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Abstract 
 

 
Motor imagery event classification from functional near-infrared spectroscopy (fNIRS) is one 

of the most interesting problems of current brain-computer interfaces (BCIs) challenges 

because it needs no additional data guiding visual or listening protocol. A vital step of the 

fNIRS signal classification by machine learning approach is feature extraction. The feature 

extraction from multiple channel fNIRS signal is always challenging due to its high 

dimensionality. There exist several conventional feature extraction procedures like principal 

component analysis, nonlinear principal component analysis, independent component 

analysis, norm analysis, spectral norm analysis, etc. This research work studies such existing 

feature extraction method to classify the hand movement events of fNIRS signals. The 

accuracies of these methods have been found less than the expectation. Therefore, some more 

accurate method is needed. In this regard, usually common spatial pattern (CSP) is used to 

reduce the dimensional reduction and improving the classification accuracy. The 

conventional CSP method can be proven also ineffective for the motor imagery fNIRS signal 

due to its high level of trial to trial variations. The present research work proposes an 

algorithm named by standardized common spatial pattern (SCSP) based feature extraction 

method for fNIRS based motor imagery classification which can perform well in the context 

of the trial to trial significant variation. The classification results corresponding to the 

proposed feature extraction method reveal that the proposed SCSP algorithm outperformed 

the conventional CSP method and channel-wise method for classifying the two motor 

imagery event classifications. For classification accuracy measurement, four well-known 

classifiers: artificial neural network (ANN), k-nearest neighbor (kNN), support vector 

machine (SVM), and linear discriminant analysis (LDA) have been used. We have utilized 

both the fNIRS data of oxidized hemoglobin (HbO) and deoxidized hemoglobin (HbR) for 

classifying the motor imagery fNIRS data with the conventional and proposed methods. From 

the comparisons, we have found that in both cases, the proposed method outperforms the 

conventional methods in the context of the classification accuracies. To validate the 

classification accuracies, the sensitivities and specificities of the classifier are also calculated 

in this work. We believe that the proposed SCSP method will contribute in the field of feature 

extraction method for other types of fNIRS based BCI system, effectively. In addition, this 

method may be applied for the feature extraction to the other multidimensional signals so far.  
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CHAPTER I 

 

Introduction 

 

1.1 General Scopes 

Brain-computer interface (BCI) is one of the important topics of the modern neuro-

computing research area. BCI system offers a direct communication pathway between the 

brain and real world [1.1]. It has potential application in neuro-rehabilitation basically for 

the paralyzed or motor impaired patients. BCI system needs two important factors- 

scanning neuro-activities and decoding them that can control computer or devices. Though 

promising methods of scanning the neuro activities are Electroencephalography (EEG), 

Functional Magnetic Resonance Imaging (fMRI), and Functional Near-Infrared 

Spectroscopy (fNIRS), fNIRS is getting more attentions over the last decades due to its 

high spatial resolution, moderate temporal resolution, and less noise sensitivity [1.2]. 

Another important issue is to decode the recorded neuronal signals.  

fNIRS is an optical and non-invasive method of brain activity measurement, with high 

spatial resolution and reliability. So, it becomes one of the best choices for brain computer 

interface (BCI) [1.3]. The fNIRS method depends on changes of blood flow and it 

measures the concentration of oxygenated and deoxygenated hemoglobin (HbO and HbR) 

from the super-facial layers of the human cortex. It actually measures the change in 

oxygen saturation and hemoglobin concentration in brain tissue. fNIRS can offer 

simultaneous measurements from dynamic changes of HbO and HbR in the brain cortex 

with a reasonable temporal resolution (< 1sec) and spatial resolution (~ 3 cm) [1.4]. fNIRS 

employs low-energy optical radiation (mostly in 2-3 different wavelengths between 700-

900 nm) to assess the change in absorption by the chromophores (HbO & HbR) in the 

underlying brain tissue [1.5]. In fact, this absorption changes reflect the changes in local 

HbO and HbR concentration, which in turn are related to and triggered by the alternation 

in neuronal activities. Therefore, fNIRS is an imaging tool which utilizes endogenous 

chromophores to assess brain’s functional activities, non-invasively. By this functional 
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brain imaging modality, it is possible to detect HbO and HbR of imagery movements, 

cognitive task, mental math task, n-back memory test, emotion recognitions, etc. [1.6].  

The NIRS data is analyzed using different feature extraction method and classification 

method. Common spatial pattern (CSP) based feature extraction method is used to 

improve the classifying accuracy [1.7]. Principal component analysis (PCA) is used to 

identify the principal components of the data. The weights of the independent component 

analysis (ICA) and non-linear principal component analysis (NLPCA) are also used as the 

features of the NIRS data. On the other hand, for fNIRS data classification, the artificial 

neural network (ANN), k-nearest neighbor (k-NN) algorithm, support vector machine 

(SVM) and linear discriminant analysis (LDA) are extensively used [1.8].  

1.2 Motivation 

A number of research works have been demonstrated regarding BCI applications through 

fNIRS where motor imagery based BCI system is one of the most examined BCI 

paradigms [1.9]. In addition, there are also some research works [1.10-1.12] those have 

conducted the BCI based on the voluntary movement-related tasks. In this contrast, the 

real execution of hand movements recognition or classification is easier than that of 

imagery movements. Motor execution by left hand and right hand corresponding fNIRS 

data can be classified by very high accuracy (about 90%) [1.13-1.14]. On the other hand, 

achieving the accuracy up to 70% for imagery movement is crucial. Therefore, it is a 

challenging task to discriminate the neuro-activations due to motor imagery based stimuli 

because it is reported in [1.15] that the activation due to imagine movements is only 30% 

of voluntary movements. Therefore, the system definitely needs highly intelligent 

computational algorithm that can differentiate even the little variation occurred for the 

different imagery movements. In order to classify the fNIRS data of motor imagery, 

different classifiers like LDA, SVM, ANN etc. are often used. These classification 

techniques require suitable features or attributes to differentiate the classes. As a result, 

efficient feature extraction is also very important obligation before task classification. 

In the field of BCI, the researchers proposed a number of methods regarding fNIRS signal 

filtering, preprocessing, feature extraction, and classification [1.13-1.17]. For either 

voluntary or imagery movement classification [1.13-1.18] from fNIRS signal different 

types of statistical features have been proposed like mean, standard deviation, variances, 
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slope, median, skewness, and kurtosis. We found that these research works used different 

features and classifiers to classify the activities from the signal.  

Again, there are a number of research works those reported that the CSP based feature 

extraction method can improve the quality of classifiers and increase the classification 

accuracy [1.19-1.22]. Unfortunately, all of these articles are EEG based BCI. Concerning 

fNIRS based BCI system, only a handful research work used CSP method to extract 

feature for the training of the predictive network. So far the knowledge of the authors CSP 

method has been applied in [1.23] where the fNIRS data were of voluntary movements. 

The motor imagery movement classification with the help of CSP method has been 

accomplished in [1.8] for the first time where they reported this method can improve the 

classification accuracy more than 9% in average and reached up to 72% to 75% but this 

accuracy for two class classification is not enough for achieving highly accurate BCI 

system. 

1.3 Problem Statements and Scopes 

From the aforementioned research works two major issues have been found that create 

scope for further study:  

i)  Regarding these classifiers and used feature types, there arise questions that 

which type of features will be fruitful for the classifier and which classifier will 

show the best accuracy for NIRS data. 

 ii)  For motor imagery events, for significant classification accuracy CSP can be 

applied because CSP is better method than that of the conventional multiple 

channel averaging method. Nonetheless, the existing CSP method has some 

limitations that creates obstacle to achieve the high accuracy. The limitation can 

be presented by the following points:       

 Existing CSP method consider the signals of all the trials as same weight. 

 Final spatial filtering weight matrix is produced by simple averaging. 

 Covariance coefficient calculating procedure of the existing common spatial 

pattern does not cover the global spatial pattern. 

Therefore there are two major thesis questions that should be answered. At, first a wide 

investigation is necessary to find the best features and corresponding classifier to achieve 
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the best classification accuracy for the development of an efficient BCI system. Secondly, 

to achieve very high classification accuracy especially, for motor imagery event 

classification, the limitations of the existing CSP has to overcome.  

1.4 Objectives 

Concerning the previous issues this thesis work scope to perform several steps of study 

with some specific objectives. The significant objectives of the proposed thesis work can 

be listed as:  

 To find the effective features for fNIRS signal for significant classification 

accuracies.  

 To reveal the appropriate classifier for fNIRS data classification. 

 To modify the conventional CSP method based on the consideration of global 

spatial covariance.  

 To measure the classification accuracies of both CSP and modified CSP methods 

by extracting features from motor imagery fNIRS signal by the conventional CSP 

and modified CSP method. 

 Enhancing the classification accuracy by the modified CSP method with compared 

to the conventional CSP method by conditioning its proper standardization.  

 

1.5 Thesis Outlines 

 Chapter One: The general scopes and the significance of this type of thesis work 

have been reported in this chapter. In addition the relevant research work has been 

discussed with their limitations. We also discussed the possible scopes to 

overcome the limitations of the existing work. The significant objectives of the 

proposed thesis work have been reported here. 

 Chapter Two: The theoretical knowledge about the fNIRS system, mathematical 

modeling, and different significant features of the fNIRS signals are discussed in 

this Chapter. In addition, the main characteristics and field of application of fNIRS 

has also been explained here. 



6 
 

 Chapter Three: The technical details of the proposed methodologies of this work 

are given in this Chapter. The mathematical backgrounds of the different filtering 

criteria, feature extraction methodologies, classification techniques, etc. are 

broadly explained here. 

 Chapter Four: The main outcomes of the proposed work have been reported in 

this Chapter. The results have been presented in tabular and graphical form with 

neat and detail discussions.  

 Chapter Five: The total thesis work has been concluded in this chapter. Here, the 

future perspectives have also been a concerning issue that will be helpful for the 

future researchers to work more efficiently in this arena.  
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CHAPTER II 

 

Theoretical Background 

 

2.1 Introduction 

In this chapter, the theoretical knowledge about the fNIRS system, mathematical 

modeling, and different significant features of the fNIRS signals are discussed. In addition, 

the main characteristics and fields of application of fNIRS have also been explained in this 

chapter. The aim of this chapter is to present a clear conception of the fNIRS modality and 

the perspective of its applicability. 

2.2 Background of fNIRS 

2.2.1 Near Infrared Spectroscopy 

Most biological tissues are comparatively transparent to light in the near-infrared range 

between 700 to 900 nm because the absorbance of the main constituents in the human 

tissue like H2O, HbO, and HbR is small in this range [2.1]. The absorbance coefficient of 

H2O, HbO, and HbR as well as the optical window of fNIRS are shown in Figure 2.1. 

At a high temporal resolution fNIRS can measure to capture additional frequency band 

and participant does not need to lay down at a supine position. fNIRS is a portable device 

that can be used in more normal setting like setting at a small table and even with 

moveable subject walking outdoors [2.3]. fNIRS is free from most of the art effects like 

eye blink, muscle activities and offer a unique transaction between spatial and temporal 

resolution. It also used in other measurement system such as neurostimulation, EEG, 

physiological signal [2.4]. A 16 channel fNIRS device are shown in Figure 2.2. 
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Figure 2.1: Absorption coefficient of HbR, HbO, and H2O with respect to the light 

wavelength [2.2]. 

 

 

Figure 2.2: A 16 Channel fNIR signal Acquisition device. (Biopac 1200 Model) 

HbR 

HbO 

H2O 
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In general configuration light source and detectors of the fNIRS probe are placed on the 

brain scalp and two different wavelengths approximately 700 and 900 of lights are 

transmitted through the upper layer of cerebral cortex. Injected photons follow various 

paths inside the head at the time of light in NIR range being shone through the human 

scalp. Few numbers of these photons are absorbed by skull, skin and brain. After 

following the so-called “banana” pattern rest of the photons exit the head due to scattering 

effect of the tissue [2.5]. The main absorbers in the NIR range are blood chromophores of 

HbO and HbR whereas water and lipid are relatively transparent to NIR light. Therefore, 

changes in the amplitude of backscattered light can be represented as changes in blood 

chromophore concentrations. fNIRS means the estimating technique of HbR and HbO 

concentrations by means of near infrared light. 

2.2.2 History of fNIRS 

The discovery of near-infrared energy is ascribed to William Herschel in the 19th century, 

but the first industrial application began in the 1950s. In the first applications, NIRS was 

used only as an add-on unit to other optical devices that used other wavelengths such as 

ultraviolet (UV), visible (Vis), or mid-infrared (MIR) spectrometers. The chronology of 

the major events leading up to human functional cortical imaging by fNIRS is reported in 

Table 2.1. 

 

Table 2.1: Overall chronology of the major events leading up to human functional cortical 

imaging by fNIRS [2.6] 

Year Major events 

1977 
Jöbsis determines the possibility to detect changes of adult cortical oxygenation 

during hyperventilation by near-infrared spectroscopy 

1985 
First NIRS clinical studies on newborns and adult cerebrovascular patients (Brazy; 

Ferrari) 

1989 
First commercial single-channel CW clinical instrument: NIRO-1000 by Hamamatsu 

Photonics, Japan 

1991- First fNIRS studies carried out independently by Chance, Kato, Hoshi, and Villringer 

https://en.wikipedia.org/wiki/William_Herschel
https://en.wikipedia.org/wiki/Ultraviolet
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1992 by using single-channel instruments 

1993 
Publication of the first 6 fNIRS studies Simultaneous monitoring of different cortical 

areas by 5 single-channel instruments (Hoshi) 

1994 

First application of fNIRS on subjects affected by psychiatric disorders by using a 

single-channel system (Okada); Hitachi company (Japan) introduces a 10-channel 

CW system (Maki); First simultaneous recording of positron emission tomography 

and fNIRS data (Hoshi) 

1995 

First evidence of a fast-optical signal related to neuronal activity (Gratton); First 

two-dimensional image of the adult occipital cortex activation by a frequency 

domain spectrometer (Gratton) 

1996 
First simultaneous recording of fMRI and CW fNIRS data (Kleinschmidt); First 

simultaneous recording of fMRI and TRS fNIRS data (Obrig) 

1998 

First application of fNIRS on newborns using a commercial single-channel CW 

system (Meek) 

First images of the premature infant cortex upon motor stimulation by using a CW-

fNIRS prototype (Chance); First application of the Hitachi 10-channel system in 

clinics (Watanabe) 

1999 

First introduction of a 64-channel TRS system for adult optical tomography (Eda); 

First introduction of a 32-channel TRS system for infant optical tomography 

(Hebden); First optical tomography TRS images of the neonatal head (Benaron); 

Introduction of the first compact 8-channel TRS system (Cubeddu); TechEn 

company (USA) starts to release its first fNIRS commercial system 

2000 
Hitachi company starts to release its first commercial system: (ETG-100, 24 

channels) 

2001 

First fNIRS study using a single-channel CW portable instrument and telemetry 

(Hoshi); Shimadzu company (Japan) starts to release its first commercial system: 

(OMM-2001, 42 channels); ISS Inc. (USA) starts to release the frequency domain 

system: Imagent (up to 128 channels); First three-dimensional CW tomographic 

imaging of the brain (DYNOT, NIRx Medical Technologies, US) (Bluestone) 
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2002 Hitachi company starts to release the ETG-7000 (68 channels) 

2003 

Hitachi company starts to release the ETG-4000 (52 channels) 

Artinis company (The Netherlands) starts to release the Oxymon MkIII (up to 96 

channels) 

2004 

Shimadzu company (Japan) starts to release the NIRStation (64 channels) 

First simultaneous recording of DC-magneto encephalography and CW fNIRS data 

(Mackert) 

2005 Hitachi company starts to release the ETG-7100 (72 channels) 

2007 Shimadzu company starts to release the FOIRE-3000 (52 channels) 

2009 

fNIR Devices company (USA) starts to release a wearable 16-channel system for 

adult PFC measurements 

Hitachi company starts to release a battery operated wearable/wireless 22-channel 

system for adult prefrontal cortex measurements 

2011 
NIRx Medical Technologies company (USA) starts to release a battery operated 

wearable/wireless 256-channel system for adult frontal cortex measurements. 

 

2.2.3 Oximetry and Hemodynamic Response 

The variation in the concentrations of HbO and HbR in the brain tissue occurs according 

to the change in cognitive activity. Cerebral hemodynamic changes are related to 

functional brain activity through a mechanism called neurovascular coupling [2.7]. The 

Figure 2.3 and the following steps can be stated that the relation between oximetry and 

hemodynamic activation.   

 Neurons consume energy (glucose) at the time of becoming activated. 

 To metabolize the glucose Oxygen is required. 

 Clusters of neurons being activated, there is an increased need for oxygen in that 

area. 

 To neural tissue via HbO in the Blood Oxygen is transported. 

 In the capillary beds, the oxygen exchange is occurred  
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 HbO giving up oxygen to the neural tissue is transformed into deoxygenated HbR 

[2.8]. 

 

 

Figure 2.3: Relation between hemodynamic response and oxygen concentration [2.9] 
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Figure 2.4: Position of fNIRS source and detector on human scalp 

 

2.2.4 Mathematical Modeling of Oximetry 

In training the detector and the IR emitter diode are placed 3-4 cm separately as Figure 

2.4. It traces a banana-shaped path from emitter to detector like Figure 2.4 as NIR light 

enters the cerebrum. An array of sources and detectors, secured in a headband such as 16 

channel FNIRS as in Figure 2.5, allows the hemoglobin concentrations measurement at 

various places in the cerebrum. Using the modified Beer-Lambert law, the attenuation of 

light between the source and detector can be formulated as [2.10], 

 

OD
inII


 10                                                          (2.1) 

Where OD  is the optical density at the wavelength λ. The optical density can be found 

as, 

 

 SAnAttenuatio
I

I
OD

in

out  log                                  (2.2) 
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Here A  and s  are the absorbing and scattering factors, respectively. In this case, main 

absorbers of light are blood chromophores HbO and HbR in the NIR spectra. Therefore, 

absorption of light can be formulated as, 

  LCA i

HbOHbi

i




2.

,                                                        (2.3) 

In (2.3),  ,i , is the specific extinction coefficient of blood chromophore for wavelength 

 and Ci is the concentration of blood chromophores and Lλ is the path-length of light at λ. 

Path-length is a very important parameter which can be expressed in terms of source 

detector separation as, 

 DPFdA .                                                               (2.4) 

1 2
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5 6

87

9 10

1211

13 14

1615

NIR Light Source

Detector

 

Figure 2.5: 16 Channel fNIRS compact band of source and detector 

In (2.4), d is the linear difference between the light emitter and detector and the DPF 

stands for differential path factor. Differential path-length factor is the actual factor to 

correct the proper length of the light travels. DPF can apparently calculated as, 









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













,

'
,3

2

1

a

s
DPF                                                           (2.5) 

Where a  is the absorption coefficient, and '
,s is the reduced scattering coefficient at 

wavelength λ. 

 To remove the effect of scattering two successive measurements, yield the differential 

value of optical density and the procedure can be described as, 

initialfinal ODODOD ,,    
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 DPFdCi

HbOHbi

i ...

2.

,  


                                             (2.6) 

Now the effect of scattering is cancelled. Since each chromophore has a specific extinction 

coefficient and differential pathlength factor, measurement with two wavelengths leads to: 

CMOD                                                           (2.7) 

Where the values of OD, C, and M are given below. 
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From (2.9) we get a transformation from light output change to change in blood 

chromophore concentrations. By using blood chromophore concentrations, we can define 

two parameters, namely, oxygenated blood concentration (OXY) and blood volume (BV) 

which are determined as [2.11]-[2.14], 

 

HbHbO CCOXY 
2

                                                 (2.11) 

HbHbO CCBV 
2

                                                    (2.12) 

 

2.3 Types of fNIRS Technique 

There are three different fNIRS techniques are used which are based on a specific type of 

illumination: 

(i) The continuous wave (CW) modality- which based on constant tissue illumination,     

simply measures light attenuation through the head. 

(ii) The frequency-domain (FD) method- which illuminating the head with intensity-

modulated light, measure both attenuation and phase delay of emerging light.  
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(iii) The time-domain (TD) technique- which illuminating the head with short pulses of 

light, detects the shape of the pulse after propagation through tissues [2.15]. 

2.4 Main Characteristics of fNIRS Techniques 

Different fNIRS instruments with related key features, advantages and disadvantages, and 

parameters measurable by using different fNIRS techniques is given in Table 2.2. 

Table 2.2: Main characteristics and Measurable Parameter of fNIRS Techniques [2.6]. 

Main characteristics 

fNIRS techniques-based instrumentation 

Continuous wave 
Frequency-

domain 
Time-domain 

Sampling rate (Hz) ≤100 ≤50 ≤10 

Spatial resolution (cm) ≤1 ≤1 ≤1 

Penetration depth with a 4 cm 

source-detector distance 
Low Deep Deep 

Discrimination between cerebral 

and extra-cerebral tissue (scalp, 

skull, CSF) 

N. A. Feasible Feasible 

Possibility to measure deep brain 

structures 
Feasible on newborns 

Feasible on 

newborns 

Feasible on 

newborns 

Instrument size 
Some bulky, some 

small 
Bulky Bulky 

Instrument stabilization N. R. N. R Required 

Transportability 
Some easy, some 

feasible 
Feasible Feasible 

Instrument cost Some low, some high Very high Very high 

Telemetry Available Difficult Not easy 

Measurable parameter [O2Hb], 

[HHb], [tHb] 
Yes, changes 

Yes, absolute 

value 

Yes, absolute 

value 
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CSF= Cerebrospinal fluid, HHb= Deoxyhemoglobin, N. A. = not available, N. R. = not 

required, O2Hb= Oxyhemoglobin, tHb= O2Hb+HHb. 

 

2.5 Main Fields of fNIRS Application  

In recent year fNIRS develops rapidly, because of its advantages. The main application 

field of fNIRS like as brain structure and function research, brain computer interface, 

adaptive interface, monitoring of newborn, mental fatigue, medical rehabilitation etc is 

shown in bellow-[2.16]. 

Table 2.3: Fields of fNIRS application- 

Field’s Application 

Neurology 
Alzheimer’s Disease, Dementia, Depression, Epilepsy, Parkinson’s Disease, 

Post-Neuro Surgery Disfunction, Rehabilitation, Etc. 

Psychiatry 

Anxiety Disorders, Childhood Disorder’s, Eating Disorders, Mood Disorder’s, 

Personality Disorder’s, Substances Related Disorder’s, Schizophrenic 

Disorders, Etc. 

Psychology/

education 

Attention, Body Representation, Comprehension, Developmental Disorder’s, 

Developmental Psychology, Emotion, Functional Connectivity, Gender 

Differences, Language, Memory, Social Brain, Etc. 

Basic 

research 

Brain Computer Interface, Fusion Neuroergonomics, Pain Research, Sleep 

Research, Sports Science Research  

 

2.6 Chapter Summery 

In this chapter various terms related with the study have been discussed. The basic 

concepts regarding these terminologies must be clear to understand this study, completely. 

Main characteristics and fields of fNIRS application are also discussed here. 
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CHAPTER III 

 

 

Proposed Methodology 

 

3.1 Introduction 

In this section, proposed methodology has been widely discussed. This chapter covers the 

clarification about the data collections, modality specifications, preprocessing the fNIR 

signals, feature extracting methods, and classifications. In addition, the proposed method 

is also described with compared to the existing methodologies mentioning the novel 

contribution of this work.  

3.2 Data Collection 

The fNIRS data were collected by using two different tasks from two different 

laboratories. The left- and right-hand movements with and without pain data were taken 

for conventional methods and for the proposed method. 

3.2.1: Imagery Hand Movement with Pain Data: The imagery hand movement with 

pain data have been collected from the School of Oral Medicine of Taipei Medical 

University (TMU) in collaboration with the University of Canberra (UC), Australia.. The 

data consists of left hand and right-hand imagery movement with pain of seven 

participants. The data consists of both HbO and HbR concentration data. 

3.2.2 Imagery Hand Movement without Pain Data: The Imagery hand movement 

without pain fNIRS data has been collected from the Neuroimaging Laboratory of the 

Department of Biomedical Engineering, Khulna University of Engineering & Technology 

(KUET). The data contain 16 channel fNIRS data of HbO and HbR of four participants 

(age=22±1.5). Each participant performed 20 trials of each task (imagery left hand, iLH) 

and (imagery right hand, iRH). 
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3.3 Data Acquisition 

Hemodynamic measurement was performed using an optical topography system. The 

topography system uses functional near-infrared spectroscopy (fNIRS) to investigate 

cerebral hemodynamics. Optical topography makes use the different absorption spectra of 

oxygenated and deoxygenated hemoglobin in the near infrared region. The fNIRS system 

produces two different wavelengths of fNIRS signals through frequency-modulated laser 

diodes. These fNIRS signals are transmitted to the brain using optical fiber emitters. Near-

infrared light penetrates head tissue and bone, generally it reaches 2 to 3 cm into the 

cerebral cortex. Once fNIRS light reaches the cerebral cortex, it is absorbed by 

hemoglobin, while the non-absorbed fNIRS signals are reflected to the source, where it is 

sampled by a high-sensitivity photodiode. NIR light between emitters and detectors is 

sampled at a given time point named channels. Since Oxy-hemoglobin (HbO) and Deoxy-

hemoglobin (HbR) absorb NIR light differently, two wavelengths of light are used. In this 

way, it is possible to read these two types of hemoglobin simultaneously. Data has been 

collected from two different laboratories by using two different procedure. The total 

experimental procedure for the collection of data has been described elaborately at bellow. 

3.3.1 Experimental Setup for Imagery Hand Movement with Pain 

The experiment was designed by the School of Oral Medicine of Taipei Medical 

University (TMU) in collaboration with the University of Canberra (UC), Australia. In the 

present study, seven healthy individuals (3 females, 4 males) participated in the 

experiment, aged 25 to 35 years old. All participants provided written consent and the 

experiment was approved by the Ethics Committee of TMU. The experiment was carried 

out in the Brain Research Laboratory at TMU in a quiet, temperature (22-24
o
C) and 

humidity (40-50%) controlled room. The experiments were done in the morning 

(10:00am-12:00pm) and each experiment lasted around 30 minutes. Quantitative data was 

collected using the ETG-4000 with the patients sat down in an ergonomic chair near the 

topography system. The sampling period was 0.1 sec. and the sampling frequency was 

10Hz. The wavelength range of each data was between 695-830nm. The experiment was 

designed to recognize left and right arm imagery movement with pain stimulation and pain 

release in patients through hemodynamic responses. In order to identify the imagery hand 

movement with pain through fNIRS, acupuncture was used to induce pain stimulation in a 

safe manner. Brand new acupuncture needles were used for each experiment, and using 
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traditional Chinese acupuncture techniques that were performed by an acupuncturist of 

TMU Hospital. The puncture point used for stimulation was the “Hegu Point”, located on 

top of the hand, between the thumb and forefinger. This acupuncture point (acupoint) is 

known by its property to relieve pain, especially headaches and toothaches. This acupoint 

is also used to reduce fever, eliminate congestion in the nose, stop spasms, and decrease 

toothache. A western name for this acupoint is “the dentist’s point” because it can stop 

tooth pain while moist the throat and tongue. This point was used because it is an area of 

easy access and the hand can be set aside while the patient is relaxed on the chair. Each 

patient was punctured on both hands which has shown in Figure 3.1, one hand on a day 

and the opposite hand on another day; each hand was treated as a separated experiment. 

The data base was organized of 12 data sets of changes in Hemoglobin files, two sets 

(right and left hands) per each subject. 

 

 

Figure 3.1: Patient with acupuncture needle in Hegu point. 

 

Three types of pain stimulations (acupuncture techniques) were applied for the imagery 

hand movement in the experiment, needle insertion (Task 1, T1), needle twirl (Task 2, 

T2), and needle removal (Task 3, T3). The first type of stimulation (T1) was carried out 30 
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seconds after the start of experiment and it lasted for 6 seconds. The second type of 

stimulation (T2) was applied for 30 seconds (rest time) after T1 and it lasted for 10 

seconds, this stimulation was repeated three times after 30 second resting time. The last 

stimulation (T3), was carried out after the third application of task 2, and it lasted for 5 

seconds with a 30 seconds recovery time and 15 seconds post-time to finish the 

experiment. The patients were explained about the acupuncture procedure and experiment. 

In addition, patients  were  given  a  brief  explanation  of  side  effects  of  acupuncture  in  

case  they  had  any symptoms during the experiment; no side effects were reported during 

and after experiment. After the  briefing,  the  patient  was  told  to  sit  down  on  the  

chair,  told  to  relax  and  close  the  eyes  to reduce  visual  evoked  stimulation.  The 

optical topography system was set to record after all conditions were met and patient was 

relaxed. Tasks and time description in the data for one channel has shown in figure 3.2. 

 
Figure 3.2. Tasks and time description in the data, one channel only. 

 

3.3.2 Experimental Setup for Imagery Hand Movement without Pain 

In this study, a continuous-wave functional brain imaging system (Biopac 1200 fNIR 

imager) was used to acquire the brain signal from the dorsolateral prefrontal cortex  

(DLPFC) and the data acquisition sampling rate was 2 Hz. The sensor pad of this device 

contains 16 channels with 4 NIR light and 10 detectors.  

Four healthy subjects among them 3 male (mean age) and 1 female (mean age 24.5±2.5 

years) participated in the experiment. All subjects are right handed based on the 

recommendation of Edinburg Handedness Inventory. All subjects had no history of 

psychiatric, neurological or visual disorder, no pain in both hands, and they are all 
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informed verbally about the experimental protocol. The data acquisition procedures 

regarding motor imagery hand movement data without pain have been completed in the 

NeuroImaging Laboratory of the department of Biomedical Engineering of Khulna 

University of Engineering & Technology (KUET).  

Furthermore this side of the head band is kept on the skin of DLPFC or forehead. The 

head band is placed on forehead in such way that the bottom row of detectors will be 

located just above the eyebrows [3.1]. Thus, the detectors can detect the total activation of 

the prefrontal cortex of the brain. A subject wearing the fNIRS head band while data 

acquisition was going on, is shown in Figure 3.3. This figure illustrates the procedure to 

place the head band on DLPFC.  

 

 

Figure 3.3: Total hardware connection including sensor pad, imager, data multiplexer, and 

computer. 

 

All the data of a participant of left hand (LH) and right hand (RH) imagery movements 

were within one file as distributed as 5 sec task with 15 sec rest. The data acquisition 

paradigm with necessary steps is given in Figure 3.4.   
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Figure 3.4: Scheduling of the performed tasks. This pattern has followed 20 times by each 

participant which gave 20 trials of every imagery tasks. 

 

3.4 Proposed Thesis Work  

MATLAB simulation software is used to analyze the fNIRS data. HbO and (HbR data 

were analyzed differently. For same person right arm’s data and left arm’s data were 

analyzed differently. Raw fNIRS signal is filtered by lowpass FIR filter by hamming 
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window considering the cutoff frequency as 0.1Hz. For the raw data processing, fNIRS 

soft (v4.4) [3.2] has been used in this thesis work. This software was used to convert the 

optical data to hemoglobin concentration data. The other analytical results like filtering, 

data segmentation, CSP and SCSP transformation, feature extraction, and classifications 

were performed by MATLAB 2017a. The block diagram of proposed methodology is 

given in Figure 3.5. 

HbO & dHb

seperation

Filtered 

fNIR Data

Feature 

Extraction

Classification

Mean

Median

Slope

Variance

L1-Norm

L2- Norm

L2- Norm

Spectral 

Norm

PCA

ICA

NLPCA

Comparison

Sensitivity

Specificity

Accuracy

Raw fNIR 

Data

 

Figure 3.5: Block diagram of proposed methodology 

The data of two simple features-mean and median have been extracted from all dataset. 

For special features extraction, PCA, NLPCA, and ICA are used. For feature extraction, 

the raw data’s are loaded and then using some methods or algorithms to extract the 

features. Some very common feature of any signal like mean, median, slope, variance, L1-
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norm, L2-norm,L∞-norm, spectral norm [3.3] are extracted here. The extracted features are 

then classified by using different classifier such as ANN, KNN, SVM, and LDA. The 

classification methods are evaluated by their specification like accuracy, sensitivity and 

specificity. 

3.5 Filtering and Baseline Correction 

Since the raw fNIRS data is high degree of noisy drift, to filter the noisy fNIRS signal 

generally a low pass filter based on FIR hamming window method is applied. The 

sampling period was 0.1 sec. and the sampling frequency was 10Hz and the wavelength 

range of each data was between 695-830nm for conventional method. The order of FIR 

filter should be considered as 20 for 2Hz fNIRS signal for proposed method. The cut-off 

frequency should be taken 0.1 Hz because meaningful information remains usually inside 

the band [3.4]. For each trial of the fNIRS data had been corrected by subtracting baseline 

from the original signal. Baseline was calculated from the average of the first five seconds 

of the task. This consideration helps to represent the activation in such a way that the 

starting of the task, the hemodynamic activation remains at the baseline.  

3.6 Feature Extraction Using Conventional Method 

For feature extraction, the raw data are loaded and then using some methods or algorithms 

to extract the features. Some very common feature like mean, median, slope, varience,L1-

norm, L2-norm, L∞-norm, spectral norm are extracted here. Two important feature of 

fNIRS data, PCA and ICA are used to find the principal components and the independent 

components. For the non-linearity of the signal, non-linear principal components are also 

extracted. 

3.6.1 Mean 

For a data set, the terms arithmetic mean, mathematical expectation, and sometimes 

average is used synonymously to refer to a central value of a discrete set of numbers: 

specifically, the some of the values divided by the number of values [3.5]. The arithmetic 

means of a set of numbers n21  x, .......... , x,x is typically denoted by, pronounced “x bar”. If the 

data set were based on a series of observations obtained by sampling from a statistical 

population, the arithmetic mean is termed the sample mean. For matrix, S is a row vector 

containing the mean value of each column if S is the mean.   
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3.6.2 Median 

The median is the value separating the higher half of a data sample, a population, or 

a probability distribution, from the lower half. In simple terms, it may be thought of as the 

"middle" value of a data set [3.6]. For example, in the data set {1, 3, 3, 6, 7, 8, 9}, the 

median is 6, the fourth number in the sample. The median is a commonly used measure of 

the properties of a data set in statistics and probability theory. The median normalized 

angular frequency of the power spectrum of the time domain signal in vector form can be 

used as a feature. It has units of radians/second. If x is a matrix, median normalized 

angular frequency computes the median frequency of each column in X independently. It 

uses a rectangular window when computing the spectrum. The median frequency is 

defined as the frequency at which the power spectrum is divided into two equal areas via 

rectangular integral approximation.  

3.6.3 Slope 

Suppose, there are n data points ..n}…1,2,3,=i ),y ,(x , .......... ),y ,(x ),y ,{(x ii2211
. The function that can 

describes all x and y can be represented as,   

iii exy                                                                (3.1) 

Here, ei is the error in linear estimation for the data point (xi, yi). Suppose we consider a 

line as (3.4) through our data set. It is true that all points do not touch the line. Therefore, a 

measure of the discrepancy can be determined by sum of the squared errors (SSE). The 

equation of SSE is as (3.5). 

xy                                                               (3.2) 
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To achieve the best fit we have to minimize the error. Therefore differentiating (3.5) with 

respect to   and  we get (3.6) and (3.7) 
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https://en.wikipedia.org/wiki/Sample_(statistics)
https://en.wikipedia.org/wiki/Statistical_population
https://en.wikipedia.org/wiki/Probability_distribution
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If, we want to reach the best linear fit or for minimum error, (3.6) and (3.7) will be zero. 

This gives us, 

yx                                                                        (3.6) 

yxxx  2                                                                      (3.7) 

Eventually, from (3.8) and (3.9), it can be shown that, 
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Consequently, xy  ˆˆ  and the required slope is ̂ of the best linear fit of data points 

[3.7].  

3.6.4 Variance 

The variance is a numerical value used to indicate how widely individuals in a group vary. 

If individual observations vary greatly from the group mean, the variance is big and vice 

versa. It is important to distinguish between the variance of a population and the variance 

of a sample. The variance of a population is denoted by σ
2 

and the variance of a sample by 

s
2
. 

The variance of a population is defined by the following formula: 

Nxxi /)( 22                                                            (3.9)  

Where σ
2 

is the population variance, x  is the population mean, xi is the ith element from 

the population, and N is the number of elements in the population [3.8]. 

The variance of a sample is defined by the slightly different formula:  

)1/()( 22  nxxs i                                                         (3.10) 

Where s
2
 is the sample variance, x  is the sample mean, xi is the element from the sample, 

and n is the number of elements in the sample. Using this formula, the variance of the 
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sample is an unbiased estimate of the variance of the population. So the variance is equal 

to the square of the standard deviation. 

3.6.5 L1-Norm 

L1 norm also known as mean norm or latest absolute deviation (LAD). It is calculate from 

the sum of the absolute values of the dataset [3.9]. 






n

k

kxnormL

1

1                                                        (3.11)   

L1 is the sum of the magnitudes of the vectors in a space. It is the most natural way of 

measure distance between vectors that is sum of the absolute difference of the components 

of the vectors. In this norm all the components of the vector are weighted equally. 

3.6.6 L2-Norm 

L2 norm is the mean square norm or latest square norm and illustrate as the square root of 

the sum of the absolute values of the dataset [3.10]. 
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kxnormL
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2                                                    (3.12)     

Where kx  on the right denotes the complex module. The L2 norm is the vector norm that 

is commonly encountered in vector algebra and vector operations, where it is commonly 

denoted x . However if desired a more explicit notion x 2 can be used to emphasize the 

distinction between the vector norm x  and complex modulus z  together with the fact 

that the L2 norm is just one of several possible types of norms. 

For real vectors, the absolute value sign indicating that a complex modulus is being taken 

on the right of equation (3.13) may be dropped. So, for example, the L2 norm of the vector 

x= (x1, x2, x3) is given by  

2
3

2
2

2
1 xxxx                                               (3.13) 

L2 is the shortest distance to go from one point to another.  
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3.6.7 L∞ Norm 

L∞ norm also known as max norm or uniform norm and describe as the maximum of the 

absolute values of the dataset [3.11]. 

ixnormL max                                                   (3.14) 

L∞ norm gives the largest magnitude among each elements of a vector. 

3.6.8 Principle Component Analysis (PCA) 

PCA is a linear transformation technique that uses the orthogonal transformation method 

to convert a set of related variables to a set of linearly uncorrelated variables. The first 

principal component belongs the largest possible variance and other succeeding 

components have the highest possible variance obeying orthogonal to each other 

components. The derivations of principal components are based on the consideration that 

the signal is Gaussian distributed. Therefore, a random process with zero-mean can be 

characterized by ].[ T

x xxER   The principal components of the signal x(t) are linearly 

mixed by uncorrelated sources as ] ..., , ,[)( 21 Nt   . Therefore, we can present it as 

[3.12], 

          ,xw T                               (3.15) 

Where T

Nwwww ]..., , ,[ 21 is the mixing matrix those are mutually uncorrelated. We can 

obtain the first principal component by performing a scalar product, xw T

11  , where the 1  

is chosen according to the relation given below. 
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][ 2

1wE  is generally maximized considering the constraint 111  T . The maximal variance 

can be achievable if 1  is taken into account as the normalized eigenvector regarding to 

the largest eigenvalue of xR that can be denoted by 1 . Therefore, the resulting variance is 

following: 

                                                        11111
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T RwE                                   (3.17) 

https://en.wikipedia.org/wiki/Variance
https://en.wikipedia.org/wiki/Orthogonal
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3.6.9 Nonlinear PCA (NLPCA) 

When we consider the data distribution is obeying normal or Gaussian distribution 

function, PCA transformation could be the solution. Nonetheless, in case of non-Gaussian 

distributed variables, PCA cannot be proper solution for dimensionality reduction. 

Therefore, we need nonlinear PCA or NLPCA. NLPCA is generally performed by the help 

of ANN addition with an auto associative architecture. This procedure is also known as 

auto encoder, bottle-neck, replicator network, or sandglass type network [3.13]. This type 

of network is a multi-layer perceptron that generally performs to evaluate an identity 

mapping which means that the network output is essential to be identical regarding the 

input. The middle portion of the aforesaid network is a layer which works like a bottleneck 

where dimensionality reduction of the data is enforced. Such a layer actually provides the 

desired component values (scores). The required component spaced of Linear PCA and 

NLPCA are shown in Figure 3.6(a) and Figure 3.6(b), respectively. 

 

 

(a) 
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 (b) 

Figure 3.6: (a) Standard PCA applied to a simple two-dimensional data set & (b) 

Nonlinear PCA (auto encoder neural network) applied to a 3/4 circle with noise [3.14]. 

3.6.10 Independent Component Analysis (ICA) 

ICA is a powerful tool that is able to separate independent sources from a linearly mixed 

signal formed by several sensors. Let  )' x...., ,( mt1tt xX  be the observed m-dimensional 

stationary data vector. These data vector is generated by a linear combination of 

mr  unobserved components as [3.15], 

                      T1,2,....,        t,  tt AsX                                             (3.18)  

Where, A is a rm  full rank parameter matrix,  )',....,( 1 rttt sss  is the vector of latent 

components, which are assumed mutually independent. Generally, in ICA model, neither 

A nor st are known and the problem is to estimate both from the observations ),...,( 1 TXX .  

For the solution of the problem arisen in ICA is to find an mr   matrix B such that the 

components of T..., 3, 2, 1,  t where,ˆ  tt BXs , are as independent as possible. Therefore, for 

identification we need- (a) rt IsVar )( , (b) No more than one IC is Gaussian distributed, and 

(c) In ICA model it is assumed that r = m. 
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Before applying the ICA algorithm, it is beneficial to perform a pre-whitening of the data. 

This method transforms the data into a set of new variables those are uncorrelated and 

have unit variance [3.16]. Mathematically, we search a linear transformation of tX , 

,tt VXZ                                                               (3.19) 

Where, M is a mr   matrix, such that the r-dimensional vector tZ , with r ≤ m, have identity 

covariance matrix: 

       rtt IZZE  }'{)0(Tz                       (3.20) 

Then, the ICs are estimated by searching a rotation of the standardized principal 

components, 

  ,
ˆ

tt WZs                                                (3.21) 

Data whitening ensures that considered all dimensions are equally treated. Here, well-

known algorithm Fast ICA is used. 

3.7 Proposed Feature Extraction Method 

In this thesis work, we have used a slightly modified approach of common spatial pattern 

named by standardized common spatial pattern (SCSP). Our proposed SCSP based feature 

extraction method can improve the classification accuracy higher than that of conventional 

CSP method. According to the design proposal of filtering weight matrix of SCSP, a 

standard pattern of response is considered to estimate the covariance of the total trials. 

From the results of the covariance with respect to the standard response the weight matrix 

is constructed by weighted average method instead of gross averaging (as done in CSP). It 

prevents the negative effect of the trials having no positive response for imagery events.  

 

3.7.1 Common Spatial Pattern and Its Modification 

Common spatial pattern or CSP is a filtering technique for feature extraction that was 

firstly proposed for classification of multiple channel motor imagery EEG signal in [3.17]. 

The basic concept behind CSP is using a linear transformation to project the multiple 

channel information into comparatively lower dimensional spatial subspace. This linear 

transformation actually maximizes the variance of two classes signal pattern.  
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For single trial fNIRS data (either HbO or HbR) during left and right hand imagery 

movements, the mathematical implementation techniques of CSP based filter can be 

presented through the following approach. Suppose that, LH  and RH  denote the 

preprocessed fNIRS data matrices of iLH and iRH movements, respectively. The 

dimensions of the previous matrices ( LH  & RH ) are SC , where C and S represent the 

number of total channels and number of samples per channel, respectively.  

Therefore, the normalized spatial covariance (NSC) of LH and RH can be calculated as, 

)( T
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L
trace
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
                                                   (3.22) 
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Here, T  is the transpose of   and )( trace sums the diagonal elements of the 

corresponding matrix . The average NSC LH and RH are calculated considering all the 

trials of each group. Eventually, the overall spatial covariance (OSC) can be estimated as, 

RL HHH                                                           (3.24) 

This is a conventional approach which is slightly questionable. In our proposed approach, 

we have slightly modified this concept to make the OSC. Our proposed technique 

questions that all the trials do not possess the same range of covariance in the context of 

fNIRS data. In some trials, it may be found that the covariance of two tasks is very small 

over all the channels. As a result, we have calculated covariance coefficient (CC) of all the 

trials of the fNIRS data with a standard iLH or iRH movement related fNIRS data. 

According to the values of CC, the OSC is calculated by weighted average approach we 

name it global spatial covariance (GSC). This GSC method can be able to differentiate the 

spatial pattern of two classes better than the OSC approach. Eventually, the GSC 

calculating method can be presented as, 
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Here, n is the number of trials are taken into account to prepare the GSC matrix, 

 and  are the CC weights in case of iLH and iRH, respectively. The overall procedure of 
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calculating the modified common spatial pattern based filtering weight matrix, Wsp has 

been shown in Figure 3.7.   

 

 

Load multiple channel fNIR data of class 1 

and class 2

Calculate normalized spatial covariance of 

class 1 and class 2

Find spatial covariance with correlation based 

weighted average method as proposal

Estimate the spatial filtering weight matrix

Estimated spatial filtering weight matrix, Wsp

   

Figure 3.7: Flow diagram of spatial filtering weight matrix estimation technique for 

modified common spatial   pattern 

With the help of Wsp, fNIRS signals of any class can be filtered where the extracted feature 

will be expected to show significant variance for the training the classifier. Now, this 

covariance matrix H can be factorized as the following manner given in (3.26) 

TUUH 00                                                                 (3.26) 
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Where matrix 0U  consists of eigenvectors and  is a diagonal matrix that contains the 

eigenvalues of the decomposition. From the relation found in (3.26), a whitening 

transformation matrix can be estimated through rules of linear algebra as, 

TUW 0
2

1


                                                                   (3.27) 

Transform the average covariance matrices as 

T
LLH WHWS   and T

RRH WHWS                                       (3.28) 

From the relation given in (3.28) we found that both covariance matrix LHS  and RFS  are 

sharing the same eigenvectors. As a result, the sum of their regarding eigenvalues will 

always be one. Since the relation can be written as, 

T
LHLH UUS  ; T

RHRH UUS  ; 1 RHLH                                 (3.29) 

Eventually, the eigenvectors found for LHS corresponding to the largest eigenvalues should 

provide the lowest eigenvalues for RHS . This relation is also inversely applicable. The 

transformation for fNIRS data whitening onto the eigenvectors of the largest eigenvalues 

in LH and RH are optimal for separating the variances of the matrices regarding the 

corresponding signal. Therefore, projection matrix,  of this consequence can be 

formulated as, 

PU T                                                            (3.30) 

With the values found in the projection matrices  , the original fNIRS can be re-formed 

into some uncorrelated components as, 

                                                            (3.31) 

 can be taken as fNIRS source elements comprising common and specific elements of 

two different tasks. The original fNIRS data,   can be reconstructed by, 

 1                                                          (3.32) 

Where, 1  is the inverse matrix of  . The every columns of 1  are considered as 

spatial patterns, those can be envisaged as distribution vectors of fNIRS sources. The most 

spatial patterns are the first and last columns of 1  that bring out the highest variance of 

one task and the smallest variance of the other. 
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The inverse form of the projection matrix helps to make the signal variance sharper 

between the data of two events than that of the actual one. This effective method facilitates 

to extract more significant features that can be able to discriminate the two classes. 

Therefore, using the conventional CSP and the proposed SCSP method, the features are 

extracted from the signals. As features, we have calculated mean, slope, and variance 

according to the recommendation of [1.8]. It is previously described that how the 16-

channel were reduced to 4-channel (Considering the 4 regions of interest: LL, LM, RM, 

and RL). These three features were extracted from each of the regions of interests. 

Therefore, the feature vector of each task for a trial become 3×4=12. It can be represented 

as the Figure 3.8. The features are extracted from the signal considering the window 

length 2-7sec because this window length of the signal is more effective for feature 

extraction and motor imagery event classification for the fNIR signals [3.18].    

 

Figure 3.8: Pattern of extracted features to be loaded in a classifier for training and testing. 

3.8 Classification Methodology 

For classification of the extracted feature, some methods are used. Artificial Neural 

Network (ANN), k-Nearest Neighbor Algorithm (kNN), Support Vector Machine (SVM), 

and Linear Discriminant Analysis (LDA) are used for classification. LDA classifier is used 

to train a predictive network for the further classification of two class fNIR signal 

regarding imagery movements. Additionally, other classifiers like ANN, kNN, SVM, etc. 

can be applied, as well to check the effect of classification accuracy enhancement.  The 

procedure can be presented by the following flow diagram given in Figure 3.9.  
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Load fNIR signal 

of any random 
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feature matrix 

Classifier Output

 

Figure 3.9: fNIR signal classification by proposed method 

Since this method filters the original multiple channel signals and transformed it to a 

single channel signal with maximum variance over all the spatial variance of the signals, 

definitely it provides better accuracy than that of multiple channel signal classification 

method. The classification methods are evaluated by their specification like accuracy, 

sensitivity and specificity. Using these parameter different decisions can be taken and it 

can be used for further processing. Using this specification, which method is more 

accurate or more sensitive, that can be determined. Using these, relation among different 

persons and relation between right arm and left arm can be established.  

3.8.1 Artificial Neural Network (ANN) 

ANN is a processor which is parallel distributed and it is made of a number of simple 

processing units. All these units are known as neuron. ANN is a unique technique of 

artificial intelligence that is able to mimic the comportment of human brain [3.16]. For the 

feed forward networks, commonly multilayer preceptors consist of three type layers: input, 

output, and hidden layer. A typical model of multilayer preceptors of ANN is illustrated in 

Figure 3.10.  
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Input Hidden Layer

Output

 

Figure 3.10: Architechture of artificial neural network 

The objective of input layer is to buffer the distribution of the input signals xn (n=1, 2, 3, 

...) towards the hidden layer neurons. Each hidden layer neuron adds the input signals (xn) 

after weighting the input signals by the strengths Wnj from the input layer and calculated 

the output, Y where Y is as a function of their summations [1.16]. 
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(3.33) 

Here j represents the neuron numbers. In addition, this function can be sigmoidal or 

radial basis or hyperbolic tangent function. It provides the change, ΔWjn by back 

propagation algorithm which is actually the weight of a connection between n and j 

according to the relation, njjn xW  . Here  is rate of learning parameter and j 

depends on whether j is an input or hidden neuron. 

3.8.2 k-Nearest Neighbor Algorithm (kNN) 

kNN is considered as a non-parametric method in pattern recognition which is used 

for classification and regression. The input of k-NN consists of the k closest training 

examples in the considered feature space [3.19].  
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Class 1

Class 2

Test sample

 

Figure 3.11: Example of kNN classification. 

For classification by kNN, the output of this network is a class membership. An object is 

always classified by the mainstream vote of its neighbors and with the assigned object for 

the most common class midst of the k nearest neighbors. If k is considered as 1, then the 

assigned object is single nearest neighbor. In case of kNN regression, the property value 

for the object is considered as the output. This value is actually the mean value of their 

k nearest neighbors. For both classification and regression, weight to the contributions of 

the neighbors can be assigned so that the nearer neighbors can contribute supplementary to 

the mean than the more distant ones. As for an example, suppose a common weighting 

scheme consists in providing each neighbor a weight of 1/d. Here d represents distance to 

the neighbor. Generally, the neighbors are assigned from a set of objects so that the class 

value can be known. We can observe the Figure 3.11 where the test sample marked as 

green circle should have to be classified either to the first class of yellow squares. Besides, 

it may be the second class those are marked as red stars. If k = 3, it is assigned to the 

second class since, there exist 2 stars and only 1 square inside the inner circle.  

3.8.3 Support Vector Machine (SVM) 

SVM is a discriminative classifier that can be defined by an isolating hyperplane. Besides, 

supervised training data of this algorithm creates an optimal hyperplane that classifies the 

features [1.13]. This is actually a set of supervised learning methods which are used 

for classification and regression. In the field of machine learning, SVM can create 

http://scikit-learn.org/stable/modules/svm.html#svm-classification
http://scikit-learn.org/stable/modules/svm.html#svm-regression
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hyperplanes of very high dimensions that facilitates this method for high classifying 

performance. If the feature space is big enough it works well. But for the lower feature 

spaces SVM sometimes provides lower classifying accuracy. Therefore, for high 

classifying accuracy, SVM should be trained with a very big size of feature value.  

From the Figure 3.12 we can easily observe a typical model of SVM. Here, two different 

colors are assigned to represent the features of two different classes. A hyperplane is 

estimated by SVM algorithm that clearly separates the feature spaces and classified the 

two different classes. This hyperplane can be either of straight line or radial basis. For 

nonlinear property of the SVM hyperplane, kernel based radial method is often used to 

separate the classes. Basically, this type of method is necessary when the class sizes are 

big. 

X

Support vectors

Y

 

Figure 3.12: A model of hyperplane that differs the feature space. 

3.8.4 Linear Discriminant Analysis 

Linear discriminant analysis is a widely used binary decision classifying technique mostly 

used in case of non-dependency of the variance or covariance matrix on the population. 

Suppose that we have a set of observations x


 for two known classes, Y1 and Y2. The 

features having in the set is called the training set. Therefore, through the LDA technique 

it is obligation to find a good predictor for the predefined classes for a given new data 

feature. A demo presentation of LDA classification on the feature space can be presented 

by the Figure. 3.13.  
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Figure 3.13: Illustration of LDA classification method 

For a given population i , the probability density function of x can be considered to be 

multivariate normal where their mean vector is i  and variance-covariance matrix is i . 

According to the formula of LDA estimation [3.20], 
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                           (3.34) 

Where, n is the number of features. Through LDA, it is to classify the population for 

which )|( ii xfp   is maximum. Here pi is the prior probability and can be estimated as, 

)   (,...,2,1 );Pr( populationofnumberNNip ii                               (3.35) 

Because of being monotonic of this log transformation, this is equivalent to event 

classification of the population so that log [ )|( ii xfp  ] is largest. The score on LDA space 

is calculated as [3.21], 
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
                                              (3.36) 

where, k̂ is LDA score, i̂ is the average found from the training observations, and 2 is 

the weighted average of the sample variances. 

In this thesis work, LDA is used for its simplicity. In addition, LDA mostly depends on 

the statistical pattern of the signals. If the nature of the signal is statistically separable, 
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LDA should provide good result. This is why the results through LDA classifier are more 

acceptable.  

 

3.9 Performance Measurement Criteria 

The performances of the classifiers were determined by the calculation of sensitivity, 

specificity, and total classification accuracy by the following relationships. 

Sensitivity (True positive rate) = 
FNTP

TP


                                              (3.37) 

   Specificity (True negative rate) = 
FPTN

TN

                                              
(3.38) 

 Total classification accuracy = 
FPTPFNTN

TPTN




                              (3.39) 

Where, 

Total number of correctly classified positive patterns = TP, 

Total number of actual positive patterns = TP+FN 

Total number of correctly classified negative patterns = TN 

Total number of actual negative patterns = TN + FP 

Total number of correctly classified patterns = TN + TP 

Total number of applied patterns = TN + FN + TP + FP. 

 

3.10 Chapter Summary 

In this chapter the mathematical details for the governing methods of the thesis work has 

been discussed with proper graphical representations and technical details of the 

applicability of the methods. A block diagram is presented to show the steps of working 

procedure. The short outcome of the procedure is also discussed slightly. In the next 

chapter, all the results have been presented with discussion. 
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CHAPTER IV 

 

Experimental Results and Discussions 

 

4.1 Introduction 

The technical outcomes and the analytical results of the whole study have been discussed 

in this chapter with suitable numerical values, tables, and graphs based on two types of 

database.  

 

4.2 Experimental Results for Conventional Method 

In conventional method it is already discussed that the data of left hand and right-hand 

imagery movement with pain was acquired by 24 channel ETG4000 fNIR system. The 

fNIR signals of 24 channels for a specific task of participants 1 is shown in Figure 4.1. For 

the right-hand and left hand, the fNIR data changes in different pattern. Sample results of 

fNIR data for left arm and right arm are given in Figure 4.2, where data corresponding to 

channels 19 to channel 24 are presented. This data presents the oxygenated hemoglobin 

(HbO) change in case of left arm and right arm imagery movement with pain stimulation. 

First of all, all raw fNIR data is filtered by lowpass FIR filter with cutoff frequency 0.1 

Hz. From these filtered data, various features are extracted those are mean, median, linear 

PCA, nonlinear PCA, ICA components. Using these individual features of left arm and 

right arm data are classified by four well-known classifying techniques named by ANN, 

kNN, SVM and LDA. Based on the features, different classifying tools showed different 

accuracy for different participants. Using Artificial Neural Network, the classification of 

the featured data can be achieved by setting the target and hidden layer size. By the 

accuracy and sensitivity, the classification can be justified by comparing with others. In 

ANN, it has the confusion matrix from which accuracy of test, training and validation can 

be measured. For person 2, right arm of HbO data, the confusion matrix (for SVM) is 

given in Figure 4.3. 
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Figure 4.1: HbO data for all 24 channel for participant 1 right arm. 

 

Figure 4.2: HbO data from left and right hand of same participant (ch19-ch24). 
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(a) 

 

 

   

(b) 
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 (c)    

Figure 4.3: Confusion matrix for SVM (of HbO data for participant 2 right arm). 

 

The classification accuracy and their specificity and sensitivity for all the methods are also 

calculated and the results are reported by the Table 4.1. These results present the report of 

7 different participants. From these results we get overall concept about the performance 

of features and classifiers for fNIRS data classifications. Here the network is fed by data 

of oxygeneted hemoglobin (HbO) change. 

From the comparisons among the Table 4.1, we actually found that the classifying 

accuracy in average SVM is best than the other. In addition, with that, ANN classifies 

better that SVM. By similar process, fNIRS data of seven participants are classified to 

identify the left hand and right-hand imagery movement with pain stimulation. From the 

all results, the average accuracies, sensitivities, specificities of classifications are 

calculated for individual classifiers based on the features.  
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Table 4.1: Classification Performance of Participants 1-7. 

Participants 1-7 (HbO) 

For right arm  

Feature 

Extraction 

Method 

ANN kNN SVM 
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Mean 
80.0 82.5 81.8 80.0 81.0 81.4 82.4 83.2 83.5 

Median 
74.2 79.5 78.6 77.5 78.8 79.0 79.5 80.2 81.0 

L1-Norm 
79.5 76.5 75.8 77.2 75.4 74.0 79.0 78.5 77.9 

L2-Norm 
80.2 81.2 78.7 78.5 77.5 79.2 81.4 80.5 81.5 

L-Norm 
76.0 77.3 75.5 74.5 75.2 74.7 78.8 79.5 76.7 

Spectral Norm 
78.5 79.0 78.0 75.8 76.0 75.6 78.8 77.5 78.8 

PCA 
84.0 86.3 85.7 84.9 85.6 86.7 86.6 87.6 87.9 

ICA 
83.5 85.5 86.5 84.5 85.8 87.1 86.5 87.0 88.4 

NLPCA 
84.5 87.7 88.3 85.5 86.0 88.3 87.7 88.3 89.3 

For left arm  

Mean 80.0 81.4 80.3 80.3 80.1 80.2 80.1 82.2 82.7 

Median 78.0 81.7 79.1 78.7 80.7 79.7 78.7 81.7 81.3 

L1-Norm 81.0 80.7 77.7 77.3 75.3 75.1 79.4 79.1 78.7 

L2-Norm 81.0 79.7 79.7 78.7 77.7 78.7 79.3 78.3 80.3 

L-Norm 80.0 77.1 76.3 74.3 75.7 75.2 78.2 78.1 76.4 

Spectral Norm 84.5 79.1 78.1 76.7 77.7 78.3 78.2 77.2 79.6 

PCA 84.0 83.3 85.1 84.7 85.3 86.1 85.4 86.1 86.7 

ICA 85.0 84.4 86.8 84.7 85.3 87.1 86.4 87.1 88.8 

NLPCA 85.5 86.1 88.2 86.1 86.4 88.3 87.5 88.2 89.3 
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Finally, these results in Table 4.1 reveal that which feature is more suitable than the other 

for a specific classifier.  

The comparison for ANN, it is found that the features of PCA and NLPCA, NLPCA for 

kNN and NLPCA for SVM give highest accuracy in average as shown in Figure 4.4 & 4.5. 

For sensitivity case, the feature PCA, ICA, NLPCA for left arm and NLPCA for right arm 

in the ANN classifier. PCA, ICA and NLPCA for kNN and all features show highest 

sensitivity for SVM classifier as shown in Figure 4.6 & 4.7. Figure 4.8 & 4.9 shows the 

feature PCA, ICA & NLPCA has highest specificity in ANN, kNN, SVM classifiers. On 

the Other hand, in case of SVM the highest accuracy is achieved by the features of 

NLPCA. The average accuracy results of different features are given in Figure 4.4 - 4.9 

and Table 4.1. Therefore, the features showing lower classifying accuracy those should be 

considered insignificant for that classifier. In to this bargain, kNN & SVM provides the 

nice accuracy and best among the considered classifiers. For the features: PCA, ICA, and 

NLPCA, it provides almost 90% classifying accuracy. In addition, the other two features 

PCA and ICA are also classified by k-NN with almost 90% average accuracy which is also 

quite satisfactory. Besides, the sensitivity and specificity of kNN & SVM are also at the 

highest level.   

 

Figure 4.4:  Comparison of average accuracy of ANN, kNN, SVM for different features 

for right arm of  7 pateints. 
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Figure 4.5: Comparison of average accuracy of ANN, kNN, SVM for different features for 

left arm of 7 pateints. 

 

Figure 4.6: Comparison of average sensitivity of ANN, kNN, SVM for different features 

for right arm of 7 pateints. 
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Figure 4.7: Comparison of average sensitivity of ANN, kNN, SVM for different features 

for left arm of 7 pateints. 

 

Figure 4.8: Comparison of average specificity of ANN, kNN, SVM for different features 

for right arm of  7 pateints. 
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 Figure 4.9: Comparison of average specificity of ANN, kNN, SVM for different features 

for leftt arm of 7 pateints. 

 

4.3 Experimental Results of Imagery Hand Movement  

The raw fNIRS signals (HbO and HbR) and their corresponding filtered outputs are given 

in Figure 4.10. This filtering method removed the physiological noises like respiration & 

heart rate, and power line noises from the signals. 
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Figure 4.10: Raw and filtered fNIRS data of HbO and HbR of four participant. This data is 

representing the information of only one channel among sixteen. 

From the Figure 4.10, it is also mentionable that the relation between HbO and HbR 

almost always maintain a negative correlation to each other. After filtering the data, the 

signal was segmented according to the description of the data acquisition paradigm. Then, 

the segmented all the signal partitions were corrected with their baseline obeying the rule 

described in the methodology section of this thesis work. 

The LH and RH imagery movements create the neural activation in the right hemisphere 

and the left hemisphere, respectively. The neural activations regarding the concentration of 

HbO and HbR for iLH and iRH activities have been presented by the Figure 4.11 and 

Figure 4.12, respectively. In these figure, the resting state activation has also been given.  
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Right Hemisphere Left Hemisphere 

Right Hemisphere Left Hemisphere 

Left Hemisphere Right Hemisphere 

         

 

 

 

 

 

     

                  

 

Figure 4.11: Functional images of different taks with respect to the activation level of 

HbO. The black color gives the highest activation while the yellow gives the lower 

activaton and the red represents the neutral activation at rest.   
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Right Hemisphere 
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Figure 4.12: Functional images of different tasks with respect to the activation level of 

HbR. The images of  Figure 4.11 and Figure 4.12 are constructed considering 20 point B-

Spline interpolation using fNIRSoft professional software. 
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These functional images inform that the activations regarding the tasks have significant 

differences over the left hemisphere and right hemisphere on both HbO and HbR 

concentration. Specially, during the imagery movements of LH, the HbO concentration 

was increased and consequently decrement of the concentration of HbR was occurred in 

the right hemisphere as given in second raw of Figure 4.10 and Figure 4.11 On the other 

hand, during the imagery movements of RH, the HbO concentration was increased and 

consequently decrement of the concentration of HbR was occurred in the left hemisphere 

as given in third raw of Figure 4.10 and Figure 4.11.   

As the result, to classify the event regarding iLH and iRH movement we need both the left 

and right hemisphere information. In this situation the concept of common spatial pattern 

plays very important role to transform the signals corresponding two different tasks to 

present them with possibly highest variance. Functional images of different tasks with 

respect to the activation level of HbR has been given in figure 4.12. The images of Figure 

4.11 and Figure 4.12 are constructed considering 20 points B-Spline interpolation using 

fNIRSoft professional software. 

Since the signals were of multiple channels (16 channels), the conventional CSP algorithm 

and the propose SCSP algorithm were employed to the signal. The CSP method improves 

the quality of the signal from the consideration of the multiple trials of a single task. 

Nonetheless, if several numbers of trials have the neural activations not similar to the 

actual; it would be the weight matrix calculated by the conventional CSP method cannot 

be proved as efficient method. To remove this limitation of CSP, SCSP has been proposed 

to make the improvement of the signal quality based on the variation of two different tasks 

with a standard pattern of the signal. The variance improvements between two classes of 

signals regarding the CSP and SCSP algorithm are shown in Figure 4.13. 

From the Figure 4.13, we found that the improvement through the SCSP algorithm have 

the more consistent form. Although CSP algorithm also improved the variance between 

the signals of two different tasks. The proposed SCSP algorithm considered the case 

where the expected activation had not been happened. As the result, providing them less 

importance by the proposed SCSP method, the variance became consistent. Applying both 

the CSP and SCSP method, three features (mean, slope, and variance) of the signals were 

extracted. The features were then used to train the LDA network. The training was 
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accomplished with 50% of the features and the rest of the features were reserved for the 

testing and validations.  

 

 

 

Figure 4.13: Functional images of different tasks with respect to the activation level of 

HbO. 

 

The training state with LDA algorithm of participant 1 with respect to 10 set of normalized 

features of each task is shown in Figure 4.14. From the results found from the figure, it is 

easily observable that within 20 feature point, confusions lie for 3 points which indicates 

that the training accuracy is (17/20) = 85%. This result was corresponding to the proposed 

SCSP algorithm. On the other hand, for the CSP algorithm regarding this performance we 

found is (16/20) = 80%.  
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Figure 4.14: Training state of participant#1 with LDA classifier considering the 10 set of 

features (mean, slope, and variance) of iLH and iRH. 

Since every participant performed 20 trials for each task, 10 trials (50%) of LH and 10 

trials (50%) of RH features were used for training purpose and rest 50% were used for 

testing. The classification results of the trials of the 1
st
 participant have been given as 

confusion matrix in Figure 4.15. This figure indicates the overall classification accuracy as 

80%. The individual class performance can also be found from the given confusion matrix 

in Figure 4.15. 

 

Figure 4.15: The confusion matrix of the classification results regarding the testing 

features of the participant 1. 
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Table 4.2: Accuracy of the Training and Testing of the Classification LH and RH Imagery 

Movement fNIRS Data 

Participant 

No 

Performance of Training 

Only fNIRS With CSP With SCSP 

1 70% 80% 85% 

2 65% 80% 85% 

3 60% 75% 80% 

4 70% 80% 85% 

Average= 66.25% 78.75% 83.75% 

 Performance of Testing 

1 60% 70% 80% 

2 60% 75% 85% 

3 65% 75% 80% 

4 70% 80% 85% 

Average= 63.75% 75% 82.5% 

 

From the similar procedure, the results corresponding to the testing of all the participants 

are given in Table 4.2. In addition to that, the training performance of the feature sets by 

LDA has also given by the Table 4.2. From the results, we can observe that in training and 

testing phase of LDA the results we found are very convincing. Additionally, from the 

results found through LDA classifier, it is also mentionable that the proposed SCSP 

algorithm has outperformed the conventional CSP algorithm. Eventually, it can be claimed 

that, the proposed method can improve the classification accuracy 17% in average and 

7.5% more than that of the conventional CSP.  
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Figure 4.16: Comparison of the proposed SCSP algorithm with the others considering the 

accuracy% ± standard deviation in training and testing. 

Table 4.3: Sensitivity and Specificity With Respect to the Accuracy of the SCSP 

Algorithm. 

Participant 

No 
Accuracy Sensitivity Specificity 

1 80% 90% 70% 

2 85% 80% 90% 

3 80% 80% 80% 

4 85% 80% 90% 

Average 82.5% 82.5% 82.5% 

 

The difference in the improvement of accuracy by the proposed algorithm over the 

conventional methods has been given in Figure 4.16. The results given in Table 4.2 are 

based on the concentration of HbO. We calculated the same features from the HbR of 

fNIRS signals and applied the same techniques of the training and testing. In case of the 

consideration of HbR concentration, we found slightly lower performance. It can improve 
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the classification accuracy 15% in average and 6% more than that of conventional CSP. It 

may happen due to the lower amount than that of the HbO concentration.  

To understand the performance of the SCSP algorithm in case of accuracy improvement, 

sensitivity and specificity were also calculated. Sensitivity and specificity of the 

participant can also be found in Figure 4.15. The sensitivity and the specificity of all 

participants have been tabulated in Table 4.3. 

4.4 Result Analysis 

4.4.1 Results of Statistical Analysis 

To observe the noteworthy neuro-activation from the total motor imagery fNIRS data, 

statistical analysis, one-way repeated ANOVA has been performed. For this analysis, three 

levels: 0-3, 4-7, and 8-11 sec are considered for one-way ANOVA investigation for the 

tasks (left-hand and right-hand). The ANOVA was conducted on the mean value of HbO 

and HbR concentration. From the results of ANOVA, the following significant hypothesis 

has been found: 

      For the imagery left hand movement, significant (p<0.05) increase of HbO concentration 

(F(2,11)=13.24) and decrease in HbR concentration (F(2,11)=12.659 are found in 9, 10, 

11, and 12 channels. The other channels showed no significance in mean activation 

(p>0.05). For the imagery right hand movement, significant (p<0.05) increase of HbO 

concentration (F(2,11)=23.915) and decrease in HbR concentration (F(2,11)=16.96 are 

found in 5, 6, 7, and 8 channels. The other channels showed no significance in mean 

activation (p>0.05) in case of right hand imagery movement. Eventually, from the ANOVA 

analysis we find that the left hemisphere become more activated due to right hand imagery 

movements and this is correct inversely for the left hemisphere, as well.  

To observe the impact of the features, t-test has been performed between two types of 

stimuli: left hand and right hand. To do this, the channels of left frontal lobe (channel 1-

channel 8) and right frontal lobe (channel 9 - channel 16) are averaged. As a result, the 

averaged information of left hemisphere and right hemisphere of prefrontal cortex show 

two different regions activation. The t-test was performed between the activation (HbO) of 

resting activation and the stimuli (either Left hand or Right hand). The significance levels 

of the features due to the performed tasks are given in Table 4.4, where the inferences 

between the groups have been shown by their p-value, t-value, and standard error 

difference (SED). 
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     Table 4.4: Significance level of the features due to the performed tasks 

Events 

Features/Feature 

Extraction 

Method 

Hemisphere Information 

Left hemisphere of the PFC Right hemisphere of the PFC 

Rest vs LH 

Mean p=0.8059; t=0.6124; SED*=0.127 p=0.0035; t=3.2779; SED=0.507 

Median p=0.7145; t=0.3145; SED=0.072 p=0.0221; t=1.1450; SED=0.107 

Slope p=0.9415; t=0.2784; SED=0.451 p=0.0091; t=2.1741; SED=0.601 

Variance p=1.1025; t=0.1108; SED=0.027 p=0.0125; t=1.8459; SED=0.451 

NLPCA(mean) p=1.1257; t=0.1414; SED=0.102 p=0.0241; t=1.0779; SED=0.507 

CSP p=0.9195; t=0.1895; SED=0.334  p=0.0019; t=2.9748; SED=0.641 

Proposed SCSP p=0.1241; t=0.6947; SED=0.667  p=0.00041; t=4.2814; SED=0.317 

Rest vs RH 

Mean p=0.0032; t=4.7101; SED=0.242 p=0.7335; t=0.3473; SED=0.761 

Median p=0.0451; t=1.1779; SED=0.664 p=0.8191; t=0.2504; SED=0.327 

Slope p=0.0059; t=3.4025; SED=0.358 p=0.9451; t=0.1729; SED=0.240 

Variance p=0.0108; t=2.1417; SED=0.745 p=1.1045; t=0.2178; SED=0.741 

NLPCA(mean) p=0.0301; t=1.2748; SED=0.325 p=0.9817; t=0.6779; SED=0.845 

CSP (mean) p=0.0024; t=3.2058; SED=0.741 p=0.2817; t=0.9779; SED=0.124 

Proposed / SCSP 

(mean) 
p=0.00007; t=4.2748; SED=0.554 p=0.4879; t=0.3356; SED=0.345 

 

 

4.4.2 Results of Classification       

From the all results of imagery hand movements classification (with pain), an overall 

comparative result of different extracted features regarding HbO data are given in Table 

4.4. From the results, we get the performances if the different features with different 

classifiers in the aspect of accuracy, sensitivity, and specificity. These results reveal the 

performances of the individual features with the corresponding classifiers.  
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Table 4.5: Comparison of different parameter of classification of different feature of 

oxygenated hemoglobin (HbO) for the participants 

Imagery hand movement with pain task of participant (1-7) (HbO) 

Features/ 

Feature 

Extraction 

Method 

ANN KNN SVM LDA 
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Data 71.4 71.5 72.3 69.4 73.4 68.2 71.2 75.8 74.2 73.8 72.2 74.3 

Mean 80.0 82.5 81.8 80.0 81.0 81.4 82.4 83.2 83.5 83.0 81.4 81.0 

Median 76.0 79.5 78.6 77.5 78.8 79.0 79.5 80.2 81.0 82.7 81.5 82.0 

Slope 78.0 78.6 77.5 78.0 77.8 76.5 80.4 81.6 82.7 81.0 82.2 80.6 

Variance 82.7 82.9 82.0 80.4 79.3 82.5 83.6 82.8 83.0 83.4 82.8 83.0 

L1-Norm 79.5 76.5 75.8 77.2 75.4 74.0 79.0 78.5 77.9 78.6 77.3 77.8 

L2-Norm 80.2 81.2 78.7 78.5 77.5 79.2 81.4 80.5 81.5 83.6 81.8 82.7 

L-Norm 76.0 77.3 75.5 74.5 75.2 74.7 78.8 79.5 76.7 79.7 78.4 77.8 

Spectral 

Norm 
78.5 79.0 78.0 75.8 76.0 75.6 78.8 77.5 78.8 79.0 78.6 77.5 

PCA 84.0 86.3 85.7 84.9 85.6 86.7 86.6 87.6 87.9 86.6 85.4 86.9 

ICA 83.5 85.5 86.5 84.5 85.8 87.1 86.5 87.0 88.4 87.4 86.8 87.2 

NLPCA 84.5 87.7 88.3 85.5 86.0 88.3 87.7 88.3 89.3 89.5 88.5 88.1 

With CSP 
(Mean, Slope, 

Variance) 

79.5 80.3 81.1 78.8 80.4 78.0 80.7 81.7 82.7 82.7 81.0 82.0 

Proposed/ 

SCSP 
(Mean, Slope, 

Variance) 

88.7 88.5 89.6 86.3 87.2 88.5 87.0 88.4 89.6 89.9 88.8 88.8 

 

In addition, the separate results of the accuracy, sensitivity, and specificity of the different 

feature extraction methods are presented with the bar-plots given in Figure 17 - 19, 

respectively for the HbO data only. The overall results reveal that the proposed SCSP 

(taking the same features-mean, slope, and variance as the CSP after spatial filtering) 

method outperforms than the other conventional feature extraction methods in cases of the 

all classifiers.       
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Figure 4.17: Comparison of average accuracy of different classifier for different features 

of HbO data (imagery hand movement with pain task) for the participants. 

 

Figure 4.18: Comparison of average sensitivity of different classifier for different features 

of HbO data (imagery hand movement with pain task) for the participants. 
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Figure 4.19: Comparison of average specificity of different classifier for different features 

of HbO data (imagery hand movement with pain task) for the participants. 

The classification results of imagery hand movement (with pain) with their sensitivities 

and specificities with respect to the different extracted feature methods regarding HbR 

data are given in Table 4.5. From the results given in this table, we get the performances 

of the different features with different classifiers in the aspect of accuracy, sensitivity, and 

specificity. These results reveal the performances of the individual features with the 

corresponding classifiers. In addition, the separate results of the accuracy, sensitivity, and 

specificity of the different feature extraction methods are presented with the bar-plots 

given in Figure 20 - 22, respectively for the HbR data only. The overall results reveal that 

the proposed SCSP method outperforms the other conventional feature extraction methods 

in cases of the all classifiers.   
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Table 4.6: Comparison of different parameter of classification of different feature of 

deoxygenated hemoglobin (HbR) for the participants 

Imagery hand movement with pain of participant (1-7) (HbR) 

Features/ 

Feature 

Extraction 

Method 

ANN KNN SVM LDA 
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Data 69.2 69.4 69.8 67.2 71.0 66.0 69.4 73.5 72.2 72.6 70.0 72.2 

Mean 79.4 80.1 78.2 78.4 81.6 81.6 80.3 81.5 81.5 81.3 79.6 79.4 

Median 74.5 77.5 76.9 76.2 77.2 77.2 76.8 78.6 79.2 80.8 79.9 81.4 

Slope 75.7 76.2 75.7 76.7 76.0 74.0 78.8 79.8 80.0 79.4 80.5 79.0 

Variance 81.6 81.4 80.4 78.4 77.6 80.6 81.4 81.0 81.4 81.7 81.0 81.5 

L1-Norm 77.8 74.7 74.5 75.4 755.5 73.0 77.4 76.9 76.2 76.9 75.6 76.1 

L2-Norm 78.3 79.2 77.2 76.8 76.8 77.5 79.6 78.8 79.7 81.8 79.9 80.2 

L-Norm 74.6 75.4 73.8 74.0 73.0 73.3 76.3 77.7 72.9 77.8 76.5 76.2 

Spectral 

Norm 
77.7 77.3 76.7 74.2 74.4 74.0 77.0 75.8 77.2 77.4 76.8 75.8 

PCA 82.3 83.3 84.2 83.3 84.2 85.2 85.0 86.2 86.0 85.4 83.9 85.2 

ICA 81.7 82.8 84.8 83.0 84.5 85.5 84.8 85.5 86.4 86.0 85.0 85.5 

NLPCA 82.9 86.2 86.7 83.7 84.7 86.6 86.0 86.5 87.8 87.8 86.7 86.5 

With CSP  
(Mean, Slope, 

Variance) 
78.7 79.5 80.1 77.7 79.3 76.2 79.8 80.7 81.5 81.3 79.9 81.1 

Proposed/ 

SCSP 
(Mean, Slope, 

Variance) 

87.8 86.5 87.6 84.4 85.6 86.8 85.5 86.8 88.3 88.5 87.3 87.0 

 

 

Figure 4.20: Comparison of average accuracy of different classifier for different features 

of HbR data (imagery hand movement with pain task) for the participants. 
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Figure 4.21: Comparison of average sensitivity of different classifier for different features 

of HbR data (imagery hand movement with pain task) for the participants. 

 

Figure 4.22: Comparison of average specificity of different classifier for different features 

of HbR data (imagery hand movement with pain task) for the participants. 
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These outcomes provide the performances of the different features with different 

classifiers with respect to the accuracy, sensitivity, and specificity. These results reveal the 

performances of the individual features with the corresponding classifiers. In addition, the 

separate results of the accuracy, sensitivity, and specificity of the different feature 

extraction methods are presented with the bar-plots given in Figure 23 - 25, respectively 

for the HbO data only. The overall results reveal that the proposed SCSP (under the 

extracted features: mean, slope, and variance after spatial filtering) method outperforms 

the other conventional feature extraction methods in cases of the all classifiers.       

Table 4.7: Comparison of Different Parameter of Classification of Different Feature of 

oxygenated hemoglobin (HbO) for the Participants 

Imagery hand movement without pain task of participant (1-4) (HbO) 

Features/ 

Feature 

Extraction 

Method 

ANN KNN SVM LDA 
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Data 58.8 58.0 59.8 50.0 49.2 48.3 53.8 52.9 55.7 63.8 65.6 62.2 

Mean 77.0 78.7 75.5 66.0 66.7 63.0 74.0 73.1 75.0 73.0 73.5 72.6 

Median 54.0 53.6 54.5 60.0 59.3 60.9 67.0 65.5 68.9 70.0 70.0 70.0 

Slope 79.0 78.9 77.4 73.0 71.7 74.5 79.0 78.4 78.6 78.0 76.9 79.2 

Variance 78.0 75.4 82.7 73.0 70.2 76.7 76.0 77.5 78.6 77.0 78.8 78.3 

L1-Norm 71.0 73.3 69.1 59.0 58.5 59.6 71.0 73.3 69.1 76.0 79.6 73.2 

L2-Norm 71.0 67.8 75.6 69.0 66.7 72.1 75.0 72.7 77.8 77.0 77.6 76.5 

L-Norm 55.0 54.9 55.1 62.0 63.0 61.1 61.0 60.0 62.2 75.0 79.1 71.9 

Spectral 

Norm 
51.0 51.1 50.9 50.0 50.0 48.0 60.0 60.9 59.3 56.0 55.2 57.1 

PCA 76.0 79.6 73.4 63.0 63.3 62.8 78.0 78.0 78.0 75.0 74.5 75.5 

ICA 56.0 56.0 56.0 45.0 44.9 45.1 56.0 55.4 55.4 61.0 60.0 62.2 

NLPCA 58.0 57.7 58.3 47.0 47.3 46.8 51.0 51.2 51.2 69.0 74.4 65.6 

With CSP 
(mean, slope, 

variance) 
68.8 72.3 67.1 63.8 65.4 63.0 68.8 66.7 71.7 75.0 78.5 72.5 

Proposed/ 

SCSP 
(mean, slope, 

variance) 

83.8 83.2 85.9 76.3 77.2 78.9 80.0 80.4 79.9 82.5 82.5 82.5 
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Figure 4.23: Comparison of average accuracy of different classifier for different features 

of HbO data (imagery hand movement without pain task) for the participants. 

 

Figure 4.24: Comparison of average sensitivity of different classifier for different features 

of HbO data (imagery hand movement without pain task) for the participants. 
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Figure 4.25: Comparison of average specificity of different classifier for different features 

of HbO data (imagery hand movement without pain task) for the participants. 

Finally, the classification performances of imagery hand movement (without pain) of the 

HbR data are given in Table 4.6 based on the individual features or feature extraction 

method. These outcomes provide the performances of the different features with different 

classifiers with respect to the accuracy, sensitivity, and specificity. The outcomes provide 

the performances of the individual features with the different classifiers. In addition, the 

separate results of the accuracy, sensitivity, and specificity of the different feature 

extraction methods are given in Figure 26 - 28, respectively for the HbR data only. The 

overall results divulge that our proposed SCSP method overtakes the other conventional 

feature extraction methods in cases of all classifiers (ANN, SVM, kNN, and LDA). 

Besides, it has been also found that the classification accuracy has been found highest for 

the LDA classifiers.  
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Table 4.8: Comparison of Different Parameter of Classification of Different Feature of 

deoxygenated hemoglobin (HbR) for the Participants  

Imagery hand movement without pain of participant (1-4) (HbR) 

Features/ 

Feature 

Extraction 

Method 

ANN KNN SVM LDA 
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Data 57.5 56.6 58.4 48.8 48.5 47.0 52.4 51.7 54.2 62.6 64.0 61.0 

Mean 75.0 76.8 74.3 64.5 65.4 62.0 72.7 72.0 74.0 72.1 72.2 71.5 

Median 52.6 52.2 53.1 58.5 58.0 59.5 65.5 64.1 67.6 69.0 68.9 68.7 

Slope 77.5 79.4 76.0 71.7 70.4 73.0 77.7 77.2 75.3 76.6 75.5 77.9 

Variance 79.9 80.1 78.2 71.7 69.2 75.4 77.0 77.8 76.3 77.6 76.6 77.6 

L1-Norm 70.0 71.8 67.6 57.5 57.8 58.4 69.6 72.3 68.0 74.7 78.2 72.2 

L2-Norm 69.3 65.9 73.7 67.0 65.3 71.0 74.0 71.5 76.4 75.8 76.4 75.0 

L-Norm 54.0 53.5 53.8 60.5 61.7 59.6 59.9 59.0 61.0 73.8 77.1 70.4 

Spectral 

Norm 
49.8 50.0 49.6 49.0 48.8 47.0 59.2 59.6 57.9 54.8 54.0 55.5 

PCA 75.0 78.5 72.1 61.7 62.0 61.6 76.8 77.3 76.2 73.6 73.2 74.3 

ICA 54.7 54.0 54.5 43.8 43.6 44.0 54.1 54.3 53.6 59.2 58.6 60.7 

NLPCA 56.5 56.3 57.0 45.7 46.1 45.5 49.6 50.0 49.8 67.8 72.6 64.3 

With CSP 
(Mean, Slope, 

Variance) 
67.5 70.6 65.5 62.5 64.1 62.0 67.2 65.4 70.2 73.5 77.0 71.1 

Proposed/ 

SCSP 
(Mean, Slope, 

Variance) 

82.0 81.5 84.0 74.5 75.2 77.0 78.2 78.5 78.2 80.5 80.8 80.1 

 

 

Figure 4.26: Comparison of average accuracy of different classifier for different features 

of HbR data (imagery hand movement without pain task) for the participants. 
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Figure 4.27: Comparison of average sensitivity of different classifier for different features 

of HbR data (imagery hand movement without pain task) for the participants. 

 

Figure 4.28: Comparison of average specificity of different classifier for different features 

of HbR data (imagery hand movement without pain task) for the participants. 

      



82 
 

4.5 Comparison between the Results of the Proposed Work and Existing Works 

      A summarized result of comparison between proposed thesis work and related other 

research works those have been developed in recent years are given in Table 4.8. From this 

comparison we get that the performance of the proposed thesis work is outstanding and 

very convincing to outtakes the other methods in the regarding field of researches and 

applications. 

Table 4.9: Comparison between result of proposed work and some recent years work 

Research works Task Features/ Classifiers Results 

N. T. Hai, et al., 

(2013)[4.1] 

Finger movements of 

left hand and right 

hand 

Features: Polynomial 

regression coefficients 

Classifier: ANN & SVM 

SVM: 72.5-

82.5% 

ANN: 72-85% 

K. S. Hong, et 

al., 

(2015)[4.2] 

mental arithmetic, 

right-hand and left-

hand motor imagery 

Features: Slope and Mean 

Classifier: LDA 
75.6% 

M. A. Rahman 

& M. Ahmad; 

(2016)[4.3] 

Voluntary left and 

right hand movement 

Temporal Features: Mean, 

Median, Kurtosis, 

Skewness, standard 

deviation 

Classifier: ANN 

Average 79.5% 

A. M. Batula. et 

al., (2017)[4.4] 

Left, right, forward, 

and backward 

movement 

Temporal Features: Mean, 

Median, Slope, & Max 

Classifier: LDA 

Average 

29.72% 

S. H. Jin, et al, 

(2015)[4.5] 

Finger movements of 

left hand and right 

hand 

Methods: CSP  

(Mean, Slope, Variance) 

Classifier: SVM 

Accuracy: 

71.82% 

 

S. Zhanga, et al, 

(2018)[4.6] 

right-hand and left-

hand motor imagery 

Methods: CSP 

(Mean, Slope, Variance) 

Classifier: LDA 

Accuracy: 

63.3% ± 13.3 

 

Proposed work 

Imagery hand 

movement with and 

without pain 

Methods: SCSP 

(Mean, Slope, Variance) 

Classifier: ANN, KNN, 

SVM and LDA 

Accuracy: 

LDA: 82.5% 
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4.6 Chapter Summary 

In this chapter all the simulations and performances of this study are discussed. The 

procedures of features extraction, feeding to the classifiers, the performances of the 

classifiers has been presented with suitable figures, tables, barplot. The classification 

accuracy, sensitivity, and the specificity of the proposed algorithms were tested. The 

classification parameters are also compared with other methods to understand the 

significance of the proposed methodology in the context of the fNIR signal classification 

performance. 
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CHAPTER V 

 

Conclusions 

 

5. 1 Introduction 

This work investigates the classifying ability of ANN, kNN, SVM, and LDA of fNIRS 

data corresponding to left-hand and right-hand movements regarding the condition of with 

pain and without pain. The classifying accuracy of the applied classifiers are calculated for 

different participants and based on different features. From overall thesis results, it is 

found that LDA provides the best accuracy, specificity, and sensitivity for almost all the 

features. On the other hand, ANN and SVM provide the beautiful results for some specific 

features like NLPCA, PCA, and CSP method. The classification accuracies of the 

conventional features are still lower to implement a practical BCI. To improve the 

classification accuracy of the fNIR data, this thesis work proposed and implemented an 

algorithm named SCSP that is modified form of conventional CSP algorithm. The SCSP 

method has been implemented as an offline fNIRS based motor imagery event 

classification for BCI employment. Our outcomes suggest the SCSP algorithm as an 

effective spatial filtering technique in the context of feature extraction from motor imagery 

fNIRS signals to attain the promising classification accuracies maintaining satisfactory 

true positive and false negative rate.  

Finally, we can conclude our work mentioning the following remarkable outcomes: 

 Two types of motor imagery movements (with pain and without pain) are 

classified by different classifiers where we have found the classification accuracies 

are best in case of LDA. On the other hand, SVM and ANN provide the good 

results for some specific features 

 For finding the classification accuracies, most commonly used feature extraction 

procedure have been deployed where we found that existing feature extraction 

methods give overall accuracy less than 80%.  

 To improve the classification accuracies of the imagery hand movement data, we 

have proposed and deployed a modified spatial filtering technique which we have 
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named as SCSP method. The results regarding the proposed method outtakes the 

performance of the conventional methods.   

Eventually, we hope that our proposed method will be helpful to improve the performance 

of the practical BCI system.  

 

5.2 Future Perspective 

The main limitation of the proposed SCSP algorithm is to select the standard pattern of the 

activation, correctly which is crucial for the improvement of the classification 

performance. Trial based correlation could be a potential solution to find the standard 

activation pattern. The maximum correlated data should be selected for the selected one. 

Someone can also implement the canonical correlation or partial least square method to 

find the absolute correlation profile of the trials to find the standard pattern of the 

activation. Therefore, this approach can be a new way of research to modify the SCSP 

method. In addition to that, this proposal is based on the two-class problem only. This 

approach can be re-proposed for the multiple classes, as well. These two unaccomplished 

works can be potential guidelines for the future researchers in this regard.  

 

 

 

 

 

 

 

 

 

 

 

--End-- 


