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Abstract 

 

Data compression is the route towards adjusting, encoding or changing the bit structure of 

information so that it requires less space. Data compression is a decrease in the quantity of 

bits expected to demonstrate the data. Compacting data can spare stockpiling limit, 

accelerate record exchange, and lessening costs for capacity equipment and system transfer 

speed. Data compression covers a huge space of jobs including data correspondence, data 

putting away and database improvement. In the same way, Text compression can be as 

straightforward as expelling every unneeded character, embedding a solitary recurrent 

character to demonstrate a string of rehashed characters and substituting a little piece string 

for a habitually happening bit string. The fundamental standard behind compression is to 

build up a strategy or convention for utilizing less bits to express the actual data. Character 

encoding is fairly identified with data compression which represents a character by a type 

of encoding system. In this thesis, an efficient and simple compression algorithm for large 

natural text named n-Sequence based m Bit Compression (nSmBC) is proposed which can 

able to beat WinZip and WinRAR in terms of compression ratio. WinZip and WinRAR are 

two well-known compression techniques used for text compression in the industry.  The 

scheme provides an efficient encoding algorithm that converts an 8 bit character by 5 bits 

utilizing a look up table. The look up table is produced by using Zipf’s distribution which 

is a discrete distribution of commonly used characters in different languages. 8 bit characters 

are converted to 5 bits by partitioning the characters into 7 sets. After converting the 

characters into 5 bit, an n-sequence scheme is developed to logically calculate the location 

number of a particular combination of characters. The reverse algorithm to recover the 

actual input is further demonstrated. The algorithm is finally compared with the well-known 

WinZip, WinRAR, Huffman and LZW techniques. Promising performance is demonstrated 

both by theoretical and experimental analysis. 
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CHAPTER I 

 

Introduction 

 

 

1.1 Introduction 

Data compression defines a method to represent data or can be called to encode data using 

shorter form of bit [1]. The primary purpose of compaction comprises decreasing extra room 

needed storing data, diminishing transfer speed necessity so as to transmit it, along these 

lines lessening all out expense [2]. Despite the fact that a vast extra room is accessible for 

putting away data however it might cross the limit of transmission. Techniques for 

compressing data is characterized into two classifications [3]. Lossless technique and Lossy 

technique for compression are the 2 classification of data compression. Lossless 

compression technique is more often abuse factual repetition so that data of sender's can be 

illustrated briefly. Lossless technique for compression is conceivable on the grounds that a 

large portion of this present reality data has factual repetition. In terms of lossless 

compression system, data misfortune is inadmissible. Actual content must remade through 

the packed content [4]. The second compression procedure, called lossy technique for data 

compression might conceivable if a small data misfortune is allowed. For this situation, 

actual content might not be remade from the packed data because of evacuation of some 

excess data during compressing. Compression of data may be utilized progressively 

proficient accumulating hybridization with various techniques [5]. Fundamental favorable 

position of this kind of method is actually it may pack yield document that might delivered 

in the wake of utilizing some compression systems. This demonstrates a superior outcome. 

Zipf’s dispersion is utilized in this paper to build the Look up table of characters. It 

originated from Zipf's law [6]. Zipf's law can be said to a test law detailed using numerical 

insights that insinuates the manner in which that various sorts of data considered in the 

physical and sociologies can be approximated with a Zipf’s conveyance. Zipf's law 

communicates with the given corpus comprising natural language articulations, recurrence 

of a certain word might be then again comparing against its situation by the help of table of 
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recurrence. Thusly the most nonstop word will happen generally twofold as typically as the 

second most progressive word, on numerous occasions as routinely as the third most 

unending word.  

1.2 Problem Statement 

Numerous strategies have been proposed in the literature for compressing large natural text 

data. These strategies can be additionally grouped into four noteworthy sorts, that is, 

substitution, statistical, dictionary, and context-based method [7]. The substitution data 

compression procedures supplant a specific longer reiteration of characters with a shorter 

one. A system that is a delegate of these strategies is run-length encoding [8]. The statistical 

methods more often than not compute the likelihood of characters to create the briefest 

normal code length, for example, Shannon-Fano coding [9, 10], Huffman coding [11] and 

arithmetic coding [12,13]. The following kind comprises of dictionary based strategies, 

which include substitution of a substring of content by a file or a pointer code. They identify 

with a situation in the word reference of the substring. Delegates of these methods are LZW 

[14], LZ77 [15], and LZ78 [16]. The last kind is context based systems, which include the 

utilization of negligible earlier presumptions about the measurements of the content. 

Typically, they utilize the setting of the content being encoded and the historical backdrop of 

the content to give increasingly proficient compression. Delegates of this sort are Prediction 

by Partial Matching (PPM) [17] and Burrow– Wheeler change (BWT) [18].   

Most of the techniques mentioned above uses a dictionary in the physical memory. So a huge 

amount of space in memory is needed to store this dictionary. Another fact is that all the 

techniques available in recent times applies only this 3 techniques including Run length 

encoding or Huffman encoding or LZW technique.  

In this thesis, we introduced a new idea namely n-sequence based m bit compression Scheme. 

In this technique, the dictionary is logically implemented based on a hash function. Because 

of the logical implementation of the dictionary, it does not take any physical space in 

memory. So a huge space is saved in the physical memory. 
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1.3 Objectives  

The main objectives of this thesis are to– 

 Develop an efficient encoding algorithm which can work with the natural characters 

by converting 8 bit character to 5 bit. 

 Construct a powerful compression algorithm which can compress the large natural 

dataset to a promising efficiency. 

 Propose a decompression algorithm which can decompress the compressed dataset 

to the original dataset without any loss of the original dataset. 

 Compare the efficiency of proposed technique with traditional and some industrial 

techniques to justify the effectiveness of the technique. 

1.4 Scope  

The important scopes under this thesis are as follows: 

 Data can be compressed by using logical calculation without using any third party 

software or database. 

 Standard dataset is used to compress and uncompress. 

 NetBeans platform is used for developing Java desktop applications. 

 Java programming language is used to implement the prototype system. 

1.5 Contribution 

The contribution of this thesis can be summarized as follows: 

 A powerful compression technique will be available which can compress any 

amount of text by a promising efficiency rate. 

 Theoretical analysis is verified with experimental results. 

 Providing details of theoretical and experimental analysis for Compression of file 

Size, Compression Ratio, with operations on stored data. 
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1.6 Organization of the Thesis 

 Chapter I presents the introductory part of the thesis which includes the 

introduction, problem statement, objectives, scope and contribution of the thesis. 

 Chapter II presents Literature Review that describes some of the traditional and 

prominent Data Compression scheme that are already exists. Some of these data 

compression methods will be described. 

 Chapter III proposes a new scheme for data compression called “An Efficient 

Compression Scheme for Natural Language Text”. It also provides an example to 

demonstrate how the algorithm actually works. 

 Chapter IV illustrates the performance analysis by deriving a theory to find the 

efficiency rate. As well as the experimental results of proposed scheme and its 

evaluation are discussed which shows the technical soundness of the technique. 

 The future direction of work on the proposed model and the conclusive words about 

the model are outlined in Chapter V. 
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CHAPTER II 

 

Literature Review 

 

2.1 Introduction 

Data compression is useful in the modern computing world and it is generally utilized by 

numerous applications [28]. The fundamental standards of data compression are embarked 

to accomplish a decrease in document measure by encoding data more proficiently. The vast 

majority of the data compression procedures are lossless [29]. This implies the compacted 

document will be reestablished precisely to its unique state with no loss of data amid the 

decompression procedure. The significance of this is central as the record would be ruined 

and unusable should data be lost. Lossless compression algorithms use measurement 

displaying methods to decrease redundant data in a document [30]. A portion of the 

strategies may incorporate expulsion of dividing characters, speaking to a string of rehashed 

characters with a solitary character or supplanting repeating characters with littler piece 

arrangements. Another compression classification which is frequently utilized in interactive 

media records for music and pictures (for example JPEG documents) and where data is 

disposed of is alluded to as "lossy" compression [31]. In this class of data encoding 

techniques, inaccurate approximations (or fractional data disposing of) are utilized to speak 

to the substance. These strategies are essentially used to lessen data estimate for capacity, 

dealing with and transmitting content. At the point when there are a substantial number of 

documents included, compression can be a scientifically extreme and tedious procedure 

[32].. Another important concept in this thesis is Zipf’s distribution by which the dictionary 

was made. So Zipf distribution is also discussed here.  
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2.2 Types of Data Compression 

Compression of data is significant to this modern era in view of measuring of the data which 

is exchanged inside a specific system. It constructs the exchange within data generally 

simple. This part clarifies and distinguishes lossless and lossy technique of compression. 

2.2.1    Lossless Data Compression 

A Lossless technique [33] for compression is a type of compression which can have the 

ability to reconstruct the original data perfectly from the compact data. This might be 

separated to lossy technique, which may not empower unmistakable special data changing 

from compacted form data. It is utilized in various applications. This type of compaction is 

utilized at the time of the fact that first and decoded data must be undefined. 

2.2.2    Lossy Data Compression 

A lossy technique [34] for compression framework is where packing and unpacking recoups 

data might be not exactly equivalent to the first, anyway is "close enough" to be useful all 

over. There exists two primary lossy pressure plans:  

First one might be the lossy change codecs. Trial of image and noise will be taken, sliced 

within little pieces, changed within another reason quantized. The other one might be lossy 

perceptive codecs. Past or possibly coming about decompressed data might be used to 

foresee the present noise precedent or image layout.  

2.2.3    Substitutional Data Compression     

Substitutional Data Compression [35] improves the letters in order with super images, 

permitting encoding various events of individual images. This technique is important in 

circumstances where one image is locally ruling over all the others. It is as yet used to pack 

exceptional sorts of data (PC created designs for example), or as an extra handling venture 

in increasingly complex compression techniques. A substitutional strategy for the easiest 

sort is run-length encoding (RLE) [36]. 

2.2.4    Statistical Data Compression: 

Lossless statistical data compression [37] calculations have produced a ton of enthusiasm in 

the course of the most recent fifteen years. Such calculations are regularly consecutive: they 

process a data stream from start to finish, gradually developing and refining a model 

dependent on data that has been handled, without the need to get to images further upstream 
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than the first unencoded one. Developing a blower along these lines has various significant 

points of interest. Initially, all data that the blower uses is accessible to the decoder also, so 

there is no compelling reason to yield additional data for the decoder to have the option to 

discover how the data are encoded. Furthermore, the size of the record that should be packed 

shouldn't be known ahead of time and might be self-assertively enormous, as one may 

envision to be the situation for a data channel between two PCs on a system (the 

compression serving to improve transmission capacity). A third reason is that it 

extraordinarily disentangles the procedure thoughtfully: images from the data source are in 

every case either encoded or not encoded, there will never be any relationship between's the 

yield and up 'til now unencoded input images. Shannon-Fano coding [38], Huffman coding 

[39] and arithmetic coding are the examples of this method. 

2.2.5    Dictionary-based Data Compression: 

In dictionary compression [40], variable length substrings are replaced by short, possibly 

even fixed length codewords. Compression is achieved by replacing long strings with 

shorter codewords. 

The general scheme is as follows: 

• The dictionary D is a collection of strings, often called phrases. For completeness, the 

dictionary includes all single symbols. 

• The text T is parsed into a sequence of phrases:  

                             T = T1T2 ...Tz, Ti ∈ D. 

The sequence is called a parsing or a factorization of T with respect to D. 

• The text is encoded by replacing each phrase Ti with a code that acts as a pointer to the 

dictionary. 

A dictionary-based method of the simplest sort is LZW [41]. 

2.2.6    Context-based Data Compression: 

Context-based arithmetic coding [42] is a universal compression technique usually applied 

to encode multimedia content in combination with other compression methods in order to 

achieve high compression ratios. It is performed in two separate phases. The first phase aims 

to efficiently estimate the source statistics. The second phase utilizes arithmetic coding to 



8 
 

represent the symbols with high probability of the occurrence with fewer bits than the 

symbols with low probability of occurrence. Example of this sort is Prediction by Partial 

Matching (PPM) [43]. 

2.3 Well- known Data Compression Techniques 

This section explains the basic principles of some data compression techniques 

The data compression techniques actually available in modern scenario are: 

1.   Run Length Encoding (RLE) 

2.   Huffman Coding  

3.   LZW Compression  

4.   Arithmetic Coding.  

 

2.3.1    Run Length Encoding (RLE)    

Run-length encoding [44] is a data pressure algorithm that is reinforced by most bitmap 

archive positions, for instance, TIFF, BMP, and PCX. RLE is fitting for compacting any sort 

of data paying little regard to its data content, anyway the substance of the data will impact 

the pressure extent achieved by RLE.  

RLE works by diminishing the physical size of a proceeding with arrangement of characters. 

This keeping string, called a run, is generally encoded into two bytes. The vital byte addresses 

the amount of characters in the run and is known as the run count. Before long, an encoded 

run may contain 1 to 128 or 256 characters; the run consider generally contains the amount 

of characters short one. The second byte is the estimation of the character in the run, which 

is in the extent of 0 to 255, and is known as the run regard. 

 

 

Uncompressed, a character continue running of 15 A characters would usually require 15 

bytes to store:  

 

 

A comparative string after RLE encoding would require only two bytes.  

The 15A code delivered to address the character string is known as a RLE group. Here, the 

primary byte, 15, is the run check and contains the amount of redundancies. The second byte, 

An, is the run regard and contains the authentic reiterated a motivating force in the run.  

AAAAAAAAAAAAAAA 

15A 
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Another bundle is made each time the run character changes, or each time the amount of 

characters in the run outperforms the most outrageous check. Expect that our 15-character 

string by and by contains four differing character runs:  

 

 

Utilizing run-length encoding this could be compacted into four 2-byte bundles: 

 

 

Thus, after run-length encoding, the 15-byte string would require only eight bytes of data to 

address the string, as opposed to the initial 15 bytes. For this circumstance, run-length 

encoding yielded a pressure extent of practically 2 to 1.  

 

2.3.2     Huffman Coding 

This Huffman coding is an entropy encoding procedure used for lossless data pressure. It was 

made by David A. Huffman while he was a Ph.D. understudy at MIT, and circulated in the 

1952 paper "A Method for the Construction of Minimum-Redundancy Codes" [45]. The 

methodology in every practical sense starts with the leaf centers containing the probabilities 

of the picture they address, and after that another center whose youths are the 2 center points 

with most diminutive probability is made, to such a degree, that the new center's probability 

is comparable to the total of the children's probability. With the 2 centers solidified into one 

center point (consequently not considering them any more), and with the new center being 

presently considered, the strategy is reiterated until only a solitary center remains, the 

Huffman tree.  

 

Figure 2.1   Algorithm for Huffman 

Considering the following short text: 

Eerie eyes seen near lake. 

AAAAAAbbbXXXXXt 

6A3b5X1t 

1. Scan text to be compacted and count event all things considered. 

2. Sort or organize characters dependent on  number of events in text. 

3. Build Huffman code tree dependent on organized rundown. 

4. Perform a traversal of tree to decide all code words. 

5. Scan text again and make new document utilizing the Huffman codes. 
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Step 1:  Count up the occurrences of all characters in the text.  

Step 2: Find which characters are present: E e r i space y s n a r l k. 

TABLE 2. 1 Character Frequency 

Character Frequency 

                    E 9 

Space 4 

R 2 

S 2 

N 2 

A 2 

E 1 

I 1 

Y 1 

L 1 

K 1 

. 1 

Step 3: Build a tree by this steps 

• Single node is dequeued in the left of the queue. 

• New code words for each character is contained in the tree. 

     • Number of characters in text must be equal to the Frequency of root node 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2   Huffman Tree 

E-1 i-1 

Sp-4 

e-8 

2 

y-1 l-1 

2 

k-1 .-1 

2 

r-2 s-2 

4 

n-2 a-2 

4 

4 6 8 

10 16 

26 
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Encoding: 

 Traverse the tree to obtain new word code 

 Moving on to left is a 0 or right is a 1 

 When a leaf node is reached code word is completed then. 

In the example, the below result will be found: 

TABLE 2. 2 Code of Huffman 

   Character       Code 

E 10 

Space 011 

R 1100 

S 1101 

N 1110 

A 1111 

E 0000 

I 0001 

Y 0010 

L 0011 

K       0100 

. 0101 

 

Let us suppose for word “Eye” code will be 

E= 0000, y= 0010, e= 10 

So the encoded string is 0000001010 
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2.3.3      Lempel-Ziv-Welch (LZW) Compression 

Lempel-Ziv-Welch (LZW) is a data pressure algorithm made by Abraham Lempel, Jacob 

Ziv, and Terry Welch [46]. The algorithm is expected to rush to execute anyway isn't 

commonly perfect since it performs simply compelled examination of the data. LZW can in 

like manner be known as a substitutional or lexicon based encoding algorithm. The algorithm 

routinely creates a data word reference (similarly called an understanding table or string 

table) of data occurring in an uncompressed data stream. Instances of data (substrings) are 

perceived in the data stream and are composed to sections in the word reference.  

In case the substring is missing in the word reference, a code articulation is made subject to 

the data substance of the substring, and it is secured in the lexicon. The articulation is then 

stayed in contact with the pressed yield stream. Exactly when a reoccurrence of a substring 

is found in the data, the outflow of the substring recently secured in the lexicon is stayed in 

contact with the yield. Since the articulation regard has a physical size that is tinier than the 

substring it addresses, data pressure is practiced.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3   Algorithm for LZW 

 

 

     Input: BABAABAAA 

     Output: 66 65 256 257 65 260 

1     Start table with character strings which are single 

2     M = 1st character  

3     Unless finishing the stream of data  

4     N = Next character  

5     IF M + N is found in the string table  

6     M = M + N  

7     Else 

8     yield M’s Code 

9     Adding M+ N to the string table  

10   M = N 

11   Finish while  

12   yield M’s code 
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Example:  

Using the LZW algorithm to compress the string 

BABAABAAA 

TABLE 2. 3 How LZW compress string 

ENCODER                  OUTPUT STRING                      TABLE 

Output code representing codeword string 

66 B 256 BA 

65 A 257 AB 

256 BA 258 BAA 

257 AB 259 ABA 

65 A 260 AA 

260 AA   

 

2.3.4     Arithmetic Encoding 
 
Arithmetic coding [47] is a lossless coding procedure which does not encounter the evil 

impacts of the recently referenced hindrances and which will when all is said in done achieve 

a higher compression extent than Huffman coding. Arithmetic coding is a run of the mill 

calculation used in both lossless and lossy information compression calculations [48]. It is 

an entropy encoding methodology, in which the frequently watched pictures are encoded 

with less bits than lesser seen pictures. It has a couple of focal points over got frameworks, 

for instance, Huffman coding. 

Encoding with Floating-Point Math 

The term arithmetic coding covers two separate systems: encoding messages and deciphering 

them. The hypothetical idea of an arithmetic coding model is that each picture will have its 

very own exceptional segment of the number line of real numbers some place in the scope of 

0 and 1.  

For example, it might be started with an encoder that can encode only a letters arranged by 

100 particular characters. In an essential static model, resulting to starting with capital letters, 

by then move to the lower case letters. This infers the chief picture, 'A', will guarantee the 

number line from 0 to .01, 'B' will have .01 to .02, and so on. With this model, the encoder 

can address the single letter 'B' by yielding a floating point number that is under .02 and more 
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important than or proportional to .01. So for example, an arithmetic encoder that expected to 

make that single letter could yield .15 and be done.  

To encode a progression of pictures incorporates a hardly progressively confounded system. 

For the character 'B', that suggests the message is some place in the scope of .01 and .02. The 

accompanying character in the message by then further parcels that present range 

proportionate to its present duty regarding number line. So some other letter that claims the 

completion of the number line, from .99 to 1.0, would change the range from [.01,.02) to 

[.0199, .020). After the entire message has been readied, it has the last range, [low,high). The 

encoder yields a skimming point number right in the point of convergence of that run. 

Decoding With Floating-Point Math 

The math in the decoder on a very basic level pivots the math from the encode side. To 

decipher a character, the probability model essentially needs to find the character whose 

broaden covers the present estimation of the message. Exactly when the decoder initially 

starts up with the model estimation of 0.22232425, the model sees that the regard falls 

between the break asserted by 'W': [0.22,0.23); so the model returns W. 

 

2.4     Industrial Schemes 

Actually two kind of data compression techniques named WinZip and WinRAR are used 

for industrial purposes. They are the most popular and widely used file formats to archive 

compressed data. They are undoubtedly the undisputed kings of compressed files. While 

both use the superfast LZ77 compression algorithm to compress and decompress content 

[47], surely one has a little edge over the other, may be in terms of speed and efficiency. 

Both are compression algorithms that efficiently compress the files to reduce their size 

without affecting the content of the files. While a WinRAR file is an archival file created 

with the WinRAR program, Zip file is a common file extension associated with several 

programs such as WinZip, WinRAR, and Freebyte Zip.  

2.4.1    WinZip Compression 

The WinZip file format was actually created by Phil Katz and Gary Conway following a 

lawsuit against PKWARE filed by System Enhancement Associates (SEA). The lawsuit 

claimed that the archiving products of PKWARE were taken from the SEA’s proprietary 

ARC archiving system. However, the lawsuit was dropped followed by a legal settlement 

with the SEA. Katz released his first compression program to use the new WinZip file 
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format called PKZIP and subsequently released it into the public domain in 1989. Today, 

Zip is a widely used format for lossless data compression and is supported by several 

software utilities including the built-in WinZip support provided by Microsoft Windows and 

Mac OS X. The best part, WinZip files can be opened with any program that creates WinZip 

files. 

Like other archive formats, WinZip files are data containers that contain one or more files 

together in a compressed or zipped format using WinZip compression. Well, WinZip 

archives are capable of more than just compressing files; they can encrypt files (password 

protected) and split archives with just a few clicks. Multiple files can be compressed or 

zipped using several methods such as LZMA, WavPack, PPMd, BZIP2, DEFLATE, etc. 

Each file can be stored separately, so that they can be accessed randomly and because they 

are archived individually, it makes it easy to extract them, or add new ones without even 

zipping in the entire archive. WinZip archives can also contain additional content which are 

not related to the archive thereby making it a self-extracting archive. 

2.4.2    WinRAR Compression 

WinRAR stands for Roshal Archive Compressed file, which is a proprietary archive file 

format named after its Russian-origin creator Eugene Roshal. Like other archives, WinRAR 

contains one or more files or folders together. Think of WinRAR as a folder just like a 

normal folder containing several programs or files, however, unlike a normal folder on your 

hard drive, WinRAR files require third-party software to open and extract the contents of 

the archive. It’s a native file format of WinRAR archiver which stores multiple files in the 

compressed form only needed to do is unpack its contents to access the files. It uses a higher 

compression ratio than regular WinZip compression and incorporates a proprietary 

compression algorithm that handles lossless data compression, file spanning, error recovery, 

and more. The archives files normally have the standard “.WinRAR” file extension. 

2.4.3    A comparison between WinZip and WinRAR 

Basics of WinZip and WinRAR 

WinZip is an archive file format created by Phil Katz as a standard format for lossless data 

compression which incorporates several compression algorithms to compress/decompress 

one or more files. WinRAR is a proprietary archive file format developed by a Russian 

software engineer Eugene Roshal. 
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Efficiency of WinZip and WinRAR 

RAR format can compress a file much better than the same when done with WinZip format, 

meaning the rate of compression of RAR is better than that of the WinZip format. Also 

WinRAR archived smaller sizes as compared to WinZip archives, which makes WinRAR a 

better alternative than WinZip. 

Popularity of WinZip and WinRAR 

The main advantage of using a WinZip format is its popularity. As WinZip file format was 

developed a long time ago, it has a little edge over the WinRAR format and is still the most 

widely used archive type, which still accounts for a significant number of archive files on 

the internet. 

Proprietary Software for WinZip and WinRAR 

A third-party software program called WinRAR is required to open and extract the contents 

of the WinRAR archive, whereas WinZip is a widely used format supported by various 

commercial as well as open source tools, and libraries. 

Compression Speed in WinZip and WinRAR 

WinZip uses a less complex structured format to store files. It uses the older yet popular 

DEFLATE compression algorithm to compress data which is less efficient than the newer 

compression methods which are not supported by any operating system by default. WinRAR 

uses a compression algorithm which is substantially better and efficient than the DEFLATE 

compression method. 

Security in WinZip and WinRAR 

WinRAR uses a proprietary program called WinRAR archiver to compress/decompress 

contents of a file that comes with built-in support for password encryption which is great 

for security. However, the default support in Windows and Macintosh operating systems 

does not have password protection feature. 

2.5 Zipf’s Distribution 

Zipf's law is an experimental law planned utilizing scientific measurements. The law is 

named after the language specialist George Kingsley Zipf, who initially proposed it [6].  

http://www.differencebetween.net/miscellaneous/what-is-the-difference-between-pseudocode-and-algorithm/
http://www.differencebetween.net/technology/the-difference-between-lossy-and-lossless-compression/


17 
 

Zipf's law expresses that given a vast example of words utilized, the recurrence of any word 

is conversely corresponding to its position in the recurrence table. So word number n has a 

recurrence corresponding to 1/n [27].  

Accordingly the most regular word will happen about twice as frequently as the second most 

continuous word, multiple times as frequently as the third most successive word, and so forth.  

For instance, in one example of words in the English language, the most much of the time 

happening word, "the", represents almost 7% of the considerable number of words (69,971 

out of marginally more than 1 million). Consistent with Zipf's Law, the second-place word 

"of" represents somewhat over 3.5% of words (36,411 events), trailed by "and" (28,852). Just 

around 135 words are expected to represent a large portion of the example of words in a vast 

sample.  

A similar relationship happens in numerous different rankings, disconnected to language, for 

example, the populace positions of urban communities in different nations, enterprise sizes, 

pay rankings, and so on. The presence of the appropriation in rankings of urban areas by 

populace was first seen by Felix Auerbach in 1913. 

The Most Common Words in English 

Zipf’s law is a curious relation that connects distributions of words and populations of cities 

to inverse relations. The American linguist George Kingsley Zipf noticed it when looking at 

the relative frequencies of words in a large text, like the book Moby Dick. 

Here are the most frequent words in the English language, along with the rough percentages 

of how often that word occurs in written texts. For example, the most common word, ‘the’, 

appears roughly 6.8% of the time. Of the 92 words in the two paragraphs of the book, he 

counted 9 uses of the word ‘the’. That is therefore somewhat above average. 

TABLE 2. 4 Zipf’s Distribution 

Rank Word Percentage 

1 the 6.8 

2 of 3.1 

4 to 2.7 

4 and 2.6 

5 in 1.8 
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Zipf saw that the second most normal word 'of' happens about half as regularly as the most 

widely recognized word 'the'. While the third most normal word 'to' happens about a third as 

regularly as 'the'. Etc. The seventh most normal word 'for' happens around one seventh as 

regularly as 'the'. All the more by and large, the recurrence of the nth most regular word is 

around 1/n times the recurrence of the most well-known word. 

So a graph of the frequencies of the most common words looks roughly like this: 

 

Figure 2.4   Zipf’s Distribution 

This distribution, remarkably, is quite stable over many different publications. Furthermore 

it turns out that less than 200 words account for more than half of all the written words in 

English. 

 

 

 

 

 

 

6 is 1.2 

7 for 1.0 

8 that 0.8 
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2.6 Some Other Important Works 

There are some important works on text compression is proposed in recent time. We 

summarizes a few of the important works.  

Optimal Compressed Sensing and Reconstruction of Unstructured Mesh 
Datasets [1] 

Compressed detecting (CS) is examined in [1] as an in situ technique to lessen the measure 

of the information as it is being created amid a huge scale reenactment. CS works by testing 

the information on the computational group inside an elective capacity space, for example, 

wavelet bases and after that reproducing back to the first space on representation stages. 

While much work has gone into investigating CS on organized datasets, for example, picture 

information, we explore its convenience for point mists, for example, unstructured work 

datasets frequently found in limited component reproductions. An example strategy is 

utilized that shows low lucidness with tree wavelets observed to be appropriate for point 

mists. It is recreated utilizing the stagewise symmetrical coordinating interest algorithm that 

was improved to encourage mechanized use in clump occupations. 

Lightweight natural language text compression [2] 

Variations of Huffman codes where words are taken as the source images are at present the 

most appealing decisions to pack regular language text databases [2]. Specifically, Tagged 

Huffman Code by Moura et al. offers quick direct looking on the packed text and irregular 

access capacities, in return for creating around 11% bigger compacted records. End-Tagged 

Dense Code and (s, c)- Dense Code, two new semi static measurable techniques for 

compressing common language texts. These strategies license more straightforward and 

quicker encoding and get preferable compression proportions over Tagged Huffman Code, 

while keeping up its quick immediate inquiry and arbitrary access capacities. 

A Bit-level Text Compression Scheme Based on the ACW Algorithm [3] 

A bit level, lossless, versatile, and asymmetric data compression conspire that depends on 

the versatile character word length (ACW(n)) algorithm is proposed in [3]. The proposed 

plan improves the compression proportion of the ACW(n) algorithm by isolating the parallel 

grouping into various subsequences (s), every one of them fulfilling the condition that the 

quantity of decimal qualities (d) of the n-bit length characters is equivalent to or under 256. 
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Evaluate Database Compression Performance and Parallel Backup [4] 

This exploration tends to the challenges of the above issues and gives the answer for how to 

streamline and improve the procedure for pack the continuous database and execute 

reinforcement of the database in different gadgets utilizing parallel way. The proposed 

productive calculations gives the answer for pack the constant databases all the more viably 

and improve the speed of reinforcement and reestablish tasks [4]. 

n-Gram-Based Text Compression [19] 

A content compression using n-gram word references is proposed in [19] which accumulates 

the content corpus of the Vietnamese language from the Internet and amasses five n-gram 

dictionaries with very nearly 500,000,000 n-grams, and a test set of 10 assorted content 

reports with different sizes to survey. 

Efficient 6 bit Encoding Scheme for Printable Characters by table look up [26] 

The scheme portray in [26] manages an encoding system by 6 bits for printable characters 

utilizing table turn upward. It changes over the 8 bit characters to 6 bits by partitioning the 

characters into 5 sets and utilizing them in a solitary table. The area of character is then 

utilized remarkably to encode by 6 bits. 

Fast text compression using multiple static dictionaries [28] 

A quick text compression technique dependent on numerous static word references is build 

up in [28]. This algorithm is language subordinate as a result of its static structure; in any 

case, it owes its speed to that structure. It performs compression with utilizing most every 

now and again utilized outlines and trigrams rather than ASCII codes that are not utilized or 

rarely utilized in text documents. In outline coding, at each coding venture the following two 

characters are examined to check whether they compare to a chart in the word reference. 

Provided that this is true, the relating record in the word reference is encoded; generally just 

the principal character is encoded. The coding position is then moved by a couple of 

characters as proper. On the off chance that three characters are utilized rather than two, the 

coding algorithm is named as trigram coding. 
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Text Database Compression Using Replacement and Bit Reduction [30] 

A compression technique which depends on redundancy of words and number framework 

hypothesis is proposed in [30]. It utilizes a method wherein as often as possible happening 

words are supplanted by extraordinary characters and the altered document is considered as 

n-base number framework, where n is the quantity of various characters in the record. 

Further, compression process is completed by changing over this n-base number framework 

to paired number framework. The principle thought behind utilizing this algorithm is to speak 

to the entire data into lower number framework accordingly sparing bits prerequisite 

On parsing optimality for dictionary-based text compression [40] 

An overview is displayed [40] on the parsing issue for dictionary-based content pressure, 

distinguishing discernible consequences of both a hypothetical and pragmatic nature, which 

have showed up over the most recent three decades. We pursue the authentic strides of the 

Zip conspire indicating how the first ideal parsing issue of finding a parse shaped by the base 

number of expressions has been supplanted by the bit-ideal parsing issue where the objective 

is to limit the length in bits of the encoded content. 

2.7 Discussion 

Every compression techniques described in this chapter have some pros and cons. LZW is 

still the best data compression technique in term of compression ratio with time. Run length 

encoding and arithmetic coding is mainly used for data communication and soft error 

purpose. Huffman algorithm is an average algorithm process which has average results.  

Though, there are a lot of research has been done on those different compression technique, 

but only a few researches have been made on competing with the well-known WinZip or 

WinRAR algorithm. Hence the proposed generalized representation scheme nSmBC will 

outperform over WinZip and WinRAR scheme. The detail of the proposed scheme is 

presented in the next chapter. 
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CHAPTER III  

 

Compression Scheme for Large Natural Language Text  

 

3.1 Introduction 

We develop a compression method for natural text using n-sequence dictionaries. 

Definition 3.1 (n-Sequence): n-Sequence is a sequence of words where n characters are 

arranged side by side. For example, if a character set contains {A,B} then 1 Sequence is 

<A,B>, 2 Sequence is <AA,BB,AB,BA>, 3 Sequence is <AAA,BBB,AAB,ABA,……>. It 

is the possible all combinations taking n characters from a given character set.  Each of the 

member in the n-sequence is identified by an index number. If there are k members in an n-

sequence set we index the members from 0 to (k-1). The index of “AB” in the 2-sequence is 

2.  

The proposed method is a scheme of 5 bit character encoding algorithm that represents a 

character by 5 bits rather than 8 bits. The characters we can represent by the decimal values 

is shown in Table 3.1 and 3.2. Each of the decimal value is in the range (0-31) which can be 

represented by 5 bits. Hence we represent 8 bit characters by 5 bits. 

Following are the steps which are used to construct the proposed method: 

1) Construction of the Look up table for encoding: 

In this section we will construct a Look up table for representing the characters by 5 bit by 

randomly distributing the characters. The look up table is optimized by using a Zipf’s 

distribution which is a discrete distribution of commonly used characters in different 

languages [6]. 

2) Construction of the n-Sequence dictionary: 

A logical n-Sequence dictionary will be constructed in this section which is mathematically 

calculated and proved by an algorithm. 
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3) Compression and Decompression Algorithm: 

We will describe the compression and decompression algorithm by providing suitable 

examples in this section. 

3.2 Construction of the Look up table for encoding 

Definition 3.2(Set tag): Set tag is defined as a group of characters tagged to a particular 

set number. For example, the capital letters, small letters, digits and symbols are tagged to 

particular set number as shown in TABLE 3.1 and TABLE 3.2. We call it set tag 

representation. 

TABLE 3. 1 Random lookup table for nSmBC 

Decimal 

value 

Binary 

value 

Set- 1 Set- 2 Set- 3 Set- 4 Set- 5 Set- 6 Set- 7 

0 00000 অ ণ া  Space Y x ! 

1 00001 আ ত িা A Z y " 

2 00010 ই থ া  B a z # 

3 00011 ঈ দ া  C b 1 $ 

4 00100 উ ধ া  D c 2 % 

5 00101 ঊ ন া  E d 3 & 

6 00110 ঋ প ো F e 4 ' 

7 00111 এ ফ ৈা G f 5 ( 

8 01000 ঐ ব ো  H g 6 ) 

9 01001 ও ভ ো  I h 7 * 

10 01010 ঔ ম া  J i 8 + 

11 01011 ক য ৷ K j 9 , 

12 01100 খ র ০ L k 0 - 

13 01101 গ ল ১ M l _ . 

14 01110 ঘ শ ২ N m ` / 

15 01111 ঙ ষ ৩ O n { : 

16 10000 চ স ৪ P o | ; 

17 10001 ছ হ ৫ Q p } < 

18 10010 জ ড় ৬ R q ~ = 

29 10011 ঝ ঢ় ৭ S r >  

20 10100 ঞ য় ৮ T s ?  

21 10101 ট ৎ ৯ U t [  

22 10110 ঠ া   V u \  

23 10111 ড া   W v ]  
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24 11000 ঢ া   X w ^  

25 11001 Set- 1 

26 11010 Set- 2 

27 11011 Set- 3 

28 11100 Set- 4 

39 11101 Set- 5 

30 11110 Set- 6 

31 11111 Set- 7 

After constructing this table, it was observed that there are some character available in the 

English literature that were used so little. Since the n-SmBC algorithm somehow depends 

on the set value, so if there happens a rapid change in set, the algorithm might not produce 

the desired result. Therefore, to solve this issue, the dictionary is optimized by using a 

distribution named Zipf’s [27] which is a discrete distribution of commonly used characters 

in different languages. 

The table is demonstrated in TABLE 3.2 

TABLE 3. 2 Optimized look up table for nSmBC 

 

Decimal 

value 

Binary 

value 

Set- 1 Set- 2 Set- 3 Set- 

4 

Set- 5 Set- 

6 

Set- 

7 

    0 00000 অ ণ া  E e 1 Q 

1 00001 আ ত া  T t 2 X 

2 00010 ই থ া  A a 3 Z 

3 00011 এ দ া  O o 4 J 

4 00100 া  ধ ৎ R r 5 , 

5 00101 িা ঘ ঢ় I i 6 ? 

6 00110 া  প ঐ N n 7 ‘ 

7 00111 া  ফ ঊ S s 8 ! 

8 01000 ো য় ঔ H h 9 " 

9 01001 ো  ভ ঈ D d 0 # 

10 01010 ো  ছ ৷ L l + \ 

11 01011 ক ঢ ০ C c - ~ 

12 01100 খ ঞ ১ U u * ^ 

13 01101 গ ঠ ২ P p / | 

14 01110 ন ঙ ৩ M m = $ 

15 01111 শ ষ ৪ W w ( : 

16 10000 স চ ৫ F f ) ; 

17 10001 ম য ৬ G g { _ 

18 10010 জ ড় ৭ Y y } ` 
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29 10011 ব ঝ ৮ B b <  

20 10100 র উ ৯ V v >  

21 10101 ট ও  K k [  

22 10110 ল ঋ  z x ]  

23 10111 ড া   j . %  

24 11000 হ া   q space &  

25 11001   Set- 1 

26 11010   Set- 2 

27 11011   Set- 3 

28 11100   Set- 4 

39 11101   Set- 5 

30 11110   Set- 6 

31 11111   Set- 7 

 

Our target characters are all the characters of an English standard key board. We also 

consider the Bangla characters as well. We divide the characters into 7 sets namely Set-1, 

Set-2,…, Set-7. Each of the set contains 25 characters. The characters are placed in a lookup 

table as shown in Table 3.2. The entry in Table 3.2 is organized as follows: 

1) Characters of the Bangla alphabet are placed in Set-1, Set-2 and Set-3.  

2) Characters of the English alphabet are placed in Set-4, Set-5, Set-6 and Set-7. Position 

21-24 of Set-3 and 19-24 of Set-7 is empty and can be filled with any missing characters. 

3) The rest of the 7 combinations are filled with the 7 sets as shown in table 3.2.  

Therefore, the table contains 32 characters (serial from 0 to 31). These 32 (25=32) 

combinations can be represented by 5 bits. Within the 32 combinations 25 combinations are 

utilized for converting the original 8 bit character to 5 bit and the rest of the 7combinations 

are utilized for representation of the sets. Therefore, we can use (25 − 7) × 7 =175 

characters in the Table.  If we can take 6 bits then there can be (26 − 7) × 7 =399 characters 

can be handled. We call it m bit representation of the scheme. In the following we represent 

m=5 bits to explain our proposed method. We represent any character using the encoding 

scheme (see Table 3.2). We call it set representation. For example, if we have a character 

stream “ABCDabcd956” then the set representation is “Set4 ABCDSet5abcdSet6956”. 

Since “A” is located in Set4 so start with Set4 followed by “A”, “a” is represented in Set5 

we put Set5 before “a” and so on. When a set change occurs, we insert a Set number to 

distinguish it with others. 
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The placement of characters in the look up table is optimized using Zipf’s distribution which 

is a discrete distribution of commonly used characters in different languages [6].  Zipf's law 

is an empirical law formulated using mathematical statistics. It states that given a large 

sample of words used, the frequency of any word is inversely proportional to its rank in the 

frequency table. So word number n has a frequency proportional to 1/n. Thus the most 

frequent word will occur about twice as often as the second most frequent word, three times 

as often as the third most frequent word. 

We placed the characters in Table 3.2 such that the minimum number of set change occurs 

to handle the input string. 

3.3 Construction of the n-Sequence Dictionary 

After converting the 8 bit characters into 5 bits, we have a bit stream constructed from the 

5 bits of each character. For any input text T, we create a bit stream (5 bits for each character) 

and from this bit stream we divide it take 4 bits each. We put trailing the last set number to 

make it mod 4 equal to zero if the length of the bit stream is not mod 4 equal to zero. From 

this 4 bits, we have 24 = 16 different combinations of bits. Since each of the characters is 

represented by 8 bits, we add a fixed bit pattern in front of each of the 4 bits. Figure 3.1 

shows an example. The fixed bit pattern is 0100. 

 

 

 

Figure 3.1: Adding Fixed bit pattern. 

After adding fixed 4 bit pattern (0100) we set ASCII value range 64-79. Table 3.3 shows 

the characters along with it’s decimal and ASCII values. Hence any of the characters shown 

in Table 3.2 becomes a character (@-O) shown in Table 3.3. 

TABLE 3. 3 List of characters used for creating n-sequence algorithm 

 

Serial No.  Characters Decimal Value Binary value 

1 @ 64 01000000 

2 A 65 01000001 

3 B 66 01000010 

4 C 67 01000011 

5 D 68 01000100 

6 E 69 01000101 

7 F 70 01000110 

             Fixed 

0100 
 

      4-bit from 5 bit stream 

 
0000 
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8 G 71 01000111 

9 H 72 01001000 

10 I 73 01001001 

11 J 74 01001010 

12 K 75 01001011 

13 L 76 01001100 

14 M 77 01001101 

15 N 78 01001110 

16 O 79 01001111 

 

Example 1:  

Original Text: “Test Text “ 

Set Representation:  

Set4 T Set5 est space Set4 T Set5 ext 

Decimal Representation:  

28 1 29 0 7 1 24 28 1 29 0 22 1  

5 bit representation:  

11100 00001 11101 00000 00111 00001 11000 11100 00001 11101 00000 10110 00001 

After Dividing by 4:  

1110 0000 0111 1010 0000 0011 1000 0111 0001 1100 0000 1111 0100 0001 0110 0000 

1111 

Adding 0100 to every combination:  

01001110 01000000 01000111 01001010 01000000 01000011 01001000 01000111 

01000001 01001100 01000000 01001111 01000100 01000001 01000110 01000000 

01001111 

Corresponding ASCII Character:  

N@GJ@CHGAL@ODAF@O 

Dictionary Construction 

Using the characters of Table 3.3, we generate a dictionary of n-sequence (See definition 

3.1) of different values of n. Figure 3.2 shows the n-sequence for n =1, 2 and 3 
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@ A B C D E F G H I J K L M N O 

index   0      1     2      3     4     5  …                                                         15 

n-Sequence for n=1 

 

@@ @A @B @C @D @E … … … O O 

  index  0          1         2           3          4           5          6 …                               255 

n-Sequence for n=2 

@@@ @@A @@B @@C @@D … … … … O OO 

  index    0               1             2              3              4             5…                           4095 

n-Sequence for n=3 

Figure 3.2: n-sequence for n=1, 2 and 3 

Key generation 

From those above n-sequence dictionary we generate a key of the form < k, (𝑣1, 

𝑣2, 𝑣3, 𝑣4, … )> where k is the number of the n-sequence and v is the index value of the 

corresponding n-sequence dictionary (see Figure 3.2). 

Logical Dictionary 

The dictionary we generate using n-sequence generation is not stored in the physical 

memory. We implement the dictionary using a hash function h(s). The function h() takes a 

string which is member of the n-sequence dictionary as input and returns the corresponding 

index of the dictionary. Hence the dictionary becomes a logical one and does not take any 

physical memory. 

Hash function development  

Forward Hash Function 

Firstly, we assign all the 16 characters (see table 3.3) a value as follows 𝑉0 = @, 𝑉1 =

𝐴, 𝑉2 = 𝐵, 𝑉3 = 𝐶, 𝑉4 = 𝐷, 𝑉5 = 𝐸, 𝑉6 = 𝐹, 𝑉7 = 𝐺, 𝑉8 = 𝐻, 𝑉9 = 𝐼, 𝑉10 = 𝐽, 𝑉11 =

𝐾, 𝑉12 = 𝐿, 𝑉13 = 𝑀, 𝑉14 = 𝑁, 𝑉15 = 𝑂. 

We store 𝑉1, 𝑉2... into the secondary stage and n as a single value in front end where 𝑉1 =

1, 𝑉2 = 2, … , 𝑉𝑖 = 𝑖 ( 1 ≤ 𝑖 ≤ 15) 

The index value for n-sequence dictionary for different values of n is calculated as follows.  
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For n=1,  

  ℎ(𝑠)=𝑉𝑖 + 1 

              If s = “A” then ℎ("𝐴") = 𝑉1+1 = 1+1= 2 [where i = 1] 

For n=2, 

ℎ(𝑠)= (𝑉𝑖 ∗ 16) +  𝑉𝑗 + 1 

              If s = “AM” then ℎ(AM) = (𝑉1 ∗ 16) + 𝑉𝑗 + 1 = (1*16) + 13+1= 30    [where i = 

1 and j = 13] 

For n =3, 

ℎ(𝑠)= (((𝑉𝑖 ∗ 16) +  𝑉𝑗)*16) + 𝑉𝑘 + 1 

If s = “BAG” then ℎ("𝐵𝐴𝐺") = (((𝑉𝑖 ∗ 16) +  𝑉𝑗) *16) + 𝑉𝑘 + 1= (((2*16) + 1) * 16) +7 + 

1= 536 [where i = 2, j = 1 and k = 7] 

Finally we generalize h(s) as  

  ℎ(𝑠)= (((𝑉𝑖 * 16) +𝑉𝑗) * 16 +𝑉𝑘) * 16 +𝑉𝑙)……+1 

Where  

ℎ(𝑠)= a string which is a member of n-sequence dictionary  

𝑉𝑖 = Assigned number of the 1st character 

𝑉𝑗 = Assigned number of the 2nd character 

𝑉𝑘 = Assigned number of the 3rd character 

 𝑉𝑙 = Assigned number of the 4th character, and so on. 

After getting the indexes using the above hash function we represent each index with 1 byte 

by using the Java OutputStreamWriter() function in Java platform which is used to convert 

the written characters to the bytes written to the underlying OutputStream. Here we convert 

the written index to ASCII which defines 1 byte.  

We use the idea of n-Sequence form bit representation hence call the scheme nSmBC (n-

Sequence based m bit Compression). 

Backward hash function  

If the values of the index (i.e., the value of hash function) is known, then the corresponding 

values of the characters can be found by the backward hash function. The procedure is 

described as follows. 
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For n =1, 

ℎ= 𝑉𝑖 + 1 

     𝑌 = 𝑉1 [h-1=𝑌] 

     𝑉1 =  𝑌 mod 16 

For n =2, 

ℎ= (𝑉𝑖 ∗ 16) +  𝑉𝑗 + 1 

        𝑌 = (𝑉1 ∗ 16) +  𝑉2 + 1 [h-1= 𝑌] 

      𝑉2 =  𝑌 mod 16 

       𝑉1 = 𝑌 / 16 

For n =3, 

ℎ= (((𝑉𝑖 ∗ 16) +  𝑉𝑗)*16) + 𝑉𝑘 + 1 

   𝑌 = ((𝑉1 ∗ 16) +  𝑉2)*16) + 𝑉3 + 1 [h-1= 𝑌] 

 𝑉3 = 𝑌 mod 16 

 𝑉1 = [𝑌 /16] / 16 

 𝑉2= [𝑌 /16] mod 16 

Hence the general equations becomes 

 𝑉𝑛  = 𝑌 mod 16 

 𝑉𝑖= [[[𝑌 /16] / 16]/16 …] mod 16  [2 < 𝑖 < (𝑛 − 1) >] 

 𝑉1 = [[[𝑌 / 16] / 16] / 16 …] / 16 
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3.4 Compression and Decompression algorithm  

In this section, the compression and decompression algorithms for nSmBC is briefly 

described in different steps. After the compression and decompression technique, an 

example is provided to show the working procedure of the algorithms. 

3.4.1 Forward Mapping 

Input: A string S to be compressed,  

Output: An encoded compressed string Sc 

Step1: Represent S to S as set representation adding Set tag. 

Step2: Using the look up table, convert the string S by 5 bit stream. Let, in this stage the 

bit stream contains k bits. 

Step3: d=k%4; if (d≠0) add trailing bits to the last set number to make d=0.   

Step4: Store every 4 bit combinations in k. 

Step5: Add 0100 in front of to every 4 bit combination of k to make the binary combination 

only limited to the characters Table 3.3. 

Step6: Divide k by 8 to find the corresponding ASCII characters.  

Step7: Create the logical n-sequence dictionary using forward hash function h() and store 

< n, index>. 

 

Example 1: 

Original Text (Input): “Test Text “ 

Step1: Set Representation: Set4 T Set5 est space Set4 T Set5 ext 

Step2: Decimal Representation: 28 1 29 0 7 1 24 28 1 29 0 22 1  

Step3: 5 bit representation: 11100 00001 11101 00000 00111 00001 11000 11100 00001 

11101 00000 10110 00001 

Step4: After Dividing by 4: 1110 0000 0111 1010 0000 0011 1000 0111 0001 1100 0000 

1111 0100 0001 0110 0000 1111 
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Step5: Using Adding 0010 to every combination: 01001110 01000000 01000111 01001010 

01000000 01000011 01001000 01000111 01000001 01001100 01000000 01001111 

01000100 01000001 01000110 01000000 01001111 

Step6: ASCII Representation :N@GJ@CHGAL@ODAF@O 

Step7: Generate n-Sequence to get the <n, index> (n=4 used here): < 4, (57467, 904, 7184, 

16737, 63422) > 

3.4.2 Summarization of the Compression Algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 3.1: Summarization of the Compression Algorithm 

// Sc is the integer value of the n-sequence 

// S is the normal string 

// Cs is the character set of corresponding index 

// Sb is the normal string binary 

Input: S 

Output:  Sc 

1: for i = 1 to length of S do 

2:     if S[i]= Dictioary then 

3:         Sb = Binary(S[i]) 

4:         len = length of Sb / 4 

5:     end if 

6: while i=0 to len then 

7:      Sb= 0100+ len(0:4)  

8: end loop                              

9: while i=0 to Sb then 

10:      T = Sb/8;   

11:      Cs = T(Ascii) 

12:       i = i + l 

13: end loop                              

14: while i=0 to ch then 

15:       x = Cs/n-Sequence 

16:       for i=0 to value of n-sequence then 

17:              y= Assigned value of the character 

18:              x = (x * 16) + y; x = x + 1;  

19:               Sc= Sc+  x*1 byte; 

20:       end loop  

21: end loop 
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3.4.3 Backward mapping 

Input: Compressed String, Sc  

Output: Uncompressed original string, S  

Step1: Representing the string Sc by its corresponding <n, index> pair using backward 

hash function.  

Step2: From the location of the pair <n, index> find the exact n-sequence character 

combination and store it in Sc. 

Step3: From Sc, find its corresponding binary combination from the ASCII Table (Table 

3.3) and store the resultant binary bits in k. 

Step4: Remove 0100 from every 8 bit binary combinations. 

Step5: From the remaining bits stream, take 5 bits and representing it by the character set 

of the look up table (Table 3.2). 

Step6: Remove the set number to get the original string S. 

 

Example 2:  

Compressed String: <4, (57467, 904, 7184, 16737, 63422 > 

Step1: Corresponding string in n-sequence dictionary: N@GJ@CHGAL@ODAF@O 

Step2: From 8 bit Representation: 01001110 01000000 01000111 01001010 01000000 

01000011 01001000 01000111 01000001 01001100 01000000 01001111 

01000100 01000001 01000110 01000000 01001111 

Step3: Removing 0100 from every 8 bit combination: 1110 0000 0111 1010 0000 0011 

1000 0111 0001 1100 0000 1111 0100 0001 0110 0000 1111 

Step4: From 5 bit representation: 11100 00001 11101 00000 00111 00001 11000 11100 

00001 11101 00000 10110 00001 

Step5: Decimal Number corresponding to 5 bits: 28 1 29 0 7 1 24 28 1 29 0 22 1  

Step6: Corresponding Set Representation: Set4 T Set5 est space Set4 T Set5 ext 

Step7: Original Text: Test Text 
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3.4.4  Summarization of the Decompression Algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 3.2: Summarization of the De-Compression Algorithm 

// Sc is the integer value of the n-sequence 

// S is the normal string 

// Cs is the character set of corresponding index 

// Cb is the binary value of character set 

// Sb is the normal string binary 

// PSet is the previous set value 

Input: Sc 

Output:  S 

1: for i = 1 to length of Sc do 

2:    index=Sc[i] 

3:    Cs = Cs + get character set from index 

4: end loop 

5: Cb = Convert Cs to its corresponding binary 

6: Cb = Discard first 4 bit (0100) from every binary 

7: for i = 1 to length of Cb do 

8:    if  (Cb[i] == Set ) then  

9:         if  (Cb[i] == PSet ) then 

10:             Break loop 

11:        end if 

12:         PSet = Cb[i] 

13:    end if 

14:    else then 
15:           S = S+ PSet + Cb[i] 

16:    end else 

end loop 
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3.5 Conclusion 

This chapter explains the proposed idea briefly. Firstly, it describes the construction of the 

encoding table. Secondly, it explains how n- sequence algorithm can be developed. Finally 

it describes the compression and decompression technique with a particular example to 

show the truthfulness of the proposed algorithm. In the next chapter the theoretical prove of 

the algorithm will be provided. 
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CHAPTER IV  

 

Performance Analysis 

 

 

4.1 Introduction 

In this chapter, the theoretical and experimental analysis of this algorithm is derived. As 

well as, how the efficiency rate will be calculated precisely is also discussed. Firstly, the 

algorithm to calculate the rate of efficiency is derived by using some parameters. Finally, 

after using this algorithm, how the efficiency rate will be variate is discussed briefly.  

Then in the experimental analysis section, it simulates the algorithms for compression ratio, 

compression of file size as described in chapter III. It also provides some applications of 

this algorithm in Database. As well as it will discuss some critical issues regarding 

implementing this technique. 

4.2 Theoretical Analysis 

In this section, the analytical evaluation of the proposed scheme is done. Table 4.1 shows the 

parameters for analytical evaluation. Some parameters are provided as input while others are 

derived from the input parameters. All lengths and sizes are in bits.   

 

TABLE  4. 1 Parameters for  analytical evaluation 

Parameter Description 

N Total number of characters in the input string  

    𝑆1 Size of the input string, 𝑆1 = 𝑁 × 8  bit 

𝑚 Number of bits used to compress the input character using 

lookup table (Table 3.2) 

𝜀 Number of bits required to store Sets for set representation 
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                      η = 
𝑞∗α   

𝑁∗8  
 

                         =  
𝑣 ∗ 𝑞∗α   

𝑛∗ 𝑁∗8  
 

                        = 
𝑆2 ∗ α   

𝛽 ∗𝑛∗ 𝑁∗8  
 

                     =
𝑁∗𝑚+ 𝜀   ∗ α   

𝛽 ∗𝑛∗ 𝑁∗8  
,  [We assume the size of the Sets are negligible 𝜀 ≈ 0] 

                     = 
𝑁∗𝑚∗ α   

𝛽 ∗𝑛∗ 𝑁∗8  
 =  

𝑚∗ α   

𝛽 ∗𝑛∗8  
 

                    =
𝑚∗ 8  

𝛽 ∗𝑛∗8  
,     [α = 1 byte = 8 bit] 

                    η = 
𝑚  

𝛽 ∗𝑛 
 

Using the above equation, we evaluate the trend of η with varying values of n (6 to 15). 

Figure 4.1 shows the evaluated result. From the Figure 4.1 we can say that the performance 

of the proposed nSmBC depends on the value of n i.e. if the length of n-sequence is large the 

performance will be better. The performance also depends on the value of m and . If m is 

β Number  of bits used to create the converted characters of 

Table 3.3 

𝑆2 Size of input string using m bit representation, 𝑆2 = 𝑁 ×

𝑚 +  𝜀  bit 

𝑣 Number of characters generated from 𝑆2 by taking  β bits, 

𝑣 = 
𝑆2

𝛽
 

𝑞 Number  of indices to store, 𝑞 =  
𝑣

𝑛
 

α Size of one index 

𝑆3 Size of q, 𝑆3 = 𝑞 × α (Compressed file size) 

η Compressed ratio,  η = 
𝑆3

𝑆1
 

 Savings of space =(1- η)×100% 
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large then performance will be lower if m is very small then small number of characters will 

be accommodated in the lookup table. If the value of   increases then performance will also 

be increased but when  increase then the no. of characters also increase in Table 3.3.   

 
Figure 4.1   Compression Ratio for different n-Sequence value 

 

4.3  Experimental Analysis 

At that point in the experimental investigation segment, it mimics the algorithms for 

compression ratio, compression of file size as depicted in part III. It likewise gives a few 

utilizations of this algorithm in Database. Just as it will examine some basic issues in regards 

to executing this method.  

 

 

4.3.1  Experimental Setup 

 

The construction of prototype system for efficient compression scheme for large natural text 

dataset are done on a machine having the following specification. The experimental setup 

is visualized in Table 4.2 
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TABLE  4. 2 Experimental Setup 

We have implemented our proposed algorithm in Java NetBeans IDE 8.2 with the parameter 

values shown in Table 4.3. In this Section we present the experimental results. In our 

experiment, we used raw data set collected from Microsoft Research (MSR) Abstractive 

Text Compression Dataset [49]. The details of the dataset can be found in [50]. Table 4.4 

shows the description of the dataset.  

This is a manually-created, multi-reference dataset for abstractive sentence and short 

paragraph compression [50]. The impact of single- and multi-sentence level editing 

operations on human compression quality as found in this corpus. The correlations between 

automatic evaluation metrics and human judgments of meaning preservation and 

grammaticality in the compression task, and analyze the impact of the linguistic units used 

and precision versus recall measures on the quality of the metrics has been explored in it. 

TABLE  4. 3 Parameters for experimental evaluation 

n S1(MB) m   

6-15 0.5,1.05,2.0,3.07,5.03 5 4 1 

 

TABLE  4. 4 Dataset description 

Sl. No. Description 

Dataset 1 Size: .5MB , No. of characters : 514,055 

Dataset 2 Size: 1.05MB , No. of characters : 1,102,371 

Dataset 3 Size: 2.0MB , No. of characters : 2,103,453 

Dataset 4 Size: 3.07 MB , No. of characters : 3,228,053 

Dataset 5 Size: 5.03 MB , No. of characters : 5,283,107 

Parameter Specification 

Processor Intel Core i7 6700 

No. of Processor 1 

Clock Speed 3.40 GHz 

Cache Memory 1406 MB 

RAM 8 GB 

HDD 1.0 TB 

Operating System Windows 10 Pro 64-bit 

Compiler Java 

Compiler Optimization None 
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Figure 4.2 shows the experimental results for compression ratio with varying values of n for 

nSmBC.  It demonstrates that when the value on n increases the value of  decreases. For n 

= 15,   reduces to 0.08 which means the  is 92% as shown in Figure 4.3   

When n increases,  reduces because,  is depends mainly on n, m and . For increasing the 

value of n, more characters can be increased to include to a single index. 

Hence the   will reduce and the  will increase as shown in Figure 4.3.  This is what we 

shown in our analytical evaluation in Section 4.2 (see Figure 4.1). Hence we validate our 

analytical model. 

 
 

Figure 4.2:  Compression Ratio for 

different n-Sequence value 

 
Figure 4.3:  Space savings for different 

n-Sequence value 
 

 

4.3.2 Experimental Test  

The different version of the nSmBC technique i.e. different n-sequence is compared with 

WinZip, WinRAR, Huffman and Lzw algorithm. Actually 2 kind of test is experimented in 

this section comprising the Compression of files and Compression ratio. 

 Compression of files:  Files of different size is applied to all the algorithms and the 

compressed size of the original file after compression is observed. 

 Compression ratio: Files of different size is applied to all the algorithms and the 

compression ratio is observed. 
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4.3.2.1   Compression of files 

We compare our proposed technique with well-known LZW, Huffman, WinZip and WinRar 

techniques. The experimental result is shown in the following Figure 4.4 and Figure 4.5. 

 

 
Figure 4.4: Comparison with 

compressed file size for LZW and 

Huffman 

 
 

Figure 4.5: Comparison with compressed 

file size for WinZip and WinRAR 

 

The nSmBC outperforms Huffman technique for n = 6, 8, 14 and 15. LZW shows good 

results but the nSmBC scheme outperforms LZW for n = 14 and 15.  For all the cases 

Huffman shows worst result. 

 We also compare our technique with two industrial softwares WinZip and WinRAR. Figure 

4.5 shows the comparison with WinZip and WinRAR for compressed file size. The nSmBC 

performs well than WinZip and WinRAR for n = 14 and 15. The WinZip performs well for 

small 𝑆1,  when 𝑆1 increases the nSmBC performs well even for n = 8.   
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4.3.2.2   Compression Ratio 

We compare our proposed technique with well-known WinRar and WinZip Techniques. 

The experimental result is shown in the following Figure 4.7 and Figure 4.8. 

 

 
Figure 4.7: Comparison with 

compression ratio for LZW and Huffman 

technique 

 

 
Figure 4.8: Comparison with compression 

ratio for WinZip and WinRAR 

 

The comparison for   with LZW and Huffman is shown in Figure 4.7. The result for nSmBC 

is shown for n =6, 8, 14 and 15. The Huffman shows poor result among the schemes.  The 

reason behind Huffman technique to be poor is that the data is derived by Huffman from the 

frequency of occurrence of the possible values in the source symbol. So if the size of data 

is quite large then a large number of individual symbols will be created. As a result, it shows 

poor   comparing to others. It’s  ranges from 0.35 to 0.4 leading to  = 60%-65%. The 

result demonstrates that nSmBC provides the best compression ratio. It reaches to  = 0.08 

( = 92% ) for  n = 15. The other values n also provides good performance.  

Figure 4.8 shows the comparison for  with WinZip and WinRAR. The WinRAR shows  

= 0.10 ( = 90%) at initial level. But at the increasing 𝑆1,   degrades to 0.15 ( = 85%). In 

case of WinZip, it also shows same type of values for   as WinRAR at the initial stage but 

not as good as WinRAR. At the increasing 𝑆1, the compression ratio fluctuates between 0.16 

to 2.0 ( = 80-85%). The nSmBC shows better performance and it outperforms WinZip and 

WinRAR for n=14 and 15. Finally, we conclude that the nSmBC outperforms other 

techniques.  
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4.4 Dictionary Size 

If the nSmBc dictionary is not developed logically, we have to store the dictionary in the 

physical memory. So a database must be created for each of the n-sequence value. So a fatal 

flaw might be created by doing this. A graphical representation is shown in Figure 4.10 to 

discuss this fatal flaw. 

 

Figure 4.10   Dictionary size of the Database for different n-Sequence value 

From Figure 4.10, it can be seen that by the increasing value of n-Sequence the dictionary 

size in the database in increasing gradually. And at some point it might touch 100 Gb. So a 

huge space in physical memory can be needed to save this database. By developing this 

nSmBc technique using the logical dictionary without using the physical memory, we can 

save this huge amount of space and time. 

4.5 Applications In Database  

To show the applicability of the nSmBc scheme, we apply the compression scheme in 

database application with the parameter values shown in Table 4.5. 

TABLE  4. 5 Parameters for experimental evaluation 

n S1(MB) m   

6-15 0.112,.310,.594,1.01 6 4 1 
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We compare with the following algorithms: 

1) 6BC  

2) Huffman 

3) LZW 

4) 6BC+Huffman and  

5) 6BC+LZW.  

The comparison is based on the following database operations: 

1. Selection Operation:  

Selection is applied to table of different sizes. 

𝜎𝐶1 =  𝑉1 (𝑇1)  

Where, C1 is the column name and V1 is the value to retrieve.  

 

2. Join Operation: 

 Join is applied to table of different sizes. 

∆𝐶1 = 𝑉1 (𝑇1 ⋈  𝑇2) 

 

3. Selection with Projection (SP) Operation: 

 Selection with Projection (SP) is applied to table of different sizes. 

ᴨ𝐶1, 𝐶2 … 𝐶𝑘 (ᴨ) 

 

4.5.1    Compression Ratio 

Figure 4.11 exhibits the ratio of compression for Selection. Excellent proficiency is 

appeared by Huffman and LZW. An average compression proportion is accommodated by 

6BC strategy. In any case, the huge fact is that on the off chance that after uniting these two 

methodologies with 6BC, it shows awesome viability much superior to 6BC. The purpose 

for this is, the table of Huffman is gotten from assessed likelihood or recurrence of event 

(weight) for every conceivable estimation of the input. Furthermore, what's more In LZW, 

characters series are being supplanted by the single codes. It incorporates each recent 

characters series which consequently is used to establish a strings table. Compression occurs 

during the time of a single code is yield instead of a character series. 
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Figure 4.11  Compression ratio for selection 

Figure 4.12 exhibits the ratio of compression for the join task. In this chart it was  perceptible  

that Huffman and LZW algorithm gives very awing compression proportion. The 6BC  

procedure gives an ordinary compression proportion. Be that as it may, in the wake of  

consolidating Huffman and 6BC improves the exhibition. 

 

Figure 4.12   Compression ratio for Join 

Figure 4.13 exhibits the compression proportion for selection with projection operation. 

In this diagram, the 6BC procedure gives a low compression proportion toward the start of  

the compression. In any case, it furnishes a normal compression as for the expanding  
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information measure which furnishes a similar outcome with other compression procedure  

for the huge informational collection. Likewise consolidating with Huffman and 6BC the  

best execution as same as all the past database activity appears. 

 

Figure 4.13   Compression ratio for Selection with Projection 

 

4.5.2    Compression time:  

Figure 4.14, 4.15 and 4.16 exhibits the compression time for all the above 5 methods for 

selection, join and projection separately. 

 

Figure 4.14   Compression time for selection 

Figure 4.14 exhibits that 6BC exhibits promising performance. 6BC+LZW gives the best 

result. Figure 4.15 and Figure 4.16 provide that 6BC and LZW give noteworthy execution. 
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The reason is, actually 6BC creates packed content commonly littler in size than the original 

content size. Furthermore, that compacted content is furthermore packed by 6BC+Huffman 

and 6BC+LZW methods. So execution provides better performance gradually. 

 

Figure 4.15   Compression time for join 

 

Figure 4.16  Compression time for selection with projection 

4.5.3    Retrieval performance    

The following range key query is executed for the performance of retrieval, 

𝑆𝐸𝐿𝐸𝐶𝑇 ∗  𝐹𝑅𝑂𝑀 𝑇1 𝑊𝐻𝐸𝑅𝐸 

 𝐷𝑒𝑝𝐼𝑑 <  𝑉1 𝐴𝑁𝐷 𝐼𝑑 <  𝑉2 

This range query is applied to a 466 kb size table. The retrieval time of the 5 methods is 

calculated. Figure 4.17 exhibits the performance of retrieval. We see that 6BC method 

provide an average result. Huffman and LZW demonstrates a decent exhibition. 
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6BC+Huffman and 6BC+LZW gives the best outcome. The purpose for this is after 

compacting the original content by 6BC the compact content was very shorter than the first 

content. So during the time of compacting again it by LZW and Huffman, performance 

enhances. 

 

Figure 4.17   Retrieval performance 

In the same way nSmBC can be applied to database. Though it is quite obsevable that  

nSmBC provides far far better result than 6BC so it will provide some best besult for sure. 

4.6 Critical Issue 

 

Figure 4.18   Compression time of nSmBC with the others techniques 

There are some minor critical issue or we can say some minor limitation is available in this 

nSmBC technique. Since we know, Compression techniques are quite time consuming issue. 
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So time is the main critical issue in this algorithm. Figure 4.18 provides the compression 

time of different algorithms. So time is the main critical issue in this algorithm. We use Java 

currentTimeMillis() function to calculate the time of the nSmBC, LZW and Huffman 

method. Since WinZip and WinRAR are industrial techniques so we take their time 

manually. From Figure 9, it shows that nSmBC provides better result than Huffman. Initially 

LZW provides bad result but at the increasing size of the file it will show the similar range 

as nSmBC. But WinZip and WinRAR provides best result. But this time issue can be 

resolved by utilizing this algorithm in high configuration computer. 

4.7 Discussion 

Firstly, this chapter describes the theoretical proof of the compression algorithm and the 

efficiency rate. It also provides some logical calculation of the compression ratio. And also 

the best case as well as the worst case. The experimental result complying with the 

theoretical analysis which is shown in the experimental analysis part.  

In the next section, it shows the experimental result of nSmBC technique. The experimental 

results comply with the theoretical analysis. nSmBC works quite impressively in large file 

size data. It beat the compression ratio of WinZip, WinRAR, LZW and Huffman in a quite 

long margin. Also an application of this algorithm to database operation is also provided.  
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CHAPTER V 

 

       Conclusions 

5.1 Concluding Remarks 

In this thesis, we present a novel method for text compression. The thesis proposes the idea 

on n-sequence and construction logical dictionary. The large dictionary is implemented of 

a hash function. The proposed nSmBC takes 5 bits for each character using a lookup table. 

Analytical and experimental results are presented to show the superiority of the scheme. The 

scheme can be able to compress up to 92% for web based diverse data set. The scheme 

shows superior performance to existing schemes namely LZW, Huffman and also for 

WinZip and WinRAR. The technique can easily be utilized to compress large amount of 

natural language text.  Both the forward and backward mapping algorithms are presented. 

Since the algorithm use the logical dictionary for compression so that a particular text 

pattern retrieval is not possible. This technique can also be utilized to parallel processing 

environment as well as load balancing technique to achieve promising encoding time. We 

believe, the nSmBC is an efficient algorithm for compression that has the potential to 

compete with the existing text compression techniques. 

5.2      Future Scope 

The future direction of this research may be summarized as below: 

 This technique can be further applied to database technology. Compressed dataset can be 

applied to database technology by implementing database operation like Selection, 

Projection, Join and Group by on the dataset. 

 An innovative and efficient software can be developed which can be applied in data 

communication and data storage.  

 It is quite possible by making this technique commercially usable, it can provide excellent 

result in data compression arena. 
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 Dependency in existing WinZip and WinRAR compression can be reduced by using this 

compression technique. 

 By using supercomputer or other high configuration machines, the time issue can be 

easily resolved. 

 The idea can be implemented in parallel and multiprocessor environment easily. 
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