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Abstract 

 

In recent years, intelligent or smart structures and systems have drawn more and more 

attention. Bonded structures are playing a key role as active components in many fields of 

engineering and technology. Mechanical stress occurs in smart structures for mechanical 

or thermal loading. The stress concentrations caused by mechanical or thermal loads may 

lead to crack initiation and extension, and sometimes the stress concentrations may be high 

enough to debond the material parts. Reliable service lifetime predictions of bonded 

components demand a complete understanding of the debonding processes of these 

materials. The stress fields are one of the main factors responsible for debonding under 

mechanical or thermal loading. Stress singularity frequently occurs at a vertex in an 

interface of joints due to discontinuity of materials. Stress singularity is related to 

debonding and delamination at interface of the bonded joints. Different numerical methods 

had developed for determining the stress field in a 3D dissimilar material joint. Several 

studies have investigated the stress field in 3D elastic materials. Recently, some 

researchers proposed the solution of singular stress field and its stress intensity factors of 

an interfacial corner of a 2D dissimilar anisotropic material joint with crack. However, the 

stress field at a vertex in 3D anisotropic elastic bonded joints has not been made clear. In 

this study, the stress field at a vertex and interface edge has been investigated in 

anisotropic bonded joints. 

The project was focused on the reliability of anisotropic elastic bonded joints under 

varying tensile load condition.  In the present work, the displacement and stress 

distributions at the vertex and along the interface edge of the joint were determined using 

Autodesk Simulation Mechanical 2015 software. The activities of the project involve the 

use of advanced numerical techniques based on Finite Element Method (FEM). The stress 

field in anisotropic elastic bonded joints with different materials condition was calculated. 

The stress and displacement field near the vertex and interface edge was investigated using 

developed model and material combination. Finally, the numerical results were analyzed. 

The numerical results suggest that the displacement and stress distribution at the vertex 

and interface edge were larger than the inner portion of the joints. Therefore there is a 

possibility of delamination and debonding occurs near the vertex and free edge of the 

interface of bonded joint due to higher stress concentration.  
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Nomenclature 

 

, ,x y z     Ordinates of global coordinate system 

, ,r       Ordinates of spherical coordinate system 

, ,       Ordinates of local coordinate system 

, ,u v w     Displacement components in global coordinate system 

, ,x y z       Principal strains in global coordinate system 

, ,xy yz xz       Shear strains in global coordinate system 

, ,xy yz zx       Engineering shear strains in Cartesian coordinate system 

, ,x y z      Principal stresses in global coordinate system 

, ,xy yz xz       Shear stresses in global coordinate system 

ib     Body forces 

,       Parameters describing shear deformation 

D      Derivative matrix 

ijklC      Fourth rank tensor representing elastic constant of material 

E                                        Young’s Modulus 

                                        Poisson’s Ratio 

      Column matrix of strains 

      Column matrix of stresses 

s      Elastic compliance matrix of material 

W      Strain energy density function 

ie      Unit vector 

Q      Matrix of direction cosines 

it      Surface traction 

iN      Shape function 

( )f      Representing any arbitrary function 

q      Matrix of nodal displacement 

J      Jacobian matrix 
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1J 
     Inverse of Jacobian matrix 

B      Strain-displacement matrix 

k     Element stiffness matrix 

K      Integrated stiffness matrix 

bf      Integrated body force 

tf      Integrated traction force 

A      Representing area 

V      Representing volume 
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CHAPTER I  
 

 

Introduction 

 

 

1.1 General  

 
In recent years, intelligent or smart structures and systems have drawn more and more 

attention. Bonded structures are playing a key role as active components in many fields of 

engineering and technology. Mechanical stress occurs in smart structures for mechanical or 

thermal loading. The stress concentrations caused by mechanical or thermal loads may lead to 

crack initiation and extension, and sometimes the stress concentrations may be high enough 

to debond the material parts. Reliable service lifetime predictions of bonded components 

demand a complete understanding of the debonding processes of these materials. When two 

materials are joined, a free-edge stress singularity usually develops at the intersection of the 

interface and the free surface. The stress fields are one of the main factors responsible for 

debonding under mechanical or thermal loading. Stress singularity frequently occurs at a 

vertex in an interface of joints due to a discontinuity of materials. Stress singularity is related 

to debonding and delamination at interface of the bonded joints. Different numerical methods 

have developed for determining the stress field in a 3D dissimilar material joint.  

 

1.2  Finite Analysis Method 

In the engineering analysis, many problems can be explained by the differential equation or 

integral equation.  For example, the calculation of heat transfer on the car engine can be 

explained by the differential equation of heat balance.  However, it is very difficult to find the 

exact solution of the differential equation and integral equation.  So the approximation 

solution is needed.  The basic approximate method is finite difference method.  It is easy to 

study and understand but cannot determine and analyze the complex shape problem. 

According to this problem, the new method, finite element method (FEM) is invented and 

developed.  In the finite element method, a distributed physical system to be analyzed is 

divided into a number (often large) of discrete elements.  The complete system may be 

complex and irregularly shaped, but the individual elements are easy to analyze. 

  
1.3 Dissimilar Material Joints  

Actually, dissimilar material joint has been used in many industrial products such as vehicles, 

medical instruments and electrical devices. A mismatch of material properties and the  
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coefficient of thermal expansion cause the failure of joints. The durability and performance of 

joints are affected by several parameters such as material property, temperature cycle, external 

and internal forces. The examples of dissimilar material joints in engineering applications are 

shown in Fig.1.1.  

 

                      Electronic packaging                           Vehicle 

Figure 1.1: Dssimilar material joints in engineering applications 

 

Figure 1.2: Adhesive bonded joints of electronic packaging 

 Dissimilar materials can be joined using many methods, such as mechanical connection 

(Screw/Nut & Bolt/Rivet), welding methods (friction and diffusion), gluing or chemical 

bonding, brazing procedures and soldering processes.   

In an electronic packaging, soldering and adhesive joining methods have been widely used.  

Figure 1.2 shows solder joints and adhesive bonded joints using in electronic devices. These 

joints are composed of elastic and plastic materials. Electronic parts are mounted for a flow of 

electric current. Most problems in electronic devices are caused from the failure of joint in the 

mounting part. Many researchers have analyzed the failure of solder joints in flip chip bonding 

[1-4]. The characteristic of stress on the interface of a dissimilar material joint becomes an 

important factor for determining the durability of joint and has investigated by many authors. 

When dissimilar materials are jointed and an external force is applied to those, stresses always 

increase as approaching to the free edges of dissimilar material joint interface, which is 

referred to as stress singularity field. The stress singularity field may cause delamination or 

crack propagation at the singular points of the interface.  
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                              2D bonded structure               3D bonded structure 

Figure 1.3: The stress singularities exist nearly the vertex of bonded joint     

 Figure 1.3 (left) shows the stress yy rapidly increases near the singular points of the free edge 

interface in a two-dimensional dissimilar material joint under a traction force. Figure 1.3 

(right) shows the stress profile on the interface in a three-dimensional dissimilar material joint. 

The stress rapidly increases near singularity lines and drastically increases near a singularity 

corner.  

1.4 Anisotropic Elasticity  

Anisotropic materials are materials whose properties are directionally dependent. Unlike 

isotropic materials that have material properties identical in all directions, anisotropic 

material’s properties such as Young’s Modulus, change with direction along the object. 

Common examples of anisotropic materials are wood and composites. Directionally 

dependent physical properties of anisotropic materials are significant due to the affects it has 

on how the material behaves. For example, in the case of fracture mechanics, the way the 

microstructure of the material is oriented will affect the strength and stiffness of the material 

in various directions therefore affecting direction of crack growth. Anisotropic materials, 

naturally and man-made, are used in multiple areas of study. Some examples are Magnetic 

anisotropy in which the magnetic field is oriented in a preferred direction, anisotropic heat 

conduction that is dependent on the geometry and or anisotropic material. Anisotropic 

materials are also a result of manufacturing of materials such as a rolling or deep-drawing 

process. Composites and other materials are used and altered for specific applications. Based 

on Linear Elasticity, stress and strain of a material is related by the constitutive, or stiffness 

matrix. This relationship is defined by the equations and matrices below using Hooke’s Law:  

ijijij C        and     ijijij S    
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Where σij and εij describe the stress and strain components, i indicating direction of normal to 

plane and j indicating direction of component. Cij is the material’s stiffness or Elastic Constant 

and Sij is the compliance or inverse of Cij. The stiffness tensor is a fourth order tensor Cijkl that 

is originally consisting of 89 components. The Compliance matrix is 1/stiffness and will 

follow the same concepts to be described. However due to symmetry ijkl = jikl and ijkl = ijlk 

and other relationships as shown in the reduced matrix below, simplifies to 36 components. 

The relationship of shear components ij = ji reduces this further. By this concept one can see 

that the 6 diagonal components are related to the normal stress and strains: 36 - 6 = 30. The 

remaining 30 can be divided by two with the shear relationship 30/2 = 15 independent 

components. Thus the 6 + 15 components of the matrix results to 21 independent components 

of the stiffness/compliance matrix for anisotropic materials. 

 

 

 

It has been recognized that deformation behavior of many materials depends upon the 

orientation; that is the stress-strain response of a sample taken from the material in one 

direction will be different if the sample were taken in a different direction. The term 

anisotropic is generally used to describe such behaviors. Early investigators of these 

phenomena were motivated by the response of naturally occurring anisotropic materials such 

as wood and crystalline solids. Today, extensive use of engineered composites has brought  
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forward many new types of fiber and particle reinforced materials is very important for proper 

use of these new high performance materials in structural application. 

1.5 Stress Singularity  

The stress singularity was briefly explained in the previous section. Stress singularity is 

basically a mathematical definition for stress. As we know, when radial distance from the 

origin, r tends to zero stress tends to infinity. It is termed as singular stress or stress 

singularity. It can be found on points in which a load is directly applied. This can be best 

explained by the following example. 

 

Figure 1.4: Stress singularity field 

The above bracket has a high stress around the force applied on a point. This stress can be 

considerably higher than the operational stress. This phenomenon is known as stress 

singularity. There are lots of papers related to stress singularity. 

 



   Figure 1.5: Geometry of 3D material joint using spherical coordinates at singularity lines 
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The stress singularity occurs not only at the vertex of the three-dimensional structure of 

dissimilar materials but also along the intersection of the interface with the free surface, and 

the cross line of the interface is referred as a stress singularity line. Figure 1.5 shows that 

singular points are located at the singularity corner and along the singularity lines x and y. 

Stress fields around these singular points can be defined by spherical coordinates (r, , ). The 

singular points are located continually along the singularity lines. 

1.6  Electronic Packaging 

The many different functions of semiconductor devices are made possible by integrated 

circuits, which are built into the surface of a silicon chip (bear chip) using a complex process. 

If these chips could be used in unmodified form, packaging would be unnecessary, and the 

cost of chips reduced. However, because silicon chips are very delicate, even a tiny speck of 

dust or drop of water can hinder their function. Light can also cause malfunctions. To combat 

these problems, silicon chips are protected by packages. 

 

 

 

 

Figure 1.6: Electronic packaging (example for FCBGA) 

Packages perform the following functions. 

1.6.1 Protecting from the external environment: Moisture and dust in the air are direct 

causes of semiconductor device defects, in addition to vibration and shock. Lighting and 

magnets may also cause malfunctions. One function of a package is to prevent such problems 

from occurring. In other words, packages shut out external influences and serve to protect 

silicon chips. 

1.6.2 Enabling electrical connectivity: If silicon chips are simply wrapped in the package 

material to protect them from the external environment, they will be unable to exchange 

signals with the outside. Attaching metal "legs" consisting of lead frame (soldered balls in the 

case of BGA) therefore allows signals to be sent to semiconductor devices from outside, and 

the results of processing accessed. 
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1.6.3 Heat radiation: Silicon chips heat up when in operation. If the temperature of the actual 

chip becomes too high, the chip will malfunction. However, packages can effectively release 

this heat. And in the case of semiconductor devices that give off especially high levels of heat, 

such as the CPUs mounted in a PC, heat release can be induced by mechanisms such as a heat 

sink or cooling fan. 

1.6.4 Improving functionality: Semiconductor devices demonstrate their functions once 

directly mounted on printed circuit boards. The delicacy of circuits built into silicon chips 

means they cannot easily be handled, due to their minute size. Terminals are therefore 

enlarged to a size that makes them much easier to handle, and mounted on the chips with more 

space in between, allowing them to be connected to a printed circuit board. 

 
1.7 Objectives of the Research Work 

Many authors have been developed the analysis of stress field at singular points in dissimilar 

elastic material joint using FEM methods as the same as that in the experiment. Several 

authors have also been introduced the analysis of stress field of elastic material using BEM 

method. 

 The purpose of this study is to obtain a better understanding of the problem of singularity at a 

vertex in anisotropic dissimilar material joints. The present analysis is carried out with the 

help of Autodesk Simulation Mechanical 2015 Software. The FEM is used for stress field 

analysis at vertex of three-dimensional anisotropic elastic bonded joints. The main objectives 

of this project are: 

(1) To determine the displacement and stress distribution at the vertex and along the 

interface edge of the joint.  

(2) To investigate the stress singularity field of anisotropic elastic bonded joints. 

(3) To study the effect of tensile load on bonded joints. 

(4) To analyze the delamination and debonding process of bonded structure. 
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CHAPTER II  
 

 

Literature Review 

 

 

2.1 General  

Industrial products such as electronic devices and heat endurance parts are composed of 

dissimilar materials. Most materials become the elastic properties when external forces or a 

variation of temperature applied to these materials. A mismatch of material properties causes a 

failure at the free edge of joint because a stress concentration occurs along the free edge of 

interface especially at the vertex of joint. The failure of joint has been investigated by 

experiments and numerical analysis.  Recently, the numerical analysis has become important 

because the numerical analysis results can be used instead of the experimental results. As the 

same as the experiment, the three-dimensional numerical analysis and the elastic material 

properties should be considered. Over sixty years ago, many authors have determined the 

characteristics of singular stress fields at singular points in two-dimensional numerical 

analysis for elastic and elastic dissimilar material joints. Recently, some researchers have 

extended the two-dimensional numerical analysis to three-dimensional numerical analysis for 

elastic dissimilar material joints using the numerical methods that has the small number of 

element.  

2.2  Review of the Past Study 

     The study on this field has been carried out step by step. William [5] used the numerical 

analysis for analyzing stress singularities in infinite wedges and applied to the analysis of 

stress distribution at the vicinity of a crack tip [6]. Zak and Williams [7] used eigen functions 

for analyzing stress singularity field at a crack tip perpendicular to a bi-material interface. A 

real part of eigen value was within the range of 0 to 1, and expressed a relationship between 

stress distribution and the order of stress singularity at the crack tip. Aksentian [8] determined 

eigen values and eigen vectors at a singular point in plane intersecting a free edge of the 

interface in three-dimensional dissimilar joints. In 1969, Dundurs [9] discussed a paper on an 

edge-bonded joint that are subjected to specify surface tractions. He proposed the well-known 

parameters namely, Dundurs' parameters, a and b. The order of stress singularity for two-

dimensional dissimilar materials could be represented consistently on Dundurs composite 

plane regardless of different combinations of elastic properties and Poisson’s ratios.  Dundurs 

showed how to reduce the number of composite material parameters involved from three to 

two. 
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Bogy [10] and Bogy and Wang [11] analyzed the plane problem of bonded dissimilar material 

wedges under a surface traction and determined the stress singularity field at the corner in the 

wedge. They determined the order of stress singularity depending on material constants and 

the angle of wedges. Kawai, Fujitani and Kobayashi [12] performed the stress analysis at a 

conical surface pit and applied Williams’ method to a three-dimensional crack problem. 

Numerical analysis of characteristic roots for conical pit problem was analyzed for 

determining eigen values at the vertex of conical pit. Kawai, Fujitani and Kumagai [13] 

investigated the stress singularity of a three-dimensional surface crack, especially its peculiar  

behavior at the free end of the crack front line, and then analyzed the surface crack problem 

by employing spherical coordinates. Benthem [14] determined the eigen values using eigen 

analysis and examined stress components of Cartesian coordinates at the vertex of a quarter-

infinite crack in a half-space for various Poisson’s ratios.  

Dempsey and Sinclair [15] considered the characteristic of singular behavior in two-

dimensional wedges. They focused on a single-material wedge and a composite material 

wedge. Airy stress function was used for determining stress and displacement fields for all 

wedge angles. Then, in 1995, Dempsey [16] examined particular cases in which power-

logarithmic singularities occur. 

Bazent and Estenssoro [17] and Yamada and Okumura [18] developed a finite element 

analysis for solving eigen value equation to determine directly the order of stress singularity 

and the angular variation of the stress and displacement fields. This eigen analysis was used to 

evaluate the order of singularity at a point where a crack meets a free surface in an isotropic 

material.  Then, Pageau, Joseph and Biggers [19] adapted the eigen analysis based on a finite 

element for analyzing the inplane deformation of wedges and junctions that composed of 

anisotropic materials. The stress and displacement fields were obtained from eigen 

formulation for real and complex orders of stress singularity. Pageau and Biggers [20] applied 

to analyze the joints including fully bonded multi-material junctions intersecting a free edge as 

well as materials containing crack intersecting a free edge. This study showed that the order of 

singularity in the three-dimensional stress field could be accurately determined with a 

relatively small number of elements. Pageau and Biggers [21] determined the order of stress 

singularity and the angular variation of the displacement and the stress fields around the 

singular points in plane intersecting a wedge front in the three-dimensional anisotropic 

material structures using the two-dimensional displacement formulation under a plane strain 

assumption.   
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Koguchi [22] examined the order of stress singularity at a vertex and also along the stress 

singularity line between two isotropic materials in joints using eigen analysis. The stress 

distributions around the vertex were determined using a boundary element method (BEM). 

Koguchi [23] determined the intensity of singularity by fitting the stress profile that obtained 

from BEM analysis with a least square method. Leblond and Leguillon [24] examined the 

asymptotic behavior of the stress intensity factors near an angular point of a crack front in 

homogeneous isotropic elastic body in the cases of the crack existing at a notch or a corner.   

Dimitov, Andra and Schnake [25, 26] presented the three-dimensional eigen analysis that used 

Arnoldi method. This method needs only the small-banded matrix when compared with 

normally used determinant method. The order of singularities at corners and free edges of the 

interface in laminate composite material joints were determined using the eigen analysis. Lee 

and Im [27] used a two-state M-integral for computing the near-tip stress intensities around 

three-dimensional wedges and used an eigen analysis for determining eigen values and eigen 

vectors. 

Apel, Leguillon, Pester and Yosibash [28] determined edge singularity by the use of three-

dimensional Williams’ expansion. The edge stress intensity factors along the reentrant wedge 

front were determined using a quasi-dual function method. Yosibash, Omer and Dauge [29] 

and Omer and Yosibash [30] computed the complex eigen function by using a p-version finite 

element method and examined the edge stress intensity factors at the edge vicinity in three-

dimensional anisotropic multi-material interfaces using a quasi-dual function method. The 

reviewed papers above can be summarized as below: 

Stress distributions and the order of stress singularity were determined at crack tips and 

singular points in bonded joint using two-dimensional numerical models. The numerical 

methods that have the small number of element have been popularly used for determining the 

stress singularity in three-dimensional crack and bonded joint. Many authors individually 

determined the intensities of singularity at a corner singular point or along the free edges of 

the interface in a three-dimensional dissimilar material joint. However, the intensity of 

singularity should be considered at the singularity corner together with that along the free 

edge of the interface in a three-dimensional material joint. Therefore, the aim of the present 

research is to determine the stress and displacement field at a vertex and the interface edge in 

three-dimensional anisotropic elastic dissimilar material joint.  
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CHAPTER III  
 
 

Method of Analysis 

 

 

3.1 Finite Element Method (FEM) 
 

Behaviors of natural phenomena that are surrounding the human can be expressed by the 

physical rules and numerical equations such as differential equation or integral equation. 

Normally the differential equations for determining some physical problems are easily 

expressed but the exact solutions of those problems are most difficultly determined by 

analytical method. Thus the approximation solution is required. The first popular 

approximation solution is a finite difference method (FDM). The finite difference method is 

the method for approximating numerical results by the system of differential equations. This 

method is easy to understand and write computer program for solving the approximated 

results. However, The FDM method is restricted to handle the rectangular shapes and simple 

alterations. It is difficult to define the boundary conditions and to use for complex shape 

problems. So it is useless for developing the advanced problems.  

 

As the reasons above, the method that is higher quality than FDM approach called a finite 

element method (FEM) is used to be a choice for determining approximate solution of partial 

differential equations as well as of integral equations. FEM originated in the civil and 

aeronautical engineering for solving the complex elastic and structural analysis problems. 

Alexander Hrennikoff [31] and Richard Courant adapted the continuous domains of FDM 

solution to a set of discrete sub-domains. Hennikoff divided the domain by using a lattice 

analogy while Courant divided the domain into finite triangular subregions for solution of 

second order elliptic differential equations [32]. After that, in 1953, Clough [33] developed in 

plane stiffness matrices for 2-dimensional plate with corner connections for a delta wing 

structure. He used both of rectangular and triangular plates as the sub domain and 

successfully studied of assemblages of triangular plate. He called these plates that “elements”. 

Mathematical results were compared with the experiment results. Then he found that the 

mathematical results approached to the experiment results when the triangular elements were 

refined [34]. His work for stress analysis was reported in reference [35]. In this paper, Clough 

gave the name for the procedure that the FEM because it deals with finite components rather  
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than differential slices. His further works using FEM were written in references [36-37]. For a 

short time, FEM has been widely used to the variety of engineering. Furthermore, in 1965, 

NASA requested him to develop the finite element software NASTRAN. Figure 3.1 shows 

the comparison of the finite difference model and the finite element model for approximating 

the numerical results in a typical plate. FEM has ability to handle complicated geometries of 

analysis in structural mechanics. Its ability allows to solving many factor in engineering fields 

such as deformation, stresses-strains in solid bodies or dynamics of structure.   

 

Figure 3.1: (Left) FDM model, (Right) FEM model 

 In fact, a physical problem is composed of infinite values of unknown parameters. The 

concept of FEM is to change from the infinite values to the finite values of unknown 

parameters by replacing the shape of physical problem with the assembly of elements as 

shown in Fig. 3.1 (right). Each element is connected to each other via the connecting point 

(node) of element. FEM formulations that depend on the differential equation of the problem 

are individually formed in each element. After that, the FEM formulations in each element 

are assembled to be a main equation. It seems to assemble all elements together. Then the 

boundary conditions of the problem are taken in to the main equation. Finally, the unknown 

parameters at nodes are known by solving the main equation. In the mechanical engineering, 

unknown nodal parameters are defined by displacements at these nodes. The accuracy of 

approximate results depends on the number and size of element and the interpolation 

functions in each element. 

 

3.2  Total Potential Energy for Analysis of Solid Mechanics Problems 

 

The FEM formulation can be expressed from the total of potential energy at equilibrium 

condition. The total of potential energy ( J ) is in the form of the following equation. 



J U W 
                              (3.1) 

Where U  is the internal strain energy. For the linear elastic material, the internal strain  
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energy of the system that has a volume (V) is given by 

    

V

T
dVCU 

2

1
                   (3.2) 

 Where   is strain matrix and  C is elasticity matrix of modulus W  is the potential energy 

due to external forces such as body force (F) on a volume (V) and surface traction on a 

surface (S). The potential energy due to external forces is simply given by 

    

S

zyx

V

zyx dSwTvTuTdVwFvFuFW                     (3.3) 

and it will be         

V

T

V

T
dSTUdVFUW                           (3.4) 

 Where the vector [U] is the virtual displacements (u, v, w) in directions (x, y, z) of the 

Cartesian coordinate. Here the total of potential energy is obtained by substituting Eqs. (3.2) 

and (3.4) into Eq. (3.1). It becomes as the following equation. 

              

S

T

V V

TT
dSTUdVFUdVCJ 

2

1
                       (3.5) 

The displacement formulation for an e nodes element is expressed as the following equation.  





e

n

inni uNu
1

                                (3.6) 

Where iu  is the displacement in direction i. inu  is the displacement at node n associated with 

direction i. nN is the interpolation function at node n.  

Using the equation above, the vector of strain in Eq. (3.5) can be expressed with the form of 

displacement as follows: 

    UB

x

w

z
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w

z
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v
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





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
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
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



















































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

































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





                        (3.7) 

Where [B] is the differential operator matrix in the form of the differential of interpolation  
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functions. The total of potential energy equation becomes 

                     

S

TT

V V

TTTT
dSTNUdVFNUdVUBCBUJ

2

1
                   (3.8) 

The total of potential energy is minimum when it is being in the equilibrium condition. The 

variation of the total of potential energy (



J*
) in this state must be stationary for variation of 

the displacement. It means that the variation of the total of potential energy becomes zero as 

equation below: 

 
0

***
* 




U

WU

U

J
J








                        (3.9) 

The finite element equation of the total of potential energy is expressed as 

            t
T

B

TT
FUFUUKUJ  

2

1
 

       0


 


tB FFUK
U

J
                       (3.10) 

and it is simply given by 

      tB FFUK                        (3.11) 

Where 

      


V

T
dVBCBK                      (3.12) 

     
V

T
B dVFNF                      (3.13) 

     
S

T
t dSTNF                       (3.14) 

 



K*  is the stiffness matrix and FB , Ft  are the load vectors form body forces and traction 

forces, respectively.  The matrix [B] for a hexahedron element is expresses as follows: 
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B 

N1

x
0 0

N2

x
0 0 L
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0
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
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


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


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








          (3.15) 

 The displacement values at each node in directions x, y and z are solving from the finite 

element equation as given in Eq. (3.11). The hexahedron element can be considered as       

Fig. 3.2. The interpolation functions at each node are given by the following equation: 

Nn 
1

8
1n  1n  1n .                    (3.16) 

 

Figure 3.2: Hexahedron element and its local geometry 

 The matrix [C] for a hexahedron element is as follows: 
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C 
E

(1)(1 2)

(1)   0 0 0

(1)  0 0 0

(1) 0 0 0

(1 2)

2
0 0

SYM
(1 2)

2
0

(1 2)

2












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



















     (3.17) 

where E is Young’s Modulus and  is Poisson’s ratio. The stiffness matrix 



K*  can be 

calculated by using Gauss-Legendre integration formula.  Thus the 



K*  matrix in Eq. (3.12) 

becomes: 

K *   B ,,  
T

C  B ,,   J ,, ddd
1

1


1

1


1

1



 WiW jWk B ,,  
T

C  B ,,   J ,, ddd
k1

NG


j1

NG


i1

NG



          (3.18) 

where J is the determinant of the Jacobian transformation between the global and local 

volume coordinates. W is the weight with the subscripts i, j,k  and NG is the number of 

Gauss points. For the plane (x, y) problem, the stiffness matrix becomes 

K*   B 
T
C  B dS

S

                      (3.19) 

FB  N 
T
F dS

S

                       (3.20) 

Ft  N 
T
Ty dx

x

  or N 
T
Tx dy

y

                (3.21) 

 The matrix [B] for a 4-node quadratic element is as follows: 

B 
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 The 4-node quadratic element can be considered as Fig. 3.3. The interpolation functions at 

each node are given by: 

Nn 
1

4
1 n  1n .                            (3.23) 

 

Figure 3.3 A 4-node quadratic element and its local geometry 

The matrix [C] for plane stress case is 

C 
E
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.                   (3.24) 

 The matrix [C] for plane strain case is 

C 
E

1

1

1 2



1 2
0

1

1 2
0

SYM
1

2
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
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














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


.                (3.25) 

 Finally, stress component is in the form of the following equation 

  C                        (3.26) 

The stiffness matrix 



K*  in Eq. (3.19) can be also calculated as the same as three-

dimensional FEM by using Gauss-Legendre integration formula.   



18 

K *   B ,  
T

C  B ,   J , dd
1

1


1

1



 WiW j B ,  
T

C  B ,   J , dd
j1

NG


i1

NG



                (3.27) 

3.3  Plane Stress and Strain 

The general state of stress at a point is characterized by six independent normal and 

shear stress component, which act on the faces of an element of material located at the point, 

Fig. 3.4.  This state of stress, however, is not often encountered in the approximations or 

simplifications of the loading on a body in order that the stress produced in a structural 

member or mechanical element can be analyzed in a single plane. When this is the case, the 

material is said to be subjected to plane stress, Fig. 3.5.  For example, if there is no load on the 

surface of a body, then the normal and shear stress components will be zero on the face of an 

element that lies on the surface. Consequently, the corresponding stress components on the 

opposite face will also be zero, and so the material at the point will be subjected to plane stress   

 

Figure 3.4:  General state of stress for material 

 

Figure 3.5: Plane stress in x-y coordinate system 
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Figure 3.6:  Plane Strain in x-y coordinate system 

Like the plane stress, we will not consider the effects of the component z, xz and yz. In 

general, then a plane-strained element is subjected to two components of normal strain, x , y , 

and one component of shear strain, xy.  The deformations of an element caused by each of 

these strains are shown graphically in Fig. 3.6. The normal strains are produced by changes in 

length of the element in the x and y directions, and the shear strain is produced by the relative 

rotation of two adjacent sides of the element. 

3.4 Elasticity Theory of Material 

Elasticity theory is formulated in terms of many different types of variables that are either 

specified or sought at spatial points in the body under study. Some of these variables are scalar 

quantities, representing a single magnitude at each point in space. Common examples include 

the material density  and material moduli such as Young’s modulus E, Poisson’s ratio , or 

the shear modulus . Other variables of interest are vector quantities that are expressible in 

terms of components in a two- or three-dimensional coordinate system. Examples of vector 

variables are the displacement and rotation of material points in the elastic continuum. 

Formulations within the theory also require the need for matrix variables, which commonly 

require more than three components to quantify. Examples of such variables include stress and 

strain. As shown in subsequent section, a three-dimensional formulation requires nine 

components (only six are independent) to quantify the stress or strain at a point. For this case, 

the variable is normally expressed in a matrix format with three rows and three columns. To 

summarize this discussion, in a three-dimensional Cartesian coordinate system, scalar, vector, 

and matrix variables can thus be written as follows: 

Mass density scalar =  

Displacement vector u = ue1 + ve2 + we3 
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Stress matrix =  


















zzyzx

yzyyx

xzxyx







              (3.28) 

where e1, e2, e3 are the usual unit basis vectors in the coordinate directions. Thus, scalars, 

vectors, and matrices are specified by one, three, and nine components, respectively. 

The formulation of elasticity problems not only involves these types of variables, but also 

incorporates additional quantities that require even more components to characterize. Because 

of this, most field theories such as elasticity make use of a tensor formalism using index 

notation. This enables efficient representation of all variables and governing equations using a 

single standardized scheme. The tensor concept is defined more precisely, but simply says that 

scalars, vectors, matrices, and other higher-order variables can all be represented by tensors of 

various orders.  

3.5  Strain-displacement Relations 

 

Figure 3.7:  Displacement on the AB line segment 

Let consider a x  long segment that undergoes a change in length, the new length being 

denoted by x  . From Fig. 3.7 it is seen that [38]. 

            

u
u x x u x

x

 
       
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                    (3.29) 

Where u  and 
u

u x
x


 


 are the displacements of points A and B, respectively, in the x  

direction. Accordingly, the normal strain in the x  direction is 

            
x

x x u

x x


  
 

 
   (3.30) 

Similarly, in the y and z directions the normal strains are: 

 

  B 

 

 

 

 

 

 



21 

           y

v

y






  (3.31) 

           
z

w

z






  (3.32) 

Where v  and w  are the displacements in y and z directions, respectively. 

For angular deformation the tensorial shear strain is the average change in the angle between 

two mutually perpendicular lines.  

 

Figure 3.8:  Displacement of the ABC segment 

From Fig. 3.8, 

           
2

xy

 



   (3.33) 

For small deformation 

           

v

tan

v
v x

vx

x x
 

 
       

 
  (3.34) 

Similarly ,
u

y






 and the xy  component of the tensorial shear strain is 

            
1

2
xy

u v

y x


  
  

  
  (3.35) 

In a similar manner, obtain the following expression for the  and yz xz  components of the 

tensorial shear strains: 

             
1

2
yz

v w

z y


  
  

  
  (3.36) 

            
1

2
xz

u w

z x


  
  

  
  (3.37) 
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The engineering shear strains are twice the tensorial shear strains: 

           2yz yz

v w

z y
 

 
  

 
  (3.38) 

           2xz xz

u w

z x
 

 
  

 
  (3.39) 

           2xy xy

u v

y x
 

 
  

 
  (3.40) 

Thus, in matrix form Eq. (3.30) to Eq. (3.32) and Eq. (3.38) to Eq. (3.40) can be written as, 

          

0 0

0 0

0 0

0

0

0

x

y

z

xy

yz

zx

x

y
u

z
v

y x
w

z y

z x













    
   

             
    

       
       

   
      

  (3.41) 

Or 

               D u    (3.42) 

Where, 

 

0 0

0 0

0 0

0

0

0

x

y

z
D

y x

z y

z x

  
 

 
 
  

  
    
    
 
    
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3.6  Equilibrium Equations 

 

Figure 3.9: Stresses on the x y z    cubic element 

The equilibrium equations at a point O are obtained by considering force and moment 

balances on a small x y z    cubic element located at point O, Fig, 3.9. It relates the stresses 

at one face to those at the opposite face by the Taylor series. By using only the first term of 

the Taylor series, force balance in the x  direction gives [38]. 

           

0

x
x zx yx x

yxzx
zx yx x

z y x y x z x z y
x

z x y y x z b x y z
z y


   


 

 
              

 

  
                

    

 (3.43) 

Where xb  is the body force per unit volume in the x -direction. After simplification, this 

equation becomes 

            0
yxx zx

xb
x y z

  
   

  
  (3.44) 

By similar arguments, the equilibrium equations in the y  and z  directions are 

            

0
xy y zy

yb
x y z

    
   

  
  (3.45) 

            

0
yzxz z

zb
x y z

  
   

  
  (3.46) 

Where 
yb  and zb  are the body forces per unit volume in y and z directions. 
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Eq. (3.44) to Eq. (3.46) can be written as 

           0
ij

i

j

b
x


 


  (3.47) 

A moment balance about an axis parallel to x and passing through the center gives [38] 

            
2 2 2

0
2

yz

yz zy yz

zy

zy

y z y
x z x y y x z

y

z
z x y

z


  




   
          

 

  
      

 

 (3.48) 

 

Figure 3.10: Stresses on the x y z   cubic element that appear in the moment balance about 

an axis parallel to x  and passing through the center (Point O) 

By omitting higher order terms, which vanish in the limit 0,  0,  0,x y z       this 

equation becomes 

           yz zy    (3.49) 

Similarly, we obtain the following equalities: 

           xz zx    (3.50) 

            xy yx    (3.51) 

By virtue of Eqs. (3.49), (3.50) and (3.50) the three equilibrium equations, Eqs. (3.44), (3.45), 

and (3.46) contains six unknowns, namely, the three normal stresses ( , , )x y z    and the three 

shear stresses ( , , )yz xz xy   . 
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3.7 Solution of Governing Equation  

In finite element method, any three dimensional body is discretized into some finite solid 

element of simple geometric shape. There are various types of solid element used in finite 

element method. Amongst them the most simple is the tetrahedral element of four nodes. For 

linear problem 4-node tetrahedron, 5-node pyramid, 6-noded prism or 8-node brick elements 

can be used. Amongst them the 8-node brick element provides more accuracy. For the 

solution of quadratic equation higher order element are used. Some typical three dimensional 

solid elements are shown in Figs (3.11), (3.12), and (3.13). 

Tetrahedron (Tet): 

 

Figure 3.11: Three dimensional Tetrahedron solid elements 

Hexahedron (Brick): 

 

Figure 3.12: Three dimensional Hexahedron solid elements 

Prism: 

 

Figure 3.13: Three dimensional prism solid elements 

 

Linear (4 nodes) 
 

Quadratic (10 nodes) 

Linear (8 nodes) 
Quadratic (20 nodes) 

Linear (6 nodes) Quadratic (15 nodes) 
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3.7.1 Isoparametric mapping 

To represent an irregular shaped body, we must consider the elements of arbitrary shapes. But 

if the elements are distorted other than of regular shape then the determination of shape 

function and carrying out integration is very difficult. To ease integration in evaluating the 

virtual work, the isoparametric solid elements are considered. The term “isoparametric” means 

that geometry and displacement field is specified in parametric form and are interpolated with 

the same functions. Shape functions used for interpolation are polynomials of the local 

coordinates ,  and    ( 1 , , 1)     . Both coordinates and displacements are interpolated 

with the same shape functions and then the coordinates are mapped into the global 

coordinates. 

 

 

Figure 3.14: Transformation from local coordinate to global coordinate 

Now, consider a linear 8-node hexahedron element in the global coordinate system ( , , )x y z  . 

The following function maps a point in the local coordinate system ( , , )    to a point in 

global coordinate system: 

           
1 1 1

, ,
N N N

i i i i i i

i i i

x N x y N y z N z
  

      (3.52) 

The functions are linear combinations of the nodal coordinates. The coefficients 

1 2 3 4, , ,N N N N  are functions of ,   and . They are the shape functions, so constructed that 

the eight corners of the hexahedron on the local coordinate system ( , , )   to the eight nodes 

of the hexahedron on the global coordinate system ( , , )   . 

The shape functions are given by 
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1 2

3 4

5 6

7

1 1
( , , ) (1 )(1 )(1 ),      ( , , ) (1 )(1 )(1 ),

8 8

1 1
( , , ) (1 )(1 )(1 ),     ( , , ) (1 )(1 )(1 ),

8 8

1 1
( , , ) (1 )(1 )(1 ),     ( , , ) (1 )(1 )(1 ),

8 8

1
( , , ) (1 )(1

8

N N

N N

N N

N

           

           

           

   

       

       

       

  8

1
)(1 ),     ( , , ) (1 )(1 )(1 )

8
N            

 (3.53) 

3.7.2  Interpolation of displacement 

The displacement field is obtained by 

            
1 1 1

, ,
N N N

i i i i i i

i i i

u N u v N v w N w
  

      (3.54) 

In the matrix form, the displacement vector at a point in the element is an interpolation of the 

nodal displacements: 

            u Nq   (3.55) 

Where, 

 

 

T

T

1 1 1 2 2 2 8 8 8

1 2 3

1 2 3

1 2 3

, ,

, , , , , ,...., , ,  and,

0 0 0 0 0 0 ... 0 0

0 0 0 0 0 0 ... 0 0

0 0 0 0 0 0 ... 0 0

n

n

n

u u v w

q u v w u v w u v w

N N N N

N N N N N

N N N N





 
 


 
  

 

Let the virtual nodal displacements be q , the virtual displacement field in the elements is 

            u N q    (3.56) 

3.7.3  Expression of strains in terms of nodal displacements 

From previous section it is known that, 

            Du     (3.57) 

Now using Eq. (3.55) 
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1 2 3

1 2 3
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z y

z x

 

  
 

 
   
    
              
 
    

 

  (3.58) 
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Or 

           
 1 2 3 ...

  

nB B B B q

Bq

 


  (3.69) 

Where, 

0 0

0 0

0 0

0

0

0

i

i

i

i

i i

i i

i i

N x

N y

N z
B

N y N x

N z N y

N z N x

  
 

 
 
  

  
    
    
 
     

 

This B DN  is called the strain-displacement matrix. iN  is expressed in the function of local 

coordinate ( , , )    system. In order to calculate B  matrix we need to convert the gradient on  

the ( , , )    to that on the ( , , )x y z system. Using the chain rule of differentiation, it is 

obtained that 

           

i i i i

i i i i

i i i i

N N N N

x x x x

N N N N

y y y y

N N N N

z z z z

  

  

  

  

  

  

     
  

      

     
  

      

     
  

      

  (3.60) 

In matrix form 

            

ii

i i

ii

NN

x x x x

N N

y y y y

NN

z z zz

  



  



  



       
             
       

         
    
       
            

  (3.61) 

The 3 3  matrix that appears in Eq. (3.61) is called 
1J 
 matrix which is obtained from the 

inverse of 

            
 

 

, ,

, ,

x y z

x y z x y z
J

x y z

  

     

  

   
 
  
 

    
   
   

 
   
 
   

  (3.62) 
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Matrix J  is called the Jacobian matrix of ( , , )x y z  with respect to ( , , )   . In the finite 

element literature, matrices J  and 
1J 
 are called simply the Jacobian and Inverse Jacobian 

respectively. The notations are 

1( , , ) ( , , )
  and  

( , , ) ( , , )

x y z
J J

x y z

  

  

 
 
 

 

The Jacobian matrix for any element is computed by differentiating the Eq. (3.54) for that 

element. Differentiating Eq. (3.54)  

            

11 12 13

21 22 23

31 32 33

i i i
i i i

i i i
i i i

i i i
i i i

N N N
x y z

J J J
N N N

J x y z J J J

J J J
N N N

x y z

  

  

  

    
 

  
   
     

      
       
 

   

 (3.63) 

Then 
1J 
 becomes 

           

11 12 13

1

21 22 23

31 32 33

1

J J J

J J J J
J

J J J



   
 
   
 

   
 

  (3.64) 

Where, 

             

11 22 33 23 32 22 33 11 31 13

33 11 22 12 21 12 23 31 21 33

23 31 12 32 11 31 12 23 13 22

21 32 13 12 33 32 13 21 23 11

13 21 32

,          

,           

,           

,           

J J J J J J J J J J

J J J J J J J J J J

J J J J J J J J J J

J J J J J J J J J J

J J J

    

    

    

    

   31 22 11 11 12 21 13 31,            J J J J J J J J J    

 (3.65) 

The transformation of integrals from the global coordinate system to the local coordinate 

system is performed by the determinant of the Jacobian matrix: 

            dV dxdydz J d d d      (3.66) 

Then from Eq. (3.61) becomes, 
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21 22 23

31 32 33

1

ii

i i

ii

NN

x J J J
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J J J

y J
J J J NN
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             
      
    
        

 (3.67) 
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From Eq. (3.67) the values of the derivative is readily obtained. Thus the B  matrix is also 

obtained. 

3.7.4  Expression of stress field in terms of the nodal displacements 

It is known that 

         C   

Putting Bq   in this equation 

          CBq    (3.68)  

From principle of virtual work it is known that, 

          T T T

V S V

u bdV u tdS dV         (3.69) 

Now putting u N q  , B u BN q    and C CBq    in Eq. (3.69)   

            

     
T T T

V S V

T T T T T T

V S V

N q bdV N q tdS B q CBqdV

N q bdV N q tdS B q CBqdV

  

  

 

  

  

  
 

             T T T

V S V

N bdV N tdS B CBqdV       (3.70) 

In this equation T

V

N bdV  is the body force which acts over the total volume of the element 

and T

S

N tdS  is the applied surface traction. Thus the equation can be written as 

           Kq f   (3.71) 

Where, T T

V S

f N bdV N tdS    represents the total force acting on the element and K  is the 

stiffness matrix which is given by 

            T

V

K B CBdV    (3.72) 

Putting dV dxdydz J d d d     

             

1 1 1

1 1 1

= TK B CB J d d d  
  

     (3.73) 

To evaluate the stiffness matrix K , the numerical integration formula over Gauss quadrature is 

applied. If any integral of the following form 

             
1

1

I f d 


    (3.74) 
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Then to evaluate this integral a set of n  points 1 2 3, , ,..., n     is selected in the interval ( 1,1) . 

The function is evaluated at these points i.e.        1 2 3, , ,..., nf f f f    . Then the integral 

is a linear combination of these functional values 

                    
1

1 1 2 2

11

...
n

n n i i

i

I f d w f w f w f w f     


       (3.75) 

Thus it can be written as 

           
31 2

1 2 3

1 1 1

pp p
T

ijk ijk ijk

i j k

K w w w B CB J
  

          (3.76) 

Here 1 2 3,  and p p p  are the numbers of Gauss points in the ,  and     direction, respectively, 

while 
ijkB  and 

ijkJ  are abbreviations for 

 , , ,ijk i j kB B    det ( , , )ijk i j kJ J     

Usually the number of integration points is taken same in all directions i.e. 1 2 3p p p p   . 

The total number of Gauss points is thus 3p . Each point adds at most 6 to the stiffness matrix 

rank. For the 8-node hexahedron this rules gives 2p  . 
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CHAPTER IV  
 

 

Analysis Model and Result Verification 

 

 

4.1  Model for Analysis 

The model considered for the analysis is shown in Fig. 4.1 can be used as a standard 

numerical model to investigate the characteristics of stress field and compare the numerical 

results with other methods. In the present study, the three-dimensional dissimilar material 

joint is subjected by a uniform tensile stress 1 MPa. The joint structure is symmetrical in         

x =10 mm and y =10 mm planes. The FEM model and boundary conditions are shown in Fig. 

4.2. The small elements are arranged near the corner and alone the edge.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: Model of anisotropic bonded joint 

 

A uniform tensile stress is applied on upper side of FEM model in the z-direction. The FEM 

model is fixed in the x-direction on the right side, fixed in the y-direction on the back and 

fixed in the z-direction at the bottom of the model. For the symmetric nature one fourth of the 

model is considered for the analysis. The dimensions of the model are taken 10  10  20 mm 

in the ,  and x y z  direction respectively. 

 

 

x 

1 MPa 

 y 

 z 

Material 1 

Material 2 

20 mm 

10 mm 
10 mm 
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Figure 4.2: FEM model and boundary connections 

 

4.2  Material Properties 

The material properties of upper and lower material in dissimilar anisotropic elastic joint are 

shown in Table 4.1. The upper material (material 1) is hard and the lower material (material 2) 

is soft. The upper and lower materials used in present analysis are Silicon and Resin. 

Table 4.1 Material properties for anisotropic materials 

Material 
Young’s modulus 

(GPa) 

Poisson's 

Ratio,  

Silicon 166 0.26 

2 2.74 0.38 

 

4.3  Generation of Mesh Model 

The mesh of the present model shown in Fig. 4.2 was generated by the finite element code 

Autodesk Simulation Mechanical 2015. Fixed boundary condition is applied in the bottom 

surface. Symmetric boundary condition was applied in the two inner surface along x  and y  

direction. A distributed load of 1 MPa was applied on the top surface along positive z  

direction. The mesh applied was a mixture of tetrahedron, pyramid, wedge and hexahedron.  

1 MPa 
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Overall mesh size was 0.5 mm whereas; at the vicinity of the vertex the mesh was refined to 

0.0004035 mm. The total number of solid element was 520735. The mesh used at the interface 

corner of the analysis is shown in Fig. 4.3. 

 

 

Figure 4.3: Mesh Model near the vertex of joint 

 

After the discretization, the numerical calculations were carried out through finite element 

method by using Autodesk Simulation Mechanical 2015. The displacement, strain tensors and 

stress tensors were calculated in both rectangular and spherical coordinate system. 

 

4.4  Accuracy Verification of Present Analysis 

In order to check the accuracy of finite element method the bi-material joint of Silicon and 

Resin having slanted side surface which was analyzed by Koguchi and Costa [39] in boundary 

element method, BEM has been analyzed again with the present method applying the same 

boundary condition. The obtained results have been compared with that obtained by Koguchi. 

The graph is given below. 
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Figure 4.4: Comparison of normalized stress distribution obtained by FEM and BEM 

From the graph it has been seen that the results obtained by present method is very near the 

result obtained by BEM. Thus the accuracy of the finite element method is verified. The 

accuracy of Autodesk Simulation Mechanical 2015 software is check by comparing the result 

with the bi-material joint of carbon/epoxy prepreg (SEAL Texipreg CC206 – T300 twill 2_2 

fabric/toughened ET442 resin) and bonded with a 3M 9323 B/A epoxy adhesive, which was 

analyzed by Michele, Paolo and Marino by Ansys_Version 13 software package [40]. The 

graph is given below. From the graph it has been seen that the results obtained by Autodesk 

Simulation Mechanical 2015 is very near the results obtained by Ansys_version 13 software 

package. The maximum variation of result is about 2.25%.  

 

 

Figure 4.5: Comparison of result between Ansys and Autodesk Simulation 

Model: Slant Angle  

 

Normalized by the value  
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CHAPTER V  
 

 

Result and Discussions 

 

5.1  Numerical Result 

In this study, Autodesk Simulation Mechanical 2015 student version software was used to 

analyze the stress field around the vertex in anisotropic dissimilar material joints. The FEM is 

a numerical method for finding approximate solutions of partial differential equations in 

physical problems under their boundary conditions. The physical problems are divided into 

many elements connecting by nodes. The approximate solutions are formed in each element 

and then assembled to be a main equation. Finally, the unknown parameters at nodes are 

known by solving the main equation.  

 

5.1.1  Distribution of Elastic displacement 

The variations of displacement fields on the r -   plane in spherical coordinates are shown in 

Figs. 5.1 to 5.3. Figure shows the distribution of nodal elastic displacement of 3D anisotropic 

elastic bonded joint of silicon and resin. All of these graph show that the displacement is 

continuous at the interface. The interface of the joint is at  = 90
o
. 

 

 

Figure 5.1: Distribution of nodal elastic displacement, ur against r and  at interface 
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Figure 5.2: Distribution of nodal elastic displacement, u against r and  at interface 

 

 

 

Figure 5.3: Distribution of nodal elastic displacement, u against r and  at interface 

 

From the figure, it is found that, the elastic displacement is continuous at the interface of the 

joint and had higher value at the free edge than the inner portion. So there is a possibility to 

debond the joint near the free edge of the joint. It is also found that the elastic displacement at 

 = 0 is agreed with that at  = 90. The u and ur graph is symmetry with respect to angle,  

and u is anti-symmetry with respect to angle, . 
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5.1.2  Distribution of Stress Along Radial Distance 

The distributions of stress in the singular field for the two-phase anisotropic elastic bonded 

structure are obtained using finite element method. Figures 5.4 to 4.9 demonstrates the 

distributions of stresses, , r,   against radial distance, r on the interface of anisotropic 

bonded joint.  

 

 

Figure 5.4: Distribution of stress, r against r at interface 

 

 

Figure 5.5: Distribution of stress,  against r at interface 

The above figures are plotted against radial distance, r for angle  from 10 to 80. The graphs 

are plotted in normal scale. All the graph show that the value of stress increases rapidly near  
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the vertex of the interface of anisotropic bonded joints. The interface of the joint at angle,       

 = 90. 

 

Figure 5.6: Distribution of stress,  against r at interface 

 

The value of stresses r and  are symmetry against angle  and is anti-symmetry 

against angle . The value of stress increased rapidly with decreases of radial distance, r. 

Larger value of stress concentration occurs at the vertex of the joint due to stress singularity. 

The entire graph shows the same nature as shown in the paper of Koguchi and Costa. So there 

is a possibility of debonding and delamination occurs near the vertex of the joint. 

 

 

Figure 5.7: Distribution of stress, r against radial distance r at interface 
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Figure 5.8: Distribution of stress,  against radial distance r at interface 

 

Figure 5.9: Distribution of stress,  against radial distance r at interface 

 

Here, the graphs are plotted in log-log scale.  All of these graph also shows that the value of 

stress increases rapidly near the vertex of the joints. The value of stress  is anti-symmetry 

against angle , therefore the stress distribution above 45 is not shown in fig. 5.9. The graphs 

are plotted for analyzing the stress concentration near the corner of the interface. For getting 

more accurate result near the vertex, the present model need to use more fine mesh near the 

corner of the bonded joint. The nature of the graph is compared with result of Michele, Paolo 

and Marino by using Ansys_Version 13 software package. All the figures show the actual 

stress concentration near the origin of the interface. 
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5.1.3  Distribution of Stress Along Angle,  

Figures 5.10 to 5.15 shows the distributions of stresses, r,  with respect to the angle  

at  = 90
o 

with r = 0.0002 mm to 0.1 mm. The stresses r and  are symmetry against angle 

 and is anti-symmetry against angle . Figures 5.10 to 5.12 shows the distributions of 

stresses have larger value near the free edge of bonded joint.  

 

Figure 5.10: Distribution of stress, r against angle  at interface 

 

Figure 5.11: Distribution of stress,  against angle  at interface 

 

Figure 5.12: Distribution of stress,  against angle  at interface 
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All the graphs show the stress concentration increases with decreases of radial distance. The 

figures are plotted for analyzing the stress concentration near the interface edge of the joint. 

The normal stress   and shear stress   shows the larger value of stress near the interface 

edge of the joint. This is actually due to the uniformly distributed load applied on the upper 

portion of bonded structure. From the numerical value, it is shown that the larger value of 

stress field first occurs near the vertex then the free edge of the bonded joint. Therefore, near 

the singularity edge, stress is also higher than the inner portion of the interface. So there is 

another possibility of debonding and delamination occurs near the free edge of the interface. 

 

Figure 5.13: Distribution of stress, r against angle  at  = 90 

 

Figure 5.14: Distribution of stress,  against angle  at  = 90 
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Figure 5.15: Distribution of stress,  against angle  at  = 90 

Figures 5.13 to 5.15 shows the distributions of stresses, r,  with respect to the angle  

at  = 90
o 

for various radial distance in log-log plot. The values of stress  after 45 are 

negative. Therefore, the values of stress  against, after 45 are not shown in fig. 5.15.  

 

5.1.4  Distribution of Normalized Stress Along Angle,  

Figures 5.10 to 5.15 shows the distributions of normalized stresses, r,  with respect to 

the angle  at  = 90
o 

with r = 0.0002 mm to 0.1 mm. The stresses, r  are normalized by 

the values of stress at  = π/2 and  is normalized by the values at  = 7.5
o
. The stresses r 

and  are symmetry against angle  = 45 and is anti-symmetry against angle  = 45. 

The value of stress is larger than the value of stresses r and. Therefore the stress  is 

responsible for debonding and delamination near the free edge of the interface.  

 

 

Figure 5.16: Distribution of normalized stress, ij against angle  at r = 0.0002 mm 
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Figure 5.17: Distribution of normalized stress, ij against angle  at r = 0.001 mm 

 

 

Figure 5.18: Distribution of normalized stress, ij against angle  at r = 0.01 mm 

 

From the above figures it is shown that the curves near the angle  = 0 and 90 are not so 

smooth. It is actually due to mesh size near the free edge of the interface. The line on the 

interface of present model at angle  = 0 and 90 indicated the singularity line, i.e. the free 

edge of the bonded interface. It is not possible in the present analysis to make more fine mesh 

along the interface free edge, like the vertex of the interface due to low configuration 

computer. The normalize stress curves of this analysis are compared with the normalized 

curve given in the paper of Koguchi and Costa. The behavior of all the curves is similar to that 

given in reference [39]. More fine mesh is needed to get the smoother curve near the free edge 

of interface of the elastic bonded joint. 
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Figure 5.19: Distribution of normalized stress, ij against angle  at r = 0.1 mm 

 

5.1.5  3D  Distribution of Stress Along r and  

Figures 5.20 to 5.22 show the three dimensional distribution of nodal stresses, r,  with 

respect to the angle  and radial distance r at the interface of the joint. All the stresses have 

larger value near the free edge of the interface ( = 0 and  = 90) and near the vertex of the 

joint. In the present analysis, fine meshes are use near the vertex and free edge of the 

interface. Therefore, the nodal stress distribution near the radial distance tense to zero is more 

concentrated than the other portion where the rough meshes are used. 

 

 

 

Figure 5.20: 3D distribution of nodal stress, r against angle  and radial distance r  
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Figure 5.21: 3D distribution of nodal stress,  against angle  and radial distance r  

 

 

Figure 5.22: 3D distribution of nodal stress,  against angle  and radial distance r  

 

5.1.6  Surface plot of displacement and Stress Along r and  

The plot of displacement fields on the r -   plane in spherical coordinates are shown in Figs. 

5.23 to 5.25. Figure shows the map of elastic displacement of anisotropic elastic bonded joint 

of silicon and resin in surface plot. All of these graphs show the map of elastic displacement at 

the interface. The interface of the joint is at  = 90
o
. 
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Figure 5.23: Plot of elastic displacement, ur against r and  at interface 

 

 

 

Figure 5.24: Plot of elastic displacement, u against r and  at interface 

 

All the figures of surface plot are showed the same nature of nodal displacement at interface. 

The surface plots of displacement are not so smooth near the edge due to the rough mesh near 

the free edge. From the figures, it is found that, the elastic displacement is continuous at the 

interface of the joint and had higher value at the free edge than the inner portion. So there is a 

possibility to debond the joint near the free edge of the joint. 

 

D
is

p
la

ce
m

en
t,

 u
r 

(m
) 

Radial Distance, r (mm) Angle,  (deg) 

D
is

p
la

ce
m

en
t,

 u


  
(m

) 

Radial Distance, r (mm) Angle,  (deg) 



48 

 

 

Figure 5.25: Plot of elastic displacement, u against r and  at interface 

 

Figures 5.26 to 5.28 show the map of stresses, r,  with respect to the angle,  and 

radial distance, r at the interface of the joint in surface plot. The figures of surface plot are 

also showed the same nature as nodal stress at interface. It is shown from the graphs that there 

is more noise near the free edge. More fine mesh is needed near the interface edge to avoid the 

noise at the free edge. The normal stress   and shear stress   shows the larger value of 

stress near the interface edge of the joint. 

 

Figure 5.26: Map of stress, r against angle,  and radial distance, r  
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Figure 5.27: Map of stress,  against angle,  and radial distance, r  

 

 

Figure 5.28: Map of stress,  against angle,  and radial distance, r  

It is also found that the stress at  = 0 is agreed with that at  = 90. The  and r graph 

are symmetry with respect to angle,  and  is anti-symmetry with respect to angle, . These 

surface plots are agreed with the result of 2D stress distribution. All the stresses have larger 

value near the free edge of the interface ( = 0 and  = 90) and near the vertex of the joint. 
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5.2  Discussions 

The failure of dissimilar material joint may be caused by a mismatch of material properties 

such as mechanical, electrical and thermal properties. Delamination and debonding may occur 

at the interface free edges. Failures in engineering applications of bonded materials are caused 

by this reason. Therefore, displacement and stress fields near the interface free edge become 

an important topic to study the failure in dissimilar material joints by many authors.  

The characteristics of stress and displacement field around the vertex has been considered and 

defined as many parameters such as eigen value, the order of singularity, the stress intensity 

factor for crack problems and the intensity of singularity for joint problems. The stress field at 

the vertex in anisotropic dissimilar material joints is calculated from the combination of 

material properties in numerical method. The material properties are often used for 

considering the crack growth and the occurrence of delamination and debonding. 

 Different numerical methods had developed for determining the stress field in a three-

dimensional anisotropic elastic dissimilar material joint. In this study, the stress field at a 

vertex in 3D anisotropic dissimilar material joints was investigated using a finite element 

analysis. The distributions of stress and displacement with respect to radial distance, r and 

angle,  were calculated using FEM. The stress and displacement distributions near the vertex 

on the boundaries in a Cartesian coordinate were converted to express the inner stress and 

displacement distributions in a spherical coordinate. The stress and displacement have a larger 

value at the vertex and near the free edge of the joint. Therefore, there is a possibility to 

debond and delamination at the corner and the interface edge of the bonded joints. 
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CHAPTER VI  
 
 

Conclusion and Future work 
 

6.1  Conclusions 

In this thesis paper, a finite element method formulation near the vertex and free edge of 

anisotropic elastic bonded joint was presented. The distributions of stress and elastic 

displacement were investigated using Autodesk Simulation Mechanical 2015 student version 

based on a finite element method. From the numerical result, the following conclusions can be 

drawn for the anisotropic bimaterial joints. 

(1) The higher elastic displacement occurs at the corner and free edge of the material joint 

than the inner portion of the joint. 

(2) The larger stress field developed near the corner and free edge of the anisotropic elastic 

bonded joints. 

(3) The stress  is larger than other stresses developed at the corner and free edge of the 

material joint. 

(4) The possibility of debonding and delamination occurs near the corner and free edge of the 

anisotropic elastic bonded joints was due to the higher stress concentration. 

 

6.2  Future work 

In the present analysis used Autodesk Simulation Mechanical 2015 software based on FEM. 

The future work will carried out with BEM and FVM. The research work is carried out only 

anisotropic material of silicon and resin. But the bonded joint use isotropic, anisotropic and 

transversely isotropic of different materials. The present analysis was carried out on the basis 

of model shown in figure 4.1. But this model is very simple and fine mesh was not used near 

the interface edge. For that reason future work will be carried out with more complex and used 

more fine mesh near the vertex and along the free edge. The different combination of material 

joints with more fine mesh will have the following objectives for future work. 

  1. To determine the order of stress singularity.  

  2. To determine the distribution of elastic displacement.  

  3. To determine the strain material joints. 

  4. To determine the distribution of stress components 
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