
8r0z ,(r}[

qsspEIEuE g'008026 euln{Ix
dEolouqcel ry Suuasm8uggo f1rs-rsarun euJn{X

Sm.raam8uE cruo4colg pus leirasolgJo ]uotrqredag aql ur Suueour8ug m acuor3s

Jo ro$eIAIJo es.6op ar{} roJ slueruaxnbsr srpJo lueuqllJlt+ Iupred ur ps}lnuqns s}seqtV

ruBIsJ InprsBu'ptr{

oplqru3 uorrlrs Isuolsuelulo
on&IJo solusdord lBuolt8rqlA puB )luortrel[ I?rn]anr]s Jo $lsflBuv

ztg



atr?pprre3Jo ornpdlgrosn-radnggc amler6lg

'euroldtp ro aarSap ;iuu3o pru,4ae aql roJ eraq,*{ue pol}rurqns uoaq }ou s€rl {ro,\\
sltllJo }red due ro >llo,{A slsoqt oloqu orlf 'rlsopelfrueg ?u1miy ",{Eolouqsel ry Suueeur8uggo

,{1tsra,trun eu1trl{X 'SwnaurBu'4 }tLt{}"tt}i}!.;{ pul lDlr.{pdl-q./b TLtawyutda(/ oLI} ur tur4s{ fiplsDu

pW iq ]no pslxes ueeq seq ,pf)lqrr)) uoJtlts ltiltorsudtut{l o,\l..frs saruaclotal lztrotwrqt_)

pLtD )tuo.tl7al,] prftptary.lb s^ts',tt\Ltv,, psllrluo {Jo^1 srsarp er[l ler11 ,qrrpac o] sr sryI

uopErBID?{



Approval

Tlris is to certify that the thesis work submitted by Md. Ra^;iclul lslant enltlled t'Anolv,si,s of

Structural Elcctronic crntl Vibrutional ['roperlie.s of'Tvr.t [)imen,rional Silicon ('arbiclc" has

been approved by the board of examiners for the partial t'ulfillment of the requirements for

tlre degree of M,tc:. Enginecring in the Department of Electical ctncl Eleclt'onic Engirtee ring.

Khulna University of Engineering & Teclrnology, Khulna. Bangladesh in May 2018.

ffir71 
BOARD oF EXAMINERS

rn\. Ds zD l8
Dr. Md. Sherajul Islarn
Associate Prot'essor
Depaftment of Electrical and Electronic Engineering
Khulna University of Engineering & Technology

Chainnan
(Supervisor)

Member

Member

Mernber

Member
(External)

Department of Electrical and Electronic Engineering
Khulna University of Engineering & Technology

I

SL_,

4.

Dr. Ashraful Ghani Bhuiyan
Professor
Department of Electrical and Electronic Engineering

Professor
Department of Electrical and Electronic Engineering
Khulna University of Engineering & Technology

5. l*uta Ln-'
Dr. Zahid Hasan Mahmood
Professor
Department of Electrical and Electronic Engineering
Dhaka University. Dhaka, Bangladesh

Head of the Department

J.

Khulna of Engineering & Teclinology

(2)



Acknowledgement

-'11 approvals belong to the Almighty ALLAH, the most kind heartecl and bounteous to all

"--:s 
creatures and their actions. I humbly praise and grateftli to Him, Who pennits me to live

.rLd accomplish tasks including tlie research work being presented in this thesis.

' re author gratefully expresses his deepest sense of gratitrde and profound indebtedness to
-'s thesis supervisor, Dr. Mtl. Sherajul Islam, Associate Professor, Departrnent of
-iectrical and Electronic Engineering (EEE), Khulna University of Engineering &
- echnology (KLIET), Bangtadesh, for his continuons supervision. erlcouragernents. precious

-rtidance, advices and helps, constructive criticisms and keen interests thronghout the

lrogress of the work. The author believss that work lvith hjm is a grand opportunity and
'.rould be a never-ending memory.

Last but ilot least, the author solemnly acknowledges his parents and all the family members,

tiho gave him the utmost menial and financial supports tllroughaut his rvhole student life ald
nake a way to build up his career in the field of EEE.

tv



Abstract

.no dimetrsional silicon carbide {ZD-SiC) has fascinated incredible research attention

:cently because of its large direct bandgap and high exciton binding eilergy. Nonetheless, no

,.' ell-established researches have been pertbrmed on 2D-SiC courbining its physical,

:iectronie and vibrational properties. Here, we have investigated the details of the full

:n,vsical picture of novel 2D-SiC describing their structures and finctions as well as the

:lectronic tunability and phonon properties using the first principle density functional theory.

. he structrtral properties show that 2D-SiC has the hone.vcomb graphene like strLrcture with

attice constant 5.72 Ry (3.101 A). The positive phonon modes in the vibrational properties

rndicate that the plane skucture of ?D-SiC is dynamically stable. The calculated projected

Jensity of states (PDOSs) ltave exposed that the conduction and valence band edges at the K

point have been constructed by the n and r*-bands, which are formed due to the bondiag and

anti-bonding combination of Si-3p, and C-2p, orbitals.

The electronic properties of semicr:*ductor materials are gieatly influenced by the spin orbit

coupling (SOC) etTect. The effects of SOC on the elecffonic structure of ZD-SiC have been

studied using the first-principle calculation which is irnplemented on quanftrm espresso 6.1

rersion. Though the elecflonic band structure shows that the 2D-SiC monolayer possesses a

direct band gap of 2.71 eY, the electrr:nic band become split and the band gap turns to 2.827

eV while considering the SOC effect. It is found that SOC induces splitting in botli valence

and conduction bands of this rraterial. A SOC induced bandgap on the order of 117 meV has

beeu generated at the .{-point" The calculated partial electron density of state exposes that the

silicon 3p electrons and carbon 2p eiectrons are critical in fbuning the electronic bandgap.

Phonon density of states, thermai properties, Raman and ln{iared spectra of this material have

been also catrculated. In addition, the ett'ect of Si and C vacancies on the electronic proper-ties

..f 2D-SiC has been addressed with and without considering SOC effect. These findings

srrggest that the mcnolayer 2D-SiC malr present a ne\t' platfarm of ?D

naterials, with a rich variety of properties for applications in electronics" optoelecffonics and

spintronics del.ices.
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1.1 Introduction 

In the last decades, Silicon Carbide (SiC), a binary compound of carbon and silicon has appealed 

tremendous research attention owing to its notable physical properties including high saturation 

velocity of carriers, high breakdown field, better strength, and good thermal conductivity [1-5]. 

The SiC is used for the fabrication of electronic devices having a high-temperature, high-

frequency, and high-power ratings [6]. Formerly, many devices encompassing super-capacitors, 

gas detecting system have been fabricated using SiC [7-8]. Due to its unique properties, SiC 

based devices can be used in severe conditions, in particular eminent temperature, oxidized and 

corrosive atmosphere [9-11]. The wide tunable bandgap (2.3-3.4 eV) of SiC also promises its 

extensive applications in optoelectronics of visible and ultraviolet range [12-13]. The SiC in 

different devices application has already been used in the last era is shown in Fig. 1.1. It is 

forecasted that the major parts of power electronics devices will be replaced by SiC within 2020 

which shown in Fig. 1.2. 

 

 

Fig. 1.1: Some major application of SiC in different devices [15]. 
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Fig. 1.2: Market trend of SiC power devices using data compiled by Rohm, based on Fuji 

Keizai Reality and Future Prospect of Next Generation Power Device and Power Electronics 

[19]. 

      In the 1950s, Schockley predicted that SiC would quickly replace Si because of its superior 

properties. Generally, the critical electrical field of bulk SiC is higher than that of Si, which 

makes SiC an excellent choice for power semiconductor devices [16]. SiC has a thermal 

conductivity about three times higher than that of silicon. Therefore, heat dissipation by the 

losses can be conducted from within the semiconductor with a much lower temperature drop 

across the semiconductor material. Because of its high melting temperature, the SiC device can 

operate well over 400°C much higher than the maximum allowable junction temperature of 

standard silicon technology 150°C [17]. This property results in significant cost reduction of the 

cooling system since less expensive cooling materials and methods can be used. The SiC devices 

have larger current density than the maximum current density of silicon devices [18]. This 

property will reduce cost and will, over time, help to offset some of the cost disadvantages of the 

SiC device. These promising features of SiC predict that, Si will rapidly be switched by SiC. 

However, bulk SiC is a typical sphalerite or a wurtzite compound semiconductor with more than 

250 alloy types [14], which have different band gaps and diverse physical properties. Among the 
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alloy of the bulk SiC, it has six commonly used stacking configurations represented as 3C (zinc 

blende), 2H (wurtzite), 4H, 6H, 15R and 21R [15]. Thus, the goal of SiC based electronics is 

greatly hindered. 

The synthesis of graphene by Novoselov et. al. [21] has initiated the immense study of 

other new two-dimensional (2D) materials with novel physical properties. 2D materials possess 

unique electrical, mechanical, chemical and optical properties due to their thickness dependent 

surface and quantum confinement effects [20]. Although mono-layer graphene sheet shows 

exceptional electronic properties such as extremely high carrier mobility and the long mean-free 

path, the zero bandgap associated with Dirac fermions hinders its application in electronic 

devices. Recent theoretical studies have shown that Bulk SiC can be transformed into a 2D stable 

mono-layer honeycomb structure similar to graphene [21]. 2D-SiC has appealed tremendous 

research attention because of its large direct gap along with a high exciton binding energy [22]. 

These intriguing properties are very much advantageous for optoelectronic device applications, 

such as light emitting diodes (LEDs) or solar cells [23]. By analogy with Cu2O, the high exciton 

binding energy in the 2D-SiC structure may induce the Bose–Einstein condensate effect [24]. 

Mono layer SiC also exhibits enhanced photoluminescence than its bulk counterparts. 2D-SiC, in 

particular, is of special interest, as it is speculated to show such properties that their sphalerite or 

wurtzite counterparts may not have. Moreover, 2D-SiC inherits more robust structure than 

graphene. The formation of quasi 2D-SiC has also been reported by atomic resolution scanning 

transmission electron microscopy [25]. Therefore, 2D-SiC is expected to be a promising 

semiconductor fascinating to both fundamental research and wide applications in electronic and 

optoelectronic devices. Although 2D SiC is predicted to have the potentials for wide applications 

in nano and optoelectronic devices due its superior properties, the theoretical studies on the 2D-

SiC system are just limited to several scattered results only [26-27]. A detailed understanding of 

full physical picture of 2D-SiC describing their structures and functions as well as the electronic 

tenability and phonon properties are urgently needed for practical applications. 

1.2 Motivation 

Because of interesting electronics, mechanical and thermal properties it possesses, bulk SiC drew 

attention of both scientists and device engineers for past years. Nanotechnology not only aims to 

reduce well known technology to nanoscale but also tries to explore the new application areas, 
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taking advantage of the quantum world. While the two-dimensional structure of semiconductors 

has a subject of active study leading to the optoelectronics devices, 2D-SiC is a great research 

interest for device application. Two-dimensional graphene-like 2D-SiC has emerged as an 

intriguing new class of layered nanostructure. Recently, Shi and co-workers reported the stability 

and electronic properties of 2D SixC1−x (0 < x < 1) [28] monolayers mixing carbon and silicon 

atoms. They found that stoichiometry and bonding structure of the 2D-SiC monolayers can 

greatly affect the electronic properties [29]. For example, with the same stoichiometry, pt-SiC2 is 

metallic but g-SiC2 is a semiconductor due to their different bonding structures. From graphene 

to 2D-SiC, the band gap of siligraphene can vary in the range of 0–3 eV, independent of the 

increasing content of silicon. The g-SiC2 has exhibited great potential as a novel donor material 

in excitonic solar cells. And another siligraphene, g-SiC3 can serve as a topological insulator 

(TI) superior to graphene [29]. However, the theoretical studies on 2D-SiC system are just 

limited to several scattered results only.  

On the other hand, electronic properties of semiconductor materials and topological 

insulators are greatly affected by the spin orbit coupling (SOC) [30]. Though in light constituent 

elements show the weak SOC, the strong SOC effect is observed in heavier atoms. Due to the 

breaking of the inversion symmetry from bulk structure to the monolayer structure, the SOC 

effects are unpredictably large. The SOC is produced by the orientation of electron spins and 

orbital motion of electrons which might be originated due to the relativistic effect. Generally, the 

valence band edge is created by p-orbital state and the conduction band is created by s-orbital 

state for most of the semiconductors. A degenerate p-orbital split state is produced and s-orbital 

state remains unchanged owing to the SOC [31]. In the presence of SOC, an energy gap between 

the spin-split states is created. The SOC induced bandgap promotes the quantum spin Hall Effect 

[32], which makes the crystal a topological state. This peculiar behavior gives rise to potential 

uses in dissipation less electronics and spintronic devices.  

          The electronic band structure of graphene has a zero bandgap near the Fermi level at the K 

and K0 points in the Brillouin zone (BZ), which means the low-energy dynamics of electrons in 

graphene near these Dirac points is comparable to that of relativistic Fermions [32]. There is no 

SOC effect because of 2s and 2p orbitals different quantum numbers of a single carbon atom, 

however, among the 2p orbital the SOC effect is present. The bandgap can open at the Dirac 
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points due to including the SOC and change the ideal representation of observing relativistic 

Dirac particles in graphene. Literature [33] shows that a small bandgap of ~1 µeV is created 

while considering the intrinsic SOC in graphene. The SOC induces a bandgap of ~1.6 meV [34] 

in Si counterpart 2D structure so called the silicene, much greater than that of graphene. 

Compared to graphene and silicene 2D structures, the SOC effect on monolayer SiC is more 

interesting because strong spin orbital interaction is expected for this material. However, an in-

depth understanding of the effect of SOC in 2D-SiC remains scarce. Therefore, studying the 

SOC effect on the electronic properties in 2D-SiC is one of the major issues for its prospective 

applications. 

            Besides the different properties, vacancy defect is the important parameter for device 

application. The presence of defects definitely changes and modifies a material’s fundamental 

properties. Any kind of defect concentrations has a significant effect on mechanical strength, 

optical absorption, electronic and thermal transport properties of a material. Especially defects 

play a vital role in low-dimensional systems. Due to quantum confinement, defects have a 

dominating effect on physical properties of low dimensional materials. It has been shown that the 

vacancy defects have remarkable effects on 2D graphene honeycomb structure and its 

nanoribbons [35-36]. The modification of electronic and magnetic properties of graphene sheets 

or nanoribbons has been happened due to vacancy defects. We expect that similar effect of 

vacancy defects can occur in the electronic properties of the 2D-SiC honeycomb structure. 

Despite the significance of SOC and vacancy defects for monolayer 2D-SiC systems, to the best 

of our knowledge, thus far no study has been conducted on the SOC effect on the electronic 

structure of defective 2D-SiC. Therefore, an intuitive insight on how the defects change the 

structural and electronic properties of this material is indispensable for promising technological 

applications.  

1.3 Aims and objectives 

Motivated by the fabrication of graphene and other 2D materials as well as the extraordinary 

physical properties for the exciting applications of optoelectronic devices in the imminent future, 

the structural, electronic and vibrational properties of 2D-SiC have been investigated thoroughly. 

The electronic properties of semiconductor materials are greatly influenced by the SOC effect. 

Therefore, due to the presence of SOC in 2D-SiC the electronic properties have been changed. 
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Besides, the different properties, the electronic properties have also modified due to vacancy 

defects. To quantify the electronic properties including the vacancy defect and SOC effect is 

very important objectives of this dissertation. The main objectives of this dissertation have been 

spun in the following headings: 

 

I To determine energetically favored structures and dynamic stability to get minimum 

energy of 2D-SiC using energy variation with respect to the lattice constant, kinetic 

energy and K-points. 

II To extract the vibrational properties to check the dynamical stability and calculate 

the thermal properties, Raman spectroscopy and infrared spectroscopy of 2D-SiC. 

III To calculate the electronic properties such as band structure, density of state and 

projected density of state of 2D-SiC. 

IV To study spin orbit coupling effect on the electronic properties of 2D-SiC. 

V To study the effect of vacancy type defects like a single carbon and silicon vacancy 

on the electronic properties of 2D-SiC with and without considering SOC. 

 

1.4 Synopsis of Dissertation 

The thesis is organized as follows:  

Chapter 2 summarizes the basic properties of bulk SiC. It also describes the properties of 

different types of two dimensional (2D) honeycomb structures, including 2D-SiC honeycomb 

structure.  

Chapter 3 focuses on the theoretical background and approximation methods. It also introduces 

the used computational technique, which allows calculating the different properties of 2D-SiC. 

After the motivation for the use of the first principle density functional theory, its details 

simulation procedures and validity is explained. 

In Chapter 4, our studies and results are presented. The structural, electronic and vibrational 

properties of 2D-SiC have been calculated using Kohn-Sham theorem. Including the SOC effect 
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on the electronic properties have also calculated. It has also calculated the electronic properties 

with silicon and carbon vacancy of 2D-SiC structure. 

Finally, In Chapter 5, a brief conclusion summarizes the result of our studies, combined with an 

outlook on possible future research directions.                       
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2.1 Introduction 

This chapter is intended to provide an introduction and overview of the fundamental concepts of 

bulk silicon carbide. It also provides overview of the graphene and related two dimensional 

materials, especially, for the two dimensional silicon carbide. 

2.2 History of SiC 

SiC is naturally synthesized in the atmospheres of carbon rich red giant stars and by supernova 

remnants. No natural crystals can be found on Earth and therefore SiC never attracted man’s 

interest as other crystals like diamond did. Jon’s Jacob Berzelius, also known for his discovery of 

silicon, was most probably the first to synthesize SiC. He published in 1824 a paper in which he 

assumed there was a chemical bond between silicon and carbon in one of the samples he had 

produced [37]. But it was not before 1892 that SiC came into focus as a useful material. E. G. 

Acheson was looking for a suitable material that could substitute expensive diamonds needed for 

grinding and cutting purposes. He mixed coke and silica in a furnace and found a crystalline 

product characterized by great hardness, refract-ability, and infusibility. This product was shown 

to be a compound of silicon and carbon and was called carborundum [38]. In 1907, H. J. Round 

produced the first Light Emitting Diode (LED) based on SiC. He reported that “on applying a 

potential of 10 volts between two points on a crystal of carborundum, the crystal gave out a 

yellowish light” [39]. In 1912, H. Baumhauer used the word “polytypic” to describe the ability of 

SiC to crystallize into different forms varying only in their stacking order in one direction. The 

evolution of SiC as an electronic material then took several decades. In 1955, Lely presented a 

new method to grow high quality SiC crystals. This triggered the development of SiC as a 

semiconductor material and SiC became even more popular than Si and Ge. 

However, the difficulty in obtaining high-purity SiC wafers and the rapid success of the 

Si technology caused a drop in the interest in SiC. In 1978, Tairov and Tsvetkov then managed 

to produce high purity SiC substrates by seeded sublimation growth [40]. The first SiC wafer had 

been made. Another major step forward was made in 1983 when Nishino, Powell, and Hill 

realized the first hetero-epitaxy of SiC on Si [41]. In 1987, this technique was further improved 

and the next stage of SiC evolution started when high-quality hetero-epitaxy was performed at 

low temperatures on off-axis substrates using “step-controlled epitaxy” [42]. Cree Inc. was 
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founded the same year and two years later, the company introduces the world’s first blue LED 

and began to sell SiC wafers. Along with better epitaxy, the improvement of the diameter and 

quality of the wafers continued until the production of 4 inch SiC single crystals was reached in 

1999. SiC Schottky diodes and high-frequency Metal Semiconductor Field Effect Transistor 

(MESFETs) are now commercially produced but research on electronic SiC-based devices is still 

active in view of many possible applications. 

2.3 Physical properties of different SiC structures 

SiC is the only known binary compound of silicon and carbon and possesses a one-dimensional 

polymorphism called polytypic. In a polytypic compound, similar sheets of atoms or symmetrical 

variants are stacked on top of each other. The differences between the polytypic arise only in the 

direction perpendicular to the sheets. In SiC, each sheet represents a bilayer of C atoms right a 

top Si atom. The sheets can be represented as a close-packed array of Si-C units forming a two-

dimensional pattern with six-fold symmetry. There are different possibilities for arranging the 

second sheet on top of the first one in a close-packed configuration. 

 

 

Fig. 2.1: Stick and ball models of 3C and pH (p = 2, 4, 6) polytypes. Cations: red spheres, 

anions: blue dots. The stacking sequence of the cation–anion bilayers is indicated by the symbols 

A, B or C. Primitive unit cells are shown for the pH polytypes, while a non-primitive hexagonal 

cell is depicted to illustrate the cubic 3C symmetry. The primitive basis vectors ai (i = 1, 2, 3) are 

also shown [44]. 
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Fig. 2.2: Crystal structure of 4H-SiC. Bond configuration of step-terrace structure on a 4H-SiC 

(0001) surface viewed from the direction [45]. 

The second sheet can be displaced along, for example, the direction [1100] until the spheres lie 

on positions B or along, for example, direction [1100] until the spheres lie on positions C. A 

close-packed hexagonal plane of spheres centered on points A. A second identical plane can be 

placed on top of the first one, with the centers of spheres over either points B or C [43]. The 

stacking orders are illustrated for zinc blende and three hexagonal crystal structures in figure 2.2. 

We call them polytypes because only the stacking in one direction is varied. In the Ramsdell 

notation [46] the pure cubic zb stacking of cation–anion double layers in the [111] direction is 

called 3C in order to indicate the periodicity and the Bravais lattice. The pure hexagonal wz 

stacking in the [0001] direction is denoted with 2H for similar reasons. The two other polytypes 

displayed in figure 1 represent combinations of cubic (c) and hexagonal (h) bilayers which are 

distinguished by the same (c) or opposite (h) direction of the cation–anion bonds with a certain 

angle to the [0001] direction. The four examples in Fig. 2.1 are 2H, 3C, 4H and 6H in Ramsdell 

notation with four or six double layers and, hence eight or twelve atoms in the corresponding 

hexagonal unit cell. According to a previous calculation result, the extra energy required to 

deposit a new layer on a 4H1terrace is much higher than that for a 4H2 terrace [47]. In other 

words, a 4H1 terrace is much more stable than a 4H2 terrace.  
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Fig. 2.3: (Color online) Optimized atomic structure with relevant structural parameters, 

corresponding energy band structure and frequencies of phonon modes of 3D bulk SiC in zinc 

blende and wurtzite structures. Zero of energy of the band structure is set at the Fermi level, and 

band gap is shaded [48]. 

On the basis of this calculation result, Arima et al. proposed that the etching rates of 4H1 

and 4H2 terraces are different, resulting in the generation of an a-b type step-terrace structure in a 

catalyst-referred etching process. However, the difference between 4H1 and 4H2 terraces cannot 

explain the generation of a-b-a*-b* type and a-a type step-terrace structures. On the other hand, 

in the calculation of the extra energy required for deposition, the number of dangling bonds 

(DBs) at the step edge was not taken into the consideration. More than 250 SiC polytypes have 

been identified, with some having stacking sequences of several hundreds of bilayers. The 
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crystal structures of SiC can be cubic, hexagonal or rhombohedral. In the two polytypes 

particularly suited for electronics, namely 4H- and 6H-SiC. These two polytypes are named 

according to Ramsdell’s notation [48] where the number stands for the periodicity in the stacking 

direction (i.e. the number of letters A, B, C needed to define the unit cell) and the letter relates to 

the crystal structure, here H for hexagonal. Following the ABC notation, 4H-SiC has a stacking 

sequence labeled ABCB and ABCACB for 6H-SiC (Fig. 2.1). According to the notations for is 

3.08     for hexagonal crystal structures, the lattice parameter an along the [101 ]   and 1 .11     

for 4H-SiC both 4H-SiC and 6H-SiC and c along [0001] is 10.06 A and 6H-SiC, respectively 

[49] for more details on structural parameters). These two hexagonal polytypes share many 

desirable mechanical, thermal, and electronic properties. SiC comparison to conventional silicon, 

is an ideal candidate of choice for high-temperature, high-speed, high-frequency, and high-power 

applications [50]. It has a wide band gap, high thermal conductivity, high saturated electron drift 

velocity, and high breakdown electric field. SiC is also hard, chemically stable, and resistant to 

radiation damage. For industrial purposes, SiC can be n-type doped using nitrogen or phosphorus 

as donors and p-type doped using boron, aluminum or gallium as acceptors. Despite these 

desirable bulk properties, SiC-based devices are still facing many performance challenges [51]. 

2.4 2D Structure from bulk structure 

Two dimensional materials have been investigated for over 50 years, but since the isolation of 

graphene in 2004 there has been growing interest in the field. There have been significant 

improvements in the identification and production of layered materials which opens up a range 

of applications including heterostructure components and specialized electronic devices [52]. 

There are several reasons for the growing number of devices being engineered using these 

materials, but chief amongst them is the control of electronic properties, confinement effects and 

increased surface areas, all due to reduced dimensionality. Very often the thin film structures 

lead to flexible devices which have beneficial optical properties, including transparency [53]. 

The change from bulk graphite to single layer graphene for example, shows the extent to which 

dimensionality plays a role in electronic behavior. Graphite is semi-metallic with a mobility of 

roughly 3,000 cm
2
/Vs at 77 K, whereas in graphene even at room temperature the mobility has 

been found to be around 10,000 cm
2
/Vs. Much of this is due to the difference in electronic 

behavior, whilst both are semi-metallic; in single layer graphene the band structure close to the 
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Fermi level is linear and the electrons are described as massless Dirac fermions [54]. This has in 

turn led to some relatively unusual phenomena, including a room temperature quantum Hall 

effect and a minimum level of conductance. This has been matched by mechanical properties 

that outperform steel and thermal transport properties better than diamond [55]. Graphene has 

definitely been the single biggest source of the interest and is the most widely used and studied 

two dimensional materials, but two of the main drawbacks are the lack of a band gap and the 

need to redesign existing devices to incorporate carbon based electronics and traditional Si-based 

device architectures. Graphene, the 2D honeycomb structure of carbon has been the source for 

the inspiration of all other monolayer honeycomb materials. Advances in materials growth and 

control techniques have made the synthesis of the isolated graphene and its ribbons in different 

orientations possible. Recent studies on the quasi one dimensional graphene ribbons revealed 

interesting size and geometry dependent electronic and magnetic properties. What makes carbon 

atoms stay planar in honeycomb form is the strong coupling of pz orbitals. Silicon having a larger 

radius than carbon makes the honeycomb structure by getting slightly buckled (puckered) named 

silicene [56].  

             However, graphene and silicene both exhibit zeroes band gaps, making them unsuitable 

for the controlled and reliable transistor operation, consequently limiting their widespread 

applications in optoelectronic devices, such as light-emitting diodes, field effect transistors, and 

solar cells. It is therefore highly desired to open an energy gap in graphene and silicene. But this 

is a big challenge, because their unique electronic structures originate from the massless Dirac 

fermion-like behavior of the charge carriers. Intensive studies of 2D nanomaterial’s lead to not 

only successfully syntheses of silicene, SiC, CN, C3N4, BN, ZnO, and MS2 but also theoretical 

predictions of some novel compounds, such as B with low-buckled configurations, graphitic 

GaN−ZnO, boron−carbon compounds, carbon nitride, germanene, pt-SiC2, GeC, SnC, tetragonal 

TiC, group III −VI compounds, and MX2 chalcogenides [57].  

2.5 Graphene 

Graphene, graphite, carbon nanotubes and fullerenes are categorized in carbon based π electron 

systems in honeycomb network, which are distinguished from sp
3
-based Nano carbon systems 

having a tetrahedral network such as diamond. Graphite can be viewed as a stack of graphene 

layers.  
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Fig. 2.4: Graphene, graphite, single-walled carbon nanotube (SWNT) and C60 structures make 

sp
2
 type bonding, whereas diamond makes sp

3
 type bonding [58].  

          Carbon nanotubes are rolled up cylinders of graphene and fullerenes are the molecules 

consisting of wrapped graphene by the introduction of pentagons on the hexagonal structure. The 

diamond is a transparent crystal of tetrahedral bonded carbon atoms and crystallizes into the face 

centered cubic lattice structure. With the sp
2
 hybridization of one s-orbital and two p-orbitals 

results in a triangular planar structure with a formation of an σ-bond between carbon atoms 

which are separated by 1.42 ˚ . The perfect 2D graphene is an infinite network of hexagonal 

lattice, in contrast to ideal graphene which is a nano sized flat hexagon network with the 

presence of open actual edges around its periphery. The open edges become important for 

nanoribbons. An amusing factor about the band structure of graphene is that it has 2D electron 

system with electrons with zero effective mass. The property has an origin of the unique band 

structure of graphene, which has linear dispersion relation. Fig. 2.2.4(a) shows the honeycomb 

lattice of graphene. Each carbon atom is covalent bonded with nearest three carbon atoms 

through sp
2
 hybridization, with carbon-carbon bond length of a0=0.142nm. The structure can be 

seen as a triangular lattice with a basis of two atoms per unit cell, which is represented by a1 and 

a2:  

                                       a1=
 

 
(  √ ), a2 =

 

 
(   √ )                                                                                   (2.1) 

The corresponding reciprocal lattice is given by, 

          b1=
  

  
(  √ ), b2 =

  

  
(   √ )                               (2.2) 
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Fig. 2.5: Band structure of graphene: (a) Graphene honeycomb lattice. (b) tight-binding band 

structure of graphene [59] (c) Band structure close to the Dirac Point. 

       

This linear relation also indicates that the electrons in it are mass-less. As we know, in 

solid state physics, the electron properties of materials are dominated by the Schrödinger 

equation, with an effective mass correspondence to the curvature of the band structure of the 

material. But this wouldn’t apply to graphene, whose band structure is linear with no curvature. 

In graphene, its charges mimic relativistic particles and are dominated by Dirac Equation rather 

than Schrödinger Equation, and are therefore called Dirac Fermions. To study and describe the 

properties, quantum electrodynamics (QED) must be applied. The mass less Dirac fermions in 

graphene behave as though the speed of light is just 10
6
m/s, rather than 3×10

8
 m/s, so graphene 

could allow us to investigate the fundamental interactions of matter without the need for huge 

particle accelerators. 

2.6 Two Dimensional (2D) SiC2 

The optimized g-SiC2 siligraphene crystallizes in the hexagonal space group, P6 2m (no. 189), 

with a = 5.019 Å (Figure 1a and b) [60]. As similar as in the pure carbon graphene, Si adopts an 

undistorted trigonal coordination with a Si-C distance of 1.798 Å and bond angle of 120°. The 

C1 atom at the Wyckoff 1b site is also trigonally coordinated without any distortion. The C2 

atom at the 3g site is in a distorted trigonal coordination with bond angles of 126.3 and 107.4° 

and bond distances of 1.798 and 1.445 Å. Such a small distortion comes from the radius and 

electronegativity differences between Si and C atoms, which also results in the electron 

polarization along the Si-C bond.  

(a) 
(b) 

(c) 
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Fig. 2.6 (a) Optimized structure of g-SiC2 siligraphene with unit cell outlined as red lines. Red 

vectors: a1, a2: graphene lattice vectors, (b) the band structure of g-SiC2 monolayer calculated 

based on PBE and HSE06. The π bands are marked in red. (c) The total DOS and projected DOS 

(PDOS) of g-SiC2 siligraphene. The Fermi energy is set as zero [60]. 

Nevertheless, this distortion is limited within the g-SiC2 plane and does not push the C2 

atom out of the plane. As a resemblance of the pure carbon graphene, the gSiC2 siligraphene 

features sp2-hybridization of C and Si atoms. The C-C bond (1.445 Å) shows the characteristic 

of a weak  C C double bond because it is slightly longer than the double C C bond (for 

example, 1.332 Å in pt-SiC2, [61] 1.33 Å in ethylene) and that in graphene (1.42 Å), but shorter 

than the 1.54 Å single C-C bond in ethane [62]. 

b 

c 
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2.7 Two Dimensional (2D) SiC7 

The stability of g-SiC7 siligraphene has been confirmed in the previous work [named (2, 0) 

structure according to its super lattice vector]. Here we performed more detailed calculations to 

verify it. First, the binding energy of g-SiC7 siligraphene is calculated as 7.07 eV per atom, 

lower than that of graphene (8.66 eV per atom) but higher than the reported g-SiC2 siligraphene 

(6.46 eV per atom) and g-SiC3 siligraphene (6.70 eV per atom) [63]. This is mainly due to the 

fact that the Si atom tends to adopt a sp
2
–sp

3
 hybridization to form the buckled pattern as 

silicene, which is greatly different from the pure sp2 hybridization in graphene, leading to the 

phenomenon that the more Si atoms in planar siligraphene, the lower the stability [64]. The band 

structure displayed in Fig. 2.7a indicates that both the valence band maximum (VBM) and 

conduction band minimum (CBM) locate at the K point, showing a preferable efficiency of light 

absorption [65]. 

 

Fig. 2.7: (a)The optimized structure of g-SiC7 siligraphene. (b) Band structure of g-SiC7 

siligraphene based on GGA-PBE (left panel) & HSE06 (right panel) calculations, respectively. 

Fermi level is set as zero and (c) Projected density of states (PDOS) of g-SiC7 siligraphene. [66]. 

 

 

(a) 

(b) 

(c) 
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2.12 Two Dimensional (2D) SiC 

Among the different two dimensional materials, SiC which is binary compound of carbon and 

silicon exhibits unique electronic and optical properties and thus has been a key material for high 

power and high temperature device applications. Also, several points are worth noting: C and Si-

based 2D nanomaterials are extremely rare, and few examples are known, that is, graphene, SiC 

sheet, silicene, and pt-SiC2; SiC7 [66] and most of them are either metal or semimetal; (iii) band 

gaps of their derivative nanotubes are usually dependent on the chirality or/and the tube 

diameter. Theoretical calculations have also proposed that 2D-SiC with a honeycomb structure, 

similar to graphene and silicene, could be energetically stable.  2D honeycomb SiC unit cell can 

be thought of a graphene like unit cell with one carbon atom replaced by a silicon atom. As Si 

has a larger radius than C, the lattice gets extended.  

      The dynamically favorable planar structure is found buckling free with Si-C bond length of 

1.7   ˚, larger than the corresponding C–C bonds in graphene (1.42 A˚). The Si–C–Si and C–

Si–C bond angles are 120
◦
. The 2D-SiC is produced by the sp

2
 orbital hybridization combining 

σ-bonds and π-bonds. 

 

Fig. 2.9: Unit cell and lattice vectors of planar honeycomb SiC. 

https://en.wikipedia.org/wiki/Orbital_hybridization
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The σ-bond is formed by the silicon (Si-2s, 3px, 3py) and carbon (C-1s, 2px, 2py) electrons and 

the π-bond is generated by the Si-3pz and C-2pz electrons. The conduction and valence band 

edges at the K point are constructed by the π and π∗-bands, which is formed due to the bonding 

and anti-bonding combination of Si-3pz and C-2pz orbitals. 
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3.1 Introduction 

For many theories in condensed matter physics, the modeling is typically empirical or semi-

empirical based on some experimentally measured macroscopic phenomena. It is often possible 

to predict the unknown behaviors of systems by interpolating or extrapolating these models. In 

contrast, the first principles method starts from our fundamental understanding of the condensed 

matter systems. For instance, crystals are made of positively charged nuclei and electrons held 

together by the coulomb interaction. Without any approximation, the behavior of any system can 

be fully described if we can precisely solve this model. Unfortunately, the difficulty in this 

model is not the theory but the size effect of systems from the perspective of computational 

resources. Various theories have been proposed to make this model solvable.  

In this chapter, it will briefly introduce one of them, namely density functional theory, 

which is also used in our work to investigate the structural, electronic and vibrational properties 

in 2D-SiC. In the first section, we start from the Sch ́odinger equation and Born-Oppenheimer 

approximation, which separates the description of nuclei and electrons so as to largely simplify 

the solution. Next, the Hohenberg-Kohn theorem will be introduced, which proves a one-to-one 

correspondence of the system’s ground state electron density to the external potential. Based on 

the Hohenberg-Kohn theorem, Kohn-Sham equation, the main equation in density functional 

theory, is derived. Meanwhile, the nature of two well-known exchange-correlations functional is 

covered briefly. It will also discuss three bases used to solve the Kohn-Sham equations and the 

convergence test in first principles calculation. Finally, it will deliberate about computational 

method for calculating different properties. 

3.2 Sch ́odinger equation and its Hamiltonian 

All materials are composed of atomic nuclei and electrons. The macroscopic material properties 

that we observe only depend on the position of these electrons and ions. Thus, knowing only the 

type of atoms the material is made of is in principle enough to calculate the wave function and 

energy of the system using the (time independent) Sch ́odinger equation- 

  (                     )    (                     )                               (3.1) 
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Where Ψ is the wave function of the system, ri and Ri are the positions of the electrons and ions, 

respectively, and H is the Hamiltonian of the system: 
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Here, MI  and ZI are the nucleus mass and charge respectively, and me is the electron mass. This 

Hamiltonian can be decomposed in five terms- 

                                                                                                                                               (3.3) 

Where Te and TN is the kinetic energy operator of electrons and nuclei, respectively, Vext is the 

potential energy of the electrons in a field of nuclei, Vint represents the Coulomb interaction 

between the electrons and similarly VN is the Coulomb interaction between nuclei. These 

calculations are known as first-principles or ab-initio calculations since they are based only on 

the laws of physics and the values of nature’s constants, such as Planck’s constant   and the 

electron charge e. Nothing else is assumed or used as empirical input. In practice, however, it is 

only possible to solve the Sch ́odinger equation exactly for small, simple systems such as the 

hydrogen atom with spherical symmetry. For larger systems like molecules and solids, additional 

approximations have to be made. Note that hereafter we will make use of atomic units to 

simplify the formulas. In atomic units we have     =e=4π    . 

3.3 Born-Oppenheimer approximation 

The Born-Oppenheimer approximation separates the motion of the ions and the electrons. This is 

justified by the fact that the mass of a nucleus is much larger than the mass of an electron so that 

they move on different time scales. From the electron point of view, the ions are stationary and 

the electron cloud will rearrange itself instantaneously to any new ionic configuration. 

Mathematically, the wave function is rewritten as a product of the electron wave function and the 

nuclear wave function- 

 

 (                     )   (                     )     (         )                     (3.4) 

 

The semicolon in the electron wave function indicates that it is dependent upon the ionic 
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positions as parameters but not as variables. The Sch ́odinger equation of the electrons for a 

given frozen ionic configuration is written as follows: 

 

                            (                     )     (                     )                                      (3.5) 

   represents the electronic Hamiltonian consisting of only electronic terms: 

                                                                                                                                            (3.6) 

And the total Hamiltonian is then reduced to: 

                                                                                                                                (3.7)                                                       

 

With the Born-Oppenheimer approximation, the original problem is now reformulated as a 

quantum many-body problem for the electrons in a Hamiltonian set by the nuclei positions. The 

last, and probably hardest, obstacle to overcome is the reduction of the many-electron equation 

above to a solvable problem. 

3.4 The Hartree approximation 

The simplest way to solve the many-electron equation is to rewrite Eq.(3.5) as a one-particle 

equation for an electron moving in an average potential from all the electrons, as proposed by 

Hartree. The wave function, then becomes- 

                        (              )    (  )   (  )     (  )                                        (3.8)             

 

The φi(ri) is n independent electron wave functions. A fundamental result in quantum mechanics 

states that if E0 is the ground state energy solution of the Sch ́odinger equation, for any wave 

function-    

                                                              
⟨ | | ⟩

⟨ | ⟩
         (3.9)                                                                                   

This is called the vibrational principle. This principle can be used with the 

Hamiltonian in Eq.(3.3) and the constraint that the wave function should 

have the Hartree form (presented in Eq.(3.8)) to prove that the solution to 

the Sch ́odinger equation in the Hartree approximation is obtained by solving 

the Hartree equation- 
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In the Hartree approximation, each electron i, is treated independently, but in an effective 

potential determined by integration over the wave functions of the other electrons. Thus, the 

Hartree approximation is a mean-field approximation replacing the complicated, many-body 

problem by n simpler problems with a mean-field potential. Hartree also proposed a self-

consistent way to solve this equation since for the ith wave function; the effective potential 

depends on all the other wave functions. Self-consistency is a procedure in which the wave 

function for the step k is found through solving the Eq. (2.10) with the effective potential 

determined by the wave function in step k-1. The procedure is repeated until all the wave 

functions converge to a solution. 

 

3.5 The Hartree-Fock approximation 

The electrons being fermions, the exact many-particle wave function needs to be antisymmetric 

by exchange of electrons: 

                               (                       )    (                       )                                 (3.11) 

This constraint can be added to the independent electron Hartree approach by using a Slater 

determinant as wave function instead of Eq. (2.8): 

 

                         (              )  
 

√  
||

 
 
(  )  

(  )    
 
(  )

 
 
(  )  

(  )    
 
(  )

                                 

 
 
(  )  

(  )    
 
(  )

||                                 (3.12)         

Using the variational principle with this Slater determinant, it can be proven that the best solution 

is obtained by solving the Hartree-Fock equation: 
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The effect of the new constraint is to add a term, called the exchange potential, to the Hartree 

Eq.(3.10). 

 

3.6 The correlation energy 

The Hartree-Fock approach, assuming independent electrons in an effective potential is an 

approximation to the true many-body problem. The energy missing is defined as the correlation 

energy (Ecorr = Eexact - EHF). Many methods exist to introduce this correlation energy very 

accurately for instance Møller-Plesset (MP) perturbation theory, configuration interaction (CI), 

or coupled cluster (CC) methods or quantum Monte-Carlo methods [67]. However, these 

methods are computationally very expensive and only the smallest systems can be currently 

computed. On the other hand, Density Functional Theory (DFT) offers a good compromise 

between the qualitative description of electronic structure and the computational effort required 

to produce the result. Thus DFT is one of the most popular and successful quantum mechanical 

approaches to describe matter. It is nowadays routinely applied for calculating, e.g., the binding 

energy of molecules in chemistry and the electronic band structure of solids in physics. In this 

thesis, we apply DFT to solve the electronic Hamiltonian for periodic crystals.  

3.7 The Hohenberg-Kohn theorems  

Modern theory of DFT is based on the two Hohenberg-Kohn (HK) theorems [69]: the first 

theorem states that the many-body wave function, which has a central position in standard 

quantum theory, can be replaced by the electronic ground state density without any loss of 

information and the second theorem is more or less the equivalent of the variational principle in 

standard quantum mechanics. In DFT the electron density is the central quantity. In a system of n 

electrons the electron density is defined from the wave functions as follows, 

                                ( )  ∑ ∫ ∫     
       ∗(       ) (    ) (       )                (3.14) 

 

The energy is now rewritten from being the expectation value of the electronic 

Hamiltonian to a functional only depending on the electron density and not explicitly the wave 

function. The first Hohenberg-Kohn theorem is:  
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Theorem 1. For any system of interacting particles in an external potential Vext(r) the potential 

Vext(r) is determined uniquely, except for a constant, by the ground state density n0(r).  

This implies that all the properties can thus be extracted from the exact ground state electron 

density. The problem is now only how to find this density. The second theorem based on the 

variational principle is helpful in this matter.  

Theorem 2. A universal function for the energy E[n] in terms of the density n(r) can be defined, 

valid for any external potential Vext(r). The exact ground state energy of the system is the global 

minimum of this function and the density that minimizes the functional is the exact ground state 

density n0(r).  

This reduces the very complex problem of finding all ground state physical properties of a 

system to finding the minimum of the energy with respect to the electron density. The energy 

function is as follows: 

                                                          ∫    ( ) ( )   (3.15) 

 

Where EHK[n] is the total energy functional, T[n] its kinetic energy part and Eint[n] the part 

coming from the electronic interactions. EN does not depend on the density and is due to the 

nuclei-nuclei interaction. It should be noted that although the first Hohenberg-Kohn theorem, 

require a non-degenerate ground state, degenerate ground states are also allowed by the Levy 

formulation [68]. It should also be noted that using the Hohenberg Kohn formulation of DFT 

implies that we are working at T = 0 K. 

3.8 The exchange-correlation approximations 

3.8.1 The local density approximation: 

The simplest physical way to approximate the exchange-correlation energy is the Local Density 

Approximation (LDA). In this approximation two assumptions are made: i) the local exchange-

correlation energy per particle only depends on the local density (hence the name of the 

approximation) and ii) is equal to the exchange-correlation energy per particle of a homogeneous 

electron gas, which has the same density, in a neutralizing positive background. The total 

exchange-correlation energy EXC is then given by the sum of the contributions of each point in 
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space, where it is assumed that the contribution of one point only depends on the density of that 

particular point, independent of the other points. So- 

                                                            ∫ ( )    ( ( ))                                             3.16 

Where    ( ( )) is the exchange-correlation energy per particle of a uniform electron gas of 

density n(r). The quantity    ( ( )) can be further split into exchange and correlation 

contributions, 

                                                       ( ( ))    ( ( ))    ( ( ))                                   3.17 

The exchange parts, X, represent the exchange energy of an electron in a uniform electron gas 

and are given by- 

                                                        
  

 
 (

  ( )

 
)                                                                    3.18             

The correlation part, C, is determined using quantum Monte-Carlo simulations of the 

homogeneous electron gas as proposed by Ceperly and Alder [70]. This approximation is more 

accurate for systems with slowly varying densities, as it is assumed that the density is locally a 

constant. While being a simple approximation, the results of this approximation are surprisingly 

good. In general, LDA almost always leads to a correct picture of binding trends across the 

periodic table. 

 

3.8.2 The generalized gradient approximation 

In LDA one uses the knowledge of the density at a point r. In real systems the density varies in 

space. A logical improvement of the LDA approximation would be to include also information 

of this rate of change in the function. This can be done by adding gradient terms. This approach 

is called the gradient-expansion approximation. In this class of approximation one tries to 

systematically calculate gradient-corrections of the form |  ( )| |  ( )|  |   ( )|  etc., to the 

LDA. In practice, the inclusion of low-order gradient corrections almost never improves on the 

LDA, and often even worsens it. Moreover, higher-order corrections are exceedingly difficult to 

calculate and little is known about them. It was realized that instead of power-series like 
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systematic gradient expansions, one could experiment with more general functions of n(r) 

and|  ( )|, which need not proceed order by order. Such functional, of the general form- 

                                                         ∫    (  |  |    )                                           3.19                                           

It is known as generalized-gradient approximations (GGAs). The current GGAs seem to give 

reliable results for all main types of chemical bonds and are popular in computational chemistry. 

We have used the Perdew-Burke Ernzerhof (PBE) version of GGA [71] in this work. 

3.9 The Kohn-Sham theorem 

The Hohenberg-Kohn theorems show that the electron density can be rigorously made the 

fundamental quantity of the many-body problem, but they are pure theorems of existence and say 

nothing about how this exact charge density can be found. Kohn and Sham have shown that there 

is a way to map the problem of solving Eq. (3.15) to the one of solving a system of no interacting 

electrons moving in an effective potential from all the (other) electrons. According to Theorem 2, 

the true electron density will minimize the total energy, but all means of finding it are valid. It 

could be guessed or, as suggested by Kohn and Sham [72], calculated from a reference system of 

non-interacting electrons moving in an effective potential. Thus, developing this variation with 

the full energy functional added (Eq. (3.15)), under the condition that the sum of the density 

throughout the molecule or solid should be constant and equal to the number of electrons, since 

the electron density, 

                                                       ∫  ( )      
                                                                  (3.20)          

Finally gives the Schrodinger-like equations called the Kohn-Sham equations: 

                                                = [- 
 

 
       ( )   

    
 
                                                (3.21) 

H is the one electron Hamiltonian and Veff(r) the effective potential in which the electron moves. 

The effective potential is given by- 

                               ( )                  ( )  ∫
 (  )

|    |
    

      ( ) 

   ( ) 
                      (3.22) 

Since the electron density, 

                                                     ( )  ∑ |  ( )|
     

                                                                (3.23) 
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Fig. 3.1: Flowchart of Kohn-Sham Theorem. 

It is needed to calculate the last two terms, which are the Coulomb potential from all 

electrons and the exchange-correlation potential; the Kohn-Sham equations need to be solved 

self-consistently. The new term, the exchange correlation potential, appearing here contains all 

the many-body effects that are not present in the classical Hartree interaction term. The initial 

electron density can be chosen, for example, as a superposition of atomic densities. The Kohn-

Sham equations can now be solved instead of finding the minimum of Eq. (3.15), and the orbitals 

φi(r) then give the electron density according to Eq. (3.19) above. These orbitals are often called 

Kohn-Sham orbitals and in the case of a non-spin-polarized system, each of these orbitals 

contains two electrons. (To deal with the spin-related effects, the total density is instead 

expressed as the sum of the spin-up and spin-down densities n(r) = n↑(r) + n↓(r)). 
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In the fig. 3.1 shows the flowchart and we consider the charge density as the quantity to be 

determined self consistently. We supply an input charge density to the Kohn-Sham equations and 

we get an output charge density. At self-consistency the first algorithm come to mind is simply 

use the output charge density as the new input charge density. The new input charge density is 

generated by mixing the input and output charges. If the new wave function (charge density) or 

the energy is consistent with the old one, we reach at the point of self-consistency. After the 

problem is solved the solved equation can be used to calculate the energy, forces, bulk modules, 

etc. 

3.10 Pseudopotential 

When people numerically calculate the electronic structure in materials, a highly efficient and 

easily implemented algorithm is needed. The plane wave method is one of the most hopeful 

candidates, and the orthogonal plane wave method (OPW) is widely used in the early 

calculations [73]. However, the deep and sharp nuclei attractive potential makes the number of 

plane waves in OPW very large and slows the calculation speed extremely. To avoid this 

difficulty, people suggest many models, and the pseudo-potential is one of the successful 

solutions. The key point of the pseudo-potential is that the core electron states are not changed 

much under different chemical environments. The main contribution of the core electron states is 

to make the valence electron orthogonal to them. So we can model the effect as a potential, 

which is repulsive because of the orthogonally. This repulsive potential can cancel part of the 

sharp and deep nuclei ionic potential and decreases the number of plane waves needed to expand 

the electronic states in solids. The pseudo-potential was first introduced by Fermi in 1934, and 

was popular after the 19  ’s. We start this section from the Philips-Kleinman cancellation 

theorem under the OPW method [38].The general form of valence electron states can be written 

with- 

                                                  〈 〉  〈 〉  ∑     〈     〉                                                 (3.24)  

Where the part 〈     〉 is the core electron state and has the sharp oscillation. 〈 〉 is hoped to be 

the smooth part of the electron states. Since the valence electron states are orthogonal to the core 

states, we have- 

                                                               ⟨     | ⟩                                                        (3.25) 
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 Then substitute Eq. (2.18) into the static Schrodinger equation  〈 〉   〈 〉  we get-  

                            〈 〉  ∑     ⟨     | ⟩〈     〉   〈 〉  ∑⟨     | ⟩〈     〉             (3.26)  

We can rearrange the formula to  

                              ∑ (       )    ⟨     | ⟩〈     〉   〈 〉                                      (3.27)  

The new operator ∑ (       )    ⟨     | ⟩〈     〉 shown with the original Hamiltonian acts 

like a potential term, and is defined as the pseudopotential 

                                  ∑ (       )    ⟨     | ⟩〈     〉                                               (3.28) 

With the help of the pseudoptential, the Schrodinger equation can be rewritten as  

                                            〈 〉   〈 〉                                                                          (3.29) 

Because 〈 〉 is the smooth part of the wave function 〈 〉, the solution to Eq. (3.23) needs a much 

smaller number of plane waves and improves the efficiency of the calculation significantly. So 

the plane wave method in conjunction with the pseudopotential is very popular in numerical 

calculations. In the point view of physics, the pseudopotential term Vps acts as a repulsive 

potential, because the energy of valence electrons is always higher than that of core electrons. It 

is also short-ranged because the core electronic state is close to the nuclei.  

           As a result, the repulsive and short-range pseudopotential cancels the sharp and deep part 

of the ionic nuclei potential. Furthermore, as shown in Eq. (3.21), the pseudopotential method 

gives the same eigenvalue despite of the wave function is replaced with the pseudo wave 

function, which is favorable in numerical calculations. There are mainly two types of 

pseudopotentials. One is the empirical pseudopotential, and the other one is called ab initio 

pseudopotential. The first one uses the parameterized pseudopotential to fit known experimental 

results and to calculate new properties of materials with this fitted pseudopotential. But this 

method needs those parameters, which are strongly depending on the fitting process and cannot 

be thought as a complete first-principles approach. Alternately, one can directly calculate core 

electron states with density functional theory and construct the pseudopotential without fitting to 

experiment, which is called the ab initio pseudopotential. This ab initio pseudopotential has 

really good transferability and accuracy. It is widely used in today’s first-principles calculations.  
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3.11 Spin-Orbit coupling effect 

Spin-orbit coupling (SOC) is an essential ingredient for quantitatively correct energy band 

structures of materials composed of any but the few lightest elements, appearing in materials 

applications as diverse as heavy-light hole masses in conventional semiconductors. Spin-orbit 

coupling (SOC) is the interaction between the spin of the electron and its angular motion. The 

effect of SOC causes a lift in the degeneracy of the one-electron energy levels due to the 

electromagnetic interaction between the spin and the magnetic field generated by the orbital 

motion of the electron. The simplest form of Schrodinger equation in solid state physics neglects 

the spin-dependent term in the Hamiltonian, so the energies obtained are doubly degenerate spin-

up and spin-down states. However, we can include a SOC term by considering the relativistic 

correction to the Schrödinger equation. To incorporate the SOC effect on the band structure, the 

effective spin orbit coupled Hamiltonian was included in the Kohn-Sham DFT calculations. The 

total Hamiltonian for Kohn-Sham DFT calculations, including the SOC Hamiltonian can be 

formed as- 

                                          ̂  
 ̂ 

   
  ̂   ( ̂)    ̂  ( ̂)   ̂  ( ̂)   ̂                                         

                                              = 
 ̂ 

   
    ̂( ̂)   ̂                                                               (3.30) 

Where,  ̂    is the external potential,  ̂   is the electrostatic or Hartee potential,  ̂   is the 

exchange-correlation potential,  ̂    is the spin-orbit coupling operator, and   ̂ is the applied 

field or Kohn-Sham potential. The Hamiltonian equation for SOC can be derived from a 

nonrelativistic approximation to the Dirac equation [74] by considering the relativistic limit as 

follows- 

                                            ̂    
 

   
   

(   ̂   ̂)  ̂                                                       (3.31) 

Here,   ̂ is the momentum and  ̂ denotes the spin operators of electrons. Considering central field 

approximation,  ̂   
 becomes- 

                                                     ̂     ( ̂) ̂  ̂                                                                  (3.32) 
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Where  ̂ is the total electronic spin operator,   ̂ is the total atomic angular momentum and  ( ̂)  

 

   
    

   

  
. 

3.12 Phonon properties 

Phonons determine the crystal temperature. Knowledge of phonon characteristics are required to 

describe mechanical, acoustic, dynamical, spectroscopic and thermodynamic properties of 

crystals at finite temperature. The easiest and perhaps the most effective approach to calculate 

phonon frequencies and eigenvectors from first-principles are to use existing and well-tested 

software’s bases on the density functional software (DFT). Usually, at T = 0 the ground state 

energy E as a function of atomic positions R(n,   ), where n is the primitive unit cell index and  

is the atomic index, is expanded over small displacements U(n,   ) up to harmonic term [75]. 

Any atomic displacement U(m,  ) generates HF forces on all other atoms of the determined 

supercell according to the relationship- 

                                       (   )   ∑     (       )  (   )                                                           (3.33)      

   This relates the generated forces with the force constant matrices and atomic displacement. 

Knowing the displacements and arising HF forces one is able to determine the force constants 

 i,j(n,   , m, ν). The dynamical matrix is defined as-                        

                       (     )  
 

√    
∑  (       )             (   )   (   )            (3.34)                                             

Here, summation m runs over all primitive unit cells of the crystal, M  , M   are masses of 

atoms, and k is the wave vector. Diagonalization of the dynamical matrix- 

                                              (   )e(k,j)=D(k)e(k,j)                                                              

(3.35)       

Here, gives the phonon frequencies   (   ) and eigenvectors e(k, j), called also polarization 

vectors. 

3.13 Thermal properties 

Once phonon frequencies over the Brillouin zone are known, from the canonical distribution in 

statistical mechanics for phonons under the harmonic approximation, the energy of phonon 

system can be obtained [76]. The thermal properties of solids at constant volume can be 

calculated from their phonon density of states as a function of frequencies. The phonon 

contribution to the Helmholtz free energy FA is given by: 

                                  
 

 
∑          ∑           (          )                              (3.36) 



 
 
 
 
 

 

36 

Where kB and   are the Boltzmann constant and the reduced Planck constant, respectively, q and  

are the wave vector and band index, respectively, ω,q,  is the phonon frequency at q and   , and 

T is the temperature. 

 

3.14 Quantum Espresso 

Quantum ESPRESSO is a software suite for ab initio quantum chemistry methods of electronic-

structure calculation and materials modeling, distributed for free under the GNU General Public 

License. It is based on Density Functional Theory, plane wave basis and pseudo-potentials (both 

norm-conserving and ultra-soft). ESPRESSO is an acronym for opEn-Source Package for 

Research in Electronic Structure, Simulation, and Optimization [77].
 
The core plane wave DFT 

functions of QE are provided by the PWscf component, PWscf previously existed as an 

independent project. PWscf (Plane-Wave Self-Consistent Field) is a set of programs 

for electronic structure calculations within density functional theory and density functional 

perturbation theory, using plane wave basis sets and pseudo-potentials. The software is released 

under the GNU General Public License. It is a merge of several pre-existing packages and 

provides access to several techniques whose usefulness has traditionally been hindered by the 

lack of available software: notably- 

 – Linear response 

 – Ultra soft PP 

 - Car-Parrinello Molecular Dynamics 

There are two main packages in Quantum-ESPRESSO 

1. CP/FPMD package 

2. PWscf package 

 1. CP/FPMD package 

  Car-Parrinello variable-cell molecular dynamics with Ultrasoft PP’s- 

  • “Grid Box” for fast treatment of augmentation terms in Ultrasoft PP’s 

  • Various electronic and ionic minimization schemes: damped dynamics, conjugate gradient, 

https://en.wikipedia.org/wiki/GNU_General_Public_License
https://en.wikipedia.org/wiki/GNU_General_Public_License
https://en.wikipedia.org/wiki/Density_Functional_Theory
https://en.wikipedia.org/wiki/Plane_wave
https://en.wikipedia.org/wiki/Quantum_ESPRESSO#cite_note-1
https://en.wikipedia.org/wiki/Plane_wave
https://en.wikipedia.org/wiki/Electronic_structure
https://en.wikipedia.org/wiki/Density_functional_theory
https://en.wikipedia.org/w/index.php?title=Density_functional_perturbation_theory&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=Density_functional_perturbation_theory&action=edit&redlink=1
https://en.wikipedia.org/wiki/Plane_wave
https://en.wikipedia.org/wiki/Basis_set_(chemistry)
https://en.wikipedia.org/wiki/GNU_General_Public_License
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  • Verlet dynamics with mass preconditioning 

  • Constrained dynamics 

 • Temperature control:  os thermostat for both electrons and ions, velocity rescalin  

 2. PWscf package 

• Self-consistent ground-state energy and Kohn-Sham orbitals, forces, structural optimization 

• Spin-orbit and non-colinear magnetization 

• Molecular dynamics on the ground-state Born-Oppenheimer surface (no Car-Parrinello 

Dynamics) 

• Variable-cell molecular dynamics with modified kinetic functional 

•  udge Elastic Band (NEB) and Fourier Strings Method schemes for transition paths, energy 

barriers PWscf package, Linear Response 

• Phonon frequencies and eigenvectors at a generic wave vector, interatomic force constants in 

real space, effective charges and dielectric tensors, electron-phonon interaction coefficients for 

metals 

  • Third-order a harmonic phonon lifetime, non-resonant Raman cross sections 

  • Macroscopic polarization, finite electric fields with Berry’s phase Perspectives and future  

   developments. 

  • Calculation of  MR chemical shifts 

  • Exact-exchange calculations 

  • Projector-Augmented Waves (PAW) 

  • Time-Dependent DFT (TD-DFT). 
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3.15 Computational details 

The first-principle calculations were performed using the density functional theory as 

implemented in the Quantum espresso package. Ultra-soft pseudo potential with the Perdew-

Wang exchange-correlation function within the local density approximation (LDA) was 

employed to calculate the structural relaxation and total energy of the system.  The calculations 

were performed on a single layer 2D-SiC consisting of two atom basis primitive unit cell and in 

2D-SiC (4 × 4 supercell) structure was consisting of 32 atoms. The kinetic energy cutoff and the 

charge density cutoff used were 30 Ry and 200 Ry, respectively.  The convergence threshold was 

10
-6

 Ry/atom. The irreducible Brillouin Zone was sampled with a Gamma-centered 12 × 12 × 1 

Monkhorst-Pack k- points for the band structure and density of state calculation. The electronic 

properties were also calculated using the quantum espresso package with considering the SOC. 

The kinetic energy cutoff, the charge density cutoff and Monkhorst-Pack k- points are similar 

with the excluding SOC. The electronic properties of single vacancy defect (silicon and carbon) 

of 2D-SiC (4 × 4 supercell) was also performed by the same method. 

         To ensure the dynamical stability of the lowest energy structure of 2D-SiC, phonon 

dispersion characteristics were also calculated using the density functional perturbation theory 

(DFPT) [76]. The norm conserving pseudopotential with local density approximation and the 

dynamical matrix 2 × 2 × 2 has been used for phonon calculation. The splitting of longitudinal 

and transverse optical modes at Γ was taken into account via the method of Born and Huang 

[77]. The Raman peaks are extracted   from the DFPT calculation of second order response to an 

electric field which is implemented in the Quantum espresso package. 

         In order to implement the QHA to calculate Helzmolt free energy from first principles, one 

needs to compute the complete phonon dispersion of a crystal for different values of the crystal 

volume. This can be done within DFT by the direct or frozen phonon method, or by the linear 

response method. The former does not require the use of specialized software beside that needed 

to perform standard ground-state DFT calculations, but is computationally more demanding. 

Some software tools that help analyze the output of standard DFT code to produce real-space 

IFC’s and, from these, reciprocal-space dynamical matrices are available. As, for the linear 

response approach, have implemented on the general-purpose package Quantum espresso. In the 
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following we briefly describe the former, as well as other code, QHA, that can be used as a post-

processing tool to perform QHA calculations starting from lattice-dynamical calculations 

performed with many different methods. 

3.15 Different Steps for calculation- 

3.15.1 Band Structure Calculation 

 First to calculate self-consistent field (scf).  

 Next to calculate non-self-consistent field (nscf).  

 Then to calculate the band structure. 

3.15.2 Electronic Density of states 

 First to calculate self-consistent field (scf). 

 Next to calculate non-self-consistent field (nscf). 

 Then to calculate DOS. 

3.15.3 Phonon Density of States calculation 

 Step 1. PW Self consistent calculation of electron density. Outputs are wave functions. 

 Step 2. PH Phonon calculation of linear response, with output on a rough grid. 

 Step 3.Q2R Fourier transforms to real space and obtains force constants by interpolation. 

 Step 4. MATDYN Then to calculate DOS using matdyn.x 

 

The details of the calculation procedure for electronic and phonon properties using the first 

principle density functions, theory has been demonstrated by the block diagram as shown in 

below. 
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Fig. 3.2: Schematic for the calculation of electronic properties of novel 2D SiC. 
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Fig. 3.3: Schematic for the calculation of phonon properties of novel 2D-SiC. 
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4.1 Introduction 

This chapter provides the important new findings of 2D-SiC including its structural, electronic 

and vibrational properties. It also provides that spin orbit coupling effect on electronic properties 

of both pure and defective structure of 2D-SiC. 

4.2 Structural properties 

Structural properties generally change due to the surface effects; we thus first optimize the 

atomic structure of the 2D-SiC. The initial configuration is generated placing one silicon atom 

and one carbon atom alternatively on the same plane, forming the 2-atoms-unit cell. The relaxed 

structure shows that the system is still coplanar as shown in Fig. 1(a). The dynamically favorable 

planar structure is found buckling free with Si-C bond length of 1.75  ˚, larger than the 

corresponding C–C bonds in graphene (1.42  ˚). The Si–C–Si and C–Si–C bond angles are 12 ◦. 

The most stable lattice constant of planer 2D-SiC has been examined by calculating the total 

energy as a function of lattice parameter. Figure 2(a) portrays the variation of total energy as a 

function of the lattice constant. The total energy minimum of the relaxed structure is obtained at 

a lattice constant of 5.72 Ry, which is in very good agreement with the earlier computational and 

experimental works [44]. Besides lattice constant, the number of k-points mesh in Brillouin zone 

and kinetic energy cutoff affect the optimized structure and the accuracy of the calculations. The 

total energy with the variation of plane wave cut-off energy and k-points have also been carried 

out under PBE pseudo potential of the generalized gradient approximation. 

 

 

Fig. 4.1: Optimized atomistic model of 2D-SiC with unit cell outlined as dashed line. (b) The 

corresponding first Brillouin zone and high symmetry points. 
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Fig. 4.2: Total energy per unit cell of 2D-SiC with the variation of (a) lattice constant (b) kinetic 

energy cut-off and (c) K-points. 

Since relative stability needs a good k-point sampling, it is observed from Fig. 2(c) that k-point 

mesh of 4 x 4 x 1 is sufficient for our structure. From the convergence of the total energy, it is 

found that a kinetic energy cutoff of 30-50 Ry is adequate for hexagonal 2D SiC structure. 

4.3 Electronic properties without spin orbiting coupling (SOC) effect 

After obtaining the stable system, we explore the electronic properties of this favorable structure. 

Firstly, the electronic band structure has been calculated self-consistently by using the LDA. Fig. 

4.3 presents the electronic band structure and density of states from LDA calculations. As shown 

in Fig. 4(a), both the valence band maximum (VBM) and conduction band minimum (CBM) 

have been located at the K-point. Consequently, the energy bands estimated by our calculation 

guesses a direct band gap Ek =2.71 eV.  The Fermi level (dotted line in Fig. 4.3) is separated by 

two bands consisting of hybridized π and π* orbitals from Si and C atoms. For better 

understanding the contribution of individual elements in the electronic structure, the projected 

density of states (PDOS) has been calculated. The 2D-SiC is produced by the sp
2
 orbital 

hybridization combining σ-bonds and π-bonds. The σ-bond is formed by the silicon (Si-2s, 

3px,3py) and carbon (C-1s,2px ,2py) electrons and the π-bond is generated by the Si-3pz and C-2pz 

electrons. The conduction and valence band edges at the K point are constructed by the π and π∗-

bands, which is formed due to the bonding and anti-bonding combination of Si-3pz and C-2pz 

orbitals. We show the contribution of the electrons of two elements in Fig. 4.4. The peaks of the 

https://en.wikipedia.org/wiki/Orbital_hybridization
https://en.wikipedia.org/wiki/Orbital_hybridization
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PDOS in the conduction band (2 to 6 eV) as well as in the valence band (−  to  .8 eV) are 

dominantly contributed by carbon. The peaks of the PDOS in the conduction band (2 to 6 eV) as 

well as in the valence band (−  to -1.4 eV) are dominantly contributed by silicon. The lowest 

conduction band forms mainly from the Si–3p orbital with a small contribution from the C–2p 

orbitals. The highest valence band forms from the C–2p orbital with a small contribution from 

the Si–3p and Si-2s orbits.   

 

Fig. 4.3: (a) Electronic band structure and (b) density of states (DOS) of 2D-SiC without 

considering the SOC. The Fermi level is set to zero. A direct energy band gap at K-point is 

shown by the red arrow. 
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Fig. 4.4: Projected density of state (PDOS) of 2D-SiC with separate contributions from each 

orbital atoms without SOC. 

4.4 Electronic properties with spin orbiting coupling (SOC) effect 

The spin orbital interaction plays a crucial role in the electronic structure of the solid. SOC is an 

important element to quantitatively correct the band structures of solids. We incorporate the SOC 

effect in the calculations diagonalizing the total Hamiltonian containing the spin−orbit 

interaction and the self consistently determined Kohn−Sham Hamiltonian. Owing to the 

electromagnetic interaction between the spin and the magnetic field, the effect of SOC has been 

developed in the material. The electron energy levels lead to a shift because of this interaction 

happens for protons and neutrons stirring inside the nucleus. Earlier works on honeycomb 

graphene and related structures show that the SOC effect increases the bandgap although 

bandgap decreases in some structure. 2D stanene has a zero band gap without SOC, however, 0.1 

eV SOC induced band gap has been reported in the literature [78]. Owing to the SOC, a splitting 

of the valence band is occurred. A large spin-orbit splitting in the valence band of transition 

https://en.wikipedia.org/wiki/Proton
https://en.wikipedia.org/wiki/Neutron
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metal dichalcogenide is observed owing to the relativistic effects induced by heavy atomic core 

[79].  

          Generally, the splitting of bands can be understood from the total angular momentum 

created by the interaction between the spin angular momentum and orbital angular momentum. 

The total spin angular momentum s and the total orbital angular momentum l are merged and 

developed the ls coupling. The total angular momentum j can be developed by this ls coupling in 

the form (l+s), (l+s-1),…(l-s). The values of j are ranging from | l −s| to | l + s |. For s orbital l=0, 

j=1/2 and for p orbital l=1, j=1/2 and j=3/2, where s=+1/2 and -1/2. This coupling has an 

intuitive effect on the energy band structure of materials. For example, it is found in GaAs 

semiconductor that the top of the valence bands is a p-like (i.e., orbital angular momentum l = 1) 

while no SOC is considered. However, the electronic states with SOC gives the total angular 

momentum j = 3/2 and j = 1/2. Hence, an energy gap is generated between these new j = 3/2 and 

j =1/2 states, which is so called as the SOC gap.  

 

Fig. 4.5: (a) Electronic band structure and (b) DOS of 2D-SiC with SOC. The band structure 

changes and increases the energy gap at the K-point due to the SOC effect. 
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Fig. 4.6: PDOS of 2D-SiC with separate contributions from each orbital atoms. The p-orbital 

splits into two new branches due to the SOC 

       In 2D SiC, splitting occurs in both the valence and conduction bands and thus the energy gap 

is increased while considering the SOC.  Fig. 4.5 depicts the energy band structure and electronic 

DOS incorporating the SOC effect. At the K-point of the BZ an energy gap of ~2.827 eV is 

determined. We observe that considering the SOC leads to a band gap increase of 117 meV. Fig. 

4.6 shows the PDOS taking into account the SOC effect. While including the SOC in the PDOS, 

the contribution of electron in conduction and valence band is different as for no SOC effect. 

Near the Fermi level, the contribution of Si is mainly in the conduction band and the contribution 

of carbon is mainly in the valence band. The peaks of the PDOS in the conduction band (5 to 7 

eV) as well as in the valence band (−  to  .9 eV) are dominantly contributed by C atom. The 

peaks of the PDOS in the conduction band (2 to 6 eV) as well as in the valence band (−  to -2 

eV) are dominantly contributed by Si atom. However, in case of both Si and C, s orbitals have 

only one branch of angular momentum, j=1/2 and p orbitals have two branches of angular 

momentum j=1/2 and j=3/2. Therefore, we obtain two more branches owing to these new angular 

momentums as shown in Fig. 7. Due to the contribution of C atoms, the peaks become apparent 

in the conduction band (2 to 4 eV) as well as in the valence band (−  to   eV) for both angular 
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momentums j=1/2 and j=3/2. Also due to the contribution of Si atoms, the peaks are appeared in 

the conduction band (2 to 4 eV) as well as in the valence band (−4 to   eV) for both angular 

momentums j=1/2 and j=3/2. 

4.5 Phonon properties 

Probing the lattice vibrational modes offers a dependable check for the structural stability. The 

imaginary frequency of phonon modes indicates the dynamic instability of a crystal structure. 

The frequency, w(k) attained from the dynamical matrix of the unstable structure becomes 

negative providing the imaginary frequency due to the existence of instability related to a phonon 

mode in the k point BZ. The imaginary frequency mode cannot produce the restoring force to 

perform atomic vibration and thus the system is exposed to disappear from its original geometry. 

Phonon properties also play a major role in many of the physical properties of condensed matter, 

like thermal conductivity and electrical conductivity.  

 

Fig. 4.7: (a) Phonon dispersion relationship with Ultrasoft pseudopotential using first principle 

density function theory, and (b) Corresponding Phonon Density of State of 2D-SiC. 
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Furthermore, the phonon is used to analysis of Raman active modes, disorder of the sample, the 

tension and compression state, the number of graphitic layers, interlayer coupling, oxidation, 

thermal properties and more. Thus, the study of phonons is an important part of condensed 

matter physics. We have carried out the phonon calculations using DFT to further test the 

stability of the structure. 

In Fig. 4.7, we present the calculated phonon dispersion relation and corresponding 

density of states of the honeycomb structure of the 2D-SiC sheet. The phonon spectrum shows 

no negative frequency implying the stable phase of the structure without any dynamical 

instability. The longitudinal acoustic (LA), transverse acoustic (TA), and flexural or out of plane 

acoustic (ZA) modes are the three acoustic modes. These are the lowest frequencies mode at the 

zone center or Γ point. However, the higher frequencies mode is longitudinal optical (LO), 

transverse optical (TO), and out of plane optical (ZO) modes. The all frequencies of the phonon 

modes are below the 1190cm
-1

. There is a large phonon band gap lies between 700 and 960 cm
-1 

and this value is 260 cm
-1

. The corresponding total phonon density of states (PHDOS) confirms 

the phonon dispersion outcome, which is depicted in Fig. 3(b). 

4.6 Raman and infrared (IR) spectra                                                                           

Raman and infrared (IR) spectra both are the invaluable spectroscopic technique to detect the 

vibrational properties. A phonon will be Raman or IR active if it causes a change in 

polarizability or permanent dipole moment of the materials, respectively. To characterize the 

graphene and related 2D honeycomb materials, especially Raman spectra has been used as an 

important characterization tool in the last few years. The various peaks of the Raman and 

infrared spectra can be deduced from various phonon modes of the solids.  A completely C or Si 

based 2D systems i.e. graphene or silicene shows a Raman peak near 1600 cm
–1

 and 570 cm
–1

, 

this peak is so called the G peak and come from the Γ point in-plane transversal optical (iTO) 

and in-plane longitudinal optical (iLO) phonon modes. With the analogy of graphene and 

silicene, we can obtain the Raman active modes of the 2D-SiC sheet from the phonon dispersion 

relation.  
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Fig. 4.8: (a) Raman and (b) IR Specta of 2D-SiC. 

Our calculated Raman spectrum shows a sharp peak at 1045 cm
-1

 as exhibited in Fig.5. 

 lthough Γ-point iTO and iLO mode phonons are degenerate for graphene and silicene, these 

modes are nondegenerate for SiC sheet. The energy of the Raman active mode has been 

evaluated at the transverse optical branch at Γ and the value of phonon mode is 1045 cm
−1

. 

4.7 Thermal properties 

The Helmholtz free energy is an important parameter to determine the stability of a structure. 

In thermodynamics, the Helmholtz free energy is a thermodynamic potential that measures the 

useful work obtainable from a closed thermodynamic system at a constant temperature and 

volume. A structure with a more negative value of Helmholtz free energy will be considered 

more stable. We calculated the Helmholtz free energy FA, at constant volume of 2D-SiC 

monolayers as a function of temperature, as shown in Fig. 4.9. We notice that the Helmholtz free 

energy decreases monotonically with respect to temperature, opposed to trends of heat capacity. 

At the 0 K temperature is attributed to the existence of zero-point motion and calculated free 

energy at absolute zero is 0.015 kJ/mol. The 2D-SiC is a stable structure because of a negative 

value of Helmholtz free energy with increasing the temperature. Furthermore, at a certain 

temperature, the Helmholtz energy is minimized at equilibrium. 

(a) (b) 

https://en.wikipedia.org/wiki/Thermodynamics
https://en.wikipedia.org/wiki/Thermodynamic_potential
https://en.wikipedia.org/wiki/Work_(thermodynamics)
https://en.wikipedia.org/wiki/Closed_system
https://en.wikipedia.org/wiki/Thermodynamic_system
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Fig. 4.9. The Helmholtz free energy FA at constant volume of 2D-SiC monolayers are calculated 

as a function of temperature with harmonic approximation. 

4.8 Effect of Vacancy defects on 2D-SiC  

The effects of Si and C vacancies in periodically repeating (4×4) supercells have shown in figure 

4.10. The size of supercell is optimized to allow negligible defect interaction between adjacent 

cells. A (4 × 4) supercell led to rather vacancy defect bands which are suitable for our purpose, 

but allowed us to carry out numerical calculations.  

 

Fig. 4.10: (a) Atomic structure of 2D-SiC (4 × 4 supercell). (b) Single carbon vacancy, and (c) 

Single silicon vacancy of 2D-SiC (Si is red color and carbon is blue color). 

(a) (b) (c) 
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4.8.1 Carbon and silicon vacancy effects on electronic properties  

Generally, a single vacancy is the simplest intrinsic defect in a crystal. The vacancy defect has 

been observed through transmission electron microscopy (TEM) [80] and scanning tunneling 

microscopy (STM) [81]. When an atom is removed, two scenarios are possible: either the 

disrupted bonds remain as dangling bonds or the structure undergoes a bond reconstruction 

through a Jahn-Teller rearrangement and in three-dimensional (3D) semiconductors, it finds a 

localized state and deep gap levels. Moreover, it is found in graphene that defects can change the 

interatomic bond length. They also change the type of the hybrid trajectories of the partial carbon 

atoms. The changes of bond length and orbital are responsible for the major change of electrical 

properties of graphene. Point defects and single vacancy defects of graphene form an electron 

scattering center on the surface. This center affects electron transfer, resulting in a decrease in 

the conductivity of graphene.  

 

 

Fig. 4.11: (a) Electronic band structure of 2D-SiC (4 × 4 supercell) using DFT.(b)Corresponding 

density of state (DOS) 
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Fig. 4.12: (a) Electronic band structure of 2D-SiC with carbon vacancy defect (4 × 4 supercell).  

(b) DOS. 

The vacancy defect has a significant effect on the electronic properties of two-

dimensional (2D) materials. The novel protocol has improved the visible photocatalytic activity 

of modified ZnO nanostructures through the promotion of oxygen vacancies, which resulted in 

band gap narrowing of the ZnO nanostructure (Eg = 3.05 eV) from wide band gap of ZnO (Eg = 

3.24 eV) [82]. GaN is a direct wide band gap semiconductor material with energy gap of 1.66 eV 

and with considering the Ga and   vacancy the bandgap increase to 2.3  eV and 1.97 eV 

respectively [83]. Thus, investigating the effect of vacancy on the electronic properties of the 

newly discovered 2D-SiC monolayer is a great interest for future spintronic devices. The band 

structure of the pure 2D-SiC is depicted in figure 4.11. The valence band maximum and 

conduction band minimum of pure 2D-SiC (4 × 4) supercell is located in the K-point of 

Brillouin zone. The results indicate that 2D-SiC is a direct wide bandgap semiconductor material 

with energy gap of 2.71 eV.  It can be perceived from figure 4.12 and figure 4.13 that the 

numbers of the valence band and conduction band significantly increase in 2D-SiC for both 

carbon (VC) and silicon (VSi) vacancy as well as the band gap is decreased than that of the pure 

2D-SiC. The band gaps of 2D-SiC:VC and 2D-SiC: VSi have been decreased to 1.7 28 eV and 

2.4664 eV, respectively.  
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Fig. 4.13: Electronic band structure of 2D-SiC with silicon vacancy defect (4 × 4 supercell) (b) 

DOS 

 

 

Fig. 4.14: Electronic band structure of 2D-SiC with carbon vacancy defect, including SOC effect 

(4 × 4 supercell) . 
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4.8.2 Combined vacancy and SOC effects on electronic properties  

The electronic properties of material has been changed due to SOC effect for pure 2D-SiC which 

was presented in Fig. 4.5 for the unit cell. The electronic properties have also modified owing to 

the combined effect of SOC and defects of 2D-SiC. Spin-orbit coupling (SOC) establishes itself 

by lifting the spin degeneracy in the electronic structures, such as the magnetic anisotropy in 

magnetic systems and the band splitting of surface states when the systems lack the inversion 

symmetry. The band structure of graphene, MoS2 and metal surfaces have been changed due to 

SOC effect for both pure and defective structure [84]. There is no study showed on the SOC 

effect on the electronic structure of defective 2D-SiC. Hence, including SOC effect with single 

vacancy defect of carbon and silicon in 2D-SiC, the electronic band structure has been calculated 

here. When it has been considered of SOC on the carbon vacancy defective structure of 2D-SiC, 

the bandgap is turn to 1.7735 eV from 1.7028 eV which depicted in figure 4.14. Furthermore, 

when it has been considered of SOC on the silicon vacancy defective structure of 2D-SiC, the 

bandgap is changed to 2.526 eV from 2.4464 eV, which illustrated in Fig. 4. 15. 

 

Fig. 4.15: Electronic band structure of 2D-SiC with silicon vacancy defect, including SOC effect 

(4 × 4 supercell). 
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5.1 Conclusion 

In this thesis, the detailed structural, electronic, and vibrational properties of the 2D-SiC 

nanomaterial have been systematically investigated by the first principle DFT calculations. It has 

graphene-like honeycomb lattice which have superior structural and dynamical stability. The 

structural stability has checked by the calculation of minimum energy with variation of energy 

with respect to lattice constant, kinetic energy cut-off and K-points respectively. The electronic 

band structure and density of states presents that the both the valence band maximum (VBM) 

and conduction band minimum (CBM) have been located at the K-point and thus develop a 

direct band gap 2.71 eV. The Fermi level is separated by two bands consisting of hybridized π 

and π* orbitals from Si and C atoms. The 2D-SiC have been produced by the sp
2
 orbital 

hybridization combining σ-bonds and π-bonds. The σ-bond has been formed by the silicon (Si-

2s, 3px,3py) and carbon (C-1s,2px ,2py) electrons and the π-bond has been generated by the Si-3pz 

and C-2pz electrons. The calculated projected density of states (PDOSs) have exposed that the 

conduction and valence band edges at the K point have been constructed by the π and π∗-bands, 

which are formed due to the bonding and anti-bonding combination of Si-3pz and C-2pz orbitals. 

The negative frequencies are not present in the phonon dispersion relation which indicate 

that the 2D-SiC structure is dynamically stable. The large phonon band gap has been produced 

which lies between 700 and 960 cm
-1 

and this value is 260 cm
-1

. From the phonon dispersion 

relation, the phonon density of state, Raman spectra and thermal properties have been also 

calculated. The energy of the Raman active mode has been estimated at the transverse optical 

branch at Γ and the value of phonon mode is 1045 cm
−1

. We have also systematically explored 

the effects of SOC on the electronic structure of 2D-SiC using the first-principle calculations 

within the framework of DFT study. Our DFT calculations on the electronic energy band 

structure and DOS of 2D-SiC have shown that the energy gap near the K-point is ~2.71 eV, 

whereas the energy gap increases to ~2.827 eV while considering the SOC effect. It is observed 

that the electronic states with SOC induces two new branches in PDOS owing to the total angular 

momentums j = 3/2 and j = 1/2, which generates an energy gap in the band structure.   

Furthermore, the band gaps of 2D-SiC with carbon and silicon vacancy decrease to 1.7028 eV 

and 2.4664 eV, respectively from the direct bandgap 2.71eV. However, the effects of SOC on the 

carbon and silicon vacancy type 2D-SiC structures show the increasing of bandgap from 1.7028 

https://en.wikipedia.org/wiki/Orbital_hybridization
https://en.wikipedia.org/wiki/Orbital_hybridization
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eV to 1.7735 eV and from 2.4664 eV to 2.526 eV, respectively. These results are very much 

important to explore the fascinating physics of spin-orbit Dirac fermions and potential 

applications of 2D-SiC in optoelectronics and spintronic devices. 

5.2 Future work  

The first principle DFT technique described in this dissertation has proven to accurately describe 

the structural, electronic and vibrational properties of 2D-SiC. It has been calculated the 

electronic properties of 2D-SiC including vacancy defect with considering SOC effect. At the 

same time, there have been several important issues in the field that remain to be addressed. This 

simulation method developed in this dissertation can be extended to this material for vibrational 

properties of vacancy defected structure. It will be also calculated to electron-phonon coupling 

effect, thermal conductivity of 2D-SiC structure both pure and defected. 
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Appendix 

Scf calculation of 2D-SiC 

 

&CONTROL 

  calculation='scf', %Type of calculation 

  outdir='./rrr/', ,%The location name where we want to save data 

  prefix='unit_sic3', % Name of the compound or element 

  pseudo_dir='./C_Si/', %The directory where pseudopotential file stored 

  verbosity='low', 

/ 

 

&SYSTEM 

  ibrav=4, What types of unit cell we will use. In this code hexagonal cell is used. 

  celldm(1)=5.72, celldm(3)=2.7259060621d0, 

  nat=2, % Number of atoms in the structure. 

  ntyp=2, % Types of atom used in the structure. 

  ecutwfc=30, % Cut off energy. 

  ecutrho=200, 

  input_dft='lda', 

  smearing='mv', 

  degauss=0.005d0, 

  occupations='smearing', % For Gaussian calculation 

  smearing='methfessel-paxton',  

  degauss=0.05, 

/ 

 

&ELECTRONS 

  conv_thr=1d-06, 

  mixing_beta=0.7d0, 

/ 

ATOMIC_SPECIES 

  C 12.010700d0  C.pz-van_ak.UPF 

  Si 28.085500d0 Si.pbe-n-van.UPF 

 

ATOMIC_POSITIONS {crystal} 

   C   0.3333333333d0   0.1666666667d0   0.5000000000d0 

  Si   0.6666666667d0   0.8333333333d0   0.5000000000d0 

 

K_POINTS {automatic} 

12 12 1 0 0 0 

 %It means that it takes k point of 12 × 12 × 1. 0 0 0 is whether to shift the mesh as a whole or not, 

in this case it is a mesh containing the Γ point. If it is 12 12 1 1 1  , the Γ point will be at the center 

of the mesh. 
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