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Abstract

Transform methods has their great importance in the field of applied sciences,
especially in engineering sciences. To most of us Laplace transform is well known and
we are acquainted to solve differential equations with this important tool. But it deals
with the continuous variable/analog signals. In this computer world we need the tools
to deal with discrete variable/digital signals. Unfortunately we have a little knowledge
about them i.e. we are not familiar with discrete transforms. The main objective of this
thesis was to be familiarized with some discrete transforms. For the purpose Z-
transform, which is the most conversant one of the family of discrete transforms is
taken. Also discrete counterpart of the Fourier transform, DFT and its calculation
technique Fast Fourier Transform (FFT) is considered. Some detail of those transforms
has been addressed. Fortunately we have devised a lemma for Z-transform, along with
its proof has been presented. Finally a brief introduction to the newest transform, the
Wavelet transform is introduced.
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INTRODUCTION

Transform means shift from one form to other. The methods which transforms something

from one form to some other form are termed as transform methods. Generally it is required

or used to shift variables from one type to other type (e.g t s ). As variables/parameters

have two different forms (e.g. continuous and discrete) so the transform methods will have

also two types; one will handle continuous and the other will handle discrete

variables/parameters. When the whole of the space is to be considered then for continuous

variable one require integration and for discrete variable summation is used. Thus to

transform continuous variable integrals are used. We generally use the terminology “Integral

Transform” for the purpose. Similarly for discrete variables “Discrete Transform” is used.

For both the transforms some Kernel is to be used. For integral transform integration is to be

performed over the domain after multiplication by the kernel. In a similar fashion summation

is taken over the domain after multiplication by the kernel. On the basis of this kernels the

transformed are labeled. Sometimes the domain may be finite, in these cases they are labeled

as finite transforms (e.g. Finite Fourier transforms). Transform methods have their own

merits in the field of applied sciences, especially in the field of engineering sciences. When a

physical system is modeled sometimes differential equations (Ordinary or Partial) arises. For

example when a simple circuit is modeled a differential equation is raised. In which

inductance, capacitance, resistance and e.m.f. will be present. These differential equation can

be solved by general mathematical tools for solving differential equations, but also can be

easily solved by Laplace transform method. Because after introducing the Laplace transform

to the differential equation one will require some algebraic manipulation and finally the

inverse transform will provide the required result. If the initial or boundary conditions were

given the arbitrariness present in the solution can be removed to get particular solutions. The

Laplace transform is very much useful in solving ordinary differential equation with less

effort. If partial differential equations are there (of two independent variables) Laplace

transform reduces the form to ordinary differential equations. Which are less tedious than

partial differential equations. From these discussion it is clear that Laplace transform is

useful tool especially to applied scientist and engineers. In a similar fashion it is observed

that when Z-transform is applied to difference equation one get a form which after algebraic

manipulation and inverse transform provide the solution of the difference equation.

Difference equation arises in case of discrete functions as differential equations arises in case
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of continuous function. Thus it is observe that transform methods, both integral and discrete,

is an essential tool to be familiarized to applied scientist and engineers. In the field of signal

processing time and frequency are the matter of interest. So in the field of signal processing

both integral transforms and discrete transforms are used. Many common integral transforms

used in the field of signal processing have their discrete counterpart (e.g. Fourier and wavelet

transforms have their discrete counterparts as Discrete  Fourier  Transform (DFT), Discrete

Sine transform (DST), Discrete Cosine Transform (DCT),Discrete Wavelet Transform

(DWT), etc.). There are some other discrete transforms, e.g. Z-transform, Discrete

Chebyshev transform, Hadamard transform, Fast Fourier Transform (FFT, a popular

implementation of the (DFT), Fast wavelet transform.

With the advent of fast and cheap digital computers, there has been renewed emphasis on the

analysis and design of digital systems, which represent a major class of engineering systems.

However, it is a mistake to believe that the mathematical basis of this area of work is of such

recent vintage. The first comprehensive text in English dealing with difference equations

was the treatise of the calculus of Finite Differences due to George Boole and published in

1860. Much of early impetus for the finite calculus was due to the need to carry out

interpolation and to approximate derivatives and integrals. Later, numerical methods for the

solution of difference equations were devised, many of which were based on finite difference

methods, involving the approximation of the derivative terms to produce a difference

equation.

Digital systems operate on digital signals, which are usually generated by sampling a

continuous-time signal, which is a signal defined for every instant of a possibly infinite time

interval. The sampling process generates a discrete-time signal, defined only at the instants

when sampling takes place so that a digital sequence is generated. After processing by a

computer, the output digital signal may be used to construct a new continuous-time signal,

perhaps by the use of a zero-order hold device, and this in turn might be used to control a

plant and process.

In many engineering applications the function (signal) under consideration is a continuous

function of time that needs to be processed by a digital computer. To do this the continuous

time-domain signal x(t) must be sampled at discrete intervals of time. The sample signal

( )x t is then processed as an approximation to the true signal x(t).



3

Let  x t be an energy-limited continuous-time (analog) signal. If we measure the signal

amplitude and record the result at a regular interval h, we have a discrete-time signal

    , 0,1,2,......, 1nx n x t n N   where

For simplicity in writing and convenience of computation, x(n) is generally used with the

sampling period h understood. This discretized sample values constitute a signal, called a

digital signal.

In order to have a good approximation to a continuous bandlimited function x(t) from its

samples {x(n)}, the sampling interval h must be chosen such that /h   where 2Ω

is the bandwidth of the function x(t) [i.e., means (Fourier transform of  x t is

zero] for all    . The choice of h above is the Nyquiest sampling rate, and the Shannon

recovery formula

     
 

sin

n

t nh
x t x nh

t nh








Z

enables us to recover the function x(t).

The relation between a continuous function x(t) and its sample values x(kT), k=0, ±1, ±2,…..,

where T is a fixed interval of time, is one of prime importance in digital processing

techniques. If the Fourier transform of x(t) can always be recovered from the knowledge of

its sample values x(kT), provided that the sampling rate is “fast enough” i.e. at a rate that is

at least twice the highest significant frequency of the signal. This remarkable result is known

as the sampling theorem and plays a central role in digital processing techniques. Functions

whose transform is zero everywhere except for a finite interval are known as band-limited

waveforms in signal analysis. Such signals do not actually exist in the real world, but

theoretical considerations of band limited waveforms are fundamental to the digital field.

In an ideal situation we can assume that sampling is performed instantaneously and thus

represent the sampled waveform by

( ) ( ) ( ) ( ) ( )
k

x t x t t kT x kT t kT 




     (0.1)
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Fig.: Sample function

where ( )t kT  is the impulse functions. The sampled function is really a train of impulse

functions in this sense, but it is otherwise treated as if it were a continuous function of t. We

recognize (1) as a comb function where the impulses are weighted by the sample values

x(kT). In reality, we cannot obtain an infinite number of samples as suggested in (1).That is,

we must always settle for N samples over a total time duration NT, and in this case, Eq.(1) is

approximated by

1

0

( ) ( ) ( )
N

k

x t x kT t kT




  (0.2)

A desired portion of a signal can be removed from the main signal by multiplying the

original signal by another function, which is zero outside the interval desired. Let  t be a

real-valued window function. Then the product      bf t f t t b  will contain the

information of  f t near t b . The matter will be discussed latter.

Not only analog (continuous) signals are discretized to analyze, but also in the numerical

solution of ordinary differential equations, the derivatives are discretized by replacing them

by the finite (forward) differences. This gives rise to difference equations of the higher order.

Thus a continuous process described by a differential equation is approximated by a discrete

process described by its counterpart a difference equation. For example, in a third order

ordinary differential equation

The derivatives can be replaced by

, ,

x(t)

….-3T -2T -T    0    T   2T  3T …
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which result in a third order differences equation of the form

A sequence is a numerical valued function whose domain of definition is the set of integers.

It is denoted by or or . A kth order linear difference equation in the

sequence is of the form

(0.3)

where n=0,1,2,…Thus (0.3) represents not just a single equation but an infinite system of

equations one equation for every n. Here the coefficients 0 1 2, , ,....., ....ja a a a are all constant

and do not depend on n. Here depends only on n. When ka is chosen as one (0.3) is

said to be in the standard form. If for all then (0.3) is said to be non-

homogeneous, otherwise it is said to be homogeneous. The order of the difference equation

(0.3) is the positive integer k which is the greatest difference in the index of non-zero values

of y. Equation (0.3) is linear because each term in one (0.3) is the first degree (linear) in .

Thus (0.3) is non-homogeneous kth order linear difference equation with constant

coefficients.

Difference equation is also referred to as recurrence relation since it is also referred to as

recurrence relation since it expresses in terms of one or more of the previous terms (of

the sequence) namely . In this case (0.3) can be written as

. The difference equation (0.3)

models a physical system. So is known as system input (system excitation or forcing

sequence or driving sequence) while is referred to as system output (system response).

The structure of the system is defined by the values of the coefficients and order of the

equation. Thus any system output depends on the system input and the structure of the

system. The general solution of (0.3) determines the output which depends only on

(but no longer on the prior terms of the sequence) and describes the complete sequence ny in

the closed form. Thus any sequence ny that satisfies the difference equation (0.3) is a

solution of (0.3).
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First order homogeneous difference equation

To proceed to solve a first order linear difference equation for and

b is a constant with boundary condition 0y d , let the solution be n
ny r with 0r  . Then

1
1

n
ny r 
  . Substituting these in the given difference equation, we have

1 0n nr br r b    

Thus the general solution of the difference equation is given by

(since if nb is a solution then any non-zero constant multiple of it is also a solution). In

addition as boundary condition is then . Then the particular

solution is .The solution defines a discrete function whose domain is the set

of all non-negative integers.

Second order linear homogeneous difference equation with constant coefficients

Let us consider (0.4)

Let us assume (as earlier) n
ny r , 0r  (0.5)

as a solution of (0.4). Then substituting (0.5) in (0.4), we get 2 1
2 1 0 0n n na r a r a r   

2
2 1 0 0a r a r a   

Thus (0.5) is solution of (0.4) if 2
2 1 0 0a r a r a   (0.6)

The equation (0.6) which is a quadratic in r is known as the characteristic/auxiliary equation

of (0.4). Let the roots of this equation be 1r and 2r . Three cases may arise.

Case   1: When the roots are real and district

In this case clearly and are two linearly independent solutions. Thus the general of

(0.4) will be the linear combinations of them, i.e.

1 1 2 2
n n

ny c r c r 

Case   2: When the roots are real and equal (say r)
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In these case nr and nnr will be two different solutions. Hence the general solution in this

case will be  1 2
n

ny c c n r 

Case   3: When the roots are complex

Since the complex roots occurs in pair, let the roots are given by a ib . Then the general

solution will take the form  1 2cos sinn
ny r c n c n   , 2 2r a b  and 1tan

b

a
 

This analysis can be extended to kth order difference equation by considering the nature of

the k roots of the auxiliary equation which will be a kth degree polynomial.

Before proceeding to non-homogeneous difference equations let us recollect the followings:

o The forward-difference or advancing difference operator is defined by

o The shift operator is defined as the operator that increases the argument of a function

by one tabular interval. Thus      1 1k k k k kEf Ef x f x h f x f     

o  and E are related .

The difference equation

(0.3)

can be written in terms of as follows

(0.7)

Non-homogeneous Equations

The general solution of a non-homogeneous linear difference equation with constant

coefficients (0.3) is the sum of the complementary function and any particular solution. Here

the complementary function (C.F.) of (0.3) is the general solution of the corresponding

homogeneous equation (0.4). Particular solution, more often known as particular integral

(P.I.) of (0.3), can be obtained by (a) method of undetermined coefficients (b) short cut

inverse operator methods.
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(a) Method of undetermined coefficients

The particular integral is assumed in a particular form depending on the form of the RHS

function . On the basis of the RHS functions are chosen and after taking their linear

combination P.I. is formed. That P.I. is substituted on the LHS and comparing the

coefficients are calculated.

(b) Inverse operator methods

The non-homogeneous equation (8) can be written as

(0.8)

where is a function of the operator E. Then

P.I.

Case 1: If then

P.I. , provided   0F a  .

P.I.
 

    1 2 .... 11

k!
n n k

k

n n n n k
a a

E a


   
 



Case 2: If then

P.I.
       
1 1 1 1 1

sin
2 2

in in
n ne e

n a b
F E F E i i F E F E

 


   

          

where ia e  and ib e  .

Similarly if , then

P.I.
       
1 1 1 1 1

cos
2 2

in in
n ne e

n a b
F E F E F E F E

 


   

          
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Case 4: If or polynomial in . Replace by and expand

in binomial series in ascending powers of up to .Express in a factorials and use

Case 5: If where is polynomial in . Then

P.I

It is clear that the discrete transforms have their great importance in the field of signal

processing but a little is known to us about them. Especially at the undergraduate level a

very little information is provided to the students about them. Also some new transforms are

emerging which may have their uses in the field of signal processing, which also include

signal compression, pattern recognition etc. Though the main objective of this research is to

make familiarize the different discrete transforms, we have devised a corollary in the

properties of z-transform. The scope of utilizations of the existing discrete transforms will

also be sorted.

This thesis will address Z-transform (Chapter-2), Discrete Fourier transforms (Chapter-3)

and a brief introduction to Wavelet transform (Chapter-4).
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CHAPTER-2

Z-TRANSFORM

Before the discussion of the main topic some related topics will be addressed.

Discrete-time signal and systems

A discrete signal has values which are defined only at discrete values of time or some other

appropriate variable, for example space. Such a signal may be generated by sampling a

continuous-time signal at regular time intervals , n=0,1,…,where is sampling period.

Thus if the analog input signal   atx t e is applied to a digital filter, it will give rise the

sequence      
n

x n x t t nT




  . For t nT , the sampled signal sequence is

  0 2, , ,.......aT aTx n e e e     .

Discrete signal may also be generated, artificially via some algorithm in a computer. The

amplitude of a discrete-time signal may have discrete values (discrete time, discrete

amplitude), or it may be continuous.

By tradition, a discrete-time signal is represented as a sequence of numbers:( ), n=0,1,… (2.1a)( ), n=0,1,… (2.1b), n=0,1,… (2.1c)

Where the symbol ( ), ( ) or indicates the value of the signal at the discrete time n (or

).For convenience we will use the symbol ( ) to denote both the value of the sequence at

the discrete time n and the sequence itself unless we wish to emphasize the difference. The

meaning will be clear from the context.

Let  x t be an energy-limited continuous-time (analog) signal. If we measure the signal

amplitude and record the result at a regular interval h, we have a discrete-time signal
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    , 0,1,2,......, 1nx n x t n N   where = ℎ
For simplicity in writing and convenience of computation, x(n) is generally used with the

sampling period h understood. This discretized sample values constitute a signal, called a

digital signal.

In order to have a good approximation to a continuous band limited function x(t) from its

samples {x(n)}, the sampling interval h must be chosen such that /h   where 2Ω is

the bandwidth of the function x(t) [i.e., ( ) = 0 means (Fourier transform of  x t is zero]

for all    . The choice of h above is the Nyquiest sampling rate, and the Shannon recovery

formula

     
 

sin

n

t nh
x t x nh

t nh








Z

enables us to recover the function x(t).

A discrete-time is essentially mathematical algorithm that takes an input sequence, ( ), and

produces an output sequence, ( ). Example of discrete-time systems are digital controllers,

digital spectrum analyzers, and digital filters. A discrete-time system may be linear or

nonlinear, time invariant or time varying. Linear time-invariant (LTI) systems form an

important class of systems used in DSP.

A discrete-time system is said to be linear if it obeys the principles of superposition. That is,

the response of a linear to two or more inputs is equal to the sum of the response of the systems

to each input acting separately in the absence of all the other inputs is equal to the sum of the

response of the system to each input acting separately in the absence of all the other inputs.

For example, if an input  1x n to the system gives rise to the output ( ), and another input( ), produces the output ( ), the response of the system to both inputs will be( ) + ( ) → ( ) + ( ) (2.2)

where and are arbitrary constants.

A discrete-time system is said to be time invariant (sometimes referred to as shift invariant) if

its output is independent of the time the input is applied. For example, if the input ( ) gives

the output ( ),then the input ( − ) will give the output ( − ):
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   x n y n (2.3a)

   x n k y n k   (2.3b)

That is, a delay in the input causes a delay by the same amount in the output signal. The input-

output relationship of an LTI system is given by the convolution sum( ) = ∑ ℎ( ) ( − ) (2.4)

where ℎ( ) is the impulse response of the system. The values of ℎ( ) completely define the

discrete-time system in the time domain. An LTI system is stable if its impulse response

satisfies the condition∑ |ℎ( )| < ∞ (2.5)

This condition is satisfied if ℎ( ) is of finite duration or if ℎ( ) decays towards zero as

increases.

A causal system is one which produces an output only when there is an input. All physical

systems are casual. In general, a casual discrete-time sequence, ( ), or the impulse

response, ℎ( ), of a discrete-time system is zero before time 0,that is ( ) =0, < 0, < 0
The Laplace transform plays a very important role in the analysis of analog signals or systems

and in solving linear constant coefficient differential equations. It transforms the differential

equations into the complex s-plane where algebraic operations and inverse transform can be

performed to obtain the solution.

Like the Laplace transform, the z-transform provides the solution for linear constant

coefficient difference equations, relating the input and output digital signals in the time

domain. It gives a method for the analysis of discrete time systems in the frequency domain.

The analysis of any sampled signal or sampled data system in the frequency domain is

extremely difficult using s-plane representation because the signal or system equations will

contain infinite long polynomials due to the characteristic infinite number of poles and zeros.

Fortunately this problem may be overcome by using the z-transform, which reduces the poles

and zeros to a finite number in the z-plane.
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The purpose of the z-transform is to map (transform) any point s i    in the s-plane to a

corresponding point z( ∟ ) in the z-plane by the relationship sTz e where T is sampling

period (seconds)

Under this mapping, the imaginary axis, 0  maps on the unit circle | | = 1 in the z-plane.

Also, the left hand half-plane < 0 corresponds to the interior of the unit circle | | = 1 in the

z-plane. Considering that the real part of x is zero, i.e. 0  we have 1i Tz e i T   

which gives the values of z (in polar form) shown as in the following table.

2
0, s T


  

i 0 / 8s / 4s 3 / 8s / 2s 5 / 8s 3 / 4s 7 / 8s s

1z T  1 0  1 45  1 90  1 135  1 180  1 225  1 270  1 315  1 360 

The z-transform plays the same role in the analysis of discrete-time signals and LTI systems

as the Laplace transform does in the analysis of continuous-time signals and LTI systems. For

example, we shall see that in the z-domain (complex z-plane) the convolution of two time-

domain signals is equivalent to multiplication of their corresponding z-transforms. This

property greatly simplifies the analysis of the response of an LTI system to various signals. In

addition, the z-transform provides us with a means of characteristic an LTI system, and its

response to various signals, by its pole-zero locations.

The transform is used to characterize signals in terms of their pole-zero patterns. The z-

transform of a signal is used to obtain the time-domain representation of the signal. The one-

side z-transform is used to solve linear difference equations with nonzero initial conditions.

2.1 The Direct z-transform

The z-transform of a discrete-time signal x(n) is defined as the power series

    n

n

X z x n z






  (2.6)
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where z is a complex variable. The relation (2.6) is sometimes called the direct z-transform

because it transforms the time-domain signal x(n) into its complex plane representation X(z).

The inverse procedure [i.e., obtaining x(n) from X(z)] is called the inverse z-transform .

For a convenience, the z-transform of a signal x(n) is denoted by( ) ≡ { ( )} (2.7)

Since the z-transform is an infinite power series, it exists only for those values of z for which

this series converges. The region of converges. The region of convergence (ROC) of X(z)

attains a finite value. Thus any time we cite a z-transform we should also indicate its ROC.

Let us express the complex variable z in polar form as

iz re  (2.8)

where = | | and = ∡ . Then X(z) can be expressed as

   i

n in

z re
n

X z x n r e



 




 

In the ROC of X(z), | ( )| < ∞ . But

       n in n in n

n n n

X z x n r e x n r e x n r 
  

    

  

    

Hence | ( )| is finite if the sequence ( ) is absolutely summable.

The problem of finding the ROC for X(z) is equivalent to determining the range of values of

r for which the sequence ( ) is absolutely summable. To elaborate, let us rewrite the

above equation as

         1

0 1 0

n n
n n

n n n n

x n x n
X z x n r x n r

r r

   


   

       

If X(z) converges in some region of the complex plane, both summations of the above equation

must be finite in that region. If the first sum of the above converges, there must exist values

of r small enough such that the product sequence (− ) , 1 ≤ ≤ ∞ ,is absolutely

summable. Therefore, the ROC for the first sum consists of all points in a circle of some radius

where < ∞. On the other hand, if the second sum converges, there must exist values of r
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large enough such that the product sequence ( )⁄ , 0 ≤ ≤ ∞ is absolutely summable.

Hence the ROC for the second sum consists of all points outside a circle of radius > .

Since the convergence of X(z) requires that both sums be finite, it follows that the ROC of

X(z) is generally specified as the annular region in the z-plane, < < ., which is the

common region where both sums are finite. On the other hand, if > , there is no common

region of convergence for the to sums and hence X(z) does not exist.

2.2 Importance Properties of the ROC for the z-transform

(i) The ROC does not contain any poles.

(ii) When x(n) is of finite duration, then the ROC is the entire z-plane, except possibly z=0

and/or z=∞.

(iii) If x(n) is a right-sided sequence, the ROC will not include infinity.

(iv) If x(n) is a left-sided sequence, the ROC will not include z=0.However, if x(n)=0 for

all n>0, the ROC will include z=0.

(v) If x(n) is two-sided, and if the circle |z|= is in the ROC, then the ROC will consist of

a ring in the z-plane that includes the circle |z|= . That is the ROC includes the

intersection of the ROC’s of the components.

(vi) If X(z) is rational, then the ROC extends to infinity, i.e. the ROC is bounded by poles.

(vii) If x(n) is causal, then the ROC includes z=∞.

(viii) If x(n) is anti-causal, then the ROC includes z=0.
2.3 THE ONE-SIDED Z-TRNSFORM

The two sided z-transform requires that the corresponding signals be specified for the entire

time range−∞ < < ∞. This requirement prevents its use for a very useful family of

practical problems, namely the evaluation of the output of non-relaxed systems. As we

recall, this systems are described by difference equations with nonzero initial conditions.

Since the input is applied at a finite time, say , both input and output signals are specified

for ≥ , but by no means are zero for < . Thus the two-sided z-transform cannot be

used.

2.3.1 Definition and properties

The one-sided or unilateral z-transform of a signal x(n) is defined by
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   
0

n

n

X z x n z






 i.e.     Z x n X z

No confusion will arise as in this case n will take only non-negative integral values, whereas

in the case of direct z-transform n can take both negative and positive integral values. The one-

sided z-transform differs from the two-sided transform in the lower limit of the summation,

which is always zero, whether or not the signal x(n) is zero for 0n  (i.e., causal). Due to this

choice of lower limit, the one-sided z-transform has the following characteristics:

o It does not contain information about the signal x(n)for negative values of time (i.e.,

for an n<0).

o It is unique only for causal signals, because only these signals are zero for n<0.

o The one-sided z-transform  X z of x(n) is identical to the two-sided z-transform of

the signal    x n u n . Since    x n u n is causal, the ROC of its transform, and hence

the ROC of  X z is always the exterior of a circle. Thus when we deal with one-sided

z-transforms, it is not necessary to refer to their ROC.

2.3 The Inverse z-transform

Often, we have the z-transform ( ) of a signal and we must determine the signal sequence.

The inverse -transform (IZT) allows us to recover the discrete-time sequence ( ), given its

-transform. The procedure for transforming from the z-domain to the time domain is called

the inverse z-transform. Symbolically, the inverse -transform may be defined as( ) = [ ( )] (2.9)

where ( ) is the -transform of ( ) and is the symbol for the inverse -transform.

The mathematical basis for obtaining ( ) from ( ) can be derive by using the Cauchy

integral theorem, as z is a complex variable.

Since     n

k

X z x n z






  , let us multiply both sides of by and integrate both sides over

a closed contour within the ROC of ( ).which encloses the origin. Thus we have……..

   1 1n n k

c c
k

X z z dz x k z dz


  



   (2.10)
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where C denotes the closed contour in the ROC of ( ), taken in a counter clock-wise

direction. Since the series converges on this contour, we can interchange the order of

integration and summation on the right-hand side of (2.10). Thus (2.10) becomes

   1 1n n k

c c
k

X z z dz x k z dz


  



   (2.11)

Using the Cauchy integral theorem, which states that

1 1, k n1
   

0, k n2
n k

c
z d

i
z


  

 



 (2.12)

where C is any contour that encloses the origin. By applying (2.12), the right-hand side of

(2.11) reduces to  2 i x n and hence the desired inversion formula be

1(
1

x (n )    
2

) n

c
X z d

i
z z


  (2.13)

Although the contour integral in (2.13) provides the desired inversion formula for determining

the sequence x(n) from the z-transform, it is not generally used to obtain inverse z-transforms.

In practice , ( ) is often expressed as a ratio of two polynomials in 1z or equivalently in z:( ) = ⋯⋯ (2.14)

In this form, the inverse -transform, ( ), may be obtained using one of several methods

including the following three:

(1) Power series expansion method;

(2) Partial fraction expansion method,

(3) Residue method.

Each method has its own merits and demerits. In terms of mathematical rigour, the residue

method is perhaps the most elegant. The power series method, however, lends itself most

easily to computer implementation.

2.3.1 Power series method

Given the z-transform, ( ), of a casual sequence as in Equation (2.14), it can be expanded

into an infinite series in or by long division (also called synthetic division):
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( ) = ⋯⋯= (0) + (1) + (2) + (3) + ⋯ (2.15)

In this method, the numerator and denominator of ( ) are first expressed in either descending

powers of ascending powers of and the quotient is then obtained by long division.

The long division approach provides us the following relations:

  0 00 /x b a ;    1 1 01 0 /x b x a a    ;      2 1 2 02 1 0 /x b x a x a a     ;

       3 1 2 3 03 2 1 0 /x b x a x a x a a      ………….     0
1

/
n

n i
i

x n b x n i a a


     
 .

Thus we have     0
1

/
n

n i
i

x n b x n i a a


     
 for 1n  and   0 00 /x b a

2.3.2 Partial fraction expansion method

In this method, the -transform is first expanded into a sum of simple partial fractions. The

inverse -transform of partial fraction is then obtained from tables (such a table is presented

as Table 2.1) and then summed to give the overall inverse -transform. As has been considered

earlier, let we have given( ) = ⋯⋯ (2.16)

If the poles of ( ) are of first order and = , then ( ) can be expanded as

( ) = + 1 − + 1 − +⋯+ 1 −
1 2

0 0
11 2

...
M

kM

kM k

C zC z C z C z
B B

z p z p z p z p

      
    (2.17)

where are the poles of ( ) (assumed distinct), are the partial fraction coefficients and= ⁄ (2.18)

The are also known as the residues of ( ), by definition.

If the order of the numerator is less than that of the denominator in Equation (2.16), that is< , then will be zero. If > then ( ) must be reduced first, to make ≤ , by



19

long division with the numerator and denominator polynomials written in descending powers

of . The reminder can be then be expressed as in Equation (2.17).

The coefficient, , associated with the pole may be obtained by multiplying both sides of

Equation 4.15 by ( − )⁄ and = :

   
k

k k

z p

X z
C z p

z


 

If X(z) contains one or more multiple-order poles (that is poles that are coincident) then extra

terms are required in equation (2.17) to take this into account. For example, if X(z) contains

an mth-order pole at = the partial fraction expansion must include terms of the form

 1

m
i

i
i k

D

z p 


The coefficients, , may be obtained from the relationship

     1

!
k

m i
m

i km i

z p

X zd
D z p

m i dz z






 
    

2.3.3 Residue method

In this method the IZT is obtained by evaluating the contour integral

     11

2
n

c
x n z X z dz

i
  (2.19)

where C is the path of integration enclosing all poles of X(z). For rational polynomials, the

contour integral in equation (2.19) is evaluated using a fundamental result in complex variable

theory known as Cauchy’s residue theorem :

   11

2
n

c
x n z X z dz

i
 

= sum of the residues of ( ) at all the poles inside C.

In the last section, it was stated that the partial fraction coefficients, the , are also referred

to as residues of X(z) and a way of obtaining their values was given. The key point to remember
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is that every residue, , is associated with a pole, kp . In the present method, the residue of

 1nz X z at the pole kp is given by

Res        
1

1

1
,

1 ! k

m

k km z p

d
F z p z p F z

m dz



 
       

(2.20)

where ( ) = ( ), m is the order of the pole at and Res   , kF z p   is the residue

of  F z at kp . For a simple (distinct) pole, equation (2.20) reduces to

Res          1,
k

n
k k k z p

F z p z p F z z p z X z


      (2.21)

2.4 PROPERTIES OF Z-TRANSFORM

(i) Linearity

If     1 1Z x n X z and     2 2Z x n X z then

        1 1 2 2 1 1 2 2Z a x n a x n a X z a X z  

(ii) Time Shifting

a) If     Z x n X z then     kZ x n k z X z 

b) If     Z x n X z then

     1 2 1
0 1 2 1.....k k

kZ x n k z X z x x z x z x z  
       

(iii) Scaling in z-domain

If     Z x n X z with 1 2:ROC r z r  then     1nZ a x n X a z with

1 2:ROC a r z a r 

(iv) Time reversal

If     Z x n X z with 1 2:ROC r z r  then     1Z x n X z  with

1 2

1 1
:ROC z

r r
 

(v) Differentiation in the z-domain or multiplication effect of n

If     Z x n X z then     dX z
Z nx n z

dz
 

(vi) Convolution of two sequences

If     1 1Z x n X z and     2 2Z x n X z then
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          1 2 1 2*Z x n x n X z X z X z 

(vii) Correlation of two sequences

If     1 1Z x n X z and     2 2Z x n X z then

       11 2 1 2
n

Z x n x n l X z X z






   
 


(viii) Multiplication of two sequence

If     1 1Z x n X z and     2 2Z x n X z then

         1
1 2 1 2

1

2 c

z
Z x n x n X z X v X v dv

i v
    

 

(ix) Parseval’s relation

If  1x n and  2x n are complex-valued sequences, then

     * * 1
1 2 1 2 *

1 1

2 c
n

Z x n x n X v X v dv
i v






      
  

 

(x) Initial value theorem

If     Z x n X z ,  x n is causal [i.e.,   0x n  for 0n  ], then    0 lim
z

x X z




(xi) Final value theorem.

If     Z x n X z then      
1

lim lim 1
n z

x n z X z
 

 

Corollary-I: As   1

1 /
nZ a

a z



then

( 1)( 2)...( 1) 1
;

! 1 /

m
n m

m

n n n n m d
Z a n m

m da a z
            

Proof: From the definition     11 2 2 1

0

1
1 ...... 1

1 /
n n n

n

Z a a z az a z az
a z

    



       
 .

i.e.   1

1 /
nZ a

a z



.
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If we consider a as parameter then we can differentiate both sides with respect to a, thus we

will have   1

1 /
nd d

Z a
da da a z

        
. Upon interchanging the differentiation and

transformation operator we get  1 2

1
; 1

(1 / )
nZ na n

z a z
  



The above result can be easily verified using the properties, as follows:

 

   

1 1 1 2 2 3

1

1 1 2 2

......

1 1
1 ....

1 /

n n n

n

Z a a z z az a z

z az a z
z a z z a


     



  

    

     
 



So  1nZ na  can be obtained using the multiplication effect of n. Thus

 
   

1
2 2

1 1
; 1

1 /
n d z

Z na z n
dz z a z a z a z

          
.

Continuing the process m times and after simplification we will get the result.

Table 2.1: Some important Z-transform, with ROC

 x n  X z ROC

 n

 u n

 na u n

 ne u n

   cos n u n

   sin n u n

1

1

1

1 z

1

1

1 az

1

1

1 e z 
1

1 2

1 cos

1 cos

z

z z






 


 

1

1 2

sin

1 cos

z

z z






  

Entire z-plain

1z 

z a

z e

1z 

1z 

Now some example will be presented.
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Problem 2.1: Find the z-transform and indicate the ROC of the following problems

(i)    2, 5, 3, 4, 9x n 

(ii)  
1, 1, 2, 5, 7

x n
 

  
 

(iii)    x n n

(iv)    x n n k 

(v)    x n n k 

(vi)    
0, 0

1, 0

n
x n u n

n


   

Solution:

(i) Given that,

   2,5,3,4,9x n 

Here,  1 2x  ,  2 5x  ,  3 3x  ,  4 4x  ,  5 9x  ,

We know,     n

n

X z x n z






 

   
5

0

n

n

X z x n z 



 

         0 1 2 3 40 1 2 3 4x z x z x z x z x z       
1 2 3 42 5 3 4 9z z z z       

ROC: Entire z-plane except = 0.
(ii) Given that,  

1, 1, 2, 5, 7
x n

 
  

 

Here,  2 1x   ,  1 1x    ,  0 2x  ,  1 5x  ,  2 7x  ,

We know,     n

n

X z x n z




  

 
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 
2

2

n

n

x n z 



 

         2 0 1 22 1 0 1 2x z x z x z x z x z       
2 1 22 5 7z z z z     

ROC: Entire z-plane except = 0 and z 

(iii) Given that,      1,0,0,0.....x n n 

We know,     n

n

X z x n z






 

       
0

n

n

Z x n Z n n z 






  
0 11 0 . . . .z z    , since    1, 0, 0, 0.....n 

1

ROC: Entire z-plane .

(iv) Given that,

   x n n k 

We know, if     Z x n X z then     kZ x n k z X z  and    1Z n 

   .1k kZ n k z z    

ROC: Entire z-plane except = 0.
(v) From the definition

     ( )0 0 .... 1. 0 0 .....n k k

n

Z n k n k z z z 


  



          

Since
1, 0

( )
0, 0

m
m

m



  

, thus  
1,

0,

n k
n k

n k


 
    

ROC: Entire z-plane except z 

(vi) Given that,    
0, 0

1, 0

n
x n u n

n


   

We know,    1,1,1,.....u n 

Thus      0 1 2...0 0 1. 1. 1. ....n

n

Z x n u n z z z z


  



      
1 2 1 11 z ............ (1 )

1

z
z z

z
         


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ROC: The ROC is the interior part of the circle 1z  i.e, where 1z 

Problem 2.2: Find the z-transform of      1n nx n a u n b u n   

Solution: We know,  
0 0

1 0

m
u m

m


  

, thus  
0 1

1
1 1

n
u n

n

 
    

and      n

n

Z x n x n z








let,      1 2x n x n x n 

        1 2Z x n Z x n Z x n   , from linearity property

     1n nZ a u n Z b u n   

1

0

n n n n

n n

a z b z
 

 

 

  

0 1

n n n n

n n

a z b z
 

 

 

  

   1 2 2 1 2 2 3 31 .... ....az a z b z b z b z           

   1 2 2 1 1 2 21 .... 1 ....az a z b z b z b z           

1

1 1

1

1 1

b z

az b z



  
 

provided 1 1az  and 1 1b z 

The first condition requires that z a and that for the second is z b . If both the

conditions are not satisfied simultaneously then we will not get the required transform.  Both

the conditions can only be satisfied if a b , thus z will lie within an annular region. In this

case z-transform will exists and ROC be a z b  .

Problem 2.3: Find the z-transform of

(i)    x n u n  (ii)    nx n na u n
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Solution:

(i) From the definition we have

     n

n

Z x n x n z






    n

n

u n z






 
0

n

n

z



 
0

n

n

z




 1
; 1

1
z

z
 


(ii) To determine the z-transform we first try to find the z-transform of  na u n . From the

definition we have,

    n n

n

Z a u n a u n




 
0

n n

n

a z






 1 21 ....az az       111 az
 

1

1

1 az



, provided 1 1az  i.e., z a

But we know if     Z x n X z then     d
Z x n z X z

dz
 

   
 

1

21 1

1

1 1

n d az
Z na u n z

dz az az



 

      
with the condition z a

Problem 2.4: Find the inverse z-transform of  1log 1 ,az z a 

Solution:

Let,    1log 1X z az 

 
2

11

d az
X z

dz az



  


or,  
1

11

d az
z X z

dz az



  


Again    1

1

1
nZ a u n

az



     1

1

1
n

Z a u n
az

  

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    1 1
1

1
1 1

1
n

Z a u n z n
az

 
    



    
1

1

1
1 1

1
n az

Z a a u n n
az




    


   
1

11
1

1 1
1

naz
z u n

az






 
     

…………(1)

Again we know if     d
Z nx n z X z

dz
 

thus if    1 d
Z z X z y n

dz
    
 

and     1 y n
Z X z

n
 

Hence       1

1 1 1 1
1

n na u n
Z az

n


   

 

Problem 2.5: Find the inverse z-transform of   1 2 1 2 3 41 2 1 2 4 8 16z z z z z z          

Solution:

We have the convolution theorem as:

If     1
1 1Z X z x n  and     1

2 2Z X z x n 

then         1
1 2 1 2

m

Z X z X z x m x n m






 

Here    1 2 21 2 1, 2,1Z z z    

and    1 1 2 3 41 2 4 8 16 2nZ z z z z         where 0 4n 

   1 1 2 1 2 3 41 2 1 2 4 8 16Z z z z z z z            

   1 2
m

x m x n m




 

where    1 1, 2,1x m   and    2 2mx m  , 0 4m 



28

 1 0x i  , 0i  ,  1 0 1x  ,  1 1 2x   ,  1 2 1x  ,  1 0; 2x k k 

and

 2 0x i  , 0i  ,  2 0 1x  ,  2 1 2x  ,  2 2 4x  ,  2 3 8x  ,  2 4 16x  ,  2 0;x j  4j  .

So we will have to calculate terms

   1 20 0x x ;        1 2 1 20 1 1 0x x x x ;            1 2 1 2 1 20 2 1 1 2 0x x x x x x  ;

           1 2 1 2 1 20 3 1 2 2 1x x x x x x  ;            1 2 1 2 1 20 4 1 3 2 2x x x x x x  ;

           1 2 1 2 1 21 4 2 3 2 2x x x x x x  and    1 22 4x x

And the values are 1, 2 2, 4 4 1, 8 8 2, 16 16 4, 32 8, 16        

i.e.,  1,0,1, 2, 4, 24,16

Thus we have the required inverse transform as

 1,0,1, 2, 4, 24,16

Note: The result can also be obtained by the following way

  1 2 1 2 3 41 2 1 2 4 8 16z z z z z z           2 3 4 5 61 2 4 24 16z z z z z         

which is nothing but the z-transform of  1,0,1, 2, 4, 24,16

Problem 2.6: Find the inverse z-transform of
 21

1

1 az

Solution:

We know,  1

1

1
nZ a u n

az
    

and the convolution theorem as         1
1 2 1 2

m

Z X z X z x m x n m






 

where     1
1 1Z X z x n  and     1

2 2Z X z x n 
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Let    1 21

1

1
X z X z

az
 


then    1
mx m a u n and    2

n mx n m a u n m  

 
   1

21

1

1

m n m

m

Z a u n a u n m
az


 




     
  



 
0 0

1 1
n n

m n m n n

m m

a a a n a

 

    

Problem 2.7: Solve the difference equation using Z-transform

     2 4 1 3 5ny n y n y n     ; given  0 1y  ,  1 1y 

Solution: Given that,

     2 4 1 3 5ny n y n y n     ;  0 1y  ,  1 1y 

Let     Z y n Y z

Taking Z-transform on the both sides of the given equation we get

          2 4 1 3 5nZ y n Z y n Z y n Z    

or,             2
1

1 1
0 4 0 3

1 5

y
Z Y z y Z Y z y Y z

z z
 

        

or,    2 24 3 3
5

z
Y z z z z z

z
    



or,      
 

  
3

3 1 5 3 1

z zz
Y z

z z z z z


 
    

    
     

1 3 5

1 3 5

z z z

z z z

  

  

i.e.,
    

   
1 3 5

1 3 5

Y z z z

z z z z

  

  
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     
1 1

1 1 3 5z z z z
 
   

                 
1 1 1 1

1 1 1 3 1 5 3 1 3 3 5 5 1 5 3 5z z z z
   
         

1 1/ 8 1/ 4 1/ 8

1 1 3 5z z z z
   
   

9 / 8 1/ 4 1/ 8

1 3 5z z z
  
  

i.e.,   9 1 1 1 1 1

8 1 1/ 4 1 3 / 8 1 5 /
Y z

z z z
  

  

Taking inverse z-transform we get

  9 1 1
1 3 5

8 4 8
n n ny n   

i.e.,   9 1 1
3 5

8 4 8
n ny n   
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CHAPTER-3

DISCRETE FOURIER TRANSFORM AND FAST FOURIER TEANSFORM

Frequency analysis of discrete-time signals is usually and most conveniently performed on a

digital signal processor, which may be a general-purpose digital computer or specially

designed digital hardware. To perform frequency analysis on a discrete-time signal{ ( )},we

convert the time-domain sequence to an equivalent frequency-domain representation. We

know that such a representation is given by the Fourier transform ( ) of the sequence{ ( )}. However, ( ) is a continuous function of frequency and therefore, it is not a

computationally convenient representation of the sequence { ( )}. The discrete Fourier

transform (DFT) and inverse discrete Fourier transform (IDFT) are computational tools that

play a very important role in many digital signal processing applications, such as frequency

analysis (spectrum analysis) of signals, power spectrum estimation, and linear filtering. The

importance of the DFT and IDFT in such practical applications is due to a large extent on the

existence of computationally efficient algorithms, known collectively as fast Fourier transform

(FFT) algorithms, for computing the DFT and IDFT. For the sake of quick understanding to

the engineers, in this chapter 1 will be represented by j, though generally we represent that

by i. Before discussing about DFT and others we will present some related topics first.

The Fourier Transform

Recall that a periodic signal  px t with periodic and its exponential Fourier series

coefficients  X k are related by

    02j kf t
p

k

x t X k e 




      0

/2
2

/2

1 T
j kf t

p

T

X k x t e dt
T





  (3.1)

If the period of a periodic signal  px t is stretched without limit, the periodic signal no

longer remains periodic but becomes a single pulse ( ) corresponding to one period of  px t

The harmonic spacing 0 1/f T approaches zero, and its Fourier series spectrum becomes a

continuous curve. In fact, if we replace 0f by an infinitesimally small quantity 0df  the

discrete frequency 0k f may be replaced by the continuous frequency . The factor 1/ T in the
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