 

performed to get a best fit curve and corresponding equation for each set of 

moment coefficients for a particular support width and beam depth. All these 

curves are then combined together in Fig. 9.3 to see their relative nature and the 

deviations. It is seen from Fig 9.3 that although the natures of the curves are 

similar their relative deviation for the same value of c1  is noteworthy depending on 

the variables such as support width and beam depth which are respectively denoted 

by 'FR' and 'SR'. In order to determine degree of influence the important variables 

are now considered as width of the support, depth of the supporting beam and the 

characteristic parameter c1 . The moment coefficients derived by previous 

researchers (Wood, 1952; Stafford Smith and Riddington, 1977; Davies and 

Ahmed, 1978) was not on the basis of critical examination of these critical 

parameters. It is interesting to note that even at a constant value of support width 

and beam depth, the moment capacity of a wall-beam can be increased or 

decreased by selecting different brick mortar combination and was not considered 

as a parameter in the analytical tools proposed by previous investigators 

(Rosenhaupt, 1964; Colbourne, 1969; Wood and Simms, 1969; Male and Arbon, 

1969;Ramesh et. al., 1970; Yettram and Hirst, 1971; Green, 1972; Saw, 1974, 

1975; Ahmed, 1977; Stafford Smith and Riddington, 1977; Davies and Ahmed, 

1978; Riddington and Stafford Smith, 1978 and Kamal, 1990). The reason may be 

due to the limitation of the material model developed in the analytical tools. The 
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Table 9.2 (a) Comparison of KI (FE Vs. Design Equation, Eqn. 9.3) 

1'R= (1 9' r.=6.236 725 8.1. 9.6 KIn = 150. 112, 86, 60 

Em Eb KI from FE KI (Design) KI (Design)/KI(FE) 

Depth of Beam (mm) Depth of Beam (mm) Depth of Beam (mm) 

75 100 125 1 175 75 100 1 125 175 75 100 125 175 

16351 8950 180.5 124.4 92.5 60 182.6 126.51 94.5 62.5 1.01 1.01 1.02 1.04 

1635 13425 190.6 130.4 96.8 62.7 190 130.6 97.3 63.7 .99 1.00 1..00 1.01 

1635 17900 197.7 134.2 99.5 64.5 195.1 133.7 99.33 64.7 .98 .99 .99 1.00 

1635 22375 203.4 137.2 101.7 65.8 198.8 135.9 100.9 65.5 .98 .99 .99 .99 

2453 8950 188.71 130.3 97 63 189.5 130.4 97 63.6 1.00 1.00 1.00 1.00 

2453 13425 202 137.8 102.6 66.7 200.7 137.1 1 101.7 65.9 .99 .99 .99 .98 

2453 17900 211.5 143.2 106.41 69 208.9 142.31 105.3 68.01 .98 .99 .98 .98 

2453 22375 218.6 147.6 109.21 70.8 215.2 146.31 108.2 69.83 .98 .99 .99 .98 

32701 8950 194 133.8 99.8 65 194.1 133.1 98.9 64.5 1.00 .99 .99 .99 

32701 13425 209.3 142.7 106.3 69.2 208.4 141.9 105.1 67.8 .99 .99 .98 .98 

32701 17900 219.7 149.3 110.8 71.9 219.4 TJ 110.2 71.08 .99 .99 .99 .99 

32701223751 228 154.7 114.3 74.1 228.1 155 114.6 74.08 1.00 1.00 1.00 1.00 

4088 8950 1 197.7 136.3 101.71 66.2 197.4 135.1 100.3 65.2 .99 .99 .98 .98 

4088 13425 214 146.2 109 L70.9 214.1 145.6 107.7 69.5 1.00 .99 .98 .98 

4088 17900 225.5 153.7 113.9 174.03 227.3 154.5 114.2 73.8 1.00 1.00 1.00 .99 

4088 22375 234.2 160 117.9 76.6 238.5 162.2 120 78.0 1.01 1.01 1.02 1.02 

SR 
0.037 0.05 0.06 0.087  

b 0.039 .0199 .0086 

1.09 
E0227  

.358 1.514 2.17  

Table 9.2(h) Comparison of K1 (FE Vs. Design Equation, Eqn. 9.3) (cont.) 

P17=11') -= (S 41 7 45 82 9.85 Kln= 172.2. 131.2, 101.5, 69.3 

Em Eb KI from FE KI  (Design) --KI  (Design)! Ki (FE) 

Depth of Beam (mm) Depth of Beam  (mm) Depth of Beam  (mm) 

75 100 125 175 75 100 125 175 75 100 125 175 

1635 8950 215.2 149.3 109.5 68.6 211 151.2 111.6 71.7 .98 1.01 1.02 1.04 

1635 13425 234 159.4 116 72.23 221 157.1 115.2 73 .94 .98 .99 1.01 

1635 17900 246.6 166.7 120 74.6 227.8 161.4 117.8 74.2 .92 .97 .98 .99 

1635 22375 255.7 172.2 124 76.4 232.7 164.5 119.8 75.1 .91 .95 .97 .98 

2453 8950 226 156.2 114.6 72 220.3 156.6 114.9 72.9 .97 1.00 1.00 1.01 

2453 13425 249 169.0 123 76.5 235.2 166.1 120.8 75.6 .94 .98 .98 .99 

2453 17900 264 178.3 129 79.7 246.4 173.5 125.6 78.02 .93 .97 .97 .98 

2453 22375 276 185.6 134 82.3 255.1 179.3 129.5 80.2 .92 .97 .97 .97 

3270 8950 233 160.6 118 73.9 226.4 160.5 117.3 73.9 .97 1.00 .99 1.00 

3270 13425 258 175 127.5 79.3 245.7 173.0 125.3 77.9 .95 .99 .98 .98 

3270 17900 276 185.7 135 83.3 260.8 183.2 132.2 81.8 .94 .98 .98 .98 

3270 22375 290 194.5 140.6 86.4 272.4 220.5 137.9 85.6 .94 1.13 .98 .99 

4088 8950 238 163.7 120 75.4 230.8 163.31 119 74.7 .97 .99 .99 .99 

4088 13425 264 179.2 130.7 81.4 253.5 178.21 128.8 79.8 .97 .99 .98 .98 

4088 17900 284 191.2 139 85.8 272.4 220.5 137.6 85.2 .96 1.15 .99 .99 

4088 22375 300 201.2 145 89.4 287.8 236.8 145.5 90.6 .96 1.17 1.00 1.01 

0.037 .06 0.087  

0.038 
#1'38 

.02 0.007  

1.18 1.6 2.39  

.19  

A 
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Table 9.2(c) Comparison of KI (FE Vs. Design Equation, Eqn. 9.3) (cont.) 

FR= 0.846 c2  6.41, 7.45, 8.32, 9.85 KIn= 185, 142, 111.6, 76 

Em Eb KI from FE KI (Design) KI (Design)/K1(FE) 

Depth of Beam (mm) Depth of Beam (mm) Depth of Beam (mm) 
75 100 125 175 75 1 100 1 125 175 75 100 125 175 

1635 8950 228 160.2 118 74 231.2 163.31 121.8 78 1.01 1.02 1.03 1.05 

1635 13425 248 172.1 126 78.24 244.5 170.51 125.9 79.5 .98 .99 1.03 1.01 

1635 17900 264 181 132 81.09 254 175.81 129 80.7 1 .96 .97 .99 .99 

1635 22375 277 188.6 136 83.3 261 179.81 131.4 81.6 .94 .95 .97 .98 

2453 1 8950 239 167.2 124 77.3 243.6 170 1 125.6 79.4 1.02 1.01 .96 1.02 

2453 13425 265 182.6 134 82.7 264.5 181.81 132.7 82.2 1.00 .99 1.01 .99 

2453 17900 287 195 141 86.6 280.6 191.31 138.7 84.9 .98 .98 .99 .98 

2453 22375 1 305 205.6 148 89.8 293.4 198..91 143.6 87.4 .96 .97 .98 .97 

3270 8950 247 1 171.7 127 79.5 252 174.71 128.4 80.4 1.02 1.01 .97 1.01 

3270 13425 277 1 189.5 138 85.7 279.6 190.61 138.3 84.7 1.00 1.00 1.01 .99 

3270 17900 301 204.4 148 90.4 301.8 204.11 147 89.2 1.00 1.00 1.00 .98 

3270 22375 324 217.41 156 94.4 320.1 215.41 154.6 93.6 .98 .99 .99 .99 

4088 8950 252 175 130 81.1 258.1 178.2 130.5 81.2 1.02 1.02 1.00 1.00 

4088 13425 285 194.7 142 87.9 291 197.5 142.7 86.9 1.02 1.01 1.00 .98 

4088 17900 313 211.5 153 93.2 318 214.5 154.1 93.4 
1 

1.01 1.01 1.00 1.00 

4088 22375 339 226.2 162 97.9 342 229.7 164.4 99.9 1.00 1.01 1.01 1.02 

SR  0.037 1 0.05 1 0.06 0.087  

b  0.0361 0.025 1 0.017 0.0057  

U  1.335 1 1.54 1 1.79 2.635  

number of experimental works carried out by previous investigators (Wood, 1952; 

Rosenhaupt, 1962; Burhouse, 1969; Stafford Smith et. al., 1978; Annamalai et. al., 

1984 and Ranjit, 1992) of wall-beam structure dealing with above parameter are 

also very limited. 

Now it is important to derive a straight forward single equation for 

moment coefficient from the curves shown in Fig. 9.3. As a step to normalise these 

curves, an initial value of KI denoted by Kin for each curve was extrapolated for 

a common value of c1= 2 in the equation of each of the curves in Fig. 9.3. It is 

evident from Fig. 9.3 that the values Kin will depend on support width and depth 

of supporting beam denoted by non dimensional terms 'FR' and 'SR' respectively. 

The variation of Kin with 'SR' for different values of'FR' is shown in Fig. 9.4. The 

normalised values of K! denoted by Klnn (= KI/Kin) for each of beam depth and 

support width are again plotted against c1. The relation of Klnn with c1  is given by 

a generalised expression y = 1+ bx" (where, y Klnn and x = c1). The values of 

4 
the constants 'b' and 'n' obtained for each curve were found to vary with the support 
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Table 9.2(c) Comparison of KI (FE Vs. Design Equation, Eqn. 9.3) (cont.) 

FR= 0.846 c2= 6.41, 7.45, 8.32, 9.85 K1n= 185, 142, 111.6, 76 

Em Eb KI from FE Ki (Design) KI (Design)/KI(FE) 

Depth of Beam (mm) Depth of Beam (mm) Depth of Beam (mm) 
75 100 125 175 75 100 125 175 75 100 125 175 

1635 8950 228 160.2 118 74 231.2 163.3 121.8 78 1.01 1.02 1.03 1.05 

1635 13425 248 172.1 126 78.24 244.5 170.5 125.9 79.5 .98 .99 1.03 1.01 

1635 17900 264 181 132 81.09 254 175.8 129 80.7 .96 .97 .99 .99 

1635 22375 277 188.6 136 83.3 261 179.8 131.4 81.6 .94 .95 .97 .98 

2453 8950 239 167.2 124 77.3 243.6 170 125.6 79.4 1.02 1.01 .96 1.02 

2453 13425 265 1 182.6 134 1 82.7 264.5 181.8 132.7 82.2 1 1.00 .99 1.01 .99 

2453 17900 287 195 141 86.6 280.6 191.31 138.7 84.9 1 .98 .98 .99 .98 

2453 22375 305 205.6 148 89.8 293.4 198..91 143.6 87.4 .96 .97 .98 .97 

3270 8950 247 171.7 127 79.5 252 174.7 128.4 80.4 1.02 1.01 .97 1.01 

3270 13425 277 189.5 138 85.7 279.6 190.6 138.3 84.7 1.QO 1.00 1.01 .99 

3270 17900 301 204.4 148 90.4 301.8 204.1 147 89.2 1.00 1.00 1.00 .98 

3270 22375 324 217.4 156 94.4 320.1 215.4 154.6 93.6 .98 .99 .99 .99 

40881 8950 252 175 130 81.1 258.1 178.2 130.5 81.2 1.02 1.02 1.00 1.00 

4088 13425 285 194.7 142 87.9 291 197.5 142.7 86.9 1.02 1.01 1.00 .98 

4088 17900 313 1  211.5 153 93.2 318 214.5 154.1 93.4 1.01 1.01 1.00 1.00 

4088 22375 339 226.2 162 97.9 342 229.7 164.4 99.9 1.00 1.01 1.01 1.02 

SR  0.037 0.05 0.06 1  0.087 
 _____ 

 

0.0361 0.025 0.017 10.0057 
1.3351 1.54 1.79 12.635 

number of experimental works carried out by previous investigators (Wood, 1952; 

Rosenhaupt, 1962; Burhouse, 1969; Stafford Smith Ct. al., 1978; Annamalai et. al., 

1984 and Ranjit, 1992) of wall-beam structure dealing with above parameter are 

also very limited. 

Now it is important to derive a straight forward single equation for 

moment coefficient from the curves shown in Fig. 9.3. As a step to normalise these 

curves, an initial value of KI denoted by Kin for each curve was extrapolated for 

a common value of c1= 2 in the equation of each of the curves in Fig. 9.3. It is 

evident from Fig. 9.3 that the values Kin will depend on support width and depth 

of supporting beam denoted by non dimensional terms 'FR' and 'SR' respectively. 

The variation of Kin with 'SR' for different values of'FR' is shown in Fig. 9.4. The 

normaiised values of KI denoted by Klnn (= Ki/Kin) for each of beam depth and 

support width are again plotted against c1 . The relation of Klnn with c1  is given by 

a generalised expression y = 1 + bx (where, y= Klnn and x = c1). The values of 

14 
the constants 'b' and 'n' obtained for each curve were found to vary with the support 
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Fig. 9.2 Coefficient for Max. Moment (Kl)Vs. Characteristics Parameter ci 

width and depth of supporting beam. Therefore, these two constants, b and n are 

related to the non dimensional parameter c2  as shown in Fig. 9.5 and c2  is derived 

from Eqn. 9.2. Therefore, we get the expression Klnn = (Ki/Kin) = (1+bc1fl) 

where from the coefficient for maximum moment is given by, 

K1 = Kin (1+ bci nl) (9.3) 

In this equation, 'Kin' is obtained from Fig. 9.4 and constants 'b' and 'n' are 

obtained from Fig. 9.5. Two non dimensional characteristic parameters c1  and c2  

are dcduced before by Eqn. 9.1 and Eqn. 9.2. 
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Here it should be mentioned that the horizontal shear developed at the 

interface of the wall and the beam has not been considered in the computation of 

bending moment in the supporting beam. The inclusion of shear in this 

computation will cause even more reduction of bending moment in the beam which 

will provide extra factor of safety. The coefficient for maximum moment 

considering the horizontal shear force at wall-beam interface as obtained from 

finite element analyses can be seen from Table A V.1 in Appendix V. 
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9.4.3 Tie Force in Supporting Beam. 

The tie force in the supporting beam is calculated in subroutine MOMAX 

by algebraic summation of horizontal forces acting at elements down the vertical 

section and within the thickness of the supporting beam. The number of sections 

are equal to the number of elements in the direction of the span considering half of 

its length. These tie forces, calculated at different sections are stored in an array 

from which the maximum tie force and its location are obtained. The variation of K 

with respect to elastic properties, support width and depth of supporting beam as 

obtained from finite element analyses can be seen from Table 9.3(a) to Table 

9.3(c). 

J 
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It 
 To derive the equation for maximum tie force in the supporting beam the 

same approaches of the previous article have been adopted. The maximum tie force 

is expressed by T = W/K, where, W is the total load on the top of the wall and K is 

known as the coefficient for maximum tie force which is given by, 
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Fig. 9.5 Constants 'b' and tn' for Max. Moment Coefficient 

K= Kn (1+bc1 ) (9.4) 

where, Kn is obtained from Fig. 9.6 and constants b and n are obtained from Fig. 

9.7 and the non dimensional characteristic parameters c1  and c2  are explained 

before. 
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9.4.4 Maximum Vertical Stress in Wall. 

As it reveals from the elastic analysis that due to arching action in the wall-

beam the load applied at the top of the wall-beam concentrates towards the support. 

Parametric study reveals that the vertical stress is the maximum at bottom corner of 

wall and depends on support width and beam depth more than elastic properties of 

the constituent materials. The vertical stress is generally expressed as the vertical 

Table 9.3 (a) Comparison of K (FE Vs. Design Equation, Eqn. 9.4) 

FR=.95 c2=6.236, 7.25, 8.1, 9.58 Kn= 4.32, 4.2, 3.95, 3.91 

Em Eb K from FE K (Design) K (Design)/K(FE) 
Depth of beam (mm) Depth of beam (mm) Depth of beam (mm) 
75 100 1 125 175 75 100 125 175 75 100 125 175 

1635 8950 5.8 5.07 4.58 4.1 5.9 5.1 4.5 4.13 1.9 1.00 .98 1.00 

1635 13425 6.3 5.41 4.82 4.22 6.3 5.3 4.67 4.22 1.00 .98 .97 1.00 

1635 17900 6.62 5.67 5.0 4.32 6.57 5.5 4.79 4.29 .99 .97 .96 .99 

1635 22375 6.85 5.86 5.16 4.41 6.77 5.6 4.9 4.35 .98 .95 .95 .98 

2453 8950 6.1 5.28 4.76 4.22 6.28 4.29 4.65 4.22 1.03 .81 .97 1.00 

2453 13425 6.68 5.75 5.09 4.42 6.87 5.7 4.93 4.38 1.03 .99 .97 .99 

2453 17900 7.06 6.04 5.36 1  4.57 7.32 6 5.14 4.52 1.04 .99 .96 .99 

2453 22375 7.4 6.26 5.58 4.71 7.66 6.2 5.3 4.63 1.03 .99 .95 .98 

3270 8950 6.29 5.43 4.9 4.31 6.5 5.5 4.77 4.28 1.03 1.01 .97 .99 

3270 13425 6.9 5.94 5.3 4.55 7.3 5.98 5.12 4.51 1.05 1.00 .96 .99 

3270 17900 7.35 6.27 5.62 4.75 7.89 6.37 5.42 4.71 1.07 1.01 .96 .99 

3270 22375 7.71 6..55 5.84 4.93 8.37 6.69 5.66 4.89 1.08 1.02 .97 .99 

4088 1  8950 6.43 1  5.53 1  4.96 4.37 1  6.69 5.6 4.85 4.33 1.04 1.01 .98 .99 

4088 13425 7.06 6.07 5.42 4.65 1 7.6 6.19 5.27 4.61 1.07 1.02 .97 .99 

4088 17900 7.53 6.44 5.74 4.87 8.32 6.66 5.64 4.87 1.10 1.03 .98 1.00 

4088 22375 7.89 6.73 5.99 5.1 8.9 7.08 5.95 5.12 1.12 1.05 .99 1.00 

SR 0.037 0.05 0.06 0.087 

b 0.06 0.044 0.032  

n 1.16 1 1.25 1 1.4 1 1.85  

stress concentration and is given by Vc = where, ay
=  vertical stress at the 

wall-beam interface and 'w' is the intensity of uniformly distributed load on the top 

of the wall. The maximum vertical stress concentration, 'Vc' is directly obtained 

from subroutine MOMAX and its variation with respect to support width, depth of 

supporting beam and elastic properties as obtained from finite element analyses 

can be seen from Table 9.4(a) to Table 9.4(c). 

The similar mode of approaches and steps adopted in the previous articles 

were chronologically followed for deriving the equation for maximum vertical 
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Table 9.3 (b) Comparison of K (FE Vs. Design Equation, Eqn. 9.4) (contd.) 

FR=.9 c2=6.41, 7.45, 8.32, 9.85 Kn= 5.06, 4.79, 4.62, 4.45 

Em Eb K from FE K (Design) K (Design)[K (FE) 

Depth of beam (mm) Depth of beam (mm) Depth of beam (mm) 
75 100 125 175 75 100 125 175 75 100 1 125 175 

1635 8950 6.39 5.63 5.1 4.59 6.7 5.73 5.18 4.6 1.05 1.01 1.01 1.00 

1635 13425 6.94 6 5.4 4.72 7.1 5.98 5.35 4.7 1.02 .99 .99 .99 

1635 17900 7.36 6.29 5.6 4.82 7.38 6.16 5.47 4.8 1 1.00 .98 .97 .99 

1635 22375 6.72 6.53 5.7 4.9 7.58 6.29 5.57 4.88 1.13 .96 .97 .99 
2453 8950 6.69 5.84 1 5.3 4.68 7.07 5.96 5.34 4.74 1.05 1.02 1.00 1.01 

2453 13425 7.41 6.34 5.6 4.87 1  7.68 6.36 5.6 4.91 1.03 1.00 1.00 1.00 

2453 17900 8 6.74 5.9 5.04 8.1 6.66 5.8 5.05 1.01 .98 .98 1.00 

2453 22375 8.5 7.1 6.2 5.18 8.5 6.89 6 5.17 1.00 .97 .97 .99 

3270 8950 6.9 6 5.41 4.75 7.32 6.12 5.4 4.81 1.06 1.02 .99 1.01 

3270 13425 7.73 6.57 5.8 5 8.11 6.64 5.8 5.04 1.05 1.01 1.00 1.00 

3270 17900 8.44 7.06 6.2 5.21 8.73 7.05 6.12 5.26 1.03 .99 .98 1.00 

3270 22375 9.06 7.5 6.5 5.4 9.2 7.37 6.37 5.45 1.01 .98 .98 1.00 

4088 8950 7.05 6.08 5.5 4.81 7.5 1  6.24 1 5.53 4.86 1.06 1.02 1.00 1.01 

4088 13425 7.94 6.74 6 5.1 8.43 6.85 1 5.97 5.15 1  1.06 1.01 1995 1.00 

4088 17900 8.78 7.31 6.37 5.34 9.2 7.37 6.36 5.43 1.04 1.00 .99 1.01 
4088 22375 9.44 7.82 6.7 5.57 9.8 7.79 6.68 5.69 1.04 .99 .99 1.02 

SR 0.037 0.05 0.06 0.087 

b 0.056 0.042 0.029 0.013 

n 1.16 1.26 1.425 1.94 

Table 9.3 (c) Comparison of K (FE Vs. Design Equation, Eqn. 9.4) (contd 
FR=.846 c2  = 6.61, 7.68, 8.58,10.16 Kn= 5.5, 5.39, 5.23, 5.09 

Em Eb K from FE K (Design) K (Dcsign)/K(FE) 

Depth of beam (mm) Depth of beam (mm) Depth of beam (mm) 
75 100 125 175 75 100 125 175 75 100 125 175 

1635 8950 7.05 6.24 5.7 5.19 7.14 6.33 5.79 5.25 1.01 1.01 1.01 1.01 
1635 13425 7.65 6.65 6 5.32 7.56 6.59 5.99 5.32 .98 .99 .99 1.00 
1635 17900 8.12 7 6.21 5.41 7.84 6.78 6.12 5.39 .96 .97 .98 .99 
1635 22375 8.52 7.24 6.39 5.5 8.05 6.92 6.23 5.44 .94 .95 .97 .99 
2453 8950 7.36 6.46 5.86 5.26 7.53 6.57 5.97 5.32 1.02 1.01 1  1.01 1.01 
2453 13425 8.15 7 6.25 5.45 8.15 6.99 6.28 5.46 1.00 .99 1.00 1.00 
2453 17900 8.79 7.45 6.56 1  5.63 8.63 7.31 6.53 5.59 .98 .98 .99 .99 
2453 22375 9.35 7.83 6.84 5.78 8.99 7.56 6.73 5.69 .96 .96 .98 .98 
3270 8950 7.58 6.6 6 5.32 7.78 6.74 6.09 5.37 1.02 1.02 1.01 1.01 

3270 13425 8.49 7.24 6.45 5.57 8.6 7.29 6.51 5.58 1.01 1.00 1.00 1.00 
3270 17900 9.26 7.78 6.8 5.79 9.24 7.73 6.86 5.77 .99 .99 1.01 .99 
3270 22375 9.94 8.26 7.2 6 9.74 8.08 7.15 5.94 .98 .98 .99 .99 
4088 8950 7.74 6.72 6.06 5.37 7.97 6.86 6.18 5.41 1.03 1.02 1.02 1.00 
4088 13425 8.75 7.42 6.56 5.66 8.92 7.51 6.69 5.67 1.02 1.01 1.02 1.00 
4088 17900 9.62 8.03 7 5.92 9.71 1  8.06 7.13 5.93 1.01 1.00 1.02 1.00 

4088 22375 10.4 8.6 7.4 6.16 10.37 8.52 1 7.52 6.1 .99 .99 1.01 .99 

SR 0.037 0.05 0.06 0.087 
b 0.054 0.038 0.026 0.009 

n 
_____ 

1.18 1.31 1.52 2.08 
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stress concentration, Vc and is given by 

Vc = Vcn(l+bc1 ) 

5 

E 

4 

(9.5) 

where, Vcn is obtained from Fig. 9.8 and constants b and n are obtained from Fig. 

9.9 and the non dimensional characteristic parameters c1  and c2  are explained 

before. 

9.4.5 Maximum Shear Stress in Wall 

The discussion made in the previous article (9.4.4) is equally applicable for 

shear stress in the wall. The shear stress is expressed by shear stress concentration 
and is given by Sc = t > /w, where, t,, = shear stress at wall-beam interface and 
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w is the intensity of uniformly distributed load on the top of the wall. The 

maximum shear stress concentration 'Sc' is directly obtained from subroutine 

MOMAX and its variation with respect to elastic properties, support width and 

depth of supporting beam as obtained from finite element analyses are given in 

Table 9.5(a) to Table 9.5(c). 

The similar mode of approaches and steps adopted in the previous articles 

were chronologically followed for deriving the equation for maximum shear stress 

concentration Sc and is given by 

Sc = Scn(1+b(yc1 )11 ) (9.6) 
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where, Scn is obtained from Fig. 9.8 and constants n' and 'b' are obtained from Fig. 
9.10 and Fig. 9.11 respectively. The non-dimensional parameter c1  is explained 
before and y = Em/Ew . 

Table 9.4 (a) Comparison of Vc (FE Vs. Design Equation, Eqn. 9.5) 

FR=.95 c2=6.236, 7.25, 8.1, 9.58 Vcn = 8 (for all values of SR) 

Em Eb Vc from FE Vc Design Vc Design/Vc FE 
Depth of Beam (mm) Depth of Beam (mm) Depth of Beam (mm' 

75 100 125 175 75 100 1 125 175 75 100 125 175 

1635 8950 9..26 9.25 8.78 7.62 9.18 8.88 8.68 8.38 .99 .96 .99 1.09 

1635 13425 9.52 9.4 8.87 7.65 9.4 9.06 8.83 8.49 .98 .96 .99 1.1 

1635 17900 9.67 9.48 8.92 7.65 9.55 9.18 8.94 8.5 .98 .97 1.00 1.11 
1635 22375 9.75 1 9.5 8.93 7.64 9.66 9.27 9.02 8.6 .99 .97 1.01 1.12 
2453 8950 9.67 9.66 9.15 7.89 9.39 9.05 8.82 8.48 .97 .94 .96 1.07 

2453 13425 10 9.86 9.27 7.95 9.7 9.32 9.06 8.6 .97 .94 .98 1.08 

2453 17900 10.2 10 9.34 7.97 9.94 9.51 9.24 8.8 .974 .95 .99 1.1 

2453 22375 10.3 10 9.37 7.97 10.11 9.66 9.37 8.9 .98 .97 1.0 1.11 

3270 8950 10 9.89 9.3 8.05 9.52 9.16 8.9 8.5 .95 .93 .96 1.05 
3270 13425 10.3 10.14 9.47 8.11 9.92 9.5 9.23 8.79 .96 .94 .97 1.08 

3270 17900 10.5 10.3 9.56 8.15 10.22 9.76 9.46 8.9 .97 .94 .99 1.09 

3270 22375 10.7 10.4 9.6 8.15 10.45 9.96 9.65 9.1 .97 .95 1.00 1.11 

4088 8950 10 10.05 9.5 8.15 9.62 9.24 8.99 8.6 .962 .92 .95 1.05 

4088 13425 10.5 10.3 9.7 8.22 10.1 9.63 9.35 8.8 .96 .93 .96 1.07 
4088 17900 10.7 10.4 9.76 8.26 10.43 9.94 9.64 9.13 .97 .95 .98 1.10 

4088 22375 10.9 10.6 9.8 8.28 10.73 10.2 9.88 9.3 .98 .96 1.00 1.12 
SR 0.037 0.05 0.06 0.087 

b .03550.030 0.026 ).017 

n 0.91 1.0 1.1151 1.38 

9.5 COMPARISON OF RESULTS OBTAINED FROM THE PROPOSED 
DESIGN FORMULA 

In the previous articles the empirical relations have been developed from the 
regression analysis of a large volume of data obtained from finite element analyses. 
Due to simplifications made in the regression analysis the empirical formulae are 
approximate and may not represent the finite element results exactly. It is therefore 
necessary to compare the results obtained from empirical equations with those of 
finite element analysis and the similar existing formulae prepared by previous 
investigators. Such comparisons of the equations derived for maximum bending 
moment and tie force in the supporting beam and maximum vertical and shear 
stress at the interface of wall-beam structure are carried out in the following 
sections. 
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Table 9.4 (b) Comparison of Vc (FE Vs. Design Equation, Eqn. 9.5) 

FR=.9 c2=6.41, 7.45, 8.32, 9.85 Vcn= 4.75 (for all values of SR) 

Em Eb Vc from FE Vc Design Vc DesignlVc FE 
Depth of Beam (mm) Depth of Beam (mm) Depth of Beam (mm)  

75 100 125 175 75 100 1 125 175 75 100 125 175 

1635 8950 5.57 4.88 5 5.31 5.41 5.24 5.11 4.95 .97 1.07 1.02 .93 

1635 13425 5.72 5.03 5.1 5.39 5.54 5.3 5.2 5.01 .97 1.05 1.02 .93 

1635 17900 5.81 5.12 5.24 5.4 5.62 5.41 5.26 5.06 .97 1.05 1.00 .94 

1635 22375 5.87 5.18 5.3 5.46 5.68 5.46 5.31 5.10 .96 1.05 1.00 .93 

2453 8950 5.82 5.08 5.2 5.51 5.53 5.33 5.19 5.01 .95 1.05 .99 .91 

2453 13425 5.98 5.26 5.37 5.61 5.71 5.49 5.33 1 5.12 .95 1.04 .99 .91 

2453 17900 6.09 1 5.37 5.5 5.67 1 5.84 5.60 5.43 5.19 .96 1.04 .98 .91 

2453 22375 6.15 5.45 5.5 5.7 5.94 5.69 5.5 5.26 .96 1.04 1.00 .92 

3270 8950 5.98 5.2 5.3 5.6 5.61 5.40 5.25 5.05 .94 1.04 .99 .9 

3270 13425 6.15 5.4 5.5 5.7 5.83 5.59 5.42 5.19 .95 1.03 .98 .9 

32701  17900 6.26 5.53 5.6 5.8 6.0 5.74 5.55 5.31 .96 1.04 .99 .91 

3270 22375 6.34 1  5.62 5.7 1  5.89 6.13 5.85 1  5.66 5.40 .97 1.04 .99 .92 

4088 8950 6.09 5.28 5.35 5.7 5.66 5.44 1 5.29 5.08 .93 1.03 .99 .89 

4088 13425 6.28 5.5 5.57 5.8 5.92 5.67 5.49 5.25 .94 1.03 .98 .9 

4088 17900 6.39 5.64 5.72 5.9 6.13 5.85 5.65 5.39 .96 1.04 .98 .91 

4088 22375 6.47 5.74 5.82 5.93 6.29 6.00 5.78 5.51 .97 1.04 .  .99 .93 

SR 0.037 0.05 0.06 0.087 

b 0.034( .0296 .0245 .0165 

n 0.92 1 1.02 1.14 1.44 
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Table 9.4 (c) Comparison of Vc (FE Vs. Design Equation, Eqn. 9.5) 

FR=.846 c, = 6.61, 7.68, 8.58,10.16 Vcn = 3.8 (for all values of SR) 

Em Eb Vc from FE Vc Design Vc DesignlVc FE 

Depth of Beam (mm) Depth of Beam (mm) Depth of Beam (mm 
75 100 125 175 75 100 125 175 75 100 125 175 

1635 8950 4.86 4.16 3.67 3.37 4.29 4.16 4.06 3.95 .88 1.0 1.10 1.17 

1635 13425 4.95 4.26 3.77 3.48 4.39 4.24 4.13 4.00 .88 .99 1.09 1.15 

1635 17900 5 4.3 3.84 3.51 4.46 4.30 4.18 4.03 .89 1.0 1.09 1.14 

1635 22375 5.04 4.34 3.88 1  3.54 4.5 4.34 4.21 4.06 .89 1.0 1.08 1.14 

2453 8950 5.03 4.3 3.74 3.47 4.39 4.24 4.12 3.99 .87 .98 1.10 1.14 

2453 13425 5.14 4.4 3.91 3.58 4.53 4.36 4.29 4.07 .88 .99 1.09 1.13 

2453 17900 5.2 1  4.47 3.99 3.65 4.63 4.45 4.30 4.14 .89 .99 1.07 1.13 

2453 22375 5.23 4.52 4.04 3.7 4.71 4.51 4.36 4.19 .9 .99 1.08 1.13 

3270 8950 5.13 4.37 3.85 3.53 4.45 4.29 4.17 4.03 .86 .98 1.08 1.14 

3270 13425 5.25 4.49 4 3.65 4.62 4.44 4.3 4.14 .88 .98 1.07 1.13 

3270 17900 5.31 4.57 4.07 3.73 4.75 4.55 4.40 4.23 .89 .99 1.08 1.13 

3270 22375 5.34 4.63 4.1 3.79 4.86 4.65 4.49 4.31 .91 1.00 1.09 1.13 

4088 8950 5.19 4.42 3.91 3.57 4.48 4.32 4.19 4.05 .86 .97 1.07 1.13 

4088 13425 5.32 4.56 4.05 3.7 4.69 4.50 4.35 4.18 .88 .98 1.07 1.12 

4088 17900 5.38 4.64 4.14 3.78 4.85 4.64 4.48 4.3 .9 1.0 1.08 1.13 

4088 22375 5.41 4.7 4.19 3.85 4.98 4.75 4.59 4.4 .92 1.01 1.09 1.14 

SR 0.037 0.05 0.06 0.087 

b .0335 .0283 .0225 .0146 

n .94 1.05 1.2 1.51 
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Fig. 9.10 Constant n' for Max. Shear Stress Concentration, Sc 

9.5.1 Comparison of Proposed Empirical Formulae with Finite Element 
Analysis 

The calculation procedure of bending moment and tie force in the 
supporting beam and maximum stresses at the interface of the wall-beam structure 
from the graphs obtained from the results of finite element analysis has been 
discussed in the previous articles. The equations are valid for a practical range of 
support width, beam depth and elastic properties of masonry constituents. The 
coefficients for maximum moment obtained from Eqn. 9.3 are compared with 
those obtained from finite element analysis and are presented in Table 9.2(a) to 
Table 9.2(c). The agreement has been found to be excellent. 

Similarly, the coefficient for maximum tie force in the supporting beam 

obtained from Eqn. 9.4 are compared with those obtained from finite element 

analyses and are given in 9.3(a) to Table 9.3(c). In this case also the agreement is 

found to be excellent. 
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Table 9.5 (a) Comparison of Sc (FE Vs. Design Equation, Eqn. 9.6) 
FR=.95 Sen = 1.75 (for all values of SR) 

Em Eb Sc froin FE Sc Design Sc Design/Sc FE 
Depth of Beam (mm) Depth of Beam (mm) Depth of Beam (mm) 

75 100 125 175 75 100 125 175 75 1 100 125 175 

1635 8950 2.21 1.95 1.78 1.55 1.95 1.89 1.844 1.790 .88 .97 1.03 1.15 

1635 13425 2.18 1.96 1.81 1.58 1.95 1.89 1.845 1.791 .89 .96 1.02 1.13 

1635 17900 2.17 1.95 1.81 1.59 1.95 1.89 1.845 1.791 .89 .97 1.02 1.12 

1635 22375 2.14 1  1.93 1.8 1 1.59 1.96 1.89 1.845 1.791 .91 .98 1.02 1.12 

2453 8950 2.32 1 2.04 1.86 1.61 2.03 1.97 1.904 1.821 .88 .96 1.02 1.13 

2453 13425 2.31 2.05 1.9 1.65 1  2.03 1.97 11.903 1.821 .88 .96 1.00 1.10 

2453 17900 2.3 2.05 1.9 1.68 1 2.03 1.97 11.902 1.820 .88 1 .96 1.00 1.08 

2453 22375 2.3 2.03 1.9 1.67 2.03 1.974 1.904 1.822 .88 .97 1.00 1.09 

3270 8950 2.38 2.08 1.9 1.63 2.09 2.136 1.963 1.853 .88 1.02 1.03 1.13 

3270 13425 2.39 1 2.11 1.9 1.69 2.09 2.049 1.965 1.855 .87 .97 1.03 1.09 

3270 17900 2.37 1 2.1 1.9 1.72 2.09 2.05 1.966 1.855 .88 .97 1.03 1.08 

3270 22375 2.35 2.1 1 1.9 1.72 2.10 2.052 1.967 1.856 .89 .98 1.03 1.08 

4088 8950 2.42 2.11 1.9 1.65 2.16 2.134 2.031 1.892 .89 1.01 1.07 1.14 

4088 13425 2.44 2.14 2 1.72 2.16 2.134 2.035 1.895 .88 .99 1.01 1.10 

4088 17900 2.42 2.13 2 1.74 2.16 2.131 2.033 1.894 .89 1.00 1.01 1.09 

4088 22375 2.4 2.12 2 1.75 2.16 2.134 2.034 1.894 .90 1.00 1.01 1.08 

SR . 0.037 0.05 0.06 0.087 

b 0.089 0.076 0.064 0.045 

n 1  0.76 1.06 1 1.12 1.38 

I 
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Table 9.5 (b) Comparison of Sc (FE Vs. Design Equation, Eqn. 9.6) 
FR=.9 Scn= 1.33 (for all values of SR) 

Em Eb Sc from FE Sc Design Sc Design/Sc FE 
Depth of Beam (mm) Depth of Beam (mm) Depth of Beam (mm) 

75 100 125 175 75 1 100 1251 175 75 100 125 175 

1635 8950 1.74 1.48 1.34 1 1.22 1.502 1.456 1.365 1.33 .86 .98 1.02 1.09 

1635 134251 1.69 1.46 1.3 1.25 1.503 1.457 1.365 1.33 .89 .99 1.05 1.06 

1635 179001 1.65 1.44 1.32 1.25 1.503 1.457 1.365 1.33 .91 Tii 1.03 1.06 

1635 22375 1.61 1.42 1.31 1.25 1.504 1.458 1.366 1.33 .93 1.02 1.04 1.06 

2453 8950 1.84 1 1.58 1.37 1.22 1.578 1.537 1.392 1.331 .86 .97 1.01 1.09 

2453 13425 1.81 1.55 1.36 1  1.24 1.576 1.535 1.392 1.331 .87 .99 1  1.02 1.07 

2453 17900 1.77 1.52 1.35 1.25 1.575 1.534 1.392 1.331 .89 1.00 1.03 1.06 

2453 22375 1.73 1.49 1.33 1.25 1.578 1.537 1.393 1.331 .91 1.03 1.04 1.06 

3270 8950 1.94 1.64 1.4 1.21 1.645 1.617 1.421 1.332 .84 .98 1.01 1.10 

3270 13425 1.91 1.6 1.4 1.23 1.647 1.619 1.422 1.165 .86 1.01 1.01 .95 

3270 17900 1.86 1.57 1.4 1.23 1.648 1.62 1.423 1.332 .88 1.03 1.01 1.08 

3270 223751 1.82 1.54 1.37 1.23 1.648 1.620 1.423 1.332 .9 1.05 1.04 1.08 

4088 8950 1 2.01 1.67 1.45 1 1.19 1.717 1.709 1.456 1.332 .85 1.021 1.00 1.12 

4088 134251 1.97 1 1.64 1.45 1 1.22 1.721 1.714 1.467 1.332 .87 1.04 1.01 1.09 

4088 179001 1.93 1 1.6 1.42 1.22 1.721 1.714 1.457 1.332 .89 1.07 1.02 1.09 

4088 22375 1.88 1 1.56 1.4 1.21 1.722 1.715 1.456 1.332 .91 1.10 1.04 1.10 

SR 0.037 0.05 0.06 0.087 

b 0.098 0.092 0.035 0.002 

n 0.89 1.21 1.4 1.68 

Table 9.5 (c) Comparison of Sc (FE Vs. Design Equation, Eqn. 9.6) 
FR=.846 Scn = 1.41 (for all values of SR) 

Em Eb Sc from FE Sc Design Sc DesignlSc FE 
Depth of Beam (mm) Depth of Beam (mm) Depth of Beam (mm) 

75 100 125 175 75 100 125 1 175 75 100 125 175 

1635 8950 1.73 1.55 1.38 1.12 1.414 1.438 1.436 1.423 .82 .93 1.04 1.27 

1635 13425 1.7 1.56 1.4 1.19 1.414 1.438 1.436 1.423 .83 .92 1.02 1.19 

1635 17900 1.67 1.55 1.4 1.17 1.414 1.438 1.436 1.423 .84 .93 1.02 1.21 

1635 22375 1.65 1.54 1 1.39 1.17 1.414 1.438 1.436 1.423 .85 .93 1.03 1.21 

2453 8950 1.75 1.6 1.42 1.15 1.417 1.460 1.46 1.438 .81 .91 1.03 1.25 

2453 13425 1.72 1.6 1.45 1.19 1.417 1.459 1.459 1.437 .82 .91 1.00 1.2 

2453 17900 1.68 1.58 1.45 1.21 1.417 1.459 1.459 1.437 .84 .92 1.00 1.18 

2453 223751 1.65 1 1.56 1.44 1.21 1.417 1.460 1.460 1.438 .86 .93 1.01 1.18 

3270 89501 1.74 1 1.6 1.44 1.17 1.420 1.483 1.486 1.456 .81 .92 1.03 1.24 

3270 134251 1.71 1 1.61 1.46 1.21 1.420 1.484 1.487 1.457 .83 .92 1.02 1.20 

3270 179001 1.67 1 1.59 1.46 1.23 1.420 1.484 1.488 1.457 .85 .93 1.02 1.18 

3270 22375 1.63 1.57 1.4 1.23 1.420 1.485 1.488 1.457 .87 .94 1.06 1.18 

4088 8950 1.79 1.6 1.44 1.18 1.424 1.511 1.52 11.481 .79 .94 1 1.05 1.25 

4088 13425 1.74 1.61 1.47 1.22 1.425 1.520 1.5311 1.49 .82 .94 1 1.04 1.22 

4088 17900 1.69 1.6 1.47 1.24 1.424 1.512 1.521 1.482 .84 .9451 1.03 1.19 

4088 22375 1.65 1.57 1.46 1.24 1.424 1.513 1.522 1.482 .86 .9631 1.04 1.19 

SR 0.037 0.05 0.06 0.087 

b 0.002 0.021 0.028 0.028 

n 1.4 1.41 1.58 1.88 
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Likewise, the comparison of maximum vertical stress concentration 

obtained from Eqn. 9.5 has been made with those obtained from finite element 

analyses. The results are presented in Table 9.4(a) to Table 9.4(c). Similarly the 

maximum shear stress concentration obtained from Eqn. 9.6 has been compared 

with those obtained from finite element analyses. The results are presented in 

Table 9.5(a) to Table 9.5(c). In both cases the agreement is satisfactory. 

9.5.2 Comparison Between Proposed Empirical Formulae and the 

Existing Formulae 

Unlike other researchers the effect of support width has been considered in 

this study and the design equations and the design curves derived before (Eqn. 9.3 

to Eqn 9.6) consider the support widths having different practical dimensions. 

When the wall-beam has knife edged support (i. e. support width, b = 0), as it was 

the case in the past (Wood, 1952; Stafford Smith and Riddington, 1977 and Davies 

and Ahmed, 1978), the design coefficients derived before (Eqn. 9.3 to Eqn 9.6) 

need to be modified. This has become necessary for the purpose of comparison 

between the results of the proposed formulae and the existing formulae. The finite 

element program used in this study is flexible enough to allow this modification by 

slight change in the input data file. For this PUPOSC  a total of 48 analyses was 

carried out. A summary of the parameters considered and the finite element results 

can be seen from Table A V.2 in Appendix V 

The modified curves for Kin and constants b and n (see Fig. 9.12 and 9.14) 

have been obtained from the results of the parametric study. The general equation 

for coefficient for maximum bending moment, (K1= Kin (1 + bc1 )) is valid in this 

case also. The constant Kin is obtained from Fig. 9.12; constants b and n from Fig. 

9.13 and characteristics parameter c1  from Eqn. 9.1 with b = 0. Similarly, the value 

of the constants for tie force, vertical stress and shear stress can be obtained if 

necessary. 

The coefficient for maximum bending moment Ki in the supporting beam, 

obtained from present finite element analyses along with the value suggested by 

other authors (Wood, 1952; Stafford Smith and Riddington, 1977 and Davies and 

Ahmed, 1978) are presented in Table 9.6. The comparison is shown in Table 9.7. It 

is seen from Table 9.6 and Table 9.7 that coefficient for maximum moment 

1 
obtained from the proposed equation agrees favourably with the finite element 

results. The coefficients for maximum bending moment as derived by Davies and 
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Ahmed (1978) for flexible beams (5 <R < 7) are found to agree favourably with 

the results obtained from proposed formula. With the increase of 'R', i. e., when the 

beam becomes more flexible the difference between the results of Davies's formula 

and the proposed formula increases but still agrees reasonably well on the 

conservative side. The coefficients for maximum moment as derived by Stafford 

Smith and Riddington are very high in comparison to the present finite element 

analysis and the Davies's formula. The expression for moment proposed by 

Stafford Smith and Riddington does not clearly indicate whether or not the 

reduction of bending moment due to induced horizontal shear at the interface has 

been considered. In the computations of total bending moment in the supporting 

beam, the reduction of moment due to horizontal shear at wall-beam interface has 

been shown in Davies's expression and is not considered in this comparison. The 

better agreement for moment coefficient has been observed between the present 

finite element analysis and the formulae proposed by Davies and Ahmed (1978) 

and Stafford Smith and Riddington (1977) in case of stiffer beams. The 

coefficients for maximum moments from Table 9.6 are shown graphically in Fig. 

9.14 wherein the foregoing observations are clearly demonstrated. The diagonal 

$ 

solid line represents the coefficients for maximum moments obtained from present 

finite element analyses and the different symbols represent the values calculated by 

equation proposed by different authors. it is seen that within a particular range of 

SR (SR = 0.037 to 0.087) Eqn. 9.3 truly represent the values obtained from present 

finite element analysis. Equation proposed by Davies and Ahmed is reasonably 

good for wall-beams with stiffer supporting beam (SR ~! .06; or R :!~ 7) . For more 

flexible beams the coefficients become smaller leading to higher moment (M= 

WL/K1) in the beam resulting in a conservative estimate of the materials. Equation 

proposed by Stafford Smith and Riddington overestimates the value of Ki 

resulting in lower values of bending moment leading to nonconservative estimate 

of the materials. 



230 

Table 9.6 
Coefficients KI from Analyses, Design Eqn. and Other Authors 

Modulus of Elasticity for Brickwork = Ew 
Maximum Bending Moment = WL/ KI where KI is Coeff. for Max. Bending Moment 

END SUPPORTED BEAM (B =0) 

Ew K1(Davies) 
h (mm) 

75!! 125!! 175! 

KI(Stafford) 
h (mm)= 

75 125 175 

K1(Design) 
h (mm) = 

75 125 175 

KI (Analysis) 
h (mm)= 

75 125 175 

5408 100.6 61.44 48.9 140.4 84.2 60 109.8 68.7 50.1 108.6 67.5 48.5 

6531 105.2 73.64 51.02 149.5 89.7 64.1 113.3 70.5 51.1 112.2 70.0 50.5 

7287 107.9 75.51 52.3 155.0 93.0 66.5 115.6 71.7 51.9 114 71.2 51.6 

7831 109.8 76.78 53.15 158.8 95.3 68.1 117.3 72.6 52.5 115.6 72.3 52.5 

6450 104.9 73.42 50.88 148.9 89.3 63.8 113.0 70.4 51.0 114.7 70.8 51 

8113 110.777.4053.57 160.7 96.4 68.9 118.2 73.1 52.9 119.3 73.8 53.5 

9314 114.4 79.91 55.27 168.3 101.0 72.1 121.9 75.2 54.4 122 75.6 55 

10222 116.9 81.64 56.45 173.6 104.1 74.4 124.8 76.9 55.6 124.2 77.1 56.1 

7135 107.4 75.15 52.04 154.0 92.4 66.0 115.2 71.5 51.8 118.4 72.8 52.5 

9230 114.1 79.74 55.16 167.8 100.7 71.9 121.6 75.0 54.2 123.9 76.4 55.4 

10816 118.5 82.72 57.18 176.9 106.1 75.8 126.6 78.0 56.5 127.1 78.6 57 

12060 121.6 84.83 58.61 183.4 110.0 78.6 130.7 80.3 58.5 129.5 80 58.3 

7623 109.1 76.30 52.82 157.4 94.4 67.5 116.6 72.3 52.3 121.9 74.3 53.6 

10061 116.5 81.34 56.25 172.7 103.6 74.0 124.3 76.6 55.4 127.1 78.2 56.6 

11977 121.4 84.70 58.52 183.0 109.8 78.4 130.3 80.2 58.4 130.6 80.5 58.5 

13521 124.9 87.12 60.15 190.5 114.3 81.7 135.1 83.2 61.1 133.4 82.1 59.8 

5< R <7 : r  = 0.25 and /U.33; P K >1 :rU.i aria A0.D 

KI (Davies and Ahmcd) = 

4?.(l+f3R) 
where R4 = 

E W tH 3  

r El 

K! (Stafford Sth and Riddington) = 4K413  where K4  - 
E W tL3  

El 
E L-2B 

K! (Eqn. 9.3) = Kin (1+ bc111 ) where c1  = 

E h 

13 
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The characteristics parameter K first proposed by Stafford Smith and Riddington (1976,1977) was 

EtL3 i 4/ 

given by K 
=  EI 

and they proposed maximum bending moment = WL/ 4K"3  where Ww 

is total load on top of wall, Ew  = modulus of elasticity of wall t = thickness of wall and E, I and L are 
the modulus of elasticity, second moment of area and span of the beam respectively. (in this case t=1 14 

mm, L= 2004 mm, E = Ec = 28600 Mpa) Therefore, the moment coefficient is Ki = 4K4"3  

Davies and Ahmed (1978) proposed a characteristics parameter similar to that of Stafford Smith 

and Riddington by replacing L by H and is known as flexural stiffness parameter, R which is given by R4  

E tH3  

EI  = 
where, H= height of brick wall only (= 1230 mm constant for all three depth of beam 75, 125, 

WLr 
175 mm. L= 2004 mm). And they also proposed bending moment as, Mv = A(1~pR) due to vertical 

4  

load and was assumed to be maximum at central region. Therefore, the moment coefficient considering 

4X(1+13R) 
vertical load is K! = 

r 
Three cases were considered according to magninide of stiffness parameter R. 
Case I R—< 5 stiffbeam : r = 0.2 and X =0.25 
Case 2 flexible beam 5 < R < 7 : r = 0.25 and X = 0.33. 
Case 3 Very flexible beam R > 7: r = 0.33 and X = 0.5. 

11 

41 
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Table 9.7 
Comparison of Moment Coefficient, Ki used by Other Authors 

with proposed design equation (Eqn. 9.3) 

Modulus of Elasticity of Brickwork = Ew 
Maximum Bending Moment = WL/Kl where K! is the Coefficient for Maximum 

Bending Moment 

END SUPPORTED BEAM (B =0) 

L-2b Em Eb Ew 
K 1 (FE)/K 1(Design) 

h (mm) 
75 125 175 

K 1(Eq)/KI(S. Smith) 
h (nirn) 

75 125 175 

K 1(Eq.)/K 1(I)avies) 
Ii (mm) 

75 125 175 

2004 1635 8950 5408 .99 .98 .97 .78 .81 .84 1.09 1.12 1.02 

13425 6531 .99 .99 .99 .75 .78 .79 1.07 .96 1.00 

17900 7287 .99 .99 .99 .74 .77 .78 1.07 .95 .99 

22375 7831 .98 .99 1 .74 .76 .77 1.07 .94 .99 

2453 8950 6450 1.01 1.00 1 .76 .79 .80 1.07 .96 1.00 

13425 8113 1.00 1.01 1.01 .74 .76 .77 1.07 .94 .99 

17900 9314 1.00 1.00 1.01 .72 .74 .75 1.06 .94 .98 

22375 10222 .99 1.00 1.00 .72 .74 .75 1.07 .94 .98 

3270 8950 7135 1.03 1.02 1.01 .75 .77 .78 1.07 .95 .99 

13425 9230 1.02 1.02 1.02 .72 .74 .75 1.06 .94 .98 

17900 10816 1.00 1.01 1.01 .72 .74 .74 1.07 .94 .99 

22375 12060 .99 .996 .99 .71 .73 .74 1.07 .95 1.00 

4088 8950 7623 1.04 1.02 1.02 .74 .76 .77 1.07 .95 .99 

13425 10061 1.02 1.02 1.02 .72 .74 .75 1.07 .94 .98 

17900 11977 1.00 1.00 1.00 .71 .73 .74 1.07 .95 .99 

22375 13521 .98 .99 .98 .71 .73 .75 1.08 .95 1.01 

4 
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From results of experimental tests, Wood (1952) proposed that when brick 

wall is supported on reinforced concrete beam, the beam reinforcement may be 

designed for a bending moment of WL/100 either for plane walls or for plane walls 

with central opening only. In a comparison made by Male and Arbon (1969) it was 

noted that for the modular ratio (m = Eb/Em) of 5.35 corresponding to burnt brick 

wall the agreement between the finite element analysis made by him (Maximum 

Moment = WL/l 16) and that proposed by Wood (Maximum Moment WL/100) is 

very good but for a modular ratio of 30 corresponding to light weight concrete 

block wall, the moment by finite element is considerably higher (WL143) than the 

value suggested by Wood (WLIlOO). In a broader sense the moment coefficient 

method of Wood makes no allowance for variations of the wall/beam stiffness due 

to change in elastic properties and/or beam section. As a result, the constant 

moment coefficient of WL/100 as proposed by Wood, irrespective of other 

parameters, will lead to either very large moment for flexible beams or very low 

moment for stiffer beams. This observations are clearly shown in Fig. 9.14. 

The limiting moment arm method proposed initially by Navier for freely 

supported deep beam walls was applied by Wood to brick wall supported on a 

concrete beam. In this method the tension is considered to be concentrated on the 

beam acting at a distance 2/3 rd of the overall depth from the 'centre of 

compression' with a limit of 0.7 times the span. From the analytical and 

experimental results described before , it is clear that the stress distributions in the 

beam are generally far from uniform. Furthermore, the moment makes no 

allowance for variations of the wall/beam stiffness due to change in elastic 

properties and beam section. Therefore, the use of limiting moment arm method 

will again result in either very large moment for flexible beams or very low 

moment for stiffer beams. 

However with the foregoing discussion it can be concluded that the equation 

proposed in this study (Eqn. 9.3) can be recommended as a reasonable one which 

can accommodate most of the important parameters. 

9.6 THE DESIGN PROBLEM 

The use of wall-beam concept in building structure is getting popularity 

since 1952. It is also possible to use this concept in the design of transfer girder at 

the base of the building. Thus replacement of the traditional RCC girder can save 

huge amount of concrete and steel. Therefore, it is important 
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to recognise more accurately the consequences of the arching effect in the wall-

beam structure and to incorporate them into design method. 

In practice the thickness and material of a wall are often determined by 

considerations other than those of structural adequacy, for example, acoustic or 

aesthetic requirements and commercial size of the brick unit. One of the criteria for 

the design of a wall or beam structure is the limiting beam deflection. A value 

often adopted in practice is a maximum deflection of L/300. In a series of full scale 

test conducted by Burhouse (1969) the largest deflection recorded at failure was 

L/840. It is therefore clear, that in the majority of design cases the deflection will 

not be critical. In such cases the problem reduces to the selection of the minimum 

size of the supporting beam which is strong enough to support the bending 

moments induced in it by the wall and the super imposed load carried by it. The 

beam should also be stiff enough to maintain the wall stresses within allowable 

limits. 

p 
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9.6.1 Estimate of critical actions. 

(a) Knife edged support. 

To illustrate the design formulae and its usefulness the wall-beam shown in 

Fig. 9.15 is considered. 

Variables 

T 
Ec =24800 MPa L = 3000 mm 
Eb =17900 MPa H = 2100mm 

H Em=3270MPa h=150mm 
Tb=70mm t=115mm 

I Tm=12fl1m (width of beam) 

Total load (including self wt.)= 179.4 kN 

4' 

Calculation of coefficient for maximum moment, Ki (M= WL/KI) 

Coefficient for maximum Moment (Ki) from Eq. 9.3 is KI = Kin (1+bc1 fl) 
E L-2b E a 1 Eb  i - b ___ .j  

and  c1  - - wcre - , j.t = , p - 
E 

. 

h " (+p) 1+a 1±a ' Em  

Tb a = - and b= width of support = 0 in this case. 
Tin 

By assigning proper values from Fig. 9.15 one can get 

a = 5.83; 13 = 5.47; 4) = 0.146; t = 0.85, therefore, E,,,, = 10857 MPa and 

c1  = 8.756 

Taking values of Kin =75.9 from Fig. 9.12 and b = .0265, n1.17 from Fig. 9.13 

the va1ueofK1=75.9(1+.0265*8.765 7) = 95.6 

To determine the coefficient for maximum tie force in the supporting beam, 

maximum vertical stress concentration and maximum shear stress concentration for 

the end supported wall-beam the related curves may be drawn from the finite 

element results summarised in Table A V.2 of Appendix V. 

p 
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(b) Considering support width 

In all practical cases the end condition of wall-beam must provide some 
bearing area through which it will transfer the load downward. Thus the top of pile, 
pile cap, column or load bearing wall do provide a finite width of support for the 
wall-beam. It has been seen in the parametric study that this support width if 
considered in the design can provide a considerable amount of beneficial effects in 
different aspects of wall-beam. To illustrate the use of design formulae proposed 
for wall-beam system the panel shown in Fig. 9.15 with 150 mm support width is 
considered. 

Calculation of coefficient for maximum moment, KI (M= WL/K1) 

Coefficient for maximum Moment (KI) from-  Eq 9.3 is Ki = Kin (1+bc1 fl) 

'SR' = hJL, 'FR' = (L-2B)/L and c2 = I(1000.sR/FR) 

SR = 150/3000 = .05 FR = 2700/3000 = 0.9 and c2  = 7.45. Using these values we 
get Kln = 132 from Fig. 9.4 and b = .0285, n = 1.47 from Fig. 9.5 and c1  =7.88 
computed as before with B = 150 mm. Thus with the above values 
Kl = 132 (1+.0285*7.881 .47)=210. 

Thus this calculation reveals that keeping all other variables constant the 
consideration of support width just reduces the moment to at least half of the value 
calculated by moment coefficient method proposed by Wood (1952). It seems that 
due to this factor of safety his design procedure became remarkably popular. It is 
claimed that although there have been numerous applications in practice no case of 
failure has been reported (Wood and Simms, 1969). 

Calculation of coefficient for maximum tie force, K (T= W/K 

Coefficient for maximum Tic force (K) from Eq. 9.4 is K = Kn (l+bc1fl), where, 
SR, FR, c1  and c2  are same as before. With these values, using Fig. 9.6, the value 
of Kn = 4.8 and using Fig. 9.7, b = .041 and n = 1.27. Thus with the above values, 
K = 4.8(1±.041* 7.881.27)= 7.51. 

Calculation of maximum vertical stress concentration, Vc (= 

Coefficient for maximum vertical stress concentration (Vc) from Eq. 9.5 is Vc = 

Vcn( + bc11 ). The values of 'SR', 'FR', c1  and c2  are same as before. With these 
values and from Fig. 9.8 we get Vcn = 4.8. From Fig. 9.9 we get b = .029 and n = 

1.13. Thus with these values Vc = 4.8(1+.029 * 7.881.13) = 6.23. 
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iv) Calculation of maximum shear stress concentration, Sc (= t/w) 

Coefficient for maximum shear stress concentration (Sc) from Eq. 9.6 is 

Sc = Scn(1+b(yci )). The values of'SR', 'FR', and c1  are same as before andy = 

E1 /E= 0.3. With these values and using Fig. 9.8 we get Scn = 1.33. Using Fig. 

9.10 we get n = 1.24 and using Fig. 9.11 we get b = .086. Thus with the above 

values Sc = 1.33(1+.086 *(3*788)1.24) = 1.66. 

9.6.2 Adequacy of Beam Section and Reinforcement 

The calculations presented in the previous sections are carried out in terms 

of imposed loads and are to be compared with the design strengths of the material 

in compression, tension and shear. The design of supporting beam would be carried 

out in accordance with the relevant code of practice. 

Bending strength of beam 

In designing the beam of a wall-beam structure it is important to ensure the 

- 
strength and stiffness of the beam against bending. The coefficient for maximum 

moment in the beam of Fig. 9.15 (with support width of 150 mm) has been found 

to be 210. Therefore, maximum moment in the supporting beam in this case, Mm 

= WL/Kl= 179400*3000/210 = 25.63 x 105  N mm. With only 2 no 10 mm 

diameter reinforcing steel having 345 MPa yield strength and concrete of 27.6 MPa 

crushing strength having an assumed size (115 mm x 150 mm) of the supporting 

beam is strong enough to withstand this bending moment. 

The location of the maximum moment is not so important for the design 

purpose, since the reinforcement has to be continued for full length of the beam. 

However, the maximum moment is found to occur not at the middle but 

approximately at quarter distance from the support. 

Design of axial tie force in beam (T) 

This force is maximum at the centre and can be determined using the 

equation T = W/K, where K = coefficient for maximum tie force. The coefficient 

for maximum tie force in the beam of Fig. 9.15 (with support width of 150 mm) 

has been found to be 7.51. Therefore, T = 179400/7.51 =23888 N. The beam is 

acted upon by this axial tension in addition to the tensile stress due to bending. The 



239 

additional reinforcement required in this case will be 69 mm2. Therefore, 2 no 12 

mm diameter reinforcing steel at the bottom is sufficient to resist both tie action 

and bending action. 

Design for crushing failure of masonry 

Due to arching action in wall-beam the load applied on the top of wall 

concentrates towards the support. The concentration is maximum over the supports 

and many times more than the intensity of the applied load at the top of the wall. 

This concentration often results crushing failure at the corner. This maximum 

vertical stress in wall (fm)  can be determined using the equation fm= Vc x w, 

where Vc is the maximum vertical stress concentration as calculated in the 

previous article. The maximum vertical stress concentration in the beam of Fig. 

9.15 (with support width of 150 mm) has been found to be 6.23. Therefore, fm= 
6.23 x 0.52 = 3.24 MPa. The load carrying capacity ceases when the value of fm 
exceeds the maximum permissible compressive stress of masonry. However, the 

depth of beam may be increased to maintain desired level of factor of safety. The 

use of higher strength brick unit near the sUppOrtS is also reported to carry higher 

load under such circumstance (Burhouse, 1969). 

(iv) Design for sliding along interface 

The maximum interface shear stress (Tm)  occurs near the support and can 
be determined as trn=  Sc x w where Sc is the maximum shear stress concentration 
as derived in the previous article. The maximum shear stress concentration in the 
beam of Fig. 9.15 (with support width of 150 mm) has been found to be 1.66 in this 
case. Therefore, the maximum shear stress developed on the horizontal interface is 
TM = 1.66 x 0.52 = .863 MPa which has to be compared with shear strength of 
masonry and is given by the friction type formula, 

fs = fbsy 

in which fbs  is the shear bond strength, j.t is the coefficient of internal friction and 
CF
Y 
 is the compressive stress perpendicular to the bedding plane. When the 

masonry rests on concrete beam the conservative estimate of t is 0.5. The value of 

fbs in this study is 0.594 MPa. And the vertical stress corresponding to the location 
of maximum shear stress is assumed to be the maximum vertical stress as 
calculated in step (iii). 

f. = .594+.5*3.24 = 2.21 M Pa> 0.863 MPa 
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Vertical shear in the supporting beam 

The shear in the supporting beam can be assumed to be critical at a distance 

'h' from the face of the support. This is equal to half the vertical load on the total 

span minus the load on the left of critical section for shear. For the latter 

calculation the maximum vertical stress concentration at wall-beam interface is 

assumed to be occupied over a length of (B + h) from end of the beam. For the 

example in Fig. 9.15 with support width of 150 mm the maximum vertical stress is 

calculated as 3.24 MPa. Therefore, the maximum shear can be calculated as 

V= W/2 - Vc * w * t  * (B + h) 

... V = 179400/2 - 3.24 * 115 * 300 = 67620 N 

Shear stress developed = 67620/115/150 = 3.92 M Pa > 0.87 

Shear reinforcement has to be provided as per rule. Allowable shear stress without 

web reinforcement = 0.87 MPa from concrete. Shear capacity of the masonry part 

of wall-beam if considered can significantly reduce the developed shear stress in 

the beam. 

In addition to these forces and bending moment the supporting beam should be 

designed as a beam to carry the loading at the construction stage before composite 

action develops and any loading from the floor slabs if supported directly on it. 

9.6.3 Illustration of Economy in Design of Wall-beam Structure. 

The most significant effects in a wall-beam structure which result from the 

arching behaviour are the compressive and shear stresses in the masonry wall, and 

bending moment and tie action in the supporting beam. The combined result of 

these effects reduces the bending moment in the supporting beam. 

The supporting beam of typical wall-beam structure as shown below is to be 

designed to illustrate the comparison between wall-beam analysis and conventional 

analysis. The interaction forces in supporting beam and wall are calculated below 

according to design aids proposed in this study. It may be mentioned that the 

maximum vertical and shear stress developed in the wall are respectively 6.23 and 

1.66 times higher than the load intensity applied on the top of the wall. Considering 

the requirement for moment in the supporting beam the comparison is made for 
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material consumption (see Table 9.8). The comparison reveals that significant 

economy to the tune of 50% for concrete and 60% for reinforcing steel can be 

achieved by considering the composite action of wall-beam structure. 

Load, w = 0.52 NI mm2  

 

Variables: 

T 

Ec=24800MIPa L=3000mm
Eb=17900MPa H=2100mm 
Em=3270MPa h=150mm 
Tb=70mm t=ll5mm H 
T1  = 12 mm (width of beam) 

Total load (including self wt.) 179.4 kN 
\lf Support width =150mm 
L Steel yield str. = 375 MPa 
" Concrete crushing str.= 27.6 MPa 

L 

• Max. moment = 2.557 kN M (see Eq. 9.3; Fig. 9.4 and Fig. 9.5) 

• Max. tic force = 23.83 kN (see Eq. 9.4; Fig. 9.6 and Fig. 9.7) 

• Max. uY =  3.24 MPa (see Eq. 9.5; Fig. 9.8 and Fig. 9.9) 

• Max. t, = 0.86 MPa (see Eq. 9.6; Fig. 9.10 and Fig. 9.11) 

Table 9.8 Economy in Design of Wall-beam Structure 

Method of 

Analysis 

Effects in Beam Effects in Wall Material Required 

Moment 

(kN-M) 

Tie force 

(kN) 

Vertical 

Stress 

MPa 

Shear 

Stress 

MPa 

Concrete 
M3 

Steel 

12 mm4 

Wall-beam 2.557 23.83 3.24 0.86 .05 4 No 

Conventional! 60.4 - - - 0.1 10 No 

Economy 50% 60% 

Designed according to BNBC, 1993 
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9.6.4 Some Additional Practical Considerations for Composite Action 

of Wall-beam Structures 

I. Practically the ends of a wall-beam structure do no rest on knife edged 

supports, but are almost always (a) built in, or (b) if the beam is a part of the 

framed structure, its connection to the column will probably have some degree 

of rigidity, or (c) in other cases beam and wall may be continuous over one or 

more intermediate supports. From these practical considerations the coefficients 

for the design equations were derived from the analyses of wall-beams having 

variable support widths. In all the above cases (a to c) a rotational restraint acts 

on the ends of the beam thereby producing lower wall stresses. 

If the composite action is to be developçd between the wall and the supporting 

beam acting as an arch, the presence of doors or window openings can not be 

allowed in the arching region of the wall. 
It should also be noted that in the design method it is assumed that the weight 

of the wall and any superimposed load is uniformly distributed along the wall. 

However, if the weight of the wall or the applied load is distributed 

eccentrically the proposed design method would be inappropriate. 

An important practical consideration to ensure the composite action between 

wall and the beam is the construction of the wall on the supporting beam. If a 

wall is built on an unpropped beam, the bond between wall and the supporting 

beam may be weak due variation of curvature caused by bending. This effect 

will eventually produce a weak interface. Due to this weak interface the shear 

transfer between wall and the supporting beam may not be ensured which is 

very important for composite action. Therefore, the beam should be propped 

during construction until the wall is fully cured. 

9.7 SUMMARY 

In formulating design recommendations for uniformly distributed load on 

wall-beam structure, simplifications are usually made because of the difficulty in 

obtaining sufficient experimental data and/or realistically analysing the behaviour 

of wall-beam. 

A study of previous research reveals that some significant experimental 

work has been carried out, but with very limited data for the formulation of a 

rational design basis. Theoretical research in this area is also lacking. The 

prediction of failure of wall-beams subjected to uniformly distributed load using 
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numerical technique is very complex due to large number of parameters. The lack 

of suitable material models and efficient numerical procedures were also major 

drawback for theoretical research in the past. Since, the finite element model 

developed, in this investigation is directly applicable to this problem, it has been 

used to prepare some limited design information for solid brick wall-beam 

structure subjected to uniformly distributed load. 

A parametric study of the behaviour of storey-heigh wall-beam with varying 

support width, beam depth and elastic properties was performed. A total of 240 

walls were analysed. The following conclusions can be drawn from the study. 

I. The finite element model has provided a complete solution to the wall-beam 

interaction problem. 
From finite element analysis the influence of some significant parameters was 

investigated with the aim of formulating simple design procedure. 

From the results of the parametric study, design rules to estimate the maximum 

bending moment, maximum tic force in the supporting beam, maximum 

vertical stress and maximum shear stress within the masonry wall have been 

proposed. 
The moment coefficient method proposed by Wood (1952) gives higher 

moments for relatively flexible beams and lower moments for stiffer beams. 

The moment calculation suggested by Stafford Smith and Riddington (1977) is 

nonconservative. However the design method proposed by Davies and Ahmed 

(1978) can be a good alternative provided proper interaction between brick and 

mortar joint is considered in the evaluation of modulus of elasticity of 

brickwork (Ew). 
The maximum bending moment in the beam occurs very near to the supports 

and not at the middle of the span. 

To ensure arch action the door or window opening should be away from the 

ends of the wall-beam. 

The proposed design formulae are valid for uniformly distributed load. 

However, the proposed finite element model can be used for wall-beam having 

other types load as well. 

The beam should be propped until the wall is cured. 



• CHAPTER 10 

CONCLUSIONS AND RECOMMENDATIONS 

This thesis has developed finite element program which can be used to 

analyse wall-beam structure subjected to uniformly distributed and concentrated 

loads. The proposed model considers brick masonry to be a composite of bricks set 

in a non-linear mortar matrix. The non-linear response of brick masonry is 

produced by a combination of non-linear deformation characteristics and 

progressive failure of the masonry constituents (with the latter effect being the 

major contributing factor). 

Linear elastic finite element models have been used in chapter 3 to establish 

the critical parameters which influence the behaviour of wall-beam structure 

subjected to uniformly distributed loads. Two types of two-dimensional finite 

element analyses were used. One assumed masonry to be a homogeneous 

continuum, the other considered masonry to be an assemblage of elastic bricks and 

joints, each with differing properties. The finite element model which treats bricks 

and joints separately is more effective, since it reflects the influence of the varying 

stiffness of its constituents. The linear elastic finite element model used in this 

chapter is limited in its use and can study the nature of stress distributions only. It 

cannot be used to predict the failure and crack propagation. 

The derivation of material parameters needed to define the finite element 

model have been described in chapter 4. Finite element model for masonry in 

which bricks and mortars are considered separately requires brick and mortar 

properties individually and preferably in in-situ condition along with the bond 

parameters between bricks and joints. Results of the material properties obtained in 

this chapter are important for 'micro' modelling of masonry structures and thus 

make it possible to study the localised failure in wall-beam structures. 

Chapter 5 described the constitutive relations for brick, concrete, steel and 

mortar joints before and after failure. Failure criteria for joint bond failure and 

tensile and compressive failure of bricks, concrete, steel and mortar joints have 

been presented, as well as appropriate techniques for crack modelling. 

Consideration has also been given to the manner in which the local stresses in the 

fractured regions are redistributed. The possibility of crack closing, opening and 

formation of secondary cracks have also been considered. In wall-beam like other 
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masonry structures progressive cracking is major source of non-linearity in 

comparison to deformation characteristics of component materials. 

The non-linear finite element program and some of the important 

components which govern the performance and efficiency of the computer 

programs have been descried in chapter 6. A four nodded rectangular linear 

element has been used as it is the most suited to the geometric nature of the bricks 

and joints. Finer mesh was used in regions of high stress gradients for better 

accuracy of the solution. The program is incremental and iterative in nature 

allowing material non-linearity and progressive cracking. The crack propagation 

was simulated by smeared crack modelling technique. 

Experimental verification of the theoretical model has been described in 

chapter 7 in which the failure loads and different failure modes were verified by 

tests on different types of wall-beams. The predicted failure loads reasonably 

agreed with the experimental results but were consistently lower. The gradual 

release of stresses in the region of a crack ("strain softening" model) realistically 

reflects the propagation of the crack. The finite element model was found to be 

capable of predicting initial cracking load, failure load and failure pattern with 

reasonable accuracy and was considered representative for analysis of wall-beam 

structure with uniformly distributed load. The verification also confirms that the 

material model developed in chapter 4 and chapter 5 is realistic. 

A sensitivity analysis of parameters which influence the non-linear fracture 

analysis of wall-beam structure was carried out in chapter 8. This study revealed 

that the Young's modulus of elasticity of the masonry constituents have 

considerable influence on the load carrying capacity of the wall-beam panel. And 

the strength parameters specially the tensile strengths of brick and mortar are of 

prime importance to predict the failure load. This sensitivity analysis suggests the 

relative importance of different aspects of the material model derived in chapter 4. 

Sensitivity analysis also suggests that influence of non-linear deformation 

characteristics of constituents materials and bond property of mortar joints are not 

significant to ultimate load. 

A comprehensive parametric study of the behaviour of storey high wall- 

beam has been carried out in chapter 9. From the results of this parametric study 

J design rules to estimate the maximum bending moment and tie force in the 
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supporting beam, and maximum vertical stress and shear stress within the masonry 

wall have been proposed for uniformly distributed load. 

Even though the validity and potentials of the finite element model (and 

hence the material model) have been demonstrated, the limitations of the study 

must be clearly defined. The material model has not considered time dependant 

behaviour or the possibility of cyclic loading. The results are only applicable to 

solid masonry wall-beam subjected to uniformly distributed load which extends 

over the complete wall thickness. 

Despite these limitations, the proposed finite element model offers major 

advantages over previous analyses. It is an ideal research tool, since each of the 

components -of wall-beam structure is modelled separately, and the properties of 

these individual components can therefore be varied conveniently. This is in 

marked contrast to most previous models which have considered brick masonry as 

a continuum with average properties. The model can be used to prepare design 

information for any static load, and can be used as a realistic substitute for any 

experimental investigation. Since material parameters required for the finite 

element model can be determined from relatively simple tests, it can be readily 

adopted to any brick-mortar combination built in any bond pattern. 

SUGGESTIONS FOR FURTHER RESEARCH 

The present study has been concerned with the investigation of interaction 

of wall-beam structure considering the support width, beam depth and elastic 

properties of masonry constituents where the wall is made of burnt clay solid brick. 

Clearly there is a scope of further investigation on wall-beam structures made of 

hollow or light weight brick unit with reinforced concrete beam or steel beam. In 

this investigation only vertical in-plane load has been considered. The finite 

element program is also capable of modelling racking type loading which could be 

investigated in future. The boundary conditions of the wall-beam structures other 

than those considered in design aids indicated to have influence on the wall-beam 

interaction. These could be confirmed by further analytical and experimental works 

and may covered by the followings: 
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The effect of vertical edge ties or stanchions. 

• The behaviour of walls on continuous beams. 

• The effect of loading at the beam level. 

• The influence of fixity of supports. 

• The influence of off set openings. 

From the elastic analysis of wall-beam with a central opening, it may be 

concluded that apart from slight increase in the vertical stress concentration over 

the supports the influence of a central door or window opening on the interaction 

between wall and beam is insignificant. However, for an opening near a support, 

the stress flow is influenced by the geometry of that opening. An offsct door 

opening gives rise to concentrated load effect along the span and hence induces 

vertical stress concentration in the wall and substantial bending moment and 

deflection in the supporting beam. A detailed analytical and experimental 

investigation should be carried out for wall-beam structure with such off set 

opening. Therefore, the design aids proposed in this study should not be adopted 

for the design of wall-beam structure with opening near the support. 

P1 
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p. APPENDIX I 

RECTANGULAR ELEMENT (4-NODED) 

Rectangular element is one of the popular and simple type of element. It is 

convenient to relate its local co-ordinate axes with the global axes by its inclination angle. 

Considering the local reference system and using an undetermined parameters expansion, 

the displacements are approximated by 

U = a1  + a 2 x + a 3 y + a 4 xy 

v=cL 4cL4x+a 7 y+a8 xy 
(AI.l) 

This gives linear variation for the displacements on the element boundary, but a slightly 

non-linear one inside the element, due to the presence of the term xy. Also, due to this 

term this element gives much better result than the simple triangle. The problem is 

however that it can only be used for integration domains of rectangular shape, unless the 

finite element mesh could be constructed mixing triangular and rectangular elements. 

However, for wall-beam structure, where the bricks and mortars are predominantly of 

rectangular shape this clement is considered suitable. 

The displacements within an element are adequately described by a polynomial. 

Rayleigh-Ritz solution uses interpolation to express the displacement of each point within 

the element in terms of the d.o.f. of that element. These d.o.f. are found by solving 

simultaneous algebraic equations. 

Displacement { f} = v wj  in an element are interpolated from element nodal 

d.o.f. {d} by assumed fields and can be given by the relation, 

{f} =[N] {d} (AL2) 

where [N] is the shape function matrix. The strain displacement matrix [B] operates on 

{ d} to produce strains for plane and solid elasticity problem, as given by, 

a/ax 0 
(c) = [B] {d} where [B] = 0 ô/ôy [N] (AI.3) 

a/lay a/ax 
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In bending problems such as beams and plates it is customary to express strain energy in 

terms of curvature. Then {K} = [B] {d} where {K} is an array of curvature and [B] is 

derived from [B] = [N]. 1-lowever in either case [B] is derived from [N]. 

The total potential energy of a body of volume Vand surface area S is given by, 

fl= JUodV J{ f }T {F }dV J{f}{I)}dS{5}T{P} (Al.4) 

In the above equation surface integral, { f} is evaluated on S. Forces { P} are 

concentrated loads not included in the surface integral, and {s} are their displacements. 

They can be related as, {s} T{1}  =81 P1  + +. Usually the I and D1  are nodal 

forces and displacements. They are considered positive in the same sense. Strain energy 

per unit volume U0  , is given by 

= l{}T[D]{} (E} 7{D]k0} 
+ {c}T 

{ao} (AI.5) 

For the case of plane stress or plane strain, [D] becomes 3 by 3. and is respectively 

defined by, 

[1_v 1/ 0 
01 E 

[D]= 
E 

v 1 0 
and [D]= (l+v)(1-2v) 

V 1—v 0 

l-2v 1-v 
1v1 

[0 0 
2 00 

2 

Plane stress and plane strain conditions is to be prevailed in the xy plane and the xy plane 

must be a plane of elastic symmetry. 

Substitution of values of {f} and (c} from Eqn.(AI.2) and Eqn.(AI.3)in to Eqn. 

(AI.4) yields, 

b 

in which 

nuinel numcl 

flp {d} T[k]{d} — E{d}T{r} —{s} T {p} (Al .6) 
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01 [k] = f[B]T [D][B] dV (AL7) 

{r} = J[B]T  [D]{e0 }dV - J[B]T {ao }dV 

(AI.8) 
+ J[N] {F}dv + J[N] {i4ds 

V S 

where V denotes the volume of an element and S its surface. in the surface integral, [N] 

is evaluated on S. The summation signs in Eqn. AI.6 say that contribution from all nurnel 

elements of the structure have been included. [k] is identified as the element srifJiess and 

{r}as loads applied by an element to its nodes. When specific displacement field is 

assumed they yield specific [k] and {r} matrices. 

I Every d.o.f. in an element vector {d} also appears in the structure vector {s}. 

Therefore {5} replaces {d} if[k] and {r} are expanded to structure size. 

Thus Eqn. Al.6 becomes, fl = 8} T[ K]{ c} - {} { R} (Al .9) 

numet ILutICI 

where, [K] = [k], and { R} = { P} + { r) (Al. 10) 

Summations indicate the assembly of element matrices. Now lip  is a function of 

generalised co-ordinates {s}, so static equilibrium prevails when {s} satisfies the 

equation 

[K]{s}={R} (AI.11) 

Eqn. Al. l 1 is obtained by differentiating Eqn. AI.9. The element stiffness matrix (Eqn. 

AI.7) is symmetric because [D] is symmetric. 

Formulation of element stiffness: 

The eight d.o.f. element of Fig. Al. 1(a) has the assumed displacement field, 

lU 
= 

 ri 0 0 01 

itLo 0 0 0 1 x yxyj I {a1 a2 ".a8 } (ALI2) 
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oi l 
where a, are the i th nodal displacements in Fig. AI.1(a). This field and this element are 

some times called bilinear because, coefficients in the matrix come from the product of 

two linear expressions (1 + x) times (I + y). But like the constant strain triangle, the 

element is 'linear' because sides remain straight when the element deforms. For example 

if y = C then u and v are linear in x so edge 3-4 is always straight. Adjacent elements 

are therefore compatible with one another. The desired shape function can be found 

directly from Lagrange's interpolation formula as shown in Fig. Al. l(b). 

We have, (U v} = [N](d} (AI.13) 

N 0 N 2  0 N3  0 N4  01 
where, [N] 

= [ 0 N 1  0 N 2  0 N 3  0 N.J 

and {d} = {, V1 U ) V 113 
3 4 4} 

V U V 

and N are shown in Fig. Al.l(b), such that N = 1 if co-ordinates of node i are 

inserted, and N j
= 0 if i # J .  

(a) 

N, 
4bc 

(b-x)(c-y) 

N (b+x)(c-y) 
4bc 

x,11 J 
N= 4bc 

(b±x)(c +y)  

N= 4bc 
(b-x)(c+y) 

(b) 

Fig. AI.l. (a) Eight d.o.f. linear (also called bilinear) element. (b) Shape function of the 

element 

Substituting the appropriate values in Eqn. AI.2 (for plane elasticity), yields the value of 

strain displacement matrix, [B]. 

- (c 
- y) 0 (c 

- 
y) 0 etc. 

[B] = -- 
C 

0 - (b - x) 0 -(b+x) etc. (At14) 

-(b-x) -(c-y) -(b+x) (c-y) etc. 
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It is seen that c depends on y, ci,, depends on x, and y.,, depends on both x and y. 

Now with the [B] known it is ready to evaluate the stiffhess matrix 

eb T 

[k] = JJ[B] [D][B] t dx dy (AI.15) 

V where t is the element thickness. 

jtrc 

I 
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'I . QM6 - ELEMENT 

Linear elements are attractive because they are simple and have only corner nodes. 

But in bending they are too stiff. Consider the element in Fig. AI.2(a) is rectangular, so 

= 2x / L and i = 2y/ H. If displacements u are imposed, the element must respond as 

Fig. AI.2(b) because its sides must remain straight. Its deformation field is 

u=uE and v=0 (AL16) 

The correct shape under pure bending, Fig. AI.2(c), after Timoshenko (1970) is 

- Lu Hu 
u = uE,i1 and v = - (l 2) 

+ v(1— (Al.17) 

Eqn. AI.17 yield correct value of shear strain (y = 0), but Eqn. AI.16 do not. So to 

impose displacements u on the element, we must apply a moment big enough to 

overcome shear resistance as well as bending resistance. Thus the element is too stiff in 

bending mode. This effect is called parasitic shear. Its influence is disastrous if L / H is 

large. 

The improvement scheme proposed by Cook (1981) was dOnC by using global-

local formulation of nodeless d.o.f. is outlined below. And coefficient of element stiffness 

matrix for QM-6 element is given at the end of this Appendix. 

Nod eless D.O.F Global-Local Formulation 

In addition to conventional stiffness matrix [k] which operates on nodal d.o.f. 

{ d} another stiffness matrix [ka ] which operates on generalised co-ordinates {a} can 

simultaneously operate provided an element can have d.o.f. {d} and {a} at the same 

time. However in this context {a} represents additional element d.o.f. and is not another 

way of representing {d}. These a1  are called internal or nodeless d.o.f. These can be 

associated with the displacement field of a four-node plane quadrilateral by: 

u=N1 u +N5a1  and v=Nv+N5a2 (AI.18) 

where the individual shape functions are 

N1= 
1 
 0—)(1—i) N2= 1 (1+)(1—ii) 

A 
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N3  =(i+)(i+1) N4  =(1—)(1+T1) (AI.19) 

N5 =(l_ 2 )(1_n2) where N. is the "bubble function". 

The fifth mode has no effect in displacements along element edges. The d.o.f. 

1 
'ii 3 

T F-I LII 
-a.- 

il F-1 LIII 
2 

4 

(a) 

I U 

[171 
 Lx,U 

M 
MVJ/'7M 

(b) (c) 

Fig. AI.2 A rectangular Linear Element. Quadrilaterals within the element represent and 

initial and deformed shapes at Gauss Points of 2X 2 quadrature rule. (a) Undiformed 

shape. (b) Prescribed d.o.f. deform the element in bending mode. (c) The correct shape of 

beam segment in bending 

ai and a2 are internal to the element and are not associated with node. They can be 

regarded as u and v displacements at =il = 0 relative to the displacements at 4 = 11 = 0 

produced by the corner d. o. f. u1  and v,. 
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Although {a} is now present, arguments associated with formulas for element 

matrices for rectangular linear element (Eqn. AI.2 to Eqn. AI.8) require no change. But 

now displacement and strain fields are augmented. 

{f} =[N Na1{d a}, {}='[B Ba]{d  a} (AI.20) 

Adopting the notation 

[k] = J[B]1[D][B]dv' 
\, 

[k en '  = [k rel = J[B] ' FDI[Ba]dV (Al.21) 

[k] = J[3a]1'[DI[13a](1\T 

Matrix [k,, ] is the usual stiffness matrix that would appear if (a} were absent and {rr, } 
are the corresponding nodal loads as stated by Eqn. Al.8. Loads {ç } are t1osc associated 

with the use of [N 1 ] and [Ba ] instead of [N] and [B] in Eqn. Al .8. 

i'he element sti Ifriess equation is 

[k']{d a} = {rr  r} (AI.22) 

where [k'] is given by assembling Eqn. AI.21 in the format of Eqn. AI.23 

rk k rc ] {dr} 
= 

jr,1 (AI.23) 
kcr d rJ 

where {d} are boundary d.o.f. to be retained and {d}  are internal d.o.f to be 

eliminated. Eq. 3.24 regarded as a 'fragment' of the structural equations, so the right side 

represents loads applied to nodes by elements. The lower partition of Eq. 3.25 is solved 

for (d} 

{d} = _[kee ] '([kcr } {d r}—{rc}) (A1.24) 

4 

A. 

A 
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This expression for {d} is substituted into the upper partition of Eq. 3.24. Thus the 

element stiffness equation is [k]{d} = {r} in which 

[k] = [kj_[krc][kee][kcr] 
(AI.25) 

{r} = 

1-lere, [k] is the element stiffness matrix for Q M6 element. 

I 

A 
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Stiffness matrix for QM6 Element 

The condensed stiffness matrix proposed by Cook (1981) for a plane, isotropic, 
rectangular QM6 element of constant thickness t is shown bellow. 

V. V 

4 

x, U 

Element dimension and co-ordinates 

[k ]- 

Qt

8x8 l2(lm) 

A1 C1 A 2  —C2  A 4  —C1  

B1 C 2  B3  —C1  B4  

A 1  -Cl A3 —C2  

l3 C2  B2  

A 1  C i  

Symmetric 13 

A 3  C2  

—C2 132 

A 4 C1  

C1 B4  

A 2 C2  

C2 B3  

A1  —C1  

B1 

In plane stress: Q = E, rn = v 

E v 
In plane strain : Q = 2 m  

1—v 1—v 

A1  = (41112)c/b+15(lm)b/c 

A2 = _(4_ m2)c lb+l.5(l —  rn)b/c 

A3  = (2+ m2)c/b_  1.5(1 - m)b/c 

A4  = —(2 + m2)c / b - 1.5(1 - rn)b / c 

C1  = 1.5(1 + m) and C2  = 1.5(1 - 3m) 

B1  - B4  are obtained from A1  - A4  by interchanging b and C 

( p  
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APPENDIX II 

BRICK, MORTAR AND BRICK MASONRY PROPERTIES 

Con tents 
J 

Table AII.1 Compressive and Tensile Strength of Brick 

Table AII.2 Compression Test on Brick (Loaded Parallel to Bed Joint) 

Table AII.3 Compression Test on Stack bonded Prism (Normal 

Stress-Strain readi rig for Brick-) 

Table All.4 Average of Lateral Strain Reading of Brick and Mortar 

Table All.5 Compressive arid Tensile Strength of Mortar 

Table AII.6 Compressive Test on Mortar Cylinders 

Table AII.7 Compression Test on Stack bonded Prism (Normal 

Stress-Strain Reading for Brickwork) 

Table AILS Compression Test on Stack bonded Prism (Normal 

Strcss-Strai ii Reading for Mortar) 

Table AlI.9 Shear Deformation of Shear Couplets (Shear 

Stress-Strain Read i rig for Brickwork) 

Table AIl.lO Shear Deformation of Shear Couplets (Shear 

Stress-Strain Reading for Mortar Joint) 

Table AII.l 1 Constants for Stress-Plastic Strain Equation for Mortar 

Table AII.12 Tensile Bond Strength of Vertical Joint 

(from Splitting Test on Brick Masonry Prism) 
It Table All. 13 Shear Test on Brick Masonry Triplet (for Shear 

Bond Strength of Mortar Joint) 

Table AII.14(a) Lateral Strain Reading for Bricks 

(from Uniaxial compression tests on bricks) 

Table AII.14(b) Lateral Strain Reading of Bricks from Prism Test 

Fig. AII.l Normal Stress-Strain Curves for Individual Bricks 

Load Parallel to bed 

Prism Test 

Fig. AII.2 Semi-Logarithmic Plot of Plastic Normal Strain vs. Normal Stress 

Fig. All.3 Semi-Logarithmic Plot of Plastic Shear Strain vs. Shear Stress 

Fig. AII.4 Construction of Control Specimens 
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Table AII.l 

Compressive and Tensile Strength of Brick 

(All values are in MPa) 

Specimen Tensile 

Compressive Strength Strength 

No 
 (indirect test) 

Load Normal to Load Parallel to Standard Test Split Tensile 

Bed Joint the Bed Joint  

1 75.6 39.12 55.35 3.53 

2 56.7 47.77 . 71.96 3.75 

3 54.0 46.33 58.12 2.86 

4 81.0 36.86 66.42 3.57 

5 77.0 36.04 77.49 2.68 

6 52.65 47.77 60.89 3.80 

7 67.5 32.54 74.73 3.51 

8 64.8 36.04 60.89 2.68 

9 54.0 35.42 69.19 3.35 

10 45.9 44.07 66.42 2.68 

X 62.91 40.20 66.15 3.24 

S 11.41 5.44 6.94 0.44 

C.ofV 18 13.50 ii 13.6 

(%) 

X = Mean, S = Standard Deviation, C. of V. = Coefficient of Variation 

Note: Ratio of compressive strength, using load parallel to bed to compressive strength 

using standard test is 0.60. 
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Table AII.2 

Compression Test on Brick (Load Parallel to Bed Joint) 

(Strain Reading on 30 mm Gauge Length, X 10-6) 

Stress Specimen No X S  C of 

MPa V% 

1 2 3 4 5 6 7 8 9 10 

4.12 243 246 232 304 304 172 354 228 250 240 257 48 19 

8.24 385 466 372 541 541 366 616 368 415 388 446 85.6 19.2 

12.36 614 719 491 723 811 564 . 892 698 810 650 697 115.8 16.6 

16.47 883 881 941 974 1096 701 1165 912 1011 875 944 122.4 13 

20.59 1130 1162 1112 1243 1369 850 1470 1169 1201 1145 1185 155.5 13.1 

24.71 1386 1382 1265 1480 1656 1012 1768 1413 1619 1384 1437 203 14.1 

28.83 1596 1597 1405 1718 1910 1170 1946 1641 1817 1580 1638 221 13.5 

3295 1790 1800 1592 1957 2224 1372 1877 1800 1802 234 13 

37.07 1970 2032 1691 1528 1805 205 11 

41.18 2321 1897 1698 1972 260 13 

45.30 2574 

ECU 208.8 274.2 238.7 240.8 239.4 205.1 219.0 202.2 224.9 221.7 227.5 20.56 9.0 

(105) 

E0 19.27 17.76 19.41 16.18 15.00 23.50 13.43 18.55 16.94 18.95 17.90 2.63 14.7 

(Gpa) 

Eics 18.74 17.42 19.40 15.31 15.00 23.30 13.43 17.83 15.75 18.95 17.51 2.68 15.3 

(Gpa) 

X = Mean, S = Standard Deviation, C. of V. = Coefficient of Variation 

E0 = Initial Modulus of Elasticity; Ecs  = Secant Modulus of Elasticity at Fcu  and CCU  is 

the strain at 
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Table All. 3 

Compression Test on Stack Bonded Prism (Load NoniaI to bed joint) 

(Normal stress-strain reading*  for Brick X 10 6 ) 

C.of 
Prism No 

V% 
Stress 

xS 

Mpa 

1 1 2 3 4 5 6 7 8 9 10 

1.2 114 58 60 136 147 88 148 83 91 137 106 33 31 

2.4 241 162 133 114 225 244 158 265 185 179 273 54 27 

3.6 210 214 177 312 378 246 372 302 324 400 293 74 25 

4.8 312 303 246 408 530 348 488 405 405 536 398 90 22.5 

6.0 351 402 316 501 683 454 603 516 539 671 504 119 23.6 

7.2 426 517 386 590 821 572 711 632 747 810 621 144 23 

8.4 532 603 446 682 969 748 821 744 976 935 745 174 23.4 

9.6 648 689 511 784 1132 926 925 852 1210 1060 874 210 24 

10.8 780 776 573 887 1287 975 1028 957 1500 1186 995 257 25.8 

12.0 927 867 650 995 1442 1123 1004 1488 1299 1100 260 23.4 

13.3 1036 952 727 1101 1586 1202 1157 1582 1449 1200 270 22 

14.5 1172 1037 804 1211 1715 1247 1573 1515 1280 280 22 

15.7 1309 1130 884 1855 1671 1600 1410 330 23 

16.9 1455 1187 1994 1895 1742 1655 2960 18 

18.1 1625 1251 2124 2123 1780 340 19 

19.3 1329 2203 2278 1937 43 22 

20.5 1448 2225 

prn 19.0 21.2 16.8 14.8 21.2 19.3 15.7 16.3 18.8 18.4 18.16 2.1 11 

(MP) 

E0 

16.3 15.9 19.3 11.2 9.4 14.3 9.3 12.3 12.3 9.0 12.93 3.28 25 
(GPa) 

Note: E0 = Initial Tangent Modulus of Brick when load is normal to bed 

(obtained from prism test) 
* Measured in the middle height of middle brick in the direction of the load 

applied in the Prism Test 



A15 

Table All. 4 

Average of Lateral Strain Reading of Brick and Mortar! 

Brick Mortar 

Stress Lateral strain Stress Lateral strain Stress Lateral strain 

(MPa) x10 6  (MPa) x10 6  (MPa) x10 6  

(Load parallel to (Load normal to (Mortar cylinder) 

bed) bed)t 

4.12 36.4 1.2 .23.4 0.98 17 

8.24 62 2.4 37.8 1.96 34 

12.36 92.2 3.6 59 2.94 64 

16.47 126.3 4.8 79.3 3.92 93 

20.59 163.7 6.0 99.4 4.90 117 

24.71 200 7.2 119.6 5.88 141 

28.83 231.9 8.4 144 6.86 166 

32.95 253.8 9.6 172 7.84 190.3 

10.8 201 8.82 246 

12.0 233 9.8 302.3 

13.3 266 

14.5 323 

15.7 404 

16.9 386  

* Measured in the midheight of middle brick in the direction transverse to the direction of 

the load applied in the Prism Test 

Details can be seen from Table AII.14(a) and Table AII.I4(b) 

b 
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Table All. 5 

Compressive and Tensile Strength of Mortar 

(All values of strength are in MPa) 

Specimen Compressive Strength** Tensile Srength* 

No 2 in. cube 6 in. cylinder Prism 

1 12.80 11.68 0.971 

2 12.40 11.76 0.960 

3 12.30 11.68 1.017 

4 12.42 12.58 0.914 

5 13.27 12.58 0.937 

6 13.52 0.994 

7 11.56 1.000 

8 11.24 0.971 

9 12.59 0.902 

10 12.74 1.017 

X 12.5 12.0 0.97 

S 0.66 .043 0.038 

C. of V 5.0 4.0 4.0 

Note: ** Determined from tests on 2 in. cube and 3 in. X 6 in. cylinder at 28 days 
* Determined from Splitting test on 100 mm X 50 mm X 40 mm prism 

at 28 days 
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Table All. 6 

Compressive Test on Mortar Cylinder 

(Normal stress-strain reading for Mortar, X 10-6 ) 

C. 

Stress Mortar Cylinder X S 
of 

(MPa) 

V% 

2 3 

0.98 91 95 98 94.7 2.8 3 

1.96 182 190 19 189.3 5.7 3 

2.94 276 302 428 335.3 66.4 20 

3.92 369 413 659 480.3 127.6 26 

4.90 473 521 784 592.7 136.7 23 

5.88 577 629 909 705 145.8 20.6 

6.86 711 818 954 827.7 99.4 12 

7.84 845 1006 999 950 74.3 8 

8.82 1051 1280 1207 1179.3 95.5 8 

9.8 1256 1554 1414 1408 121.7 8 

E0 11.0 10.4 7.37 9.59 1.58 16 

(GPa)  
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Table All. 7 

Compressive Test on Stack Bonded Prism 

(Normal stress-strain reading for Brickwork, X lO) 

C. 

X S of 

Stress Prism No 
V 0/ 

1 2 3 4 5 6 7 8 9 10 

1.2 18.2 9.1 27.3 18.0 18.2 9.1 15.9 13.6 13.7 14.8 15.8 5.0 31 

2.4 20.5 36.4 29.5 29.5 31.S 34.1 29.5 25.0 29.5 29.0 4.4 15 

3.6 43.2 36.4 47.3 50.0 43.2 52.3 61.4 47.7 40.9 47.7 47.0 6.5 14 

4.8 65.9 52.3 65.9 75.0 63.6 75.0 88.6 70.5 52.3 70.5 67.9 10.3 15 

6.0 88.6 70.5 72.7 102 84 102 129 95.5 71.6 95.5 91.3 17.2 19 

7.2 118 88.6 81.8 134 111 136 152 125 100 123 117 20.9 18 

8.4 146 111 111 171 136 171 186 159 132 152 147 23.7 1 6  

9.6 180 134 143 209 171 211 223 191 168 184 181 27.3 15 

10.8 205 161 148 252 205 268 264 230 214 221 217 38.0 18 

12.0 246 189 221 307 243 296 293 264 266 259 258 34.2 13 

13.3 282 223 266 371 284 352 355 311 321 302 307 43.0 14 

14.5 323 259 311 434 327 405 409 366 377 348 356 50.2 14 

15.7 382 291 366 377 459 520 514 459 407 420 70.7 17 

16.9 432 339 54M 425 568 450 452 67.8 15 

18.1 507 418 471 580 659 527 84.5 16 

19.3 484 525 666 746 605 105 17 

20.5  550 616  583 32.6 5 

pm 19.0 21.2 16.8 14.8 21.2 19.3 15.7 16.3 18.8 18.4 18.2 2.1 11 

Eppm 8.56 9.89  7.37 8.48 6.82 6.01 7.73 10 7.76 8.07 1.25 15 

Note: fpm = Prism Strength in MPa and 

E0pm = Initial Tangent Modulus of Prism in GPa 
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Table All. 8 

Compressive Test on Stack Bonded Prism 

(Normal stress-strain reading for Mortar Joint, X I O) 

C. 

Stress Prism No 
X S of 

MPa V 0/ 

1 2 3 4 5 6 7 8 9 

1.2 54 26.5 41 37 10.7 21.8 41.8 38 20.4 32 12 7 

2.4 71.5 58.2 66.8 56.4 117 74.3 87.6 62.5 41.4 62.7 28.4 45 

3.6 160 115 149 71.6 199 189 140 86 88.6 127 52.8 42 

249 168 256 220 288 299 229 115 160 209 66.2 32 

6.0 372 230 378 168 403 496 327 165 245 309 107 35 

7.2 518 284 531 266 555 581 452 234 343 418 129 31 

8.4 633 381 711 345 676 738 607 313 463 541 157 30 

9.6 786 479 900 473 839 911 750 418 597 684 183 27 

10.8 873 604 1117 606 1170 1114 937 550 756 859 228 26 

12.0 1053 728 1403 766 1249 1095 885 942 1050 218 21 

13.3 1225 897 1747 948 1593 1346 1178 1134 1258 276 22 

14.5 1409 1080 2089 1150 1641 1540 1385 1471 312 21 

15.7 1708 1136 1391 2002 1711 1590 298 19 

16.9 1945 1501 1619 2570 1908 1908 37 19 

18.1 2327 1967 1834 3021 2287 460 20 

19.3 2340 2137 3481 2653 592 22 

20.5 2692 2695 2694 1.8 .06 

19.0 21.2 14.8 21.2 19.3 15.7 16.3 18.9 18.4 18.3 2.16 11.8 

E0  2.67 3.54 2.80 4.36 2.48 2.66 2.74 4.18 3.99 3.27 0.70 21 

X = Mean, S = Standard Deviation, C. of V. = Coefficient of Variation 

Note: ?pm = Prism Strength in MPa and E0 = Initial Tangent Modulus of Mortar (in situ) in GPa 

V 
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Strain Transformation Equations 

13 

13 

Measured Strain AN 
=  CA 

1313' = C 13  

Strain at angle is 

S. so = 6x cos2  0+c sin2  ø+y, sinOcosO 

in which F, x ,  E are normal strains and y y  the shear strain i.e. 

5A =scos2 0+csin2 0+Y XY 
  sinOcosO 

E B = E'< cos2  B' +c., sin2  0' +Yxy  sinO cosO'  

Substitute 9 = 180 0 and subtract (2) from (1), 

EACB 
' xY - sin 20 

V 

Iw 

4 
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Table All. 9 

Shear Deformation of Shear Couplets (0 = 400) 

(Shear stress-strain reading for brickwork (Xl 0-5 )) 

Stress 

MPa 

Couplet no 

X S CofV 

2 3 

0.79 13.2 16 18 15.7 2 13 

1.57 21 40 40 33.7 9 27 

2.37 38 95 83 72 24 33 

3.15 55 150 112.7 106 39 37 

3.94 75 207 183 155 57 37 

4.73 101 262 263 208.7 76 36 

5.62 140 353 

6.3 200 

7.1 296 

Table AII.I0 

Shear Deformation of Shear Couplets (() = 400) 

(Shear stress-Strain reading for mortar joint (X10 3)) 

Stress Couplet no 
- 

x S CofV 

1 2 3 MPa % 

0.79 32.7 47.5 58.0 46 10.3 22 

1.57 37.3 137.7 137.7 104.2 47.3 45 

2.37 89.6 391.0 327.4 266 128 48 

3.15 142.8 645.0 447.8 411.8 206 50 

3.94 211.4 909.2 782.3 634.3 303 47 

4.73 311.7 1162.8 1168 881 402 45 

5.62 476.1 1602 

6.3 761.4 

7.1 1231 

G 2838 1342.4 1271 1817 722 40 
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Table All. 11 

Constants for Stress-Plastic Strain Equations for Mortar 

Specimen No Normal Stress-Strain Shear Stress-Strain 

a b as  b5  

1 -7.36 0.198 -10.76 .825 

2 -8.48 0.243 -8.676 .90 

3 -8.94 0.275 -8.821 .81 

4 -8.59 0.358 

5 -7.21 0.224 

6 -9.03 0.346 

7 -8.07 0.249 

X -8.24 0.27 -9.42 .845 

S -0.67 .05 -.95 .04 

C. of V (%) 8.1 18 10 5 

Table All. 12 

Tensile Bond Strength of Vertical Joints (Splitting Test on Brick Masonry Prism) 

Specimen No Ultimate Vertical. load (kN) Tensile Bond Strength (MPa) 

1 17.7 1.43 

2 16.0 1.29 

3 15.4 1.24 

4 20.0 1.62 

5 19.4 1.57 

6 15.8 1.28 

7 17.6 1.42 

8 20.5 1.66 

9 18.7 1.51 

10 17.5 1.41 

X 17.86 1.443 

S 1.69 0.138 

C. ofV (%) 9.46 10 

X = Mean, S = Standard Deviation, C. of V. = Coefficient of Variation 
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01 .11  Table All. 13 

Shear Test on Brick Masonry Triplet 

Specimen No Ultimate Load (kN) Shear Stress (MPa) 

1 6.672 0.54 

2 6.672 0.54 

3 6.583 0.53 

4 9.341 0.76 

5 7.739 0.63 

6 6.850 0.55 

7 7.137 0.57 

8 9.163 0.74 

9 6.138 0.49 

10 7.137 0.57 

7.339 0.594 

S 1.04 0.09 

C. ofV (%) 14.2 15 

X = Mean, S = Standard Deviation, C. of V. = Coefficient of Variation 
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Table AII.14(a) 

Lateral Strain Reading of Bricks (X 10-6) 

(obtained from uniaxial compression test on brick, Load parallel to bed) 

Stress 

in 

MPa  

Brick No 

X S CFV 

1 2 3 4 5 6 7 8 10 

4.12 85 34 35 15 25 25 60 39 10 36.4 22 60 

8.24 113 54 56 40 55 55 80 68 37 62 21.8 35 

12.36 150 77 76 83 67 91 105 102 79 921 23.5 25 

16.47 203 96 145 105 74 130 150 124 110 123 35.2 27.8 

20.59 252 128 174 155 94 170 190 176 161 163.7 40.9 25 

24.71 301 148 197 210 116 210 225 205 219 200 49 24.5 

28.83 341 161 219 259 138 249 250 242 265 232 56.8 24.5 

32.95 374 177 258 145 304 277 270 254 71.1 28 

37.07 447 207 271  315 301  308 78.7 25.5 

41.18  313 309 ______ 

45.30  373 

40.2w Fail 39.1 47.8 46.3 35.42 36.86 36.04 44.1 47.8 32.5 

Note : The strain recorded at the end of each brick is the maximum tensile lateral strain at 

the specified load corresponding to the last strain recorded . On averaging these strains the 

maximum tensile strain can be assumed to he 30.2 X 10 



'I 

A25 

Table AII.14(b) 

Lateral Strain Reading of Bricks (x10 6) from Prism Tests 

(Measured in Transverse Direction of Loading, i. e, Load Normal to Bed) 

Stress 

in 

M Pa  

Prism No X 

10  

S C of 

V 

1 2 3 4 5 6 7 8 9 

1.2 1 39 36 20 -35 19 12 28 21 15 21 23.4 8.6 1 36 

2.41 117 58 31 -26 30 21 58 41 25 39 37.8 13 34 

3.62 196 78 1 47 -12 1 50 34 1 90 63 1 53 57 1 59 16.7 28 

4.82 249 101 60 5 71 48 1.21 84 68 81 79.3 21.7 27 

6.03 343 115 75 24 93 65 152 108 85 101 99.4 25 1 25 

7.23 1 409 130 93 48 113 82 185 133 93 128 120 30.6 25 

8.44 452 165 110 72 138 100 220 156 108 155 144 37 26 

9.64 487 203 130 97 1 170 120 259 180 127 183 172 43.6 25 

10.9 530 237 147 124 202 139 305 206 156 216 1 201 51.4 1 25 

12.1 568 273 166 157 235 159 350 237 190 251 233 58.6 25 

13.3 609 309 184 1 189 263 175 389 282 229 297 266 65.7 25 

14.5 1 664 349 202 211 292 187 392 388 1 432 338 323 83 26 

15.7 722 382 223 1 326 1 462 626 404 1 404 124 1 30 

16.9 777 419 283  368  475 386 70 18 

18.1 732 439  406  

Fail 1 19.0 1 21.2 16.9 14.8 21.2 19.3 15.7 16.3 18.9 18.4 18.2 21 11 

Note: In the Prisms 2,6,8,9 10 the lateral strain decreases due to on set of cracks at loads 

corresponding to the last strain entry. Therefore the average tensile strain at which the 

brick starts cracking can be assumed to be 42.3 X 10 in comparison to max. 

compressive strain (227.5 X 10 5)obtained from uniaxial tests on bricks loaded parallel to 

the bed joint. 

Note: Prism no 1 and 4 was not considered due to very high and low reading 

respectively. 

1 
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Fig. AII.4 Construction of Control Specimens 
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APPENDIX III 

PROGRAM "WBMGEN" 

Content 

Description of Major Subroutines 
Table AIII. 1 Error Code for Checks for Input Data 
Table AIII.2 Various Options of Output 
Table AIII.3 Codes of Different Modes of Failure 
Sample Data File 
Sample out-put file 
Program structure for new or modified subroutines 
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Description of major Subroutines: 

SUBROUTINE "PROBTP" 
This subroutine mainly determines the following: 

I. Type of bond failure to be used for the mortar joint. 

Type of softening model to be used 
Type of fracture analysis to be performed 

SUBROUTINE "INPUT" 
This subroutine accepts data for the finite element subdivision and the material properties. 
The data necessary is generated by the subroutine "GENER" and "CORDEN". 

SUBROUTINE "GENER" 
This subroutine generates the finite element mesh using a 4 nodded element. This 

subroutine gives the same material number to all the elements. 

SUBROUTINE "REDATA" 
This subroutine gives the option to change the data on the load factor (FACTO) and 
solution algorithm (NALGO) if the crack forms within the wall-beam structure. Due to 
formation of crack the convergence becomes very slow. So to make convergence quicker 
the load can be applied in smaller increments and the solution technique also can be 

changed. (NALGO = 3 represents initial stiffness method and NALGO = I represents 

modi fled Newton- Raphson method). 

SUBROUTINE "CENTRE' 
This subroutines calculates the co-ordinates of the centre, the height and width of the 4 
nodded rectangular element and stores in vectors XCEN(IELEM) YCEN(IELEM), 
AX(IELEM) and BX(IELEM) respectively. These are required for plotting purposes. 

SUBROUTINE "DIMEN" 
This subroutine carries out "dynamic dimensioning" of various arrays used in the 
program. With dynamic dimensioning, variable names are assigned to the parameters 
controlling the size of the program (such as the maximum number of nodes, maximum 
number of elements, maximum front width, etc.). 

SUBROUTINE "DIFMAT" 
This subroutine is called when the wall-beam structure is modelled as a non-
homogeneous material. This subroutine accepts data on the number of elements to be 
provided per course and on different levels of brickwork where the vertical joints are to be 
assigned. The subroutine assigns the correct material number and the orientation number 

for the joint elements. 

SUBROUTINE "CHECKI" 
This subroutine checks any obvious errors in the input of main control data. The errors 

diagnosed by this subroutine are given in Table AlIT. 1. 
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SUBROUTINE "CHECK2" 
This subroutine checks any obvious errors in the input data related with finite element 
mesh generation. The errors diagnosed by this subroutine are given in Table AIII.1. 

SUBROUTINE "LOADPS" 
This subroutine accepts the data on the applied loads. The applied loads are stored in an 
array RLOAD(IELEM, IEVAV) in which IELEM ranges over the number of elements 
and JEVAB ranges over the degrees of freedom of the element. 

SUBROUTINE "ZERO" 
This subroutine initialises single and dimensional variables. This is necessary because 
many variables are cumulative in the incremental iterative program. 

SUBROUTINE "INCREM" 
This subroutine accepts data on the load factor "FACTO" by which the applied load must 
be incremented, tolerance factors "TOLFR" for force criteria and "TOLDS" for 
displacement criteria, maximum number of iterations permitted "MITFR" and output 
controlling parameter "NOUTP". FACTO is cumulative and allows for unequal 
increments of load to be applied. TOLFR and TOLDS allows the degree of accuracy 
desired in and increment to be varied. 

SUBROUTINE "ALGOR" 
This subroutine controls the method of solution. 1'hc controlling parameter of the solution 
process is KRESL. If the stiffness matrices of the elements are refonnulated, KRESL is 
assigned a value 1; if not, KRESL assigned a value 2 and the initial stiffness matrices arc 

used for the solution process. 

SUBROUTINE "DBFAL" 
This subroutine modifies the [D] matrix for the cracking or crushing type of failure in the 
materials. For cracking type of failure, materials only loses its strength perpendicular to 
the crack whereas for crushing type of failure, material loses its strength completely. 

It 
SUBROUTINE "DJFAL" 
This subroutine modifies the {D} matrix for the bond type of failure. Bond type of failure 

occurs when the normal stress is tensile. 

SUBROUTINE "DIFFEL" 
This subroutine evaluates the linear elastic stiffness matrix for the representative elements 
and stores them in a 3-D array. Unless the element is either plasticised or fractured, the 
stiffness matrix for the element is taken from this array. Element representation array is 

IELEM(IELEM). 

SUBROUTINE "STIFFP" 
This subroutine is called from the subroutine FRONT when KRESL =1. The main 
purpose of this subroutine is to inform, whether the element JELEM is elastic, plastic or 
fractured. If the element is in the elastic limit, takes the stiffness matrix from 3-D array 
STOCK(IEVAB, JEVAB, KLEM), otherwise the subroutine recalculates the stiffness 

matrix for the element. 
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SUBROUTINE "FRONT" 
The frontal solution is a very efficient direct solution process in which the active life of a 
node lasts from the time in which it first appears in an element to the time in which it last 
appears in an element. The main idea of frontal solution is to assemble the equations and 
eliminate the variables at the same time. As soon as the coefficient of the equation are 
completely assembled from the contribution of all relevant elements, the corresponding 
variable can be eliminated. Therefore the complete structural stiffness matrix is never

, 

 

formed as such, since after elimination the reduced equations immediately transferred to 
back-up file. During the assembly/elimination process the elements are considered each in 
turn according to a prescribed order. The maximum size of problem which can be solved 
is governed by the "maximum from width". Whenever a new element is called in, its 
stiffness coefficients are read from memory and summed either in to existing equations it' 
the nodes are already active, or into new equations which have to be included in the front 
if the nodes are being activated for the first time. If some nodes are appearing for the last 
time, the corresponding equations can be eliminated and stored away on a file and are 
thus deactivated. In so doing they free space in the front which can be employed during 

If 
assembly of the next element. The displacement are obtained by back substitution in 
reverse order. In this study the frontal solution subroutine is treated as "black box" and the 
details can be found elsewhere (Hinton and Owen, 1977). 

SUBROUTINE "GAPCOM" 
This subroutine accepts data for different physical aspects ofwall-beam structure e.g., 
supporting beam, lintel/top beam, end or intermediate column, opening in the wall-l)Cam 
and support details. This subroutine assigns material number for concrete beam and 
column with the provision of interface mortar between concrete and wall. The subroutine 
also accepts data to assign material number for reinforcement in the supporting beam. 

SUBROUTINE "MOMAX" 
This subroutine utilises the array STRSG(I, 1ELEM), AX(IELEM) and BX(IELEM) to 
calculate forces (horizontal, vertical and shear) acting on the elements in supporting 
beam. By summing horizontal forces acting on elements along a vertical section the 
tension at that section of the supporting beam is calculated. These are stored in an array 
AXIAL(NLEMY). From this array maximum tension in the beam is scanned. Similarly 
the vertical force at wall-beam interface level and at reaction nodes are obtained to 
calculate moment in sections along the span and is stored in an array WBTMOM(IM) 
from where maximum moment without considering shear force at interface is scanned. 
Provision for calculating moment considering shear force is also present in this 
subroutine. In the same way maximum vertical stress concentration and maximum shear 

Stress concentration is obtained. 

SUBROUTINE "BFSTRS" 
The role of this subroutine is to monitor the cracking and crushing type of failure of the 
elements. This subroutine also releases the stresses according to the degree of softening 
(NRELS) used in the materials. For brittle collapse model, subroutine STRELT is called 
to release the stresses. For strain softening, subroutine BSTREL is called to release the 

stresses gradually. 
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SUBROUTINE "FJOINT" 
The purpose of this subroutine is to monitor the bond type of failure of the mortar joint. 
The subroutine releases according to the degree of softening (NRELS) used in the mortar 
joint. For releasing the stresses, the subroutine XJSTRL is called. For bringing the 

stresses to the failure surface, the subroutine DUCT is called. 

SUBROUTINE "RESIDU" 
The function of this subroutine is to evaluate the stress in various elements allowing for 
non-linear deformation and post-failure behaviour. When the elements are fractured, the 
subroutine RESD is called to calculate the residual forces. The nodal forces thus 
determined are stored in the array ELOAD which is used for a latter check on 
convergence and as a load for the next iteration. Subroutine REDUCT is called to 
evaluate the stresses according to the constitutive relations before fracture of the 
materials. Whereas, the subroutine BFSTRS is called to check the violation of fracture 
criteria and to evaluate the stresses according to the constitutive relations after fracture of 
the materials. The subroutine REDJON is called to evaluate the stresses for joint elements 
before bond type of failure whereas the subroutine FJONT is called to evaluate the 
stresses according to the constitutive relations after bond type of failure in the mortar 
joint. Of the stresses exceeding the initial failure surface, the "excess" stresses are 
removed suddenly or gradually. The nodal forces are evaluated from these excess stresses 
which is applied further to correct the displacements. The subroutine CRACK is called to 

check the status of the crack (closed or reopened). 

SUBROUTINE "CONVER'I 
The role of this subroutine is to check whether or not the solution process is converging. 
Force as well as displacement convergence criteria has been used. For force criterion, the 
residual nodal forces in the array ELOAD (evaluated in the subroutine RESIDU), are 
compared against the total external load-reaction system TLOAD (accumulated through 
the process of iteration). If the ratio of the sum of the squares of the residual forces @) to 
the sum of the squares of the external forces (F) is less than the prescribed tolerance limit 
('iDLER), the process is assumed to have converged. Stated mathematically for 

convergence to occur, 

9' <TOLER 

(Fi ) 

Similarly for displacement criteria 

N (M)2 
:!~TOLER 

where 4 i  is the residual force; FT is the total load; A8i  is the incremental displacement 

and 8T  is the total displacement for the iteration i. N is the total number of nodal points of 

the structure. If the solution process is found to have not converged, it could be either 
converging or diverging depending on the values of the residual forces in the i th iteration. 
A parameter NCHEK, defining the nature of the solution process is assigned different 
values depending on the stage of the solution process. For a converged solution NCHEK 
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is zero; for converging process NCHEK is one and for a diverging process a value 
u999tt 

is assigned. The convergence code is printed out at every iteration. 

SUBROUTINE "OUTPUTt' 
This subroutine is called if the solution process has converged at a given load increment 
to print out the various segment of output specified by input parameter NOUTP. The 
codes of parameter NOUTP and its interpretation are given in Table AIII.2. The 

IV subroutine PLOTIGLAST is called to make the data file for plotting purposes and the 
subroutine CRFUL is called to check whether or not the crack has propagated through the 

height of the wall-beam. 

11 

It 
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Table Alli. I Error Code for Checks for Input Data 

ERROR 
CODE 

INTERPRETATION 

Total number of structure nodes less than or equal to zero 

2 The possible maximum total number of nodal points in the structure is 
less than the specified number of structure nodes 

3 The number of restrained nodes is less than two or greater than the 

umber of structures nodes 

4 The total number of load increments is less than 1 

5 The total number of nodes per element is less than 4 or greater than 9 

6 The number of degrees of freedom per node is less than 2 

7 The umber of different materials is less than I or greater than the 

number of elements 

8 The number of Gauss integration points in each direction is less than 

2 or greater than 3 

9 Two nosed have identical co-ordinates 

10 The material number of element is less than I or greater than the 

number of different materials 

11 Nodal number of the element is zero 

12 Nodal number of the elements is less than I or greater than the total 
number of nodal points 

13 Repetition of a node number within an element 

14, 15 Co-ordinates of an unused node have not been specified 

16 Unused node number is a restrained node 

17 Require front width is greater than the from width available in the 

program 

18 Restrained node number is less than or equal to zero or grater than the 
total number of nodal points 

19 Restrained code is missing for restrained nodes 

20 Two identical restrained nodes 
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Table AIII.2 Various Options of Output 

OUTPUT CODE INTERPRETATION 

0 •No output necessary 

1 Print only the displacements of nodes 

2 Print displacements of nodes and reaction at supports 

3 Print displacements of nodes, reaction at supports and 

stresses at each sampling point of the element 

Table AIII.3 Codes of Different Modes of Failure 

OUTPUT CODE INTER PRETATiON 

11 Bond type of failure for the joint. Cracking type of failure 

for the brick and concrete 

22 Crushing type of failure for brick, mortar and concrete 

33 Cracking type of failure for the mortar 

11 Yielding of steel 



Sample Data File 

The sample data was produced for a Wall-beam of following physical aspects 

Span129O mm, 
Height784.5 mm 
Beam Depth=45 mm 
Beam Width=100 mm 
At Support 6 Nodes are Restrained in Y- Direction 
Idealised Vertical and Horizontal Mortar=7.5 mm 

Prediction by Strain Softening Model gave the following main results :- 

= 29.64 kN AT 4th increment (the crack opens for the first time) 

Pii=2 X 96.3 kN AT 19th increment, failed of converge within specified number of 
iterations (i.e., Numerical Failure) 

Data File 

70 0 0 1 1 0 3 .10000 .500 

0.522 0.154 -0.808 -0.924 -0.179 0.834 

6. 

1848 1848 1760 62 4 7 2 3 2 40 33 56 0 0 

0 0 0 0 0 0 0 1 1 1 0 

05 

0 

1 33 65 97 129 

000.00 14.44 28.88 43.32 57.75 65.25 84.50 

103.75 123.00 130.50 159.375 188.25 195.75 224.625 

253.50 261.00 289.875 318.75 326.25 355.125 384.00 

391.50 420.375 449.25 456.75 485.625 514.50 522.00 

550.875 579.75 587.25 616.125 645.00 

000.00 12.50 19.50 32.00 45.00 52.50 70.50 

88.50 96.00 114.00 132.00 139.50 157.50 175.50 

183.00 201.00 219.00 226.50 244.50 262.50 270.00 

288.00 306.00 313.50 331.50 349.50 357.00 375.00 

393.00 400.50 418.50 436.50 444.00 462.00 480.00 

487.50 505.50 523.50 531.00 549.00 567.00 574.50 

592.50 610.50 618.00 636.00 654.00 661.50 679.50 

697.50 705.00 723.00 741.00 748.50 766.50 784.50 

4 2 6 9 5 15 12 21 18 27 

24 32 30 3 3 3 3 3 3 3 

313 

10 

33 5 1 5 

0 

11 

202 

1 01 0.000 0.0000 

2 01 0.000 0.0000 

3 01 0.000 0.0000 

4 01 0.000 0.0000 

5 01 0.000 0.0000 

6 01 0.000 0.0000 

33 10 0.000 0.0000 

A 
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66 10 0.000 0.0000 
99 10 0.000 0.0000 
* * * 

* * * 

* * * 

1782 10 0.000 0.0000 
1815 10 0.000 0.0000 
1848 10 0.000 0.0000 

14773.00 0.157 60.000 5700.00 0.0000 
0.000 0.00 3.20 -33.60 270.000 

2 
200000.00 0.300 14.00 5700.00 0.0000 
0.000 0.000 272.00 -272.0 13000.00 

3 
5000.0000 0.1760 60.000 0.57 1.91 
1.12 0.720 1.21 -9.00 1000.0 

5000.0000 0.1760 60.000 0.57 1.91 
1.12 0.720 1.21 -9.00 1000.0 

5 
23146.0 0.16 100.00 5700.00 0.0000 
0.0 0.0 3.67 -24.21 300.0 
6 

00000000000000000000000000000000000000000000000 
00000000000000000000000000000000000000000000000 

7 
00000000000000000000000000000000000000000000000 
00000000000000000000000000000000000000000000000 

0 01760 0 I 
1760 

1 0 0 
1816 0.00 -0.083 
1817 0.00 -0.166 
1818 0.00 -0.166 

* * * 

* * * 

* * * 

1846 0.00 -0.209 
1847 0.00 -0.332 
1848 0.00 -0.166 

1.000 1.00 1.000 20.000 0 20 
00 
00 
33 
00 
00 
00 
00 
00 
00 
* * 

* * 

* * 

00 
00 
33 
00 
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Sample Output File 

MAXIMUM FRONT WIDTH USED = 70 

INDICATOR FOR SUB STRUCTURING TECHNIQUE = 0 

TYPE OF BOND FAILURE CRITERION USED = 0 

TYPE OF FRACTURE ANALYSIS = I 

TYPE OF COLLAPSE MODEL 
INDICATOR FOR INTERNAL EQUILIBRIUM CIIECK= 0 
POST FRACTURE SOLUTION ALGORITHM TYPE = 3 

AGGREGATE INTERLOCK FACTOR = 0.1000 

LOAD FACTOR AFTER FRACTURE INITIATES = 0.5000 

CONVEN'1IONAL FINITE ELEMENT ANALYSIS 
TOTAL NUMBER OF STRUCTURE NOI)ES— 1848 

TOTAL NUMBER OF ELEMENTS = 1760 

TOTAL NUMBER OF BOUNDARY NODES 62 
NUMBER OF NODES PER ELEMENT 4 

TOTAL NUMBER OF DIFF.MATERIALS 7 
ORDER OF GAUSS QUADRATURE RULE = 2 

TOTAL D.O.F. OF ELEMENT = 8 

TYPE OF TILE ALGORITHM = 3 

TYPE OF YIELI) CRITERION = 2 

NUMBER OF LOAD INCREMENTS = 40 

ELEMENT CONNECTIVITY DATA: 

(out put cancelled to minimise space) 

I 1)ENTI j:lCA'l'IQN COI)FS 
10 : CONCRETE BRICK 

* 
--- 20 : BED JOINT 

* 
--- 30 : HEADER JOINT 

ELEM.NO. MATERIAL PROP. ID NO. ELEMENT NODAL NUMBERS 

(out put cancelled to minimise space) 

NODAL COORI)INATES IN MM: 
NODE NO. X-AXIS Y-AXIS 

(out put cancelled to minimise space) 

SUPPORT INFORMATION: 
**** 10- FIXED ALONG X AXIS 

01 - FIXED ALONG Y AXIS 
11 - FIXED ALONG X&Y AXES**** 

NODE NO. CODE FIXED VALUES(MM) 

1 1 0.00000 0.00000 

2 1 0.00000 0.00000 

3 1 0.00000 0.00000 

4 1 0.00000 0.00000 

5 1 0.00000 0.00000 

6 1 0.00000 0.00000 

33 10 0.00000 0.00000 

66 10 0.00000 0.00000 

99 10 0.00000 0.00000 
* * * * 

* * * * 
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* * * * 

1782 10 0.00000 0.00000 
1815 10 0.00000 0.00000 
1848 10 0.00000 0.00000 

MATERIAL PROPERTIES: 
(out put cancelled to minimise space) 

MAXIMUM FRONTWIDTH ENCOUNTERED = 70 

NUMBER OF NODAL LOADS= I 
NUMBER OF BODY FORCES= 0 
NUMBER OF EDGE FORCES= 0 

1816 0.0000E+00 -0.8300E-01 
1817 0.0000E+00 -0.1660E00 
1818 0.0000E400 -0.1660E+00 

* * * 

* * * 

* * * 

1846 0.0000E+00 -0.2090E+00 
1847 0.0000E+00 -0.3320E+00 
1848 0.0000E100 -0.1660E+00 

INCREMENT NUMI3ER= I 

LOAD FACTOR - 1.000 

CONVERGENCE TOLERANCE = 1 .000 

MAXIMUM NO.01: ITERATION 20 
INFliAL OUTPUT PARAMElER 0 
FINAL OUTPUT PARAME1ER 0 

CURRENT ITERATION NO.= I 
* ** * * * * ** ** * ** 

ELEMENTS THAT HAVE JUST FAILEI) 
EL. NO. MAT NO. ID NO. FAILURE CODE XX-STRESS YY-STRESS XY STRESS STRN-XX 

STRN-YY STRN-XY 

CONVERGENCE CODE= 1 
NORM. OF RESIDUAL SUM RATIO= 0.I000E+03 
MAXIMUM RESIDUAL=r 0.47 19E-03 

CURRENT ITERATION NO.= 2 
*************************** 

ELEMENTS THAT HAVE JUST FAILED 
EL. NO. MAT NO. ID NO. FAILURE CODE XX-STRESS YY-STRESS XY STRESS STRN-XX 

STRN-YY STRN-XY 
CONVERGENCE CODE= 0 
NORM. OF RESIDUAL SUM RATIO= 0.0000E+00 
MAXIMUM RESIDUAL= 0.0000E-i-00 

LOAD APPLIED EXTERNALLY 7.409472KN 

CPU TIME USED = 355.769 

INCREMENT NUMBER= 2 
LOAD APPLIED EXTERNALLY 14.8 18944KN 
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INCREMENT NUMBER= 3 
LOAD APPLIED EXTERNALLY 22.228416KN 

DISPLACEMENTS 

NODE X-DISP Y-DISP 
1 -0.4283E-01 0.0000E+00 
2 -0.4282E-01 0.0000E+00 
3 -0.4288E-01 0.0000E+00 
* * * 

* * * 

* * * 

31 -0.4613E-02 -0.1240E+00 
32 -0.2309E-02 -0.1244E400 
33 0.0000E±00 -0.1246E+00 

REAC1'1ONS 
NODE X-REAC Y-REAC 

I 0.0000E±00 0.4080E+03 
2 0.0000E+00 0.1881E+04 
3 0.0000E+00 0.2942E+04 
* * * 

* * * 

* * * 

1782 -0.4837E+03 0.0000E+00 
1815 -0.8850E+03 0.0000E+0() 
184$ -0.4791E+03 0.0000E+00 

STRESSES AT THE Cl- 01: 1IJE ELEMENT 
EL. NO. MAT NO. II) NO. FAIl. CODE XX-STRESS YY-STRESS XY STRESS STRN-XX 

STRN-YY STRN-XY 

STRESSES FOR THE SELECTED LEVELS OF THE WALL 

VERTICAL SECTION 
(out put cancelled to minimise space) 

HORIZONTAL SECTION 

LEVEL---- 1N0. ELEMENT 

1 5 10 0 7.220 6.250-0.9238E-01 -O.8611E+00 0.9355E-01 0.0000E+00 0.1961E-05 - 

0.3657E-04 0.9377E-05 
2 5 10 0 21.660 6.250 -0.4034E+O0 -0.1719E±O1 0.1419E+00 0.0000E+00 -0.5550E-05 - 

0.7146E-04 0.1422E-04 
3 5 10 0 36.100 6.250 -0.7430E+00 -0.2284E±01 0.1356E+00 0.00OOE00 -0.1631E-04 - 

0.9355E-04 0.1359E-04 
* * * * * * * * * * * 

* * 

* * * * * * * * * * * 

* * 

30 5 10 0 583.500 6.250 0.1804E+01 0.1287E-02 0.5034E-03 0.0000E+00 0.7793E-04 - 

0.1242E-04 0.5046E-07 
31 5 10 0 601.688 6.250 0.1799E+01 0.2264E-03 -0.1251E-02 0.0000E+00 0.7771E-04 - 

0.1242E-04 -0.1254E-06 
32 5 10 0 630.563 6.250 0.1797E+01 -0.2827E-03 -0.4752E-03 0.0000E+00 0.7762E-04 - 

0.1243E-04 -0.4763E-07 
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ti 

LEVEL---- 33N0. ELEMENT 
LEVEL---- 65N0. ELEMENT 

* * 

* * * * * * 

INCREMENT NUMBER= 5 

LOAD FACTOR = 4.500 
CONVERGENCE TOLERANCE = 1.000 
MAXIMUM NO.OF ITERATION = 20 
INITIAL OUTPUT PARAMETER = 0 
FINAL OUTPUT PARAMETER = 0 

CURRENT ITERATION NO.= I 

ELEMENTS THAT HAVE JUST FAILEI) 

EL. NO. MAT NO. ID NO. FAILURE CODE XX-STRESS YY-STRESS XY STRESS STRN-XX 

STRN-YY ST-XY 
261 3 30 11 0.211$E+00 -0.1543E-01 -0.6123E+00 0.4044E+00 -0.1735E4-01 

0. 1625 E+ 03 
293 3 30 11 0.2644F+00 -0.1431E01 -0.5643E-4-00 0.4350E400 -0.1602E+01 

0. 1632 E403 

CONVERGENCE COI)E= I 
NORM. OF RESII)UAI. SUM RATIO= 0.1111 E±02 
MAXIMUM RESIDUAL- 0.2360E-03 

CURRENT ITERATION NO.--  2 

ELEMENTS THAT HAVE JUST FAILED 

EL. NO. MAT NO. ID NO. FAILURE CODE XX-STRESS YY-STRESS XY STRESS STRJ-XX 

STRN-YY STRN-XY 
261 3 30 11 0.2374E+00 -0.1555E+01 -0.6115E+00 0.4262E+00 -0.1743E+01 

0.1628E+03 
293 3 30 11 0.2978E+00 -0.1444E+01 -0.5641E+00 0.4645E+00 -0.161 1E+01 

0.1635E+03 

CONVERGENCE CODE= 0 
NORM. OF RESIDUAL SUM RATIO= 0.9202E-02 
MAXIMUM RESIDUAL= 0.1075E-05 

LOAD APPLIED EXTERNALLY 33.342625KN 
* * * 

* * * 

INCREMENT NUMBER= 6 

* * * 

* * * 
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Program structure for new or modified subroutines 

INPUT 

GAPCOM 

NO INPUT 
)MPOSITE> P RETURN 

ASSIGNS MATERIAL NUMBER FOR 
BEAM AND INTERFACE MORTAR 

ASSIGNS MATERIAL NUMBER FOR  
COLUMN AND INTERFACE MORAR 

IDENTIFIES OPENING AND 
ASSIGNS MATERIAL NUMBER 

'I. 
IDENTIFIES STEEL IN RCC BEAM 

AND ASSIGNS MATERIAL NUMBER 

REI'URN 

DIFMAT 

YES 
ENEOUS RETURN 

ASSIGNS MATERIAL NUMBER FOR 
hORIZONTAL AND VERTICAL 

MORTAR 

RETURN 

OUTPUT 

ö4AXJ 

'Jr 

COMPUTES FORCES AND 
SHEAR FOR ELEMENTS 

COMPUTES MOMENT,AXIAL FORCE 
AND SHEAR AT THE SECTIONS 

DETERMINES SECTION FOR MAXIMUM 
MOMENT,AXIAL FORCE AND SHEAR 

FINAL OUTPUT FOR MAXIMUM 
MOMENT, AXIAL FORCE AND SHEAR 

RETURN  
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APPENDIX IV 

EXPERIMENTAL VERIFICATION OF THEORETICAL MODEL 

Content 

Comparison of Non-linear Analysis with Elastic Analysis 
Fig. AIV.1 Horizontal Strain Through Mid Vertical Section of Plane Wall-beam:. 

At the Load of 44.5 kN. 

At the Load of 112 kN. 

At the Load of. 290 kN. 

(d)At the Load of 312 kN. 

(e) At the Load of 424 kN. 

Fig. AIV.2(a) Failure of Wall-beam Panel with Opening (back side) 

Fig. AIV.2(b) Failure of Wall-beam Panel with Frame (back side) 

Fig. AIV.2(c) Failure of Plane Wall-beam Panel (back side) 
Fig. AIV.3 Vertical Strain in Brick at Bottom Corner of Panels with 

Progress of Load (Experimental) 

Table AlV.l 28 Day Compressive Strength of 50 mm Mortar Cubes 

[ 

0 
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NON-LINEAR ANALYSIS vs. ELASTIC ANALYSIS 

For this purpose the analysis of a plane wall-beam (see Fig. 7.4(c)) carried out by 

model "B" (Non-linear analysis with softening, abbreviated as "NLA") was compared 

with elastic analysis, abbreviated as "EA". In the latter case the specified load was not 

applied in incremental steps. The finite element discretization and elastic properties of 

constituent materials are same for both cases. Comparison gives an indication of the 

degree of stress redistribution taking place due to progressive failure of the elements and 

non-linear material properties. Horizontal strains at the mid vertical section of the panel at 

different loads are shown in Fig. AIV.l(a to e). At load of 44.5 kN and 112 kN(which is 

about 10 % and 24 % of the ultimate test load), a stage before the onset of initial crack, 

there is practically very little difference betccn the horizontal strain predicted by the 

non-linear fracture analysis and the elastic analysis (see Fig. AIV. I (a, b)). The difference 

becomes more pronounced at greater loads. Significant stress redistribution occurs in the 

non-linear model due to progressive cracking and local failure. This results reduction in 

the compressive stresses in the lower half of the panel and an increase in the compressive 

stresses near the top of the panel in comparison to those obtained from elastic analysis 

having the samc load on the top of the wall. At higher loads the higher horizontal strain 

near the top of the panel (see Fig. AIV.l(c to c)) colTesponds to the increase in the arching 

action between the supports with the increase of the applied load. This is because at 

higher loads the cracks in progress continuously shifts the neutral axis in up ward 

direction until the crack fails to penetrate in the arching zone under highly biaxial 

compressive state of stress. High tensile strain encountered in the wall above the 

supporting beam at mid span is representative to the failure pattern of the plane wall-beam 

(see Fig. 7.4(c)). 

The changing behaviour of the composite panel as predicted by non-linear 

analysis is shown by the strain distribution in the section through the centre span. Once 

wall-beam separation occurs or the mortar elements at the interface of wall and beam fail 

(at a load level approximately 60 - 70 % of the test load) there is a marked change in the 

stress distribution within the supporting beam (see Fig. AIV.1(e)). With partial loss of 

composite action, the bottom reinforcement of the supporting beam undergoes a sudden 

increase in tensile force. While in the elastic solution composite action is assumed 

throughout the load history which predicts considerably lower tensile force in the bottom 

steel. Therefore, the discussion reveals that for heavy loads the proportioning of the 

reinforcement for the supporting beam should be governed by non-linear fracture 

analysis. 

Fr 
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6 4 2 0 -2 -4  

Horizontal Strain(X1O ) 

Fig. AJV.1(a)-Horizontal Strain at Mid Vertical Section at the Load of 44.5 kN.. 

(Plane Wall-beam) 

p 

— NLA 

EA 

GL 

I I I I I I I 



A 

£ 4 : 

FA 

q 

— NLA -. 

EA -. 

(- 

,13 

-a 

(1 

A 

• o cD- - 

I Z ______ 0 

p 

or 

0 

N
LO 

— 

o 
o 

E 

0 

0 

C) 

0
a)

0
çY) 

.8 

15 10 5 0 -5 -10 -15 -20 

Horizontal Strain(X1O 5) 

Fig. AIV.l(b)-Horizontal Strain at Mid Vertical Section at the Load of 112 kN.. 

(Plane Wall-beam) 
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150 100 50 0 -50 -100 -150 

Hoirizonta Strain (X10 ) 

Fig. AIV.l(c)-Horizontal Strain at Mid Vertical Section at the Load of 290 kN.. 

(Plane Wall-beam) 
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Fig. AT V.1(d)-Horizontal Strain at Mid Vertical Section at the Load of 312 kN.. 

(Plane Wall-beam) 
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Fig. AIV.1(e)-Horizontal Strain at Mid Vertical Section at the Load of 424 kN.. 

(Plane Wall-beam) 
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Fig. AIV.2(a) Failure of Wall-beam Panel with opening (back side) 

Fig. AIV.2(b) Failure of WaI1-hcarn Panel with frame (back side) 
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-5- 
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f 

Fig. AIV.3 Vertical Strain in Brick at Bottom Corner of Panels with Progress of Load 

(Experimental) 

Table AIV.1 

28 Day Compressive Strength of 50mm Mortar Cubes 

Mortar Cubes 
Sp. No. Batch No. 

Ultimate Load (kN) Comp. Str. (MPa) 

1 1 31.5 12.6 
2 31 12.4 
3 32.4 12.9 
4 2 35 14 
5 33.3 13.3 
6 32.4 12.9 
7 3 32 12.8 
8 34 13.5 
9 34.5 13.8 

x • 32.9 13.13 
S 1.38 .55 

C. of V 
4.2 4.2 

(%)  
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APPENDIX V 

PARAMETRIC STUDY AND DESIGN RECOMMENDATIONS 

Contents 

Fig. AV. 1 Storey High Wall-beam for Parametric Study 

Fig. AV.2 Finite Element Mesh with Different Number of Elements 

Table A V.1 Coefficient for Max. Moment K2 

(considering shear at wall/beam interface) 

Table A V.2 Summary of Elastic Analyses of End Supported Wall-beam. 

I 

It 

I 
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L 4B 
_____ 

B= 50 to 150 mm; h=75 to 175 mm; H=1230 mm; L=2000 mm; t115 mm 

Fig. AV. I Storey High Wall-beam for Parametric Study 
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Total Nodes = 777 
Total Elements =720 

2 layers/brick 
(a) 

Total Elements = 1242 
3 layers/brick 

(b) 

Fig. AV.2 Finite Element Mesh with Different Number of Elements 



FEW 

CL 

Total Nodes =1596 Total Nodes =1995 
Total Elements = 1512 Total Elements = 1904 

4 layers/brick 4 layers/brick 

(c) (d) 

Fig. AV.2 Finite Element Mesh with Different Number of Elements 
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A59 

= 1372 
Total Elements = 2508 Total Elements =1296 

4 layers/brick 4 layers/brick 
2 layers/bed joint 2 layers/brick at top 1/3 rd 

(e) (1) 

Fig. AV.2 Finite Element Mesh with Different Number of Elements 



A60 

Table A V.1 Coefficient for Max. Moment K2 

(considering shear at wall/beam interface) 

K2 from FE (b=50.66mm) K2 from FE (b100mm) K2 from 

FE(b154.5mm) 

Em Eb Depth of Beam mm Depth of Beam mm Depth of Beam mm 

75 100 125 175 75 100 125 175 75 100 125 175 

1635 8950 446 292 204 126 595 423 303 180 701 493 382 221 

13425 474 315 219 134 634 451 331 193 759 531 406 243 

17900 484 325 229 139 660 470 343 202 1 783 556 420 257 

22375 492 332 236 142 679 482 351 209 803 576 431 268 

2453 8950 490 325 226 137 665 468 337 197 791 546 417 245 

13425 520 349 247 148 718 511 369 216 863 602 449 277 

17900 538 364 259 155 757 532 1 387 230 905 643 472 299 

22375 551 373 269 161 787 548 401 240 938 674 1  489 311 

3270 8950 520 344 240 145 706 501 361 208 852 584 440 262 

13425 556 374 266 158 774 550 398 233 943 655 482 301 

17900 579 390 274 167 825 577 421 250 1000 708 512 322 

22375 580 400 288 174 868 596 436 261 1045 748 537 332 

4088 18950 541 357 251 1 150 737 526 1 378 217 1 899 613 458 274 

13425 584 393 278 166 817 577 1  419 245 1008 696 1 508 319 

1790( 613 410 294 176 880 607 447 265 1078 759 545 337 

22375 636 422 304 184 932 631 460 276 1133 808 574 350 

(SR) (.037) (.05) (.06) (.087) 
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Table A V.2 Summary of Elastic Analyses of End Supported Wall-beam. 

Maximum bending moment = WL / KI 

Kl= Coefficient of maximum bending moment 
K2= Coefficient of max. bending moment considering shear force at wall-beam interface 

Ew L-2b 
Characteristic parameter c1 

Ec h 

where, - E 
E L) E b Tb   

= 

3= a=- , , 1= 
Em

, 1+a H-a 

1-2b Em Eb 11 Ew Kc 

75 125 175 

Ki 

75 125 175 

K2 

75 125 175 

2004 1635 8950 5.474 5408 5.05 3.03 2.16 108.6 67.5 48.5 168.4 108 81.7 

1342 8.211 6531 6.1 3.66 2.62 112.2 70 50.5 173.4 112 85.8 

1790 10.95 7287 6.81 4.08 2.92 114 71.2 51.6 175.8 115 87.4 

22375 13.68 7831 7.31 4.39 3.13 115.6 72.3 52.5 177.9 117 88.6 

2453 8950 3.648 6450 6.03 3.62 2.58 114.7 70.8 51 182.2 116 87.4 

13425 5.473 8113 7.58 4.55 3.25 119.3 73.8 53.5 189.3 122 90.8 

179O 7.297 9314 8.70 5.22 3.73 122 75.6 55 193 124 92.8 

22375 9.121 10227 9.55 5.73 4.09 124.2 77.1 56.1 196 126 94.3 

3270 8950 2.737 7135 6.67 4.00 2.86 118.4 72.8 52.5 191.7 121.4 90.1 

1342 4.105 9230 8.62 5.17 3.69 123.9 76.4 55.4 200.4 127 94.1 

1790( 5.474 1081( 10.1 6.06 4.33 127.1 78.6 57 203.8 130 96.3 

2237 6.842 1206  11.3 6.76 4.83 129.5 80 58.3 206.5 132 98.1 

4088 8950 2.189 7623 7.12 4.27 3.05 121.9 74.3 53.6 198.7 125 92 

1342 3.284 10061 9.4 5.64 4.03 127.1 78.2 56.6 207.4 131 96.4 

17900 4.378 1197 11.2 6.71 4.80 130.6 80.5 58.5 211.5 134 99 

2237 5.473 13521 12.6 7.58 5.41 133.4 82.1 59.8 214.61 137 101 



AO2 

Table A V.2 contd. 

K = Coefficient of tie force in the supporting beam 
Vc = Vertical stress concentration 

Sc = Shear Stress Concentration 

L-2b Em Eb 13 Ew 
K 

75 125 175 

Vc 

75 125 175 

Sc 

75 125 175 

2004 1635 8950 5.474 5408 4.79 4.13 3.73 19.26 12.82 9.72 3.85 2.79 2.15 

13425 8.211 6531 4.94 4.29 3.85 19.33 12.84 9.72 3.86 2.74 2.22 

17900 10.95 7287 5.03 4.38 3.94 19.38 12.8 9.71 3.88 2.77 2.25 

22375 13.68 7831 5.14 4.47 4.02 19.34 12.8 9.67 3.89 2.77 2.26 

2453 8950 3.648 6450 4.28 3.86 20.23 13.38 10.1 4.16 2.79 2.23 

13425 5.473 8113 F5.O8 4.48 4.04 20.34 13.45 10.13 4.16 2.86 2.32 

17900 7.297 9314 . 4.6 4.17 20.48 13.48 10.14 4.16 2.9 2.36 

22375 9.121 10222 5.32 4.72 4.29 20.48 13.46 10.10 4.15 2.9 2.38 

3270 8950 2.737 7135 4.94 4.37 3.94 20.82 13.7 10.31 4.38 2.8 2.28 

13425 4.105 9230 5.17 4.6 4.14 21.04 13.8 10.36 4.38 2.94 2.38 

17900 5.474 10816 5.31 4.7 4.33 21.17 13.86 10.38 4.36 2.98 2.43 

22375 6.842 12060 5.44 4.87 4.44 21.2 13.86 10.36 4.35 2.98 2.45 

4088 8950 2.189 7623 4.99 4.43 4.01 21.22 13.93 10.45 4.56 2.9 2.3 

13425 3.284 10061 5.22 4.66 4.26 21.48 14.05 10.51 4.55 3.0 2.41 

17900 4.378 11977 5.38 4.83 4.42 21.64 14.11 10.53 4.53 3.03 2.47 

22375 5.473 13521 5.53 4.97 4.85 21.69 14.12 10.52 4.5 3.04 2.49 

EN!) 


