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Abstract 

In this study the laminar mixed free and force convection flow and heat transfer of viscous 

incompressible electrically conducting fluid above a vertical porous continuously moving 

surface is considered under the action of a transverse applied magnetic field. The Dufbur or 

diffusion-thermo effect in the presence of induced magnetic tiled is taken into account. The 

governing differential equations relevant to the problem are solved by using the 

perturbation technique. On introducing the non-dimensional concept and initialing the idea 

of usual Boussinesq's approximation, the solutions for velocity field, temperature 

distribution, induced magnetic field and current density are obtained under certain 

assumptions. The influences of various establish dimensionless parameters on the velocity 

and temperature profiles, induced magnetic fields as well as on the shear stress are studied 

graphically. The numerical results have also shown that the diffusion-thermo (Dufour) 

effect has a great influence in the study of flow and heat transfer process of some types of 

fluids considered. 

1 

vi 



List of Publication 

1. M. M. Touhid Hossain and Moslema Khatun, "Dufour Effect on Combined Heat 

and Mass Transfer by Laminar Mixed Convection Flow from a Vertical Moving 

Surface under the Influence of an Induced Magnetic Field", Journal of 

Engineering Science, 01(2010), pp  23 - 38. 

Ar 

VII 

- 



Contents 

Title Page 
Declaration 
Approval III 

I)cdication iv 

Acknowledgement V 

Abstract VI 

List of Publication vii 

Contents viii 

List of Figures ix 

CHAPTER 1 Available Information Regarding MilD Heat and Mass 1-- 20 

Transfer Flows 
1.1 Magneto hydrodynamics 1 

1.2 Electromagnetic Equations 2 

1.3 Fundamental Equations of Fluid Dynamics of Viscous Fluids 3 

1.4 MHD Approximations 4 

1.5 MHD Equations 5 

1.6 Some Important Dimensionless Parameters of Fluid Dynamics 6 

and Magneto hydrodynamics 

1.7 Suction and Injection 9 

1.8 Large Suction 11 

1.171  Frcc and three convection 11 

.10 Porous Medium 13 

1 1 I MI-li) Boundary Layer and Related Transfer Phenomena 14 

1 . 12 MHD and Heat Transfer 15 

I . 13 Soret and Dufour Effect 19 

CHAPTER 2 Introductions and Literature Review 21 - 23 

CHAPTER 3 Governing Equations and Solutions 24 - 31 

CHAPTER 4 Numerical Solutions and Discussion 32— 65 
4.1 Numerical Solutions 32 

4.2 Results and Discussion 53 

Cl IAPTER 5 Concluding Remarks 66 

Reference 67 - 71 

I 

Vii' 



LIST OF FIGURES 

I 

Figure No Description Page 

3.1 Flow configuration and coordinate system 24 

1.1 Variation of velocity profiles for different values of Dufour number (D,) 56 

with I. =0.71. Cr = 3.0. S = 0.30 and M = 5.0 

4.2 Variation of temperature profiles For different values of Dufour number 56 

(D1) with P, -0.71. Cr  =3.0. S =0.30 and M= 5.0 

1.3 Variation of,  induced magnetic fields for different values of Dufour number 57 

(D1) with /1, = 0.71. G,. = 3.0. S = 0.30 and 41= 5.0 

4.4 Variation of velocity profiles for different values of Schmidt number (Se ) 57 

with Pr = 0.71. C -3.0. D1  = 0.05 and 41= 3.0 

4.5 Variation of velocity profiles for different Prandtl number (P,.) with 58 

S. = 0.30. = 3.0. D1  = 0.05 and 41=3.0 

4.6 Comparison of the variation of velocity profiles for different Prandtl number 58 

(.') and Schmidt number (Se ) with Cr  -3.0. D1 -0.0S and 41-5.0 

4.7 Variation of temperature profiles for different values of Schmidt number (Se ) 59 

with Pr 0.71, G,= 3.0, D, - 0.05 and 41=3.0 

4.8 Variation of temperature profiles for different values of Schmidt number (se ) 59 

with 3.0. D, = 0.05 and M 3.0 

4.9 Comparison of the variation of temperature profiles for different Prandtl 60 
number (P,. ) and Schmidt number (Se)  with Cr  - 3.0. D1  = 0.05 and ?vl= 3.0 

4. 10 Variation of induced magnetic fields for different Prandtl number (P ) and 60 

Schmidt number (se ) with Gr  = 3.0 and M- 3.0 

'1.11 Variation of velocity profiles for different Grashol number fu,.) with P, -.- 0.71. 61 

= 0.30. D1  =0.05 and M 3.0 

1. 12 Variation of,  velocity profiles fOr different Grashof number (ci,.) with P, = 7.0. 61 

-= 0.30, 1) = 0.05 and 41 = 3.0 

4.13 Comparison of the variation of velocity profiles for different Prandtl number 62 
(P, ) and Grashof number (C,) with S = 0.30. L) = 0.05 and 41 = 6.0 

4.14 Variation of temperature profiles for dilfcrcnt (Irashof number (Cr ) with 62 

P, = 0.71 and S = 0.30 D1  = 0.05 and 41- 6.0 

4.15 Variation of temperature profiles for different Grashofuuinber (Cr ) with 63 

1,. = /.0 and = U. li,1  = 0.05 and W = 6.0 

4.16 Comparison of the variation of temperature profiles for different Prandtl number 63 

(1.) and Grashof number (G,) with S = 0.30, 0.05 and 41 = 6.0 

lx 



4.17 Variation of velocity profiles for different Magnetic parameter M and 64 
Grashof number (Cr ) with P,. =0.71, S =0.30 and Dy  =0.05 

4.18 Variation of temperature profiles for different values of Magnetic parameter 64 
M with / = 0.71. S. = 0.30, G,  = 10 and Df = 0.05 

4.19 Variation of magnetic fields for different values of Magnetic parameter M 65 
with P,  = 0.71, S. = 0.30, Cr  =3.0 and D1  = 0.05 

•- eS' 



CHAPTER 1 

Available Information Regarding MHD Heat and Mass Transfer Flows 

In this chapter we have discussed some fundamental topics related to the problems of 

solving the equations of the fluid mechanics, Magnetohydrodynamics (MHD), heat and 

mass transfer process viz, fundamental equations of fluid dynamics, MHD approximations, 

MHD equations, dimensionless parameters, free-forced convections, heat and mass transfer 

flows, suction etc., which are of interest of this investigation. 

1.1 Magnetohydrodynamics (MHD) 

Magnetohydrodynamics is that branch of continuum mechanics which deals with the flow 

of electrically conducting fluids in presence of electric and magnetic fields. Many natural 

phenomena and engineering problems are susceptible to MHD analysis. 

Faraday [23] carried out experiments with the flow of mercury in glass tubes placed 

between poles of a magnet, and discovered that a voltage was induced across the tube due 

to the motion of the mercury across the magnetic field, perpendicular to the direction of 

flow and to the magnetic field. He observed that the current generated by this induced 

voltage interacted with the magnetic field to slow down the motion of the fluid, and this 

current produced its own magnetic field that obeyed Ampere's right hand rule and thus, in 

turn distorted the magnetic field. 

The first astronomical application of the MHD theory occurred in 1 899 when Bigalow 

suggested that the sun was a gigantic magnetic system. Alfaven [12] discovered MIlD 

waves in the sun. These waves are produced by disturbance that propagates simultaneously 

in the conducting fluid and the magnetic field. The largest interests on MHD in the fluid of 

aerodynamics have been presented by Rossow [57] for incompressible fluid of constant 

property flat plate boundary layer flow. His results indicated that the skin frictions and the 



heat transfer were reduced substantially whiten a transverse magnetic field way applied to 

the fluid. 

The current trend for the application of magneto fluid dynamics is toward a strong 

magnetic field (so that the influence of the electromagnetic force is noticeable) and toward 

a low density of the gas (such as in space flight and in nuclear fusion research). Under 

these conditions the Hall current and ion slip current become important. 

1.2 Electromagnetic Equations 

Magnetohydrodynamic equations are the ordinary electromagnetic and hydrodynamic 

equations which have been modified to take account of the interaction between the motion 

of the fluid and electromagnetic field. The basic laws of electromagnetic theory are all 

contained in special theory of relativity. But it is always assumed that all velocities are 

small in comparison to the speed of light. 

Before writing down the MHD equations we will first of all notice the ordinary 

electromagnetic equations and hydromagnetic equations (Cramer and Pai, [181). The 

mathematical formulation of the electromagnetic theory is known as Maxwell's equations 

which explore the relation of basic field quantities and their production. The Maxwell's 

electromagnetic equations are given by 

Charge continuity V.D=p (1.1) 

Current continuity V.J = lap
at 

Magnetic field continuity V.B = 0 0 .3) 

Ampere'slaw VxH=J+ 
aD 

(1.4) 

Riradays la\v V x E -
aB 
at 

Constitutive equations for 1) and B I) = 0.6) 

B=pH (1.7) 

Lorcntz fbrce on a change FP  = q'(E + q P  x B)  

Total current density tiow J = o(E + q x B) + pq (1.9) 
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In equations (1 .1) - (1 .9), D is the displacement current, p, is the charge density, J is the 

current density, B is the magnetic induction, H is the magnetic field, E is the electric field, 

c' is the electrical permeability of the medium, p is the magnetic permeability of 

medium, q velocity of the charge, a is the electrical conductivity, q is the velocity of the 

fluid and p q is the convection current due to charges moving with the fluid. 

1.3 Fundamental Equations of Fluid Dynamics of Viscous Fluids 

In the study of fluid flow one determines the velocity distribution as well as the states of 

the fluid over the whole space for all time. There are six unknowns namely, the three 

components (u, v, w) of velocity q, the temperature 1, the pressure p and the density p of 

the fluid, which are function of spatial co-ordinates and time. In order to determine these 

unknown we have the following equations: 

(a) Equation of state, which connects the temperature, the pressure and the density of 

the fluid. 

p=pRT (1.10) 

For an incompressible fluid the equation of state simply 

p=constant (1.11) 

(h) Equation of continuity, which gives relation of conservation of mass of the fluid. 

The equation of continuity for a viscous incompressible fluid is 

\7.q = 0 (1.12) 

(c) Equation of motion, also known as the Navier-Stokes equations, which give the 

relations of the conservation of momentum of the fluid. For a viscous 

incompressible fluid the equation of motion is 

p -
Dq  

 = F - Vp + iV2q (1.13) 

where F is the body force per unit volume and the last term on the right hand side 

represents the force per unit volume due to viscous stresses and p is the pressure. 

The operator, 

- - + U - + V + W - 
Di at ox Ely Elz 
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is known as the material derivative or total derivative with respect to time which 

gives the variation of a certain quantity of the fluid particle with respect to time. 

Also V2  represents the Laplacian operator. 

The equation of energy, which gives the relation of conservation of energy of the 

fluid. For an incompressible fluid with constant viscosity and heat conductivity the 

energy equation is 

, 1)7' 
p( = 

50 
--+ kVT+Ø (1.14) 

C,, is the specific heat at constant pressure, 
aQ 

is the rate of heat produced per 
at 

- unit volume by external agencies, k is the thermal conductivity of the fluid. 4' is the 

viscous dissipation function for an incompressible fluid 

= 2[() (2 
+(&",)2 

+ax c)y  ) az 2 
 ç + 

where 

Su 5v 
Y =—+— xi -, 

(;7y ox 

, Sv 5%I' 
=—+-- 

5z y 

5w all 
y_ "-V 

ox 5z 

The concentration equation for viscous incompressible fluid is 

DC 
= D 1 V2C 

Di 
(1.15) 

C is the concentration and D 1  is the chemical molecular diffusivity. 

1.4 MHI) Approximations 

The electromagnetic equation as given in (1.1) - (1.9) are not usually applied in their 

present form and requires interpretation and several assumptions to provide the set to he 

used in MI-ID. In MHD we consider a fluid that is grossly neutral. The charge density p 

in Maxwell's equations must then be interpreted as an excess charge density which is in 

general not large. If we disregard the excess charge density, we must disregard the 

4 
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displacement current. In most problems the displacement current, the excess charge density 

and the current due to convection of the excess charge are small (Cramer and Pai, [18]). 

The electromagnetic equations to be used are then as follows: 

V.D=0 (1.16) 

V.J=0 (1.17) 

V.B=0  

VxH=J  
.-1c nq 

\7xE=0 (1.20) 

/ (1.21) 

B = p,H 
Bangladesh 

\> 
(1.22) 

J=c(E+qxB) 
_t 

(1.23) 

1.5 MHD Equations 

We will now modify the equations of fluid dynamics suitably to take account of the 

electromagnetic phenomena. 

The MUD equation of continuity for viscous incompressible electrically conducting 

fluid remains the same 

V.q=0 (1.24) 

The MIlD momentum equation for a viscous incompressible and electrically 

conducting fluid is 

p- = F_Vp+pV2q+J x B (1.25) 
Dt 

where F is the body force term per unit volume corresponding to the usual viscous 

fluid dynamic equations and the new term J x  B is the force on the fluid per unit 

volume produced by the interaction of the current and magnetic field (called a 

I orentz force). 

The MHD energy equation for a viscous incompressible electrically conducting 

fluid is 

DTôQkv2 J 2  
±q±— (1.26) 

" 
T 

Dt5t a 
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The new term is the Joule heating term and is due to the resistance of the fluid 
0 

to the flow of current. 

(4) The MUD equation of concentration for viscous incompressible electrically 

conducting fluid remains the same as 

Di 
=D11 V2C (1.27) 

1.6 Some Important Dimensionless Parameters of Fluid Dynamics and Magneto 

hydrodynamics. 

(1) Reynolds Number, Re: 

It is the most important parameter of the fluid dynamics of a viscous fluid. It 

represents the ratio of the inertia force to viscous force and is defined as 

Re = 
inertial force 

= 
pU 2 J] 

= 
UL 

viscous force pUL v 

where U, L, p and ,Li are the characteristic values of velocity, length, density and 

coefficient of viscosity of the fluid respectively. When the Reynolds number of the 

system is small the viscous force is predominant and the effect of viscosity is 

important in the whole velocity field. When the Reynolds number is large the 

inertia force is predominant, and the effects of viscosity is important only in a 

narrow region near the solid wall or other restricted region which is known as 

boundary layer. If the Reynolds number is enormously large, the flow becomes 

turbulent. 

(2) Magnetic Reynolds Number, Rc,.: 

It is the ratio of the fluid flux to the magnetic diffusivity and is given by 

R = _
UL 
___ 

(ur) 

It is one of the most important parameter of MI-ID. The magnetic Reynolds number 

determines the diffusion of the magnetic field along the stream lines. R a  is a 

measure of the effect of the flow on the magnetic field. If it is very small compared 

6 



to unity, the magnetic field is not distorted by the flow when it is very large. The 

magnetic field moves with the flow and is called frozen in. 

(3) Prandtl Number, Pr : 

The Prandtl number is the ratio of kinematics viscosity to thermal diffusivity and 

may be written as follows 

kinematicviscosjtv u 
thermal diffusivity ( k 

( —PCf' ) 

The value of v shows the effect of viscosity of fluid. The smaller the value of v 

the narrower is the region which is affected by viscosity and which is known as the 

boundary layer region when v is very small. The value of shows the thermal 
pC,)  

diffusivitv due to heat conduction . . The smaller the value of k 
is the narrower is d 

pG 

the region which is affected by the heat conduction and which is known as thermal 

boundary layer when -k--- is small. Thus the Prandtl number shows the relative pcp  

importance of heat conduction and viscosity of a fluid. For a gas the Prandtl 

number is of order of unity. 

(4) Magnetic Prandtl Number, Pm : 

The magnetic Prandtl number is a measure of the relative magnitude of the fluid 

boundary layer thickness. It is the ratio of the viscous diffusivity to the magnetic 

diffusivity and is given by 

P 'U 
V11 I?, 

P. is generally small and is a measure of the relative magnitude of the fluid 

boundary layer thickness to the magnetic boundary layer thickness. However, when 

the magnetic Reynolds number is large, the boundary layer thickness is small and is 

of nearly the same size as viscous boundary layer thickness. In this case P
. is not 

small. 

7 



Schmidt Number,S: 

This is the ratio of the kinematic viscosity to the chemical molecular diffusivity and 

is defined as 

- 
(kinematic viscosity) 

- I),,, - (chemical molecular diffusivity) 

Crashof Number, Gr: 

This is defined as 

G g0/3(iii)L 

and is a measure of the relative importance of the buoyancy of the force and 

viscous force. The larger it is the stronger is the convective current. In the above g0  

is the acceleration due to gravity, 0' is the co-efficient of volume expansion and 1' 

is the temperature of the flow field. 

Modified Grashof Number, G : 

This is defined as 

where * 

is the co-efficient of expansion with concentration and C is the species 

concentration. 

Eckert Number, E: 

Eckert number can be interpreted as the addition of heat due to viscous dissipation. 

Thus it is the ratio of the kinetic energy and thermal energy and is defined as 

E= 
Cp (1._7i) 

8 



where U is some reference velocity and 7, - 7 is the difference between two 

reference temperatures. It is very small for incompressible fluid and for low 

motion. 

Soret Number,S0 : 

This is defined as 

s 
DT (TW -  T) 

where I)-,. is the thermal diffusivity, 7, is the temperature at the plate, 7. is the 

temperature of the fluid at infinity, C  is the concentration at the plate and C.  is 

the species concentration at infinity. 

(10) Duffer Number,D1 : 

This is s defined as D 
mp 

CQ 

where k, is the thermal diffusion ratio, m is the constant mass flux per unit area, 

p is the density of the fluid, Q is the constant heat flux per unit area, C, is the 

concentration susceptibility. 

Magnetic Parameter, M: 

This is obtained from the ratio of the magnetic force to the inertia force and is 

defined as M 
= 

HO  (crL)2 

(pU)2 

where H0  is applied magnetic field. 

1.7 Suction and Injection 

For boundary layer flows with adverse pressure gradients, the boundary layer will 

eventually separate from the surface. Separation of the flow causes many undesirable 

features over the whole field; for instance if separation occurs on the surface of an airfoil, 

9 



the lift of the airfoil will decrease and the drag will enormously increase. In some problems 

we wish to maintain laminar flow without separation. Various means have been proposed 

T to prevent the separation of boundary layer; suction and injection are two of them. 

The stabilizing effect of the boundary layer development has been well known for several 

years and till to date suction is still the most of efficient, simple and common method of 

boundary layer control. 1-fence, the effect of suction on hydro-magnetic boundary layer is 

of great interest in astrophysics. It is often necessary to prevent separation of the boundary 

layer to reduce the drag and attain high lift values. 

Many authors have made mathematical studies on these problems, especially in the case of 

10- steady flow. Among them the name of Cobble [20] may be cited who obtained the 

conditions under which similarity solutions exist for hydro-magnetic boundary layer flow 

past a semi-infinite flat plate with or without suction. Following this, Soundalgekar and 

Ramanamurthy [65] analyzed the thermal boundary layer. Then Singh [61] studied this 

problem for large values of suction velocity employing asymptotic analysis in the spirit of 

Nanbu [47]. Singh and Dikshit [62] have again adopted the asymptotic method to study the 

hydro-magnetic effect on the boundary layer development over a continuously moving 

plate. In a similar way Bestman [14] studied the boundary layer flow past a semi-infinite 

heated porous plate for two-component plasma. 

On the other hand, one of the important problems faced by the engineers engaged in high-

speed flow in the cooling of the surface to avoid the structural failures as a result of 

frictional heating and other factors. In this respect the possibility of using injection at the 

surface is a measure to cool the body in the high temperature fluid. Injection of secondary 

fluid through porous walls is of practical importance in film cooling of turbine blades 

combustion chambers. In such application injection usually occurs normal to the surface 

and the injected fluid may be similar to or different from the primary fluid. In some recent 

applications, however, it has been recognized that the cooling efficiency can be enhanced 

by vectored injection at an angle other than 900 to the surface. A few workers including 

Inger and Swearn [34] have theoretically proved this feature for a boundary layer. In 

addition, most previous calculations have been limited to injection rates ranging from 

small to moderate. Raptis and Kafoussis [54] studied the free convection effects on the 

flow field of an incompressible, viscous dissipative fluid, past an infinite vertical porous 

10 



plate, which is accelerated in its own plane. He considered that the fluid is subjected to a 

normal velocity of suction/injection proportional to j2  and the plate is perfectly insulated, 

i.e., there is no heat transfer between the fluid and the plate. Hasimoto [301 studied the 

boundary layer growth on an infinite flat plate started at time t = 0, with uniform suction or 

injection. Exact solutions of the Navier-Stokes equation of motion were derived for the 

case of uniform suction and injection, which was taken to be steady or proportional to t 2• 

Numerical calculations are also made for the case of impulsive motion of the plate. In the 

case of injection, ve(ocity profiles have injection points. The qualitative nature of the flow 

on both the suction the cases are obtained fonn the result of the corresponding studies on 

steady boundary layer, so far obtained. 

1.8 Large Suction 

When the rate of suction is very high then it is called large suction. Singh [61] studied the 

problem of Soundalgeker and Ramanamurthy [65] for large value of suction parameter by 

making use of the perturbation technique, as has been done by Nanbu [47]. Later Singh 

and Dikshit [62] studied the hydro-magnetic flow past a continuously moving semi-infinite 

porous plate employing the same perturbation technique. They also derived similarity 

solutions for large suction. The large suction in fact enabled them to obtain analytical 

solutions those are of immense value that compliment various numerical solutions. For the 

present problem studying on MHD free convection and mass transfer flow with thermal 

diffusion, Duffer effect and large suction we have to use the shooting method for getting 

the numerical solutions. 

1.9 Free and Force Convection 

Free or natural convection is a mechanism, or type of heat transport, in which the fluid 

motion is not generated by any external source (like a pump, fan, suction device, etc.) but 

only by density differences in the fluid occurring due to temperature gradients. In natural 

convection, fluid surrounding a heat source receives heat, becomes less dense and rises. 

The surrounding, cooler fluid then moves to replace it. This cooler fluid is then heated and 

the process continues, forming convection current; this process transfers heat energy from 

- the bottom of the convection cell to top. The driving force for natural convection is 

buoyancy, a result of differences in fluid density. Because of this, the presence of a proper 



acceleration such as arises from resistance to gravity, or an equivalent force (arising from 

acceleration, centrifugal force or Coriolis force), is essential for natural convection. For 

example, natural convection essentially does not operate in free-fall (inertial) 

environments, such as that of the orbiting International Space Station, where other heat 

transfer mechanisms are required to prevent electronic components from overheating. 

Natural convection has attracted a great deal of attention from researchers because of its 

presence both in nature and engineering applications. In nature, convection cells formed 

from air raising above sunlight warmed land or water, are a major feature all weather 

systems. Convection is also seen in the rising plume of hot air from fire, oceanic currents, 

and sea-wind formation (where upward convection is also modified by Coriolis forces). In 

engineering applications, convection is commonly visualized in the formation of 

microstructures during the cooling of molten metals, and fluid flows around shrouded heat-

dissipation fins, and solar ponds. A very common industrial application of natural 

convection is free air cooling without the aid of fans: this can happen on small scales 

(computer chips) to large scale process equipment. 

Forced convection is a mechanism, or type of heat transport in which fluid motion is 

generated by an external source (like a pump, fan, suction device, etc.). It should be 

considered as one of the main methods of useful heat transfer as significant amounts of 

heat energy can be transported very efficiently and this mechanism is found very 

commonly in everyday life, including central heating, air conditioning, steam turbines and 

in many other machines. Forced convection is often encountered by engineers designing or 

analyzing heat exchangers, pipe flow, and flow over a plate at a different temperature than 

the stream (the case of a shuttle wing during re-entry, for example). However, in any 

forced convection situation, some amount of natural convection is always present 

whenever there are g-forces present (i.e., unless the system is in free fall). When the natural 

convection is not negligible, such flows are typically referred to as mixed convection. 

When analyzing potentially mixed convection, a parameter called the Archimedes number 

(Ar) parametrizes the relative strength of free and forced convection. The Archimedes 

number is the ratio of Grashof number and the square of Reynolds number I Ar = -- 

Re 

which represents the ratio of buoyancy force and inertia force, and which stands in for the 
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contribution of natural convection. When Ar>> I, natural convection dominates and when 

Ar << 1, forced convection dominates. 

When natural convection isn't a significant factor, mathematical analysis with forced 

convection theories typically yields accurate results. The parameter of importance in forced 

( convection is the Peclet number Pc = 
UL 
- , which is the ratio of advection (movement by 
a) 

currents) and diffusion (movement from high to low concentrations) of heat. 

1.10 Porous Medium: 

A porous medium is a material containing pores (voids). The pores are typically filled with 

a fluid (liquid or gas). The skeletal material is usually a solid, but structures like foams are 

often also usefully analyzed using concept of porous media. 

A porous medium is most often characterized by its porosity. Other properties of the 

medium (e.g., permeability, tensile strength, electrical conductivity) can sometimes be 

derived from the respective properties of its constituents and the media porosity and pores 

structure, but such a derivation is usually complex. Even the concept of porosity is only 

straight-forward for a poroelastic medium. 

Many natural substances such as rocks, soils, biological tissues (e.g. bones, wood), and 

man made materials such as cements and ceramics can be considered as porous media. 

Many of their important properties can only be rationalized by considering them to be 

porous media. 

The concept of porous media is used in many areas of applied science and engineering: 

filtration, mechanics (acoustics, geomechanics, soil mechanics, rock mechanics), 

engineering (petroleum engineering, bio-remediation, construction engineering), 

geosciences (hydrogeology, petroleum geology, geophysics), biology and biophysics, 

material science, etc. Fluid flow through porous media is a subject of most common 

interest and has emerged a separate field of study. The study of more general behaviour of 

porous media involving deFormation of the solid frame is called poromechanics. 
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1.11 MHD Boundary Layer and Related Transfer Phenomena 

Boundary layer phenomena occur when the influence of a physical quantity is restricted to 

small regions near confining boundaries. This phenomenon occurs when the non-

dimensional diffusion parameters such as the Reynolds number and the Peclet number of 

the magnetic Reynolds number are large. The boundary layers are then the velocity and 

thermal or magnetic boundary layers, and each thickness is inversely proportional to the 

square root of the associated diffusion number. Prandtl fathered classical fluid dynamic 

boundary layer theory by observing, from experimental flows that for large Reynolds 

number, the viscosity and thermal conductivity appreciably influenced the flow only near a 

wall. When distant measurements in the flow direction are compared with a characteristic 

dimension in that direction, transverse measurements compared with the boundary layer 

thickness, and velocities compared with the free stream velocity, the Navier Stokes and 

energy equations can be considerably simplified by neglecting small quantities. The 

number of component equations is reduced to those in the flow direction and pressure is 

then only a function of the flow direction and can be determined from the inviscid flow 

solution. Also the number of viscous term is reduced to the dominant term and the heat 

conduction in the flow direction is negligible. 

MIII) boundary layer flows are separated in two types by considering the limiting cases of 

a very large or a negligible small magnetic Reynolds number. When the magnetic field is 

oriented in an arbitrary direction relative to a confining surface and the magnetic Reynolds 

number. When the magnetic field is oriented in an arbitrary direction relative to a 

confining surface and the magnetic Reynolds number is very small; the flow direction 

component of the magnetic interaction and the corresponding Joule heating is only a 

function of the transverse magnetic field component and local velocity in the flow 

direction. Changes in the transverse magnetic boundary layer are negligible. The thickness 

of magnetic boundary layer is very large and the induced magnetic field is negligible. 

I lowever, when the magnetic Reynolds numbers is large, the magnetic boundary layer 

thickness is small and is of nearly the same size as the viscous and thermal boundary layers 

and then the MHD boundary layer equations must be solved simultaneously. In this case. 

the magnetic field moves with the flow and is called froi.en mass. 
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1.12 MHD and Heat Transfer 

With the advent of hypersonic flight, the field of MHD, as defined above, which has been 

associated largely with liquid-metal pumping, has attracted the interest of aero dynamists. 

It is possible to alter the flow and the heat transfer around high-velocity vehicles provided 

that the air is sufficiently ionized. Further more, the invention of high temperature facilities 

such as the shock tube and plasma jet has provided laboratory sources of flowing ionized 

gas, which provide and incentive for the study of plasma accelerators and generators. 

As a result of this, many of the classical problems of fluid mechanics have been 

reinvestigated. Some of these analyses arouse out of the natural tendency of scientists to 

investigate a new subject. In this case it was the academic problem of solving the equations 

of fluid mechanics with a new body force and another source of dissipation in the energy 

equation. Sometimes their were no practical application for these results. For example, 

natural convection MHD flows have been of interest to the engineering community only 

since the investigations are directly applicable to the problems in geophysics and 

astrophysics. But it was in the field of aerodynamic heating that the largest interest was 

aroused. Rossow [57] presented the first paper on this subject. His result, for 

incompressible constant-property flat plate boundary layer flow, indicated that the skin 

friction and heat transfer were reduced substantially when a transverse magnetic field was 

applied to the fluid. 'I'his encouraged a multitude analysis for every conceivable type of 

aerodynamic flow, and most of the research centered on the stagnation point where, in 

hypersonic flight, the highest degree of ionization could be expected. The results of these 

studies were sometimes contradictory concerning the amount by which the heat transfer 

would be reduced (Some of this was due to misinterpretations and invalid comparisons). 

Eventually, however, it was concluded that the field strengths, necessary to provide 

sufficient shielding against heat fluxes during atmospheric flight, were not competitive (in 

terms of weight) with other methods of cooling (Sutton and Gloersen, [661). However, the 

invention of new lightweight super conduction magnets has recently revived interests in 

the problem of providing heat protection during the very high velocity reentry from orbital 

and supper orbital flight (Levy and Petschek, [41]). 
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Processes, heat transfer considerations arise owing to chemical reaction and are often due 

to the nature of the process. In processes such as drying, evaporation at the surface of water 
ly body, energy transfer in a wet cooling tower and the flow in a desert cooler, heat and mass 

transfer occur simultaneously. In many of these processes, interest lies in the determination 

of the total energy transfer although in processes such as drying, the interest lies mainly in 

the overall mass transfer for moisture removal. Natural convection processes involving the 

combined mechanisms are also encountered in many natural processes, such as 

evaporation, condensation and agricultural drying, in many industrial applications 

involving solution and mixtures in the absence of an externally induced flow and in many 

chemical processing systems. In many processes such as the curing of plastics, cleaning 

and chemical processing of materials relevant to the manufacture of printed circuits, 

manufacture of pulp-insulated cables ctc, the combined buoyancy mechanisms arise and 

the total energy and material transfer resulting from the combined mechanisms have to be 

determined. 

The basic problem is governed by the combined buoyancy effects arising from the 

simultaneous diffusion of thermal energy and of chemical species. Therefore the equations 

of continuity, momentum, energy and mass diffusions are coupled through the buoyancy 

terms alone, if there are other effects, such as the Soret and Duffer effects, they are 

neglected. This would again be valid for low species concentration levels. These additional 

effects have also been considered in several investigations, for example, the work of the 

Caldwell [17]. Groots and Mozur [28], 1-lurle and Jakeman [331 and Legros, el al. [46]). 

Somers [63] considered combined boundary mechanisms for flow adjacent to a wet 

isothermal vertical surface in an unsaturated environment. Uniform temperature and 

uniform species concentration at the surface were assumed and an integral analysis was 

carried out to obtain the result which is expected to be valid for Pr  and S values around 

1.0 with one buoyancy effect being small compared with the other. Mathers el al. [45] 

treated the problem as a boundary layer flow for low species concentration, neglecting 

inertia effects. Results were obtained numerically for Pr  =1.0 and S varying from 0.5 to 

10. Lowell and Adams [43] and Gill ci al. [27] also considered this problem, including 

additional effects such as appreciable normal velocity at the surface and comparable 

species concentrations in the mixture. Similar solutions were investigated by Lowell and 

Adams [43]. Lightfoot [42] and Saville and Churchill [60] considered come asymptotic 

16 



solutions. Adams and Mc Fadden [11 presented experimental measurements of heat and 

mass transfer parameters, with opposed buoyancy effects. Gebhart and Pera [24] studied 

laminar vertical natural convection flows resulting from the combined buoyancy 

mechanisms in terms of similarity solutions. Similar analyses have been carried out by 

Pera and Gebhart [521 for flow over horizontal surfaces and by Mollendrof and Gebhart 

[46] for axisymmetric flows, particularly for the axisymmetric Plume. 

Mollendrof and Gebhart [46] carried out an analysis for axis symmetric flows. The 

governing equations were solved for the combined effects of thermal and mass diflusion in 

an axisymmetric plume flow. Boura and Gebhart [15], Hubbel and Gebhart [321 and 

Tenner and Gebhart (1771) have studied buoyant free boundary flows in a concentration 

stratified medium. Agrawal el at. [2] have studied the combined buoyancy effects on the 

thermal and mass diffusion on MHD natural flows, and it is observed that, for the fixed G 

and P, 
the value of X, (dimensionless length parameter) decreases as the strength of the 

magnetic parameter increases. Georgantopoulos et al. [26] discussed the effects of free 

convective and mass transfer flow in a conducting liquid, when the fluid is subject to a 

transverse magnetic field. Haldavnekar and Soundalgekar [29] studied the effects of mass 

transfer on free convective flow of an electrically conducting viscous fluid past an infinite 

porous plate with constant suction and transversely applied magnetic field. An exact 

analysis was made by Soundalgekar and Gupta [64] of the effects of mass transfer and the 

free convection currents on the MHD Stokes (Rayleigh) problem for the flow of an 

electrically conducting incompressible viscous fluid past an impulsively started vertical 

plate under the action of a transversely applied magnetic field. The heat due to viscous and 

Joule dissipation and induced magnetic field are neglected. 

During the course of discussion, the effects of heating Gr < 0 of the plate by free 

convection currents, and G, (modified Grashof number), S, and M on the velocity and the 

skin friction are studied. Nunousis and Goudas [49] have studied the effects of mass 

transfer on free convective problem in the Stokes problem for an infinite vertical limiting 

surface. Georgantopolous and Nanousis [25] have considered the effects of the mass 

transfer on free convection flow of an electrically conducting viscous fluid (e.g. of a stellar 

atmosphere, of star) in the presence of transverse magnetic field. Solution for the velocity 
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and skin friction in closed from are obtained with the help of the Laplace transform 

technique, and the results obtained for the various values of the parameters, S , P. and M 

are given in graphical form. Raptis and Kafoussias [54] presented the analysis of free 

convection and mass transfer steady hydro magnetic flow of an electrically conducting 

viscous incompressible fluid, through a porous medium, occupying a semi infinite region 

of the space bounded by an infinite vertical and porous plate under the action of transverse 

magnetic field. Approximate solution has been obtained for the velocity, temperature, 

concentration field and the rate of heat transfer. The effects of different parameters on the 

velocity field and the rate of heat transfer are discussed for the case of air (Prandtle number 

P. = 0.71) and the water vapor (Schmidt number S = 0.60), Raptis and Tzivanidis [55] 

considered the effects of variable suction/ injection on the unsteady two dimensional free 

convective flow with mass transfer of an electrically conducting fluid past vertical 

accelerated plate in the presence of transverse magnetic field. Solutions of the governing 

equations of the flow are obtained with the power series. An analysis of two dimensional 

steady free convective flow of a conducting fluid, in the presence of a magnetic field and a 

foreign mass, past an infinite vertical porous and unmoving surface is carried out by Raptis 

(1983), when the heat flux is constant at the limiting surface and the magnetic Reynolds 

number of the flow is not small. Assuming constant suction at the surface, approximate 

solutions of the coupled non-linear equations are derived for the velocity field, the 

temperature field, the magnetic field and for their related quantities. Agrawal el al. [5] 

considered the steady laminar free convection flow with mass transfer of an electrically 

conducting liquid along a plane wall with periodic suction. The considered sinusoidal 

suction velocity distribution is of the form J/' = VO  I + C cos_}. where v0  > 0, is the 

wavelength of the periodic suction velocity distribution, and is the amplitude of the 

suction velocity variation which is assumed to be small quantity. It is observed that near 

the plate the velocity is a maximum and decreases as y increases. Also, an increase in the 

magnetic parameter the velocity decreases. Agrawal el al. [4] have investigated the effect 

of Hall current on the combined effect of thermal and mass diffusion of an electrically 

conducting liquid past an infinite vertical porous plate, when the free stream oscillates 

about constant nonzero mean. The velocity and temperature distributions are shown on 

graphs for different values of parameters. The value of Pr  is chosen as 0.71 for air. In 
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selecting the values of S,  the Schmidt number, the diffusing chemical species of most 

common interest in air are considered. From the figures it is seen that, with the increase air. 

Hall parameter, the mean primary velocity decreases, where as the mean secondary 

velocity increases for a fixed magnetic parameter M and S.  However, for a fixed m, and 

increase air magnetic parameter M or S,  leads to a decrease in both the primary and the 

secondary velocities. The mean shear stresses at the plate due to primary and secondary 

velocity and the mean rate of heat transfer from the plate are also given. To study the 

behavior of the oscillatory and transient part of the velocity and temperature distribution, 

curves are drawn for various values of parameters that describe the flow at Wt = , The 
p.. 

non-dimensional shear stress and the rate of heat transfer are obtained. The above problem 

has been extended by the same authors (Agrawal et al. 131) when the plate temperature 

oscillates in time a constant nonzero mean, while the free stream is isothermal. The 

velocity, temperature and concentration distribution, together with the heat and mass 

transfer results, have been computed for different values of J, Gr  M and m. 

1.13 Soret and Duffer Effect 

In the above mentioned studies, heat and mass transfer occur simultaneously in a moving 

fluid where the relations between the fluxes and the driving potentials are of more 

complicated nature. In general the thermal -diffusion effects is of a smaller order of 

magnitude than the effects described by Fourier or Flick's laws and is often neglected in 

heat and mass transfer process. Mass fluxes can also be created by temperature gradients 

and this is Soret or Thermal diffusion effect. There are, however, exceptions. The thermal-

diffusion effect, (commonly known as Soret effect) for instance, has been utilized for 

isotope separation and in mixtures between gases with very light molecular weight (142. 

He) and of medium molecular weight (N,, air). The diffusion thermo effect was found to 

be of such a magnitude that it could not be neglected (Eckert and Drake, [22]). In view of' 

the importance of the diffusion thermo effect, Jha and Singh [35] presented an analytical 

study for free convection and mass transfer flow for an infinite vertical plate moving 

impulsively in its own plane, taking into account the Soret effect. Kaffoussias [36] studied 

the Mlii) free convection and mass transfr flow, past an infnitc vertical plate moving on 
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its own plane, taken into account the thermal diffusion when (i) the boundary surface is 

impulsively started moving in its own plane (ISP) and (ii) it is uniformly accelerated 

(UAP). The problem is solved with the help of Laplace transfer method and analytical 

expressions are given for the velocity field as well as for the skin friction for the above 

mentioned two different cases. The effects of the velocity and skin friction of the various 

dimensionless parameters entering into the problem are discussed with the help of graphs. 

For the I.S.P. and U.A.P. cases, it is seen from the figures that the effect of magnetic 

parameters M is to decrease the fluid (water) velocity inside the boundary layer. This 

influence of the magnetic field on the velocity field is more evident in the presence of 

thermal diffusion. From the same figures it is also concluded that the fluid velocity rises 

due to greater thermal diffusion. Hence, the velocity field is considerably affected by the 

magnetic field and the thermal diffusion. Nanousis [48] extended the work of Kafoussias 

[36] to the case of rotating fluid taking into account the Soret effect. The plate is assumed 

to be moving on its own plane with arbitrary velocity U0 f'(t') where U0  is a constant 

velocity and f(t) a non-dimensional function of the time 1'. The solution of the problem 

is obtained with the help of Laplace transform technique. Analytical expression is given for 

the velocity field and for skin friction for two different cases, e.g., when the plate is 

impulsively stared, moving on its own plane (case I) and when it is uniformly accelerated 

(case II). The effects on the velocity field and skin friction, of various dimensionless 

parameters entering into the problem, especially of the Soret number S0 . are discussed with 

the help of graphs. In case of an impulsively started plate and uniformly accelerated plate 

(case I and case Il), it is seen that the primary velocity increase with the increase of S0  and 

the magnetic parameter M. It has been observed that energy can be generated not only by 

temperature gradients but also by composition gradients. The energy flux caused by 

composition gradients is called the Duffer or diffusion thermo effect. On the other hand, 

mass fluxes can also be created by temperature gradients and this is the Soret or thermal 

diffusion effect. 
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CHAPTER 2 

Introduction and Literature Review 

The convective heat and mass transfer process takes place due to the buoyancy effects 

owing to the differences of temperature and concentration, respectively. In dealing with the 

transport phenomena, the thermal and mass diffusions occurring by the simultaneous 

action of buoyancy forces are of considerable interest in nature and in many engineering 

practices, such as geophysics, oceanography etc. Many theoretical and experimental 

investigations have been established in the literature involving the studies of heat and mass 

transfer over plates by natural, forced or combined convection, and most of these studies 

are based upon the laminar boundary layer approach. The mixed free-forced convective 

and mass transfer flow has essential applications in separation processes in chemical 

engineering or drying processes. The natural convection boundary layer flows induced by 

the combined buoyancy effects of thermal and mass diffusion has been investigated 

primarily by Gebhart and Pera [24] and Pera and Gebhart [52]. Furthermore, convective 

flow through porous media is very important in many physical and natural applications, 

namely, heat transfer associated with heat recovery from geothermal systems and 

particularly in the field of large storage systems of agricultural products, storage of nuclear 

waste, heat removal from nuclear fuel debris, petroleum extraction, control of pollutant 

spread in groundwater, etc. The free convection flow past an infinite vertical porous plate 

with suction velocity perpendicular to the plate surface was studied by Brezovsky et al. 

[16], Kawase and Ulbrecht [38], Martynenko et al. [44] and further extended by Weiss et 

al. [67]. A finite difference numerical scheme was considered by Pantokratoras [50] in 

order to study the laminar free convection boundary layer flow past over an isothermal 

vertical plate with uniform suction or injection. Hassanien et al. [31] has investigated the 

natural convection boundary layer flow of micropolar fluid over a semi-infinite plate 

embedded in a saturated porous medium where the plate maintained at a constant heat flux 

with uniform suction/injection velocity. 

1 In recent times, the problems of natural convective heat and mass transfer flows through a 

porous medium under the influence of a magnetic field have been paid attention of a 
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number of researchers because of their possible applications in many branches of science, 

engineering and geophysical process. Considering these numerous applications, MHD free 
r convective heat and mass transfer flow in a porous medium have been studied by among 

others Raptis and Kafoussias [54], Sattar [58], sattar and Hossain [59] etc. Besides, Kim 

[39] has been studied the effect of MHD of a micropolar fluid on coupled heat and mass 

transfer, flowing on a vertical porous plate moving in a porous medium. However, 

Pantokratoras [51] showed that a moving electrically conducting fluid induced a new 

magnetic field, which interacts with the applied external magnetic fields and the relative 

importance of this induced magnetic field depends on the relative value of the magnetic 

Reynolds number (Rm >> l). 

4' 

Nevertheless, more complicate phenomenon arises between the fluxes and the driving 

potentials when heat and mass transfer occur simultaneously in case of a moving fluid. It 

has been observed that an energy flux can be generated not only due to the temperature 

gradients but also by composition gradients. The energy flux caused by a composition 

gradient is called the Dufour or diffusion-thermo effect, whereas, mass flux caused by 

temperature gradients is known as the Soret or thermal-diffusion effect. In general, the 

thermal-diffusion and diffusion-thermo effects are of a smaller order of magnitude than the 

effects described by Fourier's or Fick's law. This is why, most of the studies of heat and 

mass transfer processes, however, considered constant plate temperature and concentration 

and have neglected the diffusion-thermo and thermal-diffusion terms from the energy and 

concentration equations, respectively. Ignoring the Soret and Dufour effects, Choudhary 

and Sharma [19] studied the mixed convection flow over a continuously moving porous 

vertical plate with combined buoyancy effects of thermal and mass diffusion under the 

action of a transverse magnetic field, when the plate is subjected to constant heat and mass 

flux. But in some exceptional cases, for instance, in mixture between gases with very light 

molecular weight (112, He) and of medium molecular weight (N2 , air) the diffusion-

thermo (Dufour) effect and in isotope separation the thermal-diffusion (Soret) effect was 

found to be of a considerable magnitude such that they cannot be ignored. In view of the 

relative importance of these above mentioned effects many researchers have studied and 

reported results for these flows of whom the names are, Eckert and Drake [22], 

Dursunkaya and Worek [21], etc. Whereas, Kafoussias and Williams [37] studied the same 

effects on mixed free-forced convective and mass transfer boundary layer flow with 
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temperature dependent viscosity. Later, Anghel et al. [13] has investigated the composite 

Dufour and Soret effects on free convection boundary layer heat and mass transfer over a 

vertical surface in a Darcian porous regime. A theoretical steady with numerical solution of 

two-dimensional free convection and mass transfer flow past a continuously moving semi-

infinite vertical porous plate in a porous medium is presented by Alam et al. [11], taking 

into account the Dufour and Soret effects. Later, a numerical study based on Nachtsheim-

Swigert shooting iteration technique together with sixth order Runge-Kutta integration 

scheme have been carried out by Alam and Rahman [8] in order to investigate the Dufour 

and Soret effects on mixed convection flow past a vertical porous flat plate with variable 

fluid suction. Recently, Alam et al. [9] investigated the diffusion-thermo and thermal-

diffusion effects on unsteady free convection and mass transfer flow past an accelerated 

vertical porous flat plate embedded in a porous medium with time dependent temperature 

and concentration. Very recently, a mathematical model and numerical study based on the 

finite element method has been implemented by Rawat and Bhargava [56] for the viscous, 

incompressible heat and mass transfer of a micropolar fluid through a Darcian porous 

medium with the presence of buoyancy, Soret/Dufour diffusion, viscous heating and wall 

transpiration. 

The Dufour and Soret effects on steady MHD free convective heat and mass transfer flow 

past a semi-infinite vertical porous plate embedded in a porous medium have been studied 

by Alam and Rahman [7]. Next, Alam et al. [10] studied the Dufour and Soret effects on 

unsteady MHD free convection and mass transfer flow past an infinite vertical flat plate. 

Alam et al. [11] further extensively investigated the Dufour and Soret effects on steady 

MHD free-forced convective and mass transfer flow past a semi-infinite vertical plate. In 

recent times, a numerical study of the natural convection heat and mass transfer about a 

vertical surface embedded in a saturated porous medium under the influence of a magnetic 

field has been done by Postelnicu [53], taking into account the diffusion-thermo and 

thermal-diffusion effects. Following the study to those of Choudhary and Sharma [19]. 

Pantokratoras [51] and Postelnicu [53], our main aim is to investigate the Dufour effect on 

combined heat and mass transfer of a steady laminar mixed free-forced convective flow of 

viscous incompressible electrically conducting fluid above a semi-infinite vertical porous 

surface under the influence of an induced magnetic field. 
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CHAPTER 3 

Governing Equations and Solutions 

Consider a model of steady mixed convection and mass transfer flow of a viscous, 

incompressible, electrically conducting fluid past a continuously moving infinite vertical 

electrically nonconducting porous plate under the influence of a transversely applied 

magnetic field. Introducing the cartesian coordinate system in which the axes x and y are 

chosen to be along and normal to the plate, respectively. The flow is assumed to be in the 

x-direction, which is taken along the vertical plate in the upward direction. Based on the 

assumptions that the magnetic Reynolds number of the flow is not taken to be of 

considerable magnitude so that the induced magnetic field is taken into account. The 

magnetic field is of the form H =(H1, H,0). The equation of conservation of electric 

charge V.J =0, where J = (J,, J , J, Since the direction of propagation of electric 

charge is along the y-axis and the plate is electrically nonconducting. J, = 0 every where 

within the flow. It is also assumed that the Joule heating effect is small enough and 

divergence equation for the magnetic field V.H = 0 is of the form fI = H0 . The 

schematic view of the flow configuration and coordinate system of the problem are shown 

in Figure-3.1. 
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Figure 3.1 Flow configuration and coordinate system 

Further, as the plate is infinite extent, all physical variables depend on y only and therefore 

the equation of continuity is given by 
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dv 

dy 
--0 (3.1) 

whose solution gives v = -, where fr is the constant velocity of suction normal to the 

plate and the negative sign indicates that the suction velocity is directed towards the plate 

surface. In accordance with the above assumptions and initiating the concept of usual 

Boussinesq's approximation, the basic equations related to the problem incorporating with 

the Maxwell's equations and generalized Oham's law can be put in the following form: 

dH 
(3.2) 

dy dy p dy 

(33) 
dy dy 0-lie  dy2  

dT k d  2  T v (dU)2
+ 
 I (dH"2  DkT  d2C 

—V0 
= —i- 

-j + 
(3.4) 

21- 

—V0 1--1=D—- (3.5) 
dy dy 

The relevant boundary conditions on the vertical surface and in the uniform stream are 

defined as follows: 

dT Q dC 
u=U0, -=--, -=--, H =H, aty=O 

dy k dy D (3.6) 

u=O,T=T,C=C,H=Owheny— 

where g is the acceleration due to gravity, fi is the coefficient of thermal expansion. 1' 

denotes fluid temperature, C is concentration of species, T.  and C.  are the temperature 

and species concentration of the uniform flow, 
/3* 

 is the concentration expansion 

coefficient, v is the Newtonian kinematic viscosity of the fluid, lie  is the magnetic 

permeability, H. is the applied constant magnetic field, H is induced magnetic field, p 

is the density of the fluid, a is the electrical conductivity, k is the thermal conductivity, D is 

the chemical molecular diffusivity, CP  is the specific heat capacity of the fluid at constant 

pressure, C is the concentration susceptibility, kT  is the thermal diffusion ratio, U0  is the 
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uniform velocity, Q is the constant heat flux per unit area, rn is the constant mass flux per 

unit area and His the induced magnetic field at the wall, respectively. In order to 

simplify a numerical solution, we introduce the following transformations, viz: 

V0 u VO urn 

0*=kVo(T_TQ3);H*= H1 (3 7)  

vQ \IpV0  

and defining the following dimensionless parameters 

pvC 
F,. = " (Prandtl number) 

k 

- 
v2g/3Q 

(Grashofi number) Gr 
kVO4 

vg/3 * - 

(modified Grashoff number) 
0 

kV 3  
E = ° (Eckert number) 

L)Q( 
, 

D 
pmkT (I)ufour number) 

f QC 

V 
S = - (Schmidt number) 

= UV/le (Magnetic diffusivity) 

M = 
(Magnetic parameter), where C is the concentration on the plate wall. 

V0 Vp 

On introducing the above non-dimensional quantities, in the equations (3.2) - (3.5) with 

boundary conditions (3.6) we have 

* U 
U 

* 
or, U=Vu 

du du* 

dy dy 
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• dy'V0 

dy V 

Then 
dy dy*' dy 

=-; (3.8) 
vdy 

d2u d (v2du*dy* 
2•4y*V ,'jd 

71 
u 

d2 * 

= Lo_t4 (39 
V ay 2 *) 

! fi= 
V0 p 

or, H = 
10  F;~ 

V0H' 

Now 
dH 
dy dy'dy 

= 
I/'e dy v 

vF
dH'  

;~dY' 
(3.10) 

d2H 
=  d (

V
V~2 f dli' '

) 
 Wv' 

2 * 1 *1
dy YV/Je dYdY 

v03  Ijd2H' 
02 dy'2 

 

Again, 

Cs 
= V0D(C-C) 

mu 

or,C - C= muG (3.12) 
V0D 

andO* = '0(TT 
uQ 



or, TTr 
kV0 (3.13) 

Substituting (3.8) -(3.10) and (3.12) -(3.13) in equation (3.2) we get, 

g'8 6Q- + g + 
0
(! LO.  d 0 p 

 rrn
Vdy k) D ) v dy p ody 

or du* + m0C
+

Vo3 d 2 02 
peH fdIc 

v dy kV0 VD V dy V p \I  dy 

or, + & F~Ee i + du = - 
gpv2Qo* 

-

go*V2mct 
,*2 

V0 dy* dy* kVO4 DV04  
d2u* dH* du* 

g,8v2Qe* 
- 

or, 
dy dy kVO4  

d2u* dH* du* 
or, + M -i- + -G,.9 - G, C* 

dy dy dy 

where 

M=&fi 
VoVp 

gfll)  r 
kk 

G=g/3*
v2(C-C)--- 

J o  

Putting (3.8), (3.10) 
- (3.11) in equation (3.3) we have 

v2 
H 

v2 du* I V 
° 

0 f---  d 2H 

0+v --  

or,  - ii+ L& 
dy J/T p (/ (71!) (/y 2  

where M = & 
V0 p 

and J Pe 

Again equation (3.4) gives 

dT 
= k d2 

—I
T v (du2 

+ 
1 (dH 

2 
Dk d 2C -J, —+J jl dy pC dy2  C, dy) crp dy) CC,, dy2  

28 

(3.14) 

(3.15) 



From equation (3.13) we have 

T= 0 +T 
kV0  

dT = d (QvO* 

+ T 
dy dy*kV 

)

,, 'y 

QvdO V0  
kVo  dy*  v 

- Q d9 

- 
k dy* 

d2T d (Qde* dy*  

y2y
* kdy*)

dy 
 

Qd2O* v 

- k 72  v 

- 

QV0 d29* 

- ku 
dy*2 

Further from equation (3.12) 

muC 
* 

C= +C 
V0D 

dC =  d(mu * 
I.- 

dy dy*JT
O
D ) dy 

- 

mvdC*dy* 

VoDdy* dy 

mvdC V0  
VoD  dy*  v 

m dC* 

D dy* 

Hence 

d2C = 
 d (mdC* )dy*  

dy 2 dy* 
D 
 dy* 

Jdy 

2C* 
md V0  

- 
D dy*2 

- 

mV d2C* 

- 
Dv dy*2 



Therefore equation (3.4) becomes 

— Q dO — k QJ' d20* 1 
j_2 

Dk, my0 d2C* 

k dy pC kv dy 2  C, v dy ) crpC ( 1) Pe dy ) Dv dy 2  

QV0 d20*  QV0  dOt 
- 

v: (du* 2 

_ a'H 
 2 

Dk mV0  d2Ct  
or, 

dyt2 rpv2pCp
I

dy
*) Dv dy*2 

or, 

d20t 
 +

PVCP dO' 
- 

—kV pvC (*\12 
-

kV pvc 1 (dH,)2

k dyt   QvC k dy*) QvC, k crvC dye  

+- 
Dkj  PUCp  

QV0  Dv dy 

or, 

d 20t  + pvC 
= — kV pvC1, (du*SSt2 kV pvC I (dH 

2 
 mkp d2Ct  _) 

dyt2 k QvC k — QvC k Pe + CQ dyt2  

d29* dOt 
* 2 (dH2l d2Ct 

*2 +_) ]+D1 
dy 

(3.16) 
dy dy Pm  dy 

E = kV 
where 

k -  k T' C  QvC' 
= 

and D = 
mk,p 

is the 1)ufour number. f CQ 

Then equation (3.5) becomes 

Ddy Dvdy 

dC Dd 2Ct  
or, --+ 

dy vdy 
*

2 

v 
where —=S. 

D 

The corresponding boundary conditions are now transformed as follows: 

y =0  yt  =0 

u—U0  aty=O=V0u =U0 =u
* 
 =

U0
—, i.e.,u

* 
 =U

* 
 aty

* 
 =0 

V0  

30 

(3.17) 



dT Q Qd0* Q. dO' aty=0=----=--,i.e., --=-1 atv =0 
dy k kdy k 

dC m mdCi  m. dC 
aty=0=--------=--,i.e., --=-1 aty =0 

dy D Ddy D dy 

H=H, aty=0 H* =H3 H0Ht =H"°" =H1,.i.e.,H*  =hat y =0 
fi [H() M 

p VO 

where h = 
MH 4 , 

 
H0  

Abs y —* cX => y4  —* c 

u =0 when y —* oo => V0U =0, i.e., u =0 when y —>  oo 

V 

T = T when y =0, i.e., O  =0 when y 
kV0  

C=Cc  when y — c 
muC i =0. .e..(

* 
 =Owhen y

* 

 —>  oo 
Dy0  

and H =0 when y -_c 
H i =0, .e., H

* 
 =0 when y

* 

 — 

\1pV 

Therefore, ignoring the asterisk (*), we obtain (3.14) -(3.17) as follows: 

d 2u dH du —+M--+—=-GO-G C 
dy dy r 171 

1 d 2H du dH 
- 
___ 

Pm dY2 dy dy 

—+P—=-P - +—I—I i+D d 20 dO 
rEc[)) 

1 1dHs2l d2C 
dy2  ,dy PmdY)j fdy2 

dC 1d 2C 
—+—=0 
dy S dy2  

with corresponding boundary conditions 

dO dC 
y=O :u=U, —=-1,—=-1, H=h (say) 

dy dy 
y-*: u=0, 0=0,C=0,H=0 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

(3.22) 
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CHAPTER 4 

Numerical Solution and Discussion 

4.1 Numerical Solution 

The simplest solution of equation (3.21) can be obtained as follows: 

dC I d 2C 

dy Sc  dy2 
(4.1) 

Let the trial solution of(4.l) be C = e" (4.2) 

So the auxiliary equation of equation (4.1) is 

I 
- m + in = 0 
Sc  

(  
i.e. 

in 
nil = 0 

Sc  

m=O and nz=—S 

Therefore, we have the trial solution C = A + Be " 

Applying boundary conditions on C from (3.22) we have 

C=O as y—>co =>O=A i.e. A=0 

at y=O:then —l= —S.B i.e. 
dy 

1-lence 

C = (4.3) 

To obtain a complete solution ol the coupled nonlinear system of equations (3.18) (3.20) 

under boundary conditions (3.22), we introduce the perturbation approximation. Since the 

dependent variables u, H and 0 mostly dependent on y only and the fluid is purely 

incompressible one, we expand the dependent variables in powers of Eckert number Er  

which is small enough such that the terms in E? and its higher order can be neglected. 

Thus we assume 
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u(y)_ui (y)+Eu2 (y)+o(E 2). 

H(y)= H (y)+  EH2 (y)+O(E 2)+ (4.4) 

O(y)= 01 (y)+E 2 (y)+0(E 2 )+ 

Now, 
U

—=u1(y)+Eu2 (y)+ 
dy 

d 2U 
,, 

--=u1 (y)+Eu2 (y)+......... 
dy 

dH 

dy 2 
=H1 (y)+EH2  (y)+......... 

dO 
= 911(y)+ EO2'(y)+......... 

dy 

d28 
--= 

,, 

(y)+Ee2"(y)+......... 
dy 

Substituting equation (4.4) into (3.18), (3.19) and (3.20), we get- 

From (3.18): 

d 2u dH du 
+ /vi + - = GrO - GmC 

dy 2 dy dy 

or, I u," (y)+ Eu2" (v)+...} + M{H1' (y)+ EH2'(v)+...}  +{u1'(y)+ Eu2'(y)+...1 

= Gr  {O(y)+ E02(y)+...}—G,,,C 

Equating the co-efficient of the like powers of E  and neglecting the terms in Ec2  and 

higher order, we have 

u1" + MH1' + U1'  = Gr61 - G 1C (4.5) 

u21'  + MH2' + u2'  = Gr92 (4.6) 

From (3.19): 

1d2H dH du 
-___ 

Pm dY 2  dy dy 

or, i{Hi"(y)+ EH2"(Y)+...}+{H1'(y)+ EH 2'(y)+...} + Mju,' (y) + Eu2' (y)+...} =0 
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Separating like terms we get, 

=0 

• H11' +'In''-'! " + MJu1' = 0 (4.7) • . '  

and H2
'I 
 + 1,,H2' + M1,3u2' = 0 (4.8) 

From (3.20): 

I, I 
é +P,.0 =D1C 

12 and 62 + = -I.u112  — 

So substituting (4.4) into (3.18), (3.19) and (3.20) and equating the co-efficient of the like 

powers of E and neglecting the terms of E 2  and higher order, we obtain the equations of 

zero and first order approximations as follows: 

Coefficient of (E)° : 

U11'  + MH' + u' = Jr01 — G11 C (4.9) 

H1" + f1' + Il 1u1 0 (4.10) 

+ /O' D( " (4.11) 

and coefficient of (Eu )': 
Ar 

U 2"  + MH2' + u2' Gr02 (4.12) 

H21'+P,H21 +MP,,,u2' =0 (4.13) 

02" +PO2  =-iu1' 2 H i2 (4.14) 

with the corresponding boundary conditions 

u=U, u2  =0, H=h, H2  =0, 6 =-1, 02  =0 aty=0 
(4.15) 

=01  u2  =0, H1  — 0, H2 --> 0,  0 ->0,  02  ->0 as y —+ CO J 

Finally, equations (4.9) — (4.14) together with the boundary conditions (4.15) can be 

written separately as follows: 

d2u +ML+!=_G O _LY (4.16) 
dv2  dy dy r Sc 
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d 2  IJ dii du 

dy2 
M dy n dy 

± L 
= SCDfe (4.18) 

dy 
 

with boundary conditions 

y=O :u1 =U L=_1 Hi=hl dy 1 (4.19) 

v-*:u=O, 0=0, H=0 

d2u2 
+ M d,12  + = (4.20) 

dy2 dy dy 

dH +P dI-i2 +MJ)du2O (4.21) dy dy 

d 282 dO 
=- 

1dUl 2±I1.i 
)2] 

 
(4.22) 

dy2 
r dy r dy) P dy 

with boundary conditions 

y=O :u,=0 —=0, H
- 
 =0 

- dy (4.23) 

y-*o:u2 =0, 02  =0, H2 =0 

Now we are interested to solve equation (4.16) - (4.18) with boundary conditions (4.19) 

and equation (4.20) - (4.22) with boundary conditions (4.23). 

From equation (4.18) we have 

+ J = SDe- 
dy dy 

Here the auxiliary equation is obtained by 

+ "rm =0 

or, m(m+P,)=0 

and m=-i. 

The complementary function is obtained by 01, = A + 

Now the particular integral 0/) 
= 

)2 
- 
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-- De 

- (Pr Sc ) 

- 

D1e_S 
General solution is 4 = 0k +4,, = A + Be' 

Pr Sc  

Applying boundary conditions: 

4 =0 as y —*oo =>A =O 

and 

0' =-1 at y=O gives 

D .S. 
ll3Pr+ DY  

1r Lc 

B=1('l+_DjS 

) f F— S, 

Hence 01  =111+_DS D1e 

Pr . Pr Sc (P,.—S) 

or, 0 =.:i1i+ D1S e-p DiSce 1Y  

P,. — S) Sc (Pr Sc) 

Let us consider 
D S.

=  
— S. 

Then 4 = --(i + n7)eP," —_Ln7e' 

Now we have from (4.16) and (4.17). 

Ff 
+ MH1' + u1'  = Gr4 — GmC 

+ P,,,H' + MPmUi' =0 

Now from (4.26) we obtain 

1 (H1" + P J-I' 
MPm  

(4.24) 

(4.25) 

(4.26) 

/ U, 

iH +PH1  
MPm 

m 

Substituting the above two relations together with (4.3) and (4.24) into equation (4.25) we 
at 

have 
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_ _(ii" ' ' +ii1")+íri1(H,"+P.H.')=-G, 
+n7) e 

MPm '  W. S. Sc  

or, 

H1" + PmHi" - M 2P,H1' + H1" + m"1'  GrMPm 
1(1+ i) 

e' _e_'}+ 
G,MP,,J 

 e'' 
Sc  

I', 
or, H +(i+ Pm)Hi"  +Pm(1_M2)Hi = GrMPrn{(1+fl7) e 1  -e''+ 

GmMPm 
 e' 

Pr Sc J c 

Here auxiliary equation is m3  + (1+ P,,, ) m2  + P,, (1_ M2 ) m = 0 

For simplicity, let us consider, 1 + P0, = n1  and J(1 - M 2 ) = n2  

Then m3  + n1 m 2  + n2m = 0 

or, m(m2 +nim+n2)=0 

i.e.m=0andm= 
—n 1 

±jnj2 4 
 

fl1- -n(  - 4, fl1  f \!fll  

The complementary function is 1'1 = A + Be 2 + Ce 

Gr {(1- 
________ - 

'7 
e 5'y + ' m } Ci' tiP 

Sc Sc  
Particular integral is H P = 

D3  +n1 D2  +n2D 

W,,, 

+ or, 
= +n(P) _p 

- (-s)3  +n1 (—S)2 -n2S  (-S)3  +n1 (-S)2  -n2S 

- 
MP,,:Gr  (i + 7 )C MP,zGr  n7e 

+ 
MPmG e' 

_Pr2( 2 _flh1+h12) _Sc2(Sc2 _n jSc +n2 ) _S 2 (S 2 _nl Sc +n2 ) c"c 

Choosing GrMPm 
= 

n3; GmMP,n 
= n4 ; = n5  and  ., = n6  

s 2 2 
- n1i + n2 - n1sc  + 

we have H = -n5  (1+ n7 ) 
e-P + —L  n6n7e-S ' 

 - n6e- Scy 
Gin 

= -n5  (1 + n7 )e'' - 1--Sr-n7 
( )e

-Sy  

So the general solution is 
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II1 =H1 +Hi =A+Be 2 +Ce 2 

Applying boundary conditions: 

I-I'  = h at y =0, we have 

h = A + B + C - n5  (1+ n7 ) - n6
( G,,, 

- L- fl7) 

andat y -+co, H1  =0=>C=0 

which gives A=0. 

-n5 (1+n7 )e' _n6 [i_9 n7 Je' 

Thereforewe have 

If we consider 
n, +Jn 

= A1 , then 
2 

)

.. 
H1 (Y)={h+n5(l+n7 )+n6 11_9L e 

-A1y

G j ( G..  ) 

Further from (4.25) we have u1" + u1'  = - GmC - MH1' 

i.e. u1" +u1' = - (1+n7 )e'' +-n7e' --e'' - M[_A1  {h+n5  (l+n7 ) 

+n I--q,-n7)le 

6 ( G. G,11 
'77 +1n5 (l+n7)e" 

[..o =--(l+n7 i'' 

Here, auxiliary equation is m2  + m = 0 

or, m(m+1)=0 

i.e. m=0 and m=-1 

Complementary function is u1  = A + Be' 

Particular integral is 

-M  [-A,  h + n5  (I + n7  ) +  n6 n7  )  e-'41Y  + Prn5  (I + n7  )e-  P 
Gr S'Y 

 

.4- D2 --D 
- 

ly + Sn,  ( I- 
 Gm  n7  ) 

 e- 
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_J (1+n7 )+MIn5 (l+n7 )} 
S

e' 3' -n7  + Ms 
G

cn6[1- r e-S' j.  

I -tJ  

(p)2 p 
 

G 
n7

J}e u y  
if? 

(-A1 )2  -A1  

= 
_{Gr  (1+n7)+  MPr2n5  (1+n7)}e'' {Gm Grfli  +MSc2n6[1_6r}r 

1) 2  r (11)) 
- -s(1-s) 

.7  )
1 

 }e_i  

+ 
-4(1-A1) 

(i,,7 

Choosing 

M {h + n5 (1+ n7 )+ n6 [1_ 2n7 } 

(1-A) 

Gr (1+fl7 )+i/I1.2 fl (i +n7 ) 
- 

p2(ip) 

Gr  
 - r7

G.   7 

= 

The particular integral is u P  = _nse A ly 
+ + 

The general solution is u1  = + = A + Be' - + n)e + fl10e 

Using boundary conditions: 

At y=O, u1 =U=U=A+B-n8 +n) +n10  

i.e. U=A+B-n8 +n9 +n1()  

and at y-+c', u1 =O=A=O 

Hence B=U+n8 -nQ -n1()  

Therefore, 

= (U + n8  -n.  - n10 ) e' - n8e + n9e + n10e 
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Thus solving the above equations (4.16) - (4.18) under boundary conditions (4.19), we get 

u1 (y) = (U + n,  - n9 - n10)e' - nse_A1 + ne' + (4.27) 

(y) ={h+ (i+)+n6[i_]}El- e - (1+i)e' — i [i_nJe' (4.28) 

1  

01 (y)=—(l+n7 )e_ ,  t'_ 
I 

n7e _ , (4.29) 
Sc  

Similarly solving equations (4.20) - (4.22) under boundary conditions (4.23), we get 

u2" + + MH2' = Gr02 (4.30) 

"2 +P  112'+ MF,7u2' 0 

02 + = —i (u1' 
)2  P( )2

Hl' 
'U 

From equation (4.32) we have auxiliary equation 

+ Prm =0 

or, m(m+Pr )=0 

i.e. m=0 and m=—F 

Hence the complementary function is 02c  = A + Be'' 

(4.31) 

(4.32) 

Jl 

Now the particular integral is 02,, = 

2 / ,\ 
—P.(u, ) 

_ r  ( HI, 

Ifl ) 

2  

D2  +Pr D 

41  

°2p = 
_{_(u +n8 —n9 —n10 )e" +A1n8e' —e 1 ' _SnioeY} 

+PD 

[—A, h + n5  (I + n7  ) + n6 n7  ) e 4 1 + I n5 (1+n7 )e  ' 

+Sn41

- Gr  
--

n7  es,-~']2  

J)2 + 

[((; 2 . --2.l

=' +n8 -n9 -nj0 ) e +Ariie +P;nc - - +S:ii,e 
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PI 

.1-  

-2A1n8(U+n8_n9—n10)e
_(I+A1); 

— 
_(A~J )i 

2Ai Prn8n9e 

+2Pn9 (U +n8  —n9  —n10)e
_(1+P r )y

+2Sn10 (U +n8  —n9  

—2A iScnsnioe( A 
+ 2 PrS n9n1 

-+ s)] 

2 

_[Al2{h+n5(1+n7)+n6 
& e 2 ~I 2n (1+n7 )2  1— n7  

( Gr e V')Y _2AI n5 (1+n7 ){h+n5 (1+n7 )+n6 1_n7)J  +Sfl61fl7 Cm) 
G. 

+2PSn5 n6 (1+n7 )1— 
G,

ne' _2AiS.no [I_ 
G

ni ){h+ns (1+ni )+n6 (1_n7)}e_ +)' 
t\  G ,, 

D2  +PD 

If we choose 1 = I , the particular integral is 

2 I -2A 1 y 

[ (U + n3  - ng  - n10 )2  e2 
+ 

~h + n,(I+n7)"6 [_ _n7 J} + n8  

62p (_2)2 2Pr (_2A)2  2Pr A 

e 
- 2Py SJn1_n7J +no}e2sY 

+ 
G 

(_2P)2  - 2Pr 2 (-2s)2  - 2 SC PI. 

I, 

2A1n8(U+n8_n9_n10)e
_(I+Ai)y

+2n9(U+ng_n9_fio)e 

{—(1+A 1 )}2 —(I+A 1 ) {(1+)}2 (I+Pr) 

+ 
2Sn10 (U+n8  —n9  —n10 ) 

{_(1+Sc.)} 2 _(1+Se ) 

-( 

H A+)} —(A+) 

-a 
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2JS{n5n6 (1+n7 )[I_ n7 j+n9n10 }  e 
'rn + 

((1r +s)}2  p(p +s) 

2A'S  [ n 

G 
— n7 + n5 (1 + n7 )+ n6  i Gr J}+nsnioj 

1 
e 
-(A+s)y 

(1 , G m  

f—(A, +S, )l
2 
- Pr (A i  +s) 

A Jh+n5(1+n7 )+nI—
G

n7  +n8  e 
J} 

2] - 

__ 

4 
21)' 

(U+ns _ n9 _ nio)2 e_2Y 

—2( —2) —2A 1 (
________________________________ 

.-2A1) 

 

2 

s2  P2 {n2 (1+n )2 +n2 }e 2 Y C {n1_ 
j  

2.y 

+ + 
2].2 2S(1-1r 2Sc ) 

2An8 (U +n8  —n9  —n10)e
-(1+4);' 
 + 2Prn9 (U +fl8  —n —n 0 )e 

— _(1+A)(I_1_A1 ) 1+I 

+ 
2Sn10  (U + n8  - n9  - n10 )e' Sjy 

—(1+s)(1. - i - s) 

2Ai [n5 (1+n7 ){h+n5 (1+n7 )+n6 [1_ 
G

n7J}+n8?] e 
-(.i±i 

G. 
- A1 (A1 +f) 

2S 
G.  

+ 
s(F+s) 

1 l 2As.[n611_ G 
 n7 J{h+n5 (1+n7 )+n6 [1_ Gr n7 J}+n8nio je --(A1ts )v 

(\ G. G, 

—(A 1 +s.)(—A1 —Sc ) 

j 

Further choosing 
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1— r 
(U+n8 -1Z) —n,Ø )

2 A i {h+fl 5 (l+n7 )+fl6 
) 

[ G 

______ 

 
—2(F-2) 2(I_2A1 ) 

2 

Sc n  2  (1 — n7  

 —n13 ; 

+} 
n(1+n7 

2 2 

= ; 
2 2(P.-2S) 

n14 
 

2A1n8 (U+n8 —n9 —n10 ) 2Prn9 (U+n8 —n9 —nio ) 

_(1+A1)(I_1_A1) 
=fl15; 

1+ P,  
=n16 ; 

2Sfl1o(U+fl8 —fl9 —fl1o) 

-(i+s)(i.-1-s) 

= n18 ; 
A l +I. 

2P,  { 56  (1+ )
( Gn 
I 
- 

n7 
J 

+ nqnjO 
 } 

+ Sc  
= n19 ; 

2A t S.[n6 [1_ n7 J{h+n5 (l+n7 )+n6 [1_n7 J}+nio ] 

- T2O 
— (A1 +s)(i. — A 1  —Sc  ) 

the particular integral is now 

- 
- n + n13e ''  - n14e 2 ' - n15e-(I+A')y  + n16e't ) ' 02p - p 

[n 
-2;' -A1y 

(A1 +1 ( + )y +n19e
iS

—n20e I 
The general solution of 02  is 

_(l+A)y 
f 12 +n13e 21 ' _n14e 2S3' —n15e 02 _92c +02p  =A+Be'' _pr [niie_2Y -2A1y 

 

-(I+P)y -(1+S +nj6e +n17e ' 

)y  —ne 

Applying the boundary conditions: 

+ n19e' +S)y - n20e' 
+S,  

0'=0 aty0 implies 
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0 =-BJ -P1-2nh I + 2Al nI2 -2Jnl3 +2SCnI4 +(I+Al )nI5 _(1+P)nl6 _(I+SC )nl7  

+(A, +[~)n,, -(P, +.Sjn,9  +(A, +S,)n,,,] 

02  =0 as y —* cc implies A =0 

Then B=2n11 _2Ajni2 +2Prni3 _2Seni4 _(1+Ai )fl15 +(l+P)fl16 +(l+S)fl17  

_(Ai+Pr )fl18 +(Pr +Sc )fl19 _(Ai +Sc )fl20 ]=A2  (Say) 

2y -2A1y 21- _(I+Ai )y 
1-lence 2 +n13e - —fl 

-(I+S)y _(Ai+Pr)y (P +n17e -n18e +n19e rc)y _n20e_+S4Y] 
(433) 

From (4.31) we have 

= — 
1 
(H2"  + I,, H2  

MPm / 

Substituting u2' and u2
I' 
 in equation (4.20) we get. 

I, I, / 1_(H
+ ,,JJ2 

) MP, 
(H2

„,  + /)  "i 

MPm ' 

or, H2
I,, 

 + Pm H2” + H2" + Pm H2' — M 2Pm H2' MP,,iGr 612  

or, 

I', 

H2 +(1+J,,)H21' +1(1_M2)H2' = MI)mGr[A2e-Pr J' —  i,.{ntie_2;' 
12

-2Ay -2/' rY 

A )y -(+1)y -(i+S.)y _{A i+P _n14e_2scY 
- n15e _(I+ + n16e

i 
+ n17e - n18e 

)y
+ n19e - n2oe_ )'}] 

Now auxiliary equation is 

m3  + n1 m2  + n2m = 0 

or, m(m2 +nim+n2)=0 

i.e. m=O and m= 
-n1 ±jn -4n 

 
2 

-  -,jn 72-4 2 -' -1-..Jn -4n2  

'l'herefore the complementary function is H2 = A + Be 2 + Ce 2 

and the particular integral is 



- MP,,, PGr I n1 1e 2  MI i,Gr A2e 
"2) 

= 
'' ______________________ 

' (_)3 (_j)2 
n1  —n2J. {(_2) +(_2)2 n1  — 2n2  

___ 

n13e 21-'  
+ 

(_2A1 
)3 

+(_2A 1 )2  n1  - 2A1n2 (-2I) +(_2/)2  n,  - 2In 

2 -(i+Ai )V 
n4e_ '__ - n15e 

(-2.) +(_2S.)2 n —25n2 1—(I+A,)I' +(I+A, )2 _(1+An, 

+ 
n11e 

+ 
n11e 

-(I+F)y -(I+S)y 

{—(i+)}3 +(1+)2  n1 —(i+)n2  {—(i+S)}3  +(1+S)2  n j — (1+S)n2  

n18e 
_(A1 -i-P)y 

+ 

n19e -(P+Sjy 

H A 1 +)}3  +(A1 +)2  ni_(Aj+)n2 {-( +s.)}3 +( +S) n1 — ( +S)n2  

-(A1  +S4v 
n20e 

H AI +S,)I'  +(A1 +s)2  nj — (Ai+S.)n2 

2' 
-2Ay 

- MPm F;.Gr A2e ' 
____________ 

n12e 
_MPmGr[( 

n11e +n2) _2A1 (4A — 2A1 n1  +n2) - 2 ( 2  —n1i. +n2 ) 

-  Pry -2Sy 

+ + 

—2P,. (4p2 
- 2J.n1  + n2 ) —2S (4s 2  - 2Sn1  + n2 ) 

_(I+A1 )y - (I-t!) 
n 5e __________________________________ + 

_(1+A1){(1+A1)2_ (1+A1 )n, +2} 
_(1+1){(1+)2 —(1+1)n +n7 } 

+ 

-(1+s.) 
n17e n18e '  

- S 

_(1+S){(1+S)2 _ (1+Sc )ni +n2 } _(A1 +r){(A1 +i)2  _(Ai +r)ni +n1} 

+ 

_(f+S){(f+S)2_ (F+S)n1+n2 

If we choose 

n20e 1 
_(AI+sC){(Al+s)2 — (Ai +S)nj  + n2 1] 

4 - nil  - 
. 

f12 
- 

S - 

2(4-2n+n2 ) 2A 1(441_2i1n+172 ) 
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I 

-4- 

fl,3 fl,4  
=n24; =n25;  

2I(412 —2In, 2) 2s(4s' 2  

f15   

(l+AI){(l+A,)2_(l+A,)Pr + n2j 
26; (l+ Pr  ){(l+ Pr  )2 _(l+)ni+n2} 

=n27; 

f17  

(i +s){O +S)2  — O +Sc)ni +n2} 
' 

(A, +){(A, + P)2  —(A, + )n,+n2 } 

(p, +S')j(Pr +S') 
2 
—(Pr+S,)n,+"21 

fl30; 
(AI+sc ){(Al+sc )2 _(A,+sc )n, 

}_ 73I 

and 1 = I, then the particular integral is 

41+Ai)y 
i-r = i'iiq. I—fv- +ne '  -ie + 4e 21 

I+i 

_(i+sc )y _(A i +Pr )y 
+n28 e - n29 e + n30e_ 

r +S.)y 
- n3ie_ 1+S Y] 

General solution of 1-12 is 

-fl 2 -4n ,Ju2 4,i 

H7  = H2  + H2  = A + Be 2 + Ce 2 
+ MPrGr I —n2le-

"'Y  

-2A1 y -(i+iii)y +n22e 2-  —n23e +n24e 21 ' —n25e 25  —n26e +/ 

-(1~s. )y  +n28e —n29e +n30e 
_(A +i )y -(! +)y —n3 ie1 ) 

with respect to boundary conditions: 

H2  = 0 at y 0 implies 

A+ B+ C+ MPrGr [—n2, + n22 - n23  + 1774 1125 fl76  + fri27  + 117  - fi2)  + fi ()  - fl J 0 

and H2 =0as p —>ci >C=0. 

Hence A0. 

Then 

B = II rGr  [ —n21  + fl,2  - + - 25 26  + 1277  + fl28  - fl29  + 10  - 31 I 
or, B=MP,.Gr A3  

where A. =n,1 —n,, +n21 —n, +n2  +fl2(  —fl,7  — fl, +112)  fl3  +fi 
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So H2 (y)= MJGr [Ae-,4 1.)' —n21e' +n22e 2  —n23e 2' +n24e21 _n25e2V 

-(A ~5 _(Ai+Pr )Y -(P _(1+Ai )y (l+P —n26e + n27e r)Y + n28e -n29 + n30e r+Sc)Y 
- n31e (4.34) 

From (4.20) we have u2  + U 2  = - MI-I, 

u21' + = Gr - i {n1 1e 2  - + n13e 
 2/1 

- n14e 2,Sy 
- n15e 

+ / 
n2oe-( 

A, +S, 
)JI ~] v _(Ai+1)y -(PFS)y 

+n16e 1  

2,ly 
_M 21 _ A  Gr [_Ai A3e lY  +Pn21e" 2  —2n22e +2n23e

- 
—2Pn24e 2  

-(l+Ai )y 
(1+ c) -(I+S)v 

+2Sn25e 2 ' +(1+Ai )n26e —(1+ P,.)n27e - n28e 

-(P ~5 +(A,+p)n29eh1Y—(p+S)n30e r 

-24 -2A1 y 2P 
= —Gr A2e + GP {n13e - n12e + n13e - n14e 2  - nl5e_0+h1  

-(1+1' 
+n6e r)y +n17e 

(I+SC.  —n18e n 19e —n20  
)v _(A~)y 

+ (~)y e'} 

M 2FGr  IAi A3e + - 2n22e 2  + 2A1n23e 2 ' - 2Pn24e 21  

+2Sn25e 2 ' +(i+ Aj)n26e 0"' —(1+ P,  )n27e_(1+1  —(1+S)n7,e 
s 

+(Ai+ Pr )n29e
+h1+ Y_( +Sc )n3oe 1 +(, +S)n3ie 

= 
- (G r A 2  + M 2 Pr G r fl 2I )e_ !  + Pr G r  [{n1  + 2M n22 - (n12  + 2M 2 A 

+ ( 
) + 2M2F.n24)e21)  _(n 4  + 2M 2Scn25 )e_2  _{n15  + M 2  (1+ Ai)n261e 

11.11.1 
 

+{ni6+M2(1+1)n27}eF+{ni7+(1+sc)M2n2}e (!L\jv 

+(A1  + ) M2n29} _(A~)) + 
{n19  +( + S) M2n30} e 

1 
— {n +(A1  + S)M2n3i5e

-(,I +s )y 
 + M 2PrGr AI A3e_AIY1 

The auxiliary equation is m2 +m=Om=0.—1 
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Hence the complementary function is u2 = A + Be -' 

and the particular integral is 

\ 
e -2Av 

_ 
[(ii, + 2M 2n,, )e_2 

- 
(n,2  + 2M 2 A1 n 3 ) (Gr A2 +M2P2Gfl2,)e4 

+PpG 
- (P)2  _P 

[ 

(_2)2 — 2 (_2A,)2 — 2A, 

) 

+'3 

+2M2 P,n24)e 2I Y (n14 + 2AtI 2Sn25)e_2 cY  {n,5 +(I+A1)M
2 
 fl261e

_(I+A)y 
 

(_2Pr )2 _2P (2s)2 2s  

+M2  (I +1)2 n2i}e0+'' 

+ 

{n17 +M2  (I +Sc)fl78 }e_(l+Sc)Y 
- 

{n18  +(A1 +J)M2n29 } 
e _(il+/) 

{_(l+ )}2 

_(i+j) {-(' +s)}2  -(I+s) {(A1 +)}2  (A +J) 

{n19  +M 2 (P. +S)n30 } e (I'~sc)Y {n70  +M 2 (A1 +S) } n31e_)  

+ + 
M 2I)Gr Ai  

{_(I

A3eAIY 1 

+S.)}2  -(i +S ) - {_( A +S)}2  _(A1+S) (—A,)2 — A, 
] 

= - 
(Gr A2 + M 2  ?2G fl2, )e [(n1 , + 2t'f 2n22 )e 2Y (n12  + 2M 2A,n23 )e 2 ' 

+PrGr J  

—P(i+ P,.) 2 _2A,(1 _ 2A1) 

I(n,3  + 2M 2Jfl24 ) 21)rY (n14  + 2M 2Sn25  )e_2 {n, 5  +(i + A, )M 2n26  e 

+ 
_2Pr(1 _ 2Pr ) _2S(1 _ 2S) - A(i4A1 ) 

{n,6+M2(1+i.) fl2-içe 
_______________________ _______________________ 

2 ) -(l+J)y 

I 
 n,,  +(A,  +f)M2n2} (/1fi 

+ 1 
S(l+2s) - _(A,+ J)(1_A, _r) 

{ 
_(il+Sr) 

n19 +M 2  (P, +Sc )n3o }e_(I•+Sc)Y {n20  +M 2 (A, +S)n31 
I 

e M2PrGrAiA3e_A 1 
+ 

_(P +S.)(i - -se ) -(A, +s)(1-A, -se ) + -Al ]-Al) 
] 

If we substitute 

Gr A2  + M 21 2G,n2, PrGr  (n,, + 2M 2n22 ) 
17333.,  i (1- P) 

32' 2 
= 

P,.Gr  (n,2  + 2A/12 A,n23 ) T'rGr  (n, 3  + 
f2J)

1-1124 
 

34; 
2A,(12A,) 2(1_2) 

P,X_ir (fl14 +2M 2SC fl 25 ) P,Gr {flI5 +A/I2 (1+A I )fl 2 ,} 
n36 ; =n37  

2S(1-2S) - A,(1+A,) 

fGr{flô±(1+Pr)M2fl27} 
- 

!Gr {fli 7  +(1+s)M2n 2 } 
= 

s(i+s) 
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Pi Gr, {n18  +(A1 + P)M 2n29 } 

(A1+J)(1-A1-i) 
=n40; 

PrGr I n2O +(A, +s)M2n3i } 

(A1+s)(I-A1-s) 
=fl42  

/Gr  {n 9  +(i. +SC)Mn3fl}  
= 

(P. +s)(1-I-s) 
fl4  

M'2PrGr/13 
= 

1—A 1  

> 

1' 

I 

'l'hen the particular integral is 

u2 = n32e + n33e 2' + n34e - n35e 21 ' + n36e25'' n37e ' ' '  + ne - 

+ - n41e_(1 Sy + n47e_h+Si 

So the general solution is 

= u2  +u2  = A + Be +n32e +
n33e

2 V +n34e2hV —n35e21 

-(l-*S )y +n36e 2 ' -n37e -n37e +n38e r+fl39C 

_(Ai +I)y -(P--S.)v _(A j+S.)y 
+n40e -n41e +n17e -n43e 

Applying the boundary conditions 

= 0 at y = 0, we have 

A + B + fl32  + fl33  + fl31  - fl ;ç  + fl - fl 7  + fl 38+17;)  + h7 4Q  - 11  + fl fl = 0 

as y- then u, =0 

Hence A = 0. 

Therefore, B 17 
32 

+ 17 33  -F 17 34  -- 17 35  + 17 
36 - fl37  + 17 39  -1-  fl 39 ± n40 1741  + --- n) 

If .44  -(n3, +n33  +n34  -n35  +n36  -n37  +n38  +n39  +n40  -n41  +n42  _n43), then 

u2 (y) = A4e' + n32e ' ' + n33e 2 ' + n34e_2AY 
- n35e 2"  + n36

e_2S 
 - 

--( IfPri v (i- i+p + _(A-s( )
-

' \  
- 35)+n38e + n39e + ne n41e + n42e ii 13  e (4.  

Therefore, the solution of above equations(4.16)-(4.18)with boundary conditions (4.19) 

and equation (4.20) - (4.22) with boundary conditions (4.23) correspond to the following: 

6 (y) = + n7 )e '  -1n7e' (4.36) 
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= pj(1_M 2 ); 
MP zGr  

n3= 
p2 

n3  

= 
2 
- J) + 

114  

fl6 S2 S 

1 ( 
e 

\t 
 (4.37) 

G )j Qn )  

u1  (y) = (U + n8  - n9  —n10 )e - n8e
- A1y 

 + n9e' + n10e 

62  (y) = 42e' -2 A iY 
- 

p, [n, 1e 2- - n11e + n13e 2!y 
- n14e 2SrY 

- n15e
_(I+A1 )y 
 + n1 e 

+ni7e_(1 —n18e + n19e (i+s)y 
- n20e_(A

1+s 
(439) 

H2 () = MPrGr  [Ae 
-A, 

- n21e 21'  + n22e 2  - n,3e-2A iY  + n74e 2 ' - n75e2S) 
- n26e

_(i+ i) 

+n27e + n28e - n29e 
-(i+S)y -(A 

+ n30e 
+!)y -(!+S)y 

- n 1e' (4.40) 

u2  (y) = + n32e + n33e + n34e 
-2A iY 

- + n36e 
2S v 

- n37e
_(i+i1); 

-(li-P )y 
+ n39e ' + n40e '4'  - n4 1e '  + n42e 

+S4y 
- n43e 

-Ay
(4.41) 

A 

where 

M],1G 7  n4 = 
S; 

D.S 
n7  = 

P - r 

MJh+n5(1+n7)+no[1— 
 Gr 

 n7 
G,,7

n. 
 I 

1—A 1  

Gr (1+fl7 )+MJ.2 fl5(14fl7 ) n9 = 
P2 (iP) 

' 10 

L fl7  
- Gr fl7  + S 1_ n6 

G. 

m  

s(1—s) 

(U+n8 —i—n,0 ) 
Ai [{h+ns (1+n7 )+n6 [1_

G
n7 J}+n] 

2 G. 
nil =  -________________ 2(J.-2) 

' 12 
2(J._2A1 ) 

n(1+n7 )2 +n 
1113 =  

2 
s { [ 

1 
n 

Gm)

2 

+ 10 

n14 = 
2(Pr 2Sc ) 
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2A1n8 (U +n8  —n9  —n10 ) 
nls= 

(1+A1 )(1+A1 _J) 

2Pr fl9 (U+fl8 9  
flu, = 

2Snio (U+n8 —n9 —nio ) 
'I7 

—(1+s)(1+s—I.) 

2[n5 (1+n7 ){h+ns (1+n7 )+fl6 [ 

fl!8 =

1_n7J}+?]; 

A1 +I 

2J{fl5fl6 (1+fl7 )11_ 9r n7 J+inio } 
G, 

Pr + Sc  

2AIS[n6 [1_ n7 J{h+ns (1+ni )+n41__ni J}+nsnio  

n20  
Gn 

 

(A1 +s)(A1 +s—I) 

/ 

'r 

\ 
flesh 

N .  

A. 

A, 
fl21 = p(p2 +n2 )' 

= 
2Ai (4A-2Ai ni +n2 ) 

fl!4  = 
2s.(4s —2Sn1 +n,) 

flu5  

(1+ A 1 ){(1+ A1 )2  _(i + A1 )I + 2 } 

nil  

= 2(4-2n1  +n,)' 

fl!3  
24 = 

2I(41 —2fn1 +n,)' 

fl'6  
n27  = 

(1+){(1+)2_(1+Pr)ni+fl2}' 
28 = 

fl!8  
= 

(Al+){(AI+)2 _(A1 +)n, + 2 } 

flu 

(1+ s ) {( 1+ 
)2 
- (i ± c ) n ± 

fl, 9  

(Pr +Sc){(Pr +Sc)2 _(Pr +Sc)nl+n2} 

'2O Gr A2  + M 2 ].2G,,,n21  
' 

(AI+Sc)(AI+Sc)2_(AI+Sc)flI+fl2} 
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1Gr{flii +2M2
n22

} PrGr (fl12 +2M 2A i fl73 ) 
n33  = 

2 ' 

2A1 (1_2A1 ) - 

PrGr(fl13 +2M 2 P
,n24

) T.Gr (fli4  +2M 2Sn2 ) 

2P,(1-2P,.) 
' 

2S(l-2Sj 

P,Gr  {n15  +(i + A1) I2n} P,Gr  {n16  + (1+ Pr) i2,} 

A 1 (1+A1 ) i(i+i) 

P,(Ir{fl17 +(1+s.)M 2n28 } PrGr {flig  +(A I +Pr )M 2 fl2 } 
1739  = 

s.(1+s) (A1 +])(1_A_1) 

PrGr {1719 +(Pr +SC )M 2 fl3O } P,Gr {fl2O +(A I +SC )M 2 flli } 

= (1+s)(l— / — se ) 
' 

= (A, +s)(1—A, —se.) 

M 2F.Gr A1  
1743 = 

1—A 1  

A1 
n. + jn - 4177  

= 
2 

A2  = 2n11 -2A 1 n2 + 2Jn1 —2Sn  —(i + A 1 )n1  +(l+ .)nJ(, +(l +5,)ni7  — (A1  + i.)nj 

+(i +S)n —(A1  +SC )n7() 

A3 = n2172 +n23n24 25  +fl26  —fl27 n28 +fl29  — fl3()  + 1731 

A4 — (1 2  + /733  +1734—fl35 
+1736 - 1737  + 1738  + 1739  + 17 4()  - fl4  + /777  -- 17 43 ) 

The shearing stress at the plate is given by 

ôu2  
I 
( 
— S 

)=() () 

* 
(aT* 

and the rate of heat transfer per unit area of the plate is given by Q = —k -_ 

\Y y=O 

Therefore, the dimensionless heat transfer coefficient, which is usually known as the 

Nusselt number (Nu), is obtained by Nu = 

-=('  kV0 (r* - T *) 
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I 

The  rate of mass transfer is given by ni
* 

* 

= —pDI —i- and hence the dimensionless 

mass transfer coefficient, which is generally known as the Sherwood number (Sh), is 

obtained by s 
* 

= = s. Consequently, it is observed from this 
PV0D(C _(') C 

equation that there exists a linear relationship between the Sherwood number and the 

Schmidt number. 

4.2 Numerical Results and Discussion 

The system of coupled, nonlinear, ordinary differential equations (4.16) - (4.18) and (4.20) 

- (4.23) governed by the boundary conditions (4.19) and (4.23), respectively are obtained 

by using perturbation technique. In order to get insight into the physical phenomena of the 

problem, the approximate numerical results of the first order solutions (4.39) - (4.41) 

concerning the velocity, temperature and induced magnetic field have been carried out for 

small values of Eckert number E. (which is the measure of the heat produced by friction) 

with different selected values of the established dimensionless parameters like Dufour 

number (D1-), Grashof number (Gr ), Schmidt number (se ), magnetic parameter (M), 

etc. Since the two most important fluids are atmospheric air and water, the values of the 

Prandtl number (i.) are limited to 0.71 for air (at 200  C) and 7.0 for water (at 20°  C) for 

numerical investigation. Following the work of Choudhary and Sharma (2006), other 

parameters like magnetic diffusivity (Pm)'  modified Grashof number (G,) for mass 

transfer, and h are chosen to be fixed values 1.0, 3.0, and 1.0, respectively. It is also 

mentioned here that for the sake of brevity the values of the viscosity/temperature 

parameter are taken to be positive (Gr  > 0, for a cooling Newtonian fluid), which 

correspond to a cooling problem that is generally encountered in engineering in connection 

with the cooling of reactors. The numerical results obtained for dimensionless velocity, 

temperature and induced magnetic field versus y for difierent selected values of the 

parameters (DJ,GT,Pr,SC  and M) are presented in Figures 4.1 —4.19. 
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The effect of Dufour number on the velocity and temperature profiles and induced 

magnetic fields are illustrated in Figures 4.1 - 4.3 for Prandtl number 1. = 0.71 (air), 
Cr 

= 3.0, S = 0.30 and M = 5.0. It is observed from Figure 4.1 that the velocity decreases 

quantitatively with the increase of Df  from 0.00 to 0.80. Figure 4.2 shows the effect of 

Dufour number on the temperature fields. Like velocity, we observe that the temperature 

profiles decrease with the increasing value of Df . It is also observed from Figure 4.3 that 

an increase in the Dufour number leads to a decrease in the induced magnetic field. 

Figures 4.4 —4.8 exhibit the behaviors of velocity, temperature and induced magnetic field 

profiles respectively for air (P,. = 0.71) and water (i. = 7.0) taking the different values of 

I 
S (S = 0.30 for helium at 250 C temperature and I atmospheric pressure and S = 0.78 

for ammonia) with Gr = 3.0, D1  = 0.05 and M = 3.0. 

Figures 4.4 shows the velocity profiles for the variation of Schmidt number (Se ) from 0.30 

to 0.78 with Pr = 0.71, Gr  =3.0, D1= 0.05 and M = 3.0. We observe that the velocity is 

high for helium (se. = 0.30) than ammonia (Se. = 0.78) for air at 250  C temperature and I 

atmospheric pressure. But it is observed from Figure 4.5 that for a fixed value of Schmidt 

number (S = 0.30) the velocities are found to be dominated highly in the case of air 

(Pr  = 0.71) than of water (P,. = 7.0). A comparison of the variation of velocity profiles for 

different Prandtl number (J.) and Schmidt number (se)  with Gr  = 3.0, D1  = 0.05 and 

M = 5.0 is shown in Figure 4.6. As might be expected, the velocity profiles increase 

gradually near the plate, become maximum in the vicinity of the plate. and then decrease 

slowly away from the plate. 

The effects of ScOfl  the temperature profiles are shown for both air (/. =0.71) and water 

(Pr  = 7.0) in Figures 4.7 and 4.8 respectively. With the increase of S, the temperature 

profiles decreases for both air and water. Figure 4.9 shows a comparison of temperature 

profiles for the variation of both P. and Sc. It is observed that the influence of Prandtl 

number on the temperature profiles is very significant. A rise in F,. through P. = 0.71 (air) 

to F,. = 7.0 (water) corresponds to a dramatic decrease of temperature throughout the 

domain and therefore leads to a decrease in thermal conductivity of the fluid. 

54 



Further, Figure 4.10 exhibits that the induced magnetic fields extensively decreased with 

increasing S. but the rate of decrease is superior for water, where J. = 7.0, than air, where 

P,. =0.71. 

Figures 4.11 and 4.12 investigate the variation of velocity profiles for varying Gr  

corresponding to the values of P. = 0.71 (air) and /. = 7.0 (water), respectively, with 

S = 0.30, Df  =0.05 and M= 3.0. A comparative study of the curves is shown in Figure 

4.13, which reveal that the values of the velocity increased with an increase in Gr  for 

J. = 0.71, where as, a reverse effect is observed for F,. = 7.0. Therefore, it implies the 

physical fact that higher Gr  values boost up flow velocities through air (i. = 0.71) but 

slow down through the water (F,. = 7.0). 

The variation of temperature profiles for different Grashof numbers in case of air and water 

are plotted separately in Figure 4.14 and 4.15 with S,  = 0.30, D f  = 0.05 and M = 6.0, 

where as a comparison of the variation of temperature profiles for different Grashof 

number (G) and Prandtl number (F,.) is shown in Figure 4.16. We observed from Figure 

4.16 that temperature decrease with the decrease of the Grashof number Gr  f or air 

(i. = 0.71) but the variation is negligible in case of water. 

Figure 4.17 exhibits the variation of velocity profiles for different Magnetic parameter (I) 
* 

and Grashof number (Gr ) with J = 0.71, S. = 0.30 and D.f  = 0.05. From the figure it is 

noticed that an increase in M gives rise to a decrease of the velocity. 

Figure 4.18 observes the effect of the magnetic parameter Mon the temperature profiles for 

Pr = 0.71, S = 0.30, ( = 3.() and I) = 0-05 . Here we see that the temperature decreases 

with the increase in M. 

Figure 4.19 shows the variation of magnetic fields for different values of Magnetic 

parameter M with F,. = 0.71 S, = 0.30, Gr = 3.0 and D1  = 0.05. It is observed from the 

figure that as A'! rises, the induced magnetic fields are decreased substantially. 
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Figure 4.1 Variation of velocity profiles for different values of Dufour number (D,.) with 

P. = 0.71, Gr = 3.0, S = 0.30 and Al = 5.0. 
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Figure 4.2 Variation of temperature profiles for different values of 1)ufour number (D,-) 

with P =0.71, G,. =3.0, Sc  =0.30 and M = 5.0. 
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Figure 4.3 Variation of induced magnetic fields for different values of Dufour number 

(Di ) with P,. = 0.71, Gr  = 3.0, S. = 0.30 and M= 5.0. 

1  .1 0 0.511522 

Figure 4.4 Variation of velocity profiles for different values of Schmidt number (Se.) with 

Pr0.71, G,=3.0, D1 =0.05 andM3.O. 
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Figure 4.5 Variation of velocity profiles for different Prandtl number (f) with S = 0.30 

Gr =3.0, Df =O.05 and M3.0. 
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Figure 4.6 Comparison of the variation of velocity profiles for different Prandtl number 
(i.) and Schmidt number (Se ) with Gr  =3.0, Df  =0.05 and M5.0. 
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UP Figure 4.7 Variation of temperature profiles for different values of Schmidt number (se) 
with Pr = 0.71, Gr =3.0, D1=0.05 andM=3.O. 

0.35 

0.3 

0.25 

0.2 -.--Pr=7.00 Sc=0.30 
:---Pr=7.00 Sc=0.78 

0.15 

0.1 

0.05 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 

y 

Figure 4.8 Variation of temperature profiles for different values of Schmidt number (Se ) 

with Pr = 7.0, G,. = 3.0, Df  = 0.05 and M = 3.0. 
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Figure 4.9 Comparison of the variation of temperature profiles for different Prandtl number 

(Pr ) and Schmidt number (S)with Gr=3•0  D1=0.05 and M=3.O. 
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Figure 4.10 Variation of induced magnetic fields for different Prandtl number (J.) and 

Schmidt number (Se ) with Gr  = 3.0 and M = 3.0. 
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Figure 4.11 Variation of velocity profiles for different Grashof number (Gr ) with 

P,.=0.71, S=0.30,  D1=0.05 andM=3.0. 
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Figure 4.12 Variation of velocity profiles for different Grashof number (Gr ) with 

P,. = 7.0, S =0.30, Df  =0.05 andM3.0. 
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Figure 4.13 Comparison of the variation of velocity profiles for different Prandtl number 

(Pr ) and Grashof number (Gr ) with S =0.30, Df  =0.05 and M= 6.0. 
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Figure 4.14 Variation of temperature profiles for different Grashof number (Gr ) with 

]. =0.71, Sc  =0.30, Df  = 0.05 and M6.0. 
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Figure 4.15 Variation of temperature profiles for different Grashof number (Gr ) with 

J =7.0, S=0.30, D1 =0.05 and M6.0. 

2 

1.8 

1.6 

1.4 

1.2 UN 
0.8 

0.6 

0.4 

0.2 

-.-Pr= 0.71 Gr=5.00 
Pr = 0.71 Gr = 10.0 

-*--Pr= 7.00 Gr= 5.00 
-*--Pr= 7.00 Gr= 10.0 

1 1.5 2 2.5 3 3.5 4 4.5 

y 

Figure 4.16 Comparison of the variation of temperature profiles for different Prandtl 
number (i.) and Grashof number (Gr ) with S = 0.30, Df  = 0.05 and M= 6.0. 
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Figure 4.18 Variation of temperature profiles for different values of Magnetic parameter 
M with J =0.71, S = 0.30, Gr  =3.0 and D1 =0.05. 
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Figure 4.19 Variation of magnetic fields for different values of Magnetic parameter M 
with I. =0.71, S =0.30, Gr  =3.0 and D1=0.05. 
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CHAPTER 5 

Concluding Remarks 

In this paper we have studied Dufour or diffusion-thermo effect on the laminar mixed free-

force convection flow and heat transfer of viscous incompressible electrically conducting 

Iluid above a vertical porous plate under the action of a transverse applied magnetic fieki. 

The transformed system of nonlinear, coupled, ordinary differential equations governing 

the problem were solved numerically by using perturbation technique. The influences of 

various establish parameters on the velocity and temperature profiles as well as induced 

magnetic fields for the first order approximation are exhibited in the present analysis. From 

the numerical investigation it was observed that the Dufour number has a considerable 

effect on some exceptional types of fluids considered. It was also found that the 

dimensionless Prandtl number (i.), Grashof number (Gr ), Schmedit number (se ) and 

magnetic parameter (M) have an appreciable influence in the study of flow and heat 

transfer process. Therefore, it can be confirmly predicted for fluid with medium molecular 

weight the Dufour effect can play an important role on the effects of velocity, temperature 

and induced magnetic field, so that this effect should be taken into account with other 

useful parameters associated. Furthermore, it is necessary to study the Soret (thermo-

diffusion) effect for the problem in order to get more useful results. 
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