
An Efficient Compression Scheme for Large

Natural Language Text

by

Md. Ashiq Mahmood

Department of Computer Science and Engineering

Khulna University of Engineering & Technology

Khulna 9203, Bangladesh

September 2019

Thesis No: CSER-M-19-09

An Efficient Compression Scheme for Large

Natural Language Text

by

Md. Ashiq Mahmood

Roll No: 1707507

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science & Engineering

Department of Computer Science and Engineering

Khulna University of Engineering & Technology

Khulna 9203, Bangladesh

September 2019

11

Declaration

This is to certify that the thesis work entitled "An Efficient Compression Scheme for Large

Natural Language Text" has been carried out by Md. Ashiq Mahmood in the Department of

Computer Science and Engineering, Khulna University of Engineering & Technology,

Khulna, Bangladesh. The above thesis work or any part of this work has not been submitted

anywhere for the award of any degree or diploma.

�
Signature of Candidate

�
Signature of Supervisor

l. ��()�.\�

Dr. K.M. Azharul Hasan Chairman
Professor, Dept. of CSE (Supervisor)
Khulna University of Engineering & Technology, Khulna

2. AmitoW,/1ft,f3ftJ
Head of the Department Member
Department of CSE
Khulna University of Engineering & Technology, Khulna

3. �tk·
Dr. Pintu Chandra Shill Member
Professor, Dept. of CSE
Khulna University of Engineering & Technology, Khulna

4. � \lj,q.Jq
Dr. Abu Shamim Mohammad Arif Member
Professor, CSE Discipline (External)
Khulna University, Khulna

lll

Approval

BOARD OF EXAMINERS

This is to certify that the thesis work submitted by Md. Ashiq Mahmood entitled " An Efficient

Compression Scheme for Large Natural Language Text" has been approved by the board of

examiners for the partial fulfillment of the requirements for the degree of Master of Science in

Computer Science and Engineering in the Department of Computer Science and Engineering,

Khulna University of Engineering & Technology, Khulna, Bangladesh in September, 2019.

iv

Acknowledgment

All the praise to the almighty Allah, whose blessing and mercy succeeded me to complete

this thesis work fairly. I gratefully acknowledge the valuable suggestions, advice and sincere

co-operation of Dr. K. M. Azharul Hasan, Professor, Department of Computer Science and

Engineering, Khulna University of Engineering & Technology, under whose supervision

this work was carried out. His open-minded way of thinking, encouragement and trust

makes me feel confident to go through different research ideas. From him, I have learned

that scientific endeavor means much more than conceiving nice algorithms and to have a

much broader view at problems from different perspectives. I would like to convey my

heartily ovation to all the faculty members, officials and staffs of the Department of

Computer Science and Engineering as they have always extended their co-operation to

complete this work. I am extremely indebted to the members of my examination committee

for their constructive comments on this manuscript. Last but not the least, I wish to thank

my friends and my family for their constant support.

Author

v

Abstract

Data compression is the route towards adjusting, encoding or changing the bit structure of

information so that it requires less space. Data compression is a decrease in the quantity of

bits expected to demonstrate the data. Compacting data can spare stockpiling limit,

accelerate record exchange, and lessening costs for capacity equipment and system transfer

speed. Data compression covers a huge space of jobs including data correspondence, data

putting away and database improvement. In the same way, Text compression can be as

straightforward as expelling every unneeded character, embedding a solitary recurrent

character to demonstrate a string of rehashed characters and substituting a little piece string

for a habitually happening bit string. The fundamental standard behind compression is to

build up a strategy or convention for utilizing less bits to express the actual data. Character

encoding is fairly identified with data compression which represents a character by a type

of encoding system. In this thesis, an efficient and simple compression algorithm for large

natural text named n-Sequence based m Bit Compression (nSmBC) is proposed which can

able to beat WinZip and WinRAR in terms of compression ratio. WinZip and WinRAR are

two well-known compression techniques used for text compression in the industry. The

scheme provides an efficient encoding algorithm that converts an 8 bit character by 5 bits

utilizing a look up table. The look up table is produced by using Zipf’s distribution which

is a discrete distribution of commonly used characters in different languages. 8 bit characters

are converted to 5 bits by partitioning the characters into 7 sets. After converting the

characters into 5 bit, an n-sequence scheme is developed to logically calculate the location

number of a particular combination of characters. The reverse algorithm to recover the

actual input is further demonstrated. The algorithm is finally compared with the well-known

WinZip, WinRAR, Huffman and LZW techniques. Promising performance is demonstrated

both by theoretical and experimental analysis.

vi

Contents

 Page

No.

Title Page

Declaration

Approval

Acknowledgment

Abstract

Contents

List of Figures

List of Tables

List of Abbreviations

i

ii

iii

iv

v

vi

viii

ix

x

CHAPTER I Introduction 1

 1.1 Introduction

1.2 Problem Statement

1.3 Objectives

1.4 Scope

1.5 Contributions

1.6 Organization of the Thesis

1

2

3

3

3

4

CHAPTER II Literature Review 5

 2.1 Introduction

2.2 Types of Data Compression

 2.2.1 Lossless Data Compression

 2.2.2 Lossy Data Compression

 2.2.3 Substitutional Data Compression

 2.2.4 Statistical Data Compression

 2.2.5 Dictionary-based Data Compression

 2.2.6 Context-based Data Compression

2.3 Well- known Data Compression Techniques

 2.3.1 Run Length Encoding

 2.3.2 Huffman Coding

 2.3.3 Lempel-Ziv-Welch (LZW) Compression

 2.3.4 Arithmetic Encoding

2.4 Industrial Scheme

 2.4.1 WinZip Compression

 2.4.2 WinRAR Compression

 2.4.3 A comparison between WinZip and WinRAR

2.5 Zipf’s Distribution

2.6 Some Other Important Works

2.7 Discussion

5

6

6

 6

 6

 6

 7

 7

 8

 8

 9

 12

 13

14

 14

 15

 15

 16

 19

 21

vii

CHAPTER III Compression Scheme for Large Natural Language Text 22

3.1 Introduction

3.2 Construction of the Lookup table for encoding

3.3 Construction of the n-sequence dictionary

3.4 Compression and Decompression algorithm

3.4.1 Forward Mapping

3.4.2 Summarization of the Compression Algorithm

 3.4.3 Backward Mapping

 3.4.4 Summarization of the Deompression Algorithm

3.5 Conclusion

22

23

26

31

31

32

33

34

35

CHAPTER IV Performance Analysis 36

 4.1 Introduction

4.2 Theoretical Analysis

36

36

 4.3 Experimental Analysis

 4.3.1 Experimental Setup

 4.3.2 Experimental Test

 4.3.2.1 Compression of files

 4.3.2.2 Compression Ratio

4.4 Dictionary Size

4.5 Application In Database

 4.5.1 Compression Ratio

 4.5.2 Compression Time

 4.5.3 Retrieval Performance

4.6 Critical Issue

4.7 Discussion

38

38

40

41

42

43

43

44

46

47

48

49

CHAPTER VI Conclusions 50

 6.1 Concluding Remarks

6.2 Future Scope

References

50

50

 52

viii

LIST OF FIGURES

Figure No. Description Page No.

2.1 Algorithm for Huffman 9

2.2 Huffman Tree 10

2.3 Algorithm for LZW 12

2.2 Zipf’s Distribution 18

3.1 Adding Fixed bit pattern 26

3.2 n-Sequence for n=1, 2 and 3 28

4.1 Compression Ratio for different n-Sequence value 38

4.2 Compression Ratio for different n-Sequence value 40

4.3 Space savings for different n-Sequence value 40

4.4 Compressed file size of nSmBC with LZW and Huffman 41

4.5 Compressed file size of nSmBC with WinZip and WinRAR 41

4.7 Compression Ratio of nSmBC with LZW and Huffman 42

4.8 Compression Ratio of nSmBC with WinZip and WinRAR 42

4.10 Dictionary size of the Database for different n-Sequence 43

4.11 Compression ratio for selection 45

4.12 Compression ratio for join 45

4.13 Compression ratio for selection with projection 46

4.14 Compression time for selection 46

4.15 Compression time for join 47

4.16 Compression time for selection with projection 47

4.17 Retrieval Performance 48

4.18 Compression time of nSmBC with others technique 48

ix

LIST OF TABLES

Table No. Description Page No.

2.1

2.2

2.3

2.4

3.1

3.2

3.3

4.1

4.2

4.3

4.4

4.5

Character Frequency

Code of Huffman

How LZW compress string

Zipf’s distribution

Random Look up table for nSmBC

Optimized Look up table for nSmBC

List of characters used for creating n-sequence algorithm

Parameters for analytical evaluation

Experimental Setup

Parameters for experimental evaluation

Dataset Description

Parameters for experimental evaluation

10

11

13

17

23

24

26

36

39

39

39

43

x

LIST OF ABREVIATIONS

 LZW

 nSmBC

 6BC

Lempel-Ziv-Welch

n-Sequence based m Bit Compression Scheme

6 Bit Compression Technique

1

CHAPTER I

Introduction

1.1 Introduction

Data compression defines a method to represent data or can be called to encode data using

shorter form of bit [1]. The primary purpose of compaction comprises decreasing extra room

needed storing data, diminishing transfer speed necessity so as to transmit it, along these

lines lessening all out expense [2]. Despite the fact that a vast extra room is accessible for

putting away data however it might cross the limit of transmission. Techniques for

compressing data is characterized into two classifications [3]. Lossless technique and Lossy

technique for compression are the 2 classification of data compression. Lossless

compression technique is more often abuse factual repetition so that data of sender's can be

illustrated briefly. Lossless technique for compression is conceivable on the grounds that a

large portion of this present reality data has factual repetition. In terms of lossless

compression system, data misfortune is inadmissible. Actual content must remade through

the packed content [4]. The second compression procedure, called lossy technique for data

compression might conceivable if a small data misfortune is allowed. For this situation,

actual content might not be remade from the packed data because of evacuation of some

excess data during compressing. Compression of data may be utilized progressively

proficient accumulating hybridization with various techniques [5]. Fundamental favorable

position of this kind of method is actually it may pack yield document that might delivered

in the wake of utilizing some compression systems. This demonstrates a superior outcome.

Zipf’s dispersion is utilized in this paper to build the Look up table of characters. It

originated from Zipf's law [6]. Zipf's law can be said to a test law detailed using numerical

insights that insinuates the manner in which that various sorts of data considered in the

physical and sociologies can be approximated with a Zipf’s conveyance. Zipf's law

communicates with the given corpus comprising natural language articulations, recurrence

of a certain word might be then again comparing against its situation by the help of table of

2

recurrence. Thusly the most nonstop word will happen generally twofold as typically as the

second most progressive word, on numerous occasions as routinely as the third most

unending word.

1.2 Problem Statement

Numerous strategies have been proposed in the literature for compressing large natural text

data. These strategies can be additionally grouped into four noteworthy sorts, that is,

substitution, statistical, dictionary, and context-based method [7]. The substitution data

compression procedures supplant a specific longer reiteration of characters with a shorter

one. A system that is a delegate of these strategies is run-length encoding [8]. The statistical

methods more often than not compute the likelihood of characters to create the briefest

normal code length, for example, Shannon-Fano coding [9, 10], Huffman coding [11] and

arithmetic coding [12,13]. The following kind comprises of dictionary based strategies,

which include substitution of a substring of content by a file or a pointer code. They identify

with a situation in the word reference of the substring. Delegates of these methods are LZW

[14], LZ77 [15], and LZ78 [16]. The last kind is context based systems, which include the

utilization of negligible earlier presumptions about the measurements of the content.

Typically, they utilize the setting of the content being encoded and the historical backdrop of

the content to give increasingly proficient compression. Delegates of this sort are Prediction

by Partial Matching (PPM) [17] and Burrow– Wheeler change (BWT) [18].

Most of the techniques mentioned above uses a dictionary in the physical memory. So a huge

amount of space in memory is needed to store this dictionary. Another fact is that all the

techniques available in recent times applies only this 3 techniques including Run length

encoding or Huffman encoding or LZW technique.

In this thesis, we introduced a new idea namely n-sequence based m bit compression Scheme.

In this technique, the dictionary is logically implemented based on a hash function. Because

of the logical implementation of the dictionary, it does not take any physical space in

memory. So a huge space is saved in the physical memory.

3

1.3 Objectives

The main objectives of this thesis are to–

 Develop an efficient encoding algorithm which can work with the natural characters

by converting 8 bit character to 5 bit.

 Construct a powerful compression algorithm which can compress the large natural

dataset to a promising efficiency.

 Propose a decompression algorithm which can decompress the compressed dataset

to the original dataset without any loss of the original dataset.

 Compare the efficiency of proposed technique with traditional and some industrial

techniques to justify the effectiveness of the technique.

1.4 Scope

The important scopes under this thesis are as follows:

 Data can be compressed by using logical calculation without using any third party

software or database.

 Standard dataset is used to compress and uncompress.

 NetBeans platform is used for developing Java desktop applications.

 Java programming language is used to implement the prototype system.

1.5 Contribution

The contribution of this thesis can be summarized as follows:

 A powerful compression technique will be available which can compress any

amount of text by a promising efficiency rate.

 Theoretical analysis is verified with experimental results.

 Providing details of theoretical and experimental analysis for Compression of file

Size, Compression Ratio, with operations on stored data.

4

1.6 Organization of the Thesis

 Chapter I presents the introductory part of the thesis which includes the

introduction, problem statement, objectives, scope and contribution of the thesis.

 Chapter II presents Literature Review that describes some of the traditional and

prominent Data Compression scheme that are already exists. Some of these data

compression methods will be described.

 Chapter III proposes a new scheme for data compression called “An Efficient

Compression Scheme for Natural Language Text”. It also provides an example to

demonstrate how the algorithm actually works.

 Chapter IV illustrates the performance analysis by deriving a theory to find the

efficiency rate. As well as the experimental results of proposed scheme and its

evaluation are discussed which shows the technical soundness of the technique.

 The future direction of work on the proposed model and the conclusive words about

the model are outlined in Chapter V.

5

CHAPTER II

Literature Review

2.1 Introduction

Data compression is useful in the modern computing world and it is generally utilized by

numerous applications [28]. The fundamental standards of data compression are embarked

to accomplish a decrease in document measure by encoding data more proficiently. The vast

majority of the data compression procedures are lossless [29]. This implies the compacted

document will be reestablished precisely to its unique state with no loss of data amid the

decompression procedure. The significance of this is central as the record would be ruined

and unusable should data be lost. Lossless compression algorithms use measurement

displaying methods to decrease redundant data in a document [30]. A portion of the

strategies may incorporate expulsion of dividing characters, speaking to a string of rehashed

characters with a solitary character or supplanting repeating characters with littler piece

arrangements. Another compression classification which is frequently utilized in interactive

media records for music and pictures (for example JPEG documents) and where data is

disposed of is alluded to as "lossy" compression [31]. In this class of data encoding

techniques, inaccurate approximations (or fractional data disposing of) are utilized to speak

to the substance. These strategies are essentially used to lessen data estimate for capacity,

dealing with and transmitting content. At the point when there are a substantial number of

documents included, compression can be a scientifically extreme and tedious procedure

[32].. Another important concept in this thesis is Zipf’s distribution by which the dictionary

was made. So Zipf distribution is also discussed here.

6

2.2 Types of Data Compression

Compression of data is significant to this modern era in view of measuring of the data which

is exchanged inside a specific system. It constructs the exchange within data generally

simple. This part clarifies and distinguishes lossless and lossy technique of compression.

2.2.1 Lossless Data Compression

A Lossless technique [33] for compression is a type of compression which can have the

ability to reconstruct the original data perfectly from the compact data. This might be

separated to lossy technique, which may not empower unmistakable special data changing

from compacted form data. It is utilized in various applications. This type of compaction is

utilized at the time of the fact that first and decoded data must be undefined.

2.2.2 Lossy Data Compression

A lossy technique [34] for compression framework is where packing and unpacking recoups

data might be not exactly equivalent to the first, anyway is "close enough" to be useful all

over. There exists two primary lossy pressure plans:

First one might be the lossy change codecs. Trial of image and noise will be taken, sliced

within little pieces, changed within another reason quantized. The other one might be lossy

perceptive codecs. Past or possibly coming about decompressed data might be used to

foresee the present noise precedent or image layout.

2.2.3 Substitutional Data Compression

Substitutional Data Compression [35] improves the letters in order with super images,

permitting encoding various events of individual images. This technique is important in

circumstances where one image is locally ruling over all the others. It is as yet used to pack

exceptional sorts of data (PC created designs for example), or as an extra handling venture

in increasingly complex compression techniques. A substitutional strategy for the easiest

sort is run-length encoding (RLE) [36].

2.2.4 Statistical Data Compression:

Lossless statistical data compression [37] calculations have produced a ton of enthusiasm in

the course of the most recent fifteen years. Such calculations are regularly consecutive: they

process a data stream from start to finish, gradually developing and refining a model

dependent on data that has been handled, without the need to get to images further upstream

7

than the first unencoded one. Developing a blower along these lines has various significant

points of interest. Initially, all data that the blower uses is accessible to the decoder also, so

there is no compelling reason to yield additional data for the decoder to have the option to

discover how the data are encoded. Furthermore, the size of the record that should be packed

shouldn't be known ahead of time and might be self-assertively enormous, as one may

envision to be the situation for a data channel between two PCs on a system (the

compression serving to improve transmission capacity). A third reason is that it

extraordinarily disentangles the procedure thoughtfully: images from the data source are in

every case either encoded or not encoded, there will never be any relationship between's the

yield and up 'til now unencoded input images. Shannon-Fano coding [38], Huffman coding

[39] and arithmetic coding are the examples of this method.

2.2.5 Dictionary-based Data Compression:

In dictionary compression [40], variable length substrings are replaced by short, possibly

even fixed length codewords. Compression is achieved by replacing long strings with

shorter codewords.

The general scheme is as follows:

• The dictionary D is a collection of strings, often called phrases. For completeness, the

dictionary includes all single symbols.

• The text T is parsed into a sequence of phrases:

 T = T1T2 ...Tz, Ti ∈ D.

The sequence is called a parsing or a factorization of T with respect to D.

• The text is encoded by replacing each phrase Ti with a code that acts as a pointer to the

dictionary.

A dictionary-based method of the simplest sort is LZW [41].

2.2.6 Context-based Data Compression:

Context-based arithmetic coding [42] is a universal compression technique usually applied

to encode multimedia content in combination with other compression methods in order to

achieve high compression ratios. It is performed in two separate phases. The first phase aims

to efficiently estimate the source statistics. The second phase utilizes arithmetic coding to

8

represent the symbols with high probability of the occurrence with fewer bits than the

symbols with low probability of occurrence. Example of this sort is Prediction by Partial

Matching (PPM) [43].

2.3 Well- known Data Compression Techniques

This section explains the basic principles of some data compression techniques

The data compression techniques actually available in modern scenario are:

1. Run Length Encoding (RLE)

2. Huffman Coding

3. LZW Compression

4. Arithmetic Coding.

2.3.1 Run Length Encoding (RLE)

Run-length encoding [44] is a data pressure algorithm that is reinforced by most bitmap

archive positions, for instance, TIFF, BMP, and PCX. RLE is fitting for compacting any sort

of data paying little regard to its data content, anyway the substance of the data will impact

the pressure extent achieved by RLE.

RLE works by diminishing the physical size of a proceeding with arrangement of characters.

This keeping string, called a run, is generally encoded into two bytes. The vital byte addresses

the amount of characters in the run and is known as the run count. Before long, an encoded

run may contain 1 to 128 or 256 characters; the run consider generally contains the amount

of characters short one. The second byte is the estimation of the character in the run, which

is in the extent of 0 to 255, and is known as the run regard.

Uncompressed, a character continue running of 15 A characters would usually require 15

bytes to store:

A comparative string after RLE encoding would require only two bytes.

The 15A code delivered to address the character string is known as a RLE group. Here, the

primary byte, 15, is the run check and contains the amount of redundancies. The second byte,

An, is the run regard and contains the authentic reiterated a motivating force in the run.

AAAAAAAAAAAAAAA

15A

9

Another bundle is made each time the run character changes, or each time the amount of

characters in the run outperforms the most outrageous check. Expect that our 15-character

string by and by contains four differing character runs:

Utilizing run-length encoding this could be compacted into four 2-byte bundles:

Thus, after run-length encoding, the 15-byte string would require only eight bytes of data to

address the string, as opposed to the initial 15 bytes. For this circumstance, run-length

encoding yielded a pressure extent of practically 2 to 1.

2.3.2 Huffman Coding

This Huffman coding is an entropy encoding procedure used for lossless data pressure. It was

made by David A. Huffman while he was a Ph.D. understudy at MIT, and circulated in the

1952 paper "A Method for the Construction of Minimum-Redundancy Codes" [45]. The

methodology in every practical sense starts with the leaf centers containing the probabilities

of the picture they address, and after that another center whose youths are the 2 center points

with most diminutive probability is made, to such a degree, that the new center's probability

is comparable to the total of the children's probability. With the 2 centers solidified into one

center point (consequently not considering them any more), and with the new center being

presently considered, the strategy is reiterated until only a solitary center remains, the

Huffman tree.

Figure 2.1 Algorithm for Huffman

Considering the following short text:

Eerie eyes seen near lake.

AAAAAAbbbXXXXXt

6A3b5X1t

1. Scan text to be compacted and count event all things considered.

2. Sort or organize characters dependent on number of events in text.

3. Build Huffman code tree dependent on organized rundown.

4. Perform a traversal of tree to decide all code words.

5. Scan text again and make new document utilizing the Huffman codes.

10

Step 1: Count up the occurrences of all characters in the text.

Step 2: Find which characters are present: E e r i space y s n a r l k.

TABLE 2. 1 Character Frequency

Character Frequency

 E 9

Space 4

R 2

S 2

N 2

A 2

E 1

I 1

Y 1

L 1

K 1

. 1

Step 3: Build a tree by this steps

• Single node is dequeued in the left of the queue.

• New code words for each character is contained in the tree.

 • Number of characters in text must be equal to the Frequency of root node

Figure 2.2 Huffman Tree

E-1 i-1

Sp-4

e-8

2

y-1 l-1

2

k-1 .-1

2

r-2 s-2

4

n-2 a-2

4

4 6 8

10 16

26

11

Encoding:

 Traverse the tree to obtain new word code

 Moving on to left is a 0 or right is a 1

 When a leaf node is reached code word is completed then.

In the example, the below result will be found:

TABLE 2. 2 Code of Huffman

 Character Code

E 10

Space 011

R 1100

S 1101

N 1110

A 1111

E 0000

I 0001

Y 0010

L 0011

K 0100

. 0101

Let us suppose for word “Eye” code will be

E= 0000, y= 0010, e= 10

So the encoded string is 0000001010

12

2.3.3 Lempel-Ziv-Welch (LZW) Compression

Lempel-Ziv-Welch (LZW) is a data pressure algorithm made by Abraham Lempel, Jacob

Ziv, and Terry Welch [46]. The algorithm is expected to rush to execute anyway isn't

commonly perfect since it performs simply compelled examination of the data. LZW can in

like manner be known as a substitutional or lexicon based encoding algorithm. The algorithm

routinely creates a data word reference (similarly called an understanding table or string

table) of data occurring in an uncompressed data stream. Instances of data (substrings) are

perceived in the data stream and are composed to sections in the word reference.

In case the substring is missing in the word reference, a code articulation is made subject to

the data substance of the substring, and it is secured in the lexicon. The articulation is then

stayed in contact with the pressed yield stream. Exactly when a reoccurrence of a substring

is found in the data, the outflow of the substring recently secured in the lexicon is stayed in

contact with the yield. Since the articulation regard has a physical size that is tinier than the

substring it addresses, data pressure is practiced.

Figure 2.3 Algorithm for LZW

 Input: BABAABAAA

 Output: 66 65 256 257 65 260

1 Start table with character strings which are single

2 M = 1st character

3 Unless finishing the stream of data

4 N = Next character

5 IF M + N is found in the string table

6 M = M + N

7 Else

8 yield M’s Code

9 Adding M+ N to the string table

10 M = N

11 Finish while

12 yield M’s code

13

Example:

Using the LZW algorithm to compress the string

BABAABAAA

TABLE 2. 3 How LZW compress string

ENCODER OUTPUT STRING TABLE

Output code representing codeword string

66 B 256 BA

65 A 257 AB

256 BA 258 BAA

257 AB 259 ABA

65 A 260 AA

260 AA

2.3.4 Arithmetic Encoding

Arithmetic coding [47] is a lossless coding procedure which does not encounter the evil

impacts of the recently referenced hindrances and which will when all is said in done achieve

a higher compression extent than Huffman coding. Arithmetic coding is a run of the mill

calculation used in both lossless and lossy information compression calculations [48]. It is

an entropy encoding methodology, in which the frequently watched pictures are encoded

with less bits than lesser seen pictures. It has a couple of focal points over got frameworks,

for instance, Huffman coding.

Encoding with Floating-Point Math

The term arithmetic coding covers two separate systems: encoding messages and deciphering

them. The hypothetical idea of an arithmetic coding model is that each picture will have its

very own exceptional segment of the number line of real numbers some place in the scope of

0 and 1.

For example, it might be started with an encoder that can encode only a letters arranged by

100 particular characters. In an essential static model, resulting to starting with capital letters,

by then move to the lower case letters. This infers the chief picture, 'A', will guarantee the

number line from 0 to .01, 'B' will have .01 to .02, and so on. With this model, the encoder

can address the single letter 'B' by yielding a floating point number that is under .02 and more

14

important than or proportional to .01. So for example, an arithmetic encoder that expected to

make that single letter could yield .15 and be done.

To encode a progression of pictures incorporates a hardly progressively confounded system.

For the character 'B', that suggests the message is some place in the scope of .01 and .02. The

accompanying character in the message by then further parcels that present range

proportionate to its present duty regarding number line. So some other letter that claims the

completion of the number line, from .99 to 1.0, would change the range from [.01,.02) to

[.0199, .020). After the entire message has been readied, it has the last range, [low,high). The

encoder yields a skimming point number right in the point of convergence of that run.

Decoding With Floating-Point Math

The math in the decoder on a very basic level pivots the math from the encode side. To

decipher a character, the probability model essentially needs to find the character whose

broaden covers the present estimation of the message. Exactly when the decoder initially

starts up with the model estimation of 0.22232425, the model sees that the regard falls

between the break asserted by 'W': [0.22,0.23); so the model returns W.

2.4 Industrial Schemes

Actually two kind of data compression techniques named WinZip and WinRAR are used

for industrial purposes. They are the most popular and widely used file formats to archive

compressed data. They are undoubtedly the undisputed kings of compressed files. While

both use the superfast LZ77 compression algorithm to compress and decompress content

[47], surely one has a little edge over the other, may be in terms of speed and efficiency.

Both are compression algorithms that efficiently compress the files to reduce their size

without affecting the content of the files. While a WinRAR file is an archival file created

with the WinRAR program, Zip file is a common file extension associated with several

programs such as WinZip, WinRAR, and Freebyte Zip.

2.4.1 WinZip Compression

The WinZip file format was actually created by Phil Katz and Gary Conway following a

lawsuit against PKWARE filed by System Enhancement Associates (SEA). The lawsuit

claimed that the archiving products of PKWARE were taken from the SEA’s proprietary

ARC archiving system. However, the lawsuit was dropped followed by a legal settlement

with the SEA. Katz released his first compression program to use the new WinZip file

15

format called PKZIP and subsequently released it into the public domain in 1989. Today,

Zip is a widely used format for lossless data compression and is supported by several

software utilities including the built-in WinZip support provided by Microsoft Windows and

Mac OS X. The best part, WinZip files can be opened with any program that creates WinZip

files.

Like other archive formats, WinZip files are data containers that contain one or more files

together in a compressed or zipped format using WinZip compression. Well, WinZip

archives are capable of more than just compressing files; they can encrypt files (password

protected) and split archives with just a few clicks. Multiple files can be compressed or

zipped using several methods such as LZMA, WavPack, PPMd, BZIP2, DEFLATE, etc.

Each file can be stored separately, so that they can be accessed randomly and because they

are archived individually, it makes it easy to extract them, or add new ones without even

zipping in the entire archive. WinZip archives can also contain additional content which are

not related to the archive thereby making it a self-extracting archive.

2.4.2 WinRAR Compression

WinRAR stands for Roshal Archive Compressed file, which is a proprietary archive file

format named after its Russian-origin creator Eugene Roshal. Like other archives, WinRAR

contains one or more files or folders together. Think of WinRAR as a folder just like a

normal folder containing several programs or files, however, unlike a normal folder on your

hard drive, WinRAR files require third-party software to open and extract the contents of

the archive. It’s a native file format of WinRAR archiver which stores multiple files in the

compressed form only needed to do is unpack its contents to access the files. It uses a higher

compression ratio than regular WinZip compression and incorporates a proprietary

compression algorithm that handles lossless data compression, file spanning, error recovery,

and more. The archives files normally have the standard “.WinRAR” file extension.

2.4.3 A comparison between WinZip and WinRAR

Basics of WinZip and WinRAR

WinZip is an archive file format created by Phil Katz as a standard format for lossless data

compression which incorporates several compression algorithms to compress/decompress

one or more files. WinRAR is a proprietary archive file format developed by a Russian

software engineer Eugene Roshal.

16

Efficiency of WinZip and WinRAR

RAR format can compress a file much better than the same when done with WinZip format,

meaning the rate of compression of RAR is better than that of the WinZip format. Also

WinRAR archived smaller sizes as compared to WinZip archives, which makes WinRAR a

better alternative than WinZip.

Popularity of WinZip and WinRAR

The main advantage of using a WinZip format is its popularity. As WinZip file format was

developed a long time ago, it has a little edge over the WinRAR format and is still the most

widely used archive type, which still accounts for a significant number of archive files on

the internet.

Proprietary Software for WinZip and WinRAR

A third-party software program called WinRAR is required to open and extract the contents

of the WinRAR archive, whereas WinZip is a widely used format supported by various

commercial as well as open source tools, and libraries.

Compression Speed in WinZip and WinRAR

WinZip uses a less complex structured format to store files. It uses the older yet popular

DEFLATE compression algorithm to compress data which is less efficient than the newer

compression methods which are not supported by any operating system by default. WinRAR

uses a compression algorithm which is substantially better and efficient than the DEFLATE

compression method.

Security in WinZip and WinRAR

WinRAR uses a proprietary program called WinRAR archiver to compress/decompress

contents of a file that comes with built-in support for password encryption which is great

for security. However, the default support in Windows and Macintosh operating systems

does not have password protection feature.

2.5 Zipf’s Distribution

Zipf's law is an experimental law planned utilizing scientific measurements. The law is

named after the language specialist George Kingsley Zipf, who initially proposed it [6].

http://www.differencebetween.net/miscellaneous/what-is-the-difference-between-pseudocode-and-algorithm/
http://www.differencebetween.net/technology/the-difference-between-lossy-and-lossless-compression/

17

Zipf's law expresses that given a vast example of words utilized, the recurrence of any word

is conversely corresponding to its position in the recurrence table. So word number n has a

recurrence corresponding to 1/n [27].

Accordingly the most regular word will happen about twice as frequently as the second most

continuous word, multiple times as frequently as the third most successive word, and so forth.

For instance, in one example of words in the English language, the most much of the time

happening word, "the", represents almost 7% of the considerable number of words (69,971

out of marginally more than 1 million). Consistent with Zipf's Law, the second-place word

"of" represents somewhat over 3.5% of words (36,411 events), trailed by "and" (28,852). Just

around 135 words are expected to represent a large portion of the example of words in a vast

sample.

A similar relationship happens in numerous different rankings, disconnected to language, for

example, the populace positions of urban communities in different nations, enterprise sizes,

pay rankings, and so on. The presence of the appropriation in rankings of urban areas by

populace was first seen by Felix Auerbach in 1913.

The Most Common Words in English

Zipf’s law is a curious relation that connects distributions of words and populations of cities

to inverse relations. The American linguist George Kingsley Zipf noticed it when looking at

the relative frequencies of words in a large text, like the book Moby Dick.

Here are the most frequent words in the English language, along with the rough percentages

of how often that word occurs in written texts. For example, the most common word, ‘the’,

appears roughly 6.8% of the time. Of the 92 words in the two paragraphs of the book, he

counted 9 uses of the word ‘the’. That is therefore somewhat above average.

TABLE 2. 4 Zipf’s Distribution

Rank Word Percentage

1 the 6.8

2 of 3.1

4 to 2.7

4 and 2.6

5 in 1.8

18

Zipf saw that the second most normal word 'of' happens about half as regularly as the most

widely recognized word 'the'. While the third most normal word 'to' happens about a third as

regularly as 'the'. Etc. The seventh most normal word 'for' happens around one seventh as

regularly as 'the'. All the more by and large, the recurrence of the nth most regular word is

around 1/n times the recurrence of the most well-known word.

So a graph of the frequencies of the most common words looks roughly like this:

Figure 2.4 Zipf’s Distribution

This distribution, remarkably, is quite stable over many different publications. Furthermore

it turns out that less than 200 words account for more than half of all the written words in

English.

6 is 1.2

7 for 1.0

8 that 0.8

19

2.6 Some Other Important Works

There are some important works on text compression is proposed in recent time. We

summarizes a few of the important works.

Optimal Compressed Sensing and Reconstruction of Unstructured Mesh
Datasets [1]

Compressed detecting (CS) is examined in [1] as an in situ technique to lessen the measure

of the information as it is being created amid a huge scale reenactment. CS works by testing

the information on the computational group inside an elective capacity space, for example,

wavelet bases and after that reproducing back to the first space on representation stages.

While much work has gone into investigating CS on organized datasets, for example, picture

information, we explore its convenience for point mists, for example, unstructured work

datasets frequently found in limited component reproductions. An example strategy is

utilized that shows low lucidness with tree wavelets observed to be appropriate for point

mists. It is recreated utilizing the stagewise symmetrical coordinating interest algorithm that

was improved to encourage mechanized use in clump occupations.

Lightweight natural language text compression [2]

Variations of Huffman codes where words are taken as the source images are at present the

most appealing decisions to pack regular language text databases [2]. Specifically, Tagged

Huffman Code by Moura et al. offers quick direct looking on the packed text and irregular

access capacities, in return for creating around 11% bigger compacted records. End-Tagged

Dense Code and (s, c)- Dense Code, two new semi static measurable techniques for

compressing common language texts. These strategies license more straightforward and

quicker encoding and get preferable compression proportions over Tagged Huffman Code,

while keeping up its quick immediate inquiry and arbitrary access capacities.

A Bit-level Text Compression Scheme Based on the ACW Algorithm [3]

A bit level, lossless, versatile, and asymmetric data compression conspire that depends on

the versatile character word length (ACW(n)) algorithm is proposed in [3]. The proposed

plan improves the compression proportion of the ACW(n) algorithm by isolating the parallel

grouping into various subsequences (s), every one of them fulfilling the condition that the

quantity of decimal qualities (d) of the n-bit length characters is equivalent to or under 256.

20

Evaluate Database Compression Performance and Parallel Backup [4]

This exploration tends to the challenges of the above issues and gives the answer for how to

streamline and improve the procedure for pack the continuous database and execute

reinforcement of the database in different gadgets utilizing parallel way. The proposed

productive calculations gives the answer for pack the constant databases all the more viably

and improve the speed of reinforcement and reestablish tasks [4].

n-Gram-Based Text Compression [19]

A content compression using n-gram word references is proposed in [19] which accumulates

the content corpus of the Vietnamese language from the Internet and amasses five n-gram

dictionaries with very nearly 500,000,000 n-grams, and a test set of 10 assorted content

reports with different sizes to survey.

Efficient 6 bit Encoding Scheme for Printable Characters by table look up [26]

The scheme portray in [26] manages an encoding system by 6 bits for printable characters

utilizing table turn upward. It changes over the 8 bit characters to 6 bits by partitioning the

characters into 5 sets and utilizing them in a solitary table. The area of character is then

utilized remarkably to encode by 6 bits.

Fast text compression using multiple static dictionaries [28]

A quick text compression technique dependent on numerous static word references is build

up in [28]. This algorithm is language subordinate as a result of its static structure; in any

case, it owes its speed to that structure. It performs compression with utilizing most every

now and again utilized outlines and trigrams rather than ASCII codes that are not utilized or

rarely utilized in text documents. In outline coding, at each coding venture the following two

characters are examined to check whether they compare to a chart in the word reference.

Provided that this is true, the relating record in the word reference is encoded; generally just

the principal character is encoded. The coding position is then moved by a couple of

characters as proper. On the off chance that three characters are utilized rather than two, the

coding algorithm is named as trigram coding.

21

Text Database Compression Using Replacement and Bit Reduction [30]

A compression technique which depends on redundancy of words and number framework

hypothesis is proposed in [30]. It utilizes a method wherein as often as possible happening

words are supplanted by extraordinary characters and the altered document is considered as

n-base number framework, where n is the quantity of various characters in the record.

Further, compression process is completed by changing over this n-base number framework

to paired number framework. The principle thought behind utilizing this algorithm is to speak

to the entire data into lower number framework accordingly sparing bits prerequisite

On parsing optimality for dictionary-based text compression [40]

An overview is displayed [40] on the parsing issue for dictionary-based content pressure,

distinguishing discernible consequences of both a hypothetical and pragmatic nature, which

have showed up over the most recent three decades. We pursue the authentic strides of the

Zip conspire indicating how the first ideal parsing issue of finding a parse shaped by the base

number of expressions has been supplanted by the bit-ideal parsing issue where the objective

is to limit the length in bits of the encoded content.

2.7 Discussion

Every compression techniques described in this chapter have some pros and cons. LZW is

still the best data compression technique in term of compression ratio with time. Run length

encoding and arithmetic coding is mainly used for data communication and soft error

purpose. Huffman algorithm is an average algorithm process which has average results.

Though, there are a lot of research has been done on those different compression technique,

but only a few researches have been made on competing with the well-known WinZip or

WinRAR algorithm. Hence the proposed generalized representation scheme nSmBC will

outperform over WinZip and WinRAR scheme. The detail of the proposed scheme is

presented in the next chapter.

22

CHAPTER III

Compression Scheme for Large Natural Language Text

3.1 Introduction

We develop a compression method for natural text using n-sequence dictionaries.

Definition 3.1 (n-Sequence): n-Sequence is a sequence of words where n characters are

arranged side by side. For example, if a character set contains {A,B} then 1 Sequence is

<A,B>, 2 Sequence is <AA,BB,AB,BA>, 3 Sequence is <AAA,BBB,AAB,ABA,……>. It

is the possible all combinations taking n characters from a given character set. Each of the

member in the n-sequence is identified by an index number. If there are k members in an n-

sequence set we index the members from 0 to (k-1). The index of “AB” in the 2-sequence is

2.

The proposed method is a scheme of 5 bit character encoding algorithm that represents a

character by 5 bits rather than 8 bits. The characters we can represent by the decimal values

is shown in Table 3.1 and 3.2. Each of the decimal value is in the range (0-31) which can be

represented by 5 bits. Hence we represent 8 bit characters by 5 bits.

Following are the steps which are used to construct the proposed method:

1) Construction of the Look up table for encoding:

In this section we will construct a Look up table for representing the characters by 5 bit by

randomly distributing the characters. The look up table is optimized by using a Zipf’s

distribution which is a discrete distribution of commonly used characters in different

languages [6].

2) Construction of the n-Sequence dictionary:

A logical n-Sequence dictionary will be constructed in this section which is mathematically

calculated and proved by an algorithm.

23

3) Compression and Decompression Algorithm:

We will describe the compression and decompression algorithm by providing suitable

examples in this section.

3.2 Construction of the Look up table for encoding

Definition 3.2(Set tag): Set tag is defined as a group of characters tagged to a particular

set number. For example, the capital letters, small letters, digits and symbols are tagged to

particular set number as shown in TABLE 3.1 and TABLE 3.2. We call it set tag

representation.

TABLE 3. 1 Random lookup table for nSmBC

Decimal

value

Binary

value

Set- 1 Set- 2 Set- 3 Set- 4 Set- 5 Set- 6 Set- 7

0 00000 অ ণ া Space Y x !

1 00001 আ ত িা A Z y "

2 00010 ই থ া B a z #

3 00011 ঈ দ া C b 1 $

4 00100 উ ধ া D c 2 %

5 00101 ঊ ন া E d 3 &

6 00110 ঋ প ো F e 4 '

7 00111 এ ফ ৈা G f 5 (

8 01000 ঐ ব ো H g 6)

9 01001 ও ভ ো I h 7 *

10 01010 ঔ ম া J i 8 +

11 01011 ক য ৷ K j 9 ,

12 01100 খ র ০ L k 0 -

13 01101 গ ল ১ M l _ .

14 01110 ঘ শ ২ N m ` /

15 01111 ঙ ষ ৩ O n { :

16 10000 চ স ৪ P o | ;

17 10001 ছ হ ৫ Q p } <

18 10010 জ ড় ৬ R q ~ =

29 10011 ঝ ঢ় ৭ S r >

20 10100 ঞ য় ৮ T s ?

21 10101 ট ৎ ৯ U t [

22 10110 ঠ া V u \

23 10111 ড া W v]

24

24 11000 ঢ া X w ^

25 11001 Set- 1

26 11010 Set- 2

27 11011 Set- 3

28 11100 Set- 4

39 11101 Set- 5

30 11110 Set- 6

31 11111 Set- 7

After constructing this table, it was observed that there are some character available in the

English literature that were used so little. Since the n-SmBC algorithm somehow depends

on the set value, so if there happens a rapid change in set, the algorithm might not produce

the desired result. Therefore, to solve this issue, the dictionary is optimized by using a

distribution named Zipf’s [27] which is a discrete distribution of commonly used characters

in different languages.

The table is demonstrated in TABLE 3.2

TABLE 3. 2 Optimized look up table for nSmBC

Decimal

value

Binary

value

Set- 1 Set- 2 Set- 3 Set-

4

Set- 5 Set-

6

Set-

7

 0 00000 অ ণ া E e 1 Q

1 00001 আ ত া T t 2 X

2 00010 ই থ া A a 3 Z

3 00011 এ দ া O o 4 J

4 00100 া ধ ৎ R r 5 ,

5 00101 িা ঘ ঢ় I i 6 ?

6 00110 া প ঐ N n 7 ‘

7 00111 া ফ ঊ S s 8 !

8 01000 ো য় ঔ H h 9 "

9 01001 ো ভ ঈ D d 0 #

10 01010 ো ছ ৷ L l + \

11 01011 ক ঢ ০ C c - ~

12 01100 খ ঞ ১ U u * ^

13 01101 গ ঠ ২ P p / |

14 01110 ন ঙ ৩ M m = $

15 01111 শ ষ ৪ W w (:

16 10000 স চ ৫ F f) ;

17 10001 ম য ৬ G g { _

18 10010 জ ড় ৭ Y y } `

25

29 10011 ব ঝ ৮ B b <

20 10100 র উ ৯ V v >

21 10101 ট ও K k [

22 10110 ল ঋ z x]

23 10111 ড া j . %

24 11000 হ া q space &

25 11001 Set- 1

26 11010 Set- 2

27 11011 Set- 3

28 11100 Set- 4

39 11101 Set- 5

30 11110 Set- 6

31 11111 Set- 7

Our target characters are all the characters of an English standard key board. We also

consider the Bangla characters as well. We divide the characters into 7 sets namely Set-1,

Set-2,…, Set-7. Each of the set contains 25 characters. The characters are placed in a lookup

table as shown in Table 3.2. The entry in Table 3.2 is organized as follows:

1) Characters of the Bangla alphabet are placed in Set-1, Set-2 and Set-3.

2) Characters of the English alphabet are placed in Set-4, Set-5, Set-6 and Set-7. Position

21-24 of Set-3 and 19-24 of Set-7 is empty and can be filled with any missing characters.

3) The rest of the 7 combinations are filled with the 7 sets as shown in table 3.2.

Therefore, the table contains 32 characters (serial from 0 to 31). These 32 (25=32)

combinations can be represented by 5 bits. Within the 32 combinations 25 combinations are

utilized for converting the original 8 bit character to 5 bit and the rest of the 7combinations

are utilized for representation of the sets. Therefore, we can use (25 − 7) × 7 =175

characters in the Table. If we can take 6 bits then there can be (26 − 7) × 7 =399 characters

can be handled. We call it m bit representation of the scheme. In the following we represent

m=5 bits to explain our proposed method. We represent any character using the encoding

scheme (see Table 3.2). We call it set representation. For example, if we have a character

stream “ABCDabcd956” then the set representation is “Set4 ABCDSet5abcdSet6956”.

Since “A” is located in Set4 so start with Set4 followed by “A”, “a” is represented in Set5

we put Set5 before “a” and so on. When a set change occurs, we insert a Set number to

distinguish it with others.

26

The placement of characters in the look up table is optimized using Zipf’s distribution which

is a discrete distribution of commonly used characters in different languages [6]. Zipf's law

is an empirical law formulated using mathematical statistics. It states that given a large

sample of words used, the frequency of any word is inversely proportional to its rank in the

frequency table. So word number n has a frequency proportional to 1/n. Thus the most

frequent word will occur about twice as often as the second most frequent word, three times

as often as the third most frequent word.

We placed the characters in Table 3.2 such that the minimum number of set change occurs

to handle the input string.

3.3 Construction of the n-Sequence Dictionary

After converting the 8 bit characters into 5 bits, we have a bit stream constructed from the

5 bits of each character. For any input text T, we create a bit stream (5 bits for each character)

and from this bit stream we divide it take 4 bits each. We put trailing the last set number to

make it mod 4 equal to zero if the length of the bit stream is not mod 4 equal to zero. From

this 4 bits, we have 24 = 16 different combinations of bits. Since each of the characters is

represented by 8 bits, we add a fixed bit pattern in front of each of the 4 bits. Figure 3.1

shows an example. The fixed bit pattern is 0100.

Figure 3.1: Adding Fixed bit pattern.

After adding fixed 4 bit pattern (0100) we set ASCII value range 64-79. Table 3.3 shows

the characters along with it’s decimal and ASCII values. Hence any of the characters shown

in Table 3.2 becomes a character (@-O) shown in Table 3.3.

TABLE 3. 3 List of characters used for creating n-sequence algorithm

Serial No. Characters Decimal Value Binary value

1 @ 64 01000000

2 A 65 01000001

3 B 66 01000010

4 C 67 01000011

5 D 68 01000100

6 E 69 01000101

7 F 70 01000110

 Fixed

0100

 4-bit from 5 bit stream

0000

27

8 G 71 01000111

9 H 72 01001000

10 I 73 01001001

11 J 74 01001010

12 K 75 01001011

13 L 76 01001100

14 M 77 01001101

15 N 78 01001110

16 O 79 01001111

Example 1:

Original Text: “Test Text “

Set Representation:

Set4 T Set5 est space Set4 T Set5 ext

Decimal Representation:

28 1 29 0 7 1 24 28 1 29 0 22 1

5 bit representation:

11100 00001 11101 00000 00111 00001 11000 11100 00001 11101 00000 10110 00001

After Dividing by 4:

1110 0000 0111 1010 0000 0011 1000 0111 0001 1100 0000 1111 0100 0001 0110 0000

1111

Adding 0100 to every combination:

01001110 01000000 01000111 01001010 01000000 01000011 01001000 01000111

01000001 01001100 01000000 01001111 01000100 01000001 01000110 01000000

01001111

Corresponding ASCII Character:

N@GJ@CHGAL@ODAF@O

Dictionary Construction

Using the characters of Table 3.3, we generate a dictionary of n-sequence (See definition

3.1) of different values of n. Figure 3.2 shows the n-sequence for n =1, 2 and 3

28

@ A B C D E F G H I J K L M N O

index 0 1 2 3 4 5 … 15

n-Sequence for n=1

@@ @A @B @C @D @E … … … O O

 index 0 1 2 3 4 5 6 … 255

n-Sequence for n=2

@@@ @@A @@B @@C @@D … … … … O OO

 index 0 1 2 3 4 5… 4095

n-Sequence for n=3

Figure 3.2: n-sequence for n=1, 2 and 3

Key generation

From those above n-sequence dictionary we generate a key of the form < k, (𝑣1,

𝑣2, 𝑣3, 𝑣4, …)> where k is the number of the n-sequence and v is the index value of the

corresponding n-sequence dictionary (see Figure 3.2).

Logical Dictionary

The dictionary we generate using n-sequence generation is not stored in the physical

memory. We implement the dictionary using a hash function h(s). The function h() takes a

string which is member of the n-sequence dictionary as input and returns the corresponding

index of the dictionary. Hence the dictionary becomes a logical one and does not take any

physical memory.

Hash function development

Forward Hash Function

Firstly, we assign all the 16 characters (see table 3.3) a value as follows 𝑉0 = @, 𝑉1 =

𝐴, 𝑉2 = 𝐵, 𝑉3 = 𝐶, 𝑉4 = 𝐷, 𝑉5 = 𝐸, 𝑉6 = 𝐹, 𝑉7 = 𝐺, 𝑉8 = 𝐻, 𝑉9 = 𝐼, 𝑉10 = 𝐽, 𝑉11 =

𝐾, 𝑉12 = 𝐿, 𝑉13 = 𝑀, 𝑉14 = 𝑁, 𝑉15 = 𝑂.

We store 𝑉1, 𝑉2... into the secondary stage and n as a single value in front end where 𝑉1 =

1, 𝑉2 = 2, … , 𝑉𝑖 = 𝑖 (1 ≤ 𝑖 ≤ 15)

The index value for n-sequence dictionary for different values of n is calculated as follows.

29

For n=1,

 ℎ(𝑠)=𝑉𝑖 + 1

 If s = “A” then ℎ("𝐴") = 𝑉1+1 = 1+1= 2 [where i = 1]

For n=2,

ℎ(𝑠)= (𝑉𝑖 ∗ 16) + 𝑉𝑗 + 1

 If s = “AM” then ℎ(AM) = (𝑉1 ∗ 16) + 𝑉𝑗 + 1 = (1*16) + 13+1= 30 [where i =

1 and j = 13]

For n =3,

ℎ(𝑠)= (((𝑉𝑖 ∗ 16) + 𝑉𝑗)*16) + 𝑉𝑘 + 1

If s = “BAG” then ℎ("𝐵𝐴𝐺") = (((𝑉𝑖 ∗ 16) + 𝑉𝑗) *16) + 𝑉𝑘 + 1= (((2*16) + 1) * 16) +7 +

1= 536 [where i = 2, j = 1 and k = 7]

Finally we generalize h(s) as

 ℎ(𝑠)= (((𝑉𝑖 * 16) +𝑉𝑗) * 16 +𝑉𝑘) * 16 +𝑉𝑙)……+1

Where

ℎ(𝑠)= a string which is a member of n-sequence dictionary

𝑉𝑖 = Assigned number of the 1st character

𝑉𝑗 = Assigned number of the 2nd character

𝑉𝑘 = Assigned number of the 3rd character

 𝑉𝑙 = Assigned number of the 4th character, and so on.

After getting the indexes using the above hash function we represent each index with 1 byte

by using the Java OutputStreamWriter() function in Java platform which is used to convert

the written characters to the bytes written to the underlying OutputStream. Here we convert

the written index to ASCII which defines 1 byte.

We use the idea of n-Sequence form bit representation hence call the scheme nSmBC (n-

Sequence based m bit Compression).

Backward hash function

If the values of the index (i.e., the value of hash function) is known, then the corresponding

values of the characters can be found by the backward hash function. The procedure is

described as follows.

30

For n =1,

ℎ= 𝑉𝑖 + 1

 𝑌 = 𝑉1 [h-1=𝑌]

 𝑉1 = 𝑌 mod 16

For n =2,

ℎ= (𝑉𝑖 ∗ 16) + 𝑉𝑗 + 1

 𝑌 = (𝑉1 ∗ 16) + 𝑉2 + 1 [h-1= 𝑌]

 𝑉2 = 𝑌 mod 16

 𝑉1 = 𝑌 / 16

For n =3,

ℎ= (((𝑉𝑖 ∗ 16) + 𝑉𝑗)*16) + 𝑉𝑘 + 1

 𝑌 = ((𝑉1 ∗ 16) + 𝑉2)*16) + 𝑉3 + 1 [h-1= 𝑌]

 𝑉3 = 𝑌 mod 16

 𝑉1 = [𝑌 /16] / 16

 𝑉2= [𝑌 /16] mod 16

Hence the general equations becomes

 𝑉𝑛 = 𝑌 mod 16

 𝑉𝑖= [[[𝑌 /16] / 16]/16 …] mod 16 [2 < 𝑖 < (𝑛 − 1) >]

 𝑉1 = [[[𝑌 / 16] / 16] / 16 …] / 16

31

3.4 Compression and Decompression algorithm

In this section, the compression and decompression algorithms for nSmBC is briefly

described in different steps. After the compression and decompression technique, an

example is provided to show the working procedure of the algorithms.

3.4.1 Forward Mapping

Input: A string S to be compressed,

Output: An encoded compressed string Sc

Step1: Represent S to S as set representation adding Set tag.

Step2: Using the look up table, convert the string S by 5 bit stream. Let, in this stage the

bit stream contains k bits.

Step3: d=k%4; if (d≠0) add trailing bits to the last set number to make d=0.

Step4: Store every 4 bit combinations in k.

Step5: Add 0100 in front of to every 4 bit combination of k to make the binary combination

only limited to the characters Table 3.3.

Step6: Divide k by 8 to find the corresponding ASCII characters.

Step7: Create the logical n-sequence dictionary using forward hash function h() and store

< n, index>.

Example 1:

Original Text (Input): “Test Text “

Step1: Set Representation: Set4 T Set5 est space Set4 T Set5 ext

Step2: Decimal Representation: 28 1 29 0 7 1 24 28 1 29 0 22 1

Step3: 5 bit representation: 11100 00001 11101 00000 00111 00001 11000 11100 00001

11101 00000 10110 00001

Step4: After Dividing by 4: 1110 0000 0111 1010 0000 0011 1000 0111 0001 1100 0000

1111 0100 0001 0110 0000 1111

32

Step5: Using Adding 0010 to every combination: 01001110 01000000 01000111 01001010

01000000 01000011 01001000 01000111 01000001 01001100 01000000 01001111

01000100 01000001 01000110 01000000 01001111

Step6: ASCII Representation :N@GJ@CHGAL@ODAF@O

Step7: Generate n-Sequence to get the <n, index> (n=4 used here): < 4, (57467, 904, 7184,

16737, 63422) >

3.4.2 Summarization of the Compression Algorithm

Algorithm 3.1: Summarization of the Compression Algorithm

// Sc is the integer value of the n-sequence

// S is the normal string

// Cs is the character set of corresponding index

// Sb is the normal string binary

Input: S

Output: Sc

1: for i = 1 to length of S do

2: if S[i]= Dictioary then

3: Sb = Binary(S[i])

4: len = length of Sb / 4

5: end if

6: while i=0 to len then

7: Sb= 0100+ len(0:4)

8: end loop

9: while i=0 to Sb then

10: T = Sb/8;

11: Cs = T(Ascii)

12: i = i + l

13: end loop

14: while i=0 to ch then

15: x = Cs/n-Sequence

16: for i=0 to value of n-sequence then

17: y= Assigned value of the character

18: x = (x * 16) + y; x = x + 1;

19: Sc= Sc+ x*1 byte;

20: end loop

21: end loop

33

3.4.3 Backward mapping

Input: Compressed String, Sc

Output: Uncompressed original string, S

Step1: Representing the string Sc by its corresponding <n, index> pair using backward

hash function.

Step2: From the location of the pair <n, index> find the exact n-sequence character

combination and store it in Sc.

Step3: From Sc, find its corresponding binary combination from the ASCII Table (Table

3.3) and store the resultant binary bits in k.

Step4: Remove 0100 from every 8 bit binary combinations.

Step5: From the remaining bits stream, take 5 bits and representing it by the character set

of the look up table (Table 3.2).

Step6: Remove the set number to get the original string S.

Example 2:

Compressed String: <4, (57467, 904, 7184, 16737, 63422 >

Step1: Corresponding string in n-sequence dictionary: N@GJ@CHGAL@ODAF@O

Step2: From 8 bit Representation: 01001110 01000000 01000111 01001010 01000000

01000011 01001000 01000111 01000001 01001100 01000000 01001111

01000100 01000001 01000110 01000000 01001111

Step3: Removing 0100 from every 8 bit combination: 1110 0000 0111 1010 0000 0011

1000 0111 0001 1100 0000 1111 0100 0001 0110 0000 1111

Step4: From 5 bit representation: 11100 00001 11101 00000 00111 00001 11000 11100

00001 11101 00000 10110 00001

Step5: Decimal Number corresponding to 5 bits: 28 1 29 0 7 1 24 28 1 29 0 22 1

Step6: Corresponding Set Representation: Set4 T Set5 est space Set4 T Set5 ext

Step7: Original Text: Test Text

34

3.4.4 Summarization of the Decompression Algorithm

Algorithm 3.2: Summarization of the De-Compression Algorithm

// Sc is the integer value of the n-sequence

// S is the normal string

// Cs is the character set of corresponding index

// Cb is the binary value of character set

// Sb is the normal string binary

// PSet is the previous set value

Input: Sc

Output: S

1: for i = 1 to length of Sc do

2: index=Sc[i]

3: Cs = Cs + get character set from index

4: end loop

5: Cb = Convert Cs to its corresponding binary

6: Cb = Discard first 4 bit (0100) from every binary

7: for i = 1 to length of Cb do

8: if (Cb[i] == Set) then

9: if (Cb[i] == PSet) then

10: Break loop

11: end if

12: PSet = Cb[i]

13: end if

14: else then
15: S = S+ PSet + Cb[i]

16: end else

end loop

35

3.5 Conclusion

This chapter explains the proposed idea briefly. Firstly, it describes the construction of the

encoding table. Secondly, it explains how n- sequence algorithm can be developed. Finally

it describes the compression and decompression technique with a particular example to

show the truthfulness of the proposed algorithm. In the next chapter the theoretical prove of

the algorithm will be provided.

36

CHAPTER IV

Performance Analysis

4.1 Introduction

In this chapter, the theoretical and experimental analysis of this algorithm is derived. As

well as, how the efficiency rate will be calculated precisely is also discussed. Firstly, the

algorithm to calculate the rate of efficiency is derived by using some parameters. Finally,

after using this algorithm, how the efficiency rate will be variate is discussed briefly.

Then in the experimental analysis section, it simulates the algorithms for compression ratio,

compression of file size as described in chapter III. It also provides some applications of

this algorithm in Database. As well as it will discuss some critical issues regarding

implementing this technique.

4.2 Theoretical Analysis

In this section, the analytical evaluation of the proposed scheme is done. Table 4.1 shows the

parameters for analytical evaluation. Some parameters are provided as input while others are

derived from the input parameters. All lengths and sizes are in bits.

TABLE 4. 1 Parameters for analytical evaluation

Parameter Description

N Total number of characters in the input string

 𝑆1 Size of the input string, 𝑆1 = 𝑁 × 8 bit

𝑚 Number of bits used to compress the input character using

lookup table (Table 3.2)

𝜀 Number of bits required to store Sets for set representation

37

 η =
𝑞∗α

𝑁∗8

 =
𝑣 ∗ 𝑞∗α

𝑛∗ 𝑁∗8

 =
𝑆2 ∗ α

𝛽 ∗𝑛∗ 𝑁∗8

 =
𝑁∗𝑚+ 𝜀 ∗ α

𝛽 ∗𝑛∗ 𝑁∗8
, [We assume the size of the Sets are negligible 𝜀 ≈ 0]

 =
𝑁∗𝑚∗ α

𝛽 ∗𝑛∗ 𝑁∗8
 =

𝑚∗ α

𝛽 ∗𝑛∗8

 =
𝑚∗ 8

𝛽 ∗𝑛∗8
, [α = 1 byte = 8 bit]

 η =
𝑚

𝛽 ∗𝑛

Using the above equation, we evaluate the trend of η with varying values of n (6 to 15).

Figure 4.1 shows the evaluated result. From the Figure 4.1 we can say that the performance

of the proposed nSmBC depends on the value of n i.e. if the length of n-sequence is large the

performance will be better. The performance also depends on the value of m and . If m is

β Number of bits used to create the converted characters of

Table 3.3

𝑆2 Size of input string using m bit representation, 𝑆2 = 𝑁 ×

𝑚 + 𝜀 bit

𝑣 Number of characters generated from 𝑆2 by taking β bits,

𝑣 =
𝑆2

𝛽

𝑞 Number of indices to store, 𝑞 =
𝑣

𝑛

α Size of one index

𝑆3 Size of q, 𝑆3 = 𝑞 × α (Compressed file size)

η Compressed ratio, η =
𝑆3

𝑆1

 Savings of space =(1- η)×100%

38

large then performance will be lower if m is very small then small number of characters will

be accommodated in the lookup table. If the value of  increases then performance will also

be increased but when  increase then the no. of characters also increase in Table 3.3.

Figure 4.1 Compression Ratio for different n-Sequence value

4.3 Experimental Analysis

At that point in the experimental investigation segment, it mimics the algorithms for

compression ratio, compression of file size as depicted in part III. It likewise gives a few

utilizations of this algorithm in Database. Just as it will examine some basic issues in regards

to executing this method.

4.3.1 Experimental Setup

The construction of prototype system for efficient compression scheme for large natural text

dataset are done on a machine having the following specification. The experimental setup

is visualized in Table 4.2

39

TABLE 4. 2 Experimental Setup

We have implemented our proposed algorithm in Java NetBeans IDE 8.2 with the parameter

values shown in Table 4.3. In this Section we present the experimental results. In our

experiment, we used raw data set collected from Microsoft Research (MSR) Abstractive

Text Compression Dataset [49]. The details of the dataset can be found in [50]. Table 4.4

shows the description of the dataset.

This is a manually-created, multi-reference dataset for abstractive sentence and short

paragraph compression [50]. The impact of single- and multi-sentence level editing

operations on human compression quality as found in this corpus. The correlations between

automatic evaluation metrics and human judgments of meaning preservation and

grammaticality in the compression task, and analyze the impact of the linguistic units used

and precision versus recall measures on the quality of the metrics has been explored in it.

TABLE 4. 3 Parameters for experimental evaluation

n S1(MB) m  

6-15 0.5,1.05,2.0,3.07,5.03 5 4 1

TABLE 4. 4 Dataset description

Sl. No. Description

Dataset 1 Size: .5MB , No. of characters : 514,055

Dataset 2 Size: 1.05MB , No. of characters : 1,102,371

Dataset 3 Size: 2.0MB , No. of characters : 2,103,453

Dataset 4 Size: 3.07 MB , No. of characters : 3,228,053

Dataset 5 Size: 5.03 MB , No. of characters : 5,283,107

Parameter Specification

Processor Intel Core i7 6700

No. of Processor 1

Clock Speed 3.40 GHz

Cache Memory 1406 MB

RAM 8 GB

HDD 1.0 TB

Operating System Windows 10 Pro 64-bit

Compiler Java

Compiler Optimization None

40

Figure 4.2 shows the experimental results for compression ratio with varying values of n for

nSmBC. It demonstrates that when the value on n increases the value of  decreases. For n

= 15,  reduces to 0.08 which means the  is 92% as shown in Figure 4.3

When n increases,  reduces because,  is depends mainly on n, m and . For increasing the

value of n, more characters can be increased to include to a single index.

Hence the  will reduce and the  will increase as shown in Figure 4.3. This is what we

shown in our analytical evaluation in Section 4.2 (see Figure 4.1). Hence we validate our

analytical model.

Figure 4.2: Compression Ratio for

different n-Sequence value

Figure 4.3: Space savings for different

n-Sequence value

4.3.2 Experimental Test

The different version of the nSmBC technique i.e. different n-sequence is compared with

WinZip, WinRAR, Huffman and Lzw algorithm. Actually 2 kind of test is experimented in

this section comprising the Compression of files and Compression ratio.

 Compression of files: Files of different size is applied to all the algorithms and the

compressed size of the original file after compression is observed.

 Compression ratio: Files of different size is applied to all the algorithms and the

compression ratio is observed.

41

4.3.2.1 Compression of files

We compare our proposed technique with well-known LZW, Huffman, WinZip and WinRar

techniques. The experimental result is shown in the following Figure 4.4 and Figure 4.5.

Figure 4.4: Comparison with

compressed file size for LZW and

Huffman

Figure 4.5: Comparison with compressed

file size for WinZip and WinRAR

The nSmBC outperforms Huffman technique for n = 6, 8, 14 and 15. LZW shows good

results but the nSmBC scheme outperforms LZW for n = 14 and 15. For all the cases

Huffman shows worst result.

 We also compare our technique with two industrial softwares WinZip and WinRAR. Figure

4.5 shows the comparison with WinZip and WinRAR for compressed file size. The nSmBC

performs well than WinZip and WinRAR for n = 14 and 15. The WinZip performs well for

small 𝑆1, when 𝑆1 increases the nSmBC performs well even for n = 8.

42

4.3.2.2 Compression Ratio

We compare our proposed technique with well-known WinRar and WinZip Techniques.

The experimental result is shown in the following Figure 4.7 and Figure 4.8.

Figure 4.7: Comparison with

compression ratio for LZW and Huffman

technique

Figure 4.8: Comparison with compression

ratio for WinZip and WinRAR

The comparison for  with LZW and Huffman is shown in Figure 4.7. The result for nSmBC

is shown for n =6, 8, 14 and 15. The Huffman shows poor result among the schemes. The

reason behind Huffman technique to be poor is that the data is derived by Huffman from the

frequency of occurrence of the possible values in the source symbol. So if the size of data

is quite large then a large number of individual symbols will be created. As a result, it shows

poor  comparing to others. It’s  ranges from 0.35 to 0.4 leading to  = 60%-65%. The

result demonstrates that nSmBC provides the best compression ratio. It reaches to  = 0.08

( = 92%) for n = 15. The other values n also provides good performance.

Figure 4.8 shows the comparison for  with WinZip and WinRAR. The WinRAR shows 

= 0.10 ( = 90%) at initial level. But at the increasing 𝑆1,  degrades to 0.15 ( = 85%). In

case of WinZip, it also shows same type of values for  as WinRAR at the initial stage but

not as good as WinRAR. At the increasing 𝑆1, the compression ratio fluctuates between 0.16

to 2.0 ( = 80-85%). The nSmBC shows better performance and it outperforms WinZip and

WinRAR for n=14 and 15. Finally, we conclude that the nSmBC outperforms other

techniques.

43

4.4 Dictionary Size

If the nSmBc dictionary is not developed logically, we have to store the dictionary in the

physical memory. So a database must be created for each of the n-sequence value. So a fatal

flaw might be created by doing this. A graphical representation is shown in Figure 4.10 to

discuss this fatal flaw.

Figure 4.10 Dictionary size of the Database for different n-Sequence value

From Figure 4.10, it can be seen that by the increasing value of n-Sequence the dictionary

size in the database in increasing gradually. And at some point it might touch 100 Gb. So a

huge space in physical memory can be needed to save this database. By developing this

nSmBc technique using the logical dictionary without using the physical memory, we can

save this huge amount of space and time.

4.5 Applications In Database

To show the applicability of the nSmBc scheme, we apply the compression scheme in

database application with the parameter values shown in Table 4.5.

TABLE 4. 5 Parameters for experimental evaluation

n S1(MB) m  

6-15 0.112,.310,.594,1.01 6 4 1

44

We compare with the following algorithms:

1) 6BC

2) Huffman

3) LZW

4) 6BC+Huffman and

5) 6BC+LZW.

The comparison is based on the following database operations:

1. Selection Operation:

Selection is applied to table of different sizes.

𝜎𝐶1 = 𝑉1 (𝑇1)

Where, C1 is the column name and V1 is the value to retrieve.

2. Join Operation:

 Join is applied to table of different sizes.

∆𝐶1 = 𝑉1 (𝑇1 ⋈ 𝑇2)

3. Selection with Projection (SP) Operation:

 Selection with Projection (SP) is applied to table of different sizes.

ᴨ𝐶1, 𝐶2 … 𝐶𝑘 (ᴨ)

4.5.1 Compression Ratio

Figure 4.11 exhibits the ratio of compression for Selection. Excellent proficiency is

appeared by Huffman and LZW. An average compression proportion is accommodated by

6BC strategy. In any case, the huge fact is that on the off chance that after uniting these two

methodologies with 6BC, it shows awesome viability much superior to 6BC. The purpose

for this is, the table of Huffman is gotten from assessed likelihood or recurrence of event

(weight) for every conceivable estimation of the input. Furthermore, what's more In LZW,

characters series are being supplanted by the single codes. It incorporates each recent

characters series which consequently is used to establish a strings table. Compression occurs

during the time of a single code is yield instead of a character series.

45

Figure 4.11 Compression ratio for selection

Figure 4.12 exhibits the ratio of compression for the join task. In this chart it was perceptible

that Huffman and LZW algorithm gives very awing compression proportion. The 6BC

procedure gives an ordinary compression proportion. Be that as it may, in the wake of

consolidating Huffman and 6BC improves the exhibition.

Figure 4.12 Compression ratio for Join

Figure 4.13 exhibits the compression proportion for selection with projection operation.

In this diagram, the 6BC procedure gives a low compression proportion toward the start of

the compression. In any case, it furnishes a normal compression as for the expanding

46

information measure which furnishes a similar outcome with other compression procedure

for the huge informational collection. Likewise consolidating with Huffman and 6BC the

best execution as same as all the past database activity appears.

Figure 4.13 Compression ratio for Selection with Projection

4.5.2 Compression time:

Figure 4.14, 4.15 and 4.16 exhibits the compression time for all the above 5 methods for

selection, join and projection separately.

Figure 4.14 Compression time for selection

Figure 4.14 exhibits that 6BC exhibits promising performance. 6BC+LZW gives the best

result. Figure 4.15 and Figure 4.16 provide that 6BC and LZW give noteworthy execution.

47

The reason is, actually 6BC creates packed content commonly littler in size than the original

content size. Furthermore, that compacted content is furthermore packed by 6BC+Huffman

and 6BC+LZW methods. So execution provides better performance gradually.

Figure 4.15 Compression time for join

Figure 4.16 Compression time for selection with projection

4.5.3 Retrieval performance

The following range key query is executed for the performance of retrieval,

𝑆𝐸𝐿𝐸𝐶𝑇 ∗ 𝐹𝑅𝑂𝑀 𝑇1 𝑊𝐻𝐸𝑅𝐸

 𝐷𝑒𝑝𝐼𝑑 < 𝑉1 𝐴𝑁𝐷 𝐼𝑑 < 𝑉2

This range query is applied to a 466 kb size table. The retrieval time of the 5 methods is

calculated. Figure 4.17 exhibits the performance of retrieval. We see that 6BC method

provide an average result. Huffman and LZW demonstrates a decent exhibition.

48

6BC+Huffman and 6BC+LZW gives the best outcome. The purpose for this is after

compacting the original content by 6BC the compact content was very shorter than the first

content. So during the time of compacting again it by LZW and Huffman, performance

enhances.

Figure 4.17 Retrieval performance

In the same way nSmBC can be applied to database. Though it is quite obsevable that

nSmBC provides far far better result than 6BC so it will provide some best besult for sure.

4.6 Critical Issue

Figure 4.18 Compression time of nSmBC with the others techniques

There are some minor critical issue or we can say some minor limitation is available in this

nSmBC technique. Since we know, Compression techniques are quite time consuming issue.

49

So time is the main critical issue in this algorithm. Figure 4.18 provides the compression

time of different algorithms. So time is the main critical issue in this algorithm. We use Java

currentTimeMillis() function to calculate the time of the nSmBC, LZW and Huffman

method. Since WinZip and WinRAR are industrial techniques so we take their time

manually. From Figure 9, it shows that nSmBC provides better result than Huffman. Initially

LZW provides bad result but at the increasing size of the file it will show the similar range

as nSmBC. But WinZip and WinRAR provides best result. But this time issue can be

resolved by utilizing this algorithm in high configuration computer.

4.7 Discussion

Firstly, this chapter describes the theoretical proof of the compression algorithm and the

efficiency rate. It also provides some logical calculation of the compression ratio. And also

the best case as well as the worst case. The experimental result complying with the

theoretical analysis which is shown in the experimental analysis part.

In the next section, it shows the experimental result of nSmBC technique. The experimental

results comply with the theoretical analysis. nSmBC works quite impressively in large file

size data. It beat the compression ratio of WinZip, WinRAR, LZW and Huffman in a quite

long margin. Also an application of this algorithm to database operation is also provided.

50

CHAPTER V

 Conclusions

5.1 Concluding Remarks

In this thesis, we present a novel method for text compression. The thesis proposes the idea

on n-sequence and construction logical dictionary. The large dictionary is implemented of

a hash function. The proposed nSmBC takes 5 bits for each character using a lookup table.

Analytical and experimental results are presented to show the superiority of the scheme. The

scheme can be able to compress up to 92% for web based diverse data set. The scheme

shows superior performance to existing schemes namely LZW, Huffman and also for

WinZip and WinRAR. The technique can easily be utilized to compress large amount of

natural language text. Both the forward and backward mapping algorithms are presented.

Since the algorithm use the logical dictionary for compression so that a particular text

pattern retrieval is not possible. This technique can also be utilized to parallel processing

environment as well as load balancing technique to achieve promising encoding time. We

believe, the nSmBC is an efficient algorithm for compression that has the potential to

compete with the existing text compression techniques.

5.2 Future Scope

The future direction of this research may be summarized as below:

 This technique can be further applied to database technology. Compressed dataset can be

applied to database technology by implementing database operation like Selection,

Projection, Join and Group by on the dataset.

 An innovative and efficient software can be developed which can be applied in data

communication and data storage.

 It is quite possible by making this technique commercially usable, it can provide excellent

result in data compression arena.

51

 Dependency in existing WinZip and WinRAR compression can be reduced by using this

compression technique.

 By using supercomputer or other high configuration machines, the time issue can be

easily resolved.

 The idea can be implemented in parallel and multiprocessor environment easily.

52

REFERENCES

[1] S. Maher, N. D. Fabian, D. M. Hensinger, J. Lee, E. M. Allendorf, A. Bhagatwala,

M. L. Blaylock, J. H. Chen, J. A. Templeton, and I. Tezaur. "Optimal Compressed

Sensing and Reconstruction of Unstructured Mesh Datasets."Data Science and

Engineering, vol. 3, no. 1, pp. 1-23, 2018.

[2] Nieves, R. Brisaboa, A. Fariña, and G. Navarro “Lightweight natural language text

compression”, Information retrieval, vol. 10, no. 1, pp. 1-33, 2007.

[3] H. A. Bahadili, and S. M. Hussain, “A Bit-level Text Compression Scheme Based on

the ACW Algorithm,” International Journal of Automation and Computing, vol. 7,

no. 1, pp.123-131, 2010.

[4] M. Murugesan and T. Ravichandran, “Evaluate Database Compression Performance

and Parallel Backup,” International Journal of Database Management Systems

(IJDMS), vol. 5, no. 4, pp. 17-25, 2013.

[5] S. S. Sundaram and R. Lourdusamy, “A Comparative Study Of Text Compression

Algorithms,” International Journal of Wisdom Based Computing, vol. 1, no. 3, pp.

68-76, 2011.

[6] W. Li “Random Texts Exhibit Zipfs-Law-Like Word”, IEEE Transactions On

Information theory, vol. 38, No. 6, November 1992.

[7] V. H. Nguyen, H. T. Nguyen, H. N. Duong, and V. Snasel, “Trigram-based

Vietnamese text compression,” in Recent Developments in Intelligent Information

and Database Systems, vol. 642 of Studies in Computational Intelligence, pp. 297–

307, Springer, 2016.

[8] B. Žalik and N. oLukač, “An Chain code lossless compression using move-to-front

transform and adaptive run-length encoding,” Signal Processing: Image

Communication” vol. 29, no. 1, pp. 96–106, Elsevier, 2014.

[9] C.E. Shannon, “A mathematical theory of communication,” The Bell System

Technical Journal, vol. 27, no. 3, pp. 379–423, 1948.

[10] R.M. Fano, “Transmission of information” Tech. Rep., Massachusetts Institute of

Technology, Research Laboratory of Electronics, Cambridge, Mass, USA, 1949.

53

[11] J. Wu, Y. Wang, L. Ding, and X. Liao, “Improving performance of network covert

timing channel through Huffman coding,” Mathematical and Computer Modeling”

vol. 25, no. 1-2, pp. 69–79, Elsevier, 2012.

[12] G. Howard and J. S. Vitter, “Arithmetic coding for data compression,” Proceedings

of the IEEE, vol. 82, no. 6, pp. 857–865, 1994.

[13] I. H. Witten, R. M. Neal, and J. G. Cleary, “Arithmetic coding for data compression,”

Communications of the ACM, vol. 30, no. 6, pp. 520–540, 1987.

[14] T. A. Welch, “Technique for high-performance data compression,” IEEE Computer,

vol. 17, no. 6, pp. 8–19, 1984.

[15] J. T. Gagie, P. Gawrychowski, J. Kärkkäinen, Y. Nekrich, and Simon J. Puglisi,

“LZ77-Based Self-indexing with Faster Pattern Matching,” A. Pardo and A. Viola

(Eds.): LATIN 2014, LNCS 8392, pp. 731–742, Springer-Verlag Berlin Heidelberg

2014.

[16] H. Bannai, S. Inenaga, and M. Takeda, “Efficient LZ78 Factorization of Grammar

Compressed Text,” L Caldr´on-Benavides et al. (Eds.): SPIRE 2012, LNCS 7608, pp.

86––98, Springer-Verlag Berlin Heidelberg 2012.

[17] J. Cleary and I. Witten, “Data compression using adaptive coding and partial string

matching,” IEEE Transactions on Communications, vol. 32, no. 4, pp. 396–402,

1984.

[18] M. Burrows and D. Wheeler, “A block-sorting lossless data compression algorithm,”

Digital SRC Research Report, 1994.

[19] Nguyen, H. T. Nguyen, H. N. Duong and V. Snasel ” n-Gram-Based Text

Compression, ” Computational Intelligence and Neuroscience, vol. 2016, no.

9483646, pp. 1-11, 2016.

[20] Mishra, S. Prakash, Col G. Singh, and R. Prasad. "A review on compressed pattern

matching." Perspectives in Science, vol. 8, pp. 727-729.

[21] Anisimov, Anatoly V., and Igor O. Zavadskyi. "Variable length prefix (Δ, k)-codes."

In 2015 IEEE International Black Sea Conference on Communications and

Networking (BlackSeaCom), pp. 43-47, 2015.

[22] Peng, Min, W. Gao, H. Wang, Y. Zhang, J. Huang, Q. Xie, G. Hu, and G. Tian.

"Parallelization of massive text stream compression based on compressed

sensing." ACM Transactions on Information Systems (TOIS), vol. 36, no. 2, pp. 17,

2017.

54

[23] J. Dvorsk, J. Pokorn, and J. Sna´sel, “Word-based compression methods and indexing

for text retrieval systems,” in Proceedings of the 3rd East European Conference on

Advances in Databases and Information Systems (ADBIS ’99), pp. 75–84, Maribor,

Slovenia, 1999.

[24] B.A. Al-hmeary, “Role of Run Length Encoding on Increasing Huffman Effect in

Text Compression”, Journal of Kerbala University, vol. 6, no.2, 2008.

[25] B. Stankić, D. Kojić, M. Cvetanović, M. Dukić, S. Stojanović, and Zaharije, “ERLE:

Embedded run length image encoding,” 2014 22nd Telecommunications Forum

Telfor (TELFOR), pp. 975-978, 2014.

[26] A. Mahmood, T. Latif, and K. M. A. Hasan, “An Efficient 6 bit Encoding Scheme for

Printable Characters by table look up”, International Conference on Electrical,

Computer and Communication Engineering (ECCE), pp. 468-472, 2017.

[27] Fagan, Stephen, Gençay, and Ramazan, "An introduction to textual econometrics",

Handbook of Empirical Economics and Finance, pp. 133–153, 2010.

[28] A Carus and A Mesut, “Fast text compression using multiple static dictionaries,”

Information Technology Journal, 1013-1021, 2010.

[29] Md. A. K. Azad, R. Sharmeen, S. Ahmad, and S. M. Kamruzzaman, “An Efficient

Technique for Text Compression” The 1st International Conference on Information

Management and Business, pp. 467-473, 2005.

[30] A. Kumar, Sk S. Ali, and D. Chakraborty “Text Database Compression Using

Replacement and Bit Reductionn”, SIPM, FCST, ITCA, WSE, ACSIT, CS & IT 06,

pp. 407–416, 2012.

[31] C. Y. Lin, Y. C. Chung, and J. S. Liu, "Efficient data compression methods for

multidimensional sparse array operations based on the EKMR scheme", IEEE

Transactions on Computers, vol. 52, no. 12, pp. 1640-1646, 2003.

[32] J. Lansky and M. Zemlicka, “Compression of small text files using syllables,” in

Proceedings of the Data Compression Conference, Snowbird, Utah, USA, March

2006.

[33] W. Huang, W. Wang, and H. Xu, “A Lossless Data Compression Algorithm for Real-

time Database,” 2006 6th World Congress on Intelligent Control and Automation, pp.

6645-6648, 2006.

55

[34] Bonfield, James K., Shane A. McCarthy, and R. Durbin. "Crumble: reference free

lossy compression of sequence quality values." Bioinformatics, vol. 35, no. 2, pp.

337-339, 2018.

[35] S. Khalid, “Introduction to data compression”, Morgan Kaufmann, 2017.

[36] J. Kim, J. Lee, and J. Lee, “Performance of Low-Density Parity Check Codes with

Parity Encoded by (1, 7) Run-Length Limited Code for Perpendicular Magnetic

Recording,” IEEE Transactions on Magnetics, vol. 48, no. 11, pp. 4610 - 4613, 2013.

[37] Azeez, N. A. and A. A. Lasisi. "Empirical and Statistical Evaluation of the

Effectiveness of Four Lossless Data Compression Algorithms." Nigerian Journal of

Technological Development, vol. 13, no. 2, pp. 64-73, 2016.

[38] M. Vaidya, E. S. Walia, and A. Gupta, “An Data compression using Shannon-fano

algorithm implemented by VHDL, IEEE International Conference on Advances in

Engineering & Technology Research, pp. 1–5, 2014.

[39] M. M. Kodabagi, M. V. Jerabandi, and N. Gadagin, “Multilevel security and

compression of text data using bit stuffing and huffman coding”, 2015 International

Conference on Applied and Theoretical Computing and Communication Technology

(iCATccT), pp. 800 - 804, 2015.

[40] A. Langiu. “On parsing optimality for dictionary-based text compression,” Journal

of Discrete Algorithms, pp. 65-70, 2013.

[41] M. Sangeetha, P. Betty, and G.S. Nanda Kumar, “A biometrie iris image compression

using LZW and hybrid LZW coding algorithm,” 2017 International Conference on

Innovations in Information, Embedded and Communication Systems (ICIIECS), pp.

1-6, 2013.

[42] Z. Tang, “One adaptive binary arithmetic coding system based on context,” 2011

International Conference on Computer Science and Service System (CSSS), pp. 1440

- 1443, 2011.

[43] N. Francisco, D. Nobre, C. de Souza, Baptista, and C. EC Campelo, "Combining

Markov model and prediction by partial matching compression technique for route

and destination prediction." Knowledge-Based Systems, vol. 154, pp. 81-92, 2018.

[44] F. Luo, Z. Huang, F. Yan, and D. Sun, “Route memorization in real-time data

processing using Run-Length Encoding”, 2009 IEEE Intelligent Vehicles Symposium,

pp. 1354 - 1358, 2010.

56

[45] A. Huffman, “A method for the construction of minimum redundancy codes,”

Proceedings of the IRE, vol. 40, no. 9, pp.1098–1101, 1952.

[46] J. Ziv and A. Lempel, “A universal algorithm for sequential data compression,” IEEE

Transactions on Information Theory, vol. 23, no. 3, pp. 337–343, 1977.

[47] W. L. Tai, C. S. Chan, and C. A. Chu, “Apply Run-length encoding on pixel

differences to do image hiding,” 2013 9th International Conference on Information,

Communications & Signal Processing, pp. 1-5, 2013.

[48] Sze, V. and Budagavi, Madhukar, “Reducing context coded and bypass coded bins to

improve context adaptive binary arithmetic coding (CABAC) throughput”, U.S.

Patent 9, pp. 584,802, 2017.

[49] https://www.microsoft.com/enus/download/details.aspx?id=54262

[50] C. Toutanova, C. Brockett, Ke M. Tran, and S. Amershi, “A Dataset and Evaluation

Metrics for Abstractive Compression of Sentences and Short Paragraph” Empirical

Methods in Natural Language Processing, EMNLP, pp. 340-350, 2016.

https://www.microsoft.com/enus/download/details.aspx?id=54262

	Front Page.pdf (p.1)
	1707507.pdf (p.2-67)

