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Abstract 

 
Atrial Fibrillation (AF) is one of the most common cardiac arrhythmias. The number of 

patients related to heart failure due to AF is increasing day by day. Early detection of AF 

may reduce the risk of death due to heart failure. So, it has become more important to detect 

AF. There are various method to detect AF. In this thesis, we use ECG signal for AF 

detection. The MIT-BIH Atrial Fibrillation database is used to import ECG data for analysis. 

Filtered ECG signal using multistage multirate system for removing noise. RR interval of 

the ECG signal is calculated. Here we use the algorithm that mainly follows statistical 

method for detection of AF. Parametric statistic RMSSD and SE, and non-parametric 

statistic, TPR are used for this purpose. MATLAB R2016a is used to measure the values of 

those parameters for estimation of AF. The threshold values of RMSSD/ (Mean RR) taken 

from the literature is 0.1, SE is 0.7 and TPR is greater than 0.54 and lesser than 0.77. The 

resultant values of RMSSD, SE and TPR of every beat are checked weather it crosses the 

threshold level or not. If all the three parameters cross the threshold level then the beat 

flagged as AF. It shows excellent result when compared with the annotations of the database, 

and then the sensitivity, specificity and accuracy are determined. The algorithm has the 

sensitivity of 98.03%, specificity of 98.80% and accuracy of 99.45%. Thus, the result 

obtained in this study is appreciable compared to the other study found in literature. 
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CHAPTER I 

 

 

Introduction 

 

 

1.1  Introduction 

 

Biomedical signals are described as the collection of electrical signals acquired from any 

organ that represents a physical variable of interest. These signals are normally a function of 

time. They are described in terms of their amplitude, frequency and phase. The analysis of 

these signals is important both for research and for medical diagnosis and treatment. If the 

signals are not properly diagnosed and analyzed, it will lead to wrong diagnosis and can be 

fatal to life. Biomedical signals such as ECG, EMG, EEG and EOG -are extremely important 

in the diagnosis of patients. These signals have noise as well as artifacts which have to be 

removed for proper treatment of a patient. Different methodologies have been used to 

remove noise and artifacts from ECG signals and detecting AF using ECG signal which is 

the goal of this thesis. 

  

1.2  Motivation 

 

Today, heart disease and related faults are among the leading causes of death in the world. 

Therefore, it is necessary to have an appropriate method that determines the patient's heart 

condition. The ECG inspection is one of the methods. Electrocardiography (ECG) is a tool 

used to understand the condition of the heart. The ECG records the electrical signals 

(activity) that are generated throughout the cardiac cycle through electrodes placed in various 

places on the surface of the body. A patient's ECG is visually examined in the time domain. 

But this ECG is full of noise that can be reduced by processing the signal. Signal processing 

is an important and obvious tool in the fields of biomedical engineering. Today, the flow of 

biomedical signal processing has advanced to the stage of practical application of signal 

processing techniques and pattern analysis. The ECG signal is a graphic representation of 

cardiac activity and is used to investigate various abnormalities that are present in the heart. 

Typically, an ECG signal consists of P wave, QRS complex, T wave and any deviation in 

these parameters predicts and justifies the anomalies present in the heart. The 

electrocardiogram (ECG) signals are usually contaminated by baseline deviation (BW). 
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Changes in skin impedance of the electrodes due to perspiration, patient movement and 

respiration, which contributes to the deviation of the baseline. Computer-based processing 

is influenced due to the deviation of the baseline. Noise reduction, such as BW and power 

interference, is a necessity, so the ECG signal can be analyzed automatically by a computer 

and finally interpreted by a cardiologist. The elimination of various disturbances is one of 

the first steps in the processing of the ECG, not only before the additional automatic 

processing, but also as a first step in the visual diagnosis. The purpose of this diagnosis is to 

facilitate processing and allow reliable measurements of the ST segment. The ambulatory 

ECG records that are taken when the electrodes are placed in the subject's chest are 

contaminated by different types of artifacts. The ECG artifacts are the perturbations in the 

ECG, which is a measure of the cardiac potentials in the human body. Normal components 

of the ECG can be distorted due to artifacts. Artifacts are quite common and adequate 

knowledge is necessary to avoid misinterpretation of the patient's ECG. Artifacts can be 

generated due to electrical interference from the external source, electrical noise in other 

parts of the body, poor contact and malfunction of the machine. The positive stress ECG test 

indicates that the QRS complex is modified as it increases and patients may have significant 

coronary artery disease. 

Noisy ECG signals contain variations in the amplitudes or time intervals that represent 

anomalies associated with the heart; This makes it difficult to diagnose cardiovascular 

diseases. Therefore, to facilitate the proper analysis of ECG; This document presents a 

combination of wavelet analysis and morphological filtering as an approach for the 

elimination of noise in ECG signals. The proposed algorithm involves the decomposition of 

sub-bands of the ECG signal using a family of bi-orthogonal wavelets. The wavelet detail 

coefficients that contain the noisy components are processed by morphological operators 

using elements of linear structuring. The morphological filter processes only the damaged 

bands without affecting the parameters of the signal. The results of the simulation of the 

proposed algorithm show a remarkable suppression of noise in terms of a higher signal-to-

noise ratio that preserves the ST segment and the R wave of the ECG. 

Heart disease is one of the leading causes of death worldwide. He is an equal opportunity 

killer who claims millions of lives annually. Doctors use the electrocardiogram (ECG) to 

detect abnormal heart rhythms and investigate the cause of chest pain. This test detects and 

records the electrical activity of the heart. An ECG is nothing more than a record of the 

strength and timing information of electrical signals as they pass through the heart.  
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A common problem in the interpretation of the ECG is the elimination of unwanted artifacts 

and noises. There are several artifacts that are added to these signals and change the original 

signal, therefore, the need to eliminate these artifacts from the original signal is significant. 

An ECG signal consists of very low frequency signals of approximately 0.5 Hz-100Hz and 

the digital filters are very efficient to eliminate the noise of such low frequency signals. 

Cardiac monitors are devices that provide a means to filter ECG recording. The noise 

filtering methods have a decisive influence on the performance of all ECG signal processing 

systems. This thesis aims to review different sources of noise associated with the acquisition 

and processing of ECG signals, together with a brief study of several multirate multistage 

systems implemented to reduce it. Finally, detect AF using filtered ECG signal. 

Among the heart diseases, AF is the most common cardiac arrhythmia found in clinical 

practice with increased prevalence in the ageing population [1.1]. It affects 5% of those aged 

over 65 years and 10% of those aged over 80 years [1.1]. Its prevalence is increasing 

primarily for two reasons; an increase in the ageing population and advances in medical care 

leading to survival from underlying conditions closely associated with AF, such as 

hypertension, coronary heart disease, and cardiac failure [1.1]. Because of those conditions, 

AF has come with an increased rate of hospitalizations and medical care. It also has a huge 

economic impact.  It has been described as epidemic in proportion since some researchers 

have predicted its prevalence will triple by 2050 [1.1]. So, if the AF is detected early then it 

could reduce the cost of treatment, rate of hospitalization and other risk factor associating 

with it. 

 

 1.3  Problem Statement 

 

In previous years, many different techniques are used for removing noise from ECG signals 

to detect AF using ECG signals. The methods were based on adaptive filtering, average 

filtering, adaptive neuro-fuzzy inference system (ANFIS), wavelet transform, least mean 

squares (LMS), normalized least mean squares (NLMS), least mean Mestimate (LMM), 

normalized least mean Mestimate (NLMM), mathematical morphology filtering method and 

so on. Each of these methods have limitations. In this thesis, a new technique of filtering the 

ECG signals which is based on multirate filtering scheme has been proposed to overcome 

that limitations. For removing noise from ECG signal three different algorithms based on 

multistage multirate systems will be proposed and described in chapter IV.  
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The goal of this thesis is to achieve better filtered signal with removing noise as much as can 

then detecting AF using filtered ECG signal. Proper diagnosis is essential for proper 

treatment. There are also various methods to detect AF, such as, Electrocardiography (ECG), 

Echocardiography, Transesophageal Echocardiography, and Chest X-Ray. However, AF is 

usually diagnosed from the surface ECG to conform its presence. 

Today, there is no clinical test available that can predict the natural history of AF and the 

outcome of treatment. Since an ECG is recorded from practically all AF patients, it is 

desirable to classify AF from the ECG signal, to help physicians in deciding which treatment 

is appropriate for a specific patient. The characteristics of the ECG signal during AF varies 

not only between different patients, but also in the same patient over time. One important 

challenge is to track such changes in long term ECG recordings which usually are recorded 

during ambulatory conditions.  

 

1.3.1  Some Risk Factors Experienced by AF Patients 

 

More than one-third of patients who experience a stroke return to their home with some level 

of permanent disability [1.2]. They then rely on informal care, typically from family 

members, to help with their normal daily activities and to arrange the required additional 

assistance from healthcare services. The disabling consequences of stroke are worse for 

those patients who survive an AF related stroke, than for those without AF. The presence of 

AF increases the risk of remaining disabled after a stroke by almost 50% [1.3]. 

 

1.3.2  Hospitalization Due to AF 

From a study period from 2004 to 2008, a total of 162,449 hospital episodes in Scotland 

were coded with a primary or a secondary diagnosis of AF, as shown in Table 1.1. 
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Table1. 1: Burden of AF in comparison with the total burden of CV conditions in Scotland 

[1.1]. 
 

Year         Hospital inpatient 

episodes 

Hospital treated 

patients 

Hospital 

discharges* 

Inpatient bed days 

 AF 

patients 

CV 

patients 

AF 

patients 

CV 

patients 

AF 

patients 

CV 

patients 

AF 

patients 

CV 

patients 

2004 28613 147,566 21,907 102,552 41,085 208,602 344,164 1,458,203 

2005 30410 158,959 22,942 109,124 44,573 224,971 364,419 1,508,261 

2006 32551 167995 24,264 114,540 47,205 235,637 390,256 1,561,310 

2007 34671 173,636 25,472 117,431 51,631 246,630 402,229 1,549,716 

2008 36204 173,704 26,510 117,343 54,686 251,052 394,128 1,515,705 

*includes inpatient and outpatient discharges and death 

 

There were 28,613 hospital episodes (20.0 per 1,000 population) in 2004, which increased 

to 36,204 by 2008 (24.2 per 1,000 population); representing a 26.5% increase over the five-

year study period (Table 1.1). Throughout this period, cumulatively, men accounted for more 

hospital episodes than women (120.1/1,000 compared with 99.5/1,000). The number of AF-

related hospital episodes increased from 14,284 in women. 

There were 147,566 hospitalizations related to cardiovascular (CV) conditions in 2004 

(103.2 per 1,000 population) increasing to 173,704 (116.3 per 1,000 population) in 2008, 

which represents a 17.7% increase in five years, in contrast to the 26.5% increase for AF 

hospitalization during the same period [1.1]. Of the total CV hospitalizations, those related 

to AF increased from 19.4% in 2004 to 20.8% in 2008, indicating a rising contribution of 

AF to total CV hospitalization, as displayed in Table 1.1. 
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1.3.3  AF Related Hospital Discharges:  

 

Total AF-related discharges, which included inpatient and day-case discharges, as well as 

deaths, increased by 33.1% during the study period from 2004 to 2008 compared with an 

overall increase of 20.4% in CV patients, as displayed in Table 1. The population 

standardized estimates indicated 28.7 discharges per 1,000 in 2004 increasing to 36.6 

discharges per 1,000 in 2008. AF accounted for approximately 19.7% of cardiovascular 

discharges in 2004, which increased to approximately 21.8% in 2008, suggesting an overall 

increase in AF-related hospitalizations in Scotland during this period [1.1]. The five-year 

cumulative hospital discharges were higher among men (172.8/1,000 population) compared 

with women (149.6/1,000 population) [1.1]. The total discharges attributable to AF increased 

steadily with age such that patients aged 55–59 years had 6.8 discharges per 1,000, 

increasing to 129.5 discharges per 1,000 among patients 85 years and over in 2008. The 

overall AF-related activity by age of patients in 2008 is displayed in Fig. 1.1. 

 

 

 

 

 

1.3.4  Economic Burden of AF  

 

The total cost for CV inpatients in Scotland increased from £622.9 million in 2004 to £655.5 

million in 2008 [1.1]. The total inpatient cost of AF also increased from £136.4 million in 

2004 to £159.3 million in 2008 [1.1]. The inpatient cost per patient, however, decreased for 

both cardiovascular (£6,074.0 per cardiovascular patient in 2004 to £5,586.2 per 

Figure 1. 1: AF related hospital activity by age of patient in Scotland in 2008 [1.1]. 

http://bjcardio.co.uk/files/uploads/2012/11/Figure-1.-AF-related-hospital-activity-by-age-of-patient-in-2008.png
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cardiovascular patient in 2008) and AF patients (£6,226.3 per AF patient in 2004 to £6,009.0 

per AF patient in 2008) [1.1]. The average inpatient costs for AF were 16.7% more in women 

(£6,719.5 per patient) than men (£5,756.4 per patient) over the five-year study period [1.1]. 

So, it is clearly seen from the statistics above that AF has an increased rate of hospitalization 

and cost from day by day. Proper steps should be taken for early detection of AF to decrease 

those rates. 

 

1.4  Objectives 

 

The major objectives of this research are as follows:  

(i) To design multistage multirate filter structure with different cases. The structure 

will be composed of multistage analysis and synthesis filter. 

(ii) Detection of Atrial Fibrillation (AF) using ECG signal after filtering by multistage 

Multirate System. 

(iii)To find out RR interval of ECG signal by root mean squares of successive 

differences (RMSSD), sample entropy, Shannon entropy (SE), turning point ratio 

(TPR) values.  

(iv) To verify the performance of the obtained results of AF detection in terms of 

sensitivity (Se), specificity (Sp), accuracy.  

1.5  Organization of Thesis 

 

This section provides a summary of the all the chapters covered in this thesis. 

Chapter-I: 

This chapter gives the introduction of the thesis, the motivation, the problem description, 

objective and also detail of report layout of the thesis report. 

Chapter-II: 

This chapter gives the basic knowledge of ECG and its history. Here types of ECG, different 

waves of ECG such as P, U, QRS complex, T waves and their descriptions are described. 

Different types of noises which affects the ECG signal then multistage multirate filtering 

systems. It also gives the basic knowledge of Atrial Fibrillation (AF), diagnosis and 

treatment- challenges in AF, ECG signal for AF detection, history of AF detection and 

previous related works are also described. 
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Chapter-III: 

This chapter presents the brief description of three multistage multirate systems which are 

to be employed in this thesis to perform the noise cancellation. It also gives the overview of 

the process and operations of systems. 

Chapter-IV: 

This chapters gives the overview of the total process of AF detection using ECG signal. 

Chapter-V: 

This chapter will provide the conclusion and future research. It also gives the detail of the 

thesis goal, its achievement and what has been concluded after completion this thesis. 
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CHAPTER II 

 

 

Background and Related Work 

 

 

2.1  Introduction 

 

For analyzing of ECG signal, it is important to understand the physiology of ECG. In this 

chapter, at first a brief introduction of ECG is given. Then a detail discussion on various 

noises in ECG signal will be given. After that filtering using multistage multirate systems. 

Finally, Atrial Fibrillation and effects will be discussed. 

 

2.2  Electrocardiography 

 

Electrocardiography is a process used to record electrical activities of the heart over a period 

of time using electrodes placed on a patient's body. These electrodes detect the tiny electrical 

changes on the skin that arise from the heart muscle's electrophysiological pattern 

of depolarizing and repolarizing during each heartbeat. It is a very commonly 

performed cardiology test. 

Electrocardiography is the process of recording of electrical activity of the heart. An 

electrocardiogram — abbreviated as EKG or ECG — is a test that measures the electrical 

activity of the heartbeat. With each beat, an electrical impulse (or “wave”) travels through 

the heart. This wave causes the muscle to squeeze and pump blood from the heart. A normal 

heartbeat on ECG will show the timing of the top and lower chambers [2.1]. 

The right and left atria or upper chambers make the first wave called a “P wave" — following 

a flat line when the electrical impulse goes to the bottom chambers. The right and left bottom 

chambers or ventricles make the next wave called a “QRS complex." The final wave or “T 

wave” represents electrical recovery or return to a resting state for the ventricles [2.2]. The 

different peaks P, Q, R, S, T, and U are noticeable at these stages, as observed in Figure 2.1. 

If ECG is properly analyzed, can provide us information regarding various diseases related 

to heart. Moreover, visual analysis cannot be relied upon. This calls for computer-based 

techniques for ECG analysis [2.1]. 

An ECG gives two major kinds of information. First, by measuring time intervals on the 

ECG, a doctor can determine how long the electrical wave takes to pass through the heart. 

https://en.wikipedia.org/wiki/Cardiac_muscle
https://en.wikipedia.org/wiki/Electrophysiology
https://en.wikipedia.org/wiki/Depolarization
https://en.wikipedia.org/wiki/Repolarization
https://en.wikipedia.org/wiki/Cardiac_cycle
https://en.wikipedia.org/wiki/Cardiology
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Finding out how long a wave takes to travel from one part of the heart to the next shows if 

the electrical activity is normal or slow, fast or irregular. Second, by measuring the amount 

of electrical activity passing through the heart muscle, a cardiologist may be able to find out 

if parts of the heart are too large or are overworked [2.1]. 

 

Figure 2. 1: A General ECG waveform with P, Q, R, S, T and U peak [2.2]. 

Figure 2.2 shows the standard ECG waveform along with intervals the normal value of the 

parameters. 
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Figure 2. 2: A General ECG waveform with normal value of intervals [2.2]. 

 

2.2.1  When an ECG is Used 

 

An ECG is often used alongside other tests to help diagnose and monitor conditions affecting 

the heart. It can be used to investigate symptoms of a possible heart problem, such as chest 

pain, suddenly noticeable heartbeats (palpitations), dizziness and shortness of breath [2.1], 

[2.2], [2.3].  

An ECG can help detect:  

• Arrhythmias – where the heart beats too slowly, too quickly, or irregularly.  

• Coronary heart disease – where the heart's blood supply is blocked or interrupted by 

a build-up of fatty substances.  

• Heart attacks – where the supply of blood to the heart is suddenly blocked.  

• Cardiomyopathy – where the heart walls become thickened or enlarged.  

A series of ECGs can also be taken over time to monitor a person already diagnosed with a 

heart condition or taking medication known to potentially affect the heart. 
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2.2.2  Types of ECG 

 

There are three main types of ECG. 

• a resting ECG – carried out while you're lying down in a comfortable position  

•  a stress or exercise ECG – carried out while you’re using an exercise bike or 

treadmill  

• an ambulatory ECG – the electrodes are connected to a small portable machine worn 

at your waist so your heart can be monitored at home for one or more days 

The type of ECG recommended for you will depend on your symptoms and the heart 

problem suspected. For example, an exercise ECG may be recommended if your symptoms 

are triggered by physical activity, whereas an ambulatory ECG may be more suitable if your 

symptoms are unpredictable and occur in random, short episodes [2.1]. 

 

2.2.3  Different ECG Waves 

 

P Wave 

• The P wave is the first positive deflection on the ECG  

• It represents atrial depolarization  

  

Figure 2. 3: P-waves in ECG signal [2.2]. 

Morphology  

• Smooth contour  

• Monophasic in lead II  

• Biphasic in V1  

Axis  

• Normal P wave axis is between 0° and +75°  

• P waves should be upright in leads I and II, inverted in aVR  
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Duration  

• < 120 ms  

• Amplitude  

• < 2.5 mm in the limb leads,  

• < 1.5 mm in the precordial leads  

QRS Complex  

The QRS complex represents the rapid depolarization of the right and left ventricles. The 

ventricles have a large muscle mass compared to the atria, so the QRS complex usually has 

a much larger amplitude than the P-wave. 

If the QRS complex is wide (longer than 120 ms) it suggests disruption of the heart's 

conduction system, such as in Left bundle branch block (LBBB), Right bundle branch block 

(RBBB), or ventricular rhythms such as ventricular tachycardia. 

Metabolic issues such as severe hyperkalemia, or TCA overdose can also widen the QRS 

complex. An unusually tall QRS complex may represent left ventricular hypertrophy while 

a very low-amplitude QRS complex may represent a pericardial effusion or infiltrative 

myocardial disease [2.1]. 

 

Figure 2. 4: QRS complex in ECG signal [2.2]. 

T Wave  

• The T wave is the positive deflection after each QRS complex  

• It represents ventricular repolarization  

• Upright in all leads except aVR and V1  

• Amplitude < 5mm in limb leads, < 15mm in precordial leads  
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• Duration 160ms  

 

Figure 2. 5: T-waves in ECG signal [2.2]. 

U Wave  

The U wave is a small (0.5 mm) deflection immediately following the T wave, usually in the 

same direction as the T wave. It is best seen in leads V2 and V3. The source of the U wave 

is unknown. Three common theories regarding its origin are:  

• Delayed repolarization of Purkinje fibres  

• Prolonged repolarization of mid-myocardial “M-cells”  

• After-potentials resulting from mechanical forces in the ventricular wall  

 

Features of Normal U Waves  

• The U wave normally goes in the same direction as the T wave  

• U -wave size is inversely proportional to heart rate: The U wave grows bigger as the 

heart rate slows down  

• U waves generally become visible when the heart rate falls below 65 bpm  

• The voltage of the U wave is normally < 25% of the T-wave voltage: 

disproportionally large U waves are abnormal  

• Maximum normal amplitude of the U wave is 1-2 mm  



18 

 

  

Figure 2. 6: U-waves in ECG signal [2.2]. 

2.2.5  ECG Register 

 

An electrocardiogram (ECG or EKG) is a register of the heart's electrical activity. Just like 

skeletal muscles, heart muscles are electrically stimulated to contract. This stimulation is 

also called activation or excitation. Cardiac muscles are electrically charged at rest. The 

inside of the cell is negatively charged relative to the outside (resting potential). If the cardiac 

muscle cells are electrically stimulated, they depolarize (the resting potential changes from 

negative to positive) and contract. The electrical activity of a single cell can be registered as 

the action potential [2.2]. As the electrical impulse spreads through the heart, the electrical 

field changes continually in size and direction. The ECG is a graph of these electrical cardiac 

signals. 

2.2.4  The Electric Discharge of the Heart  

 

Sinoatrial node (SA node) contains the fastest physiological pacemaker cells of the heart; 

therefore, they determine the heart rate [2.4]. First the atria depolarize and contract. After 

that the ventricles depolarize and contract. The electrical signal between the atria and the 
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ventricles goes from the sinus node via the atria to the AV-node (atrioventricular transition) 

to the His bundle and subsequently to the right and left bundle branches, which end in a 

dense network of Purkinje fibers. The depolarization of the heart results in an electrical force 

which has a direction and magnitude; an electrical vector. This vector changes every 

millisecond of the depolarization. In the animation vectors for atrial depolarization, 

ventricular depolarization and ventricular repolarization are shown. 

  

Figure 2. 7: The conduction system of the heart [2.2]. 

2.3  Overview of Basic Noises in ECG Signal  

 

Electrocardiographic (ECG) signals may be corrupted by various kinds of noise. Typical 

examples are:  

• power line interference  

• electrode contact noise  

• motion artifacts  

• muscle contraction (Electromyogram, EMG)  

• baseline drift and ECG amplitude modulation with respiration  

• instrumentation noise generated by electronic devices used in signal processing, and  

• Electrosurgical noise,  

and other, less significant noise sources [2.5]. 
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2.3.1  Power-line Interference Noise (PLI) 

 

Power line interference (PLI) coupled to signal carrying cables is particularly troublesome 

in medical equipment. Cables carrying signals from the examination room to the monitoring 

equipment are prone to electromagnetic interference (EMI) of frequency (50 Hz or 60 Hz) 

by ubiquitous supply lines. Sometimes the recordings (like ECG or EEG) are totally 

dominated by this type of noise. Reducing (filtering) such PLI signal is a significant 

challenge given that the frequency of the power line signal lies within the frequency range 

of the ECG and EEG signals. [2.6,2.7] PLI is a significant source of noise during bio-

potential measurements. EMI degrades the signal quality and disturbs the tiny features that 

may be crucial for monitoring and diagnosis, and it is observed that it can strongly distort 

bio potentials. Various biomedical signals contain distinct features in the time-domain 

analysis. It is seen that the PLI can contaminate the ECG recordings, due to differences in 

the electrode impedance and stray currents through the patient, cables, or in instruments with 

a floating input for a higher patient safety [2.8]. An ECG signal corrupted with PLI is 

illustrated in Figure 2.8.  

 

 

Figure 2. 8: ECG signal + power line Interference [2.6]. 

Capacitive and inductive coupling are the mechanisms that contribute to Power line 

interference. Capacitive coupling refers to the transfer of energy between circuits by means 

of a capacitance present between the circuits [2.9]. The coupling capacitance decreases with 

increase in the separation between the circuits. On the other hand, Inductive coupling is 

caused by inductance which exists between the conductors. Current flowing through the wire 
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tends to produce a magnetic flux that induces a current in adjacent circuits. The structure of 

the conductors as well as the separation between them decides the value of the mutual 

inductance, and thus the degree of the inductive coupling. Typically, high frequency noise 

is contributed by capacitive coupling and inductive coupling introduces low frequency noise. 

Inductive coupling is the significant mechanism of power line interference in electro-

cardiology. 

 

2.3.2  Electrode Contact Noise  

 

Electrode contact noise is caused by the loss of contact between the electrode and the skin, 

which effectively disconnects the measurement system from the subject. The noise is of 

duration 1s. [2.10]   

Position of the heart with respect to the electrodes (variation) and changes in the propagation 

medium between the heart and the electrodes initiate Electrode contact noise. This causes 

sudden changes in the amplitude of the ECG signal, and low frequency baseline shifts. In 

addition, poor conductivity between the electrodes and the skin both reduces the signal 

amplitude of the ECG signal and thereby increases the probability of disturbances (by 

reducing SNR). The mechanism responsible for baseline disturbances is electrode-skin 

impedance variation. The larger the electrode-skin impedance, smaller are the relative 

impedance change which is required to cause a major shift in the baseline of the ECG signal. 

If the skin impedance is significantly high, it might be impossible to detect the signal features 

reliably in the presence of body movement [2.11]. Sudden changes in the skin-electrode 

impedance induce sharp baseline transients which decay exponentially to the baseline value. 

This transition may occur only once or rapidly several times in succession. Amplitude of the 

initial transition and the time constant of the decay are the major characteristics of such 

noise. 

 

2.3.3  Motion Artifact 

 

Motion artifacts are baseline changes which are caused by electrode motion. Usually 

vibrations, movement, or respiration of the subject contribute to motion artifacts. The peak 

amplitude and duration of the artifact depend on various unknown quantities such as the 

electrode properties, electrolyte properties, skin impedance, and the movement of the patient. 

In ECG signal, the baseline drift occurs at an unusually low frequency (approximately 
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0.014Hz), and most likely results from very slow changes in the skin-electrode impedance. 

This noise can also be observed on the Fourier power spectrum, the large peak nearest to DC 

[2.12]. 

 

2.3.4  Electromyography Noise (EMG)  

 

Contraction of the muscles besides the heart contributes to the EMG noise. When other 

muscles in the vicinity of the electrodes contract, generation of depolarization and re-

polarization waves takes place and these waves are picked up by the ECG. The gravity of 

the crosstalk depends on the amount of muscular contraction (subject movement), and the 

quality of the probes. It is well established fact that the amplitude of the EMG signal is 

stochastic (random) in nature and is typically modeled by a Gaussian distribution function 

[2.12]. The mean of the noise can be assumed to be zero however the variance is dependent 

on the environmental variables and will change depending on the conditions. While the 

actual statistical model is unknown, it should be noted that the electrical activity of muscles 

during periods of contraction can generate surface potentials comparable to those from the 

heart, and could completely drown out the desired signal. EMG noise is common in subjects 

with uncontrollable tremor, disabled persons, kids and persons fearing the ECG procedure. 

 

2.3.5  Baseline Wander 

 

Baseline wander is a low-frequency noise component present in the ECG signal. This is 

mainly due to respiration, and body movement. Baseline wander have frequency greater than 

1Hz. This low frequency noise, Baseline wander causes problem in detection and analysis 

of peak. 

 

2.3.6  Burst Noises 

 

Burst noise is typically classified as a white Gaussian noise (WGN) which appear on a subset 

of leads for a very short duration, examples of these noises are electrode pop noise, electrode 

motion artifact, electro surgical noise, instrumentation noise etc. [2.13]. The frequency 

ranges for these noises are not well defined. 
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2.3.7  Instrumentation Noise 

 

The electrical equipment which is used in ECG measurements also contributes noise. 

Electrode probes, cables, signal processor/amplifier, and the Analog-to-Digital converter are 

the major sources of this form of noise. Unfortunately, instrumentation noise cannot be 

eliminated, but it can be reduced through higher quality equipment and careful circuit design. 

One type of electrical noise is resistor thermal noise (also known as Johnson noise). Random 

fluctuations of the electrons due to thermal agitation produce this noise. The power spectrum 

is given as 

⊽2= 4𝐾𝑇𝑅 

 Where k is the Boltzmann’s constant, T is the temperature, and R is the resistance. This 

equation suggests that the resistor thermal noise is white for all frequencies; however, at 

frequencies larger than 100 Hz the power spectrum starts to drop off. Another form of noise, 

called flicker noise, is important in ECG measurements, due its low frequency. The actual 

mechanism that causes this type of noise is not yet understood, but one widely accepted 

theory is that it is caused by the energy traps which occur between the interfaces of two 

materials. It is believed that the charge carriers get randomly trapped/released and cause 

flicker noise. Flicker noise contributions would be most noticeable at the electrodes since 

the amplitude of the detected signal is on the order of millivolts [2.1]. 

 

2.4  Filtering 

 

Almost all type of signal distortion or corruption can be modelled as an addition of frequency 

components. Even the rectification/clipping can be thought of as addition of harmonics. So, 

we have to work in the frequency domain. Time domain analysis will not help. Whenever 

we are in the frequency domain, to remove any component, filters are the things to use. 

The frequency domain refers to the analysis of mathematical functions or signals with 

respect to frequency, rather than time. A time-domain graph shows how a signal changes 

over time, whereas a frequency-domain graph shows how much of the signal lies within each 

given frequency band over a range of frequencies. A frequency-domain representation can 

also include information on the phase shift that must be applied to each sinusoid in order to 

be able to recombine the frequency components to recover the original time signal [2.14]. 

In signal processing, a filter is a device or process that removes some unwanted components 

or features from a signal. Filtering is a class of signal processing, the defining feature of 

https://en.wikipedia.org/wiki/Mathematical_function
https://en.wikipedia.org/wiki/Signal_(information_theory)
https://en.wikipedia.org/wiki/Frequency
https://en.wikipedia.org/wiki/Time-domain
https://en.wikipedia.org/wiki/Phase_(waves)
https://en.wikipedia.org/wiki/Sine_wave
https://en.wikipedia.org/wiki/Signal_processing
https://en.wikipedia.org/wiki/Signal_(electronics)
https://en.wikipedia.org/wiki/Signal_processing
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filters being the complete or partial suppression of some aspect of the signals. Most often, 

this means removing some frequencies or frequency bands. However, filters do not 

exclusively act in the frequency domain; especially in the field of image processing many 

other targets for filtering exist. Correlations can be removed for certain frequency 

components and not for others without having to act in the frequency domain [2.15]. 

The transfer function of a filter is most often defined in the domain of the complex 

frequencies. The transfer function  𝐻(𝑧)  of a filter is the ratio of the output signal 𝑌(𝑧) to 

that of the input signal 𝑋(𝑧) as a function of the complex frequency s: 

𝐻(𝑧) =
𝑌(𝑧)

𝑋(𝑧)
                                                                                                                               (2.1) 

where 𝑠 = 𝜎 + 𝑗𝜔  

Some terms used to describe linear filters- 

✓ Cutoff frequency is the frequency beyond which the filter will not pass signals. It is 

usually measured at a specific attenuation such as 3 dB. 

✓ Roll-off is the rate at which attenuation increases beyond the cut-off frequency. 

✓ Transition band, the (usually narrow) band of frequencies between a passband and 

stopband. 

✓ Ripple is the variation of the filter's insertion loss in the passband. 

✓ The order of a filter is the degree of the approximating polynomial and in passive 

filters corresponds to the number of elements required to build it. Increasing order 

increases roll-off and brings the filter closer to the ideal response [2.15]. 

 

2.5  Multirate System 

 

Linear time-invariant systems operate at a single sampling rate i.e. the sampling rate is the 

same at the input and at the output of the system, and at all the nodes inside the system. Thus, 

in an LTI system, the sampling rate doesn’t change in different stages of the system. Systems 

that use different sampling rates at different stages are called the multirate systems. The 

multirate techniques are used to convert the given sampling rate to the desired sampling rate, 

and to provide different sampling rates through the system without destroying the signal 

components of interest [2.16]. 

 

https://en.wikipedia.org/wiki/Frequency
https://en.wikipedia.org/wiki/Frequency_domain
https://en.wikipedia.org/wiki/Image_processing
https://en.wikipedia.org/wiki/Transfer_function
https://en.wikipedia.org/wiki/Cutoff_frequency
https://en.wikipedia.org/wiki/Roll-off
https://en.wikipedia.org/wiki/Transition_band
https://en.wikipedia.org/wiki/Ripple_(electrical)#Frequency_domain
https://en.wikipedia.org/wiki/Insertion_loss
https://en.wikipedia.org/wiki/Degree_of_a_polynomial
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2.6  Multistage Systems 

 

When the decimation factor M can be factored into the product of integers, 𝑀 =

𝑀1 × 𝑀2 × ⋯ 𝑀𝐾, instead of using a single filter and factor-of -M down-sampler the overall 

decimator can be implemented as a cascade of K decimators. Such a cascade implementation, 

called a multistage decimator, is shown in Figure 2.9. In the same manner, the factor-of-L 

interpolator expressible by 𝐿 = 𝐿1 × 𝐿2 × ⋯ 𝐿𝐾, can be implemented as a cascade of K 

interpolators as depicted in Figure 2.10. The cascade implementation scheme of Figure 2.10 

is called the multistage interpolator. 

The multistage structure from Figure 2.9 replaces the single stage decimator of the factor 

𝑀 = 𝑀1 × 𝑀2 × ⋯ 𝑀𝐾. The transfer function H(z) of the equivalent single-stage decimation 

filter can be obtained by applying the third identity to the implementation scheme of Figure 

2.9. The cascade of K decimators of Figure 2.9 gives the following equivalent transfer 

function H(z), 

𝐻(𝑧) = 𝐻1(𝑧)𝐻2(𝑧𝑀1)𝐻3(𝑧𝑀1𝑀2) ⋯ 𝐻𝐾(𝑧𝑀1𝑀2⋯𝑀𝐾−1)                                             (2.2) 

Thereby, the single-stage structure indicated in Figure 2.11 is equivalent to the structure of 

Figure2.9. 

Similarly, the overall transfer function for the K stage interpolator is obtained when applying 

the sixth identity to the multistage implementation structure of Figure 2.10. This way, we 

obtain,  

𝐻(𝑧) = 𝐻1(𝑧)𝐻2(𝑧𝐿1)𝐻3(𝑧𝐿1𝐿2) ⋯ 𝐻𝐾(𝑧𝐿1𝐿2⋯𝐿𝐾−1)                                                  (2.3) 

The corresponding single-stage equivalence for the K stage interpolator is indicated in Figure 

2.12. 

)(1 zH )(2 zH
2M KM)(zHK1M

 

Figure 2. 9: Multistage implementation of decimator. 
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Figure 2. 10: Multistage implementation of interpolator. 
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Figure 2. 11: The single-stage equivalence for the multistage structure of Figure 2.9. 
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Figure 2. 12: The single stage equivalence for the multistage structure of Figure 2.11. 

The multistage structures are very useful for implementing large sampling-rate conversion 

factors. A single decimation/interpolation filter with a very narrow passband, usually 

inconvenient for the design and implementation, is replaced with the cascade of simpler 

filters. The specifications for those individual filters are significantly relaxed since the 

overall filter specification is shared between several lower-order filters.  

 

2.7  Atrial Fibrillation 

 

Cardiac arrhythmias are caused by abnormal electrical activity of the heart. Among them, 

Atrial Fibrillation (AF) is one of the most common types [2.17]. It has a prevalence of about 

1–2 % in the general population. More than 6 million Europeans and about 2 million US-

Americans suffer from AF. Among the elderly, the incidence of AF significantly increases 

up to 5–15 % at the age of 80 years above [2.17]. AF is characterized by uncoordinated atrial 

activation due to disrupted electrical pathways and structural changes in the heart [2.18]. In 

AF, the electrical impulse originates from different areas in the atria. This causes the atria to 

quiver rather than to contract, which results in insufficient heart function. The exact 

mechanism which causes AF remains uncertain. The different theories involve two main 

processes: rapidly depolarizing foci, and reentry circuits. The rapidly depolarizing foci are 

usually located in the superior pulmonary veins, but can also occur in the right atria, or (more 

rarely) in superior vena cava or coronary sinus. The electrical impulses do not follow the 

normal conduction path, but instead they form electrical reentry loops in the atria. During 

AF, the refractory period of the conduction cells is usually shortened, and activation of the 

atrial conduction cells often occurs immediately after the refractory period [2.19]. 

 

2.8  The Heart in Normal 

 

The heart consists of a left and a right part, each incorporating two chambers; the atrium and 

the ventricle. The two sides are divided by a muscular wall, called the septum. Four different 

valves control the direction of the blood flow; the atrio ventricular valves between the atria 

and the ventricles, and the pulmonary and aortic valves between the ventricles and the 

arteries. The wall of the heart, called myocardium, is mainly composed of muscle cells which 
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exercise mechanical force during contraction. The mechanical force of the muscle cells is 

triggered by electrical impulses throughout the heart. Fig. 2.13 shows the anatomy of the 

heart. During one cardiac cycle a sequence of mechanical events occur, starting when blood 

in the right atrium is forced into the right ventricle by contraction of the atria. The blood in 

the right atria has been collected from all veins in the body, except for the veins from the 

lungs. When the right ventricle is filled with blood, it contracts and forces the blood into the 

pulmonary artery, to the lungs where it is oxygenated. The oxygenated blood passes through 

the pulmonary veins to the left atrium, which, once it is filled, contracts and forces the blood 

to the left ventricle. When the left ventricle contracts, the blood flows to all arterial vessels 

in the body, except for the lungs, into the venous system and back to the right atrium again. 

The cardiac cycle consists of two phases; activation (contraction) and recovery (relaxation) 

which in electrical terms are referred to as depolarization and repolarization, respectively. 

Depolarization is a rapid change of the membrane potential of a cell, spreading to 

neighboring cells so that the electrical impulse propagates. After depolarization, the cell 

immediately starts its repolarization to return to its resting state.  

 

 

 

 

 

 

 

 

 

 

 

 

During this period of time, called refractory period, the cell cannot depolarize. In the normal 

heart, the cardiac cycle is initiated by an electrical impulse originating from the sinoatrial 

(SA) node, the natural pacemaker of the heart situated in the right atrium. The electrical 

impulse propagates through the right and left atria to the atrio ventricular (AV) node, where 

it is collected and delayed before it continues to the bundle of His, being the only electrical 

connection between the AV node and the ventricles. The ventricular conduction system 

 

Figure 2. 13: Anatomy of the heart [2.20]. 
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consists of the rapidly conducting left and right bundle branches and the Purkinje network. 

The rate of electrical impulses which causes the heart to beat is determined by the autonomic 

nervous system. 

 

2.9  The Heart During AF 

 

In AF, the electrical impulse originates from different areas in the atria. This causes the atria 

to quiver rather than to contract, which results in insufficient heart function. The exact 

mechanisms of AF remain uncertain. The different theories involve two main processes: 

rapidly depolarizing foci, and reentry circuits. The rapidly depolarizing foci are usually 

located in the superior pulmonary veins, but can also occur in the right atria, or (more rarely) 

in superior vena cava or coronary sinus. The electrical impulses do not follow the normal 

conduction path, but instead they form electrical reentry loops in the atria. During AF, the 

refractory period of the conduction cells is usually shortened, and activation of the atrial 

conduction cells often occur immediately after the refractory period [2.21]. Of all electrical 

impulses coming from the atria during AF, only a limited number of signals actually reach 

the ventricles, since the AV node prevents the heart from racing. Still, the heart rate during 

AF is abnormally high. While AF is not generally considered life-threatening, there is a 

possibility of blood clots forming in the atria which leads to increased risk of stroke. One of 

every 6 strokes occur in patients with AF [2.22]. 

 

2.10  Diagnosis and Treatment - Challenges in AF 

 

Proper diagnosis is essential for proper treatment. There are various methods to detect AF, 

such as, Electrocardiography (ECG), Echocardiography, Transesophageal 

Echocardiography, Chest X-Ray. However, AF is usually diagnosed from the surface ECG 

to conform its presence. 

Today, there is no clinical test available that can predict the natural history of AF and the 

outcome of treatment. Since an ECG is recorded from practically all AF patients, it is 

desirable to classify AF from the ECG signal, to help physicians in deciding which treatment 

is appropriate for a specific patient. The characteristics of the ECG signal during AF varies 

not only between different patients, but also in the same patient over time. One important 

challenge is to track such changes in long term ECG recordings which usually are recorded 

during ambulatory conditions.  
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2.11  ECG Signal for AF Detection 

 

The ECG signal is a representation of the bio-potentials that is generated by the muscles of 

the heart. During Normal Sinus Rhythm (NSR), each heartbeat in the ECG signal consists 

of a P wave, a QRS complex and a T wave. The P wave corresponds to atrial activation, the 

QRS complex to activation of the ventricles, and the T wave to ventricular recovery, as seen 

in Fig. 2.14. An example of ECG signal, recorded during NSR, is given in Fig.  2.15(a). In 

AF, the P wave is replaced by an undulating baseline, where the waves are referred to as f 

waves, as shown in Fig. 2.15(b).  
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Figure 2. 14: Different parts of the ECG signal during NSR [2.16]. 
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Figure 2. 15: Examples of ECG signals during (a) NSR and (b) AF and (c) both NSR and 

AF [2.23]. 

During AF, electrical discharges conducted from the atrium into the ventricles are irregular 

and as a result, the heart rate becomes irregular and, usually rapid and also the electrical 

Atrial Activity (AA) is disorganized [2.24]. Both of these characteristics can be easily 

detected by the analysis of an ECG signal by noticing the irregularity of R-R intervals and 

the absence of the P-wave [2.24]. So, there are basically two methods for the detection of 

AF from the ECG signal. They are the RR Irregularity and the AA. Any one of the two 

methods can be followed to detect the AF. The combination of the RR Irregularity and the 

AA can also be used to get enhanced detection performance. The RR irregularity is the most 

common method and very frequently used. This method is much easier because the R wave 

is the most prominent characteristics in the ECG signal, so it is relatively easy to detect.  In 

this thesis, only the RR Irregularity is used to detect the AF from an ECG signal. 

 

2.12  History of AF Detection 

 

Issues relating to clinical significance of rhythm classification and the impetus for improving 

the accuracy of atrial tachyarrhythmia estimation have motivated the development of 

innovative computerized AF detectors. Since the early 1980s, a series of sophisticated 

methods have been investigated to cope with the challenges of AF detection [2.25]. 

a 

b 

c 
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Methods for the detection of AF vary in terms of type, time, cost, and accuracy. Recently, 

methods for AF detection focus on statistical analysis, with the goal of earlier detection in 

real-time. Methods for detecting AF found in literature are identified as [2.26], 

• Diagnostic Testing 

• Biological Imaging 

• Statistical Analysis 

• Electrocardiography 

• Echocardiography 

• Transesophageal Echocardiography 

• Chest X-ray 

 

2.12.1  Diagnostic Testing  

 

Diagnostic testing is one method of detection and is usually the result of symptomatic 

patients. Some of these tests include long-term Holter-monitoring, ECG interpretation and 

blood tests. Currently, the most common method for detection is through continuous Holter-

monitoring [2.27]. The Holter monitor is attached to the patient with 3 or 5 leads that traces 

the heart’s signals over a period of 24-48 hours. Then, a certified technician or doctor is 

required to look through the entire tracing to diagnose AF. There are some problems with 

this; first, there’s a lot of noise generated when using Holter monitors. Paroxysmal AF 

appears for very brief segments and may be masked by noise, leaving those short segments 

undetectable. The ECG tracings also require very thorough analysis. It is apparent that 

looking at 24 or even 48 hours’ worth can be extremely time-consuming, and irregularities 

can be easily overlooked. 

 

2.12.2  Biological Imaging 

 

 Biological imaging is a method that involves the analysis of images obtained from 

echocardiograms and chest X-rays. Echocardiography uses sound waves to create an image 

of a patient’s heart [2.27]. It provides information about the size and shape of the heart and 

can provide information on any structural changes that may have occurred in the heart, which 

is a characteristic of AF. This type of imaging is not helpful in early detection, as these 

structural changes are usually observed in chronic, permanent cases of AF. 
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2.12.3  Statistical Analysis 

 

Current methods for detection of AF focus on using mathematical models and statistical 

methods for early AF detection. Those methods utilize statistics for detection and diagnosis, 

yet each provides restrictions and limitations that must be addressed. 

 

2.12.4  Electrocardiography 

 

Electrocardiography or ECG is the most commonly used for AF detection for its high 

accuracy and simplicity.  

 

2.12.5  Echocardiography 

 

Echocardiography test shows the size and shape of the heart as well as how well the 

chambers and valves are operating. During the test a transducer is moved around the chest 

which emits sound waves through the chest and heart.  The sound waves bounce off of the 

shape of the heart and a computer converts the information into an image on a monitor. 

 

2.12.6  Transesophageal Echocardiography 

 

Transesophageal echo also emits sound waves into the heart that produce an image on a 

monitor. During this procedure, however, the transducer is attached to a long tube which is 

inserted into the patient’s esophagus. 

 

2.12.7  Chest X-ray 

 

A chest x-ray uses electromagnetic waves to create an image of the heart and lungs using 

ionizing radiation. Since the different tissues inside your body absorb the radiation 

differently an image is produced that can show an increase in fluid in the lungs as well as 

other issues caused by AF. 

However, most of the literature describe that AF detection is done based upon two main 

character traits of this type of arrhythmia shown in a surface ECG: (i) RR interval irregularity 

(i.e., chaotic behavior of HRV), and (ii) P-wave absence (PWA) or F-wave substitution (i.e., 

very low amplitude waveforms of odd morphologies) resulting from the abnormal rapid 

atrial AA. Although P waves or cardiac AA can be an alternative clue in the detection of AF, 
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the absence or presence of P waves are not readily identifiable as various types of high-

intensity noise often coexist in ECGs, which may lead to a low degree of predictive accuracy. 

In addition, the relationship between AA in the surface ECG and the diverse mechanisms of 

AF has not yet been well delineated [2.28]. Due to the challenges in detecting AA in ECG 

measurements, detection techniques based on inferences from RR intervals are preferred to 

produce relatively robust outcomes [2.29-2.30, 2.26]. 

 

2.13  Review of Related Research Work on Thesis 

 

Wavelet transforms have used in the field of signal and image processing. Recently research 

worked on wavelet construction called lifting scheme, has been established by Wim 

Sweldens and Ingrid Daubechies [2.31]. This is also referred to wavelet 9/7 filter. This 

scheme was developed on FIR-based discrete transform. They considered, the input signal 

is fed into a low pass filter and high pass filter separately. The outputs of the two filters are 

then subsampled. The original signal can be reconstructed by synthesis filters ℎ and 𝑔 which 

take the up-sampled Lowpass and high pass as inputs. This scheme is also used Laurent 

polynomial representation of filter and Euclidean algorithm. These scheme shows some 

limitations on sampling methods. 

Frequency converters sampling methods and narrow band filtering are known, allowing 

significant computational efficiency [2.32, 2.33]. However, current design procedures for 

these multistage and multilayer filters address the specification of each phase individually, 

rather than simultaneously optimizing all of the filter phases [2.34]. The authors [2.35] 

formulate an algorithm that optimizes multi-stage adaptive coefficients and also provides 

sufficient conditions for multi-track filter identification. A multilayer digital filter (MDF) is 

a digital filter that changes the input sampling frequency from the input signal to another 

signal. There are many applications in communication, image processing, digital audio and 

multimedia. In [2.36], the modern DSP system uses MDF with three factors. First of all, 

MDF is used in two digital systems with a different sampling rate. Second, MDF is the best 

approach to solving the complex filtering problem. Third, multilayer filtering is used in the 

construction of the multilayer filter bank. 

Most of the algorithms/methods existing in literature to detect AF from ECG signal are based 

on the analysis of both RRI and AA. 
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2.13.1  RR Irregularity (RRI) 

 

The R wave is the most prominent characteristic within the ECG, making it relatively simple 

to detect. Therefore, algorithms that detect AF based on RRI are the most common in the 

literature. Five algorithms based on RRI are selected to realize: Moody et al. [2.25], based 

on Markov Models (MM); Logan et al. [2.37] using a simple variance parameter; Linker et 

al. [2.38], that used a statistical framework combination; Tatento et al. [2.39], which applied 

Kolmogorov Smirnov test; and Cerutti et al. [2.40], which used an autoregressive modeling 

and compares RRI with white noise.  

 

2.13.2  Atrial Activity (AA) 

 

P wave is absent in the AA within AF ECGs and replaced by a fibrillatory wave. AA can be 

analyzed in both time and frequency domains. Time domain consists of detecting the P wave 

or finding the P wave absence (PWA). Frequency spectrum analysis (FSA) requires 

cancellation of ventricular activity (QRS complex and T wave) and Fourier analysis of the 

remaining AA. Electrical AA on AF ECG is characterized by higher energy concentration 

in the band of 4-10 Hz as compared to normal ECGs. One algorithm is selected based on AA 

for illustration. Slocum et al.’s algorithm [2.41] was based on the AA analysis to identify 

AF. Firstly, QRS-T cancellation was done and the remaining atrial signal is studied. In case 

P wave was detected, the signals were classified as non-AF. Otherwise, FSA was calculated 

and it was considered as AF if the total spectral power in the band of 4-9 Hz was more than 

32% of the total spectrum.  

 

2.13.3  Combination of RRI and AA 

 

Combination of both RRI and AA (PWA and/or FSA) are used to enhance detection 

performance. Three algorithms are selected in this category for realization. Schmidt et al. 

[2.42] combined RRI using MM, with PWA and FSA. Babaezaideh et al. [2.43] added to 

RRI PWA based on the position and morphology of the P wave. Finally, Couceiro et al. 

[2.44] combined the three main physiological characteristics of AF (RRI, PWA and FSA) 

and classified using Neural Networks (NNs) model created previously. 
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Those algorithms reported in the literature exhibits the sensitivity (Se), specificity (Sp), 

positive predictive value (PPV) and error, ranging from 62.80~97.64%, 77.46~96.08%, 

64.90~92.75% and 5.32~28.39%, respectively. 

 

2.14  Summary 

 

In this chapter, basic topics of ECG is discussed which is very important in analysis of ECG 

signal. It also discusses how ECG signal is generated and how to acquire it using electrodes. 

Various ECG waves are also discussed. Various noises in ECG signal such as power line 

interference, EMG noise, baseline shift, abrupt shift in base line, electrosurgical noise etc. 

are also mentioned in this chapter. This chapter outlines the literature related to the ECG 

signal denoising and AF detection. From these literatures, there are some lack of novelty 

work. We have tried to find the problem statement of ECG diagnosis and QRS detection. 
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CHAPTER III 

 

 

Multistage Multirate system  

 

 

3.1  Introduction 

 

Manually, constructing a multi-stage poly-phase filter (i.e., decimation (reduced sampling 

rate), filtered and polyphase interpolation (increased sampling frequency) is a time-

consuming and high-risk process. which we focus on in this thesis is the third factor. We 

developed the multistage multirate system support with multirate polyphase filters. This 

elimination process is easy for specific and computing a multistage multirate design. The 

main concept of proposed system, the input signal is decimated/interpolated and 

decomposed with 𝑀𝑡ℎ polyphase filter branch with sampling rate conversion is called 

analysis filter in the first stage. In the second stage, the input signal is decomposed with 

decimator then the polyphase multistage filter with converting the sampling rate to the 

rational factor L/M that represents the test filter of the system proposed. This process is 

continued for another stage for getting more and more smooth signal.  

 

3.2  Materials and Methods 

 

3.2.1  Database 

 

In this thesis need to import ECG data for analysis and used the MIT-BIH Atrial Fibrillation 

database. This database includes 25 long term ECG recordings, as shown in Table 3.1. There 

are 23 of the records include two ECG recordings. Each individual recording are 10 hours 

in duration. Every recording has two signals and each of them sampled at 250 samples per 

second, 12-bit resolution over a range of 10 mV. Those ECG signals were recorded with a 

typical recording bandwidth of approximately 0.1 Hz to 40 Hz. The rhythm annotation files 

were prepared manually. These contain rhythm annotation of types AFIB (Atrial 

Fibrillation), AFL (Atrial Flutter), J (AV Junctional rhythm) and N (Used to indicate all 

other rhythm) [3.1]. Out of 25 long-term signals, 15 signals are selected for our analysis. 

This database also includes different types of noise such as powerline noise, baseline noise, 

EMG noise, abrupt shift noise and electrosurgical noise. 
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Table3. 1:  List of original ECG signals taken from MIT-BIH Atrial Fibrillation Database 

[3.1]. 

Sl. No. Original ECG 

signal (File #) 

Selection Status Additional Information 

1 00735 Not selected Signals unavailable 

2 03665 Not selected Signals unavailable 

3 04015 Selected  

4 04043 Not selected Block 39 is unreadable 

5 04048 Selected  

6 04126 Selected  

7 04746 Selected  

8 04908 Selected  

9 04936 Not selected Error in annotation 

10 05091 Not selected Error in annotation 

11 05121 Selected  

12 05261 Selected  

13 06426 Selected  

14 06453 Not Selected Recording ends after 9 hours 15 minutes 

15 06995 Selected  

16 07162 Selected  

17 07859 Selected  

18 07879 Selected  

19 07910 Selected  

20 08215 Selected  

21 08219 Selected  

22 08378 Not Selected No start time 

23 08405 Not Selected No start time; block 1067 is unreadable 

24 08434 Not Selected Blocks 648, 857 and 894 are unreadable. 

25 08455 Not Selected No start time 
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In the database the annotations of each file is provided. The annotation of those files is used 

to compare with proposed framework results and calculate the sensitivity, specificity and 

accuracy [3.1]. 

 

3.2.2  FIR Filter Design 

 

Finite impulse response (FIR) filters are of great importance for multirate systems. The 

general advantages of FIR systems, inherent system stability and phase linearity, are 

desirable properties for multirate signal processing. Using multirate techniques, the 

efficiency of a multirate FIR filter significantly increases in comparison with the single rate 

implementations. These are the main reasons why most of the practical multirate systems 

are based on FIR filtering [3.2]. 

 

3.2.3  Polyphase Decomposition 

 

Let us consider the discrete sampling of the signal {𝑥[𝑛]}.The reference time instant for the 

sampling function {𝑠𝑀[n]} can be shifted from zero to some other time instant k, 0 ≤ k ≤ M 

. Hence, we can define the time-shifted sampling functions {𝑠𝑀,𝑘[𝑛]} = {𝑠𝑀[𝑛 − 𝑘]} with 

𝑘 = 0,1,2, … . , 𝑀 − 1. 

𝑠𝑀,𝑘[𝑛] = {
1, 𝑛 = 𝑘, 𝑘 ± 𝑀, 𝑘 ± 2𝑀, … ,
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                                      (3.1) 

In general, for the given {x[n]} and M, one can write 

𝑥[𝑛] = ∑ 𝑥𝑘
(𝑝)[𝑛] = ∑ 𝑥[𝑛]𝑠𝑀[𝑛 − 𝑘]𝑀−1

𝑘=0
𝑀−1
𝑘=0                                                                        (3.2) 

This representation is called the polyphase representation of a discrete signal, or polyphase 

decomposition. The signal components {𝑥𝑘
(𝑝)[𝑛]},𝑘 = 0,1,2, … . , 𝑀 − 1 are called the 

polyphase components of the signal {x[n]}. 

Polyphase Realization Structures for FIR Filters: 

 

An order top FIR filter can be performed in a parallel structure based on the polyphase 

decomposition of the transfer function. The transfer function is decomposed into lower order 

𝑀 FIR transfer functions, called multiphase components, and then added to compensate for 

the total of the original transfer function. 
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In a general case, an N-length transfer function 𝐻(𝑧) can be decomposed into 𝑀 polyphase 

branches 𝐸0(𝑧), 𝐸1(𝑧) , … , 𝐸𝑀−1(𝑧) in a manner that 𝐻(𝑧) is expressible in the form 

𝐻(𝑧) = ∑ 𝑧−𝑘𝐸𝑘(𝑧𝑀)𝑀−1
𝑘=0                                                                              (3.3)                                         

Where, 𝐸𝑘(𝑧) = ∑ ℎ[𝑀𝑛 + 𝑘]𝑧−𝑛, 0 ≤ 𝑘 ≤ 𝑀 − 1
[𝑁/𝑀]
𝑛=0                             (3.4)                                                            

The input sequences in the polyphase branches, {𝑥0[𝑚]}, {𝑥1[𝑚]}, {𝑥2[𝑚]}, ⋯, 

{𝑥(𝑀−1)[𝑚]} are delayed and down-sampled versions of the input signal {𝑥[𝑛]}. We can say 

that the particular sequence {𝑥𝑘[𝑚]} is obtained when down-sampling-by-M the sequence 

{𝑥[𝑛]} with the phase offset 𝑘, 𝑘 = 0, 1, ⋯ , 𝑀 − 1. Hence, from the causal sequence  

{𝑥[𝑛]} = {⋯ , 0, 0, 𝑥[0], 𝑥[1], 𝑥[2], ⋯ , 𝑥[𝑀 − 1], 𝑥[𝑀], 𝑥[𝑀 + 1], ⋯ } it is straightforward 

to extract the M sequences,  

{𝑥[𝑛]} = {⋯ ,0,0, 𝑥[0], 𝑥[1], 𝑥[2], ⋯ , 𝑥[𝑀 − 1], 𝑥[𝑀], 𝑥[𝑀 + 1], ⋯ } 

{𝑥0[𝑚]}  =  {𝑥[0], 𝑥[𝑀], 𝑥[2𝑀], … } 

{𝑥1[𝑚]}  =  {𝑥[−1], 𝑥[𝑀 − 1], 𝑥[2𝑀 − 1], … } 

{𝑥2[𝑚]}  =  {𝑥[−2], 𝑥[𝑀 − 2], 𝑥[2𝑀 − 2], … } 

⋮ 

            {𝑥𝑀−1[𝑚]}  =  {𝑥[−𝑀 + 1], 𝑥[1], 𝑥[𝑀 + 1], 𝑥[2𝑀 + 1], … }.                         

Evidently, those sequences can be selected from the input signal {x[n]} directly by using the 

commutative structure with the rotator shown in Figure 3.1. 
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Figure 3. 1: Commutative polyphase structure of an interpolator [3.2]. 
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The rotator initially starts at 𝑛 =  0 and the current sample 𝑥[0] is obtained for 𝐸0(𝑧). The 

next sample 𝑥 [1], the instantaneous moment 𝑛 =  1, passes 𝐸𝑀−1(z). Rotator continues the 

same shift to the left. Obviously, the rotator works at high speed {𝑥 [𝑛]}, while the poly-

phase branch filter is performed at low frequency signal speed {𝑦 [𝑛]}. 

Figure 3.2 shows the commutative poly-phase structure of a decimator. The output samples 

y [m] are obtained sequentially collecting filtered sample samples {𝑢0[n]}, {𝑢1[n]}, {𝑢2[n]}, 

…, {𝑢𝑀−1[n]}, at the output sampling rate 
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Figure 3. 2: Commutative polyphase structure of a decimator [3.2]. 

3.2.4  Proposed Multistage Multirate Polyphase Filter  

 

Figure 3.3 shows the general scheme of proposed multistage multirate system design. This 

system has been used the fractional sampling rate by cascading a factor-of-L interpolator 

with a factor-of-𝑀 decimator, where 𝐿 and 𝑀 are positive integer. We have used as 𝐻(𝑧) 

decimation filter and 𝐺(𝑧) as interpolation filter. These two filters operate with same or 

different sampling rate, they can be replaced with a single filter designed to avoid aliasing. 

The 1st stage and 2nd stage form an analysis filter and synthesis filter with Polyphase 

branches. Configurations based on Polyphase decomposition are convenient in applications 

where L and M are small numbers. Otherwise, filters of a very high order are requested. For 

proposed multistage multirate filter system design is considered three cases which is describe 

below. 
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Figure 3. 3: Proposed diagram for multistage implementation of sampling rate alteration 

system. 

Case I: 

Consider the proposed design of low-pass FIR filter with poly-phase decomposition and 

decimation for ECG signals to meet the following specifications: 

 

Parameters Parameters values 

Decimate factor (M) 5 

Pass-band edge (ωp) 0.08π 

Stop-band edge (ωs) 2π

M
− ωp 

Pass-band ripples (Ap) 40 dB 

Stop-bands ripples (As) 60 dB 

 

Designing the filter transfer function 𝐻(𝑧) by 𝑁𝑡ℎ  order lowpass FIR digital filter from the 

above specifications and returns the filter coefficients h[n] in length 𝑁 + 1 as shown in 

Table 3.2 and its frequency response in Figure 3.4 where we take the sampling frequency 

fs = 500Hz. The transfer function is formed as 

H(Z) = h[0] + h[1] z−1 + h[2] z−2 + h[3] z−3 + h[4] z−4 + h[5] z−5 + h[6] z−6 +

h[7] z−7 + h[8] z−8 + h[9] z−9                                                                                               (3.5) 
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Table3. 2: The impulse response h(n) or filter coefficients of frequency sampling filter 

(N=9). 

n h[n] n h[n] 

0 -0.0022 9 -0.0022 

1 0.0669 8 0.0669 

2 0.1097 7 0.1097 

3 0.1610 6 0.1610 

4 0.1928 5 0.1928 

 

Figure 3. 4: Frequency response of design low pass for FIR filter. 

 Then performed decomposition of the filter transfer function 𝐻(𝑧) into 5 poly-phase 

components using the equation (3.6). 

H(z) = E0(z5) +  z−1E1(z5) +  z−2E2(z5) + z−3E3(z5) + z−4 E4(z5)                       (3.6) 

Where, 

E0(z) = {h[0] + h[5] z−5} 

E1(z) = {h[1]  + h[6] z−5} 

E2(z) = {h[2] + h[7] z−5} 

E3(z) = {h[3]  + h[8] z−5} 

E4(z) = {h[4]  + h[9] z−5} 

So,                                 

H(z) = ∑ z−kEk(zM)M−1
k=0                                                                                                                   (3.7) 

Where, Ek(z) = ∑ h[Mn + k]z−n, 0 ≤ k ≤ M − 1
[N/M]
n=0                                                              (3.8) 
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Set decimation-by-M=5 for the input signal 𝑥[𝑛]. In this step, the input {𝑥[𝑛]} is decomposed 

into the set of 5 subsequences: {𝑥0[𝑚]}, {𝑥1[𝑚]}, {𝑥2[𝑚]}, {𝑥3[𝑚]}, {𝑥4[𝑚]}. Here, for the 

causal {𝑥[𝑛]} we have 𝑥[−1]  =  𝑥[−2]  =  𝑥[−3]  =  𝑥[−4]  =  0. The 5 subsequences are 

filtered in the poly-phase branches and added together to give the decimated signal {y
dec

[m]}. 

The realization analysis filter structure of proposed system is shown in Figure 3.5. 

+

+

+

+

+

+

 

Figure 3. 5: Proposed multistage multirate system for case I. 

Choose interpolation-by- L=5 into the multistage multirate system structure using polyphase 

decompose as shown in Figure 3.5. In this step, signal {y
dec

[m]}  is used as an input to the 

interpolator .The signal {x[n]}  =  {y
dec

[m]}   is filtered in the parallel poly-phase branches 

and the set of 5 signals {g
0

[n]}, {g
1

[n]},{g
2

[n]}, {g
4

[n]}, {g
5

[n]}, is obtained as the equations 

(3.9)-(3.13)  . The matrix G is composed of 5 row vectors: {g
0

[n]}, {g
1

[n]},  {g
2

[n]},  {g
3

[n]}, 

{g
4

[n]}. The samples of the interpolated signal {y
int

[m]}  are stored column-wise in matrix 

U. The interpolated signal considered as a synthesis filter is obtained simply by picking up 

the samples from matrix U.  

g0(n) = {h[0]y
dec

(n) + h[5]y
dec

(n − 1)}                                       (3.9) 

g1(n) = {h[1]y
dec

(n) + h[6]y
dec

(n − 1)}                                    (3.10) 
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g2(n) = {h[2]y
dec

(n) + h[7]y
dec

(n − 1)}                                      (3.11) 

g3(n) = {h[3]y
dec

(n) + h[8]y
dec

(n − 1)}                                     (3.12) 

g4(n) = {h[4]y
dec

(n) + h[9]y
dec

(n − 1)}                                     (3.13) 

Taking inverse Z-transform of the equations (3.9) to (3.13), is obtained as 

G0(z) = {h[0]Y[z] + h[5]z−1Y[z]}                                                 (3.14) 

G1(z) = {h[1]Y[z] + h[6]z−1Y[z]}                                                 (3.15) 

G2(z) = {h[2]Y[z] + h[7]z−1Y[z]}                                                 (3.16) 

G3(z) = {h[3]Y[z] + h[8]z−1Y[z]}                                                 (3.17) 

G4(z) = {h[4]Y[z] + h[9]z−1Y[z]}                                                 (3.18) 

For multistage purpose, further we have decimated y
int

  by M=5 with the equation (3.6) or 

follow the procedures of 1st stage structure. 

Case II: 

In case II, we considered a Nth order low-pass digital FIR filter with poly-phase 

decomposition and decimation/interpolation for biomedical signals to meet the following 

specifications: 

Parameters Parameters values 

Decimate factor (M) 5 

Filter order, N 81 

Cut-off frequency 1/M 
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Table3. 3: The impulse response h(n) or filter coefficients of frequency sampling filter 

(N=81). 

n h(n) n h(n) n h(n) n h(n) 

0 0.00019 21 -0.00286 42 0.17140 63 0.00652 

1 -0.00020 22 -0.00840 43 0.12641 64 0.00467 

2 -0.00057 23 -0.01161 44 0.07245 65 0.00157 

3 -0.00079 24 -0.01050 45 0.02128 66 -0.00138 

4 -0.00072 25 -0.00448 46 -0.01717 67 -0.00317 

5 -0.00032 26 0.00502 47 -0.03741 68 -0.00342 

6 0.00037 27 0.01471 48 -0.03929 69 -0.00240 

7 0.00113 28 0.02041 49 -0.02742 70 -0.00079 

8 0.00163 29 0.01859 50 -0.00913 71 0.00068 

9 0.00154 30 0.00803 51 0.00803 72 0.00154 

10 0.00068 31 -0.00913 52 0.01859 73 0.00163 

11 -0.00079 32 -0.02742 53 0.02041 74 0.00113 

12 -0.00240 33 -0.03929 54 0.01471 75 0.00037 

13 -0.00342 34 -0.03741 55 0.00502 76 -0.00032 

14 -0.00317 35 -0.01717 56 -0.00448 77 -0.00072 

15 -0.00138 36 0.02128 57 -0.01050 78 -0.00079 

16 0.00157 37 0.07245 58 -0.01161 79 -0.00057 

17 0.00467 38 0.12641 59 -0.00840 80 -0.00020 

18 0.00652 39 0.17140 60 -0.00286 81 0.00019 

19 0.00594 40 0.19695 61 0.00255 - - 

20 0.00255 41 0.19695 62 0.00594 - - 

 

From the above sections we found the transfer function H(z) by Nth order lowpass FIR digital 

filter and filter coefficients h[n] in length N+1 as shown in Table 3.3. Its frequency response 

in Figure 3.6 where fs=500Hz. The transfer function is formed as 

H[z] = h[0] + h[1] z−1 + h[2]z−2 + ⋯ + h[81]z−81                         (3.19) 
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Figure 3. 6: Frequency response of design low pass for FIR filter. 

Then performed decomposition of the filter transfer function H(z)into 2 poly-phase 

components using the equation (3.19). 

H(z) = E0(z2) +  z−1E1(z2)                                                                                                       (3.20) 

Where, 

E0 = h[0] + h[2]z−2 + h[4] z−4 + ⋯ + h[80]z−80             

E1 = h[1] z−1 + h[3] z−3 + h[5]z−5 + ⋯ + h[81]z−80     

E00 =  h[0] + h[6]z−6 + h[12]z−12 + ⋯ + h[78]z−78        

E01 = h[2]z−2 + h[8]z−8 + h[14]z−14 + ⋯ + h[80]z−80  

E02 = h[4] z−4 + h[10] z−10 + h[16] z−16 + ⋯ + h[76]z−76                                                                                                                                                          

E10 = h[1] z−1 + h[7] z−7 + h[13] z−13+. . . +h[79] z−79                                                                                                                                            

E11 = h[3] z−3 + h[9] z−9 + h[15] z−15+. . . +h[81]z−81      

E12 = h[5]z−5 + h[11]z−11 + h[17]z−17 + ⋯ + h[77] z−77    

    

Decimated-by-M=2. In this step, the input {x[n]} is break down into the set of 2 

subsequences: {x0[m]}, {x1[m]}. Here, for the causal {x[n]} we have x[−1]  =  x[−2]  =

 0. The 2 subsequences are interpolated by 3 in the poly-phase branches and added together 

to give the decimated signal {y
dec

 [m]}. The actualization analysis filter structure of 

proposed system is shown in Figure 3.7. 
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For multistage purpose, further we have up-sampled & down-sampled the decimated signal 

{y
dec

 [m]} is down-sampled by M=10 then up-sampled by L=10. 

+

+

+

+

+

+

+

+

 

Figure 3. 7:  Proposed multistage multirate system for case II. 

Case III: 

Consider the design specification of case II, the decimated signal {y
dec

 [m]} of case II is 

used as an input to the interpolator and interpolated by L=2, then the 2 subsequences are 

decimated by 3 in the poly-phase branches and added together to give the interpolated signal 

{y
int

 [m]}. The fulfillment analysis filter structure of proposed system is shown in Figure 

3.8. 
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The signal {x[n]}  =  {y
dec

 [m]} is filtered in the parallel poly-phase branches and the set of 

2 signals {g
0
 [n]}, {g

1
 [n]} and the subsequences of this two signals {g

00
 [n]}, {g

01
 [n]}, 

{g
02

 [n]} {g
10

 [n]}, {g
11

 [n]} {g
12

 [n]}  is obtained as the equations (3.22)-(3.29) and added 

together to give the interpolated signal {y
int

 [m]}.  

{g
0

[n]}  =  {g[0], g[M], g[2M], … } 

{g
1

[n]}  =  {g[−1], g[M − 1], g[2M − 1], … } 

{g
2

[n]}  =  {g[−2], g[M − 2], g[2M − 2], … } 

⋮ 

{g
M−1

[n]}  =  {g[−M + 1], g[1], g[M + 1], g[2M + 1], … }.                                                      (3.21) 

Where the equation can be represented based on the design specifications as, 

g
0

[n] = h[0]y
dec

[n] + h[2]y
dec

[n − 1] + h[4]y
dec

[n − 2] + ⋯ + h[80]y
dec

[n − 40]  (3.22)  

g
1

[n] = h[1]y
dec

[n] + h[3]y
dec

[n − 1] + h[5]y
dec

[n − 2] + ⋯ + h[81]y
dec

[n − 40]     

                                                         (3.23) 

g
00

[n] = h[0]y
dec

[n] + h[6]y
dec

[n − 3] + h[12]y
dec

[n − 6] + ⋯ + h[78]y
dec

[n − 39]  

                                                                                                                                        (3.24) 

g
01

[n] = h[2]y
dec

[n − 1] + h[8]y
dec

[n − 4] + h[14]y
dec

[n − 7] + ⋯ + h[80]y
dec

[n − 40]  

                                                         (3.25) 

g
02

[n] = h[4]y
dec

[n − 2] + h[10]y
dec

[n − 5] + h[16]y
dec

[n − 8] + ⋯ + h[76]y
dec

[n −

38]                                                                   (3.26) 

g
10

[n] = h[1]y
dec

[n] + h[7]y
dec

[n − 3] + h[13]y
dec

[n − 6] + ⋯ + h[79]y
dec

[n − 39]                                               

                                                         (3.27) 

g
11

[n] = h[3]y
dec

[n − 1] + h[9]y
dec

[n − 4] + h[15]y
dec

[n − 7] + ⋯ + h[81]y
dec

[n − 40]                  

                                                         (3.28) 

g
12

[n] = h[5]y
dec

[n − 2] + h[11]y
dec

[n − 5] + h[17]y
dec

[n − 8] + ⋯ + h[77]y
dec

[n −

38]                                                                    (3.29) 

Taking inverse Z-transform of the equations (3.22) to (3.29), is obtained as 
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G0[z] = h[0]Y[z] + h[2]z−1Y[z] + h[4]z−2Y[z] + ⋯ + h[80]z−40Y[z]                           (3.30) 

G1[z] = h[1]Y[z] + h[3]z−1Y[z] + h[5]z−2Y[z] + ⋯ + h[81]z−40Y[z]                       (3.31) 

G00[z] = h[0]Y[z] + h[6]z−3Y[z] + h[12]z−6Y[z] + ⋯ + h[78]z−39Y[z]                      (3.32) 

G01[z] = h[2]z−1Y[z] + h[8]z−4Y[z] + h[14]z−7Y[z] + ⋯ + h[80]z−40Y[z]             (3.33) 

G02[z]] = h[4]z−2Y[z] + h[10]z−5Y[z] + h[16]z−8Y[z] + ⋯ + h[76]z−38Y[z]          (3.34) 

G10[z] = h[1]Y[z] + h[7]z−3Y[z] + h[13]z−6Y[z] + ⋯ + h[79]z−39Y[z]                        (3.35) 

G11[z] = h[3]z−1Y[z] + h[9]z−4Y[z] + h[15]z−7Y[z] + ⋯ + h[81]z−40Y[z]               (3.36) 

G12[z] = h[5]z−2Y[z] + h[11]z−5Y[z] + h[17]z−8Y[z] + ⋯ + h[77]z−38Y[z]           (3.37) 

 

For multistage purpose, again the interpolated signal {y
int

 [m]} is decimate-by-M=2 and 2 

subsequences are interpolated by 3 in the poly-phase branches as a synthesis filter and added 

together to give the signal y
out

 [m]. 
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Figure 3. 8: Proposed multistage multirate system for case III. 

3.3  Results and Discussion  

 

Figures 3.9 to 3.14 shows the result of proposed multistage multirate system using ECG 

signals for case I-III as considered in this thesis. All cases use multirate filter specification 

as shown in Table 3.1 to 3.2 on multistage multirate system to remove noise from ECG data. 
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We have consider 1st stage as analysis and 2nd stage as synthesis filtering part is performed 

in multirate system. For multistage operation, we considered repetition process. 

Figure 3.9, 3.11 & 3.13 show the original output of all stages with respect to their sampling 

rate without bit loss for case I-III. The number of bits is equal for all stages. 

 For case I, proposed multistage multirate system is considered multirate poly-phase 

decomposition with decimation and interpolation. The sampling rate conversion factor is 

considered by down sampling factor M=5, up sampling factor L=5 and filter order N=9 for 

case I. Left side of colume in Figure 3.10, 3.12, & 3.14 (a) shows the zoom in output, 

smooth ECG signal with three different stages of propsoed multistage multirate system for 

case I-III and compared with wavelet 9/7 [3.3], [3.4] and their perspective frequency 

histogram. Fgure 3.10 (a), shows better smooth signal  where sampling rate is down by M=5 

in 1st stage and the 2nd stage increases the sampling rata by L=5 into the multirate Polyphase 

filter. For better performance again apply 3rd stage as analyses filter and got smooth signal 

than 2nd stage as shown in Figure 3.10 (a) that’s helps to detect R peak. For comparison of 

proposed system and wavelet 9/7, we have used histogram analysis and autocorrelation 

function. Right side column of Figure 3.10(a) shows the frequency distribution of noisy ECG 

signal, smoothed signal by proposed system and wavelet 9/7 for case I. The proposed 

systems have shown better frequency distribution shape where positions are slight because 

of sampling rate increases or decreases in the system as compared with wavelet 9/7.  

 

Figure 3. 9: Multistage filtering of noisy ECG signal (MIT BIH AF 08215m.mat) for 

case I. 
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(a) 

 

(b) 

Figure 3. 10: (a) Multistage filtering of noisy ECG signal (MIT BIH AF 08215m.mat) 

zoom in part & Frequency response (b) Normalized Autocorrelation for Case I. 

 
Figure 3. 11: Multistage filtering of noisy ECG signal for case II. 
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(a) 

 

(b) 

Figure 3.12: (a) Multistage filtering of noisy ECG signal (MIT BIH AF 08215m.mat) 

zoom in part & Frequency response (b) Normalized Autocorrelation for Case II. 

On the other sides in Figure 3.10 (b) shows comparison based on autocorrelations for case I. 

For Case II, the sampling rate conversion factor is considered by filter order N=81. Figure 

3.12 (a), sampling rate is taken for rational sampling factor L/M=3/2 of ECG signals in the 

analysis filtering part, and show better signal than noisy signal. On the other side, synthesis 

filter decreases the sampling rata by M= 10, and get better signal than analyzed signal (1st 

stage) as shown in the Figures 3.12 (a). For better performance again apply analyses filtering 
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by L=10 on that synthesis filtered signal and got smooth signal than 2nd stage as shown in 

Figure3.12 (a) that’s helps to detect R peak easily. For Case III, in the analysis filtering (1st 

stage) part, sampling rate increased because of rational sampling factor L/M=3/2. The 

performance between analysis filter and synthesis filter is also increases the sampling rate 

L/M=2/3 and gave better result than 1st stage   as shown in the Figure 14(a). For better 

performance apply the output of the 2nd stage into the synthesis filtered (3rd stage) where the 

sampling rate was L/M=3/2. The results showed smooth signal than 2nd stage that’s helps to 

detect R peak easily. 

 

 

Figure 3. 13: Multistage filtering of noisy ECG signal (MIT BIH AF 08215m.mat) for  

case III. 
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(a) 

 

(b) 
Figure 3. 14: (a) Multistage filtering of noisy ECG signal (MIT BIH AF 08215m.mat) 

zoom in part & Frequency response (b) Normalized Autocorrelation for Case III. 

From the histogram of figure 3.10, 3.12 & 3.14 (a) for case I-III, it aslo shown that stages 

1st-3rd has different frequency density with respect to their frequency distribution for various 

sampling rate and comapred with wavelet 9/7. The histogram of 1st stage to 3rd stage rates is 

bell-shaped with one peak for all case. There are no gaps or extreme values. So, proposed 

systems give better results than wavelet 9/7 systems for every case.  
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Now briefly justify histogram for only case I, 1st stage has a maximum value of 90 and a 

minimum value of -85 with one peak between -35 and -60. 2nd stage has a maximum value 

of 90 and a minimum value of -85, one peak between -35 and -60. 3rd stage has a maximum 

value of 90 and a minimum value of -85 with one peak between -35 and -60. The wavelet 

9/7 has skew left in the frequency distribution where a maximum value of 140 and a 

minimum value of -110 with one peak between 18 and -12. Such as case II & case III also 

show better smooth ECG signal for 1st to 3rd stage than wavelet 9/7. 

 

For comparison between the ECG signal and proposed system, also considered 

autocorrelation processes for robustness of algorithms. Figure 3.10-3.12 (b), the 

representation of auto correlation values of ECG signal as red color, 1st, 2nd, 3rd stage as 

green, blue black color and wavelet 9/7 as cyan color. The results of cases I-III with three 

different stages show high peaks and good correlated values with different sampling rate. 

There are no data loss that’s why there are no unusual patterns in our graphical representation 

but position shift for various sampling rate. Figure 3.10(b) for case I, it also observed that 

the autocorrelation of 1st and 3rd stage overlap to each other because the output of 1st stage 

is applied to the 2nd stage. Then the output of 2nd stage is applied to the 3rd stage and finally 

the L/M is same for 1st & 3rd stage that’s why their frequency distribution also same for same 

sampling rate. 

 

3.4  Summary 

 

Multistage multirate system have been proposed for removing noise, requiring low-cost and 

equal or fractional sampling rates for ECG signal processing. This system has considered 

three case for better justification of proposed system with sampling rate conversion. From 

the results analysis it can be concluded that all cases show better quality of ECG signal with 

the effect of reduce/increase the sample values of noisy ECG signals. These algorithms can 

be more efficient for diagnosis purpose. In future more, multistage methodology should be 

developed for biomedical applications to get more accurate performance. 

The next chapter will cover the methodologies, proposed algorithms, result, discussion and 

summary of AF detection from ECG signal. 
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CHAPTER IV 

 

 

Atrial Fibrillation Detection 

 

 

4.1  Introduction  

 

Cardiac arrhythmias are caused by abnormal electrical activity of the heart. Atrial 

Fibrillation (AF) is one of the most common types of cardiac arrhythmias [4.1]. AF is the 

most common cardiac arrhythmia found in clinical practice with increased prevalence in the 

ageing population [4.2]. It affects 5% of those aged over 65 years and 10% of those aged 

over 80 years [4.2]. Its occurrence is increasing primarily for two reasons; (i) an increase in 

the ageing population, and (ii) advances in medical care leading to survival from underlying 

conditions closely associated with AF, such as hypertension, coronary heart disease, and 

cardiac failure [4.2]. AF is characterized by uncoordinated atrial activation due to disrupted 

electrical pathways and structural changes in the heart [4.3]. Because of those conditions, 

AF has come with an increased rate of hospitalizations and medical care. It also has a huge 

economic impact.  It has been described as epidemic in proportion since some researchers 

have predicted its prevalence will triple by 2050 [4.2]. So, if the AF is detected early then it 

could reduce the cost of treatment, rate of hospitalization and other risk factor associating 

with it. 

During AF, electrical discharges conducted from the atrium into the ventricles are irregular 

and as a result, the heart rate becomes irregular and, usually rapid and also the electrical 

Atrial Activity (AA) is disorganized [4.4]. Both of these characteristics can be easily 

detected by the analysis of an ECG signal by noticing the irregularity of R-R intervals and 

the absence of the P-wave [4.5]. So, there are basically two methods for the detection of AF 

from the ECG signal. They are the RR Irregularity (RRI) and the AA. Any one of the two 

methods can be followed to detect the AF. The combination of the RR Irregularity and the 

AA can also be used to get enhanced detection performance. The RR irregularity is the most 

common method and very frequently used. This method is much easier because the R wave 

is the most prominent characteristics in the ECG signal, so it is relatively easy to detect.  In 

this thesis, only the RR Irregularity is used to detect the AF from an ECG signal. 



66 

 

The R wave is the most prominent characteristic within the ECG, making it relatively simple 

to detect. Therefore, algorithms that detect AF based on RRI are the most common in the 

literature. Five algorithms based on RRI are selected to realize: Moody et al. [4.5], based on 

Markov Models (MM); Logan et al. [4.6] using a simple variance parameter; Linker et al. 

[4.7], that used a statistical framework combination; Tatento et al. [4.8], which applied 

Kolmogorov Smirnov test; and Cerutti et al. [4.9], which used an autoregressive modeling 

and compares RRI with white noise.  

This chapter is organized as follows. A brief description on materials and methods based on 

proposed framework is given in section 4.2. In section 4.3, obtained results are analyzed and 

consequent issues are discussed. Finally conclusions are described in section 4.4. 

 

4.2  Materials and Methods 

 

4.2.1  Database 

 

This chapter also use the same database that given in chapter III. 

 

4.2.2  Software and Proposed Algorithm 

 

We have chosen MATLAB R2016a as the software platform to simulate all the programs. 

MATLAB is a commercial software product, which is available from the Math works. It 

consists of main ‘engine’ having strong mathematical function built-in which perform the 

computational and other extended-function libraries for special purpose applications [4.10]. 

The MATLAB software provides a variety of functions that make it easy and flexible while 

simulation for interactive designing, advance analyzing, exploration and visualizing signals, 

filters and windows. It provides the tools for finite impulse response (FIR) and infinite 

impulse response (IIR), digital filter design, implementation and analysis. It also provides 

the toolbox for application, such as, Signal Processing Toolbox [4.11], [4.12]. 

MATLAB has set of constructs for plotting scientific graphs from raw or computed data 

[4.10]. It is a high-performance language, most productive development and interactive 

environment for engineering and technology implementations software package. MATLAB 

enables to perform different functions which includes, electronic programming, technical 

computing applications, scientific and engineering graphical illustration, accurate numerical 
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calculation, algorithms development, application development including graphical user 

interface building, graph and report or software simulation etc. [4.11], [4.12]. 

In MATLAB we build a program to read the data from the MIT-BIH Atrial Fibrillation 

database. The data was downloaded from the database at. mat format using the physio net 

toolbox which is used for data conversion into .mat file [4.13]. Then another program is 

made to build the signal of RR interval against the number of beats. Then the MATLAB is 

again used to build a program for AF detection. The MATLAB is also used for the 

verification of the parameters, such as sensitivity, specificity and accuracy. The total process 

is described in Fig 4.1.   
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MIT-BIH AF Database

Reference annotation files.

1 for AF and 0 for NSR ECG signals

Physionet ATM toolbox

Convert the signal into time domain 

Filter by Multistage Multirate System

R peak detection

RR interval calculation

Signal of RR interval per beat

Comparison

Result of each beat.

1 for AF and 0 for NSR

Sensitivity

Specificity

Accuracy

RMSSD TPR SE

Threshold level for RMSSD, TPR & SE

 

Figure 4. 1: Proposed flowchart, which shows the total process of detecting AF. 
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This proposed algorithm work flows are described as:   

Step 1: Import original ECG signal from MIT-BIH database using Physionet ATM Toolbox.  

Step 2: Remove the baseline noise using multistage multirate system. 

Step 3: Represent the original ECG signal in time domain by using inverse fast Fourier 

transform. 

Step 4: Detect the peaks of R waves. 

Step 5: Calculate the RR interval and plot the signal of RR interval against per beat. 

Step 6: Calculate the RMSSD, SE and TPR for every beat from the signal of RR interval. 

Step 7: Check if all the 3 parameters cross the threshold level or not. If the 3 parameters 

cross the threshold level then return 1 else 0, 1 represents AF and 0 represents NSR. 

Step 8: Compare the results with the annotation files provided in the MIT-BIH database and 

calculate the number of TP, TN, FP and FN. 

Step 9: From the number of TP, TN, FP and FN calculate the sensitivity, specificity and 

accuracy. 

 

4.2.3  Detection Methods 

 

Recently different mathematical models and statistical models are used for early AF 

detection [4.14]. It already established that RR-intervals would be used for the detection 

method. The irregularity and variability are the main characteristics for AF [4.14]. In this 

thesis, we use statistical analysis to distinguish between the degrees of variability. Three 

different statistical methods were followed throughout the thesis. Those methods were root 

mean squares of successive differences (RMSSD), Shannon entropy (SE) and turning point 

ratio (TPR). RMSSD is a statistical parameter that measures the variability within a data set. 

SE is a statistical parameter that measures the uncertainty of a random variable. TPR is a 

statistic that measures the random fluctuations within a data set.  

The algorithm that is used for this thesis is based on the increased variability and complexity 

in the RR intervals series due to the atrial fibrillation. In this algorithm, each series of RR 

intervals was divided into 128 overlapping beat segments. Every set of beat segment began 

1 RR interval after the beginning of previous set of beat segment. Then the three statistical 

methods used for the analysis whether each 128-beat segment contains the characteristics of 

AF on not. Among the three tests RMSSD and SE are parametric test, and TPR is a non-
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parametric test. Here the two parametric tests were affected by distribution assumptions. So, 

from each 128-beat segment the shortest 8 beats and the longest 8 beats were removed. Each 

set of 128 beat segments was flagged as AF if all the three statistical methods determined it 

to be AF. 

Root Mean Squares of Successive Differences (RMSSD): RMSSD is a statistical 

parameter that is used to measure the variability within a data set. It is one of the few time 

domain tools that is used to measure heart rate variability (HRV). As the RMSSD is a 

parametric test it is sensitive to the outlier. So, the shortest 8 and longest 8 RR intervals is 

actually the sum of the squares of each difference between each consecutive RR intervals. 

So, the expression of RMSSD that is used in our algorithm is [4.15], 

𝑅𝑀𝑆𝑆𝐷 = √
1

𝑙 − 1
× ∑ (𝑟𝑟𝑖+1 − 𝑟𝑟𝑖)2

𝑙−1

𝑖=1
 

For compensating with the changes in the heart rate overtime and also the premature 

ventricular contractions RMSSD was divided by the mean RR value of each segment. In this 

algorithm RMSSD/(mean RR) > 0.1 was selected as the threshold for AF detection [4.15]. 

Shannon Entropy (SE): SE is a statistical parameter that is used for the measurement of the 

uncertainty of random variable. SE is also a parametric test that is sensitive to outlier. So as 

we do in the case of RMSSD, we have to remove the shortest 8 and longest 8 RR intervals. 

SE is a parameter that measures the complexity of a data set and the ability to predict future 

data point from past data point. The higher the value of SE represents higher uncertainty of 

the random variable. The lower value of SE represents lower uncertainty of the random 

variable. In this algorithm, it is associated that SE will be higher than the Normal Sinus 

Rhythm (NSR). After removing the 8 longest and 8 shortest outliers a histogram was 

constructed with 16 equally spaced bins using the remaining data points in each 128 beat 

segment. Using 16 bins was found to provide sufficient resolution. Too many bins will result 

in a significant distortion. The value of SE approaches to zero if the number of bins 

approaches to infinity. Then the number of RR interval in each was computed. The 

probability for each bin is computed as [4.15], 

p(i) =  
Ni

l − NOutliers
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Where, Ni = the number of beats in a particular bin, 

              l = the segment length, 

             NOutliers = the number of outliers. 

Then SE is [4.15], 

SE =  ∑ p(i)
log(p(i))

log(
1

16)

16

i=1

 

In this thesis we selected SE > 0.7 as the threshold for AF detection [4.15]. 

Turning Point Ratio (TPR): TPR is a non-parametric statistic that is used to measure the 

degree of randomness in a particular time series. Turning points are the points which are 

greater than or less than both the succeeding and proceeding terms. TPR compares the 

amount of turning points in each set of data and to the maximum number of possible turning 

points. Each beat in RR irregularity (RRI) segment compared to its 2 nearest neighbors is 

designated a turning point if it is greater than or lesser than both [4.15]. That statistical test 

that use in this algorithm is if the sequence is stationary then the RR intervals are random 

which corresponds to AF. And if the sequence is non-stationary then the RR intervals are 

non-random corresponds to normal sinus rhythm. For random data points of arbitrary length 

(l) the expected number of turning point is [4.15], 

μTP =  
(2l − 4)

3
 

And with a standard deviation of [4.15], 

σTP =  √
(16l − 29)

90
 

If any data does not exhibit random behavior will have a TPR significantly greater than or 

less than the expected value of 0.66. In proposed algorithm, the interval which corresponds 

to a TPR of µ±3.2σ was marked as AF. For the selected beat segment length of 128, 

0.54<TPR<0.77 will be marked as AF [4.15]. 
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4.2.4  Performance Criteria 

 

In this chapter, three performance criteria used such as sensitivity, specificity, accuracy to 

verify the results of proposed algorithm. To test those performance criteria, the MIT-BIH 

Atrial Fibrillation database [4.16] is used from where we take the ECG signal. Beside the 

main ECG signal the database also contains annotation files. Those annotation files contain 

the information of each beat whether it has AF or not. Then that information is compared 

with simulation results of proposed work. Each beat is annotated with 1 for AF and 0 for 

Normal Sinus Rhythm (NSR). In proposed algorithm used 1 for AF and 0 for NSR. The 

result of any segment is counted as the result of the first beat of that segment. After the 

comparison, we separated the beats into four categories. They are True Positive (TP), True 

Negative (TN), False Positive (FP) and False Negative (FN). TP beats are those beats that 

annotated as 1 in both the database and in the result. TN beats are those beats that annotated 

as 0 in the database and also in the result. FP beats are those beats that is annotated as 0 in 

the database but annotated as 1 in the result. FN beats are those beats that is annotated as 1 

in the database but annotated as 0 in the result. The number of TP, TN, FP, and FN are used 

to calculate the three performance criteria of the algorithm, like:                  

Sensitivity =  
(Number of true positive assessment)

(Number of all positive assessment)
=

TP 

(TP +  FN)
  

Specificity =
 (Number of true negative assessment)

(Number of all negative assessment)
=  

TN

(TN +  FP)
 

Accuracy =  
(Number of correct assessments)

(Number of all assessments)
=

 (TN +  TP)

(TN + TP + FN + FP)
 

4.3  Results and Discussion 

 

The results and discussion of proposed algorithm are described in details in some subsections 

bellows: 

 

4.3.1  Import of ECG Signal 

 

At first, we have to take an input ECG signal for analysis in MATLAB environment. As 

mentioned before, we import ECG signals from the MIT-BIH Atrial Fibrillation database 

[4.16]. The signals that are stored in the database are in .qrs and .dat format. This is 
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digitalized format. For simplicity, we transform the data into. mat format so that it can be 

easily loaded into MATLAB. Then, it is represented in the time domain as shown in Figure 

4.2. The data are sampled at 250 times per second. 

 

 

Figure 4. 2: Time domain representation of original ECG signal (File # 04048). 

 

 

 

4.3.2  Filtering of Baseline Noise of ECG Signal 

 

To reach our main objective we have to detect the R-peaks of the signal. The signals that are 

stored in the MIT-BIH Atrial Fibrillation database usually have some baseline noise that 

shifts the baseline of the ECG signals. This happens because of the patient’s physical 

condition, state, movement and other criteria. So, to define the threshold level for the R peak 

we have to remove the noise. We use the multistage multirate system (case III) for filtering 

the signal. After filtering we represent the filtered signal to time domain, as shown in Figure 

4.3. 
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Figure 4. 3: Time domain representation of filtered ECG (File # 04048). 

4.3.3  R-R peak detection 

 

After filtering the signal we can easily define the threshold of the filtered signal for detecting 

the R wave peaks. By observing the Figure 4.3, 95 is defined as the threshold of the signal 

because it is clearly seen that the amplitude of all the R peaks are above 95. The detected R 

peaks are shown in Figure 4.4.  

 

Figure 4. 4: R peak detection of the filtered ECG signal (File # 04048). 

Due to the variability of amplitudes of the signals that provided in the MIH-BIH Atrial 

Fibrillation database, we have to select different threshold level for different signals. We 

observed 15 original ECG signals recorded in the database. The threshold levels for those 

signals are given below in Table 4.1. 
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Table 4. 1: Threshold levels of 15 original ECG signals recorded in MIT-BIH Atrial 

Fibrillation database [4.16]. 

Sl. No. Original ECG Signal (File #) Threshold level 

1 04015 192 

2 04048 95 

3 04126 107 

4 04746 171 

5 04908 176 

6 05121 152 

7 05261 121 

8 06426 277 

9 06995 132 

10 07162 26 

11 07859 18 

12 07879 112 

13 07910 131 

14 08215 71 

15 08219 117 

 

4.3.4  Signal for RR Peak Differences 

 

After finding the R peaks we have to calculate the difference between each successive R 

peaks. Then we plot the RR interval against each beat, as shown in Fig. 4.5. This signal is 

required to detect AF.  
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Figure 4. 5: Wave shapes of RR interval of the signal (File # 04048). 

4.3.5  AF Detection Results 

 

After getting the signal of RR intervals we calculate RMSSD, SE and TPR for every single 

beat. In case of RMSSD and SE, we consider 128 beat as a data set to calculate RMSSD and 

SE. The resultant RMSSD and SE is considered as the RMSSD and SE of the first beat. The 

results of RMSSD, SE and TPR for File # 04048 are showed in Figures 4.6-4.8 respectively, 

so that, we could compare it with Figure 4.5. 

 

 

Figure 4. 6: Result of RMSSD of the signal (File #04048). 

Atrial Fibrillation part 

Threshold level 
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Figure 4. 7: Result of SE of the signal (File #04048). 

In proposed algorithm we use the threshold level of RMSSD/ (mean RR) is 0.1 [4.15]. By 

comparing Figure 4.5 and Figure 4.6 it is clearly seen that the threshold level of RMSSD is 

able to detect most of the AF beats. 

In proposed algorithm we use the threshold level of SE is 0.8 [4.15]. By comparing Figure 

4.5 and Figure 4.7 it is clearly seen that the threshold level of SE is able to detect most of 

the AF beats. 

 

 

Figure 4. 8: Result of TPR of the signal (File #04048). 

 

 

 

Threshold level 

Upper threshold Lower threshold 
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Table 4. 2: Number of NSR and AF detected in our algorithm. 

Sl. 

No. 

Original ECG 

Signal (File #) 

Total No. 

of Beats 

Result of Algorithm Annotation results 

provided in database 

Number of 

NSR 

Number 

of AF 

Number of 

NSR 

Number of 

AF 

1 04015 43288 42779 509 42794 494 

2 04048 40163 39514 649 39517 646 

3 04126 43507 39995 3512 40018 3489 

4 04746 48789 17835 30954 17885 30904 

5 04908 62090 55618 6472 55719 6371 

6 05121 57522 19424 38098 19639 37883 

7 05261 48514 43388 5126 43455 5059 

8 06426 55489 3799 51690 3934 51555 

9 06995 55142 29008 26134 29375 25767 

10 07162 44435 90 44345 0 44435 

11 07859 64516 147 64369 0 64516 

12 07879 56878 16241 40637 16780 40098 

13 07910 36198 29522 6676 29720 6478 

14 08215 59710 14792 44918 14971 44739 

15 08219 59177 48665 10512 48714 10463 

 

In proposed algorithm we use the upper threshold level of TPR is 0.77 and lower Threshold 

of TPR is 0.54 [4.15]. By comparing Figure 4.5 and Figure 4.8 it is clearly seen that the 

threshold level of TPR is able to detect most of the AF beats. 

In this algorithm, each beat flagged with 0 for NSR and 1 for AF. The number of NSR and 

AF detected in proposed algorithm is given in Table 4.2. And also, the number of NSR and 
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AF that provided in the database annotation files has given with it. The table 4.3 clearly 

shows that the number of NSR plus the number of AF obtained in proposed algorithm is 

equal to the total number of beats which is almost same with the annotation results provided 

in the database, revealing the good performance of the proposed algorithm. 

 

4.3.6  Performance Analysis of Proposed Algorithm 

 

In order to evaluate the performance of proposed algorithm, we calculate several 

performance criteria, such as, sensitivity, specificity and accuracy. To calculate those 

factors, at first, we have to calculate TP, TN, FP and FN. TP beats are those beats which are 

annotated as 1 or AF both in algorithm and database. TN beats are those beats which are 

annotated as 0 or NSR both in algorithm and database. FP beats are those beats which are 

annotated as 1 or AF in algorithm but annotated as 0 or NSR in database. FN beats are those 

beats which are annotated as 0 or NSR in the algorithm but annotated as 1 or AF in the 

database. The number of TP, TN, FP and FN for each signal is given in Table 4.3. 
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Table 4. 3: Number of TP, TN, FP and FN for each ECG signal. 

Sl. 

No. 

Original ECG Signal 

(File #) 

True 

Positive 

TP 

True 

Negative 

TN 

False 

Positive 

FP 

False 

Negative 

FN 

1 04015 479 42764 30 15 

2 04048 623 39491 26 23 

3 04126 3459 39965 53 30 

4 04746 30804 17735 150 100 

5 04908 6300 55547 172 71 

6 05121 37812 19353 286 71 

7 05261 5032 43361 94 27 

8 06426 51498 3260 92 57 

9 06995 25598 28839 536 169 

10 07162 44345 0 0 90 

11 07859 64369 0 0 147 

12 07879 40057 16200 580 41 

13 07910 6384 29428 292 94 

14 08215 44594 14647 324 145 

15 08219 10092 48294 420 371 
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Table 4. 4: The calculated value of sensitivity, specificity and accuracy of the tested data. 

Sl. No. Original ECG Signal (File #) Sensitivity (%) Specificity (%) Accuracy (%) 

1 04015 96.96 99.93 99.89 

2 04048 96.43 99.90 99.94 

3 04126 99.14 99.86 99.87 

4 04746 99.69 99.16 99.67 

5 04908 98.88 97.69 99.60 

6 05121 99.81 98.54 99.37 

7 05261 99.47 99.78 99.75 

8 06426 99.88 94.43 98.68 

9 06995 99.34 98.17 98.72 

10 07162 99.78 100 99.80 

11 07859 99.77 100 99.77 

12 07879 99.89 98.54 98.91 

13 07910 99.55 99.02 98.93 

14 08215 99.68 98.84 99.21 

15 08219 97.45 99.13 98.67 

 

From the data provided in the Table 4.3, we can easily calculate the sensitivity, specificity 

and accuracy of the algorithm. Sensitivity is the ability of the algorithm to detect the AF 

beats. Specificity is the ability of the algorithm to detect NSR. Accuracy is the overall 

detection ability of the algorithm. The calculated values of sensitivity, specificity and 

accuracy of each signal is given in Table 4.4. 

From the Table 4.4 it is seen that in most of the cases proposed algorithm has a very high 

sensitivity, specificity and accuracy. Also from the data given in the Table 4.4 we were able 

to calculate the weighted values of sensitivity, specificity and accuracy, and the values are 

given Table 4.5. 
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Table 4. 5: The weighted value of sensitivity, specificity and accuracy of the tested data. 

Original 

ECG 

signal 

(file #)  

Sensi- 

tivity 

Speci- 

ficity 

Accu-

racy 

Size Total 

Size 

Total 

Weight 

 

Weighted 

Sensitivity 

Weighted 

Specificity 

Weighted 

Accuracy 

04015 .9989 .9993 .9696 43288 775418 .05583 .0558 .0558 .0541 

04048 .9994 .9993 .9643 40163 775418 .05179 .0518 .0518 .0499 

04126 .9987 .9986 .9914 43507 775418 .0561 .0560 .0560 .0556 

04746 .9968 .9916 .9969 48789 775418 .06292 .0627 .0624 .0627 

04908 .9960 .9769 .9888 62090 775418 .08007 .0797 .0782 .0791 

05121 .9937 .9854 .9981 57522 775418 .07418 .0737 .0730 .0746 

05261 .9975 .9978 .9947 48514 775418 .06256 .0623 .0636 .0621 

06426 .9868 .9443 .9988 55489 775418 .07156 .0706 .0675 .0714 

06995 .9872 .9817 .9934 55142 775418 .07111 .0701 .0698 .0706 

07162 .9980 1 .9978 44435 775418 .0573 .0572 .0573 .0572 

07859 .9977 1 .9977 64516 775418 .0832 .0830 .0832 .0830 

07879 .9891 .9854 .9989 56878 775418 .07335 .0726 .0723 .0733 

07910 .9895 .9902 .9954 36189 775418 .0467 .0462 .0462 .0465 

08215 .9921 .9884 .9968 59710 775418 .0770 .0764 .0761 .0768 

08219 .9867 .9913 .9745 59177 775418 .0763 .0753 .0756 .0744 

 98.03% 98.80% 99.45% 

 

The table 4.5 clearly shows that the average value of the weighted sensitivity, specificity and 

accuracy are over 98.03%, 98.80%, and 99.45% respectively which is very much compatible 

with the other results found in literature [4.5-4.9, 4.17-4.20]. This indicates that the algorithm 

or technique used in this work is suited for detecting AF using ECG signal. 

In this chapter we use the algorithm that mainly follows statistical method for detection AF. 

Using proposed algorithm, we achieved the results such as sensitivity of 98.03%, specificity 

of 98.80% and accuracy of 99.45% which makes the algorithm clinically applicable for AF 

detection. As it follows the RRI method, it is much easier and simpler. If this algorithm is 

implemented practically into diagnostic test, it could reduce cost allow doctors to detect AF 

before the condition of the patients are at high risk for complications such as stroke and heart 

attack. 
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4.4  Summary 

 

The algorithm that is used in this chapter is able to detect the AF with high degree of 

accuracy. It is seen that this algorithm has higher degree in sensitivity specificity and 

accuracy. The MIT BIH Atrial Fibrillation database is used to import ECG data for analysis. 

RR interval of the ECG signal is calculated. We are used the algorithm that mainly follows 

statistical method for detection of AF. Parametric statistic RMSSD and SE, and non-

parametric statistic, TPR are used for this purpose. The resultant value of RMSSD, SE and 

TPR of every beat is checked weather it crosses the threshold level or not. If all the three 

parameters cross the threshold level then the beat flagged as AF. It shows excellent result 

when compared with the annotations of the database, and then the sensitivity, specificity and 

accuracy is determined. The algorithm has the sensitivity of 98.03%, specificity of 98.80% 

and accuracy of 99.45%. 

The next chapter will cover the conclusion of this thesis. 
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Chapter V 

 

 

Conclusion and Future Work 

 

 

5.1  Conclusion 

 

We have successfully filtered ECG signal using multistage multirate system and also 

detected the RRI in ECG signal. The simulation results have shown that proposed de-noising 

algorithms are better for diagnostics purposes of ECG and proposed AF detection algorithm 

are more efficient for detection of heart diseases. 

This algorithm is able to detect the AF with high degree of accuracy, comparing with other 

algorithms that are commonly used for AF detection, it is seen that, this algorithm has higher 

degree in both sensitivity and specificity. This algorithm is implemented successfully in 

MATLAB and able to detect AF with a fast run time, low sensitivity to noise, high accuracy 

and simple user interface. This algorithm is experienced over 15 ECG signals provided in 

the MIT-BIH Atrial Fibrillation database and achieved a sensitivity of 98.03%, specificity 

of 98.80% and accuracy of 99.45%. 

 

5.2  Future Work 

 

In this thesis work an approach is to detect AF using ECG signal by multistage multirate 

systems. The future work is to detect VF, AFL using ECG signal. 


