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Abstract 

 

As a scientific study of marine-life habitation, populations, and interactions among organisms 

and surrounding environment, marine ecology includes numerous fish and mammals as part and 

parcel. Marine fish and mammals have an enormous impact on marine ecosystems. Not only for 

their ecological values, but also for commercial purposes, a proper estimation of their population 

size is necessary. Besides, an efficient monitoring of populations and communities is the 

precondition of ecosystem-based management in marine areas. Most conventional techniques for 

estimating fish population are visual sampling techniques, environmental DNA (eDNA) 

technique, minnow traps, removal method of population estimation, echo integration techniques, 

etc., which are sometimes complex, costly, require human interaction, and harmful for 

inhabitation of marine species. In order to overcome these difficulties, an acoustic signal 

processing technique is proposed in this thesis. The method is based on a novel statistical signal 

processing technique called “cross-correlation” and different types of acoustic signals produced 

by diverse species of marine fish and mammals, like chirps, grunts, growls, clicks, etc. Our goal 

was to build a framework so that the technique can be implemented in practice. Therefore, we 

have investigated different tasks, which are crucial during its practical implementation like 

estimation with respect to different fish acoustics, different number of sensors and different 

distributions of fish and mammals. Similarly, we have carried an investigation to select the 

optimum estimation parameter for the technique. We have also analyzed different impacts, i.e., 

underwater bandwidth, SNR, etc., which have significant effects on practical estimation of this 

technique. From this research, we have found that chirp signals can produce better estimation 

results among the three fish acoustics, i.e., chirps, grunts, and growls signals. Among the three 

fish distributions, i.e., Exponential, Normal, and Rayleigh, Exponential distribution of fish and 

mammals produce better results. An increasing number of acoustic sensors provide better results 

in this technique. However, limited bandwidth of underwater channel poses a barrier during 

acquisition of fish signals, which has infinite bandwidth. To overcome this problem, a proper 

scaling is a mandatory task. We find that scaling factor 0.59512 for chirp signal and 0.55245 for 

grunt signal at 5 kHz underwater bandwidth. Similarly, a low signal to noise ratio (SNR) is also 

an impediment to obtain an accurate fish population. We have found that estimation with 
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minimum SNR of 20 can perform like the noiseless estimation. These findings will immensely 

help the future researchers during practical implementation of the technique. 

 

Keywords: Fish population estimation, cross-correlation function, estimation parameter, 

acoustic sensors, underwater bandwidth, SNR. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vii 
 

Table of Contents 

 

Title Page  i 

Declaration ii 

Approval iii 

Acknowledgement iv 

Abstract v 

Contents vii 

List of Tables xiii 

List of Figures xiv 

List of Abbreviations xviii 

 

CHAPTER I………………………………………………………………………………….. 1 

Introduction…………………………………………………………………………………… 1 

1.1 Introduction to Population Estimation of Fish and Mammals………………………... 1 

1.2 Vocalizing Nature in Marine Fish and Mammals…………………………………….. 2 

1.2.1 Process of Sound Production………………………………………………….. 2 

1.2.2 Diversity of Sounds among Fish and Mammals……………………………… 3 

1.3 Acoustic Sensors……………………………………………………………………… 4 

1.4 Cross-correlation……………………………………………………………………… 4 

1.5 Statistical Signal Processing…………………………………………………………... 5 

1.5.1 Occupancy Problem…………………………………………………………... 5 

1.6 Practical Issues Regarding Fish Population Estimation……………………………… 6 

1.6.1 Distribution of Fish and Mammals……………………………………………. 6 

1.6.2 Underwater Bandwidth……………………………………………………….. 6 

1.6.3 Signal to Noise Ratio (SNR)………………………………………………….. 7 

1.6.4 Multipath……………………………………………………………………… 8 

1.6.5 Propagation Speed of Acoustics………………………………………………. 8 

1.6.6 Other Practical Issues…………………………………………………………. 8 



viii 
 

1.7 Importance of Fish Population Estimation…………………………………………… 9 

1.8 Simplified Block Diagram of Cross-correlation Based Fish Population Estimation… 9 

1.9 Research Objective……………………………………………………………………. 10 

1.10 Research Motivation………………………………………………………………….. 10 

1.11 Thesis Organization…………………………………………………………………… 11 

REFERENCES………………………………………………………………………………... 11 

 

CHAPTER II………………………………………………………………………………… 14 

Literature Review of Fish Population Estimation……………………………………………. 14 

2.1      Introduction to Different Fish Population Estimation Techniques …………………… 14 

2.2 Non Acoustic Methods of Fish Population Estimation……………………………… 15 

2.2.1 Fish Population Estimation with Visual Census Techniques………………… 15 

2.2.2 Environmental DNA (eDNA) Technique…………………………………….. 16 

2.2.3 Estimation of Fish Population Using Minnow Traps………………………… 17 

2.2.4 Fish Population Estimation from Underwater Video Sequences Using Blob 

Counting and Shape Analysis………………………………………………… 

 

18 

2.2.5 Mark–Recapture Techniques for Fish Population Estimation………………... 19 

2.3 Acoustic Methods of Fish Population Estimation……………………………………. 20 

2.3.1 A Generalized Description on Different acoustic measures of Fish Population 

estimation……………………………………………………………………... 

 

20 

2.3.2 Fish Population Estimation Using Echo Integration………………………… 22 

2.3.3 Dual-Beam Transducer in Hydro Acoustic Fish Assessment Systems……….. 23 

2.3.4 Dual-Frequency Identification Sonar (DIDSON) Technique………………… 24 

2.3.5 Multiple Scattering in a Reflecting Cavity: A Fish Counting Technique……. 25 

2.3.6 Multi-Frequency Fishery Sonar Surveys…………………………………….. 26 

2.3.7 Fish Population Estimation Using Analysis of Echo Peak PDF from a Single-

Transducer Sonar……………………………………………………………... 

 

27 

2.3.8 Statistical Signal Processing Approach of Fish Population 

Estimation…………………………………………………………………….. 

 

28 

2.4 Discussions……………………………………………………………………………. 29 

https://ieeexplore.ieee.org/abstract/document/1161349/


ix 
 

2.5 Chapter Summary…………………………………………………………………….. 30 

REFERENCES………………………………………………………………………………... 30 

 

CHAPTER III……………………………………………………………………………….. 33 

Generation of Fish Acoustics………………………………………………………………….  33 

3.1 Introduction to Fish Acoustics………………………………………………………... 33 

3.2 Mechanism of Fish Acoustics………………………………………………………… 34 

3.2.1 Stridulatory Mechanisms…………………………………………………… 35 

3.2.2 Swim Bladder Mechanisms………………………………………………… 35 

3.2.3 Cavitations Mechanisms……………………………………………………… 37 

3.2.4 Hydrodynamic Mechanisms………………………………………………….. 37 

3.2.5 Respiratory Mechanisms……………………………………………………… 37 

3.3 Significant Aspects Regarding Fish Acoustics……………………………………….. 37 

3.3.1 Why are Sounds Produced in Some Taxa but not in others?............................ 38 

3.3.2 Effect of Body Size on Acoustics Generation………………………………... 38 

3.3.3 Effect of Body Size on Acoustics Generation………………………………... 39 

3.3.3.1 Dominant Frequency………………………………………………………….. 39 

3.3.3.2 Sound Level…………………………………………………………………... 40 

3.3.3.3 Temporal Characteristics……………………………………………………... 40 

3.4 Diversity of Acoustics in Fish and Mammals………………………………………… 40 

3.4.1 Chirp…………………………………………………………………………... 41 

3.4.2 Clunk………………………………………………………………………….. 42 

3.4.3 Grunt………………………………………………………………………….. 42 

3.4.4 Growl…………………………………………………………………………. 42 

3.4.5 Hoot and Pop………………………………………………………………….. 43 

3.4.6 Click…………………………………………………………………………... 43 

3.4.7 Whistle………………………………………………………………………... 43 

3.4.8 Knock…………………………………………………………………………. 43 

3.5 Generation of Fish Acoustics from Simulation……………………………………….. 44 

3.5.1 Equation of Fish/Mammals Acoustics………………………………………... 45 



x 
 

3.5.2 Generation of Fish Acoustics using MATLAB……………………………… 45 

3.6 Chapter Summary…………………………………………………………………….. 47 

REFERENCES………………………………………………………………………………... 48 

 

CHAPTER IV………………………………………………………………………………... 54 

Cross-correlation Based Fish Population Estimation Technique……………………………... 54 

4.1 Introduction to Fish Population Estimation…………………………………………... 54 

4.2 A Brief Analysis on Cross-correlation Function (CCF)……………………………… 55 

4.3 Formulation of CCF…………………………………………………………………... 57 

4.3.1 CCF Formulation for Two Acoustics Sensors………………………………... 57 

4.3.2 CCF Formulation for Three Acoustics Sensors………………………………. 59 

4.3.2.1 CCF Formulation for Three Acoustic Sensors: ASL Case……………… …... 59 

4.3.2.2 CCF Formulation for Three Acoustic Sensors: AST Case………………...…. 61 

4.4 Fish Population Estimation using CCF……………………………………………….. 62 

4.4.1 Fish Population Estimation from Theory……………………………………...  62 

4.4.2 Selection of Optimum Estimation Parameter…………………………………. 64 

4.4.2.1 Implementation of different estimation parameters…………………………... 64 

4.4.2.1.1 Sum of CCF, s………………………………………………………… 65 

4.4.2.1.2 Mean of CCF, µ………………………………………………………. 65 

4.4.2.1.3 Standard deviation of CCF, σ…………………………………………. 66 

4.4.2.1.4 Ratio of Mean to the Standard Deviation of CCF, Rmsd………………. 67 

4.4.2.1.5 Ratio of standard deviation to the mean of CCF, R…………………... 68 

4.4.2.2 Selection of the optimum……………………………………………............... 68 

4.4.2.3 Block Diagram Representation of Obtaining R of CCF……………………… 69 

4.4.3 Fish Population Estimation from Simulation…………………………………. 71 

4.4.3.1 Fish Population Estimation with Two Acoustic Sensors: Implementation 

of Different Fish Acoustics………………………………………………... 

 

71 

4.4.3.1.1 Discussion…………………………………………………………….. 73 

4.4.3.2 Fish Population Estimation with Three Acoustic Sensors……………………. 74 

4.4.3.2.1 Discussion……………………………………………………………. 76 



xi 
 

4.4.3.3 Fish Population Estimation from Different Fish Distributions………………. 76 

4.4.3.3.1 Discussion…………………………………………………………….. 79 

4.4.3.4 Fish Population Estimation with more than Three Acoustic Sensors………… 79 

4.4.3.5 Fish Population Estimation with Random Placements of Acoustic Sensors 

(Two Sensors)……………………………………………………………... 

 

81 

4.4.3.6 Comparison with other Passive Acoustic Techniques………………………...... 84 

4.4.3.6.1 Flood-fill Algorithm based Passive Acoustic Technique…………….. 84 

4.4.3.6.2 Combination of Direct Acoustic Counting and Visual Census Data 

Collection Algorithm based technique………………………………... 

 

86 

4.4.3.6.3 Summary……………………………………………………………… 86 

4.5 Chapter Summary…………………………………………………………….............. 87 

REFERENCES………………………………………………………………………............... 87 

 

CHAPTER V………………………………………………………………………………… 90 

Significant Impacts on Fish Population Estimation…………………………………………... 90 

5.1 Introduction of Significant Impacts on Fish Popultaion Estimation…………………. 90 

5.2 Impact of Underwater Bandwidth…………………………………………………….. 90 

5.3 Impact of SNR………………………………………………………………………… 93 

5.4 Impact of Doppler Effect……………………………………………………………… 95 

5.5 Chapter Summary……………………………………………………………………... 96 

REFERENCES………………………………………………………………………………... 96 

 

CHAPTER VI………………………………………………………………………………... 

 

97 

Conclusion and Future Direction……………………………………………………………... 97 

6.1 Summary and Discussion……………………………………………………………... 97 

6.1.1 Limitations……………………………………………………………………. 97 

6.2 Future Directions……………………………………………………………………… 98 

6.2.1 Random Placement of Acoustic Sensors……………………………………… 98 

6.2.2 Unequal Distance between Acoustic Sensors………………………………… 99 

6.2.3 Estimation with N number of Acoustic Sensors……………………………… 99 



xii 
 

6.2.4 Estimation with More Acoustics of Fish and Mammals……………………… 99 

6.2.5 Impact of Multipath…………………………………………………………… 99 

LIST OF PUBLICATIONS………………………………………………………………………… 100 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xiii 
 

List of Tables  

 

Table No. Description Page No.    

 

 

 

 

 

 

 

 

 

 

Table 1.1 Available bandwidths for different ranges in underwater acoustic 

channel………………………………………………………………….... 

 

6 

Table 1.2 Noise creates by different ranges of frequencies in underwater acoustic 

channel…………………………………………………………………… 

 

7 

Table 1.2 Different rate of propagation speed in different medium during 

propagation of acoustics…………………………………………………. 

 

8 

Table 4.1 Parameters used in the MATLAB simulation............................................ 64 

Table 4.2 Deviation of simulated R from theoretical R for chirps, grunts and 

growls…………………………………………………………………… 

 

73-74 

Table 4.3 Experimental and theoretical data of CCF for chirp signal, where b =39 

(dDBS =0.5m and SR =60 kSa/s)……………………………………….. 

 

74 

Table 4.4 Parameters used in the MATLAB simulation for different distributions... 76 

Table 4.5 Comparison with other passive acoustic technique……………………… 86-87 



xiv 
 

List of Figures 
 

Figure No. Description Page No.    

 

Fig. 2.1 Results from eDNA degradation experiment. eDNA concentration in seawater as 

a function of time for the two fish species; Platichthys flesus (circles) and 

Gasterosteus aculeatus (triangles), investigated in a 50 I aquarium……………...  

 

 

16 

Fig. 2.2 System flowchart………………………………………………………………… 18 

Fig. 2.3 Component parts of a sonar showing how the output signal due to a target at 

range R is formed where the transmitter pulse Vo(t) is the input that is 

successively modified by each component leading to the output signal v(R, t) and 

the echo integral E………………………………………………………………...  

 

 

 

22 

Fig. 2.4 Block diagram of echo integrator……………………….…………………………   23 

Fig. 2.5 Analysis pathways implemented in Echo-view (version 4.1). Four parallel 

processes are presented that provide similar outcomes even though they are used 

to optimize analyses under various conditions……………………………………. 

 

 

24 

Fig. 2.6 Representation of two ray paths in square cavity (full lines) and their analog in a 

medium without interface (dashed lines) using the method of images…………… 

 

25 

Fig. 2.7 Cluster obtained from the RSKM plotted on a PCA bi-plot. The ellipses 

surrounded the clusters show the 68 percent confidence intervals……………….. 

 

27 

Fig. 2.8 Data collection and processing of the corresponding technique………………….. 28 

 

Fig. 1.1 Schematic left lateral view of the sound-producing mechanism (black) piranha 

(Serrasalmus rhombeus). Skull and vertebrae are not shown…………………….. 

 

02 

Fig. 1.2 Agonistic sounds produced by different members of the family Gadidae and the 

more distant related gadiform, the tadpole fish. Black bar represents the time 

scale of 100 ms for each fish. Haddock emits a series of knocks; cod, pollack and 

tadpole fish emit grunts; the shore rockling produces thump-like sounds…........... 

 

 

 

03 

Fig. 1.3 Simplified block diagram of cross-correlation based Fish Population estimation 

technique…………………………………………………………………………... 

 

09 



xv 
 

Fig. 3.1  Diversity of sound generating mechanisms in fish and sonograms of sounds 

produced by these mechanisms (a) SMi attached to both SL in the Lusitanian 

toadfish Halobatrachus didactylus, (b) SMe originating at the 2R and inserting 

on a BT ventrally of the swim bladder in the black piranha Serrasalmus 

rhombeus, (c) in the stridulatory mechanism in catfish a ridged DP of the PS 

rubs in a groove of the SG, (d) ETs are plucked similar to guitar strings in the 

croaking gourami Trichopsis vittata, (e) PT stridulation in damselfish, sunfish, 

among others, and pectoral girdle vibration in sculpins by a SM originating at the 

skull and inserting at the dorsal part of the pectoral girdle……………………….. 

 

 

 

 

 

 

 

 

34 

Fig. 3.2 Schematic view of the sound-producing mechanism in Ophidion rochei (a) and 

(b) schematicgraph showing the muscle activity during sound production and the 

related oscillograms of calls. Dark areas correspond to the muscle activity……... 

 

 

36 

Fig. 3.3 Spectrogram of different fish sounds. Color scale: relative intensity…………….. 41 

Fig. 3.4 Agonistic and disturbance sounds produced by the European grey, streaked tub 

and red gurnards can be classified into three types—knocks, grunts and growls. 

The differences among species in pulse number, pulse repetition rate and 

grouping of pulses within a sound is illustrated also. Similar time scales are 

considered for all ossiligrams, i.e., single bar = 100 ms; double bar = 1 s……….. 

 

 

 

 

44 

Fig. 3.5 Chirp signal from simulation, (a) a simple simulated form and (b) spectrogram of 

chirp with linear instantaneous frequency deviation……………………………… 

45-

46 

Fig. 3.6 Pulse train representation of acoustics of fish and mammals (a) a 10 kHz fish 

signal with 10 ms duration, (b) a 5 kHz fish signal with 5 ms duration, and (c) a 

3 kHz .fish signal with 100 ms duration………………………………………… 

 

 

47 

 

Fig. 4.1 Cross-correlation function (CCF) for 32 sources and 19 bins…………………… 56 

Fig. 4.2 A distribution of fish and mammals where the two pluses (+) indicate the 

acoustic sensors and (b) from a distribution of fish and mammals in 3D spaces, 

we consider one fish/mammal N1, where H1 and H2 are the acoustic sensors……   

 

 

58 

Fig. 4.3  (a) A distribution of fish and mammals  with three acoustic sensors (ASL case) 

and (b) a fish in 3D space with three acoustic sensors (ASL case)………………  

 

60 

Fig. 4.4 (a) A distribution of fish and mammals  with three acoustic sensors (AST case)  



xvi 
 

and (b) A fish in 3D space with three acoustic sensors (AST case)……………... 61 

Fig. 4.5 Bins, b in the cross-correlation process where each delta function is considered 

as a ball and this occupies a bin according to the delay difference of  

corresponding signals, which are recorded in the acoustic sensors………………  

 

 

63 

Fig. 4.6 Number of fish and mammals vs. sum of CCF, (a) chirp signal and (b) grunt   

signal………………………………………………………………………… 

 

65 

Fig. 4.7 Number of fish and mammals vs. mean of CCF, (a) chirp signal and (b) grunt 

signal……………………………………………………………………………... 

 

66 

Fig. 4.8 Number of fish and mammals vs. standard deviation of CCF, (a) chirp signal 

and (b) grunt signal………………………………………………………………. 

 

67 

Fig. 4.9 Number fish and mammals vs. Rmsd of CCF, (a) chirp signal & (b) grunt signal.. 67 

Fig. 4.10 Block diagram representation of the process to obtain R of CCF, (a) two 

acoustic sensors, (b) three acoustic sensors (ASL case), and (c) three acoustic 

sensors (AST case)………………………………………………………………. 

 

69-

70 

Fig. 4.11 Number of fish and mammals vs. R of CCF, (a) chirp signal, (b) grunt signal 

and (c) growl signal……………………………………………………………… 

 

72 

Fig. 4.12 Variation of estimated number of fish and mammals from the actual quantity, 

(a) chirp signal, (b) grunt signal, and (c) growl signal………………………… 

72-

73 

Fig. 4.13 Number of fish and mammals vs. R of CCF (a) ASL case and (b) AST case…...   75 

Fig. 4.14 Variation of estimated number of fish and mammals from the actual quantity, 

(a) ASL case and (b) AST case………………………………………………….. 

 

75 

Fig. 4.15 Three different distributions of fish and mammals at ASL case where (a) 

Exponential distribution, (b) Normal distribution, and (c) Rayleigh distribution.. 

 

77 

Fig. 4.16 Number of damselfish, N vs. R of CCFs, (a) Exponential distribution, (b) 

Normal distribution, and (c) Rayleigh distribution……………………………… 

78 

Fig. 4.17 Actual number of damselfish vs. estimated number of damselfish, (a) 

Exponential distribution, (b) Normal distribution, and (c) Rayleigh distribution.. 

78-

79 

Fig. 4.18 Distribution of damselfish with four acoustics sensors (a) acoustic sensors in a 

line case and (b) acoustics sensors in a rectangular shape case………………….. 

 

80 

Fig. 4.19 A fish in 3D space with four acoustic sensors…………………………………… 81 



xvii 
 

Fig. 4.20 Hyperbola representation of theoretical CCF generation……………………. 82 

Fig. 4.21 Bins of CCF for 100 fish and mammals……………………………………... 83 

Fig. 4.22 Distribution of fish and mammals with random placement of acoustic sensors, 

where (a), (b), (c), and (d) represent four different random placements of 

sensors………………………………………………………………………… 

 

 

83 

Fig. 4.23 Hydrophone positions indicated with triangles where (a) Slice through a 

likelihood volume at a single time and depth. Red (blue) indicate high (low) 

probability of a source at that location, and (b) Most prominent sperm whale 

track obtained by applying a 4D (x, y, z, time) flood-fill to likelihood volumes 

for a collection of 3 s time steps spanning 20 minutes…………………………... 

 

 

 

 

85 

 

 

 

 

 

 

 

 

Fig. 5.1 Ratio of RfiniteBW and RinfiniteBW for chirp signal……………………………………. 91 

Fig. 5.2 R of CCF versus N plot (x log and y normal scale) for finite (5 kHz) and infinite 

bandwidth case with b =39 (dDBS = 0.5m and SR = 60 kSa/s) for chirp signal…… 

 

92 

Fig. 5.3 R of CCF versus N plot (x log and y normal scale) for finite (5 kHz) and infinite 

bandwidth case with b =39 (dDBS = 0.5m and SR = 60 kSa/s) for grunt signal…… 

 

92 

Fig. 5.4 SNR vs. estimated number of fish and mammals, (a) chirp signal and (b) grunt 

signal.……………………........................................................................................ 

94-

95 



xviii 
 

List of Abbreviations 

 

AUV 

ASL 

AST  

Autonomous Underwater Vehicles 

Acoustic Sensors in  line shape 

Acoustic Sensors in  triangular shape 

BT Broad Tendon 

BW Bandwidth 

CCF Cross-correlation Function 

CPUE  Catch Per Unit Effort  

DIDSON  Dual-Frequency Identification Sonar  

DP  Dorsal Process 

eDNA Environmental Deoxyribo Nucleic Acid 

ETs Enhanced Pectoral Fin Tendons 

FSA Framed-Slotted ALOHA 

GF Green’s Function 

LTMP Long-term Monitoring Program 

PCA Principal Component Analysis 

PCR polymerase Chain Reaction 

PDF Probability Density function 

PPS Pulse Per Second 

PS Pectoral Spine 

PT Pharyngeal Teeth 

ROV Remotely Operated Vehicles 

RSKM Rough Set k-Means 

SCUBA Self-Contained Underwater Breathing Apparatus 

SG Shoulder Girdle 

SL Swim Bladder Lobes 

SM Sonic Muscle  

SMe Extrinsic Sonic Muscles 

https://dosits.org/glossary/autonomous/


xix 
 

SMi Intrinsic Sonic Muscles 

SNR Signal to Noise Ration 

SPL Sound Pressure Level 

TDGF 

TS 

Time Domain Green’s Function 

Target Strength 

USV Unmanned Surface Vessels 

UWVS Underwater Video Sequence 

VC Vertebral Column 

2R Second Rib 

 

 



1 
 

CHAPTER I 

INTRODUCTION 

This chapter is introduced with an aim to bring a discussion on different aspects of the proposed 

fish population estimation technique. The significance and objective of the research are also 

discussed precisely. 

 

1.1 Introduction to Population Estimation of Fish and Mammals 

 

Population size of fish and mammals is the key concern to the scientists, ecologists, and people 

engaged with commercial fishery managements. As the term is intimately related to ecological 

balance, a slight change to it can bring a disaster to our existence.  

Some importance of fish and mammals are: 

(a) Maintain the ecological balance and inter ecosystem interaction 

(b) Provide us food and other necessities 

(c) Refresh the environment by cleaning up water and marine areas 

(d) Consider as ecological cardinality 

(e) Every year, billions of dollar business is conducted with fish and mammal’s commercial 

industry, etc. 

Therefore, to cope up with it, numerous attempts to estimate their population have been 

conducted. In the past, such attempts were investigated using costly mechanical instruments, 

sometimes based on predictions and other human interactive ways. But the outcome of 

population estimation is suffered from accuracy. The recent fishery population estimation 

techniques emphasize on acoustic measures. Different acoustic techniques are proposing to 

estimate population size lately. In this thesis, our proposed technique is also an acoustic one. 

However, such acoustic methods have some limitations too. Some offers poor resolution, limited 

estimation area, and insecurity to the fish and mammals etc. Sometimes, some methods only 

discuss a trivial framework on their proposition. They lack most important impacts which could 
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make the methods pragmatic. In our research, we have not only proposed a framework to 

estimate population size of fish and mammals but also analyze different aspects related to the 

estimation technique for practical implementation. 

 

1.2 Vocalizing Nature in Marine Fish and Mammals 

 

Researchers say the ocean is a noisy place. Millions of fish and mammals produce acoustics 

always. They do it to communicate with themselves, warn others to an impending jeopardy, 

express the paucity or availability of food etc. 

 

1.2.1 Process of Sound Production 

 

In some fish, the swim bladder is used as a sound-producing organ.  

 

 

Fig. 1.1 Schematic left lateral view of the sound-producing mechanism (black) piranha 

(Serrasalmus rhombeus). Skull and vertebrae are not shown [1]. 

A muscle attached to the swim bladder (the sonic muscle) contracts and relaxes in a rapid 

sequence. This action causes the swim bladder to vibrate and produce a low-pitched drumming 

sound as shown in Fig. 1.1. The sonic muscle of the oyster toadfish is able to contract at a rate of 
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200 times a second. Another way in which fish may produce sounds is by stridulating; a process 

in which hard body parts like teeth or bones hit each other. Body movements that create water 

currents or splashes are also used to create sounds for communication. However, there are five 

basic mechanisms, i.e., muscular vibrations of a membrane or sac, stridulation, forced flow 

through a small orifice, muscular vibration of appendages, and Percussion on a substrate, for 

producing sounds, all of which are present in fishes. 

 

1.2.2 Diversity of Sounds Among Fish and Mammals 

 

The acoustics produced by different fish and mammals vary from several parameter. These 

acoustics have some own characteristics, which vary from species to species shown in Fig. 1.2.  

 

Fig. 1.2 Agonistic sounds produced by different members of the family Gadidae and the more 

distant related gadiform, the tadpole fish. Black bar represents the time scale of 100 ms for each 

fish. Haddock emits a series of knocks; cod, pollack and tadpole fish emit grunts; the shore 

rockling produces thump-like sounds [2]. 

Vocalizations of different species are different with respect to different parameters like, 

frequency, amplitude, etc. Different sound types are categorized in different names. Some of the 
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common types of sounds are chirps, pops, grunts, growls, hoots, whistles, clicks, etc. However, a 

brief description on sound generation is discussed in chapter 3. 

 

1.3 Acoustic Sensors 

 

Researchers record fish vocalizations with the aid of an underwater microphone called acoustic 

sensors. This may be lowered into the water from a boat or carried by a scuba diver. Until now, 

divers were unaware of the wide varieties of fish vocalizations in the ocean because the sound of 

bubbles being released from scuba equipment masked the sounds produced by the fish. In 

addition, the bubbles often disturbed fish and caused them to swim away. 

The researchers of fish sound are now using re-breathers instead of conventional scuba gear. A 

re-breather is a self-contained system in which the diver repeatedly breathes in his or her exhaled 

air, so no gas bubbles enter into the water. Carbon dioxide is removed from the exhaled air inside 

the re-breather. An oxygen sensor monitors the level of oxygen in the re-breathed air and a 

microprocessor controls the delivery of fresh oxygen into the air when it’s needed. 

 

1.4 Cross-correlation 

 

In signal processing, cross-correlation is a measure of similarity of two series as a function of the 

displacement of one relative to the other. This is also known as a sliding dot product or sliding 

inner-product. In this research, total procedure is based on cross-correlation of different fish 

signals with a statistical procedure. However, the impulse response of a communication channel, 

i.e., the Green’s function (GF) retrieval of cross-correlating the waves excited by randomly 

generated ambient noise sources recorded by sensors at two locations. There have been many 

investigations regarding the use of ambient noise cross-correlation to extract the time-domain GF 

in various environments and frequency ranges of interest, e.g., underwater acoustics [3-4], helio-

seismology [5], and ultrasonic [6-9]. The procedural steps for determining the noise cross-

correlation function (CCF) are similar for all the above-mentioned environments. In brief, the 

procedure is as follows: firstly, signals from a number of different noise sources are collected by 

two sensors separated by a certain distance in the region of interest; secondly, the received 

signals are summed at each of the two sensor locations; and finally, these two noise signals are 



5 
 

cross-correlated. Most researchers have only tried to retrieve an estimate of the GF; for example, 

it has been shown theoretically that the GF can be obtained with ambient noise cross-correlation 

in the simple case of a homogeneous medium with attenuation [10]. Some researchers have 

given their attention to the emergence rate of the time-domain GF (TDGF) [6-7]. Moreover, 

ward [11] identities, means, and variances [12] have been performed in diffuse field-field 

correlations. However, none of these investigations indicate the estimation of the number of 

noise sources. 

 

1.5 Statistical Signal Processing 

 

Direct manipulation of the CCF is a complex problem. To make it simpler, in this research, the 

cross-correlation technique is reframed to a probability problem using the well-known 

occupancy problem which follows the binomial probability distribution from which a parameter 

is chosen to estimate the population of fish and mammals. 

 

1.5.1 Occupancy Problem  

 

Occupancy problems deal with the pairings of objects and have a wide range of applications in 

different fields containing probabilistic and statistical properties [13]. The basic occupancy 

problem is about placing m marbles into b bins [14]. If one threw some marbles randomly 

towards several bins, the bins would be randomly filled by the marbles, resulting in some bins 

being occupied by more than one marble, some by one while some may have none, Howlader 

reframed the framed slotted ALOHA protocol of the number of nodes estimation in terms of this 

occupancy problem [15]. He described the reframing process as follows: 

(a) In FSA (Framed-Slotted ALOHA), N nodes transmit to F slots in a frame. 

(b) Some slots will get no packet; some will one and others more than one. 

Thus, by defining the slots with only one packet as singleton slots, those with more than one 

packet collision slots and those with no packet empty slots, Howlader used the classical 

occupancy problem to determine the probabilities of empty, singleton, and collision slots [15]. 

This helped him to determine the number of neighboring nodes in a communication network. 

However, in our research, similar approach is used to convert the CCF in to statistical problem. 
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1.6 Practical Issues Regarding Fish Population Estimation 

 

Different issues are vital, which must be considered during practical fish population estimation. 

Such issues include fish distributions, bandwidth, SNR, multipath, etc. 

 

1.6.1 Distribution of Fish and Mammals 

 

Different fish distributions are practical phenomenon. If we want to estimate fish population size 

in a fishing area, the estimation performance varies for different distribution of fish and 

mammals [16]. In this research, we have considered three distribution cases, i.e., Exponential, 

Normal, and Raleigh, of fish and mammals. From simulation, we have found that the exponential 

distribution of fish and mammals can provide better results. However, for exponential 

distribution, the Probability density function (PDF) is 𝑦 = 𝑓(𝑥|𝑚) = 1/𝜇 × 𝑒−𝑥/𝑚, where m is 

the mean parameter, for Rayleigh distribution, the PDF is  𝑦 = 𝑓(𝑥|𝑚) = 𝑥/𝛽2 × 𝑒−𝑥2/2𝛽2
, 

where β is the scale parameter, and for Normal distribution, the PDF is 𝑦 = 𝑓(𝑥|𝑚, 𝑠) = 1/𝛼 ×

√2𝑒−(𝑥−𝑚)2/2𝑠2
, where s is the standard deviation. A description on different distribution of fish 

and mammals and their corresponding estimation performances is provided in chapter 4. 

 

1.6.2 Underwater Bandwidth 

 

In practical cases, underwater acoustic channels are band limited due to the frequency 

dependency of absorption loss. So, absorption loss becomes more significant with the increase of 

bandwidth, which limits the transmission range. Transmission range can be increased by limiting 

the bandwidth of signals. However, such limited bandwidth has an impact on the proposed fish 

population estimation technique. Typical bandwidths of the underwater acoustic channel for 

different ranges are shown in Table 1.1 [17]. 

Table 1.1 Available bandwidths for different ranges in underwater acoustic channel 

Type Range (km) Bandwidth (kHz) 

Very long 1000 <1 

Long 10-100 2 – 5 
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Medium 1-10 ≈ 10 

Short 0.1-1 20-50 

Very short <0.1 >100 

 

An analysis on impact of bandwidth on fish population estimation technique is discussed in 

chapter 5. 

 

1.6.3 Signal to Noise Ratio (SNR) 

 

Signal strength and quality varies from place to place in harsh underwater circumstance. Hence, 

it poses challenge to fish population estimation. By different sources, strong background noise is 

created in underwater environment [18]. Actually, underwater sound is generated by a variety of 

natural sources, such as breaking waves, rain, and marine lives. It is also generated by a variety 

of man-made sources, such as ships and military sonar. Some sounds are present more or less 

everywhere in the ocean all the time. In the ocean, the background sound is called ambient noise. 

The primary sources of ambient noise can be categorized by the frequency of sound. A table of 

different ranges of frequencies and their corresponding noises are given bellow: 

Table 1.2 Noise creates by different ranges of frequencies in underwater acoustic channel 

Frequency Band Created Noise 

(0.1-10 Hz) Noise sources include earthquakes, volcanic eruptions, storms 

and turbulence in the ocean and natural environment. 

(50-300 Hz) Ship traffic noise. 

(0.5-50 kHz) 

 

The main sources of noise are the state of an ocean surface, the 

wind conditions, the breaking waves as well as integration of air 

up to 100 kHz Wind and rain are the chief sources of noise. 

above 100 kHz Thermal noise 

  

However, an analysis on impact of SNR on fish population estimation is discussed in chapter 5. 
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1.6.4 Multipath 

 

Impact of multipath on fish population estimation is a practical case. Underwater acoustic signal  

propagation has to be introduced with multipath. The multipath geometry depends to the link 

configuration. Vertical channels showcase little multipath, but horizontal channels can have 

extremely long multipath spreads. Typical multipath spreads in the commonly used radio 

channels are to the order of several symbol intervals, whereas in the horizontal underwater 

acoustic channels, they increase to several tens or a hundred of sign intervals for moderate to 

high details rates [19], which implies more intense effects of multipath on fish population 

estimation. 

 

1.6.5 Propagation Speed of Acoustics 

 

Many things can affect the speed of acoustics, including not only the nature of the medium, (gas, 

liquid or solid) but also its temperature and any other additive substances, such as salt in water. 

Basically, acoustics travel faster through denser and hotter materials. However, in this research, we 

have considered the propagation speed of acoustics is 1500 m/s. 

Table 1.3 Different rate of propagation speed in different medium during propagation of 

acoustics 

Medium Temperature Speed in m/s 

Air 0 331.4 

Air 20 343.6 

Air 30 348.7 

Fresh Water Normal 1,493 

Sea Water Normal 1,533 

Diamond Normal 12,000 

 

 

1.6.6 Other Practical Issues 

 

Beside the issues above, other issues, i.e., path loss, Doppler Effect, capture effect, etc., can 
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affect the propagation of acoustic signals from fish/mammal to acoustic sensor. 

 

1.7 Importance of Fish Population Estimation  

 

Population estimation of fish and mammals is a very important task. It’s a mandatory task to the 

ecologists and commercial fishery managers. In ancient ages, fishermen made prediction of 

optimum area of fish and moved there to catch. However, some but not limited to importance of 

fish population estimation are given bellow [20]: 

(a) To maintain ecological balance 

(b) To continue ecological research 

(c) To discover optimum fishing area 

(d) To conduct research on diverse species of fish and mammals 

(e) To identify a sudden variation of number of a particular specie 

(f) To protect illicit fishing 

(g) To help commercial or occasional fishery activities 

(h) To benefit researchers in the field of ecology and acoustic signal processing technology 

(i) To benefit ocean community 

 

1.8 Simplified Block Diagram of Cross-correlation based Fish Population Estimation 

 

A simplified block diagram representation of cross-correlation based fish population estimation 

technique is illustrated in Fig. 1.3. The acoustics from fish and mammals are recorded by 

acoustic sensors with time delays. 
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Fig. 1.3 Simplified block diagram of cross-correlation based fish population estimation 

technique. 

These acoustics are then processed in a hybrid computer using cross-correlation technique and 

statistical conversion technique. Finally, the estimated population is displayed on a display 

system. However, a detail analysis of this technique is illustrated in this thesis. 

 

1.9 Research Objective 

 

The major objectives of this research work are given below: 

(a) To provide a novel model for population size estimation of marine fish and mammals 

using an acoustic signal processing technique that can be performed in practical cases. 

(b) To overcome the difficulties of conventional marine population estimation techniques 

like requirement of human interaction, protocol complexity, high cost, etc. 

(c) To analysis the performance of the proposed estimation technique for different types of 

distributions, acoustic sensor numbers, acoustic sensor locations, etc. 

(d) To implement different estimation parameters for performance evaluation and 

investigate different impacts, e.g., bandwidth, SNR, and Doppler effect, on the proposed 

technique. 

(e) To benefit the researches and investigators in the field of acoustic signal processing, 

marine ecology, and commercial or occasional fishery management. 

 

1.10 Research Motivation 

 

Population estimation of fish and mammals is the most important task in marine ecological 

management and commercial fishery activities. Hence, from ancient ages, such estimations are 

continuing. But, several drawbacks affected the conventional estimation techniques. Our plan 

was to propose an effective method and investigate every aspect regarding its practical 

implementation. However, the research was started with an inspiration from a novel underwater 

node estimation technique proposed by Anower et. al [13]. There, the researchers have 

eradicated the barriers of protocol complexities and human interaction of conventional node 
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estimation techniques. They used cross-correlation and statistical signal processing techniques. 

We have used that idea in our research. In that node estimation technique, the researches 

processed Gaussian signals to estimate underwater nodes in a communication network. But, in 

our research, we have processed different types of acoustics from fish and mammals with 

acoustic sensors to estimate their population size. Our goal was not only propose a method but 

also give proper directions to implement it in the practical cases. In this research, we have tried 

to build a complete framework to implement the proposed fish population estimation technique 

in practice. 

 

1.11 Thesis Organization 

 

The rest of the thesis is organized as follows:  

Chapter 2 provides a literature review of various fish population estimation techniques and their 

limitations. This chapter is actually introduced to acknowledge the readers about the background 

of our research. 

Chapter 3 illustrates a description on different types of fish acoustics. Generation of different fish 

acoustics from simulation, which are used in our research, is the key attraction of this chapter. 

Chapter 4 presents our proposed fish population estimation technique which takes into account 

of different practical issues. We have analyzed the performance of estimation in various ways. 

Chapter 5 represents different practical impacts on our proposed fish population estimation 

technique. Impact of bandwidth, SNR, and Doppler Effect are our key interest. 

Chapter 6 concludes this thesis works and confers the directions for future works. 
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CHAPTER II 

LITERATURE REVIEW OF FISH POPULATION ESTIMATION 

This chapter presents a precise description on different types of fish population estimation 

techniques of marine fish and mammals. Main features, advantages, and major limitations of 

those techniques are the main concentration of this chapter.  

 

2.1      Introduction to Different Fish Population Estimation Techniques  

 

The significance of population estimation techniques of fish and mammals can’t be described in 

a single sentence. It is extremely related to our day to day life as well as echo-system. Hence, 

numerous investigations were carried out to estimate such population size. These investigations 

can be classified in to two types. 

(a) Non-acoustic methods of fish population estimation 

(b) Acoustic methods of fish population estimation 

In the past, most of the techniques were based on the non-acoustic methods to estimate fish 

population. But lately, the researchers emphasize on acoustic methods and currently, copious 

researches are underway using acoustic methods for estimating fish population.  However, the 

non-acoustics methods used mainly mechanicals ways to estimate fish population in a certain 

area. These processes are laborious, complex, and costly. Most of the time, they could not give 

accurate results. Hence, acoustic methods were introduced. Acoustic techniques of fish 

population estimation are classified in to two ways.  

(a) Active acoustic measurement of fish population estimation and 

(b) Passive acoustic measurement of fish population estimation 

Active acoustics uses sound generated actively by transducers and the acoustic scattering 

properties of fish and mammals to image individual fish/mammals and population of fish and 

mammals [1]. Passive acoustics relies on listening to the sounds produced by fish/mammals with 
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a hydrophone to assume their distribution and behavior [1]. For passive acoustics to be useful for 

a fish/mammal that must make a sound. Thus, this technique is limited to species that produce 

sounds with the times and places where they produce them. These techniques have typically been 

used independently, depending on the situation and goals of the study.  

In this chapter, we describe different types of non-acoustic methods of fish population estimation 

firstly and then, we discuss briefly on different acoustic techniques of fish population estimation. 

 

2.2 Non-acoustic Methods of Fish Population Estimation 

 

Different types of non-acoustic methods were investigated in the past. Some of those are: visual 

sampling techniques, Raft, and Floating Radio Frequency Identification (RFID) tag systems, 

minnow traps, removal method of population estimation, environmental DNA technique, 

prediction-based macro ecological theory, etc. A discussion on major non-acoustic methods for 

fish population estimation is conducted bellow. 

 

2.2.1 Fish Population Estimation with Visual Census Techniques 

 

Visual census techniques are mainly used to estimate reef fish population. It easily collects the 

data without disturbing inherent that compare with other destructive sampling techniques [2]. 

Visual census consists of many techniques used to estimate reef fish population. Belt transect 

method was first described by Brock [3], has been adopted by the LTMP (Long Term 

Monitoring Program) to estimate reef fish population. In its simplest form, the belt transects 

method for visual census of fish population involves an observer, equipped with SCUBA gear, 

estimating the population of fish within a given area (the belt transect). A large number of 

factors, i.e., fish mobility, habitat complexity, etc., affected the estimation procedure. Further, 

errors in fish population estimations are likely to be introduced through observers’ bias. As a 

result, any program using more than one observer might ensure that differences in bias between 

observers were minimized, to allow comparisons of data collected by different observers. The 

following protocol has been adopted by the LTMP as the standard methodology for undertaking 

visual census. Strict adherence to this protocol, combined with annual inter-observer training and 

standardization ensures that the resulting data are of high quality with maximal power to detect 
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change over time. However, in this technique, at least three people are required for collection of 

visual census data. One person conducts the surveys, whereas, second person lies a tape measure 

along the centre line of each transects. The third person should stay in the boat to give surface 

support [2]. 

 

2.2.2 Environmental DNA (eDNA) Technique 

 

It investigates the potential of using meta-bar-coding of environmental DNA (eDNA) obtained 

directly from seawater samples to account for marine fish biodiversity [4-6]. This eDNA 

approach has recently been used successfully in freshwater environments, but never in marine 

settings. Results from eDNA degradation experiment is illustrated in Fig. 2.1. 

 

Fig. 2.1 Results from eDNA degradation experiment. eDNA concentration in seawater as a 

function of time for the two fish species; Platichthys flesus (circles) and Gasterosteus aculeatus 

(triangles), investigated in a 50 I aquarium [4]. 

 It was performed by isolating eDNA from ½ litre seawater samples collected in a temperate 

marine ecosystem in Denmark. Using next-generation DNA sequencing of PCR amp icons, 

eDNA was obtained from 15 different fish species, including both important consumption 
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species, as well as species rarely or never recorded by conventional monitoring. eDNA was also 

detected from a rare vagrant species in the area; European pilchard (Sardina pilchardus) [4]. To 

investigate the efficiency of eDNA approach, a comparison of its performance with 9 methods 

conventionally used in marine fish surveys. 

Auspiciously, eDNA covered the fish diversity better than or equal to any of the applied 

conventional methods. Even small samples of seawater contain the eDNA from a wide range of 

local fish species [4-5].  Although, further studies are needed to validate the eDNA approach in 

varying environmental conditions, these findings provide a proof-of-concept with perspectives 

for future monitoring of marine biodiversity and resources [4-6]. However, this technique can 

ensure accuracy but suffers from oversensitivity, high-cost, and regulation complexities. 

 

2.2.3 Estimation of Fish Population using Minnow Traps 

 

The minnow trap is a popular practice to estimate fish population [7]. Minnow traps normally 

consist of two funnel-shaped entrances at either end of a mesh box or cylinder. Minnow traps are 

a type of passive sampling gear because they rely on fish to willingly encounter and enter the 

trap [8]. They can be used to sample freshwater fish in a wide range of environments including 

lakes, wetlands, rivers, and streams. The efficiency and selectivity of minnow traps are 

influenced by the probability that fish will encounter, enter, and be retained within the trap until 

it is retrieved [9]. The size of fish captured in minnow traps is limited by the size of the 

entrances, which are normally very small (20–30 mm). Minnow traps are regarded as efficient 

for capturing small freshwater seals when baited unlike gill nets. Most fish can be released alive 

after being captured in minnow traps and predation within the traps is probable to be less than 

with fyke nets. Because of their small size, minnow traps can also be set amongst complex 

habitat and in very small and shallow pools of water. The capture efficiency of minnow traps is 

primarily subjective to the diameter of the trap entrances and mesh size. Minnow traps can also 

be used to collect relative fish population data based on calculations of catch per unit effort 

(CPUE). Minnow trap CPUE, as with other passive netting methods, is usually expressed as 

number of fish caught per net per unit of time, e.g. hours or nights. The accuracy of CPUE as an 

index of fish population is primarily determined by whether catch efficiency or ability remains 

unaffected by other factors. Unvarying catch efficiency is one of the key assumptions made 
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when assessing differences in relative fish population. In practice, a wide range of factors can 

influence catch efficiency when using minnow nets. It is important to take a cautious approach 

and consider potential differences in catch efficiency when comparing relative abundance data 

over time and space. 

 

2.2.4 Fish Population Estimation from Underwater Video Sequences using Blob Counting 

and Shape Analysis  

 

A method for fish population estimation from underwater video sequences (UWVS) using blob 

counting and shape analysis is described in [10]. f The system diagram of it is illustrated in Fig. 

2.2, which is redrawn from Fabic et al. in [10]. The video sequences were obtained with a 

moving camera resulting in rapid viewpoint changes. This makes it difficult to employ motion 

detection schemes in extracting fish images from background. 

. 

Fig. 2.2 System flowchart   

Video preprocessing involved blackening out the corals from the underwater videos. This is done 

in order to effectively estimate fish population in the environment, though excluding those that 
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are against a coral background. A histogram comparison to initially blacken out the occlusions 

using blue and non-blue templates obtained randomly from the UWVS is then applied. An 

erasure procedure to further aid in removing the coral background for fish detection is then 

introduced. However, canny edge detection was applied to extract fish contours. After the latter 

have been delineated, blob counting is then employed in order to compute the fish population. 

Due to rapid frame changes, the average fish population per unit time is computed from the 

counts in each frame. For shape analysis, blob size is initially estimated and when a threshold is 

exceeded, Zernike moment-based shape analysis is performed on the blob for comparison with 

moment signatures of selected fish species stored in a database. The label of the best matching 

moments identifies the species of the fish blob. The shape-based classification algorithm is 

designed to identify the two most common species of fish found in the Tubbathaha reef in Sulu 

Sea, Philippines. 

 

2.2.5 Mark–Recapture Techniques for Fish Population Estimation 

 

Mark–recapture data to estimate the population of fish has evolved significantly since the 

adoption of the single-census method. Selecting a suitable model to ease optimal use of the 

available data is essential. Otis et al. [11] suggested that the suitable model for fish population 

estimation is the simplest one, which does not contain assumptions that are not met. The 

markand recapture method are generally favored over the depletion method and has been shown 

to be unbiased when more than 50% of a population is marked. The mark and recapture method 

require the following conditions: (a) Marked and unmarked fish have the same mortality rates; 

(b) Marked and unmarked fish are equally vulnerable to capture; (c) Marks are retained during 

the sampling period and all marks on recaptured fish are recognized; (d) Marked fish randomly 

mix with unmarked fish; (e) There is negligible immigration during the recapture period. 

Petersen’s estimations were obtained using the unbiased estimator suggested previously (for 

sampling without replacement [12]: 

  

 

1 1
1

1

M C
N

R

 
 


,                                                                 (2.1)                                  



20 
 

where, M is the number of individuals marked during the tagging period, C is the total number of 

individuals captured during the recapture period, and R is the number of marked individuals 

caught during the recapture period. 

 

2.3 Acoustic Methods of Fish Population Estimation 

 

The practice of using acoustics for fish population estimation is burgeoning. In very recent, the 

reliable methods for fish population estimation are acoustic ones. A generalized discussion on 

leading acoustic techniques for fish population estimation is discussed below. 

 

2.3.1 A Generalized Description on Acoustic Measures for Fish Population Estimation 

 

Acoustic surveys are used in the monitoring and management of many fish species, including 

herrings, anchovies, sardines, Atlantic cod, and walleye pollock. Fisheries scientists use active 

acoustics to estimate fish population; evaluate spatial and temporal distributions; and measure 

size distributions and fish population structure. In addition, these methods can also be used to 

characterize habitats and study behaviors such as migration, spawning, feeding, and schooling 

[13]. Scientific echo-sounders operate similarly to commercially available “fish finders” by 

producing a brief, focused pulse of sound and listening for echoes. When the sound encounters 

objects that are of different acoustic impedance than the surrounding water, such as fish or the 

seafloor, some of the sound energy is reflected back to the transducer and translated into a digital 

output on a monitor (echogram). An echogram can include images of both single objects and 

groups of objects [14]. 

Target strength is a measure of how much a fish, plankton, or other object in the water column 

scatters sound towards a transducer.  In general, larger animals have larger target strengths, 

although other factors, such as the presence or absence of a gas-filled swim bladder in fishes, its 

size and shape, and a fish’s orientation and activity in the water column, also have an impact.   

When individual targets are spaced far enough apart, the number of fish can be estimated by 

counting the number of individual targets.  This is called echo-counting and is the historical way 

to estimate fish population. Sometimes, it is not possible to resolve individual targets, e.g., 

schooling fish or plankton layers, and the echo sounder is measuring the volume backscattering 
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strength of the entire school.  Echo-integration uses the total backscattered acoustic energy, 

divided by a previously determined volume backscattering coefficient [15].  This overall 

calculation is used to estimate fish population. Ground truthing acoustic data via fish trawls, 

video feeds from baited cameras, or looking to already-published data helps scientists 

authenticate acoustic estimations. 

Problems in assessing fish population can arise from changes in the behavior of the fish. For 

example, lower levels of scattering coefficient were measured from a sprat population during the 

day, when the fish were aggregated into schools, than at night, when the fish were distributed 

throughout the water column [16]. The difference in scattering led to large differences in 

acoustic fish population estimates for daytime and night-time, with more than a doubling of the 

estimation at night. 

Echo-sounders have progressed from single-beam systems developed after World War II to the 

multi-frequency, multi-beam systems in use today. Split-beam echo-sounders, operating in a 

frequency range of 12 to 200 kHz, are the standard equipment for hydro-acoustic fisheries 

assessments. Split-beam echo-sounders receive echoes in four quadrants on the transducer face, 

allowing the position of the target or the depth and range of a layer to be determined in three 

dimensions.  Split-beam echo-sounders can sample to water depths of 100 m to greater than 500 

m. Multi-beam echo-sounders, originally developed for mapping the seafloor, project a fan of 

narrow sound beams outward into the water and record echoes in each beam.  This system covers 

a wide swath at high resolution. Broadband systems, which operate at a wider frequency band 

than traditional echo-sounders, allow for size classification of mixed assemblages of fish, 

something very important for diverse environments such as coral reefs [15, 17]. 

Most echo-sounders are mounted on a ship’s hull.  Transducers can also be deployed on a pole 

mount, or towed behind or alongside a vessel (e.g. “towfish”).  Towed bodies are particularly 

useful for studies of deep-living species, which typically live below the range of an echo-sounder 

at the surface. Instruments can also be deployed on or towed behind remotely operated vehicles 

(ROVs), autonomous underwater vehicles (AUVs, such as gliders), and unmanned surface 

vessels (USVs) [18]. Fisheries assessments can also use transducers in fixed locations to provide 

continuous, high-resolution acoustic data to identify and count fish. Upward facing, split-beam 

echo-sounders are often used to quantify fish passage at hydroelectric dams.  They can also be 

used to characterize schooling behavior in fish and investigate variability in schooling dynamics. 
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Acoustic cameras use higher frequencies and multiple beams to create high resolution, three-

dimensional digital images of the water column.  However, the higher frequencies used by these 

systems also limits their range. 

 

2.3.2 Fish Population Estimation using Echo Integration 

 

The theory of echo formation provides formulas relating echo energy to physical characteristics 

of the target. Single‐target theory (applicable to counting isolated fish) is extended to the 

multiple‐target case relevant to schooling fish. An echo‐integrator equation relates fish 

population to echo energy integrated over a time gate corresponding to the depth channel of 

interest. Parameters include the equivalent beam angle, the expected backscattering cross section 

per fish, equipment sensitivity, and a time‐varied‐gain correction factor [19].  

 

Fig. 2.3 Components of a sonar showing how the output signal due to a target at range R is 

formed where the transmitter pulse, Vo(t) is the input that is successively modified by each 

component leading to the output signal v (R, t) and the echo integral E [19]. 

Variation of environmental factors (sound speed and absorption) affects the parameter values. 

More important is the variation of biological factors (fish behavior and physiology) which affects 
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back scattering cross-section and target strength. Sonar components are shown in Fig. 2.3. 

Verification of the echo‐integrator equation, depending upon the linearity principle concerning 

the addition of signals from randomly distributed multiple targets, is discussed in [19]. The swim 

bladder is the leading sound reflector in fish having one. Therefore, fish targets may be classified 

as (a) bladder closed, (b) bladder open, or (c) no bladder. Within each category, fish of the same 

size have similar target strengths. Target strength has a variation with fish size, water depth, and 

time. Experimental target strengths are well scattered even for nominally similar fish. 

Nevertheless, useful information about fish population can be obtained through careful 

application of this acoustical technique. 

 

2.3.3 Dual-Beam Transducer in Hydro Acoustic Fish Assessment Systems 

 

The aspects of using a narrow wide-beam acoustic transducer in systems for estimating fish 

abundance are illustrated in [20]. In this technique, the acoustic pulse is transmitted with a 

narrow beam and the echo is received on both the narrow and wide beams. The signals received 

at the two transducers can be used to determine the acoustic scattering cross section of the fish. 

The mean value of the acoustic scattering cross section can be used to evaluate the scale factor 

needed by echo integrators to obtain absolute fish population estimation as in Fig. 2.4. The 

outputs of the two transducers can also be used to control the sampling volume in an echo 

counting system. However, two the main limitations of the system are it cannot provide both 

high resolution and good volume coverage. 

 

 (a). 

Fig. 2.4 Block diagram of echo integrator. 

 

 

https://ieeexplore.ieee.org/abstract/document/1161349/
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2.3.4 Dual-Frequency Identification Sonar (DIDSON) Technique 

 

Initially designed for military purposes, dual‐frequency identification sonar (DIDSON) has been 

used in environmental management for a decade [21-22].  

 

Fig. 2.5 Analysis pathways implemented in echo-view (version 4.1). Four parallel processes are 

presented that provide similar outcomes even though they are used to optimize analyses under 

various conditions [21]. 

This acoustic camera uses higher frequencies and more sub‐beams than common hydro-acoustic 

tools, which improves image resolution and then enables observation of fish morphology and 

swimming behavior. The ability to subtract static echoes from echograms and directly measure 

fish length improve the species‐identification process. An analysis of this technique stated in Fig. 

2.5. However, some limits have been identified, such as automatic dataset recording and the low 

range of the detection beam, which decreases accuracy [22], but efficient tools are now being 

developed to improve the accuracy of data recording (morphology, species identification, 
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direction and speed). The new technological properties of acoustic cameras, such as the 

video‐like visualization of the data, have greatly improved monitoring of diadromous fish 

population, helping river and fisheries managers and researchers in making decisions [22]. 

 

2.3.5 Multiple Scattering in a Reflecting Cavity: A Fish Counting Technique 

 

A pulse was transmitted in the tank using a single source; the echoes from the reverberations into 

the tank were recorded on receivers simultaneously. The recorded echoes have been reverberated 

by boundaries of the tank, and scattered by fish. 

 

Fig. 2.6 Representation of two ray paths in square cavity (full lines) and their analog in a 

medium without interface (dashed lines) using the method of images [23]. 

M pulses were generated at a given rate, while the fish were swimming. For each of the pulses k, 

ranging from 1 to M, the positions of the fish is in the tank because they were swimming freely. 

Therefore, the echoes from the fish were different for each time series. And echoes from the 

fixed boundaries of the tank remained identical. Figure 2.6 represents two ray paths in square 

cavity (full lines) and their analog in a medium without interface (dashed lines) using the method 

of images. 
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For these experiments, the pulses consisted of 50 ms long chirps between 60 and 130 KHz, 

transmitted every other second. The process is explained in details in [23]. σt is estimated from 

the slope of R(t) in logarithmic domain. From the exponential decay of R(t), we easily found the 

number of fish abundance. This is defined as: 

( )
tN tc

vR t e



 ,                                                             (2.2)                                  

where R(t) is the total scattering cross section of one fish, N is the number of fish in the tank, V is 

the volume of the tank, c is the sound speed in water, and σt can be estimated from the 

exponential decay of the ratio of the measured coherent and incoherent intensities in the tank. 

However, these techniques need large number of fish to be captured, so these directly affects 

inhabits of the fish and mammals. 

 

2.3.6 Multi-Frequency Fishery Sonar Surveys 

 

Remote species classification using fisheries acoustic techniques in coral reef ecosystems 

remains one of the greatest hurdles in developing informative metrics and indicators required for 

ecosystem management. It was reviewed that long-term marine ecosystem acoustic surveys that 

have been carried out in the US Caribbean covering various coral reef habitat types and 

evaluated metrics that may be helpful in classifying multi-frequency acoustic signatures of fish 

aggregations to taxonomic groups. It was found that the energetic properties across frequencies, 

in particular the mean and the maximum volume backscattering coefficient, provided the 

majority of the discriminating power in separating schools and aggregations into distinct groups 

[24]. To a lesser extent, school shape and geometry helped isolate a distinctive group of reef 

fishes based on shoaling behavior. Schools and aggregations were clustered into five distinct 

groups. Cluster obtained from the RSKM plotted on a PCA bi-plot is illustrated in Fig. 2.7. 
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Fig. 2.7 Cluster obtained from the RSKM plotted on a PCA bi-plot. The ellipses surrounded the 

clusters show the 68 percent confidence intervals [24]. 

The use of underwater video surveys from a remote operating vehicle (ROV) conducted in the 

proximity of the acoustic observations allowed us to associate the clusters with broad categories 

of species groups such as large predators, including fishery important species to small forage 

fishes [24]. The remote classification methods described here are an important step toward 

improving marine ecosystem acoustics for the study and management of coral reef fish 

communities. 

 

2.3.7 Fish Population Estimation Using Analysis of Echo Peak PDF from a Single-

Transducer Sonar 

 

Population size of fish was estimated in three Wisconsin lakes from echo peak probability 

density functions (PDFs) obtained at night with a single-transducer 70-kHz echo-sounder [25]. 
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At night, cisco (Coregonus artedii) dominated the pelagic zone in all three lakes. The beam 

pattern effect was removed with a de-convolving filter technique. Fish size was estimated by 

fitting a combination of Rice PDFs to the de-convolved fish scattering PDF. Vertical density 

profiles and fish population estimation obtained acoustically corresponded to distributions and 

lengths of fish caught in vertical gill nets. The proportion of different size classes caught in gill 

nets agreed fairly well with the proportions determined acoustically. 

 

 Fig. 2.8 Data collection and processing of the corresponding technique [25].  

This analysis can be applied to signals from no calibrated sonar and can be used to calibrate 

simultaneously obtained echo squared integration values. With calibrated soars, target strength 

can be estimated in situ. For Cisco, TS = 21log10L – 67.2, where, TS is target strength in 

(decibels) and L is fish length (centimeters) [25]. The average number of Cisco in the three lakes 

ranged from 89 to 1551 fish/ha, corresponding to a weight of 2-223 kg/ha. Maximum fish 

population ranges from 12 to 49 fish/1000 m3 [25]. 

 

2.3.8 Statistical Signal Processing Approach of Fish Population Estimation 

 

A statistical signal processing approach to estimate fish population was introduced in [26]. It was 

a passive acoustic technique and it can solve some major drawbacks of conventional approaches. 

Our proposed technique is quite similar to that. Though the technique has an immense 
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significance, it avoids a number of practical effects, i.e., underwater bandwidth, SNR, Doppler 

Effect, multipath, and sensor locations, which will be arrived during practical implementation. It 

also considered only one fish signal to estimate population, where in practice, fish signals can be 

categorized in several types. Similarly, it used two sensors in estimation, where the increase of 

sensors can provide a better accuracy. The performance of different estimation parameters in this 

technique is also absent there. A consideration of uniform random distributions is executed 

throughout the literature [26]. But, in practical cases, the impact of different fish distributions is 

significant, which is absent in that literature. Though the process was based on different fish 

acoustics, a trivial discussion on only one signal was presented in that research. However, 

different acoustics patterns, frequency, and types are significant to define the technique. Taking 

into account of these limitations, we have continued our investigation to estimate the  population 

of vocalizng fish and mammals, where the practical issues are properly analyzed. In this 

research, we have introduced a complete framework of cross-correlation based fish population 

estimation technique by overcoming the limitations of conventional techniques. 

 

2.4 Discussions 

 

Fish population estimation and classification of fish species have been an integral part of marine 

science and ecological research. These tasks are important for the assessment of fish abundance, 

distribution, and diversity in marine environments. With some particular advantages, most of the 

conventional non-acoustic fish population estimation techniques suffer from major drawbacks. 

Some common drawbacks are below: 

(a) Time consuming 

(b) Mostly human interaction 

(c) Jeopardizing fish and mammals 

(d) Poor accuracy 

(e) Use of costly mechanical devices, etc. 

To mitigate the limitations of conventional non-acoustic methods, lately, a great emphasize is put 

on acoustic techniques of fish population estimation. However, the conventional acoustic 

methods of fish population estimation described in sub-sections 2.3.2 - 2.3.7 suffer from several 

limitations like: 
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(a) Use of high frequency that harms the inhibitions of fish and mammals 

(b) Requirement of large number of fish and mammals for proper estimation 

(c) Low resolution and poor coverage area 

(d)  Requirement of costly electronic instruments and monitoring, etc. 

To overcome all the major limitations, cross-correlation based fish population estimation 

technique is proposed. This technique is suitable because of its non-human interaction nature, 

requirement of low-cost instruments, being safe for fish inhabitations, and its well accuracy.  

 

2.5 Chapter Summary 

 

The main goal of this chapter is to show the background reason of our proposed technique. As a 

mandatory task, population estimation of fish and mammals carries a great significance. Several 

lacking of conventional techniques create a plot to propose a new one that can solve the major 

drawbacks. That was the cardinal reason of our research. 
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CHAPTER III 

GENERATION OF FISH ACOUSTICS 

This chapter depicts a precise explanation on fish acoustics. Important aspects regarding fish 

acoustics, different mechanisms used in fish and mammals to generate acoustics and diverse 

types of fish acoustics are discussed here. However, generation of different fish acoustics from 

simulation is the key attraction of this chapter. 

 

3.1 Introduction to Fish Acoustics 

 

Vocalizing nature in fish and mammals are well known from thousands of years. Such nature is 

an important area of research from ancient age. Vocal fish produce sounds that commonly 

comprise low-frequency pulses that vary in duration, number, and repetition rate [1]. The 

diversity of sounds made by fish is not as remarkable as in other taxa, such as birds. Most fish 

show poor amplitude and frequency modulation in their sounds [2-3] and have relatively limited 

acoustical repertoires; few species of fish emit more than one or two distinct sound types [4-5]. 

Also, fish appear to produce fewer calls (under water) than insects, anurans or birds (air), which 

can produce thousands of calls per day, probably due to physiological constraints on sound 

production in water vs. air [6]. To understand the scope for acoustic communication in the 

variability of sounds emitted by different species of fish and in different social contexts, detailed 

comparisons between sound characteristics need to be made. Unluckily, various authors have 

adopted different ways of describing sounds, which creates confusion, such as in the labeling of 

sound types, the acoustic parameters measured, precision of data presented (including extremely 

small sample sizes and differences in descriptive statistics given), and filter bandwidth of 

sonograms selected. Also, studies that prove the function of sound variability (i.e. of certain 

sound types or specific acoustical characteristics) such as through playback experiments are 

lacking in the literature. Playback experiments have been useful in analyzing the role of 

advertisement calls such as those usually found in insects, anurans and birds, but have been 

largely unsuccessful with the typical close-range acoustic signals of fish, where additional 



34 
 

stimuli are often needed [7]. In addition, technical limitations such as the inability of speakers to 

accurately propagate the low frequency and low amplitude sounds of many fish may be involved. 

Humans across different cultures have exploited sonic abilities of fish for centuries, often to 

these present days. Localizing fish by listening to species-specific acoustic signals is an art form 

that has been employed in conjunction with fisheries, e.g., Sciaenid and carangid fisheries in 

Malaya [8]. However, in this research, we use acoustic behaviors of fish and mammals to 

investigate a novel fish population estimation technique. Pre-knowledge about fish acoustics is 

one the prerequisite to implement this technique. 

 

3.2 Mechanism of Fish Acoustics 

 

Fish have evolved diverse mechanisms to generate sound as shown in Fig. 3.1. These include 

rubbing of bony elements against each other (stridulation), vibrating swim bladders or pectoral 

girdles via rapidly contracting muscles, and plucking enhanced tendons of pectoral fins. While 

stridulatory or plucking mechanisms produce wideband pulsed sounds with frequencies 

extending up to several kHz, vibration of the swim bladder results in low frequency (<1 kHz) 

tonal, often harmonic, and signals [9]. The major mechanisms of generating acoustics in fish and 

mammals are discussed below: 
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Fig. 3.1 Diversity of sound generating mechanisms in fish and sonograms of sounds produced by 

these mechanisms (a) SMi attached to both SL in the Lusitanian toadfish Halobatrachus 

didactylus, (b) SMe originating at the 2R and inserting on a BT ventrally of the swim bladder in 

the black piranha Serrasalmus rhombeus, (c) in the stridulatory mechanism in catfish a ridged 

DP of the PS rubs in a groove of the SG, (d) ETs are plucked similar to guitar strings in the 

croaking gourami Trichopsisvittata, (e) PT stridulation in damselfish, sunfish, among others, and 

pectoral girdle vibration in sculpins by a SM originating at the skull and inserting at the dorsal 

part of the pectoral girdle. All sonagrams show sounds produced in agonistic contexts [10]. 

 

3.2.1 Stridulatory Mechanisms 

 

Stridulatory mechanisms are found among species that rub pharyngeal teeth against each other in 

connection with non-feeding activities such as alarm reactions and defending territories. The 

best-known sound producers of this group are members of the family Haemulidae (grunts) [11]. 

Pharyngeal teeth stridulation is attributed to several additional fish families such as centrarchids 

or cichlids, which produce burst-like sounds, although the supporting evidence remains sparse 

[14]. Perhaps the best-studied stridulatory organs are those found in numerous catfish families; 

these organs consist primarily of enhanced pectoral spines with a series of ridges on their 

proximal end [13]. Rubbing the ridges, which are located on a dorsal process at the base of the 

spine or against a slightly concave groove within the fused pectoral girdle (cleithrum, coracoid), 

results in a series of short pulses [14-15]. A sound producing apparatus of the dorsal fin has been 

described in the sisorid catfish [16]. 

 

3.2.2 Swim Bladder Mechanisms 

 

Inside the abdominal cavity of most types of fish is a gas-filled sac called a swim bladder. The 

fish uses the sac to control its buoyancy. When gas is added to the swim bladder, the fish is more 

buoyant and can swim higher in the water. When gas is removed, the fish sinks in the water. The 

swim bladder is filled in one of two ways. Some fish gulp air from the water surface. The air 

then passes through a duct connecting the esophagus to the swim bladder. Schematic view of the 

sound-producing mechanism in Ophidion rochei is shown in Fig. 3.2. 
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Fig. 3.2 Schematic view of the sound-producing mechanism in Ophidion rochei (a) and (b) 

schematicgraph showing the muscle activity during sound production and the related 

oscillograms of calls. Dark areas correspond to the muscle activity [17]. 

The esophagus is the passageway that connects the mouth to the stomach. Other fish have a gas 

gland. This extracts gas from the blood and sends it into the swim bladder. However, several 

swim bladder–based mechanisms result from evolutionary convergence and are constructed 

around the same basic principle: fish have to provoke the vibration of a gas-filled structure 

whose base functions include buoyancy and respiration [18]. Classically, the swim bladder has 

been modeled as a pulsating underwater bubble, an omni-directional and resonant monopole. 

Because of the compressibility of gas in the bladder compared with the surrounding water, an 

acoustic pressure wave is believed to excite the bladder into vibration that radiates particle 

motion to the ears [19]. Similarly, single muscle contractions would excite the swim bladder wall 

for sound production. 
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3.2.3 Cavitation Mechanisms 

 

So-called cavitation sounds are produced during the feeding of the fish with a piece of food. 

Owing to the negative pressure inside of the mouth caused by its abrupt opening, aimed grabbing 

(suction) of the prey occurs. A rapid drop of the pressure inside of the oral cavity can lead to the 

appearance of small cavitation bubbles. Reducing of their volume occurs for a short time, and it 

is accompanied by a sound pulse [20]. The sounds produced in such a way belong to 

unspecialized sounds. 

 

3.2.4 Hydrodynamic Mechanisms 

 

Hydrodynamic sounds were discovered and identified before many other sounds during 

systematic investigations of underwater noises of biological origin. They appear during 

swimming of fishes. Some researchers suggest calling them swimming sounds because their 

origin is connected both with the movement of water against the external surface of the fish and 

with the movement of internal structures of the fish [21].  

 

3.2.5 Respiratory Mechanisms 

 

The sounds that appear during movements of the opercular plates in the process of breathing of  

fish are poorly investigated. Such sounds are similar to claps and knocks. Most of the cases, they 

belong to unspecialized sounds. However, the loud sounds of Botiahorae produced by opercular 

movements are registered during agonistic contacts. The blockage of the opercular movements 

by the fixation of the opercular plates leads to the loss of the capability for sound production 

[22]. 

 

3.3 Significant Aspects Regarding Fish Acoustics 

 

Generally, fish acoustics have some characteristics, which may define its sources. The reason 

behind generation of acoustics in fish and mammals as well as different correlation between 
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acoustic parameters is important topics in fish acoustics research. However, some significant 

aspects regarding fish acoustics are illustrated bellow. 

 

3.3.1 Why are Sounds Produced in Some Taxa but not in others? 

 

Although all fish possess the hearing sense and detect the acoustic scene [23], most fish species 

lack the ability to produce sounds, indicating that acoustic communication may be advantageous 

but is not a vital function as is swimming, feeding, breathing or eating. Interestingly, many of the 

structures used in these vital functions can be modified for sound production. Expatiation refers 

to a functional character previously shaped by natural selection for a particular function that is 

co-opted for a new use that enhances fitness [24]. The term expatiation has been used once in the 

fish sound-production literature [25] in regard to the jaw-snapping mechanism in damselfish. 

Recent descriptions of different mechanisms allow the suggestion that sound production 

mechanisms result from numerous and varied expatiations of existing structures. The parsimony 

principle states that a history involving a minimum number of changes in a set of sequences 

likely approximates the actual evolutionary history of the sequences. It is postulated that sound 

production appeared in fish taxa that were able to take advantage of their non-voluntary sounds. 

This hypothesis supports both observations of numerous unrelated mechanisms of sound 

production in fish and that many species do not produce sounds. 

 

3.3.2 Reasons of Sound Production among Fish and Mammals 

 

Although people have known for a long time that certain fish can vocalize, scientists have 

recently realized how widespread and intriguing this ability is. Like us, fish produce sound in 

two main ways, intentionally and unintentionally. Unintentional sounds are produced by fish all 

the time, mostly by swimming and feeding. However, they make a far greater variety of sound 

intentionally in their efforts to communicate with the other creatures living in their world.  

Fish create sounds for several different reasons, to stay in touch with the shoal, to warn shoal-

mates of danger, to attract, communicate with and stimulate mates, to scare intruders away from 

eggs and young and possibly even to echolocate in some deep-sea species [26]. Some fish are 

capable of making very loud sounds. One of the noisiest fish in the oceans is the Oyster 
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Toadfish, Opsanus tau. Because of their noisiness, Oyster Toadfishes were studied by the US 

Navy, they kept hearing them on their sonar, and it has been claimed that measured from a 

distance 60 cm the volume of sounds produced by the Oyster Toadfish can reach 100 decibels, 

which is equivalent to a piece of heavy machinery.  

Of course, many fish try to take advantage of the sounds other species make. Thus, some sharks 

use sound to locate their prey while some smaller fish can detect the sounds larger predators 

make in their hunting. Recent research has shown that some Clupeid fish, (Herrings and Shads) 

can detect the ultrasonic echolocation sound produced by hunting dolphins from a distance of up 

to 187 meters. 

 

3.3.3 Effect of Body Size on Acoustics Generation 

 

Body size plays a significant impact on sound characteristics. A contrast between two damselfish 

was observed, where one is 4 mm larger than the other. The peak frequency of acoustics from the 

larger male was smaller than that of a smaller male damselfish [27]. An analysis on croaking 

sounds of female T. vittata revealed that sound characteristics are affected by different factors. 

While the factor body size explains some properties of sounds such as the dominant frequencies, 

it fails to affect others such as SPL in particular in adult fish [28]. However, some related terms 

regarding the impact of body size on acoustics generation are discussed below. 

 

3.3.3.1 Dominant Frequency 

 

The dominant frequency of sounds decreases with body size in female T. vittata, similar to males 

in all representatives of the genus Trichopsis [29] and many nonrelated species investigated so 

far. The correlation is strong for both size measures, namely weight and length. The relationships 

between size and dominant (peak) frequency of acoustic signals are mainly but not exclusively 

found in species generating short-pulsed sounds. Myrberg et al. argued that differences in the 

peak frequencies of chirp sounds produced by male bicolor damselfish are constrained by the 

volume of their swim bladder [30]. 
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3.3.3.2 Sound Level 

 

An increase in sound amplitudes with growth has been shown in several studies in non-related 

taxa such as tigerfish, Therapon jarbua, gouramis, toadfish and catfish. In contrast, a size-

dependent increase in sound level has seldom been described in adult fish except in male 

Cynoscion regalis. In catfish species, it was demonstrated when both sexes and several species 

were pooled [31]. In both female and male seahorse H. reidi, such a relationship is lacking. 

Similarly, neither male nor female T. vittatas how a size-dependent change in sound level [29]. 

Interestingly, the current detailed analysis of female T. vittata revealed a decrease in the sound 

pressure level, SPL of acoustic signals produced later than at the beginning of agonistic 

interactions. 

 

3.3.3.3 Temporal Characteristics 

 

Temporal characteristics such as sound duration, number of pulses within sounds, pulse duration 

and pulse periods typically increased with growth or size in all species studied [32]. The few 

exceptions include the toadfish H. didactylus, in which the number of pulses within a sound and 

thus sound duration decreased as size increased during ontogeny [33]. It was showed that sound 

duration depended on the size of the sound-generating mechanisms, namely the length of the 

pectoral spine in 7 catfish species from 4 families [33]. There was no relationship between body 

size and temporal patterns of sounds such as pulse period in female T. vittata were found. A 

correlation between pulse period and size was also lacking in males [29]. 

 

3.4 Diversity of Acoustics in Fish and Mammals 

 

According to the researchers, the world under the ocean is often noisy. Thousand types of fish 

and mammals, and perhaps many more, produce sounds. Such vocalizations have taken a 

spacious variety of forms, e.g., chirps, pops, hoots clicks, grunts, whistles, purrs, groans, growls, 

barks, hums, rattles, etc.   
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Fig. 3.3 Spectrogram of different fish sounds. Color scale: relative intensity [17]. 

Although numerous sonic fishes produce different sounds as shown in Fig. 3.3, sound production 

for social communication occurs in a restricted number of families. In some taxa, i.e., Doradidae, 

Bagridae, Pimelodidae, Batrachoididae, Gadidae, Sciaenidae, Holocentridae, Pomacentridae, and 

Carapidae, all, or almost all, species have the ability to call although mute species exist. 

Many vocalizing fish from closely related species live sympatric ally [34] emit sounds to attract 

their mates to the spawning site [35]. However, a description of different types of fish acoustics 

is given below. 

 

3.4.1 Chirp 

 

Croaker is a kind of fish produce a sound, which is akin to a chirp signal. Likewise, some species 
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of whale including humpback whales (Megaptera novaeangliae) [36], some dolphin species, 

including bottlenose dolphins [37], some mammals species like dugongs (Dugong dugon) [38] 

etc. can produce chirp like sound. From a sound analysis of Plectroglyphidodon lacrymatus and 

Dascyllus aruanus species of damselfishes, it was found that their generated chirps consisted of 

trains of 12–42 short pulses of three to six cycles, with a duration from 0·6 to 1·27 ms; and the 

peak frequency varied from 3400 Hz to 4100 Hz [39]. 

 

3.4.2 Clunk 

 

Northern searobin (Prionotus carolinus), Southern striped searobin (P. evolans) [40-43], Black 

Sea gurnard [44], etc. can produce cluck like sound. The cluck, generated by Northern searobin 

(Prionotus carolinus) has a frequency range of 40Hz to 2400 Hz with duration of 100 ms [40-

43]. 

 

3.4.3 Grunt 

 

Japanese gurnard (Chelidonichthys kumu) [45], grey gurnard (Eutrigla gurnardus) [46], the 

oyster toadfish Opsanus tau [47-48], gulf toadfish O. beta [49-50], Porichthys notatus nesting 

males [51] etc. species can produce a grunt like sound. The haddocks emitted grunts lasted less 

than 75 ms and comprised 3–4 pulses, whereas the grunts produced by codfish had durations 

were typically smaller than 150 ms and consisted of around 9 pulses. Grunts are broadband (up 

to 3 kHz) pulsed sounds which have a lasting of 300 ms approximately. 

 

3.4.4 Growl 

 

Pollimyrus adspersus, Cichlasoma centrarchu [52] etc. produce a growl like sound. The growls 

are broadband (100 Hz – 2 kHz) pulsed sounds, variable in duration, and with the typical pulse 

repetition rate of 25 pps [53]. 
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3.4.5 Hoot and Pop 

Hoots and pops are sounds heard exclusively in aggressive interactions. Hoots are made by 

P.Isidori [54], P. ballayi [55], P. adspersus [56], etc. and are relatively short sounds (30 ms), 

with frequencies lower than 1 kHz, and made up of nearly sinusoidal waveforms. Pops are made 

by species of Chromis chromis [57], Pollimyrus [54, 56], Gnathonemus petersii [58], etc., and 

consist of a series of pulse emissions with focal energies up to 2–3 kHz. 

 

3.4.6 Click 

 

Cod (Gadus morhua) can produce click like sound with peak frequency 55.95  2.22 kHz; peak-

to-peak duration 50.70  60.45 ms [59]. Beluga (Delphinapterus leucas), bottlenose dolphin 

(Tursiops truncatus) [60], Sperm whale [61], etc. fish and mammals can produce similar sound-

signal. 

 

3.4.7 Whistle 

 

Whistle is common among the killer whale (Orcinus orca) [62], some species of dolphins like 

(tursiops truncatus) [63] and various species of mammals. 

 

3.4.8 Knock 

 

Three species of carapids from two genera (Carapus and Encheliophis) emitted sounds 

consisting of a series of knock and differed among species in timing and grouping of knocks 

[64]. Two species of Carapus differed in duration of sound sequence and knock period, one 

emitting long sounds (25–30 s) with fast knock repetition rate and the other producing brief 

sounds (3–5 s) with longer knock periods (2–4-fold larger than the former), while the 

Encheliophis species emitted single knocks or sequences of less than 1 s duration [64]. On 

average, Knocking sounds can vary from 1 s (short) to approximately 9 s (long). However, fish 

sound types are much more diverse. The discussion above just focuses on some of them which 

are primary types. Three types of acoustics and their generating species are illustrated in Fig. 3.4. 
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Fig. 3.4 Agonistic and disturbance sounds produced by the European grey, streaked tub and red 

gurnards can be classified into three types—knocks, grunts and growls. The differences among 

species in pulse number, pulse repetition rate and grouping of pulses within a sound is illustrated 

also. Similar time scales are considered for all ossiligrams, i.e., single bar = 100 ms; double bar = 

1 s [64]. 

3.5 Generation of Fish Acoustics from Simulation 

 

In our research, though we consider chirp signals and thus chirp generating species mainly, we 

take another two signals, i.e., grunt and growl, to show a relative performance analysis. We have 

used these signals which are categorized on frequency ranges. From section 3.4, we know that 

every type of signals has distinct characteristics, where the frequency range or dominant 

frequency plays the main role to define that signal. However, in this section, our main focus is on 

different types of fish acoustics generation from simulation based on frequency level. We used 

MATLAB as our simulation tool in this thesis.  
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3.5.1 Equation of Fish/Mammals Acoustics 

 

Typically, equation of acoustics from fish or mammals can be defined as follows [65-66]: 
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where, f1 is the starting frequency in Hz, f2 is the ending frequency in Hz, d is the duration in 

second, P is the starting phase, and A is the amplitude. 

 

3.5.2 Generation of Fish Acoustics using MATLAB 

 

Most fish signals consist of several pulses which generate a pulse train. In real-time surveys, 

researchers found fish acoustics as pulse train and sinusoidal form [66-68]. A pulse train can be 

periodic or non-periodic. In this thesis, we have worked with periodic pulse train to generate fish 

signals. We have generated fish acoustics considering different real-time parameters, i.e., 

frequency, time duration, bandwidth, etc., regarding fish signals. Similarly, fish signals can be 

represented as swift frequency wave.  In addition to the sin and cos functions in MATLAB, the 

toolbox offers other functions that produce periodic signals such as sawtooth and square. The 

toolbox of MATLAB provides functions to generate swept-frequency waveforms such as the 

chirp function. Two optional parameters specify alternative sweep methods and initial phase in 

degrees. A simulated fish chirp is generated below: 
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         (b) 

Fig. 3.5 Chirp signal from simulation, (a) a simple simulated form and (b) spectrogram of chirp 

with linear instantaneous frequency deviation. 

Figure 3.5 shows simulated form of chirp signal, where (a) represents a simple form of chirp 

with duration of 1s and (b) represents a chirp with linear instantaneous frequency deviation. 

Here, the chirp is sampled at 1 kHz for 2 seconds. The instantaneous frequency is 0 at t = 0 and 

crosses 200 Hz at t = 1 second.  

In signal processing studies, chirp is a signal in which the frequency increases (up-chirp) or 

decreases (down-chirp) with time. In some sources, the term chirp is used interchangeably with 

sweep signal [69]. Chirps from fish and mammals are analogous to such sweep signal, where 

frequency is varied from species to species. However, a pulse train representation of fish signal 

is varied with different behaviors of fish and mammals, i.e., agnostic, courtship, etc. It also varies 

from species to species. Such signals with different frequencies are given below: 
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       (a) 

 

   (b)

 

 

       (c) 

Fig. 3.6 Pulse train representation of acoustics of fish and mammals (a) 10 kHz fish signal with 

10 ms duration, (b) 5 kHz fish signal with 5 ms duration, and (c) 3 kHz fish signal with 100 ms 

duration. 

In Figs. 3.6(a), 3.6(b), and 3.6(c), the pulse repetition frequency is 1 kHz; sample rate is 50 kHz 

and the repetition amplitude should attenuate by 0.9 each time. Figures 3.6 (a) and 3.6(b) have 

80% bandwidth and Fig. 3.6 (c) has 90% bandwidth. Figure 3.6 (c) represents a practical type of 

fish signal. It can be a 3 kHz grunt signal. However, to generate pulse trains, we use the pulstran 

function in MATLAB. 

 

3.6 Chapter Summary 

 

The time domain representation of fish acoustics can be in swift frequency wave or pulse train. 
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In practical situations, this acoustic signal can be affected by different factors to reach the 

recording tools. Consequently, it is a challenging task to receive a practical signal and continue 

estimation. However, the discussions on fish acoustics in this chapter carries a great importance 

to define the overall process of estimation and factors that affect the process of estimation.  
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CHAPTER IV 

CROSS-CORRELATION BASED FISH POPULATION ESTIMATION 

TECHNIQUE 

This chapter describes the proposed population estimation technique of marine fish and 

mammals. Selection of optimum estimation parameter for estimation, use of different number of 

acoustic sensors to show a performance analysis, investigation of estimation with respect to 

different fish acoustics, and fish distributions, etc., are the main focus in this chapter. Basically, a 

theoretical and simulated form of estimation is conducted, where simulations are performed 

using MATLAB software. 

 

4.1 Introduction to Fish Population Estimation 

 

The ocean is a tremendous diversity and species-abundant place. It is the residence of myriad 

organisms dwelling in different ecosystems. Fish and mammals are key elements of marine 

ecology. For millennia mankind has had a close tie with them because they supply us food and 

numerous necessities. Millions of people rely on fishing or fish breeding for livelihood. Living 

with an amazing diversity of fish species, Marine mammals form a diverse group of 129 species 

that has depended on the ocean to survive [1-2]. Marine fish and mammals play a very important 

role in maintaining stability of marine ecosystems, mainly in the control of prey populations. 

Inauspiciously, people are slapdash to this natural resource. Over thousands of years, too many 

fish and mammals have been taken. Many fishing areas have been over-fished. Lack of early 

knowledge about the population and diversity of species as well as haphazardly fishing can make 

the ecosystem imbalanced. Therefore, a Proper estimation of marine population size is a 

mandatory task to maintain the ecological balance. An accurate estimation of marine population 

is also crucial because ecological research and managements largely depend on it. However, it is 

quite hard to estimate the exact population of fish and mammals in any particular area of the 

ocean. The dynamics of their population and harsh condition of the ocean represent the main 



55 
 

difficulties in obtaining accurate data. Numerous studies have been performed to estimate the 

population of fish and mammals. Different drawbacks of conventional techniques motivate us to 

investigate the proposed cross-correlation based fish population estimation technique which can 

solve the major obstacles of conventional methods. In this chapter, an elaborate description on 

this statistical signal processing method of fish population estimation is illustrated. 

 

4.2 A Brief Analysis on Cross-correlation Function  

 

The CCF of time-delayed version of infinity in length, unity strength Gaussian signal is to be 

expressed by a delta function, whose amplitude relays on the attenuation. At the same time, its 

position will be the delay difference of signals from the center of the CCF. 

Then, CCF for 1st signal source is: 

𝐶1(𝜏) = 𝛼11𝛼12𝛿 (𝜏 [
𝑑11 − 𝑑12

𝑆𝑝
]),                                                         (4.1)    

where d11 is the distance between 1st signal source and 1st receiver and d12 is the distance 

between 1st signal source and 2nd receiver. 

Assuming the strength of source signal is high enough to overcome attenuations, so neglecting 

the attenuations CCF for 1st signal source become:                                                

𝐶1(𝜏) = 𝛿 (𝜏 − [
𝑑11 − 𝑑12

𝑆𝑝
])                                                                 (4.2) 

Likewise, CCF for the Nth signal source is: 

𝐶𝑁(𝜏) = 𝛿 (𝜏 − [
𝑑𝑁1 − 𝑑𝑁2

𝑆𝑝
])                                                                 (4.3) 

Then, CCF for N number of signal sources   

𝐶(𝜏) = ∑ 𝛿 (𝜏 − [
𝑑𝑛1 − 𝑑𝑛2

𝑆𝑝
])

𝑁

𝑛=1

                                                               (4.4)   

It is innate that if N is larger than the number of bins b. Similarly, the bins are occupied by more 

than one delta due to the same delay differences. This increases the amplitude of the deltas of the 

bins, and thus the CCF is expressed in terms of bins as 

𝐶𝑖(𝜏) = ∑ 𝑝𝑖𝛿𝑖,

𝑏

𝑚=1

                                                                             (4.5) 
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where  pi is the amplitude of delta 𝛿𝑖 in the ith bin. 

The above analysis is verified by simulation shown in Fig. 4.1, where we have considered N is 

32 and b is 19. Since, signal sources are larger than bins; there is possibility that some bins can 

be occupied by more than one source and some bins can be empty for time-delay difference. 

From Fig. 4.1, pi values are: p1 = p19 = 4, p4 = p10 = p13=3 and so on. 

 

Fig. 4.1 Cross-correlation function (CCF) for 32 sources, and 19 bins. 

Using moving average technique of cross-correlation [3-4], we can express the CCF generally by 

the expression bellow: 

𝐶(𝜏) =
1

𝑁𝑠 − 𝜏
∑ 𝑥𝑖𝑦𝑖+𝜏

𝑁𝑠−𝜏

𝑖=1

− (
1

𝑁𝑠
∑𝑥𝑖

𝑁𝑠

𝑖=1

)(
1

𝑁𝑠
∑𝑦𝑖

𝑁𝑠

𝑖=1

),                                     (4.6) 

where Ns is the signal length in terms of samples, τ is the time delay of cross correlated signals; xi 

and yi are ith samples of the two sensor’s signals. We assume Gaussian signal contains zero mean. 

So, the product of their mean is zero. Hence, the CCF: 

𝐶(𝜏) =
1

𝑁𝑠 − 𝜏
∑ 𝑥𝑖𝑦𝑖+𝜏

𝑁𝑠−𝜏

𝑖=1

                                                                   (4.7) 

This gives the peaks for the desired bins as follows: 
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1

𝑁𝑠 + 𝜏
∑ 𝑥𝑖𝑦𝑖−𝜏

𝑁𝑠+𝜏

𝑖=1

, …
1

𝑁𝑠 + 1
∑ 𝑥𝑖𝑦𝑖−1 

𝑁𝑠+1

𝑖=1

,
1

𝑁𝑠 − 0
∑ 𝑥𝑖𝑦𝑖+0

𝑁𝑠−0

𝑖=1

, 

1

𝑁𝑠−1
∑ 𝑥𝑖𝑦𝑖+1, … ,

1

𝑁𝑠−𝜏
∑ 𝑥𝑖𝑦𝑖+𝜏

𝑁𝑠−𝜏
𝑖=1

𝑁𝑠−1
𝑖=1 , 

where the peaks are the strengths of the deltas of (4.5), which are [5]: 

𝑃1 =
1

𝑁𝑠 − 𝜏
∑ 𝑥𝑖𝑦𝑖−𝜏

𝑁𝑠+𝜏

𝑖=1

 

                     𝑃2 =
1

𝑁𝑠 + (𝜏 − 1)
∑ 𝑥𝑖𝑦𝑖−(𝜏−1)

𝑁𝑠+(𝜏−1)

𝑖=1

 

                                                           .    

                                                           .                                                                                    

                              𝑃𝑏 =
1

𝑁𝑠 − 𝜏
∑ 𝑥𝑖𝑦𝑖+𝜏

𝑁𝑠−𝜏

𝑖=1

                                                          (4.8) 

Theoretical CCF is developed by putting these values in the equation (4.5) [3]. 

 

4.3 Formulation of CCF 

 

The formulation of cross-correlation of fish acoustics is analogous to the formulation of cross-

correlation of Gaussian signal [5-7], which is the starting materials and method to estimate the 

population size of marine fish and mammals. All the transmitted signals are received by the 

acoustic sensor and recorded in the associated computer in which cross-correlation is executed. 

Transmission and reception of signals are performed for a time frame, called “signal length” 

throughout this thesis. At first, the CCF formulation process will be shown for two acoustic 

sensors and after that similar process will be performed for three acoustic sensors. 

 

4.3.1 CCF Formulation for Two Acoustics Sensors 

 

We assume N fish and mammals are distributed over the volume of a large sphere, the center of 

which lies halfway between acoustic sensors. A distribution of fish and mammals (simulation) is  

shown in Fig. 4.2(a). 
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A constant propagation velocity is considered, which is the sound velocity Sp in the medium. 

Two acoustic sensors H1, H2 and a fish/mammal (acoustics source) N1 are taken, shown in Fig. 

4.2(b).  The acoustic sensors H1, H2 and the fish/mammal N1 are located at (x1, y1, z1), (x2, y2, z2) 

and (a, b, c), respectively. If the distance between the two acoustic sensors is dDBS 

2

21

2

21

2

21 )()()( zzyyxxdDBS                                                    (4.9)   

 

 

(a) 
 

         (b) 

Fig. 4.2 (a) A distribution of fish and mammals where the two pluses (+) indicate the acoustic 

sensors and (b) from a distribution of fish and mammals in 3D spaces, we consider one 

fish/mammal N1, where H1 and H2 are the acoustic sensors. 

A signal coming from N1 is S1(t), which is finite in length. As such, the signals received by H1 

and H2 are correspondingly: 

𝑆𝑟11(𝑡) = 𝛼11𝑆11(𝑡 − 𝜏11),                                                (4.10) 

𝑆𝑟12(𝑡) = 𝛼12𝑆12(𝑡 − 𝜏12),                                                (4.11) 

where τ11 = d1/Sp and τ12 = d2/Sp are the corresponding time delays for the signal to reach each 

acoustic sensor and α11 and α12 are the attenuations due to absorption. 

Assuming τ1 is the time shift in the cross-correlation and then the CCF is: 

𝐶1(𝜏) = ∫ 𝑆𝑟11(𝑡)𝑆𝑟12(𝑡 − 𝜏1)𝑑𝜏
+∞

−∞
                                  (4.12)                                                 

which takes the form of a delta function as it is across-correlation of two signals where one 

signal is fundamentally the delayed copy of another. 
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To find the CCF for N fish and mammals, we have to take the total signals received by the 

acoustic sensors from each of the fish/mammals and summing them. As such, the total signals 

1tr
S at acoustic sensor H1 

𝑆𝑟𝑡1 = ∑ 𝛼𝑗1𝑆𝑗(𝑡 − 𝜏𝑗1)
𝑁
𝑗=1                                                              (4.13)   

While the total signals at acoustic sensor H2 by 
2tr

S is: 

𝑆𝑟𝑡2 = ∑ 𝛼𝑗2𝑆𝑗(𝑡 − 𝜏𝑗2)
𝑁
𝑗=1                                                              (4.14)    

Assuming τ = dDBS /Sp is the time shift in the cross-correlation. Hence, the final CCF between the 

signals at the acoustic sensors is: 

𝐶(𝜏) = ∫ 𝑆𝑟𝑡1(𝑡)𝑆𝑟𝑡2(𝑡 − 𝜏)
+∞

−∞
𝑑𝜏                                                        (4.16) 

This takes the form of series of delta functions, as it is a cross-correlation of two signals, which 

is the sum of several acoustic signals. Here, one signal is fundamentally a delayed copy of the 

other.  

 

4.3.2 CCF Formulation for Three Acoustics Sensors 

 

In the case of three sensors, two types of topologies are possible. One is acoustic sensors in a 

straight-line shape and another is acoustic sensors in a triangular shape. In this research, we have 

renamed acoustic sensors in straight line shape case as ASL case and acoustic sensors in a 

triangular shape case as AST case. Formulation of CCF with respect to these cases is described 

below: 

 

4.3.2.1 CCF Formulation for Three Acoustic Sensors: ASL Case  

 

During the formulation of CCF for three acoustic sensors (ASL case), i.e., H1, H2, and H3, and a 

fish/mammal, N1 are located at (x1, y1, z1), (x2, y2, z2), (x3, y3, z3), and (a, b, c). 

Distance between acoustic sensors H1 and H2 

𝑑𝐷𝐵𝑆12
= √(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2 + (𝑧1 − 𝑧2)2                                           (4.17) 

Distance between acoustic sensors H2, and H3 

𝑑𝐷𝐵𝑆23
= √(𝑥2 − 𝑥3)2 + (𝑦2 − 𝑦3)2 + (𝑧2 − 𝑧3)2                                          (4.18) 
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We have considered, 
12DBSd = DBSDBS dd 

23
, which implies that two CCFs are possible. 

 

(a) 

 

(b) 

Fig. 4.3  (a) A distribution of fish and mammals  with three acoustic sensors (ASL case) and (b) 

a fish in 3D space with three acoustic sensors (ASL case). 

Figure 4.3(a) shows a 3D space of a fish/mammal N1 and three acoustic sensors H1, H2, and H3. 

Here, we consider that the acoustic signal coming from N1 is S1(t), which is finitely long. The 

signal received by acoustic sensors H1, H2, and H3 are Sr11, Sr12, and Sr13, respectively: 

𝑆𝑟11(𝑡) = 𝛼11𝑆11(𝑡 − 𝜏11),                                                           (4.19) 

𝑆𝑟12(𝑡) = 𝛼12𝑆12(𝑡 − 𝜏12),                                                           (4.20) 

𝑆𝑟13(𝑡) = 𝛼13𝑆13(𝑡 − 𝜏13),                                                           (4.21) 

where α11, α12, and α13 are the attenuation due to absorption and dispersion in the medium, and 

τ11, τ12, and τ13 are the respective time delays for the acoustic signals to reach the acoustic 

sensors. 

The CCFs for acoustic sensors in ASL case are: 

𝐶1(𝜏) = ∫ 𝑆11(𝑡)𝑆12(𝑡 − 𝜏11)𝑑𝜏
+∞

−∞
                                                    (4.22)

 

𝐶2(𝜏) = ∫ 𝑆12(𝑡)𝑆13(𝑡 − 𝜏12)𝑑𝜏
+∞

−∞
                                                    (4.23) 

To find out the CCFs for N number of fish and mammals, we have to take the total acoustic 

signals received by the three acoustic sensors.  

Now the composite signals received by H1, H2, and H3 are: 

 

𝑆𝑟𝑡1 = ∑ 𝛼𝑗1𝑆𝑗(𝑡 − 𝜏𝑗1)
𝑁
𝑗=1                                                      (4.24)

 
𝑆𝑟𝑡2 = ∑ 𝛼𝑗2𝑆𝑗(𝑡 − 𝜏𝑗2)

𝑁
𝑗=1                                                      (4.25)
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𝑆𝑟𝑡3 = ∑ 𝛼𝑗3𝑆𝑗(𝑡 − 𝜏𝑗3)
𝑁
𝑗=1                                                      (4.26) 

Therefore, the total CCFs are:
 

𝐶12(𝜏) = ∫ 𝑆𝑟𝑡1(𝑡)𝑆𝑟𝑡2(𝑡 − 𝜏)
+∞

−∞
𝑑𝜏

                                          
(4.27) 

𝐶23(𝜏) = ∫ 𝑆𝑟𝑡2(𝑡)𝑆𝑟𝑡3(𝑡 − 𝜏)
+∞

−∞
𝑑𝜏                                           (4.28) 

 

4.3.2.2 CCF Formulation for Three Acoustic Sensors: AST Case  

 

For AST case, the cross-correlation among the acoustic sensors is taken place for three times 

(between H1, H2; H2, H3; and H3, H1). So, the total number of CCF is three. That means, an 

additional CCF will be added with the two CCFs of ASL case. A fish distribution for AST case 

is illustrated in Fig. 5(a). Three acoustic sensors (AST case), i.e., H1, H2, and H3, and a 

fish/mammal, N1 are shown in Fig. 5(b). 

 

(a) 

 

(b) 

Fig. 4.4  (a) A distribution of fish and mammals  with three acoustic sensors (AST case) and (b) 

A fish in 3D space with three acoustic sensors (AST case). 

Now, the additional CCF is: 

𝐶3(𝜏) = ∫ 𝑆13(𝑡)𝑆11(𝑡 − 𝜏13)𝑑𝜏
+∞

−∞
                                                       (4.29) 

Consequently, the additional CCF for composite signal at TS case is 

𝐶31(𝜏) = ∫ 𝑆𝑟𝑡3(𝑡)𝑆𝑟𝑡1(𝑡 − 𝜏)
+∞

−∞
𝑑𝜏                                                       (4.30) 

These take the form of a series of delta functions. Here, 

𝜏 =
𝑑𝐷𝐵𝑆

𝑆𝑝
                                                                      (4.31) 
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4.4 Fish Population Estimation using CCF 

 

In this section, we have divided the estimation technique into several parts. At first, a description 

on theoretical estimation technique will be given. Then, a discussion will be provided on the 

selection of optimum estimation parameter. And finally, the theory will be verified by 

simulation. We will use the CCF from previous section to estimate the fish population. 

 

4.4.1 Fish Population Estimation from Theory 

 

In brief, in cross-correlation based fish population estimation technique, a 3D estimation area is 

considered, where vocalizing fish and mammals produce acoustic signals as a consequence of 

their acoustic activities. Transmitted acoustic signals from N fish and mammals are received by 

acoustic sensors at different delay differences and summed at each sensor location forming 

composite signals. These two composite signals are then cross-correlated to formulate CCF. It is 

complex to directly use the CCF to estimate fish population. Hence, the discussed cross-

correlation technique can be reframed to a probability problem using the renowned occupancy 

problem, which follows the binomial probability distribution and then a parameter is chosen for 

our desired estimation. Considering each delta function as a ball and this occupies a bin 

according to the delay difference of corresponding signals, which are recorded in the acoustic 

sensors. It is easy to model the cross-correlation problem as a probability problem based on the 

renowned occupancy problem, i.e., a problem of placing N balls in b bins. It is known from [8] 

that the occupancy problem follows the binomial probability distribution in which the parameters 

are number of balls, i.e. N, and the inverse of the b Occupancy problems deal with the pairings of 

objects and have several applications in different fields containing probabilistic and statistical 

properties. 
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Fig. 4.5 Bins, b in the cross-correlation process where each delta function is considered as a ball 

and this occupies a bin according to the delay difference of corresponding signals, which are 

recorded in the acoustic sensors. 

The basic occupancy problem is about placing m balls into b bins [9]. If one throws some balls 

randomly towards several bins, the bins would be randomly filled with the balls, which results in 

some bins being occupied by more than one ball, some by one while some may have none. In 

this research, the cross-correlation process for population size estimation is reframed as this 

occupancy problem. To obtain a CCF, N fish and mammals create N number of delta functions, 

which occupy the place in the correlation length. Here, the length is divided by b number of bins 

as shown in Fig. 4.5. Some bins are not occupied by any delta function; some are occupied by 

only one and others are more than one. Besides, the formation of the cross-correlation function to 

perform population size estimation satisfies the characteristics of binomial distribution as the 

number of trials, i.e. N is fixed, trials are independent in that sense the fish are sending 

independent signal. There exist only two possible outcomes, success or failure, for every trial, 

which indicates that delta for particular fish/mammals is occupying a bin or not, each trial has 

the same probability of success, which is one on the b. The b is achieved from the sampling rate 

SR, distance between sensors dDBS, and speed of chirp propagation SP, which all are predefined 

[5]. 

𝑏 =
2×𝑑𝐷𝐵𝑆×𝑆𝑅

𝑆𝑃
− 1                                                   (4.32)   
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However, the main goal of occupancy using occupancy problem is converting the estimation 

technique into a statistical way, where the parameters are N and 1/b [5]. 

Different estimation parameters can be used to estimate fish population. Our next goal is to 

choose the optimum one. 

 

4.4.2 Selection of Optimum Estimation Parameter 

 

To select the optimum estimation parameter, we consider two fish acoustics, i.e., chirp and grunt, 

for comparison purposes. At first, we will implement different types of estimation parameters 

and then choose the optimum one from there. In this subsection, simulations are executed taking 

that two acoustic sensors are employed along with a line, where acoustic sensors lay in the center 

of a sphere. All the simulations are accomplished by the MATLAB simulation. The following 

parameters are used in the simulation. 

Table 4.1 Parameters used in the MATLAB simulation 

 

 

 

 

 

 

 

 

 

 

 

 

4.4.2.1 Implementation of different estimation parameters 

 

In this subsection, an implementation of different estimation parameters at cross-correlation 

based fish population estimation is conducted. In every figure, the blue lines represent the 

Parameters Values 

Dimension of the sphere 2000 m 

Distance between the equidistant sensors dDBS 0.5 m  

Speed of propagation SP 1500 m/s
 

Sampling rate SR 60 kSa/s 

Absorption coefficient a 1 

dispersion factor k 0 

Number of bins b 39 

Average number of iterations (chirp) 500 

Average number of iterations (grunt) 500 
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theoretical results and the red circles (chirps) or red stars (grunts) correspond to simulated 

results. 

 

4.4.2.1.1 Sum of CCF s 

 

It is the simplest estimation parameter, which is extremely sensitive to noise and signal strength. 

Sum of CCF s is equal to the N, as it is sum of all deltas in the bins of the CCF resulted for every 

fish and mammals in the estimation area and can be expressed as: 

𝑠 = 𝑆𝑢𝑚(𝐶(𝑡)) = 𝑁,                                                              (4.33)                                                          

where C(t) is the CCF. 

 

         (a) 

 

(b) 

Fig. 4.6 Number of fish and mammals vs. sum of CCF, (a) chirp signal and (b) grunt signal. 

In Fig. 4.6, the relationship is achieved by taking the standard deviation of CCF as estimation 

parameter. 

 

4.4.2.1.2 Mean of CCF µ 

 

Mean of CCF decreases with the decrease of signal strength and vice versa. By reframing the 

cross-correlation problem into a probability problem, the mean of CCF µ can be expressed as 

[10]: 

𝜇 =
𝑁

𝑏
                                                                          (4.34)                                                          

Hence, we can write 

𝑁 = 𝜇 × 𝑏                                                                    (4. 35)                                                          
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Using the equation (4.35), N can be estimated since b is known and µ can be calculated from the 

CCF. 

 

       (a) 
 (b) 

Fig. 4.7 Number of fish and mammals vs. mean of CCF, (a) chirp signal and (b) grunt signal. 

By taking the mean of CCF, µ as estimation parameter, we find the simulated results in Fig. 4.7. 

 

4.4.2.1.3 Standard deviation of CCF, σ 

 

After reframing the standard deviation of the CCF σ into probability problem, we find [6]: 

𝜎 = √𝑁 ×
1

𝑏
× (1 −

1

𝑏
)                                                               (4.36) 

From (4.36), we can write  

𝑁 =
𝑏2×𝜎2

𝑏−1
                                                                  (4.37) 

We can estimate the N using the values of σ and b from this expression. Like µ, σ is also 

sensitive to the signal strength. However, in Fig. 4.8, the relationship is achieved by taking the 

standard deviation of CCF as estimation parameter. 
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          (a) 

 

           (b) 

Fig. 4.8 Number of fish and mammals vs. standard deviation of CCF, (a) chirp signal and (b) 

grunt signal. 

 

4.4.2.1.4 Ratio of Mean to the Standard Deviation of CCF, Rmsd 

 

Similarly, Rmsd can be expressed using equations 4.34 and 4.36 as [7]: 

𝑅𝑚𝑠𝑑 =
𝜇

𝜎
=

𝑁

𝑏

√𝑁×
1

𝑏
×(1−

1

𝑏
)

= √
𝑁

𝑏−1
                                                  (4.38)                                                                            

From (4.38) we can write, 

𝑁 = (𝑏 − 1) × 𝑅𝑚𝑠𝑑
2                                                                   (4.39)                                                                            

This estimation parameter is also independent of signal strength because it is also a ratio of two 

estimation parameters similar to R of CCF. 

 

 

          (a) 

 

         (b) 

Fig. 4.9 Number fish and mammals vs. Rmsd of CCF, (a) chirp signal & (b) grunt signal. 
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Fig. 4.9 shows a relationship between Rmsd of CCF and population size of fish and mammals for 

two different signals. 

 

4.4.2.1.5 Ratio of standard deviation to the mean of CCF, R 

 

Ratio of the standard deviation to the mean of CCF R can be found using (4.34) and (4.36) as 

follows [6]: 

𝑅 =
𝜎

𝜇
=

√𝑁×
1

𝑏
×(1−

1

𝑏
)

𝑁

𝑏

= √
𝑏−1

𝑁
                                                      (4.40)    

Equation (4.40) relates R of CCF with the N. Since, it is a ratio of two parameters; it won’t be 

affected by signal strength. This facilitates it over other estimation parameters. However, the 

simulated results of the population of fish and mammals vs. R of CCF are illustrated in the 

subsection 4.4.3.1 in the Figs. 4.11(a) and 4.11(b).  

 

4.4.2.2 Selection of the Optimum 

 

 We have used chirps and grunts signals for comparison purposes. We can see from the figures 

that chirp signals provide better results than grunts signals. To obtain these results, the average 

iterations used in simulation: 100 for chirps and 500 for grunts (except for the parameter, Rmsd of 

CCF). However, when signal strength varies, the strength of the deltas in the bins of the CCF 

also varies. So, variations of coefficient values of CCF with signal strength affect sum, mean, 

and standard deviation of the CCF. These three estimation parameters increase or decrease by the 

same factor with the increase or decrease of signal strength. This is why, the two ratios: R and 

Rmsd of CCF are constant for signal strength. 

Now, Rmsd of CCF is found in Figs. 4.11(a) and 4.11(b) by 300 iterations for chirp signal and 

1000 iterations for grunt signal. On the other hand, R of the CCF from figure 4.10 is found for 

100 iterations for chirp signal and 500 iterations for grunt signal.  Hence, though the both 

parameters (R of CCF and Rmsd of CCF) are independent of signal strength, Rmsd requires nearly 

double times of iteration compared to R of CCF. So, we can conclude that R of CCF is the 

optimum estimation parameter in cross-correlation based fish population estimation technique. 

Hence, we have used the R of CCF as our estimation parameter in this thesis. 
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4.4.2.3 Block Diagram Representation of Obtaining R of CCF 

 

The block diagram representation to obtain R of CCF is shown below. Figs. 4.10 (a), 4.10 (b), 

and 4.10 (c) represents the block diagram to obtain R of CCF for two and three acoustic sensors, 

respectively. 

 

(a) 

 

(b) 
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(c) 

Fig.  4.10 Block diagram representation of the process to obtain R of CCF, (a) two acoustic 

sensors, (b) three acoustic sensors (ASL case), and (c) three acoustic sensors (AST case). 

 

4.4.3 Fish Population Estimation from Simulation 

 

To establish the theoretical method, simulations are executed to estimate population of fish and 

mammals. Considering R of CCF as our estimation parameter, we can write the equation (4.40) 

as: 

        
𝑁 =

𝑏−1

𝑅2
                                                                     (4.41) 

From the equation, we can find N since we find R from simulation. Similarly, for three acoustic 

sensors case, we can find as following: 

For ASL case, the final ratio of the standard deviation to the mean will be found from the 

average of R12 and R23. This indicates that two CCFs are used. 

𝑅𝐴𝑣𝑒𝑟𝑎𝑔𝑒
2𝐶𝐶𝐹 =

𝑅12+𝑅23

2
                                                         (4.42) 

For AST case, the final ratio of standard deviation to the mean is obtained from the average of 

R12, R23 and R31.   
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𝑅𝐴𝑣𝑒𝑟𝑎𝑔𝑒
3𝐶𝐶𝐹 =

𝑅12+𝑅23+𝑅31

3
                                                         (4.43) 

Here, we know b and at the same time we can evaluate 𝑅𝐴𝑣𝑒𝑟𝑎𝑔𝑒
2𝐶𝐶𝐹 and 𝑅𝐴𝑣𝑒𝑟𝑎𝑔𝑒

3𝐶𝐶𝐹 . A point to be 

noted that b is a function of dDBS, SR, and SP as described in equation 4.32. So, finally, we can 

estimate the N by using the three equations above.  

The goals of these simulations are to establish a framework of fish population estimation and to 

analyze the performance of estimation. However, estimation from simulation is also divided into 

several parts. The simulated estimation will be performed for two acoustic sensors, three acoustic 

sensors, and different fish distributions. In this section, simulations are executed taking that the 

acoustic sensors lay in the center of a sphere. All the simulations are accomplished by the 

MATLAB. The parameters used in the simulations are same as Table 4.1, except some cases, 

where we have indicated the new values of parameters. However, to ease the simulation, we have 

considered a negligible amount of power difference among the acoustic pulses transmitted by 

each fish/mammal.  

 

4.4.3.1 Fish Population Estimation with Two Acoustic Sensors: Implementation of 

Different Fish Acoustics 

 

In this subsection, simulations are executed taking that two acoustic sensors are employed along 

a line, where sensors lay on the center of a sphere. A uniform random distribution of fish and 

mammals is considered. The estimation is performed with respect to three types of fish signals, 

i.e., chirp, grunt, and growl. We have used 500 iterations for chirp, grunt, and growl. For 

simulation, the range of frequency of these acoustic signals is defined in chapter 3. 
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          (a) 

 

              (b) 

 

        (c) 

Fig. 4.11 Number of fish and mammals vs. R of CCF, (a) chirp signal, (b) grunt signal, and (c) 

growl signal. 
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     (c) 

Fig. 4.12 Variation of estimated number of fish and mammals from the actual quantity, (a) chirp 

signal, (b) grunt signal, and (c) growl signal. 

Figure 4.11 shows R with respect to the number N for chirp, grunt, and growl signals. Figure 

4.12 shows the difference between theoretical and simulated population of fish and mammals for 

three types of signals. In these figures, the blue lines are corresponding to theoretical results and 

the red circles, stars, and rectangles are corresponding to simulated results. From Figs. 4.11 and 

4.12, we can conclude that the chirp signals produce better results in simulation. 

 

4.4.3.1.1 Discussion 

 

A typical analysis on performance of three different fish acoustics is conducted in Table 2.  

Table 4.2 Deviation of simulated R from theoretical R for chirps, grunts, and growls signals 

Population of Fish 

and Mammals 

RChirp RGrunt RGrowl R from Theory 

1 5.741 4.841 5.383 6.164 

10 1.778 1.582 1.644 1.949 

20 1.469 1.642 1.230 1.378 

30 1.072 0.950 1.489 1.125 

40 1.026 1.025 0.888 0.975 

50 0.828 0.773 0.781 0.872 

60 0.754 0.716 0.968 0.796 

70 0.758 0.760 0.685 0.737 
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80 0.666 0.631 0.653 0.689 

90 0.635 0.684 0.775 0.649 

100 0.632 0.572 0.595 0.616 

 

In Table 4.2, RChirp, RGrunt and RGrowl represent R of CCF from simulation for chirp, grunt, and 

growl signals. We can see that RChirp provides least deviation with respect to R of theory among 

the three acoustic signals. Therefore, we found more accurate results from chirp producing 

species during estimation among the three. 

Table 4.3 Experimental and theoretical data of CCF for chirp signal, where b =39 (dDBS =0.5m 

and SR =60 kSa/s) 

Actual number of fish 

and mammals, Na  

R of CCF from 

simulation 

Estimated number of 

fish and mammals, Ne 

1 5.741 1.151 

10 1.778 12.013 

20 1.469 17.59 

30 1.072 33.059 

40 1.026 36.121 

50 0.828 55.332 

60 0.754 66.861 

70 0.758 66,213 

80 0.666 85.599 

90 0.635 93.987 

100 0.632 96.931 

 

From Table 4.3, we found, when the actual number of chirps generating fish and mammals is 90, 

we got 93.987. The estimation error is 4.43% (Percentage of error = ((Na – Ne)/Na) × 100%. This 

signifies the suitability of the proposed technique. 

 

4.4.3.2 Fish Population Estimation with Three Acoustic Sensors 

 

From the previous discussions, we have known that the fish population estimation with three 
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acoustic sensors is classified in to two cases, i.e., ASL and AST. In this subsection, we have 

considered, the distance between the sensors is 0.5 m. The parameters are same as the previous 

simulations. We have also considered the chirp signal and a uniform random distribution of fish 

and mammals to achieve the simulated results. . At first, the simulations have been executed for 

ASL case and then AST case. 

 

(a) 
 

(b) 

Fig. 4.13 Number of fish and mammals vs. R of CCF (a) ASL case and (b) AST case. 

 

 

        (a) 

 

                (b) 

Fig. 4.14 Variation of estimated number of fish and mammals from the actual quantity (a) ASL 

case and (b) AST case. 

Figure 4.13 represents the R with respect to the N for ASL and AST cases. Figure 4.14 shows the 

difference between theoretical and simulated population size of fish and mammals for the two 

cases. The green lines represent the theoretical results and the purple circles and squares 

represent the simulated results. 
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4.4.3.2.1 Discussion 

 

From the figures above, we can see that estimation using AST case provides better accuracy than 

the estimation using ASL case. But the both ones perform better than two acoustic sensors case, 

where only one CCF is produced in two acoustic sensors case, two CCF for ASL case and three 

CCF for AST case is generated. So, we can decide that the greater number of CCF provide the 

better performance. We also can decide that an increasing number of acoustic sensors can 

produce better results in cross-correlation based fish population estimation technique. 

 

4.4.3.3 Fish Population Estimation from Different Fish Distributions  

 

In this subsection, we have shown the performance for three different fish distributions, i.e., 

Exponential, Normal, and Rayleigh. We have considered three acoustic sensors ASL case. The 

plots are found for three different types of distributions. All the simulations are accomplished in 

MATLAB. The parameters in the table 4.4 are common for the three different distributions. The 

simulated results are obtained by averaging 500 iterations. 

Table 4.4 Parameters used in the MATLAB simulation for different distributions 

Parameters Values (Exponential 

distribution) 

Values (Normal 

distribution) 

Values (Rayleigh 

distribution) 

Dimension  of  the  sphere 2000m 2000m 2000m 

Distance between the 

equidistant sensors, dDBS 

0.5m 0.5m 0.5m 

Speed of propagation, SP 1500 m/s 1500 m/s 1500 m/s 

Sampling  rate,   SR 60 kSa/s 60 kSa/s 60 kSa/s 

Mean parameter, m 5 5 5 

standard deviation  

parameter, s 

 2  

Scale Parameter, β   2 

Absorption coefficient, a 1 1 1 

dispersion factor, k 0 0 0 

Number of bins, b 39 39 39 
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We have considered a popular aquarium fish called damselfish and estimate their population size 

from three different distributions of damselfish. Damselfish are among the best studied 

soniferous fish, with at least eight of around 29 genera reported to generate sounds [11-12]. 

Chirp, a sound, commonly produced by males of the bicolor damselfish (family: Pomacentridae). 

In response, females make aggressive sounds. Two types of aggressive sounds are produced, 

pops and chirps [11]. Their produced chirp is taken as the simulation acoustics in this subsection. 

However, we have considered damselfish to introduce the readers with a practical phenomenon 

regarding this estimation. The simulations are illustrated below: 

 

 

(a) 

 

(b) 

 

(c) 

Fig. 4.15 Three different distributions of damselfish at ASL case where (a) Exponential 

distribution, (b) Normal distribution, and (c) Rayleigh distribution 
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      (a) 

 

               (b) 

 

(c) 

Fig. 4.16 Number of damselfish, N vs. R of CCFs, (a) Exponential distribution, (b) Normal 

distribution, and (c) Rayleigh distribution. 
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     (c) 

Fig. 4.17  Actual number of damselfish vs. estimated number of damselfish, (a) Exponential 

distribution, (b) Normal distribution, and (c) Rayleigh distribution. 

In Figs. 4.16 and 4.17, the lines (blue) represent the theoretical results and the circles (red) 

represent the simulated results. Figure 4.16 shows the R of CCF with respect to damselfish 

population N for different distributions. On the other hand, Fig. 4.17 shows a variation of our 

estimated population size of damselfish from actual quantity. 

 

4.4.3.3.1 Discussion 

 

After an analysis on Figs. 4.16 and 4.17, we can come to a decision that Exponential distribution 

of damselfish provides better results. For 100 damselfish, we got 98.06 damselfish from 

simulation in exponential distribution. The percentage of error is less than 2%. This shows a 

good indication of accuracy of our proposed estimation technique. 

 

4.4.3.4 Fish Population Estimation with more than Three Acoustic Sensors 

 

In this subsection, we have implemented four acoustic sensors to estimate the population of fish 

and mammals. For four acoustic sensors case, different types of topologies, i.e., acoustic sensors 

in line, acoustic sensors in a rectangular shape, acoustic sensors in a triangular shape, are 

possible. Similarly, Acoustic sensors in a triangular shape can be a square shape, a rhombus 

shape or a trapezoidal shape. However, Fig. 4.18 shows four acoustic sensors in a line and 
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rectangular shape with a distribution of fish and mammals. From different topologies, we have 

considered acoustic sensors in a line shape for estimation. 

 

(a) 

 

(b) 

Fig. 4.18 Distribution of fish and mammals with four acoustics sensors (a) acoustic sensors in a 

line case and (b) acoustics sensors in a rectangular shape case. 

However, during the formulation of CCF for four acoustic sensors in a line case, i.e., H1, H2, H3, 

and H4 and a fish/mammal, N1 are located at (x1, y1, z1), (x2, y2, z2), (x3, y3, z3), (x4, y4, z4), and (a, b, 

c), respectively. 

Distance between acoustic sensors H1 and H2 

𝑑𝐷𝐵𝑆12
= √(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2 + (𝑧1 − 𝑧2)2                            (4.44) 

Distance between acoustic sensors H2 and H3 

𝑑𝐷𝐵𝑆23
= √(𝑥2 − 𝑥3)2 + (𝑦2 − 𝑦3)2 + (𝑧2 − 𝑧3)2                           (4.45) 

Distance between acoustic sensors H2 and H3 

𝑑𝐷𝐵𝑆34
= √(𝑥3 − 𝑥4)2 + (𝑦3 − 𝑦4)2 + (𝑧3 − 𝑧4)2                           (4.46) 

We have considered, 
12DBSd =

23 34DBS DBS DBSd d d  , which implies that two CCFs are possible. 
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Fig. 4.19 A fish in 3D space with four acoustic sensors. 

Analogous to two or three sensors cases, the composite signals received by H1, H2, H3, and H4 

are: 

𝑆𝑟𝑡1 = ∑ 𝛼𝑗1𝑆𝑗(𝑡 − 𝜏𝑗1)
𝑁
𝑗=1                                                 (4.47)

 
𝑆𝑟𝑡2 = ∑ 𝛼𝑗2𝑆𝑗(𝑡 − 𝜏𝑗2)

𝑁
𝑗=1                                                 (4.48)

 
𝑆𝑟𝑡3 = ∑ 𝛼𝑗3𝑆𝑗(𝑡 − 𝜏𝑗3)

𝑁
𝑗=1                                                 (4.49) 

𝑆𝑟𝑡4 = ∑ 𝛼𝑗4𝑆𝑗(𝑡 − 𝜏𝑗4)
𝑁
𝑗=1                                                (4.50) 

Therefore, the total CCFs are:
 

𝐶12(𝜏) = ∫ 𝑆𝑟𝑡1(𝑡)𝑆𝑟𝑡2(𝑡 − 𝜏)
+∞

−∞
𝑑𝜏

                                        
(4.51) 

𝐶23(𝜏) = ∫ 𝑆𝑟𝑡2(𝑡)𝑆𝑟𝑡3(𝑡 − 𝜏)
+∞

−∞
𝑑𝜏                                         (4.52) 

𝐶34(𝜏) = ∫ 𝑆𝑟𝑡3(𝑡)𝑆𝑟𝑡4(𝑡 − 𝜏)
+∞

−∞
𝑑𝜏                                         (4.53) 

Now, for four acoustic sensors in a line case, the final ratio of standard deviation to the mean is 

obtained from the average of R12, R23, R34.   

𝑅𝐴𝑣𝑒𝑟𝑎𝑔𝑒
3𝐶𝐶𝐹 =

𝑅12+𝑅23+𝑅34

3
                                                 (4.54) 

 

4.4.3.5 Fish Population Estimation with Random Placements of Acoustic Sensors (Two 

Sensors) 

Distribution of fish and mammals of equal delay difference follows a hyperbola [13]. 
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Number of fish and mammals in a bin is equal to the number of fish and mammals inside a 

hyperbola [5]. Due to the uniform distribution of fish and mammals over the total area, 

number of fish and mammals inside a hyperbola is proportional to the area of the hyperbola. 

For each fish or mammal, a delta is obtained in CCF. So, calculating the area of the 

hyperbola, number of deltas in the associate bin is obtained. The area is calculated with the 

trapezoidal rule.  

 

Fig. 4.20 Hyperbola representation of theoretical CCF generation [14].  

It can be seen from Fig. 4.20 that the area of the hyperbola (P) is equal to the difference 

between that of the hyperbolas Q and R. 

So, the area of P = Area of R- Area of Q = 0.85m2 

Area of P = (Area of P)/(Total area) 

               = 13.6% of the total area 

So, there are 13.6% fish and mammals of total fish and mammals placed inside the 

hyperbola P. Thus, there are 13.6% deltas of total deltas are placed at bin associated with 

hyperbola, P that is at bin 1. Similarly, number of deltas of all other bin is calculated. Thus, 

we can achieve the theoretical CCF. 

In spherical shaped networks with central placement of acoustic sensors, the area of each 

hyperbola is same. So the distribution of deltas within the whole CCF is uniform and is 

shown in Fig. 4.21. 
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Fig. 4.21 Bins of CCF for 100 fish and mammals 

But the distribution of deltas becomes non-uniform for random placement of acoustic 

sensors. Distribution of fish and mammals with random placements of acoustic sensors is 

shown in Fig. 4.22.  
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i 

Fig. 4.22 Distribution of fish and mammals with random placement of acoustic sensors, where 

(a), (b), (c), and (d) represent four different random placements of sensors. 

In Fig. 4.22(b), most of the fish and mammals are at right side of the sensors. So, the 

acoustic signals from most of the fish and mammals first arrive at acoustic sensor 2. 

Because of this reason, most of deltas placed at the 1st half of bins. So, estimation process of 

central placement case is not effective for random placement case. We need to make some 

modifications in estimation process. However, from theoretical CCF, probability of success 

of a bin, pi is calculated though, Pi = Ni/N, where Ni is the total deltas in ith bin, N is the total 

number of deltas in CCF. Similarly, probability of success of all other bins is calculated.  

Estimation parameter RT is given by [5]: 

𝑅𝑇 =
1

√𝑁
×

√∑ (𝑝𝑖
2−𝑝𝑖

3)𝑏
𝑖=1

∑ 𝑝𝑖
2𝑏

𝑖=1

                                                       (4.55) 

After some manipulation we can write, 

𝑁 =
𝑊𝑇

2

𝑅𝑇
2 ,                                                                     (4.56) 

where, 𝑊𝑇 =
√∑ (𝑝𝑖

2−𝑝𝑖
3)𝑏

𝑖=1

∑ 𝑝𝑖
2𝑏

𝑖=1  

From equation (4.56), we can calculate fish and mammals as we can calculate RT and WT from 

theoretical CCF. 

 

4.4.3.6 Comparison with other Passive Acoustic Techniques 

 

To validate our proposed technique, in this subsection, we compare our technique with two other 

conventional passive acoustic techniques. A brief discussion on those techniques and a relative 

comparison with those are conducted below: 

 

4.4.3.6.1 Flood-fill Algorithm-based Passive Acoustic Technique [15]: 

 

 Generally, Flood-fill algorithms are utilized in the “bucket” tool of paint programs to fill 

connected parts of a bitmap with color. They establish the area connected to a given node in a 

multi-dimensional array. The implementation a recursive flood-fill algorithm is the key topic in 



85 
 

this technique. Two elements are defined as connected if a path exists between them along which 

the value of all elements exceeds some threshold for a given node and threshold. The flood-fill is 

performed recursively on all elements connected to the node of interest. The researchers 

employed two applications for passive acoustic monitoring of fish: (1) signal detection via two-

dimensional (frequency and time) flood-fill applied to spectrograms; (2) source tracking via four-

dimensional (x, y, z, and time) flood-fill applied to source position likelihood volumes (obtained 

using a localization algorithm that gives the likelihood of a source occupying a point in time and 

space).  

 

 

(a) 

 

(b)

Fig. 4.23. Hydrophone positions indicated with triangles where (a) Slice through a likelihood 

volume at a single time and depth. Red (blue) indicate high (low) probability of a source at that 

location, and (b) Most prominent sperm whale track obtained by applying a 4D (x, y, z, time) 

flood-fill to likelihood volumes for a collection of 3 s time steps spanning 20 minutes [15]. 

Comparison: One of the limitations of the method is that overlapping tracks are connected. For 

instance, the calls of multiple animals vocalizing simultaneously are not separated. Separation of 

overlapping stacks is a challenging problem that requires post-processing the stacks using 

another method (such as a particle filter). Another problem with the flood-fill method is 

associated with allowable stack space. That is why, for very long stacks, the number of required 

recursions can surpass allowable recursion limits. To handle these problems, its needs further 

procession of data using algorithms. By this way, algorithm complexity and protocol difficulty 

arise. The main difference with our proposed technique is it (Flood-fill) needs further processing 
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of data after the run of main algorithm.  However, our proposed technique can overcome these 

limitations since we have used a statistical signal processing technique, which is very simple in 

manner and well accurate. Statistical conversion of complex cross-correlation technique makes it 

straightforward and low complex. 

 

4.4.3.6.2 Combination of Direct Acoustic Counting and Visual Census Data Collection 

Algorithm based Technique [16] 

 

Researchers used Visual track census and acoustic counting to estimate the humpback whale 

(Megaptera novaeangliae) population in the West Indies. Results produced by the two methods 

are differed to some extent. The average or best estimate was 1018 whales with a range from 785 

to 1157. Silver and Navidad banks, containing approximately 85% of the total population, are 

presently the major nursery grounds in the West Indies. They found that the humpback whale 

population in the western North Atlantic was increased since the early part of the century. 

 

Comparison: This algorithm is mainly composed of two types of techniques, where visual 

census suffers from human interaction. The instruments of data collection are costly and 

mechanical. In this proposed technique, we found the lowest error rate is below 2% in the 

simulation. But, here the estimation error is 15%. Moreover, the data collection techniques and 

complexities are also harder compared to our proposed technique. 

 

4.4.3.6.3 Summary 

 

The summary of the above discussion is illustrated below: 

Table 4.5 Comparison with other passive acoustic technique 

Parameters Flood-fill 

algorithm-

based 

Technique [15] 

Combination of direct 

acoustic counting and 

visual census [16] 

Cross-correlation 

based Passive acoustic 

technique (Proposed) 

Protocol complexity High Medium Low[17-22] 

Mechanical instruments Less needed Highly needed Less needed 

Accuracy Well Low Well 
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Human interaction Less Human interactive Very low 

Cost Average Costly due to 

mechanical instruments 

Average 

More times running of 

different algorithms to 

achieve results 

Yes Yes No 

Pure passive acoustic 

technique 

Yes Hybrid Yes 

Practically used Yes Yes No 

% of error Not calculated 15% < 2% 

 

 

4.5 Chapter Summary 

 

This is the most important chapter in this thesis. However, if we summarize the above 

discussions, we can find that chirp signal can give relatively better results in the simulation 

among the three types of acoustics. We can also find that, the increasing number of CCF 

produces better results in estimation. This is why, a three acoustic sensors AST case produce 

relatively better results. Therefore, if we increase the number of acoustic sensors, we will get 

better results. But such increasing is costly. Besides, Exponential distribution of fish can produce 

better results in simulation among the three distributions. Such findings can help the researchers 

greatly during the practical implementation of cross-correlation based fish population estimation 

technique. 

 

 

REFERENCES 

 

 

[1] Kaschner, K., Tittensor, D. P., Ready, J., Gerrodette, T., & Worm, B. (2011). Current and 

future patterns of global marine mammal biodiversity. PLoS one, 6(5), e19653. 



88 
 

[2] Pompa, S., Ehrlich, P. R., & Ceballos, G. (2011). Global distribution and conservation of 

marine mammals. Proceedings of the National Academy of Sciences, 108(33), 13600-13605. 

[3] Hanson, J. A., & Yang, H. (2008). A general statistical test for correlations in a finite-length 

time series. The Journal of chemical physics, 128(21), 214101. 

[4] Hanson, J. A., & Yang, H. (2008). Quantitative evaluation of cross correlation between two 

finite-length time series with applications to single-molecule FRET. The Journal of Physical 

Chemistry B, 112(44), 13962-13970. 

[5] Anower, M. S. (2011). Estimation using cross-correlation in a communications network. PhD 

diss., Australian Defence Force Academy. 

[6]  Anower, M. S., Frater, M. R., & Ryan, M. J. (2009, November). Estimation by cross-

correlation of the number of nodes in underwater networks. In Telecommunication Networks 

and Applications Conference (ATNAC), 2009 Australasian (pp. 1-6). IEEE. 

[7] Anower, M. S., Motin, M. A., Sayem, A. M., & Chowdhury, S. A. H. (2013, May). A node 

estimation technique in underwater wireless sensor network. In Informatics, Electronics & 

Vision (ICIEV), 2013 International Conference on (pp. 1-6). IEEE. 

[8] Vogt, H. (2002). Efficient object identification with passive RFID tags. Pervasive computing, 

98-113. 

[9] Feller, W. (2008). An introduction to probability theory and its applications (Vol. 2). John 

Wiley & Sons. 

[10] Hossain, S. A., Hossen, M., & Anower, S. (2018). ESTIMATION OF DAMSELFISH 

BIOMASS USING AN ACOUSTIC SIGNAL PROCESSING TECHNIQUE. Journal of 

Ocean Technology, 13(2). 

[11] Myrberg, A. A. (1981). Sound communication and interception in fishes. In Hearing and 

sound communication in fishes (pp. 395-426). Springer, New York, NY 

[12] Myrberg, A. A., Mohler, M., &Catala, J. D. (1986). Sound production by males of a coral 

reef fish (Pomacentruspartitus): its significance to females. Animal Behaviour, 34(3), 913-

923.  

[13] Roux, P., Sabra, K. G., Kuperman, W. A., & Roux, A. (2005). Ambient noise cross 

correlation in free space: Theoretical approach. The Journal of the Acoustical Society of 

America, 117(1), 79-84.  



89 
 

[14] Raton, H. H., Chowdhury, S. A. H., Rana, M. J., Anower, M. S., Hossain, S. A., & Sarkar, 

M. I. (2015, December). Cross-correlation based approach of underwater network 

cardinality estimation with random placement of sensors. In Telecommunications and 

Photonics (ICTP), 2015 IEEE International Conference on (pp. 1-5). IEEE.  

[15] Nosal, E. M. (2008, October). Flood-fill algorithms used for passive acoustic detection and 

tracking. In New Trends for Environmental Monitoring Using Passive Systems, 2008 (pp. 1-

5). IEEE. 

[16] Winn, H. E., Edel, R. K., & Taruski, A. G. (1975). Population estimate of the humpback 

whale (Megaptera novaeangliae) in the West Indies by visual and acoustic techniques. 

Journal of the Fisheries Board of Canada, 32(4), 499-506. 

[17] Hossain, S. A., Mallik, A., & Arefin, M. (2017). A Signal Processing Approach to Estimate 

Underwater Network Cardinalities with Lower Complexity. Journal of Electrical and 

Computer Engineering Innovations, 5(2), 131-138.  

[18] Hossain, S. A., Anower, M. S., & Halder, A. (2015, November). A cross-correlation based 

signal processing approach to determine number and distance of objects in the sea using 

CHIRP signal. In Electrical & Electronic Engineering (ICEEE), 2015 International 

Conference on (pp. 177-180). IEEE. 

[19] Hossain, S. A., Ali, M. F., Akif, M. I., Islam, R., Paul, A. K., & Halder, A. (2016, 

September). A determination process of the number and distance of sea objects using 

CHIRP signal in a three sensors based underwater network. In Electrical Engineering and 

Information Communication Technology (ICEEICT), 2016 3rd International Conference on 

(pp. 1-6). IEEE. 

[20] Hossain, S. A. & Hossen, M. (2018). Abundance estimation from different distribution of 

damselfish using cross-correlation and three sensors. New Zealand Acoustics, 31(3). 

[21] Hossain, S. M. A. (2018). Cross-correlation based Acoustic Signal Processing Technique 

and its Implementation on Marine Ecology (Doctoral dissertation, Khulna University of 

Engineering & Technology (KUET), Khulna, Bangladesh). 

[22] Hossain, S. A., Hossen, M., Mallik. A & Hassan, S. M. (2019). A Technical Review on Fish 

Population Estimation Techniques: Non Acoustic and Acoustic Approaches. Akustika, 31.   



90 
 

CHAPTER V 

SIGNIFICANT IMPACTS ON FISH POPULATION ESTIMATION 

This chapter describes different practical impacts, which will affect the estimation during 

practical situations. Here, we discuss three impacts, i.e., underwater bandwidth, SNR, and 

Doppler Effect. Knowledge about these impacts is important for practical estimation. 

 

5.1 Introduction of Significant Impacts on Fish Population Estimation 

 

During practical implementation of the proposed technique, different factors have significant 

impacts on estimation. Impact of bandwidth, multipath, noise, Doppler Effect, signal strength 

etc., must be taken into account. In this chapter, we discuss three of them. We have considered 

two types of fish acoustics, i.e., chirp and grunt, to show a relative comparison for showing the 

impact of underwater bandwidth and SNR on fish population estimation. However, a relative low 

impact is posed by Doppler Effect which will be shown. The parameters used in this chapter are 

same as table 4.1 of chapter 4.  

 

5.2 Impact of Underwater Bandwidth 

 

In practical cases, underwater acoustic channels are band limited due to the frequency 

dependency of absorption loss. The SNR also fluctuates. Hence, it’s often a challenging task to 

implement the cross-correlation based fish population estimation technique. 

Frequency dependent absorption loss is responsible for underwater bandwidth limitation [1], and 

it is nearly 1-15 kHz. With the increase of bandwidth, this absorption loss also increases, which 

decreases the transmission range. Channel bandwidth restricts the signal bandwidth, which 

affects the estimation performance. The reason is that limited bandwidth, we will get sinc 

function [2] instead of delta function of infinite band signal. So, it will give undesired peaks in 

the bins. Hence, the CCF will be corrupted as well as the estimation. To illustrate the impact of 
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bandwidth, 5 kHz (low pass is better in underwater to avoid unwanted high frequency 

attenuation) chirp and grunt signals are used in the simulation instead of infinite bandwidth 

signals. The ratio of standard deviation to mean of CCF for this finite bandwidth case is obtained 

and denoted by RfiniteBW and for infinite bandwidth case, RinfiniteBW. Now the ratio of these two R is 

obtained and plotted against N shown in Fig. 5.1 for chirp signal. It can be seen in the figure that 

RfiniteBW is almost the constant multiple of RinfiniteBW and the mean of those constants is 0.59512 

for this case. 

 

Fig. 5.1 Ratio of RfiniteBW  and RinfiniteBW with respect to population size, N for chirp signal 

Now, for chirp signal of fish and mammals, multiplying theoretical infinite bandwidth RinfiniteBW 

by this mean gives the theoretical approximation of finite bandwidth RfiniteBW  as bellow: 

𝑅𝑓𝑖𝑛𝑖𝑡𝑒𝐵𝑊 = 0.59512 × √
𝑏−1

𝑁
                                                    (5.1)                                  

𝑁𝑐ℎ𝑖𝑟𝑝 = (
0.59512

𝑅𝑓𝑖𝑛𝑖𝑡𝑒𝐵𝑊
)

2

× (𝑏 − 1)                                                (5.2)                                        

The result is illustrated in Fig. 5.2. 
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Fig. 5.2 R of CCF versus N plot (x log and y normal scale) for finite (5 kHz) and infinite 

bandwidth case with b =39 (dDBS =0.5m and SR =60 kSa/s) for chirp signal. 

Similarly, for grunt signal of fish and mammals,  

𝑅𝑓𝑖𝑛𝑖𝑡𝑒𝐵𝑊 = 0.55245 × √
𝑏−1

𝑁
                                                           (5.3)                                

𝑁𝑔𝑟𝑢𝑛𝑡 = (
0.55245

𝑅𝑓𝑖𝑛𝑖𝑡𝑒𝐵𝑊
)

2

× (𝑏 − 1)                                                       (5.4)                                 

Thus, the result is illustrated in Fig. 5.3.  

 

Fig. 5.3 R of CCF versus N plot (x log and y normal scale) for finite (5 kHz) and infinite 

bandwidth case with b =39 (dDBS = 0.5m and SR = 60 kSa/s) for grunt signal. 
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Because of limited underwater bandwidth, cross-correlation of fish signals results in sinc 

functions [2] in lieu of delta functions, which corrupts the CCF and so RinfiniteBW. So, scaling is a 

must to obtain exact population size from the proposed method. Similarly, degrading in 

estimated fish population occurred due to lower SNR in the estimation area.  However, the 

scaling factor is independent of b, which is also a finding in this research. 

 

5.3 Impact of SNR 

 

Although the effect of noise in the proposed population estimation technique will be similar for 

all sorts of noise (assuming AWGN), the noise strengths be different. Here, the impact of SNR is 

discussed for internal noise of a receiver. In our proposed estimation technique, SNR is used as 

the ratio of voltage levels of signal and noise. Let us consider, an acoustic signal received by two 

noisy acoustic sensors as: 

𝑓1(𝑡) = 𝑆1(𝑡) + 𝑆𝑛1(𝑡),                                                                 (5.5)                                               

𝑓2(𝑡) = 𝑆2(𝑡) + 𝑆𝑛2(𝑡),                                                                (5.6)                                                  

where S1(t) is the delayed version of the signal transmitted from a fish/mammal to acoustic 

sensor 1, S2(t) is the delayed version of the signal transmitted from the same fish/mammal to 

acoustic sensor 2, Sn1(t) is the internal noise received in acoustic sensor 1, and Sn2(t) the internal 

noise received in acoustic sensor 2.  Then the CCF, C (τ) is [3]: 

𝐶(𝜏) = 𝑙𝑖𝑚
𝑇→∞

1

2𝑇
∫ 𝑓1
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= 𝐶𝑆1𝑆2
(𝜏) + 𝐶𝑆1𝑆𝑛2

(𝜏) + 𝐶𝑆𝑛1𝑆2
(𝜏) + 𝐶𝑆𝑛1𝑆𝑛2

(𝜏),                                  (5.7)

                         

 

where, 𝐶𝑆1𝑆2
(𝜏) is the CCF of S1(t) with S2(t), 𝐶𝑆1𝑆𝑛2

(𝜏) is the CCF of S1(t) with Sn2(t), 𝐶𝑆𝑛1𝑆2
(𝜏) 

is the CCF of Sn1(t) with S2(t), 𝐶𝑆𝑛1𝑆𝑛2
(𝜏) is the CCF of Sn1(t) with Sn2(t), and, τ is the time delay 

in the cross-correlation process. 

As S1 (t) and Sn2 (t), Sn1 (t) and S2 (t), Sn1 (t) and Sn2 (t) are independent random processes, their 

CCFs tend to be zero with the integration time extension and zero when the integration time is 

infinity. Thus, (5.7) becomes 

𝐶(𝜏) ≈ 𝐶𝑆1𝑆2
(𝜏)                                                                 (5.8) 

But, as in practice, it is impossible to take an infinite time interval; it is interesting how the cross-

correlation works with finite time integration. 

However, to show the impact of SNR on the fish population estimation technique, the 

simulations are investigated by adding white Gaussian noise to the signals in the receivers. 

Sometimes it is converted to dB as for example, SNR=1 indicates 0 dB, SNR=10 indicate 20 dB. 

In this research, the internal noise of the acoustic sensors was added to the estimation process. 

Simulations are conducted for the variation of estimated population size of fish and mammals 

with respect to the variation of SNR. The simulation parameters were same as we have used in 

the basic estimation technique. 
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           (b) 

Fig. 5.4 SNR vs. estimated number of fish and mammals, (a) chirp signal and (b) grunt signal. 

In Fig. 5.4, the x axis is taken in logarithmic scale, whereas the y axis is taken as normal scale. 

Figures 5.4(a) and 5.4(b) are plotted for chirp and grunt signals of fish and mammals, 

respectively, to show the impact of SNR on cross-correlation based fish population estimation 

technique. In Figs. 5.4(a) and 5.4(b), the black solid line represents the estimated population of 

fish and mammals for 100 fish and mammals without noise; whereas the red and purple lines 

with circles represent the estimated population of fish and mammals for similar 100 fish and 

mammals with different SNR. It can be seen from the Fig. 5.4 that, with the increase of SNR the 

estimation accuracy also increases. When the SNR is 20, the estimation begins to show the 

similar results as without noise case. The result remains nearly same with further increasing of 

SNR after the value of SNR = 20. Hence, we can say that SNR =20 or 26.02059 dB SNR is the 

optimum SNR in cross-correlation based passive acoustic technique of fish population 

estimation. 

 

5.4 Impact of Doppler Effect 

 

Due to Doppler Effect, there will be a slight variation in the propagation wavelength and, thus, in 

propagation delay, which can affect the placing of balls in the bins of the cross-correlation 
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process and might lead to fractional-sample delays being created. However, fractional samples 

have no significant effect on estimation. 

 

5.5 Chapter Summary 

 

Though Doppler effect has a small impact, impact of underwater bandwidth and SNR are two 

key terms in cross-correlation based fish population estimation technique. Limited underwater 

acoustic channel bandwidth creates an impediment to utilize infinite band fish signals. Hence, 

scaling with proper scaling factor is a mandatory task to estimate an accurate population size 

using cross-correlation based fish population estimation technique. Similarly, proper fish 

population estimation requires a better SNR. With the decrease of SNR, the estimation 

performance also decreases. So, an appropriate SNR must be maintained. However, to estimate 

the fish population in practical cases using cross-correlation based fish population estimation 

technique; these findings will benefit the researchers. 
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CHAPTER VI 

CONCLUSION AND FUTURE DIRECTION 

Because of various drawbacks of conventional techniques, in this thesis, a cross-correlation 

based fish population estimation technique is proposed, which can solve the major problems of 

conventional ones. But, implantation of this technique in practice is challenging. Different 

factors affect the estimation performance. The objective of this thesis is to build a framework to 

implement cross-correlation based fish population estimation technique.  We have not only 

proposed the framework but also analyzed its performance with respect to different fish 

acoustics, different number of sensors, and different distributions of fish and mammals. We have 

carried an investigation to select the optimum estimation parameter. We have also analyzed 

different practical impacts, i.e., underwater bandwidth, SNR, and Doppler Effect, which will 

assist the researchers during its implementation at practical situations.  

 

6.1 Summary and Discussion 

 

With the thesis, a comprehensive framework is built, which can estimate population size of fish 

and mammals by eradicating the limitations of conventional methods. In this thesis, an elaborate 

description on different types of conventional fish population estimation technique is illustrated. 

Their benefits and limitations with respect to our proposed technique is the focus of chapter 2. A 

sophisticated description on fish acoustics is the cardinal goal of chapter 3. However, we have 

generated different fish acoustics using MATLAB, which are the main items for simulations in 

chapter 4. The main findings of this thesis are: 

(a) Cross-correlation based fish population estimation technique can overcome the major 

limitations of conventional techniques. 

(b) In the proposed technique, with the increasing of CCFs the estimation performance is 

growing better. 

(c) So, an increasing number of acoustic sensors provide better results in this technique. 
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(d) Among different fish acoustics, chirp signal can produce more accurate results. 

(e) Among the three fish distributions, i.e., Exponential, Normal, and Rayleigh, 

Exponential distribution of fish and mammals can produce better results. 

(f) Limited underwater bandwidth affects the estimation. A scaling can solve it. 

(g) With the decrease of SNR, the performance of estimation also decreases. So, increase of 

SNR is a must.  We have found that the optimum SNR is 20. 

(h) Doppler Effect has not any significant impact on this statistical method. 

 

6.1.1 Limitations 

 

The research has some limitations, like: 

(a) Negligence of multipath interference 

(b) Assuming the delays to be integer 

(c) Consideration of a negligible amount of power difference among the fish acoustics 

(d) Consideration of acoustic sensors to be laid at the middle of the estimation area 

 

6.2 Future Directions 

 

Some assumptions are considered in this thesis, such as the center placement of acoustic sensors, 

equal distance between acoustic sensors, insufficient CCFs for better performance etc. We also 

have considered three types of acoustics of fish and mammals, where the acoustics types can be 

more. Some future directions are given bellow for the future researchers.  

 

6.2.1 Random Placement of Acoustic Sensors 

 

In this thesis, we have considered the acoustic sensors are placed in the middle of the assumed 

estimation area. But, in practice, the acoustics sensors position can be random for two reasons. 

(a) The fish and mammals randomly change their positions and hence distributions. 

(b) The acoustic sensors position can be random to track the fish population 

However, such randomly placement of acoustic sensors might affect CCF and hence the 

estimation performance. 
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6.2.2 Unequal Distance Between Acoustic Sensors 

 

In our research, we have considered equal distance between the sensors for both two and three 

acoustic sensors cases. An unequal distance between the acoustic sensors can be occurred in 

practice due to necessities. These types of distance affect the CCF and thus estimation 

performance. Investigation on it can be a goal of the future researchers. 

 

6.2.3 Estimation with N Number of Acoustic Sensors 

 

In this thesis, we have worked with two and three acoustic sensors cases. We have found that the 

increasing number of acoustic sensors produce a better result. If we take N number of sensors 

then this will give N-1 number of CCFs. The more number of CCFs, the more accuracy will be 

provided for the estimation process. So, the estimation performance becomes more accurate. 

However, implementation of increasing number of acoustic sensors is costly. 

 

6.2.4 Estimation with More Acoustics of Fish and Mammals 

 

In this thesis, we have considered three types of acoustic signals of fish and mammals for two 

sensor cases and one type for three sensors case, pop, hoot, whistle etc. are different sound types, 

which can be implemented in future. Those implementations must consider the frequency of 

those signals when using the proposed technique.  

 

6.2.5 Impact of Multipath 

 

The impact of multipath is a significant case for the proposed estimation technique. To reach the 

acoustics from fish to acoustic sensors, it must face multipath phenomenon in practical cases. 

This affects the estimation performance. This can be another goal of research. 
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